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FOREWORD

This report was prepared in fulfillment of National Aeronautics and Space Administration con-
tract NAS1-10824. The contract was awarded 26 May 1971 to the Aerodynamics Research Unit of
The Boeing Company Commercial Airplane Group as part of a systems study for defining an
advanced-technology transport aircraft system.

The contract study involved the design, fabrication, and two-dimensional wind tunnel testing
of three high-lift configurations of a 9.3% thick NASA supercritical airfoil. The high-lift configurations
consisted of a single-slotted trailing-edge flap and no leading-edge device, a double-slotted trailing-
edge flap and a leading-edge slat, and a triple-slotted trailing-edge flap and a leading-edge slat. The slot
geometry and deflections of the high-lift systems were varied to achieve maximum hft.

In addition, an analytical method furnished by NASA for calculating the viscous flow about
two-dimensional multicomponent airfoils was evaluated by comparing its predictions with test data.




n¥
'Page Intentionally Left Bla

ST s

‘!!r-‘”""



_ ;

CONTENTS

Page
INTRODUCTION . . . . . . . . o . o oo o o e e e e e e e e 3
SYMBOLS . . . . . . . . . o oo o s e e e e e e e e 5

TEST PROGRAM e e e e e e e e e e e s 9
Models. . . . . . . . . . . ..o e e e 9
High-Lift System Design . . 9
Experimental Optimization Procedure . . . . . . . . . . . . . . . .. . . 11
Test Facilities . . . . . . . . . . . . . . . . . . c . .00 ... 12
Data Acquisition . . . . . . . . . . . . . L ... e e s 12

TESTRESULTS . . . . . . . . . . « . . « .« v v v v v v v v v v v v o .13
Sectional Characteristics . . . . . . . . . . . . . . . . . . ... ... . 13
Comparison of High-Lift Systems . . . . . . . . . . . . . . . ... ... 17
Comparison of Leading-Edge Slats . . . . . . . . . . . . .. .. ... .. 19
High-Lift System Optimization . . . . . . . . . . . . . . . .. .. ... 19
Boundary-Layer Profiles . . . . . . . . . . . . ... ... ... .00 2

COMPARISON OF DATA AND THEORY .
Aerodynamic Characteristics
Boundary-Layer Properties .

SR8

CONCLUSIONS . . . . . . . . . . . o . o v o e i i i e i e

REFERENCES . . . . . . . . . . ... ... ... .. ..0... 28




o T
TWO-DIMENSIONAL WIND TUNNEL TESTS OF A NASA
SUPERCRITICAL AIRFOIL WITH VARIOUS HIGH-LIFT SYSTEMS

Volume I-Data Analysis .

By E. Omar, T. Zierten, and A. Mahal
The Boeing Company
Commercial Airplane Group

SUMMARY

In fulfillment of NASA contract NAS1-10824, “Two-Dimensional Wind Tunnel Tests of a NASA
Supercritical Airfoil With Various High-Lift Systems,” three high-lift systems for a NASA, 9.3%,
blunt-based, supercritical airfoil were designed, fabricated, and wind tunnel tested. In addition, a
method furnished by NASA for calculating the viscous flow about two-dimensional multicomponent

airfoils was evaluated by comparing its predictions with test data.

The primary objective of this program was to determine whether high-lift systems derived from
supercritical airfoils would have performance comparable to high-lift systems derived from conven-
tional airfoils. The high-lift systems for the supercntical airfoil were designed to achieve maximum

lift and consisted of:
®  Asingle-slotted flap
® A double-slotted flap and a leading-edge slat
® A triple-slotted flap and a leading-edge slat

The secondary objective was to produce high-quality two-dimensional data to verify the NASA
theoretical method for predicting the flow characteristics about multicomponent airfoils. The data

would also serve as a basis for future improvements of the method.

To achieve these objectives, wind tunnel tests were conducted in the Boeing research wind tun-
nel (BRWT), which is equipped with wall boundary-layer control to ensure two-dimensionality.
Tests of the basic supercritical airfoil were conducted at Mach numbers ranging from 0.08 to 0.284.
The corresponding Reynolds numbers ranged from 1.1 million to 4.02 million. All high-lift system
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tests were conducted at a Mach number of 0.2 and a Reynolds number of 2.83 million. The tests
were conducted over sufficient ranges of angle of attack to adequately define the aerodynamic char-
acteristics of each configuration. Tests were conducted for a range of settings of the leading-edge
devices and trailing flaps to determine the maximum lift of the high-lift systems. Boundary-layer and
wake measurements for comparison with theory were conducted only on the single-slotted flap

configuration.

The maximum lift produced by each configuration of the NASA supercritical airfoil is tabu-
lated below along with the trailing-edge flap deflection at which the maximum lift occurred.

Maximum Lift Flap Deflection
Configuration Coefficient for Maximum Lift
Basic airfoil 1.73 -
Single-slotted flap 2.79 30°
Double-slotted flap 4.85 29°50°
Triple-slotted flap 55 20%45°65°

The maximum lift coefficient produced by the supercritical airfoil is considered excellent com-
pared with conventional airfoils under similar test conditions. The performance of the high-lift con-
ﬁgurations of the supercritical airfoil was found to be comparable to that of high-lift configurations
of the NACA 23012 airfoil and the Boeing 707 airfoil. Neither the supercritical airfoil contours
from which high-lift components were derived, nor the blunt trailing edge (0.01c thick) had an
appreciable effect on high-lift performance.

Test data of configurations having little or no boundary-layer separation were compared with
predictions of the analytical method furnished by NASA. The comparisons indicate that the tendency
of the NASA method s to:

® Predict lift, pitching moments, and surface pressures reasonably well for single airfoils and
airfoils with slotted flaps at low deflection angles

® Underpredict the lift at high angles of attack of airfoils with slotted flaps at high deflec-
tion angles

®  Overpredict the drag of flapped and unflapped airfoils



INTRODUCTION

A research and development program has been initiated by the National Aeronautics and Space
Administration to exploit the characteristics of the NASA supercritical airfoil, which has a transonic
drag rise at substantially higher speeds than conventional airfoils. The program includes system
studies that would lead to the definition of an advanced-technology transport aircraft and identify
areas of needed research. One area of interest has been the evaluation of the high-lift systems that
would provide the aircraft with the necessary low-speed capabilities to meet field length and low-
speed handling requirements. To determine the high-lift characteristics of the supercritical airfoil,
NASA contracted with The Boeing Company to design and test various two-dimensional high-lift
systems for a NASA supercritical airfoil having a thickness of 9.3% of its chord. NASA provided the
airfoil coordinates and specified that the high-lift systems include a single-slotted flap and a configu-
ration with a double-slotted flap and leading-edge slat. A third high-lift system was recommended by
Boeing and consisted of a triple-slotted flap and a leading-edge slat.

The primary technical objectives of this contract were to:
®  Design the high-lift systems for maximum lift conditions
® Evaluate their aerodynamic characteristics through wind-tunnel tests

® Experimentally determine the orientations of airfoil components that will produce the
maximum lift

® Compare these high-lift systems with systems designed for conventional airfoils

An additional objective was to make comparisons between experimental data and results of a
NASA theoretical method for calculating the viscous flows about multicomponent airfoils.

In accordance with the terms of NASA contract NAS1-10824, this document is submitted as
the final technical report. The report consists of two volumes. Volume I contains:

® A discussion of the designs of high-lift systems and optimization procedures
® A discussion of test results

® A comparison of the NASA method with test results




-

b g -
The contents of volume II (NASA CR-2215) consist of:
® A description of the test facilities and models

® A discussion of data acquisition and reduction

@ Plots of selected wind tunnel data




SYMBOLS

All geometric airfoil parameters defined below are illustrated in figure 1.

L/D

airfoil reference chord length, meters

camber-line length of a deployed high-lift system measured from the wing leading
edge (0,0) to the trailing edge of the last flap component, meters

camber-line length of a deployed trailing-edge flap, meters
chord length of a retracted flap, meters

chord length of a deployed leading-edge device, meters
section drag coefficient, Cy = D/qeoS

section lift coefficient, Cg = L/q.S

the maximum Lift coefficient an airfoil configuration generates as angle of attack

is varied

section pitching moment coefficient about a moment center located at (0.25¢,0),
C =m/q,,Sc

mM0.25
pressure coefficient, (P - Poo)/deo ‘
pressure coefficient of airfoil component suction peak
drag, newtons
slot gap size, meters
“boundary-layer shape factor, H = §*/6

lift, newtons

ratio of lift to drag




m pitching moment, newton-meters

Moo freestream Mach number

PL local static pressure, newtons per square meter

Py freestream total pressure, newtons per square meter

P freestream static pressure, newtons per square meter

Yoo freestream dynamic pressure, q., = oo Um2/2, newtons per square meter

Re Reynolds number based on airfoil reference chord length

S wing area, square meters

T¢ freestream total temperature, °K

U local velocity, meters per second

U freestream velocit;/, meters per second

Up local potential velocity based on freestream total pressure and local static pressure,
meters per second

X,y l}orizontal and vertical Cartesian coordinates, meters

Xos Yo location of the leading-edge point of a high-lift component in a deployed position,
meters

Ax airfoil component overlap measured parallel to the chord line of the most forward of
two overlapping components, meters

Yt the elevation (measured from the wing chord line) of the trailing edge of a leading-
edge device, meters

o airfoil angle of attack, degrees

o¢ trailing-edge flap deflection measured from the wing chord line to the flap component

chord line, degrees



Poo

equivalent plain flap deflection angle (the deflection of a plain flap having the same
chord and producing the same potential flow lift as a deployed slotted trailing-edge
flap), degrees

deflection of a leading-edge device measured from the wing chord line to the device
chord line, degrees

boundary-layer displacement thickness, meters
boundary-layer momentum thickness, meters

freestream density, kilograms per cubic meter

.. -
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TEST PROGRAM

MODELS

Four configurations were fabricated and tested. These include:

Model A~basic 9.3% chord thick NASA supercritical airfoil
Model B—a 0.295c¢ single-slotted flap configuration
Model C—a configuration with a 0.325¢ double-slotted flap and a 0.156¢ leading-edge slat

Model D—a configuration with a 0.325c¢ triple-slotted flap and a 0.155c¢ leading-edge slat

The first three configurations were required by NASA; the fourth was Boeing’s recommenda-

tion. The four configurations are illustrated in figure 2.

The models were fabricated of steel to a 0.6096 m (24 in.) chord and 0.9144 m (36 in.) span.
Ordinates defining the individual airfoil components are presented in volume II.

HIGH-LIFT SYSTEM DESIGN

Constraints

The five primary design constraints required that:

In their retracted positions, all exposed surfaces of high-lift components must coincide
with the basic airfoil contour.

The retracted flap chords would be 0.325c¢.
The slats would retract into the forward 0.15¢ of the airfoil.
The cove trailing edge of the main airfoil would be located at 0.825¢.

In their deployed positions, the double- and triple-slotted flaps would extend the airfoil
chord by 0.27¢ and 0.33c, respectively.
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® The double-slotted flap would be of the vane-flap type (i.e., having a small forward com-
ponent and large aft component).

To satisfy the constraints of flap chord and flap extension, chords of 0.15¢c and 0.295¢ were
selected for the first and second components of the double-slotted flap, and chords of 0.15¢, 0.235c,
and 0.12c¢ were selected for the first, second, and third components of the triple-siotted flap, respec-
tively. The first component of the double- and triple-slotted flaps were designed to be common to
both. The aft component of the double-slotted flap was designed to also serve as the single-slotted
flap.

To delineate between the two slats, the slat for model C will be referred to as slat 1 while the
slat for model D will be referred to as slat 2. An assumption made in designing the slat 1 lower sur-
face was that a segment sealing the slat/wing lower surface while the slat 1s nested could be rotated
into the slat lower surface as the slat is deployed (see fig. 3).

A basic requirement for slat 2 was that in practice it would retract into the wing lower surface.
The forward 30% of the flap would be hinged and would fold inside the wing during retraction as
shown in figure 3. The aft 70% of the flap would be rigid and would serve as the forward lower sur-

face of the wing when retracted.

Considering the above constraints, aerodynamic contouring was limited to the portions of the

wing and flaps presented in heavy lines in figure 4.
Design Conditions

The high-lift systems were designed to achieve maximum lift. Since the generation of lift is
limited by the ability of an airfoil upper surface boundary layer to negotiate adverse pressure
gradients, the high-lift systems were designed under conditions at which the most severe pressure
gradients were anticipated. For the leading-edge slats, this condition occurs just before the airfoil
stalls; hence, the design conditions correspond to expected values of maximum lift and the stall
angle of attack. For models C and D, maximum lift design conditions of Cg = 4.9 at a = 16°and
Cg = 5.1 at o = 16° respectively, were predicted on the basis of Boeing data.

At high flap deflections, pressure gradients on trailing-edge flaps are most severe at low angles
of attack. Hence, a design angle of attack of 0° was selected for the flaps of models C and D. Design
deflection angles were selected that produce the highest lift due to flap deflection. From figure 5,
an initial equivalent flap deflection of 50°was selected for both the double- and triple-slotted flaps.
Equivalent flap deflection (5feq) is defined as the deflection of a plain flap having the same chord
length and producing the same potential flow lift as a deployed slotted flap.

b
:



Design Procedure

The design of the high-lift systems was conducted using potential-flow theory. The slat design
conditions were achieved in potential flow by reducing the deflection of the trailing-edge flaps to
compensate for viscous effects. Three parameters were used to define the orientations of the slats:
deflection angle, slot gap, and elevation of the trailing edge of the slat From Boeing data, slot gaps
of 0.0175c and deflections of 50°and 47°were selected for slat 1 and slat 2, respectively. Elevations
were selected for the slat trailing edges to give the lowest main-section potential-flow suction peaks.
Fixing the orientations of the slats, all unconstrained leading-edge contours were then tailored to
reduce leading-edge suction peaks, thereby producing less adverse pressure gradients. The resulting
pressure distributions are presented in figures 6 and 7. The final step of the design was to reorient
the slats to minimize the main-section suction peaks. In so doing, the local Mach numbers on the slats
were not allowed to exceed 1.25. From reference 1, this value was found to be near the point above
which shock-induced separation occurs. The resulting slat orientations are listed in table 1.

A similar procedure was used in designing the trailing-edge flaps. For an equivalent flap deflec-
tion of 50° slot gaps, component overlaps, and component deflections were selected for the double-
and triple-slotted flaps from Boeing data. Fixing the orientations of the flap components, their
unconstrained contours were tailored to produce the potential-flow pressures presented in figures 8
and 9. An equivalent flap deflection series was then selected for each flap, and appropriate slot
geometry and component deflections were selected from Boeing data for each equivalent deflection.
Representative orientations of each flap are listed in table 1.

The original cove shape (cove 1) for models B, C, and D was designed to allow the flaps to be
retracted. Since the NASA theoretical method does not treat separated flows, a second cove shape
(cove 2) was designed by NASA to be free of boundary-layer separation. Cove 2 was fabricated by
removing material from and adding a fairing to cove 1, as illustrated in figure 10.

EXPERIMENTAL OPTIMIZATION PROCEDURE

Optimizations of the slot geometry and deflection angles of the multislotted high-lift systems C
and D for CQmax were first conducted for the leading-edge slats and then the trailing-edge flaps. The
optimizations were conducted in this sequence since leading-edge boundary-layer conditions have a
greater effect on trailing-edge flap performance than trailing-edge boundary-layer conditions have on
leading-edge slat performance (i.e., leading-edge conditions at CQmax do not vary greatly with changes
in flap effectiveness, as illustrated in fig. 11). The deflection angles of the slats were optimized first,

11
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followed by leading-edge slot optimizations. For the trailing-edge flaps, the combinations of compo-
nent deflections were first optimized for flap effectiveness at a constant equivalent flap deflection.

Then the slots were optimized for Co starting with the most forward slot and proceeding aft.
max

After following this procedure on model C, a second slat optimization was conducted. The
improvement in CQmax was found to be less than 0.5%. From the chart in figure 12, it is evident
that further optimization would not have been too productive.

TEST FACILITIES

The tests were conducted in the 0.9144 m (36 in.) by 2.438 m (96 in.) Boeing research wind
tunnel (BRWT) located at Seattle, Washington. The tunnel was designed specifically for two-dimen-
sional high-lift testing. It has a 12:1 bellmouth contraction ratio and a 6.0960-m (240-in.) long test
section. The test section walls are equipped with a blowing boundary-layer-control (BLC) system to
ensure two-dimensionality. The locations at which test section BLC is applied are illustrated in
figure 13 and appear in figure 14, which also depicts a typical model installation. Figure 13 also
shows the location of the self-integrating wake rake used for drag measurements. The wake rake is
equipped to traverse both horizontally and vertically. A more detailed description of the BRWT is
presented in volume II of this report.

DATA ACQUISITION
The test data acquired included:

® Model forces and moments (Cy, Cy, C )

mp.25c
®  Surface pressures .

® Boundary-layer profiles (for model B only)

®  Tesi section conditions (Pt, Poo, T¢)

®  Flow visualizations to determine the locations of flow separation and transition

®  Angle of attack

Details of all measurements and corrections applied to the measurements are discussed in volume

II. A summary of the test program is presented in table 2.




TEST RESULTS

Wind tunnel tests of the basic supercritical airfoil (model A) were conducted at Mach numbers
ranging from 0.08 to 0.284. The corresponding Reynolds numbers ranged from 1.1 million to 4.02
million. Tests of the high-lift systems were all conducted at a Mach number of 0.2 and a Reynolds
number of 2.83 million.

Four significant features were considered while analyzing the test results. These were:

® The maximum lift that can be achieved

® The lift increment due to trailing-edge flap deflection

® The minimum drag a configuration generates

® The maximum lift-to-drag ratio (L/D) produced by a configuration

Other features that will be discussed are the pitching moments produced by a configuration and
the change in stall angle due to flap deflection. The latter is of importance when applying sectional
data to wings with part-span trailing-edge flaps.

In the following discussion of test results, reference to CQmax will pertain to the maximum hft
that can be sustained. For many of the configurations, the flow was unsteady at CQmax causing small
but continuous fluctuations in lift. For others, the flow was steady for short periods of time mixed
with periods of intermittent stalling The procedure for defining CQmax was to determine the highest
angle of attack at which lift could be sustained with no intermittent stalling, then to record a time-
averaged value of lift.

SECTIONAL CHARACTERISTICS

Model A

The specific conditions at which the supercritical airfoil was tested are tabulated below. Mach
number and Reynolds number both affect the lift and drag of an airfoil. The variations of CQmax
with Mach number are summarized in figures 15 and 16. Figure 15a shows that CQmax reaches a
maximum at M, = 0.17. Below this Mach number, CQmax 1s reduced primarily by Reynolds number
effects. Above M_,=0.17, CQmax is reduced by compressibility effects Figure 15 shows that sonic

¥
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M, R, x 100
0.08 1.1
0.142 2.01
0.201 2.83
0.259 3.66
0.284 4.02

velocity exists on the airfoil leading edge at CQmax for M, = 0.225, and, for higher Mach numbers,
a region of supersonic flow exists on the airfoil leading edge.

The composite effects of Mach number and Reynolds number on CQmax are demonstrated in
figure 16. Compressibility effects are evident throughout the test Mach number range. The effects
are much greater, however, for Mach numbers above 0.2. Also shown in figure 16 are experimental
curves of CQmax versus Reynolds numbers for a Boeing airfoil and the NACA 23012 airfoil (ref. 2)
and theoretical predictions of CQmax versus Reynolds number for model A. All three curves show
the same trends and indicate that the test data of model A can be readily extrapolated to full-scale
Reynolds numbers.

Variations of freestream Mach number had little effect on mmimum drag, as shown in figure
17a, except at the lowest test Mach number where Cdmin was found to be considerably lower. The
(L/ D)max Was found to increase continuously with increasing Mach number, with an exceptionally
large increase between Mach numbers of 0.14 and 0.2 (see fig. 17b).

The sectional aerodynamic characteristics of model A are presented in figure 18 for M, = 0.2
and R, =2.83 x 109, Also shown in figure 18 is the effect of boundary-layer trip strips. The trips
tended to decrease lift and increase drag and pitching moments due to an increase in turbulent
boundary-layer growth. The increase in drag is substantiated by predictions by both NASA and
Boeing theoretical methods. The experimental drag increment due to trips at zero angle of attack
is AC4 =0.001. The NASA and Boeing theories predicted AC4 = 0.003 and ACy = 0.0022,
respectively.

Model B

The single-slotted flap was tested for flap deflections of 6¢ = 20° 30° 40° and 50° The corre-
sponding equivalent flap deflections were 20° 29° 38.5° and 47.3°, respectively. At 67 = 20°, the
slot geometry was optimized for CQmax and profiles through the confluent boundary layer were
obtained at angles of attack of 0° 4°, and 8° The slot geometry was optimized using cove 1 while
cove 2 was used for measuring the boundary-layer profiles. Slot optimization is discussed under
“High-Lift System Optimization.” The boundary-layer measurements are discussed under “Bound-
ary-Layer Profiles.”

e ?



The section characteristics for the four flap deflections are presented in figure 19. At 6¢ = 20°
data are presented for both cove 1 and the faired cove 2. The configuration with cove 2 has a 0.04
lower potential-flow lift than that with cove 1. Yet, the reduced separation due to the cove fairing
enabled the configuration with cove 2 to obtain slightly higher measured lifts and stall angle of
attack. The improvement amounted to 0.4°in stall angle of attack with a corresponding CQmaX
increase of 0.03. Figure 19 shows that, as flap deflection was increased, the lift at low angles of
attack continually increased through 6¢ = 50° whereas CQmax reached a maximum at 5f = 30° For
all deflection angles, stall occurred abruptly. Pitching moments did not vary greatly with flap deflec-
tion. Excessive drag occurred at §¢ = 40°and 50° due to flap separation.

Flow visualizations by use of china clay indicated that:
®  The flap was free of separation at §¢ = 20°

® Atdr= 30° 40°, and 50° boundary-layer separation was observed at 0.08c, 0.167¢c, and
0.193c forward of the flap trailing edge, respectively.

The above separation point measurements were made along the flap upper surface.
Model C

The double-slotted flap was tested at equivalent-flap deflections (85 ) of 0° 12°, 30°, 44,
eq
and 49°.

In addition to the equivalent-flap deflection series, the following studies were conducted with
model C.

® Optimization of the leading-edge slat orientation for Cq atbp = 44°
max eq

® Optimization of trailing-edge flap component deflection angles for flap effectiveness at

Sfeq =44°

® Optimization of trailing-edge slot geometry for ) at6p = 44°
max eq

® A comparison of a typical takeoff flap setting with a near-optimum takeoff flap setting.

’

The results of the optimizations are presented in the section, “High-Lift System Optimization,’
of this report.

ages
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The sectional characteristics of model C are presented in figure 20. With increasing flap deflec-
tion, the lift at zero angle of attack was found to increase continuously to 5fe = 49°. Intermittent
stalling of the trailing-edge flaps was observed for the 49° configuration; therefore, the 44° configu-
ration was considered best. The 44° configuration also produced the maximum CQmax‘ The stall of
model C was not abrupt as was the case with model B, which had no leading-edge device. The stall
angle of attack decreased from 26.7° with 0° flap setting to 12° with 44° flap setting. This is a net
spread of 14.7°as compared to a maximum stall angle spread of 9° for model B. Just as with model
B, maximum L/D deteriorated rapidly for equivalent deflections past 30°.

Flow visualizations of the double-slotted trailing-edge flaps at zero angle of attack revealed:
® No flap boundary-layer separation occurred at 6 = 12°and 30°.
€q

®  Separation occurred 0.02¢ forward of the vane trailing edge at 5f = 44° No appreciable
e
separation was found on the aft component. d

® Extreme separation occurred on the flap components for 5fe = 49°. Two deflection com-
binations (30%57°and 35%55.5°) were investigated. For 8¢ = 30%57°, no appreciable sepa-
ration occured on the vane, but the flow was separated over the last 30% of the aft com-
ponent. For 65 = 35%55.5° no separation was visible on the aft component; however, the
flow was separated over the last 25% of the vane. Both flaps produced the same level of
flap effectiveness, but the 30%57°setting produced a higher CQmax Severe intermittent
stalling of the flaps was observed for the 35°/55.5° setting

The 6fe = 12° configuration 1n figure 20 was not optimized for CQmax' Actually, 1t represented
a practical takeoff flap setting that could be achieved readily by a simplified actuator mechanism. To
demonstrate the penalties that may occur by compromusing the intermediate deflection settings to
achieve an optimum maximum deflection setting, a near-optimum takeoff setting was tested. The two
takeoff settings are compared in figure 21. An increase in CQmax of 0.5 (or 13%) was achieved with
the improved setting. This CQmax improvement was accompanied by degradation of (L/ D)max from
87 to 77 and a 0.1 increase in Cm0.250‘

Model D

The triple-slotted flap was tested at equivalent deflection angles (6 feq) of 0°, 16° 46° and 53°.
The slat deflection and leading-edge slot geometry were optimized for CQmax at 6fe =46° The
combination of trailing-edge flap component deflections was optimized for flap effectiveness at

8feq = 46°




The sectional characteristics are presented in figure 22. Flap effectiveness continuously increased
up to Sfe = 46° No appreciable increase in lift was achieved by increasing the equivalent flap deflec-
tion to §3°; however, the drag increased significantly. The spread in stall angle of attack from trailing-
edge flaps up to maximum flap deflection is only 8° for the triple-slotted flap, as compared to 9°
for model B and 14.7° for model C. In the case of model C, the slat deflection was nearer an optimum
setting for flaps up than with model D; hence, the stall of model D with flaps up was premature.

Flow visualizations indicated no flow separation except at 5feq = 53° At this angle, the flow
was separated over the last 20% of the second flap component

COMPARISON OF HIGH-LIFT SYSTEMS

The performance of models B, C, and D have been compared with each other and with high-hft
systems designed for conventional airfoils. These include high-lift configurations of a Boeing 707
10% thick airfoil, developed through Boeing independent research efforts, and high-lift configura-
tions of the NACA 23012 airfoil (ref. 2). The high-lift systems for the Boeing 707 airfoil were
designed without constraint and represent highly idealized configurations. Models B, C, and D, on
the other hand, were designed to represent practical configurations. This basic difference in design
philosophy is reflected primarily in comparisons of lift efficiency (experimental lift/potential-flow
lift) and drag. Comparisons have been made on the basis of lift, drag, and pitching moments and are
discussed below. In general, models B, C, and D have been found to compare favorably with the _
other high-lift systems.

Lift
Two significant lift features were considered. These were:
® The maximum lift that can be achieved
® The lift increment due to trailing-edge flap deflection

The maximum lift of model B is compared with that of a single-slotted flap configuration of
the NACA 23012 airfoil (ref. 2) for a range of flap deflections. Due to differences in flap chord,
chord extension (c'/c), and test Reynolds numbers, no conclusions can be drawn concerning the
absolute lifts of the two systems. A point of interest, however, is that the maximum CQmax OCCurs
at a lower deflection angle for the aft-cambered model B flap than for the forward-cambered flap
of the NACA 23012 airfoil (see fig. 23). This could be attributed to the characteristics of the pres-
sure recovery produced by aft-cambered flaps.
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The maximum lifts of models C and D are compared with those of double- and triple-slotted
configurations of the Boeing 707 airfoil in figure 24. Although the chords of the high-lift devices of
model D and the Boeing triple-slotted configuration are similar, model D produced a maximum lift
coefficient that is 0.57 hugher. In comparing maximum lifts of model C with those of the Boeing
double-slotted configuration 1t should be noted that they have leading-edge-device chords of 0.156¢
versus 0.1c, flap chords of 0.35¢ versus 0.29¢, and flap extensions of 0.27¢ versus 0.22c, respectively.
In spite of the larger high-lift devices of model C, it produced a maximum lift coefficient that was
higher by only 0.31.

The experimental versus potential-flow lifts at & = 0° produced by models B, C, and D are com-
pared with lifts of the high-lift configurations (i e., single-, double-, and triple-slotted trailing-edge
flap and a 0.1c¢ leading-edge flap) of the Boeing 707 airfoil in figure 25. Zero angle of attack is near
the angle of zero lift with trailing-edge flaps retracted; hence, CQa=O closely represents the lift incre-
ment due to trailing-edge flap deflection. From figure 25, the maximum CQa=O produced by models
B, C, and D are 2.23, 3.92, and 4.48, respectively, as compared to values of 2.42, 3.69, and 3.82
produced by the single-, double-, and triple-slotted flap configurations of the Boeing 707 airfoils.
By removing the effects of flap extension and normalizing data in figure 25 to a common flap chord
ratio, it can be seen (fig. 26) that lift due to flap deflection increases continuously to 5fe = 50°for
the double- and triple-slotted flaps. Model B was found to reach its limit at 44° whereas the single-
slotted flap configuration of the 707 airfoil reached its limit at 37°.

Drag

Drag envelopes of models B, C, and D are compared in figure 27. In general, model C produced
the best dragenvelope. From Cy = 1.4 to Cy = 3 0, L/D’s of 90 or better are achieved. Model B pro-
duced an L/D of approximately 100; however, it occurred at a Cy of less than 1.0. The drag polars
of model B and a single-slotted flap configuration of the NACA 23012 airfoil (ref. 2) for §¢=20°
are compared 1n figure 28. Over the Cg range from 0.6 to 2.2, the maximum difference between the
two drag polars is less than 0.002.

Pitching Moments
The pitching moments of models B, C, and D and of the high-lift systems of the Boeing 707 air-

foil have been found to compare well, as shown in figure 29. The pitching moments presented have
been adjusted to remove the effects of flap extension.
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COMPARISON OF LEADING-EDGE SLATS

Additional testing of the triple-slotted flap was conducted with slat 1 and the modified main-

section leading edge from model C. The tests were' conducted with the basic trailing edge and for
8feq = 16°and 46° The aerodynamic characteristics are compared with those of model D in figure

30. Slat 1 was found to produce a slightly higher CQmax for the flaps-up case than slat 2. At 6fe
16°and 46°, slat 2 produced greater maximum lifts than slat 1 by 0.5 and 0.17, respectively. Slat 1
gave consistently lower lifts than slat 2 at all angles of attack below stall. The potential-flow lift

levels shown in figure 30 for the trailing-edge flaps nested cases indicate that the experimental lift

differences at low angles of attack is a potential-flow difference, not a viscous effect.

Slat 1 was found to produce higher drag than slat 2 at low angles of attack and less drag at
high angles of attack. As a result, slat 1 produced consistently higher values of (L/D) .

HIGH-LIFT SYSTEM OPTIMIZATION
Leading-Edge Slats

Following the experimental optimization procedure outlined earlier in this report for model C,
the slat deflection was optimized with a fixed slot gap of 0.0175¢. A slat deflection of 45° was
selected on the basis of preliminary data, and the slot geometry (i.e., position of the slat trailing
edge) was optimized. As indicated in figure 31, the slot optimization produced an increment in
CQmax of 0.11. The optimum slot gap was found to be 0.035c.

After optimizing the trailing-edge flap, a second slat optimization was conducted. For a slot gap
of 0.035c, an optimum slat deflection of 50° was selected and the slot geometry was again optimized.
» The optimization again produced a slot gap of 0.035¢ and an increment in CQmax of only 0.04.
Furthermore, the CQmax of 4.85 produced with 89, = 50°was only 0.02 higher than the CQmax pro-
duced with &9, = 45° Hence, further optimization was not conducted.

Contours of slat trailing-edge position for constant CQmax for the two optimizations are pre-
sented in figure 32. Although an optimum slot gap of 0.035¢ was found from both optimizations,
the elevation of the slat trailing edge varied from ¥t =0.0125c at ‘SSZe =45%to y¢ =-0.0015c¢ at
89e = 50°

Only one leading-edge optimization was conducted for model D. The design slat deflection (44°)
was found to produce the highest CQmax at a constant slot gap of 0 0175¢ (fig. 33). For that deflec-
tion, the slot optimization produced an increment in CQmax of 0 1. The optimum slot gap was found
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to be 0.025¢ as compared to 0.035¢ for model C. The optimum elevation of the slat trailing edge of
model D was found to be 0.033c. Contour plots of CQmax for slat 2 are presented in figure 34.

The leading-edge slot geometry for highest CQmax was found not to coincide with the slot
geometry for lowest drag For model C, the slot geometry that produced the highest CQmax pro-
duced a Cdmin that was 0.005 higher, a CQmax that was 0.11 higher, and a (L/D)max that was 6
points lower than the Cdmin’ CQmax’ and (L/D)y,,x Produced by the setting that had the lowest
Cdmin' For model D, the slot geometry for highest CQmaX produced a minimum drag that was only
0.001 higher than the lowest minimum drag achieved. For both models C and D, the minimum drag
was found to decrease and (L/ D)ihax Was found to increase with decreasing slat deflections over the
range of deflections investigated.

The leading-edge optimizations were found to have little effect on pitching moments.

Trailing-Edge Flaps

The trailing-edge optimization of model B consisted of optimizing the slot geometry for CQmax
at 65 = 20° The optimization was conducted with the vane of the double-slotted flap nested in the
wing cove to provide a smooth fairing as illustrated in figure 35. The optimum slot gap and compo-
nent overlap (Ax) were found to be approximately 0.02¢ and 0.0c, respectively. As shown in figure
35, the increase in CQmax over the design position amounted to 0.02 or less than 1%.

The trailing-edge flap of model C was optimized at an equivalent flap deflection of 44°. Past
experience has indicated that the higher the lift increment due to deflection of a multislotted flap,
the higher the achievable CQmax' Hence, the first step in the optimization of the double-slotted flaps
was to optimize the combination of flap component deflections for lift at « = 0°. The variation
of CQOFO and Cdmin with varying deflection combinations are shown in figure 36. Although the
design deflection combination had the best performance, the flow about the configuration had a
tendency to be unsteady at angles of attack above 4°. To avoid this characteristic, a combination
having a vane deflection of 28.5°, as opposed to the design value of 30° was selected for conducting
the slot optimizations. The forward slot was optimized first, followed by the rear slot optimization.
CQmax was found to be more sensitive to forward slot geometry changes than to changes in the rear
slot This is demonstrated in figure 37. The figure shows that the small movement of the vane leading
edge from the design position to the optimum position produced an increment in Cgmax of 0.04,
while the larger movement of the aft component leading edge from the design position only yielded
a 0.02 increase in CQmax The optimum forward slot gap and overlap were found to be 0.011¢ and
-0.005c¢, respectively. The second slot gap and overlap were found to be 0.024¢ and 0.01c as opposed
to the design values of 0.017c¢ and 0.0c, respectively.




A complete optimization of the triple-slotted flap was not conducted. At an equivalent flap
deflection of 46° the flap component deflection coml;inations were varied. First, the vane
deflection was varied and the potential-flow lift changes were compensated for by deflecting the mid
and aft components as a unit. Then, holding the vane deflection constant, the combination of mid
and aft component deflections was varied In both cases, the design deflection combinations
exhibited the best CQa=0’ as shown in figure 38.

The slot geometry studies conducted on the triple-slotted flap consisted of investigating the
effects of first-component overlap, followed by tests of several combinations of second and third
slot geometries. None of the latter combinations produced any significant increases in CQmax‘ The
effects of first-component overlap are illustrated in figure 39 Reducing the overlap from the design
value of -0.004¢ to -0.0105¢ resulted in a CQmax increase of 0.12 or about 2%.

Unlike the leading-edge optimum CQmax setting, the optimum trailing-edge settings for CQmax’
in most cases, also produce the least drag and highest (L/D),;,,«- Pitching moments did not signifi-
cantly vary during the trailing-edge optimizations as long as the flap extension was not appreciably

changed.

BOUNDARY-LAYER PROFILES

Boundary-layer measurements were taken at 11 stations on the upper and lower surfaces of
model B, as illustrated in figure 40. The measurements were taken at angles of attack of 0°, 4°, and
8°. Flow visualizations indicated incipient separation in the cove at & = 0°and definite cove separa-
tion at negative angles of attack. The boundary layer separated from the main-section upper surface
(i-e., the wing stalled) at 8.5° The single-slotted flap was deflected to 20°and had a slot gap of 0.02¢c
and an overlap of 0.01c.

The boundary-layer measurements revealed that:

@ The flap boundary layer was relatively insensitive to angle-of-attack changes, whereas, the
main-section wake size increased with angle of attack.

® A potential core separating the main-section wake from the flap boundary layer was pres-
ent at all angles of attack.

These traits are demonstrated in figure 41. The profiles measured at the cove and flap trailing
edges show that the slot profile is unchanged between o = 0°and o = 8°as is the boundary layer at
the flap trailing edge. The principal changes are in the main-section upper surface boundary layer
and in the main-section wake.
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The complete set of measured profiles is presented in volume II of this report. Boundary-layer
parameters, including displacement thickness, momentum thickness, and shape factor, have been
calculated from the measured profiles. These are discussed under “Boundary-Layer Properties’ in
this volume. Drag values calculated from the measured profiles using the Squire-Young formula com-
pare well with drag measurements via integrating wake rake, as shown in figure 46
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COMPARISON OF DATA AND THEORY

A secondary objective of this program was to analyze models A, B, C, and D using a method
furnished by NASA and compare the results with test data. In brief, the NASA method consists of
iterating through potential-flow and boundary-layer calculations until the forces on an airfoil con-
verge. The potential-flow calculations are accomplished in the usual manner of representing the
airfoil contour by distributed vortex singularities and then solving for the vortex strengths to satisfy
nonlinear boundary conditions on the airfoil surfaces. Viscous flow calculations are accomplished
through integral solutions to the laminar, turbulent, and confluent boundary-layer equations. The
calculations are applicable to airfoils having no boundary-layer separation.

The method was developed for NASA under contract NAS1-9143 (ref. 3). Modifications to the
method have been made by NASA. The results of both the original and modified methods are dis-
cussed below.

AERODYNAMIC CHARACTERISTICS
Model A

Theoretical predictions of the performance of the NASA supercritical airfoil are compared
with the experimental measurements in figure 42. The drag predictions by the original NASA method
(ref. 3) are an order of magnitude higher than the measured drag, hence, are not shown. The original
method predicted the lift and pitching moments reasonably well at the lowest angles of attack, but
the predictions grow progressively worse as angle of attack is increased. The modified method pre-
dicted the lift and pitching moments well over most of the angle-of-attack range investigated but not
the drag. The lift near CQmax was overpredicted, as would be expected, since the method is only
applicable when there is no boundary-layer separation. The curves of lift, drag, and pitching moments
tend to be rotated relative to the corresponding measured curves. The predicted curves cross the

measured curves at a lift of approximately 1.3.

The pressure distributions calculated by the NASA methods are compared with experimental
pressures in figures 43 and 44 for angles of attack of 0°and 8°. At both angles of attack, the agree-
ment between experiment and theory is good over most of the chord length. The original method
was deficient in predicting the leading and trailing-edge pressures at o = 0°and the entire upper sur-
face pressure distribution at o = 8°. The modified method was only deficient in predicting the leading-
edge pressures at o = 0°.

The measured aerodynamic characteristics of model A with leading-edge slat 1 are compared
with predictions by the modified NASA method in figure 45. The predictions agree reasonably well
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with experiment only over the intermediate range of angle of attack. At low angles of attack, flow
visualizations showed boundary-layer separation from the slat lower surface, which explains the dis-
parity between theory and experiment below o = 8°.

Model B

The sectional characteristics of model B predicted by the NASA methods have been compared
with experiments for flap deflections of 20° 30° and 40°in figures 46 through 49. In figure 46, drag
values calculated by applying the Squire-Young formula to the measured boundary-layer profiles are
presented in addition to the usual wake drag measurements.

Through china clay visualizations, boundary-layer separation was observed on the model B flap
at all deflections except &¢ = 20°. Evidence of lower surface cove separation was observed at §¢ = 20°
for angles of attack below « = 0° and, of course, separation 1s always present for the sharp-cornered
cove used at §¢ = 30°and 40°. Since the NASA method is applicable only in the absence of boundary-
layer separation, only the comparison for 8¢ = 20° serves as a true evaluation of their merits. For that
configuration, the original NASA method underpredicted lift and overpredicted drag and pitching
moments. The predicted drag values again were an order of magnitude higher than the measured
values, hence, were not presented in figure 46. The modified NASA method predicted lift and pitch-
ing moments reasonably well but overpredicted the drag.

The experimental and theoretical pressure distributions at & = 20°and o = 0°are presented in

figure 47. The modified NASA method predicted the pressures reasonably well. The greatest discrep-

ancy was in the prediction of the flap suction peak. The modified method overpredicted it by 0.2.
The original method predicted the main section pressures reasonably well but was deficient in pre-
dicting the flap pressures.

The performance of model B with the flap deflected to 30°and 40° was only predicted using
the modified NASA method. The predictions are compared with experiment in figures 48 and 49. In
both cases, the method overpredicted the lift and underpredicted the pitching moments. At §¢ = 30°,
the drag was overpredicted while at §¢ = 40° the drag level appears reasonable.

Multislotted Airfoils

The sectional characteristics predicted by the NASA methods of three multislotted configura-
tions have been compared with experiment in figures 50, 51, and 52. The first two configurations
consist of models C and D without leading-edge slats and with flaps at deflections of ﬁfe =13%and
16°, respectively. The third configuration is model C with the flaps at an intermediate de(%lection

(Sfeq = 30°) where there is no separation on the flap components.




The comparison in figure 50 for model C without a leading-edge slat shows that the modified
NASA method accurately predicted pitching moments, slightly underpredicted lift, and overpredicted
drag. The original method grossly underpredicted lift and overpredicted drag and pitching moments.

Figure 51 shows that the modified method predicted the performance of model D with no
leading-edge slat reasonably well. The pitching moments were accurately predicted, the Lift was
slightly underpredicted, and the drag was overpredicted. The modified method predicted the per-
formance of model C at Bfe = 30° well for low angles of attack, as shown in figure 52. At higher

angles of attack, the lift was underpredicted, while the drag and pitching moments were overpredicted.

BOUNDARY-LAYER PROPERTIES

Boun'dary-layer parameters (i.e., displacement thickness 6*, momentum thickness 8, and shape
factor H) calculated from the measured boundary-layer profiles are compared with parameters calcu-
lated via the modified NASA method in figures 53, 54, and 55. The boundary-layer properties pre-
sented in figure 53 are for the wing lower surface in the region of the cove. The method slightly
underpredicted the momentum thickness and grossly underpredicted the displacement thickness. As
a result, the experimental and theoretical shape factors are in gross disagreement. The extremely
high experimental shape factors at x/c = 0.65 were substantiated by flow visualizations that indicated

separation on the cove at o= 0°.

The predicted boundary-layer parameter on the wing upper surface and through the confluent
boundary layer are compared with experiment in figures 54 and 55. The NASA method only calcu-
lates the momentum thickness of the flap boundary layer when performing confluent boundary-
layer calculations. The predicted values of momentum thickness of the wing and flap upper surfaces
agree reasonably well with experiment, as shown in figure 54. The flap trailing-edge momentum
thickness is underpredicted at « = 0° while the momentum thickness over the aft 50% of the flap is
overpredicted at « = 4°and 8° The predicted displacement thickness is compared with experiment
in figure 55. At angles of attack of 0°and 4° the displacement thickness is overpredicted over most
of the flap and underpredicted at the flap trailing edge. At 8°angle of attack, the displacement thick-
ness is predicted with an accuracy of +10% over the forward 80% of the flap but is grossly under-
predicted at the flap trailing edge.

Also shown in figure 55 are the locations of flap boundary-layer transition determined by flow
visualization. The visualizations reveal that the boundary layer 1s laminar over the forward 40% of
the flap, whereas, the NASA method assumes the flap boundary layer to be turbulent from the slot
exit. Another point of interest is the discontinuous nature of the predicted displacement thickness
curves. The discontinuities occurring at x/c = 1.082, 1.064, and 1.048 for angles of attack of 0°, 4°,
and 8°, respectively, indicate the points at which the NASA method predicts the confluence of the
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flap boundary layer and the main-section wake. The measured boundary-layer profiles, on the other
hand, showed that a potential core separating the flap boundary layer from the main-section wake
existed all the way to the flap trailing edge at all angles of attack.

The measured boundary-layer profiles are compared with predictions by the NASA methods in
figure 56. Over most of the profiles, the predictions by the modified method are within +10% of the
measured profiles. The modified method somewhat overpredicted the velocities at the flap suction
peak (station 7 in fig 56), the growth of the flap boundary layer, and the thickness of the entire
confluent boundary layer. The original method did not predict the profiles well. The velocities below
the wake center were mostly overpredicted, while the velocities above the wake center were mostly
underpredicted. The boundary-layer thickness was also overpredicted.



CONCLUSIONS

On the basis of data obtained from the contract test program, the following conclusions have

been drawn:

® High-lift components derived from a supercritical blunt-based airfoil perform as well as
those derived from conventional airfoils.

® For configurations having no boundary-layer separation, the original NASA method con-
sistently underpredicts the lift and overpredicts drag and pitching moments. The modified
NASA method predicts lift and pitching moments reasonably well but overpredicts the
drag.
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FAIRING FOR COVE 1

FAIRING FOR COVE 2

MATERIAL REMOVED FROM COVE 1

FIGURE 10.—-COVE DESIGN AND FABRICATION DETAILS
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FIGURE 27.—COMPARISON OF THE DRAG ENVELOPES OF MODELS B, C, AND D

—

jres

57



) 244 . - . .

2.0
NACA 23012
SINGLE - SLOTTED
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FIGURE 28.—COMPARISON OF THE DRAG POLARS OF MODEL BAND A S/NZLE-SLOTTED
FLAP CONFIGURATION OF THE NACA 23012 AIRFOIL
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FIGURE 29.—COMPARISON OF THE PITCHING MOMENTS OF MODELS B, C, AND D
AND OF HIGH-LIFT CONFIGURATIONS OF THE BOEING 707 AIRFOIL
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4.8 L SLOT OPTIMIZATION
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FIGURE 31.—INCREMENTS IN MAXIMUM LIFTS OF MODEL C DUE TO
LEADING-EDGE SLAT OPTIMIZATION
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5.0 *» |DESIGN
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6SLAT ~ DEGREES

FIGURE 33.—INCREMENT IN CQmax OF MODEL D DUE TO
LEADING-EDGE SLAT OPTIMIZATION

OESIGN POINT

FIGURE 34.—CONTOURS OF SLAT TRAILING-EDGE POSITION
FOR CONSTANT Cq ax FOR MODEL D
m
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FIGURE 35.—CONTOURS OF THE MODEL B FLAP LEADING-EDGE POSITION
FOR CONSTANT Cq ax”
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5.6 § w. ......] DESIGN

C
Lmox

5.4 |

L 1 [ J
=02 -.0l 0 .01

'Axl/c ~ WING/ VANE OVERLAP

FIGURE 39.—VARIATION OF CQmax WITH VARYING OVERLAP OF THE FIRST
COMPONENTS OF THE TRIPLE-SLOTTED FLAP OF MODEL D
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FIGURE 40.—~STATIONS AT WHICH BOUNDARY-LAYER PROFILES WERE MEASURED ON MODEL B
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“The aeronantical and space activities of the United States shall be

conducted so as to contribute . . .

to the expansion of buman knowl-

" edge of phenomena 1 the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
. of information concerning 15 activities and the results thereof.”

— NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS Scientific and
technical information considered 1mportant,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES Information less broad
in scope but nevertheless of importance as a
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