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Executive Suml~lary 



STUDY CONTRACT TEAM ORGANIZATION 

The Study Contract Team includes Boeing as prime contractor and General E l e c t r i c ,  Grumnan, 
Arthur D. L i t t l e ,  and TRW as subcontractors. Principal task areas f o r  the subcontractors 

are  shown and the study team leaders for  each contractor are  indicated. 
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SPS SYSTEM DEFINITION STUDY OBJECTIVES 

The study object ives tabulated on the  fac ing  page were taken from the  cont rac t  statement 

of work. These ob jec t ives  inc lude both the  phase I and phase I 1  a c t i v i t i e s .  



SPS System Definition 

SPS2193 

VERIFY, MAINTAIN, AND UPDATE THE PRESENTLY-DEFINED 
ELEMENTS OF THE SYSTEM 

I 

COMPLETE THE DEFINITION OF THE TOTAL SYSTEM 

PREPARE A SERIES OF PLANS REQUIRED FOR TECHNOLOGY 
ADVANCEMENT AND SPS PROGRAM IMPLEMENTATION 



STUDY TASKS 

The statement o f  work includes e igh t  major tasks as i temized on the fac ing  page. These 

tasks are appl icable t o  both phase I and phase 11. The phase I e f f o r t  emphasizes examina- 

t i o n  of a l t e rna t i ves  t o  the present basel ine whereas the  phase I 1  e f f o r t  emphasizes d e f i n i -  

t i o n  of the end t o  end operat ional system. 



CRITIQUE, MODIFY, MAINTAIN BASELINE SYSTEMS 

REFINE CONSTRUCTION AND MAINTENANCE APPROACHES 

DEFINE INDUSTRIAL AND TRANSPORTATION COMPLEXES 

CONDUCT LAUNCH SITE ANALYSIS 

DEFINE AND ANALYZE OPERATIONAL ACTIVITY 

ANALYZE SPSCRID INTEGRATION 

PREPARE TECHNOLOGY ADVANCEMENT PLANS 

PERFORM COST AND SCHEDULE ANALYSES 

S 
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BASELINE SYSTEM SUBTASKS 

Many o f  the important a l t e rna t i ve  examination a c t i v i t i e s  are itemized i n  the l i s t  o f  

subtasks o f  the f i r s t  major study task on the fac ing page. Progress i n  a l l  o f  these 

a c t i v i t i e s  i s  discussed i n  t h i s  b r i e f i n g  except f o r  SPS avionics and data systems, and 

f a i l u r e  and diagnostics analyses. Discussion o f  the c r i t i q u e  o f  baselines i s  discussed 

only  by imp l ica t ion  i n  t h a t  many o f  the discussions represent responses t o  the c r i t i q u e  

a c t i v i t y  . The c r i t i ques  were presented i n  monthly progress repor ts  provided ea r l  i e r  

and i n  the o r i en ta t i on  b r i e f i ng .  



Baseline System Subtasks 

CRITIQUE BASELINES 

STRUCTURE OPTIONS-ALUMINUM VS GRAPHITE 

SOLAR CELL ANNEALING 

INDEPENDENT ELECTRIC O N  

SPS SIZE EFFECTS 

SOLID STATE TRANSMITTER 

LONG-LIFE POWER PROCESSOR 

PHASE CONTROL INSTALLATION 

SPS AVlONlCS AND DATA SYSTEMS 

UPDATE TRANSMITTER ARRAY ANALYSIS PROGRAM 

FAILURE AND DIAGNOSTICS ANALYSES 

RECTENNA/GRID POWER PROCESSING 



ANTICIPATED BASELINE CHANGES 

As a resul '  o f  the c r i t i q u e  a c t i v i t i e s ,  and analyses responsive t o  these c r i t iques ,  i t  

i s  reasonably c lear  t ha t  changes t o  the SPS and antenna s t ruc ture  are i n  order as wel l  

as changes t o  the bussing, ro ta ry  j o i n t  and power processinu conf igurat ion.  It i s  a lso 

expected tha t  a change t o  the basel ine space construct ion concept w i l l  be proposed although 

analyses o f  the options are not y e t  complete. Study o f  low ear th  o r b i t  versus geosynchronous 

o r b i t  construct ion w i t h  the e l e c t r i c  o r b i t  t rans fer  vehic le op t ion  have not  y e t  progressed 

su f f i c i en t l y  f a r  t o  make a judgment as t o  whether a base1 i ne  change w i l l  be recomnended. 

The next several charts o f  the Executive Sunary  w i l l  high1 i g h t  the  r e s u l t s  o f  the study 

t o  t h i s  dzte. 



An ticipa ted Baseline Changes 

SPS2197 

SPS AND ANTENNA STRUCTURE 

BUSSING, ROTARY JOINT, AN0 POWER 
PROCESSING CONF IOURATION 



A pentahedral t russ  con f i gu ra t i on  har been i d ~ n t i f i e d  as a  1 i k e l y  improvement f o r  bo th  

the s o l a r  a r r a y  suppcpt  s t r u c t u r e  and the antenna s t r uc tu re .  The present base l ine  f o r  the 

so la r  a r r a j  suppor : s t ruc  tur t !  i s  a he/ahedral t russ .  The pentahedral t russ  n p ~ v  ides improve- 

ments i n  e f f i c i enc f  ar,d maintains the con f igu ra t ion  o f  square s o l a r  a r ray  suspension base. 

Tho present antenna basel ine i s  an A-frame s t r u c t u r e  t h a t  provides f c 4  support  of square 

=uGarrajs, bu t  has poor s t r l ~ c  t u r a l  e f f i c i e n c y .  The pentahedrdl t r l t ss  c l o s e l y  approaches 

the  5 t r u c t u r a l  e f f i c i ency  of  the e a r l i e r  te t rahedra l  t r uss  base l ine  w i t hou t  t he  ccmp le r i t y  

o f  hejagorla1 o r  t r i a n g u l a r  conf igurat ions;  the c a p a b i l i t y  t o  support  square subarrays i s  

maintained as f o r  the A-frame. 

We ha\/@ e lected no t  t o  r e c o m n d  these chanqes a t  the present t ime because such changes 

would in t roduce s i g n i f i c a n t  pe r t u rba t i on  t o  the eva lua t ion  o f  cons t ruc t i on  opt ions,  and 

t o  the comparison o f  aluminum s o l a r  a r ray  support s t r uc tb -e  w i t h  t he  base l ine  a raph i t e  

w l c r  ar ray  support s t r uc tu re .  Fur ther ,  s ince there  i s  a  r e l a t i o n s h i p  between t he  space 

cons t ruc t ion  approach and the s t r u c t u r e  t o  be fabr icated,  i t  i s  deemed des i r ab le  t o  have 

ttrc r e s u l t  o f  the  cor is t ruct ion apt ions eva lua t ion  i n  hand before a  f i n a l  d t c i s i o n  i s  made 

regard ing s t r u c t u r a l  conf iqu ra  t i o n s  . 

The SPC, s t r u c t u r e  concept ha; gone t h ro l~qh  several chanqes i n  the  past th ree  year:. I t  

i s  on ly  reasonable t o  e ~ p e c t  t h a t  thi;  pa t t e rn  o f  evo lu t i on  w i l l  cont inue i n  t he  f u tu re .  



SPS Structure 

PENTAHEDRAL TRUSS IDENTIFIED AS IMPROVEMENT 

DO NOT RECOMMEND CHANQE UNTIL PHASE II; 
CHANQE NOW WOULD IMPACT CONSTRUCT ION OPTIONS EVACUATION 

STRUCTURAL DESIGN WILL CONTINUE TO EVOLVE 



SOLID STATE POWER AMPLIFIER 

P r i nc i pa l  f i nd i ngs  t o  date, and p r i n c i p a l  issues i d e n t i f i e d  a re  summarized on the  f ac i ng  
page. The so l  i d  s t a t e  power ampl i f i e r  con f i gu ra t i on  f o r  a microwave power t ransmission 
t r ansm i t t e r  seems w e l l  su i t ed  t o  low power SPS1s. We found the  p o t e n t i a l  f o r  accomplishing 
d e f i n i t i o n  o f  a s u i t a b l e  so l  i d  s t a t e  system t o  be cons iderab ly  more encouraging than we 
had expected. Cer ta in  key issues remain. 

Probably pr imary i s  the concern f o r  e l i m i n a t i o n  3 f  power processing. Sol i d  s t a t e  devices 
s u i t a b l e  f o r  microwave power ampl i f i c a t i o n  operates a t  vo l tages on the order  o f  25 v o l t s .  
D i s t r i b u t i o n  vol tages s u i t a b l e  f o r  SPS a p p l i c a t i o n  range from 20,000 t o  40,000 v o l t s .  If 
i t  were necessary t o  process a l l  " h i s  power down t o  a vo l tage  o f  25 v o l t s ,  the  cos t  and 
e f f i c i e n c y  o f  power processing combined w i t h  the  I ~ R  losses and conductor mass f o r  such 
operat ions would be p r o h i b i t i v e .  Therefore, an approach t o  e l  lminat '  n o f  power processing 
i s  mandatory. 'IWO approaches have been i d e n t i f i e d  t h a t  may prove workable. One i s  be ing 
explored by Rockwell based on e a r l i e r  suggestions by Aerospace Corporat ion.  This i b  the  
idea o f  d i s t r i b u t i n g  the  microwave power conversion over t he  s o l a r  a r ray  and us ing a micro-  
wave waveguide system f o r  power d i s t r i b u t i o n .  I n  t h i s  way, t he  need t o r  e l e c t r i c a l  power 
d i s t r i b u t i o n  i s  e l im ina ted  and the s o l a r  a r ray  can supply power t o  l o c a l  microwave generators 
a t  low vol tage. This op t i on  r a i ses  ser ious concerns regzrd ing  the  degree t o  which phase 
con t ro l  p rec i s i on  can be maintained. The second approach i s  t o  employ a s e r i e s - p a r a l l e l  
connect ion o f  the  microwave power a m p l i f i e r s  (as regards DC power supply)  s i m i l a r  t o  t h a t  
used f o r  s o l a r  c e l l s  i n  generat ion o f  the  DC power. Aggregate sets  o f  microwave power 
generators can then be suppl i e d  a t  comparat ively h i gh  d i s t r i b u t i o n  vo l  taaes. Th is  op t i on  
ra ises  concerns regard ing s t a b i l i t y ,  matching, and balance o f  the  power supply and con t ro l  
network. 

Secondly, experimental v e r i f i c a t i o n  o f  acceptable e f f  i c i e n c  i es f o r  i n t eg ra ted  assembl i e s  o f  
a m p l i f i e r  devices, coup l ing  c i r c u i t s ,  and 4F r a d i a t o r s  i s  needed. 

F i n a l l y ,  the re  i s  t he  issue o f  device cost .  Gal l ium arsenide FET1s today c o s t  on the  o rder  
o f  $100 per  wa t t .  This i s  obv ious ly  p r o h i b i t i v e .  A p roduc t ion  r a t e  curve ex t r apo la t i on  
t o  q u a n t i t i e s  appropr ia te  t o  SPS leads t o  cos t  p red i c t i ons  i n  the  acceptable range. These, 
however, w i  11 r e q u i r e  f u r t h e r  conf  i rmat ion through experience i n  l a r g e r  sca le  product ion.  



Solid State Power Amplifier 

FINDINGS 

IDENTIFIED A PRACTICAL ELEMENT/SUBARRAY DESIGN APPROACH 

SOLID STATE TRANSMITTER IS A MASSIAREA SYSTEM RATHER THAN 
A MASS/POWER SYSTEM 

G a s  FET'S HAVE ADEQUATE PERFORMANCE-8096 EF FlClENCY IS A 
REASONABLE EXPECTATION 

EF FlClENCY AND THERMAL CAPABILITY YIELD A MAXIMUM TRANSMITTER 
RATING OF ROUGHLY 2.6 GW GROUND OUTPUT AT 1.4 km DIA. 

EXPECT SIGNIFICANT RELIABILITY ADVANTAGE 

ISSUES 

ELIMINATION OF POWER PROCESSING 

EXPERIMENTAL MEASUREMEI JT OF INTEGRATED DEVICEICIRCUITI 
RADIATOR PERFORMANCE: EFFICIENCY, GAIN, NOISE, HARMONICS 

DEVICE COST (NOW * $100/WATT IN LOTS OF 100) 



LONG L I F E  POWER PROCESSOR ANALYSIS 

The power processor design r e s u l t i n g  from previous study was judged t o  be f nadequate w i t h  
regards t o  l i f e .  Further analys is  has i d e n t i f i e d  the th ree  options ind ica ted  on the  fac ing 

page. Based on mass considerat ions,  opt ion th ree  i s  recomnended for incorporat ion i n t o  

the  base1 i n e .  



. .PROBLEM 

POWER TRANSFORMER LIFE IS INVERSELY PROPORTlONAL TO THE 

OPERATING FREQUENCY. PART ll MASS OPTIMIZE0 SWITCHING 

FREQUENCY WAS 20 KHz. 

fl @& -- --- 
S dL Ps r 

RESULTS OF ANALYSIS 

OPTION 1: REDUCE SWITCHING FREQUENCY 

Long-Life Power Processor ~nalysis  

MASS PENALTY = +50% O 1 KHz 

l OPTION 2: DERATE DIELECTRIC MATERIAL 

MASS PENALTY = +I796 8 2OKHZ 

OPTION 3: USE LIQUID (FREON) COOLED TRANSFORMERe 
MASS PENALTY m -63% 6 10 KHZ 

*PROTOTYPE TRANSFORMER BUILT FOR USAF AERO PROPULSION LAB 



lNDEPENDENT ELECTRIC ORBIT TRANSFER VEHICLE 

Analysis o f  the po tent ia l  t ransportat ion cost f o r  a space t ransportat ion system incor-  
porat ing an independent e l e c t r i c  o r b i t  t rans fer  veh ic le  w i t h  construct ion of SPS's a t  
geosynchronous o r b i t  has indicated more favorable cost  charac ter is t i cs  than expected. 
Although the independent e l e c t r i c  OTV requires so la r  arrays and support systems t o  be 
dedicated t o  the t ransportat ion purpose rather  than simply temporari ly used f o r  t h a t  
purpose (as i n  the case o f  self-power) there i s  a compensating e f f e c t  no t  i d e n t i f i e d  i n  
e a r l i e r  studies. That i s ,  t ha t  the s ize  of the independent e l e c t r i c  OTV i s  such tha t  
i n e r t i a  balance i s  not  important and g rav i t y  gradient losses are minimal. By comparison 
these losses are more s i g n i f i c a n t  f o r  the la rger  s e l f  -power conf igurat ions. On balance 
the pre l iminary costs are comparable. These pre l iminary estimates have not  y e t  been sub- 
jected t o  de ta i led  cost  est imating f o r  the independent e l e c t r i c  OTV. 

Cost-optimized performance data are indicated. The opt imfzat ion i s  no t  sens i t i ve  as 
indicated by the two p i e  charts showing t h a t  OTV hardware and hardware cost  a re  no t  a 
particu1arl.y la rge  cont r ibu t ion  t o  t o t a l  mass o r  cost. 

Thruster beam current  per trni t area was i d e n t i f i e d  as a po ten t i a l  d i f ference between 
Boeing and Rockwell study resu l ts .  Our cont inuing analyses o f  th rus ter  performance have 
indicated the beam current  values t h a t  we have used are general ly w i t h i n  the expected 
range. Further the th rus ter  beam current does not  seem t o  be a h igh leverape parameter. 
Thruster mass i s  less than 10% o f  the OTV hardware mass even w i t h  t h i s  possib ly  conserva- 
t i v e  cur.rent estimate. Differences i n  opt imi t a t i o n  resu l t s  between our systew and the 
Rockwell system appear t o  a r i s e  from Rockwell ' s  mass opt imizat ion versus our cost  
opt imizat ion. F inal  l;~, i t  i s  observed tha t  because o f  the r e l a t i v e l y  l a r ~ e  r a d i a t i o n  
doses received during low t h r u s t  t ransfers throuqh the Van A1 l e n  be1 t s ,  r e p e t i t i v e  
annealing of so la r  c e l l s  i s  c r i t i c a l  f o r  the s i l i c o n  independent e l e c t r i c  OTV. 



Independent Electric OTV 

PRELIMINARY COSTS COMPARABLE TO SELF-POWER; SEVERAL 
UNCERTAINTIES REMAIN START MASS 

COST-OPTIM IZED Iw 8000 SEC, TRIP TIME 180 DAYS 

OPTIMIZATION IS NOT SENSlTlVE 

IPJERTIA BALANCING NOT IMPORTANT 

THRUSTER BEAM CURRENT CONFIRMED AT a 100 AMPS/12O CM; 
NOT A HIGH-LEVERAGE PARAMETER 

REPETITIVE ANNEALING CRITICAL FOR SILICON IEOTV 



SPACE CONSTRUCTION 

I n  response t o  the statement o f  work, four  a1 te rna t ives  t o  the e a r l i e r  basel ine have been 

i d e n t i f i e d  and are being analyzed. O f  these, the single-deck and end-builder opt ions 

appear most promising. Both o f f e r  s i g n i f i c a n t  advantages over the e a r l i e r  C-clamp base- 

l i n e  and when a se lec t ion  i s  made the construct ion base mass and cost  w i l l  be reduced 

compared t o  the e a r l i e r  baseline. 



Space Construction 

FOUR ALTERNATlVES TO THE "C-CLAMP" IDENTIFIED AND UNDER ANALYSIS 

SINGLE-DECK 1 MOST PROMISING 
END-BUILDER 

INTERNAL 

BOOTSTRAP 

SELECTION WILL REDUCE CONSTRUCTION BASE MASS AND COST RELATIVE TO 

EARLIER "CGLAMP" BASELINE 



LAUNCH SITE SELECTION 

The launch s i t e  ana lys is  task  was mot ivated by the  premise t h a t  se lec t i on  of  a  l o w - l a t i t u d e  

s i t e  would o f f e r  s i g n i f i c a n t  cos t  advantages w i t h  respect t o  operat ions from the  Kennedy 

Space Center, where ear th - to - low-orb i t  space t r anspo r ta t i on  a r r i v e s  a t  a  30' i n c l i n a t i o n  

o r b i t .  With a  30' i n c l i n a t i o n  o r b i t  f o r  s tag ing o r  cons t ruc t ion  operations, a  30' p lane 

change i s  requ i red  t o  reach a  geosynchronous equato r ia l  o r b i t .  It was presumed t h a t  t h i s  

plane change would i ncu r  s i g n i f i c a n t  performance pena l t ies  r e l a t i v e  t o  a  zero-degree o r  

l ow - i nc l i na t i on  low ea r th  o r b i t .  However, w i t h  e l e c t r i c  propuls ion t h i s  performance 

d i f f e rence  i n  terms o f  cos t  i s  minimal. Therefore, the p r i n c i p a l  motivat;on f o r  l eav ing  

KSC f o r  a  remote s i t e  w i l l  stem from the  even tua l i t y  o f  SPS operat ions outgrowing KSC. 

Our estimates t o  date i n d i c a t e  t h a t  KSC can handle approximately 10 gigawatts :,?:r year  o f  

SPS const ruct ion.  

Remote s i t e  opt ions inc lude land-based s i t e s  such as t he  mouth o f  the Amazon i n  B r a z i l  

and ocean-based s i t e s  employing l a rge  f l o a t i n g  s t ruc tu res  such as the  western P a c i f i c  low 

l a t i t u d e  s i t e s  i d e n t i f i e d  by Jim Akkeman i n  s tud ies  a t  the Johnson Space Center. Larqe 

unce r ta i n t i es  p resen t l y  ? x i s t  as t o  the  cos t  o f  l a r g e  f l o a t i n g  s t ruc tu res .  The two orders 

o f  magnitude range i s  i nd i ca ted  on the fac ing  page. 



Launch Site Selection 

PERFORMANCE ADVANTAGE FOR LOW LATITUDE 

IS SMALL (<lo%) FOR ELECTRIC PROPULSIOFJ 

PRlNClPAC MOTIVATION FOR REMOTE SlTE WILL 

OCCUR IF SPS OPERATIONS OUTGROW KSC 

KSC APPEARS SUITED FOR ABOUT 10GWDEAR 

OCEAN SITE POTENTIALLY ATTRACTIVE DEPENDING 

ON COST OF LARGE FLOATING STRUCTURES 

CONCRETE FLOATS < $ 5 0 0 1 ~ ~  
[HOUSEBOATS) 



REFERENCE HLLY LAUNCH TRAJECTORY 

One o f  the environmental issues raised :. I t h  respect t o  SPS operations i s  the p o s s i i ~ f l i t y  o f  
influences on the upper atmosphere from launch operations. This f igure  shows the r e l a t i m -  
ship o f  the current baseline t raJectory t o  the key regions o f  the upper atmosphere. 
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ROCKET PLUME EFFECTS 

CONCLUSIONS 

One o f  the tasks assigned t o  Boelng was the l nves t l ga t l on  o f  t r a j e c t o r y  modl f icat lons tha t  

could reduce po ten t i a l  e f fec ts  on the upper atmosphere. An e a r l l e r  Los klamos S c l e n t l f l c  

Laboratory (LASL) study had assumed t h a t  the HLLV's would f l y  d i r e c t l y  I n t o  the ionosphere 

F-layer ( they won't, see prevlous char t )  and predic ted near ly  con~plete deplet ion of the 

F-layer. t ir~dor I R I D ,  Boelng performed a p re l im inary  analys is  o f  upper atmosphere e f f e c t s  

t o  t r y  t o  develop recmenda t i ons  f o r  t r a j e c t o r y  shaping. Concl uslons from t h a t  e f f o r t  

are reported on the facing page. A compiete repo r t  o f  t h a t  e f f o r t  i s  belng prepared f o r  

re1 ease under separata cover. 



Rocket ,Plume Effects 

IONOSPHERE PROBLEM IS FACTOR OF 6 LESS THAN LASL PAPER, 
STILL A PROBLEM 

OZONE LAYER DOESN'T APPEAR TO BE A PROBLEM 

IONOSPHERE PROBLEM IS MAINLY UPWARD MOLECULAR 
DIFFUSION OF H2 

INCREASE MIXTURE RATIO? 

TRY TO KEEP TRAJECTORY BELOW 100 km 

CONTINUE0 ANALYSIS OF PLUME EFFECTS SHOULD TREAT 
ALL UPPER A TMOSPHERE AS AN INTEGR A TED ENTl TY 



RECTENNA S I T I N G  POTENTIAL SITES IDENTIFIED 

Pre-liminary studies o f  rectenna s i t i n g  have ind ica ted  t h a t  the  number o f  p o t e n t i a l  s i t e s  

i s  considerably g rea te r  than presently-est imated requirements . Speclf  i c s i t e s  were 
i d e n t i f i e d  i n  the  three areas ind ica ted  w i t h  t o t a l  numbers o f  s i t e s  as sumnarized. 



Rectenna Siting 
Potential Sites Identified 

ALSO SUITABLE FOR 2600 MW 

UTILITY REGION 

BONNEVlLLE POWER 
ADMlN ISTRATION 

MID-CONTINENT AREA 
POWER POOL 

SOUTHERN CALIFORNIA 
ED ISON 

TOTALS 

6000MW SITES 

26 

61 

8 

84 

2600 MW SITE8 

27 

34 

9 

70 
4 



TECHNOLOGY ADVANCEMENT PLANNING 

Substantial emphasis has been placed on technology advancement ~ l a n n i n g  i n  phase I o f  

the present study. A de ta i led  p lan has been developed covering the ten areas indicated 

on the fac ing page. This de ta i led  plan I n  most cases includes m u l t i p l e  paths such as 

indicated. The plan i s  being developed w i th  the a i d  o f  automated network, scheduling, 

cost,  and resource analysis.  The overa l l  plan i s  present ly  being reviewed w i t h  JSC 
and a serles of updates i s  conteaplated. Present ind icat ions are t h a t  a l l  h igh  p r i o r i t y  
technology advancement object ives can be achieved by 1985 with an average funding l eve l  

o f  $25 m i l l i o n  per year beginnir~g i n  f i s c a l  1981. 



DETAILED PLAN COVERS TEN AREAS 

PHOTOVOLTAICS 

THERMAL SYSTEMS 

POWER TRANSMISSION 

SPACE STRUCTURES 

MATERIALS 8 PROCESSES 

FLIGHT CONTROLS 

SPACE CONSTRUCTION 

SPACE TRANSPORTATION 

POWER DlSTRlBUTION 

SPACE ENVIRONMENT EFFECTS 

. SILICON 

MULTIPLE PATHS IN MOST AREAS, r.g., GALLIUM ARSENIO= SELECT 

OTHER 'A 



BASELINE TREND 

No dramatic changes i n  the baseline mass o r  cost are present ly ant ic ipated,  A number o f  

small changes have been i d e n t i f i e d .  These w i l l  lead t o  increases i n  s t ruc ture  mass and 

cost  and a  very s l i g h t  increase i n  so la r  array u n i t  mass and cost. Improvements i n  the RF 

l i n k  e f f i c i ency  resu l t i ng  from adoption o f  the LinCom basel ine o f  phase cont ro l  d i s t r i b u t i o n  

t o  the k l ys t ron  amp l i f i e r  l eve l  w i l l  improve s l i g h t l y  the RF l i n k  e f f i c i e n c y  and thus reduce 

actual s ~ l a r  array area. Other changes i d e n t i f i e d  a lso ind ica te  s l i g h t  reductions i n  mass 

and cost.  The net  e f f e c t  i s  expected t o  be an overa l l  s l i g h t  reduct ion. F i n a l l y ,  the I 

invest igat ions o f  s o l i d  s t a t e  systems and lower power SPS's i nd i ca te  t h a t  a basel ine opt ion 

o f  a  2,500 megawatt s o l i d  s ta te  power t ransmi t te r  SPS should be considered. , 



Baseline Trends 

NET EFFECT IS EXPECTATION OF SLIGHT REOUCTION IN  MASS AND COST 

BASELINE OPTION OF 2500 Mw, SOLID STATE MPTS SHOULD BE CONSIDERED 

COST 

+ 
+ 
- 
- 
- 
- 
- 

I 

4 

STRUCTURE 

SOLAR ARRAY 

POWER DISTRIBUTION & PROCESSING 

RF LINK EFFICIENCY 

RECTENNA 

SPACE TRANSPORTATION 

SPACE CONSTRUCTION 

I 

MASS 

+ 
+ 
- 
- 
0 

- 
- 



Structure Update 



SOLAR ARRAY SUPPORT STRUCTURE EVOLUTION 

I l l u s t r a t e d  here are the o r i g i n a l  and rev ised  basel ine hexahedrcl s o l a r  a r ray  support  

s t r u c t u r e  concepts. I n  the  o r i g i n a l  system the edge c e l l s  of c3ch of the  e i ~ h t  modules 

making up t he  e n t i r e  SPS used the con f i gu ra t i on  i l l u s t r a t e d .  The i n t e r i o r  c e l l s  employed 

an absolu te  minimum o f  s t r uc tu re .  Fur ther  ana lys is  i nd i ca ted  t h a t  the  edge c e l l s  were n o t  

s t ab le  w i t h  the  r e s u l t  t h a t  the  e n t i r e  system was no t  s t ab le .  Fur ther ,  t he  J12 meter beams 

were n o t  adequate f o r  s o l a r  b lanke t  tens ion when the s o l a r  b lanke t  tens ion  was changed 

t o  u n i a x i a l .  As a  r e s u l t ,  t he  system was rev ised  t o  the  con f i gu ra t i on  i nd i ca ted  w i t h  12ri 

meter beams For s o l a r  b lanke t  tens ion  support  and a l l  c e l l s  i nco rpo ra t i ng  the  s t r u c t u r a l  

concept shorn. The lower-deck-to-upper-deck diagonal provides s t r u c t u r a l  s t a b i l i t y .  



1 Solar Array Support Structure Evolution 
I ---- 

~ ~ ~ 2 1 9 4  ORIGINAL REVISED 

ALL 7WM BEAMS ALL M M  BEAMS 

EXCEPT AS NOTED 

12.5M BEAM 

INTERIOR CELL 

7 PROBLEMS: 

NOT STABLE 

7%M BEAM INADEQUATE 
FOR SOLAR BLANKET TE?'SION 



BAY CONFIGURATION SOLAR COLL.ECTOR PRIMARY STRUCTURE 

As the  basel i r e  system has become more complicated t h e  mot ivat ion t o  change t o  a new 

s t r u c t u r a l  approach has increased. This f i g u r e  i l l u s t r a t e s  t h e  r e l a t i v e  s i m p l i c i t y  of 

the  pentahedral t russ st ructure  compared t o  t h e  cur ren t  hexahedral basel ine .  



Bay Configuration: 

SPS-2 196 

HEXAHEDRAL BRACING 
(BASELINE) 

PENTAHEDRAL BR4SlNG 

PER MODULE: SECONDARY STRUCTURE 

JOlrJTS 90 

JOINT CONFIG. 18 

MEMBERS 216 

PER MODULE: SECONDARY STRUCTURE 

JOINTS 79 
JOINT CONF IG. 8 

rJlEMBERS 2% 



PENTAHEDRAL TRUSS PRIMARY STRUCTURE O P T I O N  

I l l u s t r a t e d  here i s  the  pentahedral t russ concept f o r  so la r  a r r a y  support. We a n t i c i p a t e  

t h a t  t h i s  s t ruc tura l  approach w i  l l  be reconended as a base1 i n e  change a t  the  completion 

o f  the  cur ren t  phase o f  study. 



Pentahedral Truss 
Primary Structure Option 

m IU"IY# - 
BLANKET TENSION: 
MAlFJ LONGERON (12.5 M) 

PRIMARY COLUMN (7,SM) 

SOLAR ARRAY 
STRUTS (7.5Y) 

LOWER PLANE 7.5M 

SIMPLEST SYSTEM FOR SUPPORT OF SQUARE BAYS 

FEWER PilEMBERS 

FEWER JOINTS 
LIGHTER 

BETTER ACCESS FOR SERVICING 



ANTENNA STRUCTURE OPTIONS 

Early invest igat ions o f  the SPS microwave power t ransr iss ion  systems antenna s t ruc ture  

developed the tetrahedral t russ primary and secondary s t ruc ture  ioncept. This sys tem 

represents a maximum o f  s t ruc tu ra l  e f f i c i ency  f o r  such an antenna. However, i t  con- 

s t ra i r  s the subarrays t o  a  non-square system and presented ce r ta in  d i f f i c u l t i e s  w i t h  

respebt t o  maintenance access. 

The center i l l u s t r a t i o n  i n  the fac ing page represents the antenna s t ruc ture  as ~ I ~ ~ a l I z e d  

by the maintenance engineer. It provides easy access t o  subarray repaf r  o r  replacement 

and allows square subarrays but  s t r u c t u r a l l y  i s  no t  very e f f i c i e n t  and employs tension 

members. The use o f  tension members resu l t s  i n  dubious dynamic q u a l i t i e s  f o r  the st ructure.  

Further, the secondary s t ruc ture  i s  required t o  provide s tab i  1  I t y  o f  the ,~ r imary  s t ruc ture .  
Analysis o f  t h i s  combination indicated a  r e l a t i v e l y  poor s t i f f n e s s  e f f i c i ency .  

Here again, the pentahedral trussappears t o  offer a  way out, I t  maintains good access w i t h  

good e f f i c iency ,  el iminates tension members and allows square subarrays. A po ten t i a l  

in ter ference problem has been i d e n t i f i e d  w i t h  respect t o  the operat ion o f  the ~a in tenance  

gantry and the existence o f  cross beam members f o r  the primary pentahedral t russ st ructure.  

This i s  b e t t e r  i l l u s t r a t e d  on the next f igure ,  



1 

Antenna Structure Options 

SPS.2252 

TETRAHEDRAL TRUSS 

MAXIMUM EFFICIENCY 
NO TENSION MEMBERS 
NON-SQUARE SUBARRAYS 
MAINTENANCE ACCESS 
DIFFICULT 

A-FRAME PENTAHEDRAL TRUSS 

W O O  ACCESS GOOD ACCESS 
SOUARE SUBARRAY S 0000 EFFICIENCY 
POOR EFFICIENCY N O  TENSION MEMBERS 
USES TENSION MEMBERS SQUARE SUBARRAY S 
SECONDARY STRUC7'URE IS 
PART OF PRIMARY STRUCTURE 



PENTAHEDRAI MPTS STRUCTURE 

The pentahedral s t ruc ture  i s  shown i n  more d e t a i l  here,  Simp1 i f i c a t i o n  o f  the  secondary 

s t r u c t ~ r e  appears i n  order.  The upper cross-braces i n  the  primary s t ruc ture  c r e a t e  an 
in te r fe rence  w i t h  operat ion o f  the  maintenance gantry .  f u r t h e r  i n v e s t i g a t i o n  i s  expected 
t o  f i n d  a way t o  e l i m i n a t e  t h i s  in te r fe rence .  



Pentahedral MPTS Structure 
mu###@ - 

MAINTENANCE 

STRUCTURE 

CROSSBEAMS ON FACE OF PENTAHEORAL STRUCTURE ELIMINATE USE OF 
SECONDARY STRUCTURE AS PRIMARY LOAD PATH. 



SPS STRUCTURE 

The facing page adopted from the Executive Sumnary summarizes the resu l ts  of structure 
options investigations t o  date. 



SPS Structure 

PENTAHEDRAL TRUSS IDENTIFIED AS IMPROVEMENT 

DO NOT RECOMMEND CHANGE UNTIL PHASE II; 

CHANGE NOW WOULD IMPACT CONSTRUCTION OPTIONS EVALUATION 

STRUCTURAL DESIGN WILL CONTINUE TO EVOLVE 



Laser 
Annealing 



LARGE FLARE EFFECT ON ARRAY PERFORMANCE 

Results of a s t a t i s t i c a l  ana lys is  o f  so la r  f l a r e  s i ze  are shown. The f l a r e  s i ze  p r o b a b i l i t y  

d i s t r i b u t i o n  was assumed t o  f o l l o v ~  a log-normal curve. The ava i l ab le  s t a t i s t i c a l  sample 

i s  too small t o  develop d e t a i l e d  conclusions as t o  f l a r e  s ize .  It seems u n l i k e i y  t h a t  a 
log-normal d i s t r i b u t i o n  would ho ld  f o r  very l a rge  f l a r e s  s ince t h i s  d i s t r i b u t i o n  places 

no upper l i m i t s  on f l a r e  s ize.  

The two curves shown represent power law and exponent ial  r i g i d i t y  models f o r  the proton 

spectrum. Ava i lab le  data f i t  e i t h e r  law about equal ly ,  y e t  these spec t ra l  d i s t r i b u t i o n s  

p r e d i c t  l a rge  d i f fe rences  i n  proton f luxes  i n  the  energy range from 2 MEV t o  10 MEV. This 

energy range i s  o f  p r i n c i p a l  concern f o r  t h i n  s o l a r  c e l l s  w i t h  t h i n  covers, bu t  ava i l ab le  

data do no t  extend i n t o  t h i s  region. 

Degradation more than 10% from a s i n g l e  l a rge  f l a r e  i s  deemed t o  be h i g h l y  u n l i k e l y .  rluch 

improvement i n  the confidence i n  t h i s  r e s u l t  can be expected due t o  cont inued accumulation 

o f  s t a t i s t i c a l  data from the cu r ren t  so la r  cyc le  and w i t h  d i r e c t  observat ion o f  proton 

f l uxes  i n  the 2 MEV t o  10 MEV range. 



Large Flare Effect on Array Performance 

PROBABILITY OF A FLARE LARGE ENOUGH TO CAUSE ARRAY DAMAGE, 
PROVIDED A FLARE LARGER THAN 106 PROTONSICM~ OCCURS 
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LASER ANNEALING CONCEPT 

The concept o f  how the actual annealing process would be accomplished i s  shown. Each l ase r  gimbal 

would a c t u a l l y  have 64-500 wat t  C02 lase ' i n s t a l l e d .  The l ase r  beams would be o p t i c a l l y  t a i l o r e d  

t o  provide the desired i l l u m i n a t i o n  pa t te rn  and energy density. 

The gimbals would be mounted on an overhead gantry t h a t  would span the e n t i r e  bay width, one bay 

o f  so la r  a r ray  would be annealed i n  f i f t e e n  meter Increments. It should be noted t h a t  the so la r  

array s t r i n g s  t h a t  are undergo1 ng an. pal  i ng are nonoperational . 



Laser Annealing Concept 

SATELLITE MODULE 

SATELLITE BAY 
LASER SCANNER 
T Y P I C A L 4 G A N T R Y  

GANTRY TRACKS 

DETAIL A 
TYPICAL 667.Sm BAY 

DETAIL 0 
TYPICAL U S E R  PNNEALER 



COZ LASER DESCRIPTION 

Tkis figure shows the basic essentials for a 500 watt Cop laser operation. The small diameter of the 
beam can be optically taiiored to provide tne desired illumination pattern on the solar blanket. 

This device would be a flow type laser in that the C02 gas i s  moved through the tube to allow recom- 
bination and cooling. This fiyore shows a simple return line but in practice, with several lasers 
operating in para1 1 e l ,  a centralized accumulator and thermal control system may be desirable. 

Commercial Coplasers have been built that are much larger than that shown here. ' The application of 
t h i s  device to SPS requirements and improved reliability are the major areas that need further 
development. 



C02 Laser Description 

f mLEy&S RETURN LINE 
TUBE SUPPORTS 

CAPILLARY DIAMETER 
(25.2 mm) r .  / BREWSTER WIN- Y 

ANODE f 1 CATHODE 

I--- DISCHARGE LENGTH (6.67m) + 

GAS PRESSURE: 1.88 torr 

EFFICIENCY: 1 6% 

POWER OUTPUT: bO(lW 



LASER ANNEALING Sl!MMARY 

The main points  o f  the invest:gation are  indicated. Recent examination o f  the Spire 

t e s t  resu l ts ,  coupled w i t h  ana ly t i ca l  estimates o f  the quant i ty  o f  energy required t o  

accompl i s t  heating t o  anneal ing  temperatures, suqqests that  current  estimates o f  l ase r  

energy required may be up t o  10 times too high. The Spire tes ts  had the solar ce l ls  
mounted on heatsinks, thus requ i r ing  iar more energy t o  reach annealing temperatures 

than would be requi red i n  the e;sentially adiabat ic  case tCat w i l l  ho ld i n  space. 



! Laser Annealing 

SINGLE LARGE FLARES NOT EXPECTED TO CAUSE SIGNIFICANT DEGRADATION 

0 CURRENT ESTIMATES OF LASER ENERGY REQUIRED MAY BE UP TO 10X TOO HIOH; 

THEY ARE BASED ON SPIRE TESTS WHICH HAD CELLS MOUNTED TO HEAT SINKS. 



MPTS Mid term Review 



MPTS MIDTERM REVIEW 

The f o l l o w i n g  sec t ion  descr ibes Boeing work t o  date on so l  I d  s t a t e  microwave power t rans -  

mi t t i n g  antenna concepts. Cer ta in  sect ions o f  t h i s  work were conducted on i n t e r n a l  
Boeing IR&D funding, as ind ica ted ,  t o  extend the i n v e s t l g a t i o n  beyond the  present scope 

o f  the study. The f o l l o w i n g  con t r i bu to r s  y a r t i c i p a t e d  i n  t h i s  p o r t f o n  o f  the study. 

llPTS System E rv i n  J .  Nalos 

Phase Control  : 

Walt W. Lund 
Peter Fol des 

The Boeing Co. 
General E l e c t r i c  Co. 

S o l i d  S ta te  Design: 

G. F i  tzsimmons Tlie Boelng Co. 
Ray Sperber The Boeing Co. 

Fibel- Opt ic  F e a s i b i l i t y  

Glen M i l l e r  The Boelno Co. 

tlPTS Computer Program 

S c c t t  Rathjen The Boeing Co. 

NASA-3SC 
Oct. 19, 1978 



MPTS Mid term Review 

SPS PHASE CONTROL IMPLEMENTATION 
COMMENTS ON LINCOM SYSTEM 
INITIAL REDUNDANCY CALCULATIONS 
FIBER OPTIC FEASlBlLlN ASSESSMENT 

SOLID STATE DESIGN FOR SPS 
DEVICE PARAMETERS ASSESSMENT 
POTENTIAL. CIRCUIT FOR SPS INTEGRATION 
COMMENTS ON NOISE BEHAVIOR 

MPTS COMPUTER PROGRAM 
COMPUTER MODEL STATUS 
PLAN FOR NEXT PERIOD 

OCTOBER 19,1978 



SPS PHASE CONTROL 

This chart describes che tasks undertaken i n  the review and implementation o f  the LIncom 
System and some suggested follow-on tasks f o r  Phase 11 o f  the System Evaluation Study. 
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SPS Phase Control 

LINCOM SYSTEM IMPLEMENTATION 

ANALYTICAL VERIFICATION 

DISTRIBUTION TREE OPTIONS 

e KEY TRADE STUDIES 

DESIGN REFINEMENTS 

FOLLOW-ON TASKS 

SIMULATIONIANALYSIS 

a EXPERlMENTAL 



COMPARISON OF ARRAY PERFORMANCE DEGRADATION WITH TILT 

Calculat ions by Lincom show t h a t  going t o  smaller subarraydesensi t fzesthe t ransmi t t ing  

antenna performance degradation due t o  systematic ti 1 t. Selected r e s u l t s  from recent 

Boeing computer runs are i n  good agreement w i t h  Lincom data and ind ica te  tha t  i f  greater  
t i 1  t s  are t o  be experienced than present ly al located, a review o f  the basel ine 10 meter 

subarray s ize  i s  warranted. 



Comparison of Arra'y 
Performance Degradation with Ti1 t 

LEGEND 

- LINCOM RESULTS 

3 arcmin SYSTEMATIC Y TlLT 
3 arcmin RANDOM TlLT (1 01 
Surface e = .01h (48 mils) 

BOElNO "TILTMAIN" RESULTS 

@ 3 a m i n  SYSTEMATIC TILT 
3 5 a m l n  RANDOM TlLT 

@ 3 - a m b  SYSTEMATIC TlLT 
3 arcmin RAN DOM TlLT 

@ 3 W m i n  SYSTEMATIC TILT 
3 "amin RANDOM TlLT 

Surfaa e - .01X corresponds 
to 112% power IOU 

SYSTEMATIC TlLT IN X-AXIS, ARCMlN 



EFFECT OF SYSTEMATIC AND RANDOM SUBARRAY TILT 

Further runs on the Ti1 tmain program confirmed by graphical integrat ion of superposed 

random t i l t s  on v a r i ~ u s  values o f  systematic tilt indicate tha t  random t i l t s  can have 

greater effects than previously realized. For instance, f o r  3 arc min o f  systematic t i 1  t 

the e f f ic iency i s  reduced from 98.5% f o r  zero random tilt t o  94.7% with 3- arc min o f  
random t i 1  t. The choice o f  3 o f  random t i 1  t (1  dimensional a t  45' on the llTIltmainlt 
program) corresponds t o  a choice of 3 arc min of 2 dimensional t i 1  t on the Lincom program. 



Effect GI Systematic and 
Random Subarray Ti1 t 

6 4 2 0 2 4 6 8 10 

SUBARRAY TILT, ARCMIN 



POTENTIAL PHASE DISTRIBUTION TREE LAYOUTS 

Four d l f f e r e n t  d is t r ibutSon trees are out l ined, each ind i ca t i ve  o f  d i f f e r e n t  l eve l  of 

phase contro l  and degree o f  power spl  i t t i ngs .  The base1 i n e  system o f  Lincom w i t h  9 
nodes ( d )  i s  based on a maximum o f  4 : l  power s p l i t  whereas the 4 node system (a) elaborated 

by GE i s  based on a 20x19~19 d i s t r i b u t i o n  t o  the subarray l eve l  and a var iable power 

s p l i t t i n g  t o  the k lys t ron  leve l  (4 th  node) using 4:l power s p l i t t e r s  a t  the edge and 36:1 

power spl  i t t e r s  a t  the array center. 



Potential Phase Distribution Tree Layouts 

CNODE SYSTEM - 7,220 SUBARRAYS, 100.000 KLYSTRON MODULES 

10 m SUBARRAY 
9.5 db TAPER 

4: 1 @ EDGE (6.9 m AV. CABLE LENGTH) 

0 
36: 1 B CENTER 

+R(PPL.." REDUNDANT 
REDUNDANT "250 m 
-250 m N-WAY DIVIDERS 

3-NODE-32 BRANCH SYSTEM - 28.880 SUBARRAYS 
5 m SUBARRAY KLYSTRON MODULE 

0 9 NODE -- 4 BRANCH SYSTEM 

4.NODE-13 BRANCH SYSTEM - 28,880 SUBARRAYS 262 1144 ELEMENTS 

4 4'- 
\ 

.p a- 



ESTIMATE OF REQUIRED CABLE LENGTH 

The approximate ca lcu la t ion  o f  cable length and welght indicates t h a t  cable length 
opt imizat ion may not be a r e a l l y  s i g n i f i c a n t  parameter since cable weight w i l l  l i k e l y  
be less than 1% o f  the array waveguide weight. The r e l i a b i l i t y  analysis i n i t i a t e d  i n  

the GE midterm tocumentation w i l l  be ca r r i ed  fu r ther ,  as w i l l  the development of a 

maintenance concept. 



Estinlate of Required Cable Lel~gtl~ 

ALL t'ABLE LENGTHS EQUAL - 
1ST LAYER 20 CABLES 8 260 m TRIPLY REDUNDANT I S  km (1/4" Dl&) 

2ND LAYER 380 CABLES 8 250 m DOUBLY REDUNDANT 180 km (1/4" OIA) 

3RD LAYER 7220 CABLES 8 100 m NON-REDUNDANT 722 km (1/8" DIA) 

4TH LAYER 100,784 CABLES 8 6.9 m NON-REDUNDANT 702 km ( I D "  DIA) 

N9N-EQUAL CABLE LENGTHS 

SAVING - FACTOR OF 2 

APPROX. CABLE WEIGHT r 1% OF YlAVEOUlDE WEIGHT - 9000 km OF WIG vs. 8M) km OF CABLL 



FOUR-NODE I 

PHASE CONTROL SYSTEM LAYOUT ASSUMPTIONS 
G E N E R A L  rprsos divirim 
E L E C T R I C  

0 7220 SUBARRAY, 10.4 M X 10.4 M EACH 

a 10 LEVEL POWER DISTRIBUTION APPROXIMATING GAUSSIAN FUNCTION WITH -9.54 DB 
TAPER 

SEPARATE PHASE DISTRIBUTION AND CONJUGATION CIRCUITS 

a ELECTRONIC CIRCUITS AS PER LINCOM REPORT 

PHASE DISTRIBUTION TREE EMPLOYS THREE LAYERS TO SUBARRAY OR FOUR LAY- 
ERS TO KLYSTRON LEVEL 

a FOURTH LAYER IS ADD ON (IF NECESSARY) 

FIRST LAYER IS TRIPLE REDUNDANT, SECOND LAYER IS DOUBLE REDUNDANT IN 
PHASE DISTRIBUTION TREE 



G E N E R A L  
E L E C T R I C  

DIVISION OF 7220 ELEMENT 
SPACEANTENNA INTO 10 
POWER LEVEL RINGS rpaue divirion 



LAYOUT O F  PHASE D I S T R I D U T I O N  SECTORS AND GROUPS 

Tl lE SPACE ANTENNA I S  D I V I D E D  INTO 20 SECTORS AND EACH SECTOR INTO 19 CROUPS O F  SUBARRAYS. 

EACH GROUP CONTAINS 19 SUBARRAYS, I N  F I N E  DETAIL THREE DIFFBRENT SECTOR LAYOUT I S  NECESSARY 

FOR THIS SCHEME, WHICH THEN ARE PERIODICALLY REPEATErJ I N  THE AZIMUTH D I R E C T I O N ,  



G E N E R A 1  
E L E C T R I C  

LAYOUT OF PHASING 
SECTORS AND GROUPS 



LOCATION (IF REFERENCE PHASE REPEATER STATIONS AT SECTOR AND CROUP CENTERS -- -- 

Ti15 REFERENCE PIUSE D I S T R I B U T I O N  NETWORK HAS THREE INDEPENDENT CENTERS LOCATED ON A 70 M hADIUS, 

120' AZIMUTH ANCI.E FROM EACI1 OTHER. THESE PROVIDE T R I P L E  REDUNDANCY, THE F I R S T  LAYER O F  THE 

PHASE DISTRlBUTION TREE GOES FROM THESE CENTERS TO SECTOR CENTERS. TllE SECOND LAYER COES FRO!' 

SE(;'i'OR CENTERS T O  CROUP CENTERS. THE T H I R D  LAYER (NOT SHOWN) COES FROM CROUP CENTERS TO SUBAhRAY 

CENTERS. THE FOURTH LAYER (NOT S H O W )  GOES FROM SUBARMY CENTERS T O  KLYSTRONS, WHEN T H I S  LkYER 

IS IMPLEMENTED. 



G E N E R A L  
E L E C T R I C  

LOCATION OF REFERENCED 
PHASE REPEATER STATIONS 

OF SECTORS AND GROUPS 



4UANTITIES OF SUBARB 4Y S-IN VARIOUS IEVELS . SECTORS AND GROUPS 

THE OVERALL Slt'ACE ANTENNA I S  DIVIDED INTO POWER DISTRIBUTION LEVELS (FROM ONe TO TEN) AND 

MJLTIPLE PliASE DISTRIBUTION LAYERS. THE FIRST PHASE DISTRIBUTION IAYER CONTAINS 'RJEN'I'Y 

SECTORS (A ,  8, C ,  C ,  B ,  A ,  B , , . B) , READ HORIZONTALLY THE LEVEL AND SECTOR DESIGNATION 

AND VERTICALLY THE GROUP DESIGNATIONS ON THE CHART, 



G E N E R A L  
E L E C T R I C  

QUANTITIES OF SUBARRAYS IN VARIOUS LEVELS, 
SECTORS AND GROUPS 

11 19 16 
5B - 19 12 

LEVEL, SECTOR 

98 15 19 19 

' 1OC 11 19 19 



SUMMARY OF SUBARRAY QUANTITIES I N  VARIOUS PHASIlJG SECTORS AND GROUPS 

THE TABLE SHOWS THE NUMBER OF SUBARRAYS I N  A GIVEN LEVEL, SECTOR AND CROUP AND ALSO THE NUMBER 

OF SUBARRAYS IN A GIVEN Tij GROUP, FINALLY THE OVERALL TOTAL OF SUBARRAYS, T AT A GIVEN POWER LEVEL. 
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SUMMARY OF SUBARRAY QUANTITIES 
G E N E R A L  I 

IN VARIOUS PHASiNG SECTORS AND GROUPS space division 
E L E C T R I C  

L 

LEVEL 

1 

2 

3 

4 

5 

6 

* 

7 

8 

9 

1 0  

QTY 

-.- 
A19 60  
B19 = 96 
C1g = 152 

A19 1 6 ,  A 1 8  = 76,  A17 = 20 
B19 = 56 ,  818 = 152,  B17 = 80 

c18 152,  c17  = 72 

A17 = 56, A16 = 56 
B17 = 72, Bib = 153,  B15 = 40  
C17 = 80, C19 152,  C15 = 48 

Ale " 20, A15 = 76, A14 - 32 
B15 - 112,  B14 - 152 
C15 = 104,  C17 = 136 

A14 = 44, A13 76, A12 - 6 4  
B13 * 152,  B12 = 96  

C14 1 6 ,  C13 = 152,  C12 = 1 4 4  

A12 = 12 ,  A 1 1  = 76,  A 1 0  - 72 
B12 = 56,  B11 = 152,  B10 = 152 
C12 = 8, C11 = 152,  C1o = 152,  Cg = 40  

A10 = Ag ' 76, A 8  = 56 
Bg = 152,  B8 = 112 

- 1 

T19 308 
T = 308 

- 

T1g .I 72, T i 8  ' 380, T17 = 172 
T - 624 

T17 = 208, T16 = 360, T15 = 88 
T - 656 

T16 = 20, T i 5  = 292, T i 4  * 320 
T = 632 

T14 = 60,  T i 3  = 380, T12 = 304 
T - 744 

T12 = 76, T i 1  = 380, T10 = 376, Tg = 40 
T = 872 

T ~ o  = 4 ,  Tg - 340, T8 E 320 

I T 664 
C g  - 112,  Ca = 152 

A2 - " 3 ,  A7 = 76,  A6 = 8 
B 8  = 40, B7 152,  E6 = 32 

C 7  a 152,  Cg = 56 

A, = 68, A5 = 76, A4 = 64 
B6 = 120,  Bg 152, Bq = 152, B3 = 1 6  
c 6  a 96,  Cg = 152,  Cq = 152,  C-j = 64 

A 4  - 1 2 ,  A3 = 76, A2 = 76, A 1  = 76 
Bg 136, B2 152,  B1 = 152 
C3 = 88, Cg = 1 5 2 ,  C1 = 152 

T8 = 60,  T7 = 380, T6 = 96 
T = 536 

T6 n 284, Tg = 380, T4 = 368, T3 = 80 
T 112 

T4 = 12 ,  T3 = 300, T2 = 380, TI = 380 
T = 1072 

4 
85 



REDUNDANCY CONCEPT OF PHASE DISTRIBUTION NETWORK 

THE EXHIBITED REDUNDANCY CONCEPT EMPLOYS TRIPLE REDUNDANCY AT THE F I R S T  AND DOUBLE REDUNDANCY 

AT THE SECOND LAYER, EXCEPT SECOND LAYER CABLES THEMSELF ARE NOT REDUNDANT. 



G E N E R A L  
ELECTLIC 

REDUNDENCY CONCEPT OF PHASE 
DISTRIBUTION NETWORK space division 

- -- -' - - - - - - -.- - - - - - - - - - - - - 
-- 1 IAI SECTOR PHASE REPEATER STATION 

- 1 
FIEF. 

I I -- 2 
AUT. 1 I 
NO. 1 I 

-3- 
I 

-20 I I 
820 
QTY 1 'x I 

I 810 - QTY 20 5"'3 
------r 1 (A) kpT-~~[ - l  19 

REF. 
AUT. - 2 I I mi QTY 
NO. 2 

I 
020 632 12814 

81s 744 11904 

QTY 20 
I 
I 

872 10464 

I 09 
a# 5076 

AUT. 
h0.3 L ----------.-----,---,--- am 636 42 80 

B6 1112 6672 
"4 - 1072 +Zen --- 

I 
-20 

QTY 3W "30 JOI 11011 

En 
3TY 1 

! 
I 

I 
SECTOR 

i 
I 

Bjg 624 18720 I - 2 
I "24 666 15744 

- 19 



L I S T  OF PHASE CTRCUIT DIILDISRS TO SUBARRAY LLVEL 

I N  THE PHASE DISTRIBUTION TREE WITH RZDUNDANC% 423 D I V I D E R S  (TWO T Y P E S )  OR 7643 D I V I D E R S  

(ELEVEN T Y P E S )  ARE NEEDED TO SUB41RRAY OR KLYSTRON LEVELS RESPECTIVELY* 
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G E N E R A L  LIST OF PHASE DIVIDERS TO SUBARRAY LEVEL 
m p e c e  divieion 

E L E C T R I C  

BASIC SYSTEM 

TOTAL - 

REDUNDANT SYSTEM 

820 2 
819 20 

TOTAL SYSTEM 

ADD ON TO KLYSTRON L E V A  
(NO REDUNDANCY) 

n19 :2: } 11 TYPES 



LIST OF PHASE DISTRIBUTION CABLES 

THE QUANTITIES AND LENGTHS OF PHASE DISTRIBUTION CABLES ARE SHOWN WHEN 

A .  ALL PATH LENGTHS FROM INPUT TO OUTPUT TERMINALS ARE EQUAL 

B. CABLE LENGTHS ARE MINIMIZED 



G E N E R A L  
E L E C T R I C  

0 180-24872-1 

LIST OF PHASE DISTRIBUTION CABLES 

v r 

LAYER 

AV. 
LENGTH 

KM 
NO. OF 

CABLES 

I 

TOTAL 
LENGTH 

KM REMARKS 

0- 1 780'7 - b 

I REDUNDANT) 

EQUAL CABLE LENG1'H SYSTEM 

(TRIPLE REDUNDANT CABLES) 
(NO REDUNDANCY IN  CABLES) 
(NO REDUNDANCY IN  CABLES) 

- - 

(927 KM IF SECOND LAVER IS ALSO 
REDUNDANT) -- 

-- * 

(1629.J Kh! IF SECOND LAYER IS ALSO 
REDUNDANT) 

J 

1 
2 
3 

0.25 
0.26 
0.10 
- - - - - -- 

60 
380 

7220 

UNEQUAL CABLE LENGTH SYSTEM 

- 
16 
95 

722 

832 

702.3 

1534.3 

- 

TOTAL T 3  SUBARRAY 

1 
2 
3 

0.25 
0.125 
0.06 

60 
380 

7220 

0,0069 4 

16 
47.6 

433.2 

TOTAL TO TRANSMITTERS 

101784 

(543.2 KM IF SECOND LAYER IS ALSO 
REDUNDANT) 

TOTAL TO TRANSMITTERS (828.2 KM IF SECOND LAYER IS ALSO 

496.7 

285 

TOTAL TO SUBARRAY 

0.0028 4 101 784 



BLOCK DIAGRAM FOR RELIABXLITY CALCULATIONS 

DIAGRAM SHOWS ALL THE APPLICABLE PARALLEL AND SERIES CONNECTED ELEMENTS IN A TYPICAL PATH 

3~ THE PVASE CONTROL NETWORK. 



G E N E R A L  
E L E C T R I C  

PILOT SIGNAL 
INPUT OF 
ANTENNA 

AUT 3 D- 

FAILURES ARE SHOWN 
I N  ONE FAILURE PER 
lo6 H A S  U N I T S  

BLOCK DIAGRAM FOR 
'IELIABILITY CALCULATIONS 

loox 
OF ANTENNA 

apace divimlm 

I 
0006 I 

I I REF 
I I AUT I 
I 
I - I 

. I  [ ;- 
I I 
I 1 
I OUfCUT 
I OC SECTOR 
I 

I ,002 

OUTPUT 
OF GROUP 

,015 263% OF ANTENNA , 0 1 2 ~  

L 

I 
I 

PART OF 

mwm 
outrur 
O f  ANTENNA 

I 
I 



L I S T  O F  COMPONEHTS I N  P H A S E  CONTROL C I R C U I T  - 
TABLE SHOWS THE COMPONENTS REQUIRED I N  T t l E  PHASE CONTROL C I R C U I T  WHEN THE PHASE D I S T R I B U T I f ) n  

IS  TO St'BARRAY OR TO KLYSTRON L E V E L .  T H E  PHASE CONTROL C I R C U I T  TO THE KLYSTRON LEVEL REQUII.,''  

ABOUT ONE ORDER O F  MAGNITUDE MORE COMPONENTS, 



G E N E R A L  
E L E C T R I C  

COMPONENT -- 
DIPLEXER 
RECEIVER 

B3 6 
30 

4 4 
B20 
019 
Hl 6 
B12 
B9 
B8 

6 
B4 
I'IIASE TRANSMiTTER 
FlRST LAYER CABLE (250  M) 
S t c  .;D LP.YER CABLE (250 M) 
Ti1JKD LAYPR CABLE (10 M) 
FOURT!f LAYER CAULE ( 7  M )  
PIWSE RECEIVER 
SW1 
>i\J , 
sw; 
S V 4  
sw5 
CON JUGATOR 
POWER TRANSMITTER 
S U U . ' K I U Y  

I 

LIST OF COMPONENTS IN PHASE CONTROL CIRCUIT 
rpace division 

TO SUBARRAY LEVEL 
LIE 

60 (15 W) ) KM 
380 (95 KM) 

- 
8420 

3:; ) 1180 
3 30 
3 80 
7220 

101784 
7220 (9202 KM) 

TO KLYSTRON LEVEL 
QTY 

DIFFERENTIAL 



SUMMARY OP PRELIMINARY AVAILABILITY CALCULATIONS --- 

A V A I L A B I L I T I E S  AND TOTAL LCqT ENERGY IS  CALCULATED FOR THE SELECTED REDUNDANCY SCIiEME, INDIVIDUAL 

FAILbsJE RATPc O F  CO. ?ONENTS AND ASSUMED MEAN TIME TO REPAIR VALUES. TOTAL AVERAGE POWER hEDUCTION 

DUE TO I WERFECTNESS OF PHASE CONTROL SYSTEM I S  APPROXIMATELY .24X.  



SUMMARY OF 
G E N E R A L  PRELIMINARY AVAILABILITY CALCULATIONS 
E L C C T R I C  

mpace division 

EQUIVALENT 
PROBABILITY LOST ENERGY TOTAL LOST 
THAT ALL IS GW HR. IN REVENUE 
AVAILABLE 30 YEARS M$ 

OVERALL ANTENNA (NO REPAIR) 0.999990 PER 30 YEARS 0.035429 ,001 

SECTOR (2160 HR. MTTR) 0.992722 PER YEAR 1 50.654 3.54 

GROUP (4383 HR. NITTR) 0.84412 PER 6 MONTH 339.65 16.17 

SUBARRAY (8766 HR. MTTR) 0.296275 PER 1 MONTH 770.61 23.1 18 

KLYSTRON INiaUT (8766 HRS. MTTR) 0.195510 PER DAY 1897.98 56.939 

TOTAL EQUlVALENT POWER LOSS DUE TO PHASE CONTROL SYSTEM 0.2402% 

RESULTANT AVAILABILITY FOR 30 YEAR PERIOD 0.997597 



SUBARRAY S I Z E  CONSIDERATIONS 

A c r i t i c a l  review o f  the phase cont ro l  baseline system needs t o  encompass a review o f  the 
v i a b i l i t y  o f  phase contt , I  t o  the k l ys t ron  leve l  i n  terms o f  t rad ing  complexity f o r  per fo r -  

mance improvement. One possible approach i s  t o  consider an increased number o f  subarrays 

(perhaps by a fac to r  o f  4)and prov id lng phase cont ro l  only  t o  the subarray l eve l .  A 
ra t i ona le  f o r  a 5 meter subarray i s  suggested on the attached chart .  Since passive 

e l e ~ e n t s  w i  11 have t o  provide phase i n t e g r i t y  w i th in  the a1 lowable er rors  a t  the edge o f  

the array (4  k lyst rons per lOmxlOm subarray, i . e. , 5mx5m s ize  per k lyst ron) ,  the same c e l l  

s ize  f o r r e t r o d i r e c t i v e  phase cont ro l  could be used a t  the center, possib ly  using a thermal ly 

compensated waveguide f o r  phase d i s t r i b u t i o n  t o  the 9 i nd i v idua l  k lys t rons  a t  t h i s  l e v e l .  

I f  ccmpatible w i t h  ove ra l l  ar ray performance ( t o  be checked when "Modmain" program i s  running) 

t h i s  would resul  t i n  4:1 reduct ion i n  phase d i s t r i b u t i o n  complexity. 



EDGE MOOULE 

1% 

91 

CENTER MODULE 

Phase Control Distribution Level 

PHASE CONTROL 
SYSTEM 

I m " I ' L I  - 
SE-2300 

PHASE DISTRIBUTION 
WAVEGUIQE 



An added benef i t  o f  reduced subarray s ize would be reduction i n  the number and magnitude 

o f  grat ing lobes, as ind,icated. The grating lobe l eve l  would be reduced by 20 109 D2/D1, 

ivhich i s  6 dB. 



Effect of Subarray Size on Grating Lobes 

SUBAR RAY TILT 

W 
> 

Z - 
a 
C3 

0 . -  

kmFROMBEAMCENTER 

-20- 

ANGLE, DEGREES 



S I X  STEP TAPER IMPLEMENTATION OF 

3 NODE PH4SE DISTRIBUTION SYSTEM 

An i n i t i a l  assessment of the 5 meter subarray opt ion indicates t h a t  subject t o  the previous 
s t ick length  and waveguide dimensional constraints, a s i x  step taper would have t o  be used. 
The attached chart,  using the array computer model Indicates tha t  such a taper would r e s u l t  
i n  i ns ign i f  l can t  dev ia t ion  i r ~  e f f i c i e n c y  and sidelobe leve l  from the base1 ine  values. 
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Six Step Taper Implementation of 
s 3 Node Phase Distribution System 

I TAPER I SIX STEP I TEN STEP I 

f ST Sloe -24.9 db I LOBE I I 1 

NOHMALlZEO RADIUS 



LOST ELEMENTS AS A FUNCTION OF THE 

NUMBER OF DISTRIBUTION LEVELS 

I n i t i a l  redundancy calculat ions f o r  a " K "  l eve l ,  "N" branch d i s t r i b u t i o n  system ind i ca te  

tha t  the expected number o f  f a i l u r e s  i s  

K Where po i s  the p roh ib i t s  o f  f a i l u r e  o f  a s ing le  path. Since N i s  chosen t o  be equal for  

a l l  cases (-28,800 f o r  the 5m subarray case), the f r a c t i o n  o f  elements l o s t  z Kpo t o  f i r s t  

order. I n  a "K"  l eve l  system, i f  n leve ls  are redundant, the expected elements l o s t  are 

reduced from Kpo t o  (K-n)po, independently o f  where the redundancy i s  implemented, o r  the 

degree o f  i t  ( t o  f i r s t  order),  Thus a 9 node system would have t o  incorporate redundancy 

at. f i v e  l eve l s  t o  be equivalent t o  a 4 node system from t h i s  p o l n t  o f  view. 
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Lost Elements as a Function of the 
umber of Distributi 

SPS2320 

NUMBER BRANCHES SUM OF EXPECTED FRACTION 
OF PER RELATIVE OF ELEMENTS LOST 
LEVELS (K) NODE (N) PHASE ERRORS DUE TO LINK FAILURES 

1 28,880 1 

2 170 1.41 Po 

3 32 1.73 Po 

4 13 2 ' Po 

5 8 2.23 

EXPECTED NO. OF FAILURES- N~[I-(I-P~)K] s K N K P ~  



ANTENNA BANDWIDTH TRADE STUDIES 

The antenna bandwidth w i l l  have to  be assessed from the viewpoint o f  compa t ib i l i t y  w i t h  

the baseline phase contro l  concept. Depending on the o f f se t  due t o  the spread spectrum 

modulation o f  the p i l o t  uplink, t h e  f e a s i b i l i t y  o f  sharing the t ransmi t t ing  and rece iv ing  

aperture w i  11 have t o  be determined. The ontenna, being composed o f  standing wave resonant 

s t i cks  i s  inherent ly  narrowband, and i t  may be necessary t o  use only  por t ions of the trans- 

m i  t t i n g  aperture f o r  receiv ing the p i1  o t  s ignal t o  increase the ava i lab le  bandwidth. 

Experimental measurements are suggested t o  obta in spec i f i c  bandwidth values, as we l l  as 

su i tab le  d ip lexer  measurements t o  ve r i f y  f e a s i b i l i t y  o f  adequate i s o l a t i o n  o f  the p i l o t  beam. 



Antenna Bandwidth Trade Studies 

FREQUENCY 

A - HALF MODULE DIPLEX 

B - SINGLE STICK DIPLEX 
C - SEPP RATE ANTENNA 



APPROACH TO LINE ATTENUATION 

IN PHASE DISTRIBUTION S'r'STEM 

The implementation o f  the Lincom system w i l l  requi re compensation o f  cable loss  between 
d i f f e r e n t  nodes. The 1 im i t s  o f  gain compensation due t o  d lp lexer  leakage are indicated 

i n  the chart .  For a signal t o  e r r o r  r a t i o  o f  20 dB, w i th  40 dB of d ip lexer  i so la t i on ,  

0 - 2K + 40 = 20 - 40 dB, i . e .  K = 30 dB 

Thus, for example, the maximum cable length o f  RG8 cable which can be compensated 0500 MHz 
i s  150 meters. 
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Approach to Line Attenuation 
In Phase Distribution System. 

K - LINE ATTENUATION 
= DEVICE ISOLATION 

FOR -40 DB ISOLATION, S/E, K -30 DB, I.E., MAX. LINE LENGTH OF 
RG8 CABLE IS 150 METERS @ 500 MHZ AND 80 METERS 8 2.6 GHZ. 
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SPS Phase Control 

Technology Recommendations 

SIMULATION/ANALYSIS 

DEVELOP COMPUTER MODEL OF LINCOM SIGNALING FORMAT 

MODEL UP-DOWN LINK ISOLATION FOR DIFFERENT SPREAD SPECTRUM CHIP 
RATES 

COMPARE PHASE ERROR BUILDUP IN SINGLE AND MULTIPLE FREQUENCY SYSTEM 

COMPLETE DlSTRlSUTlON TREE REDUNDANCY/OPTIMIZATION STUDIES IN 
PROGRESS 

EXPERIMENTAL 

CONSTRUCT MSRTS TO VALIDATE PERFORMANCE OVER 300 METER CABLE 

CONSTRUCT ANTENNA FEED AND WAVEGUIDE STICKS TO MEASURE AVAILABLE 
BANDWIDTH 

EVALUATE PHASE PERFORMANCE OF SCALED KLYSTRON UNDER VARIOUS 
POWER SUPPLY CONDITIONS 

INVESTIGATE FILTERING CAPABILITY OF PRACTICAL DIPLEXERS 

TEST DIPLEXER-AMPLIFIER COMBINATION TO COMPENSATE FOR CABLE LOSS 

BUILD AND TEST FOUR MODULES TO ASSESS PERFORMANCE OF BACKUP MULTIPLE 
FREQUENCY SYSTEM 

CONDUCT SCALED TESTS ON RANGE FOR PATTERN VERIFICATION 



FIBER OPTIC PHASE CONTROL FEASIBILITY 

The resu l t s  o f  a pre l iminary assessment ind ica te  t h a t  noncoherent f i b e r  o p t i c  techniques 
using low cost  LED arrays dnd s ta te  o f  the a r t  multimode f i b e r  technology may have d i r e c t  

a p p l i c a b i l i t y  t o  SPS phase contro l  , e i the r  as two-way op t i ca l  cables t o  d i s t r i b u t e  the 

phase reference i n  the baseline implementation o r  as a p o t e n t i a l l y  new phase d i s t r i b u t i o n  
scheme. The i n i t i a l  issues are maximum modulation ra tes  compatible w i t h  the spec i f ied  

phase e r r o r  budget (5' B 150 MHz i s  no t  adequate when mu1 t i p l l e d  up t o  2.45 GHz) and f i b e r  

material  se lect ion compatible w i t h  rad ia t i on  and temperature requirements. The attached 

char t  iodicates a feas ib le  F-0 cable conf igurat ion i n  a roughly 2.5" spherical sect ion 

capable o f  accomnodating 200,000 ind iv idua l  jacketed f ibers .  

The material  generated i n  t h i s  por t ion  o f  the b r i e f i n g  was evolved as p a r t  of the 
Boeing I R & D  e f f o r t  i n  support o f  SPS technolcgy. 



Fiber Optic Distribution System Concept 

IIIfl.#E - 
IF  REFERENCE SIGNAL 
O CENTER ARRAY 

REDUNDANT ARRAY OF 
LIGHT EMITTING DIODES 
(20 DIODES 0.1 mw EC 

/ \ (20 DIODES 0.1 mw EACH TYP.) 

'/ HEXAGONAL BUNDLE 

/ 
CONTAINS 61 HEXAGONS (.W5" D19) 
EACH WITH 61  FIBERS (305 EACH) 
5 MILS EACH 

KEVLAR BUFFET TUBE 
(61 CABLES) 

HEMISPHERICAL SECT!ON 
CONSTANT LENGTH FIBER OPTIC CABLE 

61 CABLES, 226,981 3721 FIBERS 
200,000 

,005" 61 FIBERS 

30 GROUPS OF 2 FIBERS 
/ 

AVALANCHE nlODE 
ENVELOPE DETECTOR 

RECOVERED 
IF REFERENCE SIGNAL 



FUSED SILICA CORE, SILICONE CLAD (VALTEC) 

LOW TEMPERATURE - - - ATTENUATION INCREASES FROM 3.5 DB/KM 8 +86W TO 14 

DB/KM 6 40°C 

HIGH TEMPERATURE - - - OK TO +150°C 

RADIATION RESISTANCE - - - GOOD 

FUSED SILICA CORE, POLYMER CLAD (DU PONT) 

LOW TEMPERATURE - - - OK TO OOCN POSSlBLy TO 
HIGH TEMPERATURE - - - CLADDING MELTS AT +80°c d 

1 

RADIATION RESISTANCE - - - REPORTED BEST 

ALL GLASS, GRADED INDEX (CORNING) 

LOW TEMPERATURE - - - OK TO -50'~. LESS THAN 1DB/KM 

CHANGE 30' TO + 600C 
HlGH TEMPERATURE - - - BELIEVED OK TO +150d: 
RADIATION RESISTANCE - - - POOR 

ALL GLASS, STEP INDEX (GALILEO) 

LOW TEMPERATURE - - 2 TO 3 DB INCREASED ATTENUATION AT -65'' SHRINKING 
BUFFER CAUSES MICROBENDS 

HlGH TEMPERATURE - -  - BELIEVED OK TO +150°c 

Thh Work Accumplirhd 
Using B k n g  IR&D Funda 

RADIATION RESISTANCE - - - POOR, BUT IMPROVING 



SOMPARISON OF COAXIAL AND FIBER OPTIC SYSTEM 

A compzrison o f  expected phase changes w i t h  temperature for  a coaxial  cable and a f i be r  o p t i c  

cable @ I F  frequency indicates t h a t  there i s  a near ly  20 times smaller phase change f o r  

the f i b e r  o p t i c  cable. As an exanple, f o r  a 1 0 0 ~ ~  change i n  temperat me, over a 30 meter 
length, the phase change i n  a F-0 cable would be j u s t  under 5' when mu1 t i p l i e d  up from 150 MHz 

t o  2.45 GHz. This does no t  inc lude the compensating e f fec ts  o f  the change o f  r e f r a c t i v e  

index w i t h  temperature which would reduce t h i s  value, o r  the p o s s i b i l i t y  o f  using an 

i n j e c t i o n  l ase r  w i th  a s ing le  mode f i b e r  which would have much lower dispersion. Since 

the l a s t  l eve l  o f  d i s t r i b u t i o n  t o  the k l ys t ron  modules themselves would, on the average, 

requ i re  c;Sles below 30 meter long, the t o t a l  phase e r r o r  budget o f  10' (RSS value) might 

we l l  accommodate such an er ror ,  r e s u l t i n g  i n  a l a rge  s i m p l i f i c a t i o n  o f  the phase cont ro l  

d i s t r i b u t i o n  c i r c u i t r y .  

This Work Accomplished 
Wng Bwina IR&O Fund. 



Comparison of 
Coaxial and Fiber Optic System 
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Fiber Optic Phase ~istribu tion' Assessment 

POTENTIAL AOVANTAGES 

LOWER ATTENUATION, LIGHTER, LOWER COST, LOWER PHASE DELAY 

EASY IMPLEMENTATION OF REDUNDANCY 

NO ELECTROMAGNETIC SHIELDING NEEDED 

NO REVERSE COUPLING 

ONE FAILURE MODE ONLY -CANNOT SHORT CIRCUIT 

POTENTIAL PROBLEM AREAS 

COMBINED TEMPERATURE & RA31ATION HARDNESS MAP REQUIRE SPECIAL FIBER 

COMBINED PHASE DELAY, ATTENUATION, BANDWIDTH AND NUMERICAL APERTURE 

OVER DESIRED TEMPERATURE RANGE NOT FULLY UNDERSTOOD. 

Thir Work Accomplihod 
Using Booing IRLD Funds 
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Fiber Optics Verification Program 

SELECT CANDIDATE COMPONENTS 

0 DESIGN AND FABRICATE 100 MHZ FIBER OPTIC TRANSMITTER WITH EMITTER ARRAY 

DESIGN AND FABRICATE TWO OR MORE 100 MHZ FIBER OPTIC RECEIVERS 

SIMULATE TRANSMITTER~FIBER COUPLING CONDITIONS 

I 

ASSEMALE TWO OR MORE 0.6 KM LINKS WITH ONE OR MORE FIBER TYPES 

EVALUATE PERFCRMANCE OVER FULL TEMrERATURE RANGE 
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MPTS Mid term Review 

5-22113 

SPS PHASE CONTROL IMPLEMENTATION 
COMMENT3 ON LINCOM SYSTEM 
INITIAL REDUNDANCY CALCULATIONS 
FIBER OPTIC FEAIlBlLllY ASSESSMENT 

SOLID STATE DESIGN FOR SPS 
DEVICE PARAMETERS ASSESSMENT 
POTENTIAL CIRCUIT FOR SPS INTEORATlON 
COMMENTS ON NOISE BEHAVIOR 

MPTS COMPUTER PROGRAM 
COMPUTER MODEL STATUS 
PLAN FOR NEXT PERIOD 

OCTOBER 19,1878 
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FIELD EFFECT TRANSISTOR MATERIALS 

Mater ia ls  parameters determine f i e l d  e f f e c t  t rans i s to r  performance f o r  a given geometry. 

For the device+ desired for  SPS, s i  1 icon has marglnal high-frequency capab i l i t y .  The 
s ta te  o f  the a r t  i s  the considerably f a s t e r  gal 1 ium arsenide, which has been base1 ined. 
There my however be be t te r  mater ia ls  developed i n  the fu tu re  which a l low be t te r  performance, 

such as indium phosphide. 

As data develops on r e l a t i v e  rad ia t i on  degradation and r e l a t i v e  r e l i a b i l i t i e s  o f  s i m i l a r  

devices made o f  these d i f f e r e n t  mater ia ls  i t  w i l l  be incorporated i n t o  updating the study 

resul  ts. 



Field Effect Transistor Materials 
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MICROWAVE TRANSISTOR POWER ADDED EFFICIENCY 

Potential  improvements large enough t o  ensure v iabi  1 i t y  f o r  SPS i n  power e f f ic iency  
e x i s t  f o r  sol i d  s t a t e  devices by operating them as swl tching mode amp1 i f i e r s .  Due to  
these considerations, an e f f ic iency  o f  8 0 %  i s  projected f o r  GaAs MESFET's within the 
SPS time-frame. 

Thh W o k  Accomplirhod 
Wng Booing IABD Funds 
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a .... Micro wave Transis tor Power Added Efficiency 

dPOWER ADDED) q,(I l l g )  

r 

CLASS 

THEORETICAL COLLECTOR EFFICIENCY (r),) 

TYPICAL RANGE OF PRACTICAL COLLECTOR 
EFFICIENCY (T),)  

G& MESFET AMPLIFIER (ABOVE 2 GHz) 
POWER ADDED EFFICIENCY 

S!LICON BIPOLAR AMPLIFIER (ABOVE 
1 GHz) 
POWER ADDED EFFICIENCY 

This Work Accomplishad 
Using Bming I R I O  Funds 
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SOLID STATE C.W. POWER STATUS - 1978 

While two-terminal microwave ampl i f  ica t ion  devices have equivalent or  greater power 

handling capabi l i ty  compared t o  3- terminal devices they lack s u f f i c i e n t  e f f ic iency  

f o r  SPS v i a b i l i t y .  O f  the 3- terminal devices GaAs MESFET's were chosen as the most 

a t t r a c t i v e  sol i d  s t a t e  power ampl i f  i e r  devices. 
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.. -., Solid State CW Power Status-1 978 

SINGLE PACKAGED DEVICES LEGEND 

CW POWER, 
WATTS 

FREQUENCY, G H t  

Thia Work Accomplished 
Using Booing l RBD Fund* 



G A I N  VS FREQUENCY FOR GaAs FETS 

7;e d i  f ference between small -s ignal and large-signal gains i s  s ign i f i can t .  GaAs FETS 

s t i l l  have s u f f i c i e n t  gain f o r  use i n  h igh-e f f i c iency  SPS power ampl i f ie rs .  It was 
t h i s  considerat icn and the r e l i a b i l i t y  aspects tha t  resu l ted  i n  our select.ion o f  the 

use o f  FETS instead o f  b ipo la r  t rans i s to rs  i n  the concept. This data i s  subsequently 

used i n  the design o f  the 3 stage a m p l i f i e r  proposed f o r  the SPS module. 
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Gain vs Frequency for GaAs Fets 

This Work Accomplished 
Using Boeing lR&O Funds 

FREQUENCY (Hz) 
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SOL1 D STATE DEVICE LIFETIMES 

The f a i l u r e  s t a t i s t i c s  ind icated i n  the attached char t  show t h a t  a t  a channel temperature 

of 135O~, 96% o f  the devices w i l l  s t i l l  be operating a f t e r  3 0  years. This suggests t h a t  

a no-maintenance mode o f  operat ion may not  be unfeasihle. Even i f  a s ing le  FET f a i l u r e  

i n  a power module consis t ing o f  8 output FET's (say 4 watts each) cons t i tu ted  a t o t a l  loss 

o f  the e n t i r e  module (no graceful degradation), the operat ion o f  such modules @ 125 '~  would 

r e s u l t  i n  2% loss a f te r  30 years, compatible w i t h  SPS f a i l u r e  r a t e  budget. 



GaAs FET 
3G YEAR MAINTENANCE 
LOG NORMAL FA1 LU RE DISTRIBUTION 
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Solid State Device Lifetime 
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DEVICE COST TRENDS - 1978 

At present RF power from sol i d  s t a t e  devices i s  q u i t e  expensi ue, i n  excess o f  $100 per  
w a t t  a t  the  SPS frequency. However, no l a r g e  u n i t  production has been experienced t o  
date .  
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SOLID STATE DEVICE MATURE INDUSTRY COSTING 

With a 70% learn ing curve ( i  .e. u n i t s  produced a t  the r a t e  of 2n per year cost  70% as 

much as u n i t s  produced a t  the r a t e  o f  n per year) , cost  per uni  t power f o r  GaAs FETS 
i s  about the same as the projected cost per u n i t  power f o r  k l y s t r m s .  



106 108 

NUMBER OF DEVICES PER YEAR 
This Work Accomplirhrd 
Using @wing l R b O  Funda 



POTENTIAL SOLID STATE SUBARRAY LAYOUT 

For our i n i t i a l  s o l i d  s ta te  microwave power t ransmi t te r  design, ind iv idua l  30 wat t  power 

modules w i l l  be fabr ica ted  i n  panels o f  8 modules dropping 30 vo l t s  each due t o  an 

i n te rna l  ser ies connection. The panels are combined i n t o  panel groups consis t ing o f  3 

p a r a l l e l  s t r i ngs  o f  6 panels i n  ser ies. The panel groups are arranged i n  a 12 x 12 

ser ies - para1 l e l  matr ix  t o  make up a subarray o f  standard size. 

Fu;-ther i nves t i ga t i on  i s  needed i n t o  the f a i l u r e  made o f  such a chain t o  determine whether 

an acceptable re1 i abi 1 i t y  can be obtained. 
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Potential Solid State Subarray Layout 

ImI#AYa - 
sf's2332 

30 WATT POWER MODULE 

A ' ~ "  a59A 

1 PANEL GROUP = 144 MODULES = 4.32 kw 

3 STRINGS OF 6 PANELS IN SERIES 

1 SUBARRAY = 144 PANEL GROUPS = 622 kw 

12 STRINGS OF 12 PANEL GROUPS - 2.16 kv 

180' PER PANEL GROUP @ 15' PER DEVICE 



SOLID STATE SPS DESIGN PARAMETERS 

The proposed power module s ize  has been subjected t o  an i n i t i a l  thermal assessment. An 
assumed in te rna l  drop of 25'-35'~ between the FET channel and the heat sink has been 

a1 located and a two sided rad ia to r  c a p a b i l i t y  has been assumed. Design charts r e l a t i n g  
the rf e f f i c i ency ,  thermal c a p a b i l i t y  and SPS design constra ints  have been developed ( t o  
be published i n  Microwave System News Nov 1978) which a l low the determination o f  the dc 

power output and array size.  For the power module rf leve l  and s ize  selected, the center 
2 2 o f  the array operates a t  the thermal l i m i t  o f  5.75 kw/m (c f  22 kw/m for  the k l ys t ron  

design). The power output i s  thus roughly a h a l f  (2.5 GW) and the space ar ray  area I s  
roughly twice (1.5 km dia. ), r e s u l t i n g  i n  l j 4  the power densi ty  due t o  the f a c t  t h a t  

sol i d  s ta te  sources cannot operate a t  the temperature o f  the k l ys t ron  (300'-500~~). 

Al ternate array layouts are feas ib le  which overcome t h i s  problem but  the associated 
beam shaping constra ints  have no t  been solved. 
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Solid State SPS Design Parameters 

. 

8 HEAT DISSIPATION CAPABILITY FOR LONG LIFE ~ ~ - 1 2 5 ~ C  =AT=ZB~C in., T=IO@C 
WITH 2-SIDED RADIATOR, 90% FIN E FICIENCY, 0 . 8  a,*.3, SUN NORMAL TO 
RADIATOR PLANE IS Q/A=1.25 k w h  1 
FOR A POWER ADDED SFFICIENCY OF 82%. THlS CORRESPONDS TO AN RF POWER 
DENSITY OF 5.75 kw/m , i.e., COMPATIBLE ITH THE 30-WATT PER MODULE DESIGN. F FOR A 75% EFFICIENCY, THlS IS 3.76 kw/m OR 19.6 WATTS PER MODULE. 

8 THE RESULTING SPS PARAMETER WITH THE BASELINE CHAIN EFFICIENCY 
ESTIMATES ARE 

2.5 GIGAWATT, 1.4 km (Q-82%) 
2.0 GIGAWATT, 1.55 km (v*7S%) 

WITH 10db GAUSSIAN TAPER AND 23 mw/cm2 IONOSPHERIC DENSlTV 



IMPACT OF PHASE LOCKING ON PHASE NOISE 

Phase lock ing  can reduce phase noise g rea t l y  and a l low devices w i t h  lower noise f l o o r  

bu t  higher phase noise to  be used. For noise power leve ls  outside the rectenna s i t e  the 

noncoherent d i s t r i b u t i o n s  are o f  main importance and the noise l eve l  f l o o r  outside the 

passband o f  the phase lock loop i s  o f  importance. 

An i n i t i a l  assessment of the noise proper t ies o f  S.S. sources ind ica te  t h a t  as i n  the 

case o f  the k lyst ron,  the out o f  band near-carr ier  component noise f l o o r  o f  -160 dbc/ 

Hz can be expected. 
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s Impact of Phase Locking On Phase Noise 
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NON-COHERENT NOISE POWER DISTRIBUTION 

The f o o t p r i n t s  o f  the noise contr ibut ions f o r  d i f f e r e n t  l eve l s  o f  phase cont ro l  are 

indicated. Due t o  the smaller lowest order phase cont ro l led  area u n i t  o f  a  s o l i d  s ta te  

SPS, i t s  incoherent noise w i l l  have a wider f oo tp r i n t .  There i s  no other  i n te rna l  

t ransmi t te r  e f f e c t  a t  work except the f i l t e r i n g  act ion of the k l ys t ron  c a v i t i e s  (estimated 

by NASA-JSC a t  24 dB/octave), which should be b u i l t - i n  a t  a low leve l  o f  the S.S. ampl i f ie r .  

The coherent, c lose i n  t o  ca r r i e r ,  contr ibut ions are expected t o  r e s u l t  i n  neg l i g ib le  o f f s e t  

from nominal beam center. For a frequencydeviat ion o f  5 MHz (phase lock  loop bandwidth, say), 

df / f  = dX/X = dQ/Q = 5/2500 = 1/500. The expected o f f s e t  would then be, f o r  a 10 km 

rectenna ( R0) 

RdQ = = 20 meters. 



Non-Coherent Noise Power Distribntio~~ 

- -- - - - - - - - -- - - - - -- - - ------- 
SPS2346 

KLYSTRON DESIGN-6 OW, 1 km 

CENTER MODULE FOOTPRINT 3.6O (1.73 m) 

EDGE MODULE FOOTPRINT 1 9  (5.2 m) 

SOLID STATE-2.5 Gw, 1.4 km 

4.32 Kw PANEL GROUP FOOTPRINT \ (144-30 WATT UNITS) 

RECTENNA 

/ ' 

This Work Accompliah*d 
Using Booing IR&O Funds 



COMPARATIVE CALCULATION OF GROUND NOISE 

Prel iminary calculat ions o f  the noncoherent noise spectral  densi ty  ind ica te  t h a t  the 

sol  i d  s ta te  SPS should have s i g n i f i c a n t l y  less  ground noise than the baseline SPS w i th  a  

70 Kw k lyst ron.  Nevertheless, t h i s  i s  no t  due t o  the f a c t  t h a t  k lyst rons are "no is ie r "  

ra the r  t h a t  there i s  less t o t a l  power radiated ( - fac tor  o f  2)  over a l a rge r  area. Further 

refinements o f  these calculat ions are needed, bgth close t o  the c a r r i e r  and out o f  band, 

where f i l t e r i n g  ac t ion  o f  external c i r c u i t s  can be u t i l i z e d .  



1 

'. 
D 180-24872- 7 

4 

Comparative Calculation of Ground Noise 
S 

4B 
SOLID STATE 

N = .5 COHERENCY FACTOR 
AREA = (7Q2 

2 
NOISE SPECTRAL DENSlTY PNGN/4uR, 

EXTERNAL FILTER 
CAN PROVIDE 
ADQlTlQNAL ATTENUATION 

KLYSTRON 

ON = 3660FO AV.AREAPER KLYSTRON 9 OF 8.7 m 

MULTIPLE CAVITY DESIGN PROVIDES 
24dblOCTAVE ATTENUATION 

This Work Accompliahod 
Using Booing IR&D Funds 



Solid State 

Technology Recommendations 

@ WORK WITH RCA ON POWER MODULE DESIGN VERIFICATION 

COkSTRUCT AND TEST BASIC POWER MODULE 
EVALUATE PERFORMANCE OF PHASE LOCKED LOOP AROUND MODULE 

a COMPLETE CqMPARATIVE NOISE ASSESSMENT WITH TUBE APPROACH 

CONDUCT POWER-RELIABILITY-COST TRADE STUDY 

REFINE THERMAL ANALYSIS 
CONTINUE DESIGN INTEGRATlON INCL. STRUCTURAL INTERFACE 
AN0 PHASE CONTROL 

INITIATE LABORATORY VERIFICATION OF HYBRID MULTlCHlP MODULAR 
APPROACH 

EVALUATE LOW LOSS MULTIPLE FEED COMBINER CONCEPT 
OBTAIN PATTERNS !NCL. MUTUAL COUPLING ON MIC9OSTRIP CAVITY 
RADIATOR 
VERl FY OBTAINABLE EFFICIENCIES IN SWITCHED MODE OPERATION 



0 180-24872.1 

MPTS Mid term Review 

* SPs PHASE CONTROL IMPLEMENTATION 
COMMENTS ON LlNCOM SYSTEM 
INITIAL REOUNOANCV CALCULATIONS 
FIBER OPTIC FEASIBILITY ASSESSMENT 

SOLID STATE DESIOM FOR S?S 
* DEVICE PARAMETERS ASSLSgMENT 

POTENTIAL CIRCUIT FOR WS INTEORATIOIY 
COMMENTS ON NOISE BEHAVIOR 

MPTS COMPUTER PROGRAM 
COMPUTER MOOEL STATUS 
PCAN FOR NEXT PERIOD 

OCTOBER 19, lets 
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S 
SPS Computer Model Status 

"TILTMAIN" PROGRAM ACCOMPLISHMENTS 
CONVERSION OF TILTMAIN ONTO BOEINQ SYSTEM 
ORATING LOBE SEARCH MODlFlCATlON FOR NASA*JSC 
MEAN PHASE VS. RADIAL DISTANCE CAPABILITY 

INlTlATlON OF **MODMAIN" 
a PROPOSED PROGRAM WHICH DETAILS THE ARRAY MODEL TO THE 

KLYSTRON LEVEL 

a DEVELOP CAPABlLlTY TO ACCESS NASA38C COMPUTER 

a SET UP FILES FOR MAIN PROGRAM AND ITS FOUR SUBROUTINES 

a COMPLETED PRELIMINARY PROGRAM MODIFICATION WHICH EXCITES THE 
SPACE ANTENNA FOR EACH QROUNO POINT WHERE THE PAITERN IS 
CALCULATED, 



Computer Model-Plan for Next Period 

DEVELOP "MOOMAIN" TO MATCH A NO ERROR TILTMAIN RUN. "MODMAIN" 
WOULD HAVE A STRUCTURE IN WHICH EACH 10 m BY 10 m MODULE IS EXCITED 
ONLY ONCE AND THE CONTRlBUTlON OF A MODULE IS SUMMED AT EVERY 
GROUND POINT. 

INCORPORATE THE "ERROR" SUBROUTINE INTO "MODMAIN" AND MATCH TO 
TIL'TMAIN RUNS. 

DETAIL THE MODEL BY CHANGING THE SIZE AN0 SPACING OF THE MODULES. 
THERE WILL BE TEN DIFFERENT SIZES OF KLYSTRON MODULES CORRESQONDINQ 
TO THE TEN STEP QUANTIZED ILLUMINATION TAPER. 



Electric 0 rbi t Transfer Vehicle Analysis 



ELECTRIC ORBIT TRANSFER VEHICLY ANALYSIS 

The s t a t e  o f  work f o r  t h l s  task requested t h a t  the cost  ef fect iveness o f  an e l e c t r i c  

o r b i t  t ransfer  veh ic le  (EOTV) used t o  support GEO const ruc t ion  o f  an SPS be compared w l t h  
a L02/LH20TV used fo r  GEO const ruc t lon  and a lso  the s e l f  power module t r a n s f e r  concept 
when LEO const ruc t ion  i s  u t i l i z e d .  The key var iab les  i n  t h l s  task were the  use o f  s i l l c o n  
and gal 1 ium arsenide so la r  c e l l s  and a l so  considerat ion o f  an equator ia l  launch s i t e .  The 
i n i t i a l  statement of work emphasized the ana lys is  o f  t he  o r b i t  t rans fe r  vehlc le.  The 
a d d i t i o n  o f  an ECP expanded the analysis. t o  assess a l l  imp l ica t ions  o f  the  GEO construct lon, 
EOTV concept. 

The EOTV mid-term discussion w i l l  cover the Sf7 icon veh ic le  and I t s  performance, cost, 

design, operations, and const ruc t ion  cha rac te r i s t i cs .  
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Electric Orbit Transfer vehicle Analysis 
C1CII#!!O - 

IPS2248 

SOW 

ASSESS THE COST EFFECTIVENESS OF AN ELECTRIC O N  TO BE USED IN 
GEO CONSTRUCTION WlTH RESPECT TO OTHER ON'S USED FOR LEO AND 
OEO CONSTRUCTION 

KEY VARIABLES 

* SILICON AND GALLIUM ARSENlDE CELLS 
EQUATORIAL LAUNCH SITE 

MIDTERM TOPICS 

SILICON E O N  
PERFORMANCE AND COST OPTIMIZATION 
DESIGN CHARACTERISTICS 
MISSION OPERATIONS 
CONSTRUCTION 
LEO BASE DEPOT OPERATIONS 
LEO BASE CHARACTERISTICS 
COST 
PRELIMINARY COMPARISON WlTH LEO CONSTRUCTION 



GEO CONSTRUCTION/EOTV PROGRAM SCENARIO 

The time-phasing o f  the major steps associated w i t h  a GEO construction/EOTV program 

are i l l u s t r a t e d .  I t  should be noted t h a t  t h i s  scenario does no t  r e f l e c t  a precursor 

o r  demonstration s a t e l l i t e  program which would most l i k e l y  inc lude some form o f  an 

o r b i t a l  base. The emphasis however i s  t o  develop the c a p a b i l i t y  t o  cons t ruc t  SPS(s) 
t o  produce 10 GWe per  year. The LEO base w i l l  i n i t i a l l y  be used t o  support the  

cons t ruc t l on  o f  the l a r g e  GEO cons t ruc t i on  base. P r i o r  t o  the completion o f  the  GEO 

base, the  LEO base w i l l  a l so  be used t o  cons t ruc t  the  f i r s t  s e t  o f  EOTV's which w i l l  
be used t o  d e l i v e r  SPS components t o  the  GEO cons t ruc t ion  base. The actual  cons t ruc t ion  

o f  the  EOTV's w i l l  begin a t  a p o i n t  i n  t ime when the  a r r i v a l  o f  the f i r s t  EOTV a t  t he  

GEO base corresponds t o  the operat ional  s ta tus  o f  t he  GEO base. The reference EOTV 

i n  t h i s  program has a 10 f l i g h t  l i f e  corresponding t o  approximately 7 years o f  opera- 

t i o n .  Accordingly,  a t  t he  end o f  seven years a second se t  o f  EOTV's are  constructed. 



CONSTRUCT LEO STAGING DEPOT 
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GEO ConstructionlEOTV Program Scenario 

CONSTRUCT GEO CONSTRUCTION BASE 
(CHEM OTV) 

I- 
I U I # # '  - 

s?s-llld 

CONSTRUCT FIRST SET OF EOTV'S 
AT LEO BASE 

1 7 YEARS 

EOTV FLIGHTS 
v 

TO GEO A 

I 
I 
I 
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PERFORMANCE AND COST OPTIMIZATION FACTORS 

The f i r s t  EOTV t o p i c  t o  be discussed w i l l  be t h a t  o f  t he  performance and c o s t  o p t i m i z a t i o n  

ana lys is .  Several key f ac to r s  r e l a t e  t o  these op t im i za t i ons  and a r e  so I nd i ca ted .  The 

annual mass t o  be d e l i v e r e d  r e l a t e s  t o  s a t e l l i t e ( s )  capable of produc ing 10 GWe ground ou t -  

pu t .  D e l i v e r y  of a l l  cargo assoc ia ted  w i t h  t h e  s a t e l l i t e  i n  330 days a l lows  s u f f i c i e n t  

t ime f o r  f i n a l  i n s t a l l a t i o n  and checkout so t h a t  a  s a t e l l i t e  can come on l i n e  a t  t he  end o f  

one year .  S a t e l l i t e  mass inc ludes  a  growth f a c t o r  o f  26%. The t o t a l  cargo d e l i v e r y  mass 

inc ludes  n o t  o n l y  components b u t  t h e  con ta ine rs  f o r  t he  components and t h e  rack  t o  suppor t  

t h e  con ta iners .  F i v e  percent  o f  t h e  component mass has been a l l o c a t e d  t o  bo th  t he  con- 

t a i n e r s  and t he  payload rack.  The m a j o r i t y  o f  t he  con ta iners  such as those assoc ia ted w i t h  

the  s o l a r  a r rays  wi 11 be used i n  t h e  ac tua l  i n s t a l  l a t i o n  process. Other con ta iners  a r e  

judged n o t  t o  be wor th  t he  va lue o f  recovery  so consequent ly t he  down requirement i s  o n l y  

t h e  5% assoc iated w i t h  the  payload rack .  

Payload d e l i v e r y  c a p a b i l i t y  f o r  each EOTV i s  somewhat a r b i t r a r i l y  es tab l i shed  a t  4,000 m e t r i c  

tons a f t e r  cons ide r i ng  such f ac to r s  as t he  s i z e  o f  t he  v e h i c l e  and t he  number of  veh i c l es  i n  

f l i g h t  f o r  d i f f e r e n t  payload c a p a b i l i t i e s .  Payload r e t u r n  requirements again r e f l e c t  the  

5% assoc iated w i t h  t he  payload rack  i t s e l f .  The 120 cm argon i o n  t h r u s t e r s  a r e  the  same as 

what has been used i n  t h e  self-power LEO c o n s t r u c t i o n  concept.  As i n  t h e  s e l f - ~ ~ w e r  LEO 

cons t ruc t i on  concept, key va r i ab les  i n  t h e  o p t i m i z a t i o n  i nc l ude  s p e c i f i c  impulse and t r i o  

t ime, and w i t h  t he  EOTV concept t h e  number o f  f l i g h t s  performed by each EOTV now becomes 

an impor tan t  va r i ab le .  

Several f a c t o r s  a l s o  have a  l i m i t i n g  i n f l u e n c e  on the  outcome o f  the op t im i za t i on ,  most 

no tab le  of these be ing t he  s o l a r  a r ray  performance which w i  11 be discussed immediately 

f o l l ow ing  t h i s  c h a r t  and t h r u s t e r  l i f e t i m e  which has a  l e s s  s i g n i f i c a n t  impact on per -  

formance however i t  i s  a  key f a c t o r  i n  terms o f  v e h i c l e  re furb ishment  and w i l l  be 

discussed i n  subsequent cha r t s .  
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Performance and Cost Optimization Factors 

SILICON CR-1 SOLAR POWER SATELLITES AT RATE OF 10 OWa GROUND OUTPUT 
PER YEAR' 

CARGO DELIVERY COMPLETED WITHIN 330 DAYS OF FIRST DELIVERY TO GEO 

SATE LLITElS) MASS OF 99000 MT 

TOTAL CARGO DELIVERY MASS: 
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DOWN = 5500 MT (RACK) 

EOTJ DELIVERY CAPABILITY 
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KEY VARIABLES IN OPTIMIZATION 
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TRIP TIME 
EOTV LIFE {NUMBER OF FLIGHTS) 
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SOLAR ARRAY PERFORMANCEIDEGRADATION 
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SOLAR ARRAY PERFORMANCE 

The next three charts will deal with several factors relating to  solar array performance. 

The f i r s t  chart deals with the sensi t ivi ty  of solar array performance to t r i p  time and 
cover glass thickness. In the case of the t r i p  time sensi t ivi ty ,  longer t r i p  times mean 
more time in the Van Allen bel ts ,  resulting in a greater degree of degradation and lower 
power output. However, in a l l  caqes indicated, the degradation levels off a f t e r  approxi- 
mately 4,000 nautical miles , , ~ v c ?  been reached. Approximately 8% difference in power output 
exists between the 120 and 240 day t r i p  times. 

Reaarding cover glass sensi t ivi ty ,  i t  can be seen t h a t  by going from the 3 mil cover used 
in the SPS sate1 1 i t e  to a 6 m i  1 cover for EOTV application, approximately an 8% improve- 
ment can be achieved in terms of average power o u t p u t .  However, since the mass per square 
meter increases approximately 70°4 the thicker cover glass does not i n i t i a l l y  appear an 
effective method of achieving a higher power capability. 

I t  could well indicate that should an 8% g r e a t ~ r  power be required, an oversizing of 8% in 
area w i t h  a basic blanket inc l~d ing  a 3 mil cover i s  more effective.  Cost and performance 
of an EQTV using a blanket with a 6 mil cover will be established af te r  the mid-term. 
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Solar Array Performance 
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POWER RECOVERY AFTER ANNEALING 

PERCENT DEGRADATION VS PERCENT DAMAGE 

P r i o r  t o  discussing the value o f  annealing so la r  arrays t o  remove rad ia t i on  damage, and therefore 

improve power output, i t  i s  necessary t o  es tab l ish  an understanding o f  what happens as a r e s u l t  o f  

the annealing operat ion i n  terms o f  the method used t o  es tab l ish  the r e s u l t i n g  array output. I n  

t h i s  chart, power output i s  shown as a funct ion o f  f luence (amount o f  deposited energy) bsing a blan- 

ke t  consis t ing o f  3 m i l  cover, 2 mi1 c e l l  and 2 m i l  substrate. During a t y p i c a l  180 day t rans fer  

from LEO t o  GEO, the power output w i l l  degrade t o  approximately 70% of the i n i t i a l  output as i n d i -  

cated by p o i n t  2 on the chart. Previous analysis has assumed recovery a f t e r  annealing t o  be 95% o f  

the degradation. This ~ e r c e n t  o f  recovery r e f l e c t s  the r e s u l t s  o f  annealing tes ts  performed by 

SPIRE. It should be noted, however, the degraded c e l l  on ly  had 4/15 as much f l u t ~ ~ c e  as a c e l l  ex- 

posed during an o r b i t  t rans fer  and, i n  addi t ion,  was a 6 m i l  c e l l  r a the r  than 2 m i l .  With t h i s  

approach, the power output would be approximately 97% as ind ica ted  by p o i n t  6. 01:r current  b e l i e f  

however i s  t h a t  the annealing operat ion ac tua l l y  removes damage f luence w i t h  the r e s u l t i n g  power 

output being a funct ion o f  the remaining damage. The SPIRE t e s t  removed 98% o f  the damage, but  

since the EOTV damage i s  much more severe, a damage removal value o f  95% i s  used which r e s u l t s  

i n  the use of points  2, 3, 4 and an output o f  90%. I n  the case o f  the self-power t rans fer ,  the 
6 

di f ference between t k s e  two approxhes i s  not  s i g n i f i c a n t  since i t  on ly  occurred one time. However, 

i n  the case of the EOTV operat ion where mu1 t i p 1  e t r i p s  w i  11 be made by an EOTV, considerable d i  f - 
ferences w i l l  r e s u l t  when the veh ic le  i s  flown, 5, 10. 15 times. Consequently, the approach t o  be 

used hereaf ter  w i l y  be t h a t  o f  removing a percent o f  the damage from,the ar ray  ra the r  than removing 

a ~ e r c l n t  degradation. The percent of damage r~inoval.however remains t o  be a la rge  uncer ta inty  

due t o  the la rge  d i s p a r i t y  between the I-esults of 3 few tes ts  and the predic ted f luence expected 

during t rans fer .  This uncer ta inty  can on ly  be removed by performing add i t iona l  rad ia t i on  anneal i n g  tes ts  

s p e c i f i c a l l y  designed f o r  EOTV operations. 
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Power Recovery After Annealing 
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SOLAR ARRAY PERFORMANCE 

The value of annealing i s  ind ica ted  by the l e f t  hand p l o t .  For example, should t h e  EOTV 
be designed fo r  10 t r i p s ,  the  d i f f e rence  between anneal inq and non-annealing would be 

approximately 20%. I n  the Future Space Transportat ion System Study, anneal ing was not 
inc luded i n  the analysis,  which t o  some deqree exp la ins  why the EOTV concept was not 
foun i  t o  be cos t  e f f e c t i v e .  The power range before anneal inq and a f t e r  annealing f o r  
each t r i p  i s  ind ica ted  i n  the r i g h t  hand p l o t  along w i t h  the average power expected 

du r ing  the t r i p  as a func t ion  o f  the number o f  t r i p s  the  EOTV may make. It should also be 

remembered t h a t  as the averaqe power decreases w i t h i n  a qiven t r i p  as we l l  as each 

subseqtient t r i p ,  the vo l tage w i l l  a l so  be decreasing a t  about 50% the r a t e  as power output.  

(Should power go down 3Q%, vo l taqe w i l l  qo down 15%). 
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EOTV PERFORMANCE TRENDS 
F i r s t  T r i p  

The f i r s t  t r i p  f lown by the  veh ic le  i s  used t o  ob ta in  the  optimum veh ic le  i n  terms o f  
performance and cos t .  Prev ious ly  ind ica ted  s o l a r  a r ray  performance and t h r u s t e r  char- 
a c t e r i s t i c s  spec i f i ed  i n  p r i o r  OTV ana lys is  a re  used i n  the ana lys is .  Empty mass o f  t he  

E9TV and i t s  p rope l l an t  requirements are i nd i cz ted  as a f unc t i on  o f  s p e c i f i c  impulse and 
up t r i p  t ime which s izes the veh ic le  and there fore  d i c t a t e s  the down time. Empty mass 
c h a r a c t e r i s t i c s  r e f l e c t  the s i t u a t i o n  t h a t  f o r  a  g iven s p e c i f i c  impulse, mass goes down 
w i th  t r i p  t ime because l e s s  acce lera t ion  i s  requ i red  which means l ess  power i s  requi red.  
For a  f i x e d  t r i p  t ime, mass qoes up w i t h  an increase i n  s p e c i f l c  impulse because more 
power i s  requ i red .  Prope l lan t  requirements qo down w i t h  t r i p  t ime s ince the  veh ic le  
empty mass i s  smal ler  and has i t ' s  lowest value f o r  the h ighest  s p e c l f i c  impulse. Since 
the  empty mass and the p rope l l an t  mass are the key mass con t r i bu to rs  and requ i re  d i f f e r -  
en t  values o f  s p e c i f i c  impulse t o  g i ve  t h e i r  minimum values the combination of t r i p  t ime and 

s p e c i f i c  impulse which r e s u l t s  i n  the l e a s t  t o t a l  mass i s  the key p o i n t  o f  i n t e r e s t .  

This comparison i s  presented on the next  char t .  
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EOTV PESFORMAYCE OPTIHLZATION 
F i r s t  T r i p  

Tota l  veh i c le  s ta r t -bu rn  mass i s  shown as a  func t i on  o f  specific impulse and up t r i p  time, 

and i nd i ca tes  the the  minimum mass has no t  been reached a t  240 days however the  optlmum 

s p e c i f i c  impulse appears t o  be 8000 seconds. More s i g n i f i c a n t l y  however, i s  t h e  op t im i -  

za t i on  i n  terms o f  cos t .  The i nd i ca ted  cos t  r e f l e c t s  t he  amortized hardware cost, t he  cos t  

o f  r e f u e l i n g  and r e f u r b  and t r i p  t ime i n t e r e s t  cost .  Not inc luded i s  t he  cos t  o f  launch- 

i n g  the payload. The cost i s  minimum w i t h  a  combination o f  a  s p e c i f i c  impulse o f  8,000 
seconds and t r i p  t ime o f  180 days and a l so  a  combination o f  a  s p e c i f i c  impulse o f  10,303 

seconds and approximately 210 ten  days o f  t r i p  t ime. The system usfnq an IS= 8,000 seconds 

and 180 days up t r i p  t ime i s  se lected f o r  the  reference system s ince i t  r e s u l t s  i n  a smal ler  

veh i c le  and shor te r  veh i c le  trunaround time. 
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EOTV Performance Op tirnization 
First Trip 
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EOTV FLIGHT COST FACTORS 

To q ivs  more i ns i gh t  i n t o  what i s  included i n  the cost opt imizat ion o f  the EOTV's, the 

indicated fac tors  are included. Three major elements make up the EOTV cost per f l i g h t .  

The cap i ta l  cost fac tors  are those t ha t  are one time expenditure and w i l l  consequently 

be amortized over the 1 i f e  o r  number o f  f l i q h t s  flown by the vehicle. D i rec t  cost deal 

w i t h  the fue l ing  and refurbishment o f  the vehic le f o r  each f l i g h t .  T r i p  delay cost  

re la tes  t o  the time required t o  make the l a s t  EOTV f l i g h t  which i s  e f f e c t l y  delaying the 

construct ion. Added t o  these three fac tors  i s  t ha t  o f  the launching o f  the payload i t s e l f  

which i n  combination gives the t o t a l  t ransportat fon cost f o r  each EOTV f l i g h t .  
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EOTV CQST OPTIMIZATION 
F i r s t  T r i p  

This  cha r t  i l l u s t r a t e s  the  v a r i a t i o n  t h a t  occurs i n  each cos t  element f o r  d i f f e r e n t  com- 

b ina t i ons  o f  s p e c i f i c  impulse and t r i p  t ime. !n the  case o f  the t r i p  t ime s e n s i t i v i t y ,  

s p e c i f i c  impulse i s  f i x e d  and t r i p  t ime i s  var ied.  I n  t h i s  case, the  t r i p  t ime cos t  

increases w i t h  longer t r i p  times, s ince more i n t e r e s t  cos t  occurs. D i r e c t  cos t  such 

as t h a t  r e l a t e d  t o  p rope l l an t  i s  about constant and f i n a l l y  t he  capi ta1 cos t  i s  decreasing 

s ince the s i z e  o f  the  veh ic le  gets smal ler  w i t h  longer t r i p  times. 

When t r i p  t ime i s  f i x e d  and s p e c i f i c  impulse va r ied  t r i p  t ime cost  stays c o n s t a ~ ~ t ,  d i r e c t  

cost  goes down w i t h  an increase i n  s p e c i f i c  impulses because there i s  a  smal ler p rope l l an t  

r e q ~ i r e m e n t ,  and c a p i t a l  cos t  w i l l  qo up w i t h  increased s p e c i f i c  impulse s ince a g reater  

amount o f  power i s  requ i red  r e s u l t i n g  i n  a  l a rge r  veh ic le .  
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EOTV ROUND TRIP COrlPARISON 

I n  a d d i t i o n  t o  es tab l i sh ing  t h e  f i r s t  t r i p  optimum performance c h a r a c t e r i s t i c s  associated w i t h  an EOTV, 
i t  i s  a l so  necessary t o  decide how many t r i p s  should be made by a  g iven OTV vehic le.  I n  o ther  words, 
what i s  i t s  l i f e t i m e .  This decis ion can be based t o  some degree on ava i l ab le  cost  data, bu t  also must 
inc lude considerat ions r e l a t e d  t o  uncer ta in ty  i n  performance c h a r a c t e r i s t i c s  and hardware l i m i t a t i o n s .  
The l e f t  hand p o r t i o n  o f  t h i s  char t  shows the  t o t a l  t r anspor ta t i on  cos t  per EOTV t r i p  as a  func t i on  o f  
t he  number o f  round t r i p s  t h a t  a  EOTV may make. Several cost i tems such as the  launching o f  t he  payload 
as we; 1  as the d i r e c t  cos t  a re  f o r  the most p a r t  constant. Construct ion delay ( t r i p  t ime) cos t  increases 
w i t h  add i t i ona l  number o f  r o l ~ n d  t r i p s  s ince the  average power become less  w i t h  each subsequent t r i p ,  thus 
increas ing  the  t o t a l  round t r i p  t i n e .  Cap i ta l  cos t  i s  decreasing s ince the i n i t i a l  cos t  i s  amortized ou t  
over more f l i g h t s .  One cost  increment no t  inc luded i n  t h i s  data i s  t h a t  associated w i t h  a  l a r g e r  re fu rb -  
ishment cos t  w i t h  each ten t r i p s  because t h e  complete t h r u s t e r  i s  replaced r a t h e r  than j u s t  t he  g r i d s  and 
cathodes. Cost t o  date however i n d i c a t e  t h a t  $56 per Kg. o f  SPS component can be achieved. It should 
be noted t h a t  when 2Q-25 round t r i p s  per EOTV are  assumed t h i s  corresponds t o  approximately 17 o r  18 
years o f  operat ing l i f e .  Before makinq t h e  se lec t i on  o f  the  number o f  round t r i p s  f o r  each EOTV, one must 
a l so  consider t he  l i m i t a t i o n  t h a t  may occur i n  t e r m  o f  component l i f e t i m e ,  No problem appears t o  e x i s t  
f o r  t he  s t ruc ture ,  power d i s t r i b u t i o n ,  power processing components. Thruster can be refurbed on a  com- 
ponent bas is  a f t e r  each t r i p  and as prev ious ly  ind ica ted  complete u n i t s  can be replaced a t  the  end o f  ten  
t r i p s .  There i s  g rea t  unce r ta in t y  however r e l a t i v e  t o  the  l i f e  o f  the  s o l a r  a r ray  and i t ' s  performance. 
Several po in t s  should be considered. I n  the case o f  deqradation/recovery cha rac te r i s t i cs ,  there  i s  the  
fac t  t h a t  each l e g  o f  an EOTV t r i p  w i l l  experience a  f luence l e v e l  ten  t imes greater  than t h a t  t o  be exper- 
ienced by the  s a t e l l i t e  i n  30 years o f  GEO operat icn.  A t  t h i s  p o i n t  i n  t ime l i t t l e  i s  known r e l a t i v e  t o  
the  recovery c a p a b i l i t i e s  from t h i s  amount o f  r a d i a t i o n  nor  the  number o f  t imes t h a t  recovery can be per- 
formed. The c e l l - t o - c e l l  mismatch problem occurs from the  very f a c t  t h a t  each c e l l  w i l l  n o t  be a f fec ted  
exac t l y  a l i k e  interms o f  i t s  r a d i a t i o n  cha rac te r i s t i cs ,  thereby r e s u l t i n g  i n  add i t i ona l  c o n t r i b u t i o n  t o  
o v e r a l l  power output  loss .  The thermal cyc le  impact must consider both the caqe o f  occu l ta t i ons  t h a t  
occur dur ing  the  o r b i t  t r ans fe rs  as we l l  as the  annealing o f  the so la r  array.  I n  t he  case o f  the  occul ta-  
t i o n s  ten times as many occu l ta t i ons  occur dur ing  one t r a n s f e r  as i n  t h i r t y  years o f  operat ional  l i f e  o f  
t h e  SPS system. Another f a c t o r  t o  be considered i s  the 10-15% v a r i a t i o n  i n  vo l tage t h a t  occurs throughout 
a  t r i p .  

The se lec t i on  of the  number o f  t r i p s  t h a t  should be f lown by a EOTV becomes d i f f i c u l t .  On one hand the 
c t o f  op t im iza t i on  would i n d i c a t e  20 t o  30 round t r i p s  per veh ic le .  However, i n  terms o f  expected l i m i -  
t a t i o n s  i n  terms o f  components, i t  d r i ves  one i n t o  se lec t i ng  somethinq i n  the neighborhood o f  ten  f l i g h t s ,  
which s t i l l  corresponds t o  approximately 7 years o f  EOTV operat inq l i f e .  Therefore the  reference EOTV w i l l  
pe .form 10 f l i g h t s .  
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EOTV Round Trip Comparison 

COST VEHICLE LlFE LlMlTATlONS 

- 
- 

CAPITAL COST 

r - - e m - - - -  - - - - - -  
- CONST. DELAY 

(TRIP TIME) 
I I I I. 

DIRECT COST $7.41kg 
P/L LAUNCH $41.1/kg 

STRUCTURE ->I5 YRS 

POWER DlSTRlB - 15 YRS 

POWER PROCESSING - 15 YRS 

THRUSTERS 

COMPONENTS - PER ROUND TRIP 

0' UNITS - 5-10 YRS 
SOLAR ARRAY - UNKNOWN 

DEGRADATIOM/RECOVERY 

CHARACTER ISTICS 

CELL-CELL MISMATCH 

THERMAL CYCLE IMPACT 

WIDE RANGE OF VOLTAGE 

40 
EOTV ROUND TRIPS 

O 7 14 2 1 20 

E O N  OPERATING LlFE (YRS) 



EOTV FLEET SIZE 

The f i n a l  parameter t o  be inf luenced by EOTV performance i s  t h a t  o f  the t o t a l  number o f  

veh ic les  requ i red  t o  s a t i s f y  the  y e a r l y  d e l i v e r y  r~qu i remen ts .  The key f a c t o r  i n  the  

r e l a t i o n s h i p  i s  t h a t  o f  t o t a l  round t r i p  t ime which inc ludes the  

t r i p  up, t r i p  down and the  t ime f o r  non t r a n s f e r  funct ions such as the  refurbishment 

o f  t he  veh ic le  and carqo handl inq. As w i l l  be noted l a t e r ,  a  t o t a l  o f  16 days has been 

a l l oca ted  f o r  the non t r a n s f e r  funct ions.  The f i r s t  step i n  es tab l i sh inq  the f l e e t  s i z e  

invo lves  d e f i n i n g  the basic  f l e e t  s i ze  which means es tab l i sh in?  the  f l e e t  based on f i r s t  

t r i p  c h a r a c t e r i s t i c s  As i nd i ca ted  i n  the l e f t  hand p l o t ,  d e l i v e r y  must be accomplished 

i n  330 days and 28 f l i g h t s  a re  requ i red  t o  d e l i v e r  t he  components f o r  a  s a t e l l i t e .  With 

the  prev ious ly  found optimum t r i p  t ime o f  180 days, a t o t a l  o f  29 veh ic le  i s  requi red i n  

the  basic  f l e e t .  S i l ~ e  each ddd i t i ona l  t r i p  t o  be flown by &n EOTV w i l l  take longer (due 

t o  a r r a y  degradat ion),  the  20 veh ic les  which i n i t i a l l y  f l y  28 f l i g h t s  per  year, w i l l  on l y  

f l y  24 f l i g h t s  on t h e i r  t en th  t r i p .  Conseque*,!y, t o  main ta in  an average o f  28 d e l i v e r i e s  

per year a t o t a l  o f  22 vehic les w i l l  be r e e r e d  i n  the f l e e t .  By p r i o r  agreement, one 

add i t i ona l  veh i c le  i s  added t o  the  f l e e t  f o r  a spare . , : i i n l  a t o t a l  o f  23 vehic les.  
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EOTV Fleet Size 

*ez/Na - 
BASIC FLEET SIZE TOTAL FLEET SIZE 

(ONE TRIPJEON) (MULTIPLE FLIOHTSIEOW) 1 
I 

330 DAYS FOR DELIVERY 

28 F'LTS REQ'D 

ETOV'S IN FLEET 

REQUIRED 

- 
I I I I I 1 I I I 

0 1 1 1 I J 
180 240 24 120 

UP TRIP (DAYS) 

ROUND TRIP (DAYS) €Ow TRIP NUMBER 
I 

1 
NOTE: WITH ONE SPARE TOTAL FLEET SIZE IS 23. i 

I 



ELECTRIC OTV CONFIGURATION 

Tne next  few char ts  deal w i t h  the  EOTV desiqn c h a r a c t e r i s t i c s  as w e l l  as mass and cos t .  

The c o n f i g u r a t i o n  o f  the  s i l i c o n  EOTV i s  s i m i l a r  t o  t h a t  which was showfi a t  the o r i en ta -  

t ion  a1  though a  few key chanqes have been made. i n  general , the conf i q u r a t f o n  cons is ts  of 

f ou r  bays, w i t h  each shaped as a pe~ tahedron  and the apex of each pentahedron s t r u c t u r a l l y  

t i e d  together.  Solar  arrays cover the lower surface. The pdyload and p rope l l an t  tanks 

have been moved from near the  plane o f  the  s o l a r  a r ray  t o  the plane formed by the  apex 

o f  t he  pentdhedrons. T h i s  l o c a t i o n  provides an improvement i n  the i n e r t i a  balance o f  t he  

conf 'gurat ion r e s u l t i n g  i n  l ess  pena l ty  f o r  g r a v i t y  g rad ien t  torque con t ro l  and a l s o  s imp l i -  

f i e s  the  docking o f  the  payloads as we l l  as p rope l l an t  tankers. The veh ic le  i s  s ized t o  
d e l i v e r  4,000 me t r i c  tons and r e t u r n  i s  200 met r i c  tons w i t h  an up t r i p  t ime u i  180 days 

and down t ime of 40 days and a s p e c i f i c  impulse o f  8,000 seconds. The t o t a l  d ry  mass o f  

the veh ic le  i s  1195 me t r i c  tons wh i l e  the  t o t a l  p rope l l an t  loadin7 i s  approximately 480 
me t r i c  tons. 
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Electric OTV Configuration 

Y AX!S X AXIS 

low 

INITIAL POWER 230MV PAYLOAD 
UP SOOOMT 

e AFIRAY AREA = 3.n ~ m *  
M W N  2OOMT 

ELEC THRUS7 = 3048N 

DRY MASS- i195MT UP 180 DAYS 

ARGON - 442MT DOWN 40 DAYS 

LO2/LH2 - 44MT 
IS'800SEC 

/-- PAYLOAD AND PROP. THRUSTER MODULE (J) 

I 

Z AXlS SOLAR ARRAY 



EOTV POWER GENERATIOII SYSTEMS 

I n  terms o f  power generat ion and d i s t r i b u t i o n  systems,the EOTV i s  a c t u a l l y  d iv ided i n t o  

fou r  separate bays w i t h  each bay prov id inq  power t o  a t h r u s t e r  module. Each bay i s  d i v ided  

i n t o  fo r ty - two 14.5 meter segments and produces a p p r o x i w t e l y  58 megawatts o f  power a t  

2685 v o l t s .  Each seqmant cons is ts  o f  20 st tg ings,  w i t h  each s t r i n q  i n  t u r n  cons i s t i ng  o f  

498 panels. Each o f  the panels inc lude (140) 5 x 10 cent imeter c e l l s ,  ra the r  t h a t  7 
cent imeter by 7 cent imeter c e l l s  used i n  t he  s a t e l l i t e .  The c e l l  shape change 4 s  the  

r e s u l t  o f  wanting t o  achieve a nea r l y  square s a t e l l i t e  bu t  a t  the same t ime having power 

and vo! tage requirements d i c ta ted  by the propul s ion  system. 
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EOTV Power Generation System 

,1,2m -( 0 BAY CHARACTERISTICS 

r .  " POWER OUTPUT = 67.6 MW 
VOLTAGE = 2885 V 

' t 
CELL AREA = 0.308 km2 

1044m I 

CELL 17.6% AM0 926% 
BLANKET 

3 MIL COVER 
2 MIL CELL 
2 MIL SUBSTRATE 

- - 6 c m  
)-c 14 CELLS -1 I 1 

I 1 1  SEGMENT c. I 

BEAM 
M E M ~  

10 CELLS 
101.4 an 

I 

- , , , ,,,, STRING PANEL 



POWER COLLECTION AND DISTRIBUTION 

Power busses are  loca ted on th ree  sides o f  each bay o f  the  EOTV. Each bay i s  d i v ided  

i n t o  7 sectors i n  order t o  minimize the  impact on the  swi tch qear complexity should a 
f a u l t  occur. Each sector  i n  t u r n  t i e s  together 6 segments. A buss from each sector  

runs t o  the associated t h r u s t e r  module where the  power i s  processed. Each o f  the  busses 

i s  one mi l imeter  t h i c k  by 80 cent imeters deep. 
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Power Collectio~~ and Distribution 
IUI##rn - 

f 
%boo- 1 kg-4 I/ POWER BUSES 

I I 
I 
=---4 b. 

A j -ill- 

=-  - q  *--: 
I 
I 
I 

SHEET BUS (7)  
1mmxI)Oan 

T I f R U r n R  MOOlrCE 

A*A, C-C B U S 7  I-- I 7 
I - - 
I 

I 

b r  ONE BUS/SECTOR 

FIVE B U e 8  HAVE PPUS 
WHICH SUPPLY 30 
THRUSTERS 
2 BUSES HAVE WUr) WHICH 
SUPPLY S THRUSTERS + 
HOUSEKEEPING AND 
ENERGY STORAGE 
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ELECTRIC PROPULSION SYSTEM 

E l e c t r i c  propuls ion modules a re  loca ted  a t  four  corners o f  t h e  EOTV, Each module cons is ts  

of a gimbal, yoke, t h rus te r  panel conta in ins th rus te rs  and power processlng u n i t s  and a 

thermal con t ro l  system. For the reference design, 268 th rus te rs  a re  used a t  each o f  the 

f o u r  corners. Several methods were considered f o r  supplying power t o  the th rus te rs .  One 

o f  these opt ions invo lves ob ta in ing  power d i r e c t l y  from the ar rays w i t h  no processing o r  

no regulat ion.  The c h i e f  disadvantage i n  t h i s  op t ion  i s  t h a t  the vo l tage i s  decreasing 
a t  the  same time the power i s  degrading. As the f l i g h t  proceeds, the  lower vo l tage w i l l  
r e s u l t  i n  a l oss  o f  approximately 1,000 seconds o f  s p e c i f i c  impulse. A second op t ion  

regulates and sec t iona l i zes  t he  a r ray  so t h a t  as add i t i ona l  power i s  required, add i t iona l  

sectors can be switched i n t o  operat ion. The main disadvantage of t h i s  corlcept i s  the 

extremely complicated swi tch gear system. The f i n a l  power supply method considered invo lves 

processing a1 1 the power. The ar ray vo l tage generated i n  t h i s  concept i s  the optimum vol tage 
2 from the standpoint  o f  I R and plasma losses. The r e s u l t i n g  vo l tage I s  2685V r a the r  than 

1400V requi red by the th rus te rs .  A complete comparison was n o t  done on these concepts 

however the 31 1-processing method appears t o  be the most s t ra ight forward and since some 

o f  the power needs t o  be processed anyhow t h i s  method was selected f o r  the reference, The 

type of processing equipment selected was t ha t  o f  s o l i d  s ta te  due t o  i t s  longer MTBF. Thermal 

con t ro l  o f  the processing equipment i s  requi red and i s  accomplished us ing an a c t i v e  rad ia to r .  

8 /... 1 I".,.. , , . .. , I ,,,, l". ... . .,."IIY ." I." I. I .... Id..* 



Electric Propulsion System 

- - 

aPs1191 

268 THRUSTERS 
THRUSTER PANEL 

LINES INTERRUP'i 

LINE STRUCtURE A- A 

THRUSTER POWER SUPPLY 

i DIRECTLY FROM ARRAY 

NO PROCESSING 

NO REGULATION 

NO PROCESSING 

ARRAY REGULATION 

PROCESS ALL POWER 

TYPE OF PROCESSING 

MOTORIGENERATOR 

f SOLID STATE 

PROCESSING THERMAL CONTROL 

ACTIVE RADIATOR 

850 M~ 

LIMIT ELECTRONICS TO 200'~ 



EOTV MASS SUPp' \RY 

The mass c h a r a c t e r i s t i c s  associated w i t h  a g iven EOTV f l i g h t  a re  i nd i ca ted  i n  terms o f  the  t o t a l  

s t a r t  burn mass and subsystem breakdown f o r  the  burnout ( i n e r t )  cond i t ion .  The h igh  performance 

o f  the  EOTV r e s u l t s  i n  a s ta r t -bu rn  mass on ly  9% greater  than the  empty mass. It should a l so  be 

noted t h a t  the  L02,'LH2 provided f o r  supplemental con t ro l  i s  on l y  approximately 10% o f  t he  argon 

mass as compared t o  35% i n  the  case o f  self-power modules. This f a c t o r  i s  the r e s u l t  o f  the 

EOTV having very l i t t l ~  g r a v i t y  g r a d i m t  torque due t o  i t s  favorab le  moment o f  i n e r t i a  charac- 

t e r i s t i c s .  I n  terms of the burnout mass, the ar ray  dominates the power generat ion and d i s t r i b u -  

t i o n  system wh i l e  the  power processing u n i t s  a re  the most dominant elements i n  t he  d l e c t r , ~ c  

propu ls ion  system. 
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EOTV Mass Summar,y 

STARTBURN WITH PAYLOAD. 

ITEM - - MASS 
(M.T.) - % - 

PAY LOAD 4000 70 
BURNOUT 1195 21 
PROPELLANT 

ARGON 440 8 
L02/LH2 45 1 - - 

5680 100 

STARTBURN , 1,088 
BURNOUT 

BURNOUT (NO PAYLOAD) 

LTEM - MASS - 
(M.T.) - %. - 

POWER GEN & DlSTRlB ( 7 s )  

ARRAY 608 51 
STRUCTURE 95 8 
DISTRIBUTION 33 3 

ELEC PROPUL SYS 
THRUSTERS 
POWER PROCESS. 
THERMAL CONT 
STRUCTIMECH 
PROP SYS 
AUXILIARY SYS 

TOTAL 



EOTV COST SUMMARY 

Costs o f  t h e  EOTV a re  presented on a  per f l i g h t  basis  and f o r  t he  i n d i v i d u a l  subsystem hardware 

elements. I n  the  case of cos t  per f l i g h t ,  capi ta1 costs a re  shown f o r  the  i n i t i a l  procurement 

cos t  as we l l  as the  amor i t i za t i on  t h a t  occurs as a  r e s u l t  o f  us ing the EOTV f o r  tea f l i g h t s .  

The t o t a l  cos t  per  f l i g h t  i s  $220 m i l l i o n  d o l l a r s  o r  $61/kg o f  s a t e l l i t e  mass. The EOTV hardware 

cos t  i s  dominated by the  cos t  o f  the a r ray  and the power processins u n i t ,  as was the  case i n  the  

mass of the EOTV. I t  should a l so  be noted t h a t  the  cos t  of the hardware r e f l e c t s  the  same 

s p e c i f i c  cos t  as used i n  the s a t e l l i t e  and f o r  t he  self-power e l e c t r i c  propuls ion system. The 
associated values are  $95 per  k i logram o f  power generat ion and d i s t r i b u t i o n  system and $115 per  

k i logram o f  e l e c t r i c  propuls ion system. I n  a1 1  p r o b a b i l i t y ,  the  i nd i ca ted  cos ts  are o p t i m i s t i c  

s ince the number o f  components and d i f fe rences i n  design features w i l l  r e s u l t  i n  h igher  u n i t  cost .  

The f i n a l  cos t  est imates w i l l  be done us ing  a  bottoms up approach r a t h e r  than h igh  l e v e l  parameters. 



EOTV Cost Summary 

COST PER FLIGHT ($lo6) EOTV HARDWARE 

BASIC AMORTIZED - $106 - % 

CAPITAL COST (181) (26) POWER GEN & DlSTRlB (69.9) 

E O N  HRDW 124 ARRAY 61 .O 49 

EOTV LAUNCH 44 STRUCTURE 2.3 2 

CONST. BASE 13 DISTRIBUTION 6.6 6 

DIRECT COST (28) ELEC PROPULSION (53.7) 
REFUELING 18 THRUSTERS 5.4 4 

REFURB 10 POWER PROCESSING 24.1 19 

CONST TIME DELAY (18) THERMAL CONT 5.8 5 

PAYLOAD LAUNCii (148) STRUCT/MECH 7.2 6 

PROPELLANT SYS 9.4 8 

TOTAL 220 AUXILIARY SYS 1 .O 1 
7 

TOTAL 123.6 

FROM OPTIMIZATION ANALYSIS 



MISSION EVENTS 

Mission events t h a t  occur while using an EOTV f o r  GEO construct ion a r e  indicated.  A t o t a l  o f  
15 days of on-orbit  time has been indicated n r  the  turnaround of the vehicle,  in  addi t ion  t o  
the  219 days of time required f o r  the  up and down t r ans fe r s .  Most of the  events a r e  s e l f -  
explanatory however a few words of further explanation will be provided f o r  some of t h e  events .  
Once the  vehicle reaches GEO, i t  :ril l  be placed i n  a standby condition approximately 1 kilometer 

from the base. A t  t h a t  time a small L02/LH2 tug(s ,  will be used t o  move the cargo from the €OW 
t o  the  GEO ccns t ruct ion  base. Annealing of  t he  s o l a r  arrays will occur a t  GEO and will he d i s -  
cussed in  more d e t a i l  i n  a subsequent cha r t .  Once the vehicle has returned t o  low e a r t h  c : b i t ,  
i t  will agaic be placed i n  a s t a t i o n  keeping standby condition approximately 1 kilometer from the 
LEO base. Again, small t u g s  w i l l  f l y  out  from the  LEO base t o  the EOTV t o  perform refurbishment 
operat i  ljns on the  th rus te rc ,  unload and 1 oad cargo propel l a n t  and de l  i ve r  propel l a , ~ t .  The 
propellant  resupply will be done by tankers r a t h e r  than removal of the propellant  tanks. 
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Mission Events 
- 

S ~ Z 2 . S O  r EVENT 

- 
4 li3AIJSFERTOGEO 

TERHINAL MANEUVERS 

UYLOAD CARQO 

ANNEAL SOLAR ARRAY 

PREPARE F3R RETURN 

TRANSFER TO LEO 

0 TERMINAL pl4NEUVERS 

DESCRlPTlOhl 

COST OPTIMIZED FIRST Ft.lbHT 

RENDEZVOUS AND PLACE ON 
STANDBY CONDITION 

(10) 400 MT UNITS 

1.2 MILLION SQ METERS 

ACTIVATE, CHECKOUT AND 
L 9AD CARGO 

DICTATED BY PC'UER AVAILABLE 

RENLEZVOUS AND PLACE ON 

HAPI@@# 

A TIfIE 

ON-ORBIT 

1 

1 

4 

1 

1 

4 

1 

1 

1 

(DAYS) 

TRANSFER 

180 

39 

219 
- C 

I STANDBY CONDITION 

191 

REFlJRB ELEC 
THRUSTERS 

CARGO HANDLING 

0 UNSCHEDULED MAINT 

PROPELLANT RESUPPLY 

1600 UNITS 

UNLOAD CARGO AND LOAD (10) 
400 MT UNITS 

- --  
ARGON, LO2, LH2 

PRFPARE FOR TRANSFER ACTIVATION AND CHECKOUT 

TOTAL 1 + 



EOTV ANNEALING OPERATIONS 

l e  methcd o f  anneal ing the  EOTV so la r  a r ray  4s esse r l t i a l l y  the same as t h a t  em;,c,yed by the 

operat ional  s a t e l l i t e .  I n  general, the method cons' ists o f  CO;! l a s e r  systems attached t o  a gant ry  

t h a t  can move across each bay. Each gantry  system anneals a 15m s t r i p  the e n t i r e  w id th  of  the  

bay. For EOTV app l i ca t i on ,  2.5 hours i s  requ i red  per  bay w i t h  a continuous power requlrement 

o f  8.7 !1W. The t o t a l  t ime requ i red  t o  do the annealing i s  o f  course a f unc t l on  o f  t o t a l  area 

invo lved and the number o f  gant r ies  employed. For the reference EOTV,  a t o t a l  o f  1.2 m i l l i o n  

square meters i s  requi red.  Use o f  on ly  one gantry  would result. i n  approximately 2 0  days o f  

annealiqq t ime which i s  judged t o  be too excessive. Although no op t im iza t i on  has been done a t  

tr : is po in t ,  t he  reference system w i l l  use four annealinq gantr ies,  thus r e s u l t i n g  i n  an annealing 

t ime ~f approximately four  days. When using four  gantries,. however, two a re  placed i n  each of 
two bays so t h a t  power can be drawn from the o ther  two bays t o  operate the  anneal ing systems, 

When a given bay has been completely annealed, the gant r ies  w i l l  move t o  a bay t h a t  has no t  

been annealed and repeat the annealinq operat ion. ,?nnealino can be performed a t  e i t h e r  LEO o r  

GEO, however, such fac to rs  as continuous sun1 i g h  t t o  generate power and minimum o r b i t  keeping 
p rope l l an t  sugqest annealiny a t  GEO w i l l  be s l i g h t l y  b e t t e r  than i f  the operat ion performed 

a t  LEO. 



EOTV Annealing Operations 

TYPICAL ANNEALING SYSTEM 

t----mm ----I 

- - 

ANNEALING 
-- STRUCTURE 

EOTV INSTALLATION 

0 C02 LASER UNITS 
41 UNITS/OANTRV 
8.7 MW/GANTRY 
2.5 HR/STRIP 
MASS: 100 
COST: TBQ 

UNITS 

/ GANTRY 

r- 
I 

BAY 1 
4 

L 

ARRAY AREA (lo3 SQ MI 

. 

2 
3 

1 

1 
A 

ANNEALING LOCAT ION 

FACTORS OEO LEO 
7 - 

@ ANNEALING TIME/ 
POWER SOURCE 

STATION KEEPING 

FLIGHT PERFORM -- EVEN - 
(POWER AVAIL) 

SELECT 



TYPICAL TRANSFER POKER PROFILE 

Using the  approach of anneal ing the  a r ray  GEO, the  EOTV would have a power p r o f i l e  as ind ica ted .  

Thp t r i p  would begin a t  LEO and by t h e  t ime 4,000 ndu t i ca l  mi les  has been reached, the  a r r a y  ou t -  

pu t  has decreased t o  68% o f  the  i n i t i a l  power output  and e s s e n t i a l l y  remains a t  t h a t  lel!el u n t i l  

GEO i s  reached. A t  GEO, anneal ing i s  perforned thus b r i ng i ng  the power l e v e l  up t o  86% o f  the  

i n i t i a l  power output .  The veh i c l e  i s  then flown back t o  LEO and once 4,000 k i lomete rs  i s  

reached degradat ion again occurs. The percent o f  dearadat ion dur ina  t he  down l e g  w i l l  be l ess  

however because the  down t r a n s f e r  through t he  be1 t i s  cons iderab ly  f a s t e r  than dur ing  the  up l eg .  
The t o t a l  number o f  t h r u s t e r s  i n s t a l l e d  on the  veh i c l e  i s  d e t e r v i ~ : ~  by the  power ou tpu t  of 
p o i n t  4 which corresponds t o  the  a r ray  c a p a b i l i t y  a t  the b e g i n n ~ r , ~  or' i t s  second t r i p .  
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NOTE: THRUSTER QUANTITY SIZED BY POINT @ 

ALTITUDE (IO~NM) 
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THRUSTER REFURB 

The o ther  key miss ion event t o  be discussed i s  t h a t  o f  re furb ishment  o f  t h e  EOTV t h rus te r s .  The 

fir,t p o i n t  t c  e s t a b l i s h  i s  t h e  'reqJency o f  t he  refurbishment.  I n  t h i s  case, the  l i f e  of the  

g r i d s  o f  the t h r u s t e r  arcL the  major concern, dlthougti the re  i s  some i n d i c a t i o n  t h a t  t he  cathodes 

w i l l  a l s o  have a i i i e  problem. On the  l e f t  i s  a  p l o t  o f  the  t h r u s t e r  g r i d  l i f e  as a  func t ion  of 

beam cu r ren t  Th is  data i s a r e s u l t  o $ c o ~ , b i n i n g  the  r e s u l t s  o f  a model t h a t  p red i c t s  t he  double i o n  

p roduc t ion  r a t e  (which i s  the major f a c t o r  i n  eros ion)  as , t  f u r ~ c t i o n  o f  beam cu r ren t  w i t h  another 

model t h a t  p red i c t s  erosion. Using ' ' ) i s  data t 3  check the  eros ion ra tes  o f  a  30 cm mercury t h r u s t e r  
whose eros ion c h a r a c t e r i s t i c s  a re  k ~ o w n  has resu l t ed  i n  d very  qood c o r r e l a t i o n  and consequently 

co,i f idence t h a t  t h i s  data can be used. Thruster  l i f e  rerjuirements a re  i nd i ca ted  f o r  the  f i r s t  

and f i f t h  t r 1 p s  o f  an EOTV anti r e f l e c t  the ac tua l  bufn t ime p lus  a  50% margin. These burn t imes 

i i i a i ca te  t h a t  80 anips i s  about t h , ~  most t h a t  can be expected and corresponds t o  the t h r u s t e r  

design an? performance c h a r a c t e r i s t i c s  t h a t  have been used i n  the  Boeing SPS s tud ies  t o  date.  

The second p o i n t  to  e s t a b l i s h  i s  the  amount o f  t i n e  requ i red  f o r  the  refurbishment and t he  amount 

o f  equipment requi red.  The p l o t  on the r i g h t  gene ra l l y  i nd i ca tes  t h a t  regard less o f  t he  t ime t o  

r e fu rb i sh  each t h rus te r ,  f ou r  veh ic les  h3uld  be requ i red  !n order  t o  r e s u l t  i n  a reasonable r e f u r b  

t ime. The re ference system assumes t h a t  each t h r l r s t e r  i s  repa i red  I n  t e n  minutes r e s u l t i n g  I n  a  

r e p a i r  t ime 0," 'qur days and f o u r  r e f u r b  veh ic les .  Refurb cou ld  be done a t  e i t h e r  LEO o r  GEO, w i t h  

LEO p rov i d i ng  the  lower t r anspo r t a t i on  cos t  wh i l e  the  c h i e f  advantage o f  the GEO being a  reduc t ion  

ir, t'le turnaround t ime s ince  i t  can be done i n  p a r a l l e l  w l  t h  anneal ing o f  the  so la r  ar ray.  A t  t h i s  

p o i n t  i n  t ime i t  i s  judged t h a t  the reduced t r anspo r t a t i on  cos t  would be more b e n e f i c i a l ,  conse- 

quent ly ,  t he  r e f u r b  o f  the  t h rus te r s  are done a t  LEO. As i nd i ca ted  e a r l i e r ,  the veh i c l e  would be 

placed approximately 1 k i l omete r  away 'row the base. Refurb on the t h rus te r s  can be done i n  p lace 

a t  the vehic! e which el i m i  na tes  f lu id  and e lec t r i ca l  d i  sconnections o r  the complete t h r u s t e r  panel Imnedia .el 
removsd and f lown back t o  the base where i t  would be re furbed wi th  another panel imnediate ly  

i n s t a l  l e d  t o  a l l o w  the  nex t  t r i p .  The l a t t e r  approach would reduce the turnaround t ime b u t  would 

present the problem o f  d isconnect ing f l u i d  and e l e c t r i c a l  w i r ings .  Consequently, the  in -p lace  con- 

cep t  i s  se lected Tor the re ference case. 
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LEO BASE FOR GEO CONSTRUCTION/EOTV 

Pre l  iminary 

The LEO base con f i gu ra t i on  used i n  support o f  a GEO cons t ruc t ion  concept i s  i l l u s t r a t e d .  Prlmary 

funct ions o f  t he  base are t o  support cons t ruc t ion  operat ions associated w i t h  the  EOTV's and a l so  

t o  perform depot type operat ions dur ing  the  ongoing sate1 1 i t e  cons t ruc t ion  operat ions. The base 

i s  s ized t o  cons t ruc t  one bay o f  an EOTV a t  a time. Outr iggers are  used t o  support the bays as 

they are being constructed. Opposite of the  cons t ruc t ion  p lat form i s  the  l o c a t i o n  used fo r  the  

docking o f  the OTV's and HLLV's. Crew modules are  located a t  one corner o f  the  f a c i l i t y  and con- 

s i s t  o f  two crew modules f o r  the pr imary crew, one module f o r  personnel invo lved i n  r o t a t i o n  opera- 

t i b n s  and a maintenance and operat ions module. Tota l  mass o f  base i s  est imated a t  1.3 m i l l  i o n  

ki lograms and cos t  est imated a t  $2.2 b i l l  ion .  The average crew s i ze  i s  200 dur ing  the  construc- 

t i ~ n  operat ions. 
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LEO Base for GEO Construction/EOTV 
Preliminary 

; +160rn I 

E O N  BAY 
ENVELOPE 

OUTRIGGERS (3) fEk--,,\ I I I 1 
COST MASS- - 82.28 1 3 M  Kg INCL WRAP-AROUND 

CREW - 200 :. m 

Li 
!:-- 

MAINTENANCE/ 

\- 
CONST. GANTRY OPS MODULE 

CONST. PLATFORM - TRANSIENT C5EW QUARTERS 

1 \r CREW QUARTERS (2) 

T-ww .,I \ OTV AND HLLV 

DOCKING (10 PORTS) 

I 
I I 
I I 

D- - - -  4. 



EOTV CONSTRUCTION SEQUENCE 

The o v e r a l l  cons t ruc t ion  sequence associated w i t h  the fou r  bays formina an EOTV a re  i l l u s t r a t e d ,  

i n c l  uding the u t i  1  i za t ion  o f  the  outr iggers.  The f o l  lowinq c h a r t  provides d e t a i l s  regarding the  

cons t ruc t ion  o f  zach bay. I n  t he  ove ra l l  sequence, a simple diagram i s  used t o  i i i u s t r a t e  each 

bay. F i ve  ddys a re  requ i red  t o  cons t ruc t  each bay o f  the EOTV. Indexing occurs f o l l o w i n c  the  

cons t ruc t ion  of each bay. Construct ion o f  the  EOTV i s  completed a t  the end o f  20 days. The 

f i n a l  operat ions i nvo l ve  i n s t a l  l a t i o n  o f  p rope l l an t  tanks, payload and the  f i n a l  veh i c le  check- 

out  so t h a t  the veh ic le  i s  ready f o r  f l i g h t  a t  the  end ot' 23 days. With 23 vehic les requ i red  i n  

the  f l e e t  approximatelq 1-1/2 years i s  requ i red  t o  cons t ruc t  the  e n t i r e  EOTV f l e e t .  
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EOTV Construction S 

sPSn33 

INDEX BAY 1,2,3 
CONST BAY 4 

BAY 2 ,  , BAY 1 T -20DAYS 
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CONST BAY 2 
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T = 2 3 D A Y S  

h 

T = 15 DAYS ] 
I 

I BAY 2 BAY 1 

--L, -, 

BAY 3 

* 
4 

r 

A 

P 

/- INDEXERS 

I 
A - 

BAY 2 

I 

I - - - - -  

BAY 1 

I 
* I - b 



EOTV BAY CONSTRUCTION OPERATIONS 

De ta i l s  o f  the const ruc t ion  operat ion associated w i t h  each bay o f  the  EOTV are  i l l u s t r a t e d .  Again 
i t  should be emphasized t h a t  the  base has been sized t o  const ruc t  one bay a t  a time, r a t h e r  than 

a compiete EOTV . The const ruc t ion  operat ion requires a const ruc t ion  p lat form, beam machines, 

cherry p ickers,  so'iar a r ray  deployers, indexers and a const ruc t ion  gantry which i s  used t o  support 

several beam machines and cherry p ickers.  The sequence which i s  used t o  form t h e  s t ruc tu re  o f  

each hay i s  i l l u s t r a t e d  i n  the  lower l e f t  hand p o r t i o n  o f  t he  chart .  B o t t ~  the gantry beam machine 

and the  p la t fo rm beam machine work i n  p a r a l l e l  forming the beams. I n  t h i s  p a r t i c u l a r  operation, 

the p la t fo rm beam mact~ine i s  re located one t ime i n  order t o  complete the  formation o f  i t s  designated 

beams and the  gantry must be moved t o  the  s ide  t o  a1 low the  l a s t  beam o f  t he  pentahedral base t o  

be i n s t a l l e d .  Tota l  const ruc t ion  t ime t o  complete a s ing le  bay of the  EOTV inc lud ing  checkout 

and i t s  indexing so the  next  bay can be made i s  5 days w i t h  the  prov is ion  t h a t  two so la r  a r ray  

machines are used. S h o ~ ~ l d  on ly  one so la r  a r ray  machine be used, then t h e  const ruc t ion  t ime per 

bay w i l l  be increased t o  seven days. 
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EOTV Bay Construction Operations 

- -- - 

SPS2236 CONSTRUCTION PLATFORM SOLAR ARRAY INSTALLATION 

CONSTRUCTION DAYS 

1-J STRUCTURE 
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1-j SOLAR ARRAY 
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THRUSTER MODULE q$q Q *-$Q ASSY AND INSTALL 

1-1 SUBSYSTEM INSTALL 

CHECKOUT 
----- -- - - .- r INDEX 

STRUCTURE SEQUENCE 



Fiight Support Schedule 

Another function to  be performed by the base is to  provide s u p p o r t  to  the transportation operations 

or  f l igo ts  which interface with the bzse. Four ty7es o f  f l igh ts  are considered. Firs t ,  crew 

rotation/resupply fl.:ghts which occur a t  four week intervals. EOTV f l i gh t s  v i l l  occur a t  aporoxi- 

mately 11 day intervals.  HLLV's will del iver payloads to  the LEO base on av average of 7 times 
per week. Personnel lsunch vehicles d e l ~ v e r  new crewmen t3 orbi t  approximately every two weeks. 

'guble f l igh ts  are indicated for  the GEO aase PLV f l igh ts  beca~se  each crew OTV transports 160 

people while the PLV t r a n c ~ o r t s  only 80 per f l igh t .  



0 180-24872- 1 
2 , LEO Base Depot Operations 
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GEO CREW ROTATI ON/RESUPPLY 

GEO Construction 

Several opt ions e x i s t  fo r  the de l i ve ry  o f  crew and supplies between LEO and GEO. Bas ica l ly  

these options are 1)  t o  combine the two funct ions i n  one f l i g h t  and 2)  have separate f l i g h t s  

for each funct ion. Transportat ion requirements f o r  these two optlons are indicated, along 

w i t h  the prope l lant  requirements per  f l i g h t  and annual prope l lant  requirements. On a per 

f l i g h t  basis, the opt ion cons is t ing of the combined crew rotat ion/resupply requires approxi- 

mately 800,000 kilograms per f l i g h t ,  wh i le  the propel lant  loading f o r  the opt ion having separate 

crew and supply de l i ve ry  has an average o f  approximately 500,000 kilograms whlch i s  approximateiy 

the OTV s i ze  f o r  the LEO construct ion concept. On an annual basis, the combined crew ro ta t ion /  

resupply f l  i g h t  reduces the t o t a l  p rope l lant  requirement by 2 m i  11 i on  kilograms resul  t i n 7  i n  

approximately 100 m i  11 i on  do1 l a r s  savings per year. Consequently, the comb1 ned crew . o t a t i o n l  

resupply opt ion has been selected f o r  the GEO constructlon/EOTV option. 
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GEO Crew Ro tation/Resupply 
GEO Construction 

REQUIREMENTS 

480 PEOPLE 

3 MONTH STAYTIME 

230 KdMAN MONTH 

DELIVERY OPT IONS 
(1) COMBINED (2) SEPARATE 

CREW + SUPPLY - CREW SUPPLY -- 
FLT/MO I 
CREW 160 
MAN MO. UPPLIES P 480 
P/L UP (10 Kg) 160 
P/L DN 0s Kg) 80 

2 STAGE L02/LH2 
SYSTEM 

PROP. 
PER F LJGHT 

(103 K ~ I  

CREW SUPPLY 

0 0 OTV FOR 
LEO CONST 

ANNUAL 
PROP 

(los Kg) 

OPT ION 

SELECT 
COMBllYEO 0 
SAVES APPROX. 
$100 I'lllLLlONfYEAR 

OPTION 



LEO STAGING DEPOT CREW S I Z E  

The crew s i ze  t o  mainta in the base i s  presented f o r  th ree d i . f fe rent  tfme periods. The EOTV 
const ruc t ion  per iod requires approximately 200  people, t he  on-goi ng operati.on per iod when 

EOTV f l i g h t s  are d e l i v e r i n g  SPS components t o  G t O  requires 134 people and the  tfme per iod 

which has on-going operat ions as we l l  as the const ruc t ion  o f  the second se t  o f  EOTV's 
requires a t o t a l  of 220. To accomnodate t h i s  crew size, a t o t a l  o f  two la rge  crew modules 

w i l l  be provided. The c h a r a c t e r i s t i c s  o f  these modules are the  same as described f o r  the 

crew modules used w i t h  the  LEO base o f  t he  LEO c o n s t r ~ ~ c t i o n  concept described I n  Part 111 
of Contract NAS9-15196. 

.. ., , '..... ... "'., . ."..nUWI 

. , , .  - 3  

-- 
I.". .. r , . A d ' 2 . j  
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LEO Staging Depot Crew Size 

am..'#@ - 
I 

1 

EOTV ON401NO . EONCONST 
CONSTRUCTION OPERATIONS + OPERATIONS 

BASE MGMT 

CONSTR UCTI ON 
MOMT 
E O N  CONST 
SUBASSY 
TEST & QC 

BASE OPS & SUPPORT 
'MGMT 
MAINTENANCE 
VEH/CARGO HANDLING 
FLIGHT CONTROL 
COMMUNICATION 
DATA PROCESSING 
UTILITIES 
HOTEL OPS 
MEWDENTAL 

TRANSPORT ATlON OPS 
MGMT 
PROP HANDLING 
FLIGHT READINESS 
E O N  MAIN1 
VEHICLE COORD 

TOTAL 
L 

(7) 

1771 
6 

4Q 
10 
16 

(93) 
6 
14 
18 
6 
8 
6 
12 
18 
9 

(21 1 
4 
8 
7 
0 
2 - 

198 

(7) 

(01 

(84 
6 
10 
13 
6 
8 
6 
12 
16 
7 

(43) 
4 
8 
7 
22 
2 - 

134 
A 

(7 ) 

(n) 
6 
46 
10 
15 

(93) 
6 
14 
18 
6 
8 
6 
12 
16 
9 

(43) 
4 
8 
7 
22 
2 - 

220 



LEO BASE MASS AND COST 

Mass and cos t  a re  both dominated by the  crewlwork modules. Again, there  a re  two modules 

t he  serve as f u l l  t ime crew quarters,  one module f o r  t r a n s i e n t  crews (and as back-up 

pr imary modul e )  and a f o u r t h  modul e which serves as a combination mi ntenanceloperat ion 

center.  Base subsystems inc lude a s o l a r  a r ray  f o r  pr imary power, n i cke l  hydrogen b a t t e r y  

f o r  secondary power and a L02/LH2 f l i g h t  c o n t r o l  subsystem. Vehicle and cargo handl ing 

elements inc lude on-base t ranspor ta t i on  systems f o r  moving cargo and personnel, as we l l  

as the docking po r t s  requ i red  i n  support o f  t he  various t ranspor ta t i on  systems. Since 

the base w i l l  a l so  be serv ing  as an OTV support base, a p rope l l an t  storage and d i s t r i b u t i o n  

system .is provided. The cons t ruc t i on  equipment inc ludes the  c a p a b i l i t y  o f  b u i l d i n g  each 

EOTV i n  approximately 23 days and the  t o t a l  f l e e t  o f  23 vehic les i n  1.5 years. This 

concludes the  basic  d i f i n i  t i o n  the  s i l i c o n  EOTV, i t s  operat ions and support systems f o r  

GEO const ruc t ion  concept. 
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LEO Base Mass and Cost 

WBS COST ($10') - MASS (103 Ku) 

STRUCTURE 
CREWnNORK MODULES 
BASE SUBSYSTEMS 
VEHICLEfCARGO HANDLING 
PROP. STORAGE/DELIV. 
CONSTRUCTION EQUIP. 

DRY 1260 

CONSUMABLES (90 DAY) 60 
WRAPAROUND - ' 47% BASIC 



DATA USED FOR COST COMPARISON 

A pre l im inary  comparison o f  t he  LEO construct ion/self-power concept w i t h  a 6EO construction/EOTV 
concept i s  provided. The f i r s t  cha r t  presents some o f  the key inputs  i n t o  the  basic cos t  comparison. 
Although, the m a j o r i t y  o f  these items are self-explanatory, a few words w i l l  be provided r e l a t i v e  t o  
several i terns. S a t e l l i t e  mass For the  LEO construct ion op t ion  does present a greater  t ranspor ta t ion  
requirement due t o  i t s  modular i ty  and i n i t i a l  overs iz ing  due t o  r a d i a t i o n  degradation dur ing  t h e  t rans-  
f e r  of t he  modules from LEO t o  GEQ. The o r b i t  t rans fe r  hardware mass i s  somewhat smaller f o r  t he  LEO 
const ruc t ion  approach, p r i m a r i l y  because of the  smaller f l e e t  size. Because a l a rge  p o r t i o n  o f  the  s e l f  
power e l e c t r i c  propuls ion system i s  recovered and reused on ly  f i v e  sets (one se t  per  module) a re  
requ i red  r a t h e r  than e igh t .  Prope l lan t  mass f o r  the  OTV i s  considerably greater  f o r  t h e  self-power 
module, because i t  present ly  has a h igh  g r a v i t y  g rad ient  torque penalty.  This p o i n t  i s  i l l u s t r a t e d  by 
f l i g h t  performance s imulat ions which c u r r e n t l y  i nd i ca te  an e f f e c t i v e  s p e c i f i c  impulse o f  2800 seconds 
f o r  the self-power op t ion  wh i le  the  EOTV has an e f f e c t i v e  s p e c i f i c  impulse o f  6400 seconds. Both t rans-  
p o r t a t i o n  opt ions  assume a design l i f e  o f  10 f l i g h t s .  In the  cases o f  self-power opt ion, o n l y  63% o f  
the systems are  recovered i n  terms of the  cost,  whereas the  complete EOTV i s  returned and reused. 
The t r i p  t ime f o r  t he  s e l f  power modules i s  less  because L02/LHz system used t o  supplement the e l e c t r i c  
system dur ing  per iods o f  h igh  g r a v i t y  gradient  torque a l so  p r o v ~ d e  an increase i n  the  v e l o c i t y  o f  the  
veh ic le  thereby reducing t r i p  time. Crew s i z e  o f  the  two opt ions are approximately the same dur ing  the  
on-going operat ions, al though the  GEO const ruc t ion  approach does have the  m a j o r i t y  of i t s  crew located 
a t  GEO r e q u i r i n g  a greater  t ranspor ta t ion  cost .  Base mass d i f fe rences re f l ec t .  d i f fe rences i n  crew size, 
f unc t i on  o f  the  base and i t s  l o c a t i o n  i n  terms o f  environment impact. HLLV cos t  p r i m a r i l y  r e f l e c t s  the  
d i f f e rence  i n  number o f  f l i g h t s  required f o r  each o f  the  opt ions w i t h  the self-power op t ion  r e q u i r i n a  
more f l i g h t s  due t o  the  greater  p rope l l an t  requirements f o r  t he  t r a n s f e r  o f  t he  s a t e l l i t e  as we l l  as 
the  use o f  LOz/LHz QTV's t o  r e t u r n  the  e l e c t r i c  propuls ion system components. 



Data Used For Cost.Comparison 

SATELLITE MASS (M.T.) 1 

s P ? m a  
1 I I I i H r Y G  - 

OTV HRDW MASS (M.T.) 

ON PROP. MASS (M.T.) 

REUSABi L lTY 

ITEM 

TRIP TIME COST bASlS 

CREW SIZE: LEO 

GEO 

BASE MASS (MT) LEO 

GEO / 
HLLV COST/F C T  {$lo6) 
PLV COST/FLT ($lo6) 

P O W  COSTIFLT ($lo6) 

INTEREST RATE 

SATELLITE COST ($109) 

LEO CONSTRUCTION/ 
SELF POWER 

31,000 

63% 0 F EPS COST 
10 FLIGHTS 

140 DAYS 

480 

28,300 

14,700 

100% OF E O N  
10 FLIGHTS 

GEO CONSTRUCTION/ 
E O N  

180 DAYS 

LEO CONCEPT 
DIFFERENCE 
- - 

MODULARITY 

OVERSIZING 

EPS VS EPS + PGDS 

HIGH GGT PENALTY 

CHEM O N  FOR RECOVERY 

BOTH COST OPTIM IZ. 

NO O N  CONST & 

BETTER UTlL lZ  OF CREW 
FOR REFURB 



PRELIMINARY COST COMPARISON 

LEO/Self-Power vs. GEO/EOTV 

Prel  iminary cost  comparison between the  two const ruc t ion  opt ions i s  ind ica ted f o r  th ree condit ions. 
F i r s t ,  the  time per iod associated w i t h  the  "preparat ion f o r  const ruc t ionu which means procurement and 
placement o f  the  const ruc t ion  bases. The second t ime per iod c a l l e d  the  " f i r s t  s a t e l l  i t e  f o r  each OTV 
set"  i s  t h a t  p o i n t  i n  t ime when the  o r b i t  t r a n s f e r  veh ic le  hardware i s  procured and a lso  involves t h e  
placement o f  the  f i r s t  s a t e l l i t e  which means d i r e c t  operat ion costs. The f i n a l  cond i t ion  ind ica ted i s  
c a l l e d  "average per s a t e l l i t e "  which takes i n t o  considerat ion the  a m o r i t i t a t i o n  o f  a l l  c a p i t a l  costs i n  
add i t i on  t o  the d i r e c t  cos t  and const ruc t ion  t r i p  t ime delay. I n  the case o f  t he  preparat ion f o r  con- 
s t r u c t i o n  cost, the  LEO op t ion  resu? t s  i n  approximately a $2 b i l l  i o n  savings p r i m a r i l y  due t o  the  f a c t  
t h a t  the  o r b i t a l  bases f o r  the  LEO const ruc t ion  opt ion  requ i re  fewer and less  c o s t l y  crew modules as 
we l l  as the l o c a t i o n  o f  the  const ruc t ion  base requires l ess  t ranspor ta t ion  cost.  Crew and supply 
d e l i v e r y  costs r z f l e c t  one-half  t he  s i z e  as occurs dur ing the  on-going operat ions bu t  continues over a 
two year t ime pe piod. 

For the  case o f  p lac ing  the  f i r s t  s a t e l l i t e ,  the  LEO const ruc t ion  op t ion  again r e s u l t s  i n  a cost  savings 
of approximately $2 b i l l  ion. For t h i s  cond i t ion ,  the o r b i t  t r a n s f e r  vehic les have been bought and show 
a decided advantage f o r  the  LEO const ruc t ion  approach due t o  the  f i w  number o f  u n i t s  t h a t  must be pro- 
cured. Amor i t i za t ion  o f  the  LEO const ruc t ion  bases r e f l e c t  a 25 year t ime period. D i r e c t  cos t  f o r  t h i s  
t ime per iod  favors the  GEO const ruc t ion  approach p r i m a r i l y  due t o  the  low p rope l l an t  requirements f o r  
t h e  OTV and the  more e f f i c i e n t  recovery operat ions associated w i t h  e l e c t r i c  propuls ion systems. 

The f i n a l  comparison r e f l e c t s  the  o v e r a l l  average per  s a t e l l i t e  and amori t izes a l l  c a p i t a l  cost.  The 
o r b i t  t rans fer  veh ic le  i s  amor i t i za ted over a per iod  o f  approximately 7 years. On t h i s  basis, the  
c a p i t a l  cos t  o f  t he  LEO approach i s  l ess  bu t  t h e  d i r e c t  cos t  i s  considerably higher r e s u l t i n g  i n  the  
GEO const ruc t ion  concept being approximately 600 m i l l i o n  d o l l a r s  cheaper per s a t e l l i t e ,  which t rans la tes  
i n t o  approximately $6 per Kg of SPS. It should be emphasized however, t h a t  several p o s s i b i l i t i e s  e x i s t  
t o  reduce the  cos t  o f  the LEO construct ion/self-power concept. One p o s s i b i l i t y  i s  the  reduct ion  o f  
p rope l l an t  t o  overcome g r a v i t y  g rad ient  torque by improving the module moment o f  i n e r t i a  cha rac te r i s t i cs .  
I n  the case o f  t h e  higher cost  associated w i t h  recovery and re furb ,  the self-power module op t ion  can 
consider recovering more components as we l l  as the use o f  a 1 ess c o s t l y  small e l e c t r i c  o r b i t  t r a n s f e r  
veh ic le  instead o f  a L02/LH2 OTV f o r  recovery. The r e s u l t i n g  LEO construct ion/self-power cos t  i s  
expected t o  be equal t o  o r  s l i g h t l y  l ess  than the  GEO const ruc t ion  EOTV concept e s p e c i ~ l l y  when t h e  
EOTV i s  costed on a more de ta i l ed  basis and the  uncer ta in ty  i n  the  concept i s  included i n  the  cost .  



CAN BE REDUCED WITH BETTER MODULE lNERTlA CHARACTERISTICS 
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IrPEIkrE - 
S-2314 NOTE: ONLY INCLUDES THOSE COST ELEMENTS 

SENSITIVE TO CONST. LOCATION 

CAN BE REDUCED WITH RECOVERY BY AN EOTV 

I- 

ITEM 

r 

CAPITAL COST 

SAT. O N  LAUNCH 

SAT. O N  HARDWARE 

BASE TRANSPORT. 

a BASE HARDWARE 

DIRECTCOST 

SAT. LAUNCH 

AVERAGE PER 
SATELLITE 

LEO (6) 

(925 1 

) ~ 1 s  

770 

(6615) 
3760 

FIRST SATELLITE 

SAT. O N  PROP LAUNCH 

SAT. A HARDWARE 

O N  RECOVERY/REFURB 

cREW/SUPPLY DELIV* 

CONST. TIME - DELAY 

TOTALS ( lo6 DOLLARS) 
$/kg OF SATELLITE 

li 
GEOf7) 1 
(1430) 

490 

940 

(5365) 

3860 

FOR EACH. 

LEO 

(2036) 

355 

910 

1 ~ 7 7 0  

(6170) 

3760 

PREPARATION FOR 

D AMORTIZED 

O N  SET 

GEO 

(4660) 

11, 

2620 

940 

(5365) 

3850 

CONSTRUCTION 

LEO 

(8585) 
- 
- 
385 

8200 

(490) 
- 

540 

0 

120 

855 

(490) 

1080 

160 

685 

485 

(380) 

GEO 

(10505) 
- 
- 
'0° 

9805 

(860) - 

- 
- 
- 
490 

- 

9075 

860 

- 

1 1365 8585 

286 

540 
0 

120 

855 

(490) 

$1080 

160 

D l 3 0  

485 

(380) 

10515 

4 0  

7920 
-a79 



FINDINGS TO DATE 

Pre l im inary  f i nd ings  t o  date f o r  t he  GEO construction/EOTV are  ind ica ted .  

I n  summary, i t  should be r e a l i z e d  t h a t  al though the cos t  o f  the  GEO con- 

struction/EOTV concept p resent ly  i s  lower than t h a t  o f  the LEO construct ion/  

self-power concept, performaice c h a r a c t 2 r i s t i c s  f o r  the  EOTV have a  consider- 

able degree o f  uncer ta in ty .  I n  add i t i on ,  cos t  for  the EOTV i s  expected t o  

go up when more d e t a i l  cos t i ng  ana lys is  i s  performed. F i n a l l y ,  i t  i s  a lso  

expected t h a t  t he  cos t  f o r  t he  self-power concept can be reduced t,>i-ough 

the u t i l f z a t i o n  of a  h igher  performance recovery system, recovery o f  more 

components 3nd b e t t e r  moment o f  i n e r t i a  cha rac te r i s t i cs .  
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Findings To Date 

s mmE/#c - 
SPS2239 

a . PREVIOUS SFI-F-POWER THRUSTER PERFORMANCE AND LIFETIME CHARACTERISTICS 

HAVE BEEN VERIFIED 

CONFIGURATION INERTIA BALANCING NOT AS IMPORTANT AS FOR SELF POWER 

MODULES 

A CONSIDERABLE DEGREE OF UNCERTAINTY EXIST REGARDING SOLAR ARRAY 

PERFORMANCE AS A RESULT OF REPEATED DAMAGE AND ANNEALING 

, 
€ O n .  COST OPTIMIZATION NOT AS SENSITIVE TO SPECIFIC IMPULSE AND TRIP TIME AS 

INITIAL INVESTMENT COST ARE HIGHES FOR GEO CONSTRUCTION/EOTV DUE TO 

MORE MASSIVE BASES AND THEIR LOCATION AS WELL AS ADDITIONAL O N  

HARDWARE 

AVERAGE COST PER SWELLITE ARE LOWER FOR THE E O N  CONCEPT SINCE SAVINGS 

FROM LESS PROPELLANT, FULL REUSABILITY AND RECOVERY MODE MORE THAN 

OFFSET ADDITIONAL OTV MASS AND ITS COST 

SELF POWER COST PER FLIGHT CAN BE REDUCED TO BE COMPARABLE OR LOWER 

THAN THAT FOR EON'S' 



EOTV TASKS REt lA I  N I  NG 

Those tasks  t o  be performed t o  complete t h e  EOTV a n a l y s i s  f o l l o w i n g  t h e  mid-term a r e  

i nd i ca ted .  I n  t h e  case o f  t h e  s i l i c o n  EOTV, a  performance and c o s t  a n a l y s i s  w - i l l  be 

done f o r  t h e  case o f  us i ng  s i x  m i l  cover  g l ass  r a t h e r  than t h e  t h r e e  m i l  cover  ?lass 
on t h e  s o l a r  c e l l s .  As p r e v i o u s l y  i n d i c a t e d ,  t h e r e  w i l l  a l s o  be a  bottoms up c o s t i n g  

t h a t  w i  11 b e t t e r  r e f 1  e c t  t he  number o f  components and des ign f ea tu res  o f  t h i s  concept 

and how they  a r e  d i f f e r e n t  f rom t h e  bas ic  s a t e l l i t e  and t h e  se l f -power  t r a n s f e r  p ro -  

p u l s i o n  systems. The g a l l i u m  arsen ide  EOlV w i l l  be analyzed i r ~  a  manner s i m i l a r  t o  

t h a t  performed on t h e  s i l i c o n  EOTV. Sel f -power o r b i t  t r a n s f e r  system w i l l  be b r i e f l y  

analyzed t o  improve on i t s  moment o f  i n e r t i a  c h a r a c t e r i s t i c s ,  i n v e s t i g a t e  hav ing a  

h i ghe r  degree r e u s a b i l i t y  o f  i t s  components and use o f  a smal l  e l e c t r i c  o r b i t  

t r a n s f e r  v e h i c l e  f o r  t h e  r e t u r n  o f  t h e  components. F i n a l l y ,  a complete over  a l l  

assessment o f  these two c o n s t r u c t i o n  op t i ons  w i l i  be performed a long  t h e  same l i n e s  

as t h e  p rev ious  Boeing a n a l y s i s  i n  comparing a  GEO concept ion/chemical  OTV concept 

w i t h  LEO construction/self-power. 
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EOTV Tasks Remaining 

COST ADJUSTMENT FOR COMPONENT RATES AND DESIGN 
FEATURES DIFFERENT FROM THE SATELLITE AND SELF 
POWER ORBIT TRANSFER SYSTEMS 

PERFORMANCEICOST PARAMETRICS FOR 6 MIL COVER G L M  

GALLIUM ARSENIDE E O N  

ANALYSIS SIMILAR TO SILICON E O N  

SELF POWER ORBIT TRANSFER 

INVESTIGATE ALTERNATE TRANSFER CONFIOURATIONS TO 
REDUCE GOT PENALTY 

INVESTIGATE REUSABILITY OF ADDITIONAL COMPONENTS 

PERFORM OVERALL GEO CONSTRUCTIONIEON VS LEO CCHYSTRUCTIONI 
SELF POWER ASSESSMENT 



Small SPS's 



SIZE SENSITIVITY ANALYSIS POWER LEVEL AND TRANSMITTER DIAMkTER 

Shown i s  a j o i n t  opt lmlzat ion o f  t ransml t te r  diameter and power l eve l  holdlnf the rectenna s l t e  
constant a t  the optimum ;slue. This r e s u l t  was developed on the s a r l l e r  contract, and d i d  not  
inc lude packaging density considerations. As the system power l eve l  i s  reduced i t  I s  possible 

2 t o  employ somewhat l a rge r  t ransmi t t ing  antennas w l  thout  v l o l a t i n g  the 23 mw/cm 1 l m l  t. Trans- 
m l t t e r  diameters l a rge r  than 1.4 ki lometers dc not  pay o f f ;  the mlr~.imum system cost  i n  do l l a rs  
per k i l o w a t t  fol lows along the 23 mw/cm2 1 In1  t t o  about 2500 megawatts and then l o 1  lows up the 
1.4 k l  lometer diameter t ransmit ter  curve. Note t h a t  comparatively 1 i t t l e  cost penalty I s  
incurred going down as low as 3000 megawatts o f  g r l d  power. Below 3,000 megawatts the system 
cost  i n  do l l a rs  per k i l o w a t t  beglns t o  tu rn  up rap id ly .  

The present e f f o r t  has expanded on these e a r l l e r  resu l t s  t o  consider packaging and spec i f i c  
c o n f i g u ~ ~ a t i o n  e f fec ts  a r i s l n g  from asymetrlc conf lgurat lons. 



Size Sensitivitv Analvsis Power Level and 
~rinsmitcer Diameter 

SYSTEM COST, 
($/kWE) 

OPTlMlZED RECtENNA SIZE 
o 1 * W E A R  

J11 mW1cm2 LIMIT 

0 l 1 1 

28000 4,000 6,000 ~,000 
DC POWER ACROSS ROTARY JOINT, (MEGAWATTS) 

OELIVEREO GRID POWER PER LINK, (MEGAWATTS) 



SMALL SPS ' S  

Three smal l e t *  SPS conf igurat ions a re  compared t o  the o r i g i n a l  10 g igawat t  basel i nc .  

The f i r s t  o f  the th ree  shown i s  the present NASA 5 gigawatt  base l ine w i t h  one t rans-  

m i t t i n g  antenna. Analysis of the  con t ro l  requirements f o r  t h l s  asymnetric con f i gu ra t i on  

determined t h a t  because o f  the  o v e r r i d i n g  importance o f  s o l a r  pressure compensation .in 

the  c o v t r o l  t h r u s t  scherne, no p r o p k l l a n t  pena l t i e s  were incur red  by the lack  o f  symmetry. 

Also, no packaging di f ferences have been i d e n t i f i e d  t h a t  would a r i s e  from d i v i d i n g  t he  

o r i g i n a l  con f i gu ra t i on  i n t o  two equal halves. Therefore, the on l y  consequence o f  t h i s  

a l t e r n a t i v e  t o  the  o r i g i n a l  base l ine  i s  the requirement f o r  more pos i t i ons  i n  geosynchronous 

o r b i t  t o  e f f e c t  a g iven t o t a l  i n s t a l l e d  generat ing capac i ty .  

The nex t  a l t e r n a t i v e  shown i s  a l so  a f i v e  g igawat t  system, bu t  the  power i s  d i v i ded  i n t o  

two power t ransmiss ion l i n k s  each r a t e d  a t  2!5 g igawatts.  In order  t.o minimize land  use 

and rectenna costs,  i t  i s  des i r ab le  when reducing the  l i n k  power t o  increase the t r ansm i t t e r  

aperture,  i n  t u r n  reduc ing t h e  r e c e i v i n g  s t a t i o n  area. This desipn opt ion,  however, has 

approximately 4 t imes as many t r a n s m i t t e r  subarrays as the  s i ng le - t r ansm i t t e r  5 g igawat t  

s a t e l l  i t e .  As a r e s u l t ,  i t  incurs  a s i g n i f i c a n t  payload packaging problem because o f  the 

low packaging dens i t y  o f  completely assembled t r ansm i t t e r  subarrays. The packaginq den- 

s i t y  s i t u a t i o n  appears t o  be much improved through use o f  a so l  i d  s t a t e  t r ansm i t t e r .  I n  

the  s o l i d  s t a t e  op t i on  a l l  o f  the a c t i v e  funct ions a re  inc luded i n  a p lanar  sheet on ly  about 

2 cent imeters t h i c k  ( i nc l ud ing  thc resonant c a v i t i e s ) .  Thus, a much h igher  packaging dens i t y  

per u n i t  o f  aper ture area can be achieved. 

The f i n a l  op t i on  shown, l i k e  the second op t ion ,  r e s u l t s  from e f f e c t i v e l y  d i v i d i n q  a symmetric 

con f i gu ra t i on  i n  h a l f .  As f o r  the o ther  case, nc pena l t i es  were determined f o r  t h i s  design 

op t i on  except ing the use o f  more geosynchronous o r b i t  space. 
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Small SPS's 

10 GW BASELIFJE 

5 GW BASELINE 

tJ0 IMPACT 
EXCEPT USE OF 
SPACE AT GEO 

5 OW/ r-4 GW 
TRANSMITTERS 

82% VOLUME 
LIMITED LAUNCH 
PENALTY UNLESS 
TRANSMITTER IS 
SOLID STATE 

SAME AS 
S GW/Ph GW 
TRANSMllTERS 
EXCEPT USE OF 
SPACE A T  GEO 



SPS PACKAGING ESTIMATES 

Tabulated 3n t h e  f a c i n g  page i s  a s u m a r y  o f  a  packaging update. T h i s  packaging update 

inc ludes a1 1  owances f o r  o r b i t  t r a n s f e r  hardware and o r b i t  t r a n s f e r  p rope l  1 ants  ( b o t h  o f  

which package r e l a t i v e l y  dense ly ) ,  thus d e n s i t y  determined f o r  t h e  10 g ipawa t t  re fe rence  

c o r ~ f  i g u r a t i o n  has increased somewhat f rom e a r l  i e r  es t imates .  Nonetheless , a  s i p n i  f i c a n t  

problem i s  i d e n t i f i e d  f o r  t he  systems o f  t h e  re fe rence  t ype  w i t h  2% g igawa t t  t r a n s m i t t e r  

l i n k s .  The problem i s  nluch a l l e v i a t e d  i n  t h e  s o l i d  s t a t e  t ransmi teo r  case. 



SPS Packaging Estimates 

PACKAGING DENSITY INCLUDES SPS AND APPLICABLE ORBIT TRANSFER HARDWARE 

10 GW, REF. DESIGN 

5 GW, REF, DESIGN 

2.5 GW, ONE ANTENNA 

5 GW, TWO ANTENNAS 

2.5 GW, ONE ANTENNA, 
SSPA 

5 GW, TWO ANTENNA 
SSPA 

PACKAGING 
DENSITY 

125 kg/m3 

125 kg/m3 

42 kg/m3 

42 k h 3  

77 kg/m3 

77 kg/rn3 

. 

HLLV FLIGHTS 
TO DELIVER SPS 

415 

208 

207 

4 14 

111 

222 

VOLUME-LIMITED 
PENALTY, % 

0 

0 

82% 

82% 

0 

0 



REPRESENTATIVE SOLID STATE SPS COSTS AND SIZING 

The s o l i d  s t a t e  t r a n s m i t t e r  i s  l i m i t e d  by maximum a l l o w a b l e  dev i ce  temperature t o  a  .lhermal 

d i s s i p a t i o n  o f  r o u g h l y  1.5 k i l o w a t t s  pe r  square meter. A t  a  convers ion e f f i c i e n c y  o f  80% 

wi th  a  10 dB Gaussian tape r  t h e  thermal c o n s t r a i n t s  and ionosphere power d e n s i t y  c o n s t r a i n t s  

f o l l o w  c h a r a c t e r i s t i c  curves as i l l u s t r a t e d  on t h i s  map o f  SPS power c o s t  i n d i c a t o r s  versus 

t r a n s m i t t e r  d iameter and power l e v e l .  As can be seen, t h e  s o l i d  s t a t e  system i s  cons t ra ined  

t o  a  t o t a l  power l e v e l  o f  approx imate ly  Z 1 i  g igawa t t s  w i t h  a  t r a n s m i t t e r  a p e r t u r e  o f  1.4 

k i l o m e t e r s .  Thus, t h i s  system i s  w e l l - s u i t e d  t o  t h e  s m a l l v  s i z e  l ower  power SPS a p p l i c a -  

t i o n  and i n  f a c t  may be l i m i t e d  t o  such lower  power t r a n s m i t t e r  l i n k s .  



Representative Solid State SPS Costs and Sizing 
s 

COST OF 
SPS 
ELECTRICITY 
(rnildkwh) 

MAXIMUM 
RADlAf ION 

ASSUMPTIONS: 

qDC-RF ' a8 

.I POWER PROCESSING 

o ! 1 .I 1.2 1.3 1 -4 1.5 1.6 1.7 1.8 

TRANSMITTING ANTENNA DIAMETER (km) 



SMALL SPS'S 

The main points  o f  the small SPS investigation are sumnarized here. 



Small SPS's 

NO PROBLEMS WITH DIVIDING 10-GW SPS INTO TWO 6-GW SeS'S 

LOW POWER SYSTEMS ARE DIFFICULT TO PACKAGE FOR LAUNCH 

SOLID-STATE MPTS APPEARS TO MINIMIZE f HIS PROBLEM 



Launch Site 



UPPER BOUND PERFORMANCE DELTA SUMMARY 

LOW LATITUDE VERSUS KSC 

An i n i t i a l  attempt a t  performance simulat ion f o r  a  low l a t i t u d e  t rans fe r  from 5' i n c l i n a -  
t i o n  t o  geosynchronous o r b i t  a c t u a l l y  exh ib i ted  reduced performance ds compared t o  the 

reference 30' case. Increased loss due t o  sun occul tat ions apparently more than o f f s e t  
the reduct ion i n  de l ta  V and i n  g rav i t y  gradient losses. I n  fac t ,  the var ia t ions  i n  
performance due t o  var ia t ions  i n  o r b i t  geometry and season are greater than performance 

di f ferences between low l a t i t u d e  and 30' i n c l  i n a t i o n  s t a r t i n g  o rb i t s .  Therefore, i n  
determining the c o s t  benef i ts  from performance improvement between low i n c l i n a t i o n  and 
h igh i n c l i n a t i o n  o r b i t s  an upper bound analysis was adopted. Thls analysis i s  sumnarized 

on the fac ing  page and shows t h a t  cost  advantages f o r  the low l a t i t u d e  t rans fer  are 
minimal. 

A1 though i t  i s  not  l i k e l y  t ha t  t l ~ i s  small cost  advantage can overcome the cost  increases 

associated w i t h  depart ing "om an e x i s t i n g  f a c i l i t y ,  such as KSC, o ther  reasons may e x i s t  
f o r  s e t t i n g  up a  new launch s i t e  f o r  SPS ope~a t ion .  These reasons inc lude the l i ke l i hood  

tha t  tha scale o f  SPS t ranspor ta t ion  operations w i l l  eventual ly  outgrow KSC as we l l  as 
po ten t i a l  desj rabi  1  i t y  of an in te rnat iona l  launch s i t e  f o r  what could eventual ly  become 

an in te rnat iona l  p ro jec t .  



Upper Bound Perfon~~a~~ce Delta Summary 
Low Latitude Versus KSC 

MASS RATIO FOR 30° PLANE CHANGE FROM LEO TO OEO (1.26 SELFSOWER; 

ABOUT 1.1 FOR IEON) 

4 

MASS RATIO FOR NO PLANE CHANGE FROM LEO TO GEO - 1.20 

DELTA NUMBER OF HLLV FLIGHTS - 17 

(400 RATHER THAN 417) 

DELTA TRIP TIME-PO DAYS 

(LESS FOR NO PLANE CHANGE) 

VALUE OF DELTA TRlP TlME 36 MILLION 

COST FOR REFERENCE CASE 6,670 MILLION NGT INCLUDING TRlP TlME COST 

INCLUDING DELTA TRlP TIME, 480 FLIGHTS FROM O0 CAN COST 6,606 MILLION 

OR $14 MILLION PER FLIGHT, COhlPARED TO $13.36 MILLION AT KSC 



OVERLAY OF HLLV PADS ON KSC MAP 

This map i l l u s t r a t e s  the  prob len~ at tendant  t o  acconnodating a l a r g e  SPS t r anspo r t a t i on  

opera t ion  a t  the  Kennedy Space Center. I f  as many as th ree  launch pads f o r  a l a rge  

heavy l i f t  launch veh ic le  are desired, sa fe ty  requirements fo r  pad separat ion rimy r e s t r i c t  

the  number o f  pads t o  as few as th ree  and even then may necess i ta te  p l ac i ng  the pads i n  

shal low o f f sho re  waters w i t h  p o t e n t i a l  de le te r ious  environmental Impact. A l t e r n a t i v e  

pad l o c a t i o n  schemes a re  poss ib le  and may avo id  the o f f sho re  arrangement. This t s  

p a r t i c u l a r l y  t r u e  i f  the number of pads can be reduced t o  two. 

With the turnaround times expected fo r  HLLV launch operat ions,  th ree  pads could  support 

something l i k e  4G0 f l i g h t s  a year,  s u f f i c i e n t  t o  place i n  o r b i t  10,000 megawatts of 

generat ing capac i ty  per year .  
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ORBITER PROCESSING F A C I L I T Y  

The process of defining requirements for handling facilities for launch operations is 
continuing. This diagram shows an orbiter vehicle processing faci 1 i ty sufficient to 

accommodate 4 0 0  HLLV flights per year. 



Orbiter Processing 'Facili ty 

500 M TON 
TRAVELING CRANE 7 MOVABLE MAINTENANCE 

MAINTENANCE & PAYLOAD 
LOAOlNO BAY 

PAYLOAO TRANSFERRED FROM 
TRANSPORTER TO ORBITER BY 
OVERHEAD CRANE 
/ \ 

RAIL SYSTEM 
FOR PAYLOAO 
TRANSPORTER 

L PAY LOAD 
TRANSFER 
AISLE 



SEA BASED LAUNCH S I T E  CONCEPT 

The concept of a sea based launch s i t e  was originated a t  JSC under studies of SPS launch 

al ternatives.  The sea based s i t e  depicted here i s  a larye floating structure anchored to  
the sea bottom in waters up to 100 t o  150 fathoms depth. Several potentially a t t r ac t ive  
low la t i tude s i t e s  and ocean areas, r~enerally f ree  from sedere storms and sea s ta tes ,  
have been identif ied where such a f a c i l i t y  could be constructed dnd operated. The major 

elements of the faci 1 i ty are  a landinq runway, vehicle and payload processinq faci l  i t i e s .  
Vehicles would be launched from the remotely located floatinq launch pads. The vehicles 
would be transported to  these pads a f t e r  beinq loaded w i t h  payloads. There they would 
then be erected and propellant barges brought to  the location for fueling. Finally, a 
crew barge would bring the f l i gh t  crew to the launch pad shortly before l i f t o f f .  
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! Sea Based Launch 
Site Concept . 
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LANDING SITE AND 
MAINTENANCE 
FLOATING PLATFORM 
ANCHORED TO SEA FLOOR 

1,CHd & LH2 
PROPELLANT CONDITIONING 
AND STORAGE PLATFORM 
AITACHED TO SEA FLOOR 

- 4.5 km - F LOATINO LAUNCH 

<=sJ-- PLATFORM WITH 
BREAKWATER, ANCHORED 
TO SEA FLOOR 

F LO2 PROPELLANT CONDITIONING 
AND STORAGE PLATFORM 
ATTACHED TO SEA FLOOR 

MATED LAUNCH VEHICLE DELIVERED TO LAUNCH PROPELLANTS DELIVEREL) TO LAUNCH PLATFORM BY 
PLATFORM BY SHIP FROM MAIN PLATFORM SHIP FROM PROPELLANT STORAGE FACILITIES 



SEA BASED LAUNCHED PLATFORM CONCEPT 

The launch p l a t f o rm  i l l u s t r a t e d  here i n  more d e t a i l  includes a f l o a t i n g  breakwater t o  
minimize wave a c t i o n  a t  the  launch p l a t f o rm  so t h a t  docking of veh:cle and p rope l l an t  

t r ans fe r  barges can be more e a s i l y  accomplished. 



FLOATING LAUNCH 
PLATFORM, SECURED 
BY CABLES TO BREAKWATER /- 

FLOATING BREAKWATER 
ANCHORED TO SEA FLOOR 

r 

6 

PROPELLANT TRANSFER 
SHIP 

340 m LONG 



LANDING SITE AND MAINTENANCE FACILITY FLOATING PLATFORM 

The major facility eleaent is shown here in more detail with principal sizes and arranqe- 
rnents indicated. 



Landing Site and Maintenance Facility 
Floating Platform 
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LAUNCH S I T E  SELECTION 

The 'launch s i t e  ana lys is  task  was mot ivated by t h e  premise t h a t  s e l e c t i o n  o f  a  l o w - l a t i t u d e  

s i t e  would o f f e r  s i g n i f i c a n t  ~ o s t  advantages w i t h  respect  t o  operat ions from the  Kennedy 

Space Ce~ l te r ,  where ea r th - t o - l ow-o rb i t  space t ra r rspor ta t ion  a r r i v e s  a t  a 30' i n c l i n a t i o n  

o r b i t .  With a  30' i n c l i n a t i o n  o r b i t  f o r  s tag ing o r  cons t ruc t ion  operat ions a 30' plane 

change i s  requ i red  t o  reach a  geosynchronous equato r ia l  o r b i t .  I t  was presumed t h a t  t h i s  

p lane change would i n c u r  s i g n i f i c a n t  performance penal t i e s  r e l a t i v e  t o  a  zero-degree o r  

1 ow-incl  i n a t i o n  low e a r t h  o r b i t .  However, w i t h  e l e c t r i c  p ropu ls ion  t h i s  perforr;:ance 

d i f f e r e n c e  i n  terms o f  cos t  i s  n~ in ima l .  Therefore, t he  p r i n c i p a l  mo t i va t i on  f o r  l eav ing  

KSC f o r  a remote s i t e  w i l l  stem from the even tua l i t y  o f  SPS operat ions outgrowinp KSC. 

Our est imates t o  date i n d i c a t e  t h a t  KSC can handle approximately 10 gigawatts per  year  o f  

SPS cons t ruc t ion .  

Remote s i t e  opt ions inc lude  land-based s i t e s  such as the mouth o f  the  Amazon i n  B r a z i l  

and ocean-based s i t e s  employing l a r q e  f l o a t i n g  s t r uc tu res  such as the  western P a c i f i c  low 

l a t i t u d e  s i t e s  i d e n t i f i e d  by Jim Akkerman i n  s tud ies a t  the  Johnson Space Center. Large 

u n c e r t a i n t i e s  p resen t l y  e x i s t  as t o  the  cost  o f  l a r g e  f l o a t i n g  s t r uc i u res .  The two orders 

o f  magnitude range i s  i nd i ca ted  on the f ac i ng  page. 



Launch Site Selection 

PERFORMANCE ADVANTAGE FOR LOW LATITUDE 

IS SMALL (<lo%) FOR ELECTRIC PROPULSIOPJ 

PRINC:PAL MOTIVATION FOR REMOTE SlTE WILL 

OCCUR IF  SPS OPERATIONS OUTGROW KSC 

KSC APPEARS SUITED FOR ABOUT IOGW/YEAR 

OCEAN SlTE POTENTIALLY ATTRACTIVE DEPENDING 

OK COST OF LARGE FLOATING STRUCTURES 

AIRCRAFT CARRIERS - $50 000/M2 

DRYDOCKS & BARGES - $5 000/IM2 

CONCRETE FLOATS < $500/M2 
(HOUSEBOATS) 
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SPACE CONSTRUCTION ANALYSIS PRIMARY OBJECTIVE 

The pr-imary o b j e c t i v e  o f  the Phase One const ruc t ion  ana lys is  I s  t o  r e f i n e  and develop 

a1 t e r n a t i v e  cons t ruc t ion  approaches. NASA-JSC has emphasized t h a t  they understand the  

base1 i n e  2-deck LEO fac i  1 i ty const ruc t ion  concept and are convinced t h a t  f t w l l l  work. 
However, i t  i s  appropr iate t o  re-examine the  cons t ruc t ion  concepts t o  see I f  there a re  

ref inements o r  new, v i a b l e  a l t e r n a t i v e s  t o  the basel ine approach. 

To accomplish t h l s  task, Boeing has i d e n t i f i e d  and c h a r a e t s r l ~ e d ,  two de r i va t i ves  o f  the 
base1 i ne concept and our subcontractor,  Grumnan Aerospace, has focused on three new 
generic cons t ruc t ion  a l t e r n a t i v e s .  A t  t h i s  p o i n t  i n  time, some o f  these concepts can be 

s e t  aside. The remaining v iab le  concepts w l l l  r equ i re  enother month t o  b r i n g  them a l l  

up t o  comparable l e v e l s  o f  d e t a i l  so t h a t  a p re fe r red  concept can be selected. 



Space Construction Analysis 
s Primary Objective 

OBJECTIVE 

"IN VIEW OF THE RELATIVE IMMATURITY OF THE SPACE CONSTRUCTION 
DISCIPLINE,. . JSC CONSIDERS I T  DESIRABLE TO REFfNE OR DEVELOP 

ALTERNA TE CONSTR UCTfON APPROACHES." R FP, TASK 4.2.1 

STATUS 

A DERIVA Tf  VE OF THE BASELINE CONCEPT AND 3 GENERICALLY 

L)lFFERENT CONCEPTS (TOTAL OF 6 OPTIONS) ARE IN  THE PROCESS OF 

BEING CHARACTERIZED 

SOME OF THE ALTERNATf YES CAN BE DELETED NOW 

WlTfl lN ONE MONTH, THE VIABLE ALTERNATIVE CONCEPTS WILL 8E 

COMPARED AND A PREFERRED CONCLPT SELECTED 



ALTERNATIVE CONSTF .'CTION CONCEPTS 

This f i g u r e  dep ic ts  the  scope o f  t he  var ious a1 te rna t l ve  cons t ruc t ion  concepts t h a t  have 
been explored. The LEO Sing le  Deck base i s  a d l r e c t  d e r i v a t i v e  o f  t he  basel ine 2-deck LEO 
base. This  concept was then modi f ied i n t o  the  GEO Single Deck base con f i gu ra t i on  t h a t  would 
be used t o  b u i l d  a mono1 i t h l c  5 GW SPS. 

Gruman has been working on three versions o f  an End Bu i l de r  - GEO base, an I n t e r n a l  J ig ,  
and a Bootstrap cons t ruc t ion  approach. Each of these new generic types w i l l  be discussed 

i n  d e t a i l  i n  the  ensuing pages. 

The s i x  opt ions w i t h i n  the dashed l i n e  are the concepts t h a t  w i l l  be d i r e c t l y  compared when 

making the  p re fe r red  concept se lect ion.  
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ALTERNATIVE CONSTRUCTION CONCEPTS GROUNDRULES 

I t  was j t i n t l y  decided by NASA-JSC and the contractors t ha t  t i le a l te rna t i ve  construct ion 

concepts should be based upon bu i ld ing  a 5 GW monol i th ic SPS a t  GEO, These groundrules 
were spec i f ied  because i t  was deemed necessary t o  explore GEO construct ion i n  more depth. 

I t  was agreed t ha t  the winning construct ion concept was probably neutra l  t o  where the 
SPS was constructed. I f  the resu l t s  o f  the EOTV study reconfirms our e a r l i e r  assessment 
t ha t  LEO constr-uction i s  the most economical, then the winning construct ion concept could 

eas i l y  be adapted t o  LEO construct ion. 

This char t  1 i s t s  only a few o f  the groundrules t ha t  were establ ished i n  order t o  make the 
competing construct ion concepts easier  t o  d i r e c t l y  compare. The f u l l  1 i s t  of groundrules 

are found i n  Monthly Progress Reports No. 2 and 3. 



Alternative Const#mction Concepts 
 valuation Groundrules 

5 GW, MONOLITHIC, PHOTOVOLTAIC SPS 

GEO CONSTRUCTION 

180 DAYS kS% 

CONT~GUOUS FACILITY (ANTENNA AND POWER COLLECTION 

MODULE CONSTRUCTION AREAS ATTACHED) 

CONSTRUCTION EQUIPMENT RATES LESS THAN OR EQUAL 

TO BASELINE RATES 

2 SHIFTS, 10 HRS/SHIFT, -75 PRODUCTIVITY 

100-MAN CREW HABITAT MODULES + 5 OTHERS 

COMMON MASS AND COST FACTORS 



ALTERNATIVE CONSTRUCTION CONCEPT SELECTION CRITERIA 

This cha r t  1  i s t s  the various fac to rs  t h a t  w i l l  be qua1 I t a t i v e l y  and q u a n t i t a t i v e l y  assessed 

f o r  each o f  the a1 t e r n a t i v e  cons t ruc t ion  concepts t h a t  surv ive  our i n i t i a l  screening process. 

Our i n t e n t  i s  t o  e l im ina te  some o f  the  competing concepts us ing as few o f  these e i g h t  

se lec t i on  fac to rs  as poss ib le  and t o  save the  complete, d e t a i l e d  assessments f o r  o n l y  the 
b e t t e r  candldates. 



Alternative Construction Concept 
Selection Criteria 
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CAPAB I L lTY 

SYSTEM 
COMPLEXITY 

OPERATIONS 
COMPLEXITY 

GROWTH CAPABILITY 

EVALUATION FACTORS 

CONSTRUCTION SYSTEM UNIT COST 
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! 
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BASE SIZE 

NO. AND TYPE CONSTRUCTION EQUIPMENT 

CREW SIZE 

BASE LOGISTICS TRACK AND EQUIPMENT 

MAJOR PARALLELISERIES CONSTRUCTION OPERATIONS 

UNIAXIALIBIAXIAL INDEXING 

ANTENNA MATING MODE 

NO. COUPLED/DE-COUPLED OPERATIONS 

ADAPTABLE TO SMALLERILARGER SATELLITES 
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LEO SINGLE DECK CONSTRUCTION BASE 

Th is  LEO base conf igurat ion i s  a d i r e c t  d e r i v a t i v e  o f  the base1 i n e  2-deck LEO base. The 
upper deck and supporting back wal l  have been deleted. A construction gantry has been 
added t o  provfde a way t o  support the construction equipment t h a t  was located on the  now 
del eted upper deck. 



LEO Single Deck Construction.Base 
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CONSTRUCTION GANTRY 

This f i g u r e  shows a s ide view o f  the construction gantry.  The beam machines and cherrypickers 

used t o  f a b r i c a t e  and assemble the upper framework and supported by the gantry.  A dedicated 

crew bus i s  i n s t a l l e d  on the gantry t o  c a r r y  the crewmembers from the f a c i l i t y  deck up t o  the 

construction equipment. 



Construction Gantry 

PREVIOUSLY ASSEMBLED 

r- CREW BUS 

FACILITY TRACK SURFACE 
SOLAR ARRAY DEPLOYER 



LEO SINGLF DECK CONSTRUCTION BASE ATTRIBUTES 

The significant dif ferences between the LEO S f  ngle Deck base and the basellne LEO ?-Deck Base 
are listed. The mass and cost deltas will be computed later. 
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AS COMPARED TO 2 DECK BASELINE 

I 

s 
- - ------ 

BASELINE OTY'S 

LEO Single Deck Construction B3se 
Features 

m b I I Y d  - 

@ CONSTRUCTION EQUIPMENT 
ADD CONSI'RUCTIOCY GANTRY 
DELE TE 2 260 m CRANES 
(ALL OTHER EQUIP CITY'S SAME AS BASELINE) 

CREWSIZE 
SAME AS BASELINE 

BASESTRUCTURE 
REDUCED APPROXIMATELY 34% 

e BASE LOO tSTlCS SYSTEM 
DELET E 5d TURNTABLES 
OELETE 34,SOO rn OF TRACK 
ADO ONE CREW BUS 

TOTAL MASS AN0 COST DELTAS TBD 



GEO SINGLE DECK CONSTRUCTION BASE 

This base i s  a d e r i v a t i v e  o f  the LEO Single Deck. This bhse was conf lqured t o  enable the  
cons t ruc t ion  o f  a mono l i t h i c  5GW SPS. For reasons which w i l l  be described on the f o l l o w l ~ g  
pages, the  antenna f a c i l i t y  was moved from the end o f  the base t o  a p o s l t l o n  behind the  

base. I t  was a l so  necessary t o  r e o r i e n t  the  so la r  a r r a y  deployers so t h a t  the  a r ray  
could be deployed i n  the d i r e c t i o n  o f  the  long dlmenslon o f  the base. Construct ion o f  a 
mono l i t h l  c sate1 11 t e  requ l  res both 1 ongi t ud ina l  and 1 a t e r a l  I ndexl ng (see next  page). 
Due t o  t ime l o s t  dur ing indexing (48 days), I t  was necessary t o  add addl t f o n a l  cons t ruc t lan  

equipment i n  order  t o  be able t o  assemble the  s a t e l l i t e  w l t t ~ l n  the t ime const ra ln ts .  



GEO Single Deck Construction Base 
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POWER COLLECTION SYSTEM CONSTRUCTION SEQUENCE 

(GEO CONSTRUCTION) 

Coristructi on of a mono1 I th lc ,  8-bay wide SPS requires both 1 ongl tudlnal and l a t e r a l  indexing 

maneuvers as 11 1 ustrated. 



Power Collection System 
Construction Sequence (GEO Construction) 

SOLAR A?RAY r BAY 5 !7 
DEPLOYERS - 

FIRST ROW OF BAYS COMPLETED FRAME INDEXED LONGITUDINALLY a CAT ECIALLY INDEX FRAME 2 BAYS 
(8 BAYS WIDE) ONE BAY 0 DEPLOY SOLAR AHRAY IN BAYS 6 

S O U R  ARRAY DEPLOYED IN BAYS 7 AIJD 8 AND 6 
ASSEMBLE FRAMES FOR BAYS 9 AN0 10 ASSEMBLE FRAME BAYS 11 AND 12 
(SECOrJD ROW OF BAYS) 



YOKE ASSEMBLY AND MATING OPERATIONS 

This chart illustrates and describes the operations requlred to perform yoke assembly and 

yoke-to-antenna mating. 
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Yoke Assembly and Mating Operations 

I 

1 

0 0 
INDEX TO 
MATE YOKE 
TO ANTENNA 

AFTER POWER COLLECTION MODULE HAS BEEN 
COMPLETELY ASSEMBLED AND CHECKED OUT 
THE MODULE IS INDEXED TO ORIENTATION 
SHOWN 
YOKE ASSEMBLED AND THEN GANTRY MOVED 
TO SIDE 
MODULE INDEXED TO MATE YOKE TO 
ANTENNA 
AFTER COMPLETED SPS IS CHECKED OUT, THE 
SATELLITE IS IPJDEXED LATERALLY AND THE 
FACILITY IS FLOWN AWAY 



GEO SINGLE DECK CONSTRUCTION BASE ATTRIBUTES 

The most significant "attribute" o f  the GEO Single Deck base concept i s  t h a t  in order to 

make up the time lost indexing t h a t  i t  i s  necessary to add equipment and operators. There 

are other offsetting savings, but  the net cost and mass delta i s  yet to be determfned. 



AS COMPARED TO 2 DECK BASELINE BASELINE QTY'S 

s 

CONSTRUCTION EQUIPMENT 
ADD CONSTRUCTION GANTRY 0 
ADD 2 BEAM MACHINES 4 
ADD 8 CHERRYPICKERS 8 
ADD 2 SOLAR ARRAY DEPLOYERS 4 
ADD 1 BUS DEPLOYEH 1 
DELETE 2 250 m CRANES 2 
(ALL OTHER EUUIPMENT QUANTITIES THE SAME AS BASELINE) 

CREW SIZE 
ADD 52 EQUIPMENT OPERATORS 510 

GEO Single Deck Construction Base 
Fe3 t ~ ~ r e s  

BASE STRUCTURE 
REDUCED APPROXIMATELY 34% 822,000 m 

of bmm 
BASE LOGISTICS SYSTEM 

DELETE 59 TURNTABLES (INCLUDES GANTRY) 525 
DELETE 34,500 ni OF TRACK (INCLUDES GANTRY) 114,000 m 
ADD ONE CREW 3US 4 



SOLAR POWER SATELLITE SYSTEM 
DEFINITION STUDY 
MIDTERM BRIEFING 

FOR 
BOEING AEROSPACE COMPANY 

ALTERNATE CONSTRUCTION CONCEPTS 
& 

ALUMINUM SOLAR ARRAY STRUCTURE 

OCTOBER 19,1978 



ALTERNATE GEO CONSTRUCTION CONCEPTS 
FOR : 

5 GW MONOLITHIC SATELLITE 

END BUILDERS 

INTERNAL BASE 

BOOTSTRAP 3 
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SATELLITE CONSTRUCTION EMPHASIS 



ALTERNATE SPS CONSTRUCTION METHOIS 

The method o f  cons t ruct ion  se lec ted  f o r  b u i l i i n g  t h e  full s i z e  So la r  Power Satell i te ( 5  to 

10 GW) w i l l  d i r e c t l y  inrpact t h e  size of t h e  cons t ruct ion  work area and t h e  minimum e q u f p e n t s  

needed f o r  space f a b r i c a t i o n  and assembly. The method of cons t ruct ion  can a l s o  impose cons t ra in t s  

on the  design o f  SPS subsystems. Two a l t e r n a t e  construc:.ion methods, using segmented beams and 

c o n t i n u o u ~  long i tud ina l  beams are shown f o r  a t y p i c a l  SPS s o l a r  a r r a y  mdule .  

The base l ine  n e t s d ,  f o r  example, follows a two s t e p  proeecs which allows minimal equipment 

t o  be used f o r  s t r u c t u r a l  assembly,while o the r  t i m e  consuming subsystem funct ions ,  such as i n s t a i -  

l i n g  s o l a r  a r r a y  b lanke t s ,  are perfornied on f u l l y  assembled s t r u r t u r a l  bays. The soiar a r r a y  

s t r u c t u r a l  bays are constructed with space fab r i ca ted  beam elements joined a t  t h e  corners.  

Accordingiy t h e  cons t ruct ion  work zone needs a tm bay f a c i l i t y  depth to accomnodate both s t r u c t u r a l  

and n o n - s t ~ ~ u c t u r a l  cons t ruct ion  opera t ions .  

The a l t e r n a t e  approach, however, i s  keyed t o  t h e  continuous f a b r i c a t i o n  o f  longi tudinal  

s t r u c t u r a l  elements which al lows t h e  buildup of' o t h e r  subsystems t o  be  more A o s e l y  coupled. 

While t h i s  method o f  cons t ruct ion  may r f q u i r e  more automatic cons t ruct ion  equipment than t h e  

segmented build-up concept,  i t  a l s o  needs l e s s  cons t ruct ion  work area, hcnce, a smaller base t o  

implement. Providin3 more automated equipments can be used t o  increase  o v e r a l l  crew produc t iv i ty  

and hence cos t  e f fec t iveness .  The use  o f  continuous long i tud ina l  elements o f  course r equ i res  a 

d i f f e r e n t  j a i n t  design for  assembling the  s t r u c t u r a l  frw . r k .  Overal l  production e f f i c i e n c y  could 

be improved f u r t h e r  by a l ign ing  the  s o l a r  b lanket  i n s t a  .qt,itiv I.; %h t h e  long i tud ina l  t l t ructure t o  

f a c i l i t a t e  mul t ip le  b lanket  deployment opera t ions .  



ALTERNATE SPS CONSTRUCTION METHODS 

SEGMENTED BEAMS 
(BASELINE) 

CONTINUOUS LONGITUDINAL BEAMS 
(OPTION) 
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END B U I L D n  SATELLITE CONSTRUCTION OPPIOffS 

S e v e r a l  o p t i o n s  f o r  b u i l d i n g  t h e  SPS with  continuoua s t r u c t u r a l  bemu a r e  shown on  t h e  f a c i n g  

page. The end b u i l d e r  c o n s t r u c t i o n  b a ~ e  nas  keen allowed to vary  i n  s i z e  from 8 b n y ~  Wide (mrximum) 

t o  2 bays wide (minimum) t o  pe rmi t  i d e n t i f i c a t i o n  o f  c r i t i c a l  a s p e c t s  i n  t h e  p roduc t ion  b u i l d u p  o f  

t h e  b a s e l i n e  SPS. I n  a d d i t i o n ,  o t h e r  SPS c o n f i g u r a t i o n s  are considered (aspecti r a t i o  = 0 and 32) 

i n  o r d e r  t o  a s s e s s  t h e  i n t e r a c t i o n  o f  b a s e - s i z e  and BPS c o n f i g u r a t i o n .  

The b a s e l i n e  8 x 16 bay SPS can be cons t ruc ted  by u s i n g  e i t h e r  8 bay wlde, 4 bay  wlde, 3 bay 

wide o r  2 bay wide c o n s t r u c t i o n  bases .  The l a r g e  8 bay  wide end b i l i lde r  cone t ruc te  t h e  e a t e l l i t e  

on a s i n g l e  pass. It can i n s t a l l  t h e  antenna at t h e  beginning or t h e  end o f  power c o l l e c t i o n  

module c o n s t r u c t i o n .  The o\her  bases  r e q u i r e  2 o r  more pasees  to complete t h e  s a t e l l i t e  and 

must phase  t h e  antenna i n s t a l l a t i o n  t o  co inc ide  w i t h  e i t h e r  a h a l f  b u i l t  o r  f u l l y  b u i l t  power 

c o l l e c t i o n  m d u l e .  The 8 bay wlde and 2 bay wide o p t i o n s  were s e l e c t e d  f o r  f u r t h e r  e tudy  because 

t h e y  encompass t h e  lowest  and h i g h e s t  l e v e l s  o f  p roduc t ion  a c t i v i t y  to meet t h e  6 month b u i l d  cyc le .  

The two remaining o p t i o n s  address  a l t e r n a t e  SPS d e s i g n s  which f e v o r  a s i n g l e  pass produc t ion  

bui ldup.  One, a f o u r  bay wide b a s e  c o n a t r u c t s  a n  SF8 whose a s p e c t  r a t i o  (8) i s  not considered 

o u t s i d e  t h e  bounde o f  f e a s i b i l i t y .  I n  t h e  o t h e r ,  t h e  advantage o f  having t h e  s m a l l e s t  bare e i e e  

i s  probably  overshadowed by i t s  i n o r d i n a t e  s e p e c t  r a t i o  (32) and b y  r e l a t e d  p e n a l t i e n  i n  rs te l l i te  
a t t i t u d e  c o n t r o l  and power d i s t r i b u t i o n  systems. Hence t h e  e i n g l e  pass 4 b a y  end b u i l d e r  mi a l s o  

chosen f o r  s t u d y  and comparison wi th  t h e  8 b a y  wide and 2 bay wide baeee . 



END BUILDER SATELLITE CONSTRUCTION OPTIONS 

BASELINE SPS (AR = 2) 

I 

0 0 
BASE IS: 8 BAY WIDE 4BAYWlDE 4 B A Y W l D E  3 B A Y W l D E  2 BAY WIDE 

ALTERNATE SPS 

U 

4 BAY WlDE BASE 

A R = 3 2  m- - L.- - 
___.c - - - - 0  

2 BAY WlQE BASE 



TYPICAL END BUILT@R STRUCTURAL ABElEMBLY 8EQUWCE: 

The end builder conetruct;ion syetem is tailored to the structural cross section of the ratellite 

and uses dedicated beam machines to automatically fabricate continuous longitudinal msmberr. Addi- 

tional beam machines are used to fabricate the required lateral and diagonal menbere employed in the 

s.tructural aseembly. A typical aseambly sequence is shown for the firat construction pas6 of a 2-bay 

end builder. It is also typical for a 4-bay and and 8-bay builder, 

As shown the aseembly procers begins with the conetruction of the first frame. Each fraorer can 
be constructed with aembere made by either using a beam nnchine located on the b8re at each bean 

intersection point or at a central beam building distribution yard. Gimballed beam nuachiner could 

be provided in the Umit next to each dedicated fixed machine, to fabricate the connecting beam in 

a desired direction. The t~orizontal beams are fabricated in parallel, their length is then adJusted 

and the beam poeitionea for aseembly. W i n g  this adjucrtmsnt and positioning, the machine ir pivotted 

and the other beams for this frame fabricated in parallel. Theee are then adjuuted and the fraaw 
aeaembled. Step 2 indexes the frame for one bay length by fabricating the continuour longitudinsl 

beams from dedicated beam machines. In Step 3, the next Prame is built ae in Step 1. During there 

three steps, power busses and eolar array blankets can be installed in parallel. If solar array 
blankets are to be deployed in the direction of build, they are fed out as the structure indexer. 

If they are laterally strung, then the structure ie indexed incrementally and blanketr stmrng acrors 

the structure, from the base, at each incfsment. Longitudinalbusaea are installed "on the fly" as 

tha structure is indexed; lateral bussee are installed before a bay is indexed. 

Step 4 fills in the bay structure with diagonal be- to complete that etructure. Thir bay ir 

then indexed, as in Step 2, and the wholr. proceee repeated until the eolar array structure i r  built, . 
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TYPICAL END BUILDER STRUCTURAL ASSEMBLY SEQUENCE 

REPEAT STEPS 2,3 & 4 TO 
COMPLETE STRUCTURE 

COMPLETE INDEX 81 
BUILD NEXT FRAME I 

* 
INDEX BY LONGL. 

/ BEAM FAB. INSTALL POWER BUS & SOLAR 
(ARRAY BLANKETS IN PARALLEL 

/ 9 @ BlJlLt3 FIRST FRAME 
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'JTRZICTUHAL JOINTS DURINQ END BUILDING CONSPRUCTION 

A t y p i c a l  in tersect ion of beams is shown, together with i t s  location on t h e  s t ructure .  

Three types oi' jo int  dhich could be used a t  this idteroection,  a r e  i l l u s t r a t ed .  The preferred 

jo in t  is  te.med a 'nodal f i t t i n g . '  Here, t h e  continuous beam caps a r e  uninterrupted and t h e  pi tch 

of t h e  l a t e r a l  posts  mintained.  In t he  appropriate bay of t he  bearu, dj.agona1.s a r e  replaced by ct 

f i t t j n g  which provides an anchor point fo r  the  pin jointed ende of the  other  in tersect ing beams. 

This anchor p i n t  i s  a t  the  centroid of t he  continuous beam, and the  -;;ubulsr end of each other  

beam i s  aligned with the  centroid of t h a t  beam. The lengths of tube ends w i l l  be dt2tated by accesR 

t.o t h e  f i t t i n g  past the  continuous beam members. Ground fabr icat ion of the  f f t t i n g ,  with folding 

o f  its l egs  f o r  launch, seems feas ib le .  

A second jo in t  option provides f o r  but t  joining the  beams ende. A l l  beam8 a r e  Interrupted 

to accommodate a comprehensive f i t t i n g  which presents a face t o  each intersect ing beam fo r  it t o  bu t t  

and a t t a c h  t o .  Such a Joint  would denrand adjustment of each butt ing f ~ c e  t o  a c c o ~ t c  ecccn t r ic i t i ee ,  

e tc . ,  i n  each beam. The f i t t i n g  i t s e l f  would be e i ther  space fabricated,  o r  ground fabr icated i n  

pieces and space assembled. It would be volumetrically inef f ic ien t  t o  launch the completed Pitt:ng 

from thc g r o a a .  

The t.h!ru optic .I shodn is a space frame which does not in terrupt  t he  continuous beam cape. It 

replaces  one dot ol' . la tera l  posts. l a t e r a l  and diagonal beams a t tach  t o  points  .n t he  periphery of 

t he  frame. T'nese trit.achments may be e i t h e r  pinned or f$xed joints .  The jo in t s  are located so  t h a t  

t h e  end ioad i n  each beam i a  aligned with t he  centroid of t he  continous beam. 'Eccentrici t ies o r  

misalignments of the  beams w i l l  r e su l t  i n  tors ion i n  t he  continuous beams. This frame would a l s o  

be space fabricated,  o r  ground fabr icated i n  pieces and space assembled. 



STRUCTURAL JOINTS DURING END BUILDING CONSTRUCTION 

NODAL F ITTINO 
- CONTINUOUS BEAM 

UNINTERRUPTED - OTHER BEAMS PIN 
JOINT AT INTERSECT. 
OF CENTROIDS - FOLD FOR LAUNCH 
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BUTT FITTING 
- ALLBEAMS , 

lNTERRUPTE0 - ALL BEAMS FIXED 
ENDS (ASSY?) - FAB. OR ASSEMBLE 
FITTING I N  SPACE 

SPACE FRAME 
- CONTINUOUS BEAM UN- 

INTERRUPTED - OTHER BEAMS ATTACH 
TO PERIPHERY 
(ECCENTRICITIES? - FAB. OR ASSEMBLE i'U 
SPACE 

MUYMIW 
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SPS COMPOSITE B F M  FAB2ICATION 

Early i n  the study a detailed production r a t e  analysis was perfrrmed on the composite beam 

builder (beam machine) since related design data were readily available and because t h i s  equipment 

i s  common t,o a l l  SPS segmented and continuous construction concepts. 

Projected beam builder output rates were determined for  range of possible SPS epace fabricated 

beam sizes .  For example a production ra te  of 5.7 meters/min. for  the 7.5 m beam, and 10.5 meters/min. 

fo r  the  12.7 m beam (both composites) can be reasonable expected from a study 00 growth potentials 

available i n  the current technology. 

Growth potent ial  areas include: higher cap forming ra tes ,  permissable because larger depth 

beams a r e  l e s s  sensi t ive to  beam geometry (bow ef fec t )  problems than beams of shallower depth; 

and, larger  batten spacings permit the beam machine (which operates on a run/stop cyclic basis) 

t o  operate i n  the run mode a proportionately greater amount of time fo r  the same unit  bay construction. 
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LONGITUDINAL BEAM FABRICATION REQUIriEMENTS 

Beam fabr icat ion and s a t e l l i t e  indexing a r e  c lose ly  re la ted  i n  t he  end-builder construction operations. 

The longi tudinal  beam bui lders  provide the driving force t o  index the  s a t e l l i t e  s t ructure ,  while performing 

t h e i r  basic function of beam-element fabrication.  This end builder charac te r i s t i c  leade t o  t h e  necessity 

f o r  ce r t a in  requirements regarding beam builder performance. Those requirements iden t i f i ed  t c  date are:  

(a) Limit s t a r tup  and shutdown accelerat ions  t o  insure  t ha t  beam builder subsystem 

machinery will safe ly  susta in  forces  induced during indexing. Include t h e  

a f f e c t  of mass differences  i n  t he  2, 4, and &bay end-builder confi&urations 

a s  wel l  a s  t h e  progress mass increase i n  t he  s a t e l l i t e  under construction, 

(b )  Provide f o r  synchronized indexing. Tolerances i n  t h e  eimultaneously 

operating beam bui lders  produce var ia t ions  i n  beam builder forces  during 

indexing. These variations s h a l l  be l imited t o  sa fe  l eve ls  as determined 

by allowable forces  not only on subsystem machinery but on t h e  base s t ructure  

and s a t e l l i t e  s t ructure  a s  well.  

( c )  Design f o r  construction cont i r~u i ty  i n  t h e  event of a beam builder fa i lu re .  

Emphesis s h a l l  be placed on r e l i a b i l i t y  of subsystem machinery l n c l u d i ~  

redundant operating modes, where possible, t o  avoid beam builder shutdown. 

I n  addit ion,  consideration s h a l l  be given t o  subsystem designs t l l a t  l i m i t  

r epe i r  time to approximately 60 minutes, wtiile t he  shutdown beam builder 

' t r acks  along at  the  same r a t e  a s  t h e  i.ndexing s t ructure .  



LONGITUDINAL BEAM FABRICATION REQUIREMENTS 

LIMIT STARTUP & SHUTDOWN ACCELERATIONS 

ISSUES FOR STUDY: 

LOADING COND'S. (C.G. OFFSET, 
SIA TENSION, E TC) 
IMPACT OF LOADS ON: 
- BASE 81 SATELLITE STRUCTURE 
- BEAM-BUILDER S/S OPERATION 

PROVIDE FOR SYNCHRONIZED INDEXING 

CONTROL TOLERANCES 
GENERATE BASEISATELLITE 
INTERFACE LOADS 

PROVIDE FOR CONTINUITY OF 

-----r+ CONSTRUCTION OPS 

TRAVEL 
d Irnlrnin 

v 
RELIABILITY/REDUNDANCY 

q 60 MIN REPAIR TIME 



SATELLITE SUPPORT DURING END BUILDEFl CONSl?J.&!lTON 

ns presently conceived, the  L shaped f a c i l i t y  fo r  building the solar a r ray  ca r r i e s  beam rmchines 

un one leg of the  L and supports fo r  emerging structure on t h e  other leg. A s  i l lus t ra ted ,  disturbance 

of the  structure already bu i l t  w i l l  resu l t  i n  moments reacted by end luads i n  the  beams and beam 

machines and by shears reacted by the  supports on the  other leg. The beam machines a l so  provide the  

forces for  indexing the  structure, a s  it is  bui l t ,  by fabricating the  longitudinal beams. The capabi l t ty  

of the  beam machines t o  provide the forces necessary t o  react  disturbance torques and t o  i&ex s t ructure  

may be sus,=ct and require fur ther  study. 

W e e  options are  presented on this chart fo r  rel ieving the  beam machines of t h i s  function. 

Option 1 adds mechanisms t o  the  process of fabricating the  longitudinal beams. They a r e  dedicated t o  

indexing the beams and t o  I'eacting disturbance end loads. Shears a re  still reacted by the leg supports. 

Option 2 adds a l eg  t o  t h e  top of the L t o  make a C section base. Thus, the structure has supports 

on two opposite faces which react  a l l  disturbance loads and index the  structure. The th i rd  option 

extends that  leg of t he  base which mounts the supports. Additional supports a r e  provided on the 

extension a t  one bay dis tant  from the  originals.  These two s e t s  of s u p g ~ r t s  react  a l l  disturbance 

loads and index the  st.ructure. 



SATELLITE SUPPORT DURING END BUILDER CONSTRUCTION 

- 
BASELINE 
- BASE OUTRIGGERS PROVIDE 

SHEAR SUPPORTS 
- BEAM MACHINES PROVIDE 

INDEXING FORCE & REACT. OPTION 1 - ADD MECHANISM TO LONGL. 
END LOADS FAB. PROCESS TO REMOVE INDEXING 81 

01 . ,uN 2 - DECOUPLE BEAM MACHINES 
FROM INDEX1NG I l r  SUPPORT FUNCTION!: 

V BY PROVIDING ADDITIONAL SUPPORTS 
INDEXERS 

OPS ION 3 - EXTENDED OUTRIGGERS 
DECOUPLE BEAM MACHINE FROM 
INDEXING 81 SUPPORT FUNCTIONS 



SOLAR ARRAY/BTRUCTURE ASSEMBLY W,?l'RODS 

Four methods are a h m  f o r  coupling the i n s t a l l a t i on  and deployment of so l a r  a r ray  blankets 

.cu :I1 tils end huflder  d t ruc tura l  assembly sequence. The br ~nl.ine eolar  a r ray  ~9gnlante sre oriented 

normal t o  the  continuous longi tudinal  beams. Hence the crrraycr may be e i t h e r  i ne t a l l ed  during 

p r o g r e s ~ i  lre stop-and-go beam fabr icat ion operations ( i  . e., bui ld  15m length-deplay s r r a p b u i l d  15m, 

e tc . j , inata ' led i n  ae r i e s  with the  compieted s t ruc tu ra l  ba~r (so i n  the  segmented build-up approsch), 

o r  ina+liLled during aynchronlzed operations with continued bean fabr icat ion.  An a l t e rna t e  uni- 

direct?.onrpl method i e  a l s o  dhown which align8 the so l a r  a r ray  eemente with the d i rec t ion  of 

conatructlon.' Tn t h i e  method, a l l  the  eolar  array8 i n  the  bay can be su tana t ica l ly  deployed aa 

the  beern fabr ica t ioa  process continula from ono frame t u  the next frsaa, 



SOLAR ARRAYISTRUCTURE ASSEMBLY METHODS 

PROGRESSIVE 
(15 OR 30 rn 
STEPS) 

SYNCHRONIZED 
FRAME.TO.FRAME 

SERIES 
COMPLETE STRUCTURE 
FIRST 

UNlOl RECTlONAL 
FRAME-TO-FRAME 



SOLAT( ARRAY BLAMCET INSTALLATION CONSIDERATlONS 

* 

The ad-ar  array installa. t ion method must deal with the rntrehanical and e l s c t r i c d l  

requirements for  hooking up the oppoaite ends of each blrvlket and %he required r a t e  of 

depluyment. The baseline solar  array ins t a l l a t ion  cycle takes 82 minutee, which includee 

55 minutea for  attaching and connecting the t r a i l i n g  eclge (m) and the leadlng edge (LE). 

Ths t r a i l i n g  edge connections are  made i n  ya ra l l e l  as the lebding edge deploys. With the 

blanket oriented normf.1 t o  the direction of construction ? t  must be deployed st a fas t e r  

ra te  t h a n  i f  it were aligned w i t h  the ttmergirg longitudinal beams. High ra tes  of 

deployment are generally undesirable since they impose increased braking requirements 

during extended blanket deceleration. The baseline deployment ra te  of 12.5 mpn can be 

reduced s ignif icant ly by aligning the solar  array selp~ents wlth the direction of build-ul;. 

It i a  recognized tha t  re-orienting the array8 a l s o  requires the power distr ibut ion eystem 

to be desiwed with multi-busses i n  l i e u  of the barreline centerline bus. 
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SOLAR ARRAY BLANKET INSTALLATION CONSIDERATIONS 

MECHANICALIELECTRICAL HOOKUP BLANKET ORlENTATlON & RATE OF DEPLOY 

1 x 1  ATTAcHicoNNEcT T.E. 

a DEPLOY L.E. 

ATTACHICONNECT L.E. 

I+- 55 MIN 
k---- 82 M IN 

DEPLOY 
RATE, 
mvm 

EXTENDED BLANKET DECLERATION - 
4196 kg (15 m r 660 m) SEGMENT 

MINIMUM STOPPING DISTANCE, m 

BASELINE 
3 : SIA DEPLOY 

AND 
Q BUS 

ALTERNATE ALIGNED 
SLOW SIA DEPLOY 

AND 
MULTI-BUSES 

u 



SOLAR ARRAY/STRWC~TRE ASSEMBLY COMPARISON (128 BAYB) 

The four assembly methods (progreesive, ser ies ,  eynchronized, and unidirectional) are compared 

i n  terns of t h e i r  s t ruc tura l  fabrication method, blanket ins ta l la t ion  direction, required deployment' 

ra tes ,  so lar  array ins ta l la t ion  equipments, construction base impact and related o a t e l l i t e  impact. 

Approximately 148 days are available fo r  constructing the power collection module, within the 

specified six months, when yoke assembly, antenna/~oke mating ar~d f i n a l  t ea t  and check out are 
considered. The required ra tes  for  fabricating the longitudi.na1 beam8 and deplaying the solar  arrw 
blankets i n  128 baya are shown for  the 8 bay, 1: hay, and 2 bqy wide construction bases. The saalyair 

includes the time fo r  fabricatink snd assembling satellite frame8 and djagonal supports and performing 

so lar  array mechanical and e l ec t r i ca l  hook-ups. It ~ h o u l d  be noted that  the longitudinal beame ara 

fabricated ~zt ~ u c h  l w e r  r a t e s  than the 5 rnpm r a t e  yaed t o  fabrlcate  l a t e r a l s  end dlagmale. For 

the cases examined, it was not possiblo t o  apply e i ther  the progressive o r  eer ies  methods f o r  the 

2 bay wide base since it took too long t o  accomplish. Both the eynchronized utnd unidirectionsl 

methods, however, were able t o  work within the available time. The unidirectional method exhlbitr  

the seme low rates ,  of course, f o r  beam fabrication and blanket deployment. Therefore It wae #elected 

for the 2 bay bass design. The progressive method of aesembly was eelected for the 8 bsy and 4 bay 

base desi~pls  since it could be made t o  work Cn 6 monthe. 

The u n i d t r e c t i o ~ ~ a l  method is a180 a t t r ac t ive  fo r  thc 4 bay nnd 8 bay designs because it requires 

the l e a s t  equipment and has l i t t l e  impact on the construction base. Recent Boeing analyeis ha6 

indicated tha t  the s ~ t e l l i t e  power bus can be reconfigured with no weight penalty. An assessment of 

s t ruc tura l  impact due t o  en4 builder construction methods and realigned eolar blanket preloadlng 
::nwever remains t o  be perfoxmed. 



SOLA? ARRAYISTRUCTURE ASSEMBLY 
COMPARISON (128 BAYS) 

1 ASSY METHOD 1 
I STRUCTURAL FA0 I I BLANKET ,4STALLN I 

148 DAY INDEXIDEPLOY 
&RAY WlDE RATES (mpm) 
&BAY WIDE RATES 
2-BAY WlDE RATES 

I S.A. INSTALL. EQUIP. 

I CONSTR BASE 
IMPACT 

I SATELLITE IMPACT I 

PROGRESSIVE I SERIES I SYNCHRONIZED I UNDIRECTIONAL I 
16 m STEPS 

BASELINE-LAT. 

(L. BEAM 81 SIA) 
0.17 & 12.6 4 
0.36 & 12.5. 4 - 
iNSTALLERS & 
DEPLOYEh 

STRAIGHT TRACK 
LEDGE 

STRUCT. - TBD 

COMPLETE BAY 

(1. BEAM & SIA) 
0.17 & 12.6 
0.36 & 12.6. - 
INSTALLERS, DEPLOYER 
& CROSS BAY GANTRY 

667 m SUPPORT ARMS 

STRUCT. - TBD 

FRAME -TO-FRAME 

L A 1  ERA1 

(1. BEAM & S/A) 
0.00 & 6.6 
0.18 & 12.3 
0.42 8 21.4 

INSTALLERS a 
OELOYERS 

CURVED RETURN 1 RACK 
OVERHANG 

STRUCT. - f BO 

ALIGNED 

INSTALLERS 

STRAlO HT TRACK 
LEDGE 

STRUCT. - TBD 
PWR BUS - NONE 

\/ ISELECTED FOR FURTHER STUDY 

"I 



SOLAR ARRAY/STRUCT(IRE ASSEMBLY TIMES 

Cmpara:ive times for assembling the  128-bay power collection module are on the 

facing page for  the  four  solar array/otructure asaernbly methods ( 1  .e., progressive, seriee,  

synchron iz~d ,  and a i r l l r ec t iona l ) .  I'he t o t a l  time needed to complete power collection 

mobile construction with a 2-bay, 4-bay, and 8-bay slide bsses are  s h m  f o r  a constant 

longitudinal beam fabrication ra te  (1 mpa). The e f fec t  o t  using 1 or 2 solar  array 

ins t a l l a t ion  crcwa i n  e ~ c h  bay is  a l so  shown where feasible. The unidirectional method 

has the potent ial  fo r  saving 100 days i n  total assembly time, compared either with 

progressive o r  series methods f o r  single crew 2-bay base operations. With 2 crews, the 

unidirectional method savers a l so  50 day8 for the 2-bay base, 20 da;ys fo r  s b-bcry base, 

and about 15 day8 for an 8-bay base using the progreeaive and seriee methode. 
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SOLAR ARRAY/STRUCTURE ASSEMBLY TIMES 
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ENT, BBUI LDER AIdTE!G?A CONSTRUCTION LOCATION 

i'l ve uptlons were invest iqet-ed for l o c a t  in(: t,lle end hul i d e r  c o n s t r i ~ c t i o n  si te.  Thece o1:tions 1ncl.uded 

t cp  y i b n e  ( l~or lzo i l t a l  and canted), rear declr (rorwarri find a f t  mounting) and back plane concepts as  shown. 

'F1,2 norizc tul t o p  plan? concept was seler te t i  a s  t h e  plveferred approach pr imar i ly  on t h e  bss i s  of' lowest 

~f i lpaz t  dn base s i z e  a,?d w t i g t l t .  The re:rr deck curicep.l;, featuring desirable j n l i n e  antenna Ivrndling for 

yoke mating and i n s t a l  lut! on, was r e t a ined  us  an alternate approach, The slide-through feature of the 

rear deck cor ept, of ccurse, requjres that the construct?on base be greater than 2-bays wide.  



END-BUI LDER ANTENNA CONSTRUCTION LOCATION 

COMPARISON 

BASE LOGISTICS IMPACT* 

SPS DES. IMPACT" 

ANTENNA HANDLING" 

PARALLEI./SERIES OPS 

I S 1  SPS LEAD-TIME 

C/O LlMlTATlON 

SEPARATiON COMPLEXITY 

BASE REPOSITION 
PROPELLANT REQMT I 

TDP DECK 

LEAST 

LOW 

ANT.-ROTATION 
PROVISIONS 

"rlf ATION 
(PIVOT ARMS) 

SERIES 

LONG 

NONE 

LOW 

MODERATE 

A 
"KEY ISSUES 

CANTED 

LARGEST 

LARGEST 

ANT. GIMBAL 

TRANSLATE 
(EXTENDER ARMS) 

SERIES 

LONG 

NONE 

LOW 

HIGHEST 

REAR DECK 

I MOUERATE I MODERATE 1 LARGE 

AFT MOUNT 

MEDIUM 

I POSSIBLE YOKE I I NONE 
BEEFUP 

FWD MOUNT 

MEDIUM 

I PARALLEL ( SERIES I PARALLEL 

BACK SIDE 

MODERATE 

IN-LINE I IN-LINE 
lNOEXER INDEXER 

I SHORT I LONG I SHORT 

EXCESSIVE HANDL- 
ING 

1 LOW RF POWER / NONE I INCOMPLETE CONFIG 

GUIDED EXTRAC- 1 LOW I W O l L A W E  RELEASF 
TlON REQD 

I LOW 1 HIGH I LOW 



BASE INDEXING OPTIONS 

Three base indexing clptions were evaluated on the basis of operational simplicity of 

the construction base as well as satellite design impact. The "pivot" option was deemed least 

desirable, mainly because of an undesirable two-point structural tie to the satellite during 

the pivot maneuver. The "double-ender" requires duplication of certain base construction 

equipment to permit production at both ends. It also imposes the need to reverse the cross- 

bay diagonal in the power-collector structure each time the base indexes to the next "strip". 

The "back-to-go" option appears to offer the simplest approach. Although its re-indexing 

time 1 s  the greatest of the three, other production operations ( e . g .  yoke, thruster structure, 

lateral beams, etc.) can be performed in parallel during this time. 



RE-INDEX TlME (DAYS)* 

BASE lNDEXlNG OPTIONS 

BACK-TO-GO PIVOT 
4- 

DOUBLE-ENDER 
c. 

CONSTRUCT EQUIP. RETRACT B/B RETRACT BIB DUPLICATE EQUIP. & 
IMPACT (1 SET) (2 SETS) RETRACT BIB (1 SET) 

INDEXING COMPLEXITY ONE SIDE ONLY BOTH SIDES ONE SIDE ONLY 

SATELLITE IMPACT NONE PIVOT LOADS REVERSE WEAVE 

ANT. MATING COM- TRANSFER YOKE TRANSFER YOKE YOKE IN-SITU 
PLEXITY 

81 EXPLORE UTILIZATION OF RE-INDEX TlME FOR 
YOKE, THRUSTER, ETC, CONSTRUCTION 

*I  mpm FOR 20 HOURS/DAY 
PCIUUWW 

7 



2-BAY EM) BUILDER - CONSTRUCTION SEQUENCE 

The 2-bay base constructs  t he  8 x 16 bay s a t e l l i t e  i n  4 passes, fabr icat ing a 2-bay s t r i p  

i n  each pass. Bot5  longi tudinal  and l a t e r a l  indexing r a i l s  a r e  provided for .  After completing 

the first pss ,  t h e  base i s  indexed Lateral.ly (2 baye) and then longitudinally ( l b  bays) t o  

l,?gin, a t  that point, the second pass. Note t h a t  t he  antenna i b  constructed i n  para l le l .  After 

completing t h e  second pass, t h e  yoke is  constructed while t h e  base is  re-indexed lo rq i tud ina l ly  

%a the point where it can s t a r t  the  t h i r d  pass. Arriving a t  t h i s  point ,  t h e  yoke is  completed 

and i s  transferred l a t e r a l l y  one bay t o  i t s  proper posi t ion on t h e  parer col lect ion ~:~odule and 

fastened i n  place. Antenna construction is a l s o  complete a t  t h i s  point. ( ~ o t e :  t he  off-center 

antenna ccnstruction s i t e  on t h e  base is  mandated by t h e  d e s i r a b i l i t y  f o r  an in- i ine  antenna 

rrsting operation).  When approximately 165 meters of t h e  3rd pass is  completed, t h e  remainder of 

t h e  yoke/power co l lec t ion  module in te r face  s t ructure  i s  i n s t a l l ed  and the  production sequence is 

ready f o r  anteLana mating. After performing antenna t r ans fe r ,  the  3rd pass is continued. The 

remaining 4 th  pess completes t h e  8 x 16 bay structure.  
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2 BAY END-BUILDER -- CONSTRUCTION SEQUENCE 

IST PASS 

BUILD 2-BAY 
WIDE STRIP 
PARALLEL 
ANTENNA 
BUILDUP 

.c- 

a COMPLETE 
2 x 16 BAYS 
INDFXLAT. 
GO EACK-TO- 
GO 

2ND PASS 

0 BUlLD2ND 
2-BAY STRIP 

I 

3 R 0  PASS 

MATE ANTENNA 
COMPLETE BUILD 3RD STRIP 
4 x 16 BAYS GO BACK-TO-GO 
INDEX LAT. BUILD 4TH STRIP 
GO BACK-TO-GO COMPLETE 8 x 16 
BUILDYOKE BAYS 

a TRANSFER YOKE 



ER CONSTRUCTION BASE 

The 2-bcy end builder construction base builds an &bey wide SPS, 16-bays long, i n  four passes. While 

dcf'ined a s  a 2-bay base, i t s  width (22.201~) encompasses a 3-bay segment of t he  power co l lec tor  s t ructure ,  

r ~ a i n 3 y ,  t o  prc.vide a I-bay overkip for l a t e r a l  indexing operations. Provisions a r e  mde f o r  both l a t e r a l  

and l o ~ i t u d l n a l  r a i l s  during base indexing operations. Its overa l l  height (1100m) permits t h e  power 
collectlor: module and antenna t o  be constructed one above t h e  other. I ts  depth (1400111) is suf f ic ien t  t o  

e n c o m p ~ o  the span of t h e  antenna and t o  pr*ovide a minimum 1-bay overlap f o r  longitudinal  indexing. Antenna 

pivot, ama ratute t h e  completed antenna t o  a posi t ion i n  l i n e  with t h e  so la r  array. Note t h a t  a tahort length 

(approximuxely 165i) of s o u r  a r r ay  s t ruc ture  i s  completed a t  t h i s  time t o  provide f o r  yoke support during 

antenna mating operatjons. 
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2 BAY E'ND-BUI LDER - CONSTRUCTION BASE 

PLAN 
VIEW 
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2 BAY END BUILDER CONSTRUCTION SYSTEM 

h j o r  equipment f u n c t i o n s  and t h e i r  s p e c i f i c  loca t , i cns  i n  t h e  b a s e  are i d e n t i f i e d .  Note t tu r t ,  

i n  set  A ,  a 60 in t r a v e l  d i s t a n c e  i s  provided t h e  l o n g i t u d i n a l  beam b u i l d e r s  t o  p e r m i t  f a i l u r e  

c c ~ r e c t i o n  i n  a 60 min. period ( a ~ s u m i n ~  a synchron ized  f a b r i c a t i o n  rate o f  lm/min) w i t h o u t  

s h u t t i n g  down the whole o p e r a t i o n ,  I n  S e t  B ,  t h e  l o n g i t u d i n a l  beam b u i l d e r s  shown are used only 

d u r i n g  t h e  f i r s t  "pass" and are r e t r a c t e d  d u r i n g  t h e  2nd ,  3 rd  and 4 t h  c o n s t r u c t i o n  pcrsses. No 

l a t e r a l  beam b u i l d e r s  are r e q u i r e d  a t  t h i s  s t a t i o n .  Dur ing  t h e  1st  p a s s  c o n s t r u c t . l o n , ~ t h e  lateral  

beam b u i l d e r s  in t h e  a d j a c e n t  s t a t i o n  s u p p l y  t h e  n e c e s s a r y  s t r u c t u r a l  e lements .  In Set C the lateral 
beam b u i l d e r s  are gimbal  mounted on  t i l t i n g  p l a t f o r m s  t o  p r o v i d e  t h e  beam b u i l d e r  o r i e n t a t i o n s  

n e c e s s a r y  to f a b r i c a t e  lateral, v e r t i c a l  and d i a g o n a l  beam e lements .  



2 BAY END-BUILDER - CONSTRUCTION SYSTEM 
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2 BAY END BUIIDER - CONSTRUCTION APPROACH 

Detail operations f o r  assembling l a t e r a l  frame beams and f o r  placement of solar array blankets 

a re  chown. The l a t e r a l  beam i s  asseml~led when the power collection module s t ructure i s  i n  plane 

with the l a t e r a l  beam builders. The sate1lit.e s t ructure is then indexed (about 40 m) fo r  ins ta l la t ion  

of power bus and solar array elements. The solar array ins t a l l e r  removes a solar array box from the 

supply cr ib  shown and fastens it t o  the proximal anchor on the base. A d i s t a l  end i n s t a l l e r  then 

connects the blanket t o  the l a t e r a l  frame beam. After the frame has been indexed one-bay away, the 

solar  array blankets a re  f u l i y  deployed and the box i s  disconnected from i t s  anchor and fastened 

to  the next l a t e r a l  frame beam. Both so lar  array.and bus (not shown) ins ta l la t ion  are performed 

i n  para l le l  a t  a s ta t ion  40 m from the l a t e r a l  beam builder s i t e .  



2 BAY END-BUILDER - CONSTRUCTION APPROACH 
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2 BAY END BUILDER - YOKE CONSTRUCTSON/ANTENNA MATING 

The yoke is constructed in the main S/A production facility after the second pass and is 

completed by the time the base has re-indexed "back-to-gonL (to begin the 3rd pass). The yoke 

is then transferred laterally (one bay length) in alignment with, and for attachment to, the 
power generation and distribution system structure. After the yoke is attached, the antenna 

is rctated Fnto alignment with the yoke and an off-site antennalyoke attachment is effected. 

This approach to yoke construction and antenna mating requires f'urther study. A detailed 
fabrication sequence for the yoke elements, rotary Joint, and yoke-support structure needs to 

be defined. It is probable that yoke construction will center close to the base's upper out- 

riggers where base structure already exists and where the necessary support for lateral trans- 

fer i~ already provided. 

Also, procedures need to be defined (with the addition, possibly, of a deployable out- 

rigger-extension) for the mechanical/electrical hookup of the antenna. 



2 BAY END-BUILDER YOKE CONSTRUCTION/ 
ANTENNA MATING 

YOKE FABRICATION 
81 TRANSFER 

FABRICATE 
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2 9AY END BUILDER TIMELINE 

SPS assembly operat ions commence wi th  t h e  cons t ruc t ion  of t h e  antenna which i s  timed f o r  

completion a t  t h e  appropr ia te  t ime i n  s o l a r  c o l l e c t o r  assembly. The antenna and yoke completion 

i s  shown a f t e r  t h e  second pass of t h e  end bu i lde r .  Note that t h e  yoke i s  constructed i n  p a r a l l e l  

wi th  indexing the  end bu i lde r  so  no s e r i a l  time a l l o c a t i o n  i s  required.  

The c o l l e c t o r  construct ion operat ions can now be shown by scheduling t h e  f i r s t  and second 

assembly passes .  The f i r s t  pass module cons t ruc t ion  operat ions continue as described on the  

previous c h a r t  with t he  following va r i a t i ons .  Bay 8 requ i r e s  a d d i t i o n a l  t i m e  because c o l l e c t o r  

and secondary busses a r e  i n s t a l l e d  f o r  the  end of  t h e  f i r s t  s t r i n g  of s o l a r  a r r a y s  and begin- 

ning of t h e  next.  Bay 16 cons t ruc t ion  time is  s h o r t e r  than  t h e  o the r s  because f ab r i ca t ion  

of  t h e  beams f o r  t h e  next bay have not  been included. The second pass requ i r e s  time a l loca t ed  

for i n s t a l l a t i o n  of  t h e  main b u e s e s ,  however t h i s  is  done during indexing opera t ions  s o  no 

serial time i s  added. Y a t e l l i t e  t h r u s t e r s  a r e  a l s o  i n s t a l l e d  during t h e  f i r s t  pass. The 

second and t h i r d  pass t imelines a r e  sho r t e r  because one s i d e  of  t he  modules a r e  common with 

t h e  s t r u c t u r e  previously assembled, t he re fo re  2 fewer beams a r e  b u i l t  and no l a t e r a l  t r a n s l a t i o n  

of t h e s e  beams i s  required. The last pass assembly operat ions take t h e  same time as t h e  

previous two passes hohever t h e  t o t a l  time is  i n c r e a s e d t o  ~ccommodate t h e  remaining t h r u s t e r  

i n s t a l l a t i o n s .  

Allowing a d d i t i o n a l  time beyond c o l l e c t o r  construct ion f o r  reindexing t h e  base  and mating 

t h e  yoke t o  t h e  c o l l e c t o r  and antenna t o  the  yoke, the  t o t a l  two bay end bu i lde r  construct ion 

time is  181 days. 



2 BAY END BUILDER TIMELINE 
(5 GW MONOLITHIC SPS) 
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2 RAY END BUILDER SATELLITE MODULE ASSEMBLY OPERATIONS 

The main feature of the 2-bay construction apprdach is  the deployment of the solar  array panels 

pa ra l l e l  t o  the longitudinalbeams. No solar  array deployers are needed and no time i s  required for  

deployment. However, t h i s  approach requires the addition of l a t e r a l  busses tha t  connect t o  the main 

bus a t  the longitudinal center of the collector.  

Construction commences with the mounting of solar  array canisters on the end builder structure 

and the fabrication of short  lengths of the longitudinal beams for  the joints  t o  which the end frame 

w i l l  be connected. Then the l a t e r a l  beams of the end frame are fabricated and joined t o  the longitad- 

inalbearnb, while the collector busses and switches are  mounted on the beams and the proximal end of 

the solar  arrays are  mechanically and e lec t r ica l ly  fastened. Finally, the remainder of the 2-bay end 

frame is assembled. 

Upon completion of the end frame, the secondary busses are attached t o  the structure and e lec t r -  

i c ~ l l y  connected t o  the collector busses. Then, the structure is  indexed longitudinally at one mpm. 

Meanwhile, the fixed beam machines fabricate the 667 meter longitudinal beams, the gimbled beam mach- 

ines fabricate the beams needed fo r  the completion of the bay and position them for assembly, when 

the indexing i s  completed.  his resu l t s  i n  high u t i l i za t ion  of the gimbled mach!nes.) The indeld.ng 

a l so  causes the  solar  array panels t o  be deployed. After the arrays are deployed, the d i s t a l  ends are 

mounted on the l a t e r a l  beams and the  p ig t a i l s  from the  se r ies  solar  array segments are  joined together. 

Cocstruction operations are based on 12 crewa (including s h i f t  leaders and re la ted s t a f f )  working 

on two sh i f t s .  Each crew consists  of two astroworkers, who work a t  7% productivity for  10 hour sh i f t s .  



2 BAY END BUILDER SATELLITE MODULE ASSEMBLY 
OPERATIONS 

DAYS 

0 1 2 3 4 5 

FA% & ASSEMBLE END FRAME 

DEPLOY END BUS 81 ATTACH SOLAR ARRAY 

FAB. LONG. INDEX FRAME, DEPLOY S.A. 
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FAB. 81 STORE NEXT FRAME BEAMS 

ATTACH S.A. SEGMENTS TO LATERALS 

FAB. LONG, INDEX FRAME, DEPLOY S.A. 

FAB. DIAGOKALS & ASSY NEXT FRAME 

CONNECT S/A TO S/A 

REPETITIVE 
' CYCLE 

48 TOTAL CONST CREW 

10 HOURS EACH 
75% PRODUCTIVITY 



24MY EKD BUIL.DER CONSTRUCTION EQUIPMENT 

The number of beam builders required was established as  the basis fo r  the 

construction approach, as explained previously. The driving operation f o r  the quantity 

of indexers occurs when the end builder t ranslates  along the edge of existing structure. 

The same bus deployer is  used f o r  both main and secondary busses. 'Railed cherry 

pickers are the most versat i le  piece of equipment identified, being used t o  join 

beams, i n s t a l l  collector busses, fasten solar  array segments, and transport beams. 

Joint  operations required the highest number of cherry pickers. 
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2 BAY END BUILDER CONSTRUCTION EQUIPMENT 

EQUIPMENT 

AUTO BEAM BUILDERS 
GIMBALLED 

FIXED 
INDEXERS 
BUS DEPLOYER 
30 m RAILED CHERRY PICKERS 

NUMBER 

4 
6 
8 
1 

10 
1 

(JOINTS 10, COLLECTOR BUS 2, SOLAR ARRAY 8, TRANSPORT BEAMS 2) 
# 



2 BAY END BUILnFR BAqE FEATURE8 

The main feature8 of this base are listed here. The baseline SPS is constructed by 

multigle passes of the end 3uilder, which builds a 2 bays wide strip, 16 bays Long, then 

indexes over to build successively, three more stripe. Construction system feature8 cover 

cost, mass and crew information. Major construction equipment for the s o u  army module 
is itemlzed. IastLy, the impacts of this construction eystem on the satellite Weeline 

are listed. 
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2 BAY END BUILDER BASE FEATURES 

MULTI-PASS CONSTR. OF 8 x 16 BAY 8PS 

CONSTR. SYS - UNIT COST (1877 $) - $6.818 - SIZE L x W x H  . = 1,.4x2.12x 1.1km - h?ASS 
0 STRUCTURE - 2 . 0 2 ~  l@kg 
0 TOTAL BASE = 4 . 8 ~ ~  108kg - CREWTOTAL I U 7  - CREW MODULES I 4 

ARRAY MODULE CONSTR. EQUIP. - BEAM MACHINES = 10 - CRANE/C,P, 1 10 - INDEXERS - 8 - BUS QEPLOYERS m 1 - SOLAR BLANKET DEPLOYERS 0 

SATELLITE IMPACTS' - SOLAR ARRAY ORIENTATION LOCYOlTUDlNAL 



4 BAY END BUILDER CONBTIILETION BABE 

This concept builds a 4 bay wide SPS, 32 brysr long, i n  a single pses. The e o ? . ~  array 

s t ruc tu ra l  configuration i s  the SPS baseline, with the exception of the lmgitudinalbeems 

which are  continuous. The antenna i s  constructed as baeelined. Thi8 base mates the antenna 
t o  the solar  array i n  the preferred location w i t h  the antenna aligned with the longitudinal 

centerline of the solar  array. 

Construction of the solar  array takes place in  an L-shaped f a c i l i t y  co~lprislng 8 epine, 

700 m x 2.77 h, and f ive  outriggers. This f a c i l i t y  i s  conetrmcted from the joining of square 

section open t russ  beams, provisionally sized a t  1\30 M per side. The spine ha8 a wide, deep 
s l o t  through which the  antenna can be indexed for assembly, Mounted on the epine are  euch 
construction equipment8 as  beam machines and handling devices, eolar blanket ins ta l la t ion  f a c i l i t y ,  
bue ins ta l la t ion  mechanisms, as  w e l l  as  habitation, docking, storage, e tc .  Typical beam aschine 
end so lar  blanket instal la t ion8 are  shown on a following chart. 'The five outriggers guide and 
support the longitudinal beruns of the BPS u n t i l  the bay structure i s  completed and eel.? ~upport ing,  

A typ ica l  construction sequence was s h m  and described on a previous chart ,  A following chart 
gives more d e t a i l  of the 4 .  bay end buil(1er overal l  approach. 

The antenna, yoke, and rotary Joint  are  bu i l t  on a platform which extends f rom the spine 

i n  l i n e  with the outriggers. 1t constructs the antenna ae baeelined, The yoke is then b u i l t  
around the antenna or, if time permits, it may be b u i l t  i n  the eolar array fcrcility and indexed 

t o  mate with the completed antenna. When b u i l t  m d  assembled, the antenna/yoke combination is 
repositioned, as  shown, on rotat ing indexers t o  a mating position which centers it on the s l o t  i n  

the spine and i n  the desired position for  assembly t o  t h e  solar  array. This repositioning manetvsr 
of the antenna can be avoided by relocating the platform t o  build the antenna d l rec t ly  i n  i ts  

mating position. Thie, hawever, reduces the clearance between antenna and platform ss the s a t e l l i t e  

i s  Indexed and separated from the base. 

support s t ru t s ,  shown typically,  will be dictated by s t i f f i e s s  mquiremente f o r  the base, 



4 BAY END BUl LDER CONSTRUCTION BASE 
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4 BAY AND 8 BAY ETJD BUILDER CONSTRUCTION SYSTEM 

This chart i l l u s t r a t e s  the mountings of two types of beam mackiines and a typ ica l  solar  array 

blanket deployment f a c i l i t y  on the end builder base, h n g i t u d i n a l  beams a re  continuous and are, 

therefore,  fabr icated by a fixed mount beam machine dedicated t o  ttut purpose. Transverse and 

diagonal beams a r e  segmented and do not each require a dedicated beam machine. To minimize the  

number of such machines, they are mounted on pivotable mounts which can d i r ec t  a beam where re -  

quired and thus produce beams fo r  d i f fe ren t  lacat iona,  

A s  described i n  the  4 bay and 8 bay construction approach, so la r  blanket s t r i p s  are strung 

l a t e r a l l y  across the bays as the struc,ture i s  indexed i n  increments, To s t r i n g  these blankets, 

a deployer, which i n s t a l l s ,  deploys and connec.ts the  s t r ings ,  runs on a t rack  scrc,ss the  face of 

the  base. The t rack  i s  mounted on an overhang a s  shown. The overhang can be extended t o  accouum- 

date  p a r a l l e l  deployer t racks  a s  needed, 



4 BAY & 8 BAY END BUILDER CONSTRUCTION 
SYSTEM 

a SOLAR ARRAY BLANKET DEPLOYER - RUNS ON TRACK LATERALLY ACROSS FACE 
OF BASE TO INSTALL & DEPLOY BLANKET 
STRIP 

\ 

@ -LONGITUDINAL BEAM FAB. MACHINE - FIXED LOCATION 
- CONTINUOUS BEAM 

TRANSVERSE & DIAGONAL BEAM FAB. MACHINE - PIVOT MOUNT TO DIRECT BEAM WHERE 
REQUIRED - SEGMENTED BEAMS - 

7 



1) AND 8 BAY END BUIZDFIR CONBTRUCPION APPROACH 

Struc tura l  assenibly of a s a t e l l i t e  by end bui lders  was described i n  a previous chart ,  which a l s o  

indicated at which point so la r  a r r ay  blankets, etc.,  may be ins ta l led .  The present char t  addressee 
the  ove ra l l  approaches t o  construction i n  the  4 bay and tl bay end builder bases. The first step 

constructe t h e  first frame of the  solar  a r ray  and s t a r t s  buildir, t he  antenna on its platform. In 

t h e  second step, the corrrpleted frame i s  Indexed outboard f o r  one bay l.ength by fabr icat ion of t h e  

longi tudinal  beams. This indexing is done i n  increments uf 60m. Af'ter each increment,four15 m 

wiae so la r  blanket s t r i p s  a r e  strung l a t e r a l l y  across  the  emerging s t ructure  t o  span t h e  longitudinal  

beams. They a r e  attached, i n  segments, t o  each beam and connection6 a r e  made. The blanket i n s t a l l a t i on  

i s  performed by mchines  running on an overhang which pro jec t s  rrom the face of t he  base. This is 

i l l u s t r a t e d  on a following char t .  Also, during indexing, longitudinel  b u s ~ e s  a r e  added on the  f l y  

as t h e  s t ruc ture  passes a f a c i l i t y  mounted t o  t h e  base. Lateral  bunseb a r e  added during aseembly 

while t h e  s t ruc ture  is  s ta t ionary.  After indexing is completed, s t ruc ture  is assembled t o  complete 

t h e  by. Building of t h e  antenna continues. Step 3 repeats  the  previous a c t i v i t i e s  u n t i l  t h e  e n t i r e  

a r r a y  i s  complete. D u r i n g  t h i s  time, t h e  antenna Is completed, t h e  yoKe and ro t a ry  Joint  bullt end 

assembled. The antenna is repositioned f o r  mating t o  t he  array, a s  i l l u s t r a t e d  i n  t he  4 bay end builder 

base description,  and the  m t i n g  s t ruc ture  added. supports mounted on the  a r r ay  and the  yoke Index t he  

satellite u n t i l  t h e  array I 8  c l ea r  of t h e  base t o  leave one se t  of supports t o  t h e  yoke, To put a 
pos i t i ve  r e l a t i v e  movement between the  s a t e l l i t e  and t h e  base, thus  avoiding co l l i s ion ,  a slow ro ta t ion  

is applied t o  t he  base. The antenna i e  kept parallel t o  the  base outriggers by acturrting t h e  elevation 
jo int .  When t h e  antenna is  c l ea r  of t h e  s l o t  i n  t h e  krse through which. i t  was indexed, t he  satellite 

is s e p a t e d  from t h e  kse. 



4 & 8 BAY END BUILDER CONSTRUCTION APPROACH 

BUILD FIRST FRAME 
START ANTENNA BUILD 

INDEX FRAME 6673 INCREMENTS TO ADD SOLAR 
BLANKETS ACROSS EACH BAY 
BUILD REST OF BAY STRUCTURE 
CONTINUE ANTENNA BUILD 

'1 
REPEAT TO COMPLETE SOLAR ARRAY 
COMPLETE ANTENNA BUILD 
BUILD YOKE & ROTARY JOINT AROUND 
ANTENNA ' RE-POSITION ANTENNA & MATE 

* INDEX SATELLITE FROM BASE -- WHEN ARRAY IS CLEAR;APPLY SLOW ROTATION - 
TO BASE ONLY 
USE ELEVATION JOINT TO KEEP ANTENNA 

-7 
PARALLEL TO BASE 
WHEN ANTENNA IS CLEAR, SEPARATE FROM BASE 



8 BAY END BUILDER CONBTRUCTION BASE 

Thia baee builds an 8 bay wide SPS, 16 bays long, in a single pass . 
It i s  identical to-the 4 be;y end builder, which i s  described in  depth e lse-  

where, except that it has eight conetruction bays, rather than four, t o  

build the wider solar array. 



8 BAY END BUILDER CONSTRUCTION BASE 

NOTE: ANTENNA & SOLAR ARRAY BUILD, SAME 
AS 4 BAY BASE 



4 BAY AND 8 BAY END BUILDER TIMELINES 

The overal l  assembly operations f ~ r  t he  4-bay and &bay conf'iguratione a r e  re la t ive ly  simp.le and s t ra ight  

?%?ward. The basic structure consis ts  of 32 four-bay modules (or 16 eight-bay modules) constructed i n  se r ies  

with a pair  of thrusters  assembled and ins ta l led af'ter the  second module and another pair  a f t e r  t he  last 

module. The completion of the  basic structure is  imedia te ly  followed by a ten  day period for the construction 

of the  yoke. Meanwhile, the  antenna has been constructed wit hi^ a 140 day period, so a8 t o  be bvailable 

by t he  t iw  the  yoke w a s  completed. The next; four days a re  spent connecting tk yoke and the  a n t e m .  The 

remaining 20 day period i s  se t  aside f o r  t e s t  and checkont i n  accordance with the Boeing ground rules.  The 

assembly of t h e  en t i r e  SPS w i l l  be completed i n  ltlO days fo r  t he  4-bay version and 171 days for the &-by 

version. 



4 BAY & 8 BAY END BUILDER TIMELINES 
(5 GW MONOLITHIC SPS) 

b 

DAYS 
0 40 80 120 160 200 

ASSEMBLE POWER COLLECT. 
MODULE I 4 BAY 146 I 

- ----- 
8 BAY 137 - -1 C - - - - - - - - 

ASSEMBLE YOKE 

ASSEMBLE ANTENNA 

MATE YOKE & ANTENNA 

FINAL TEST & C/O 

4 BAY IOC 180 DAYS A 

8 BAY IOC 171 DAYS A 



4-BAY AN3 &BAY END BUILDE;R SATEUITE MODULE ASSEMBLY OPERATIONS 

The assembly operations for  t he  4-bay and U-lay end bci lder  modules a r e  ctif;entiRlly ident ical ,  varying 

only i n  t h e  duration of t h e  various phases. Both versions begin wi th  the construct-ion of t h e  end frame. 

That is followed by 11 i t e r a t i ons  of a two step proces.c- which cons i s t s  of (1) the  fabr icat ion o? 3 meters 

of' longi tudiaal  beam and busses and (2)  t h e  simuitaneous deployment of four so la r  a r r ay  segments l a t e r a l l y  

across t t l z  4 or 8 bays. A t  the -.-aclusion of those 11 i t e r a t i ons ,  another frame is congtructed and then 

t h e  necessary diagonals are fabricated and i n s t a l l ed  between t he  two frames. Note,. that t.wo 4-bay wide 

modules a r e  completed i n  approxi~rrately t h e  sane time as the  &bay wide module; and the total crew required, 

assuming two W-hour s h i f t s  per day and a 75% productivity factor ,  i s  6C men for the 4 - b y  version and 9 
for the &bay version. 
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4 BAY & 8 BAY END BUILDER SATELLITE 
MODULE ASSEMBLY OPERATIONS 

F4BRICATE & ASSEMBLE END FRAME 0 
FAB. LONG. & DEPLOY BUSSES I I I I I I I I I I I iZ--=+E 
DEPLOY SOLAR ARRAYS 7 -  -: m :----. 4 

FABRICATE & ASSEMBLE FRAME 

CABRICATE & INSTALL DIAGONALS rJ 
- 

FABRICATE & ASSEMBLE END FRAME 

FAB. LONG. 81 DEPLOY BUSSES I I I I I I I I I I l  
DEPLOY SOLAH ARRAYS 

FABRICATE & ASSEMBLE FRAME 0 
FABRICATE & INSTALL DIAGONALS 

60 & 92 TOTAL CONST CREW 
(4 BAY 81 8 BAY) 

HOURS/SHI FT 
76% PR3DUCTIVITY 



by d e f i n i t i o n  t t l e  end bui lder  concept r equ i r e s  one f ixed  end bui lder  for the cons t ruc t ion  of each 

longi tuc t i ra l  t e e m .  Thus, t h e  4-bay end bu i lde r  w i l l  use 10 fixed beam m c h i n e s  and t h e  8-bay verslon 

w i l l  use 10, 'fire rcrmlader of tlie structure is rmn~lfactured by s t a t i ona ry ,  gimbled beem bui lders .  One 

upper artd one lower ki:atled bearn rnachine can produce t h e  h t e i S a l ,  v e r t i c a l  and diegonal -me needed for 
9 

orre k y .  One .mre girnbled. beam rmzhine i s  needeii f o r  the e x t r a  vertical beam and diagonal  ham a t  t h e  

edge crk' tne s t r u c t u r e .  Thus, &he nwnber o f  girotled be&m nwkers is 2W1, where B represents  the number of 

bwys. 

Four inc-iexerr: are cequirerl. h e  pair, operat ing i n  p r a l l e l ,  w i l l  be uoed t o  advance the sf;rmcture 

a a i s t ance  o f '  s i x t y  roetcrs. Sirnultanrously w 1  h the indcx iw  o'perat,ion, the f i xed  beam machinerr w i l l  be 

sanufactur ing the  lr~iiyit,udirluL bearno and t h e  t i~ s  deployer will deploy t h e  h o s e s .  Af te r  t h e  indexing, the 

sc.cor,d ;sir ~ J L '  I r i r l c ~ e r ~  w i l l  attach to t h e  recrr ,f' the sec t ion ,  t hus  providing adequate support for t h o  

a t ruccu re  during the ~ o h r  array depir,yr~efit. Thr:n the  forward ir~dexero will detach and t r a v e l  t o  a pos l t ion  

ot' r e a d i n e m  f o r  t h e  next indexi~lg  operat ion.  

During GO tar array tleploymnnt LJ che r ry  pjckcru are needed. Two c11::rry p lckers  a r e  uoed I n  c z n j u ~ x t l o n  

with each of the t'osr deployerr; t o  ins tc r l l  the solar a r r a y  segroent containers ,  a t t a c h  t h e  leading edge deployer 

tc, t r 1 3  ca tenary  end r i ngs ,  l r ~ r ~ r l  off' tire l t ~ l d i r l r ;  edge caterfiry to t h e  d i s t a l  end and connect tile e l e c t r i d d  

gigtfcil. liowever, during t h e  corrrstructlon of the bas ic  st;ructurs two cliarry p ickers  are riaeded t o  a t t a c h  

%tie l a t e r a l s ,  v e r t i c a l s  and diagumlrc to each l r ~ r g i t u d i ~ l c t l  berrra. Thus, 20 cherry p ickers  arc needed f o r  

t h e  4-bay version and 3t are needed f o r  tihe &bay veW*lcn. 
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4 BAY & 8 BAY END BUILDER CONSTRUCTION EQUIPMENT 

-.-..- ... ---.. ......... -.., ........ - 

AUTOMATIC BEAM MACHINE 
GIMBALLED 
FIXED 

INDEXER 
BUS C.:PLOYER 
S/A DEPLOY E R 
CHERRY PICKER 

-.----- ----... ---*- ---.-... ...------ ... ............. 

- - _ I ? _ .  

4 BAY 

9 
10 
4 
1 
4 

20 

-- 
8 BAY 

17 
18 
4 
1 
4 

36 



4 MY EN) 13UIIdHR MSE I;'FAIPURES 

T h i s  cha r t  follows the f ea tu re s  format of the 2 buy end builder, It constructr, an SPS, 

whose c o r i f i p c t t i o n  has changed from the bafieljne t o  a I! x 32 b ~ y  layout, in a single pass. 

The cons t ruc t ion  syskem feat;ures, nujor c~1ripment;s and t h e i r  impacts on the  satellite are 

l i s t ed .  
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4 BAY END BUILDER BASE FEATURES 

CONSTR. SYS - UNIT COST (1977 $1 - ~e.see 
b - SIZE L x W x H  = 2.9 x 2.77 x 0.88 km - MASS 

STRUCTURE = 2 . 4 9 ~  106kg 
0 TOTAL BASE - 6.58% 106kg - CREW TOTAL .1 469 1 - CREWMODULES I 4 

ARRAY MODULE CONSTR. EOUIP. - BEAM MACHINES 1. 18 - CRANE1C.P. = 20 - INDEXERS = 4 - BUS DEPLOYERS I! 1 - SOLAR BLANKET DEPLOYERS a 4 

. ' SATELLITE IMPACTS - SOLAP ARRAY ORIENTATION LATER L BASELINE - BUS l R LOSSES 1, 2.6 x 1 3 kg 



8 BAY END BUILDER BASE FEATURES 

This base builds the baseline SPS in a single pass. The chart follows the 2 bay end 

buila?r features f o m t  in listing the construction system features, mador equipmente and 

their -cts an the satellite. 
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8 BAY END BUILDER BASE FEATURES 

SINGLE PASS CONSTR. OF 8 x 16 BAY 8PS 

CONSTR. SYS - UNIT COST (1077 $1 I - SIZE L x W X H  I 

- MASS 
0 STRUCTURE I 

Q TOTAL BASE I 

- CREWTOTAL I 

- CRP'N MODULES I 

ARRAY MODULE CONSTR. EQUIP. - BEAM MACHINES m 

- CRANE/C.P. I - INDEXERS = 
- BUS DEPLOY ERS I - SOLAR BLANKET DEPLOYERS 

SATELLITE IMPACTS - SOLAR ARRAY ORIENTATION I LATERAL BASELINE 
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4 BAY IWPERNAL CONSTRUCTION BASE 

The in t e rna l  construction base builds t he  s a t e l l i t e  around i t s e l f .  This par t i cu la r  appl icat ion 

bu i lds  a 4 bay wide SPS, 32 bays long, i n  a single pass. It bui lds  the  baseline solar  a r r ay  s t ructure ,  

The antenra end i t s  construction a r e  a l s o  baseline. 

Construction of t h e  so la r  a r r ay  takes  place i n  a f a c i l i t y  which has a spine with 1 0  outr iggers  

project ing from it, a s  shown, The upper and lower outriggers of each pa i r  a r c  o f fae t  from each other  

t o  enable the  l a t e r a l  diagonal members of the  s t ruc ture  being b u i l t  t o  pass through when it is 

indexed. Construction of the  a r ray  s t ructure  i s  similar t o  t h a t  described already f o r  the  end builder 

concepts, except t h a t  t he  longi tudinal  membero a re  not continuous and therefore  do not require  

dedicated beam machines. All beam machines a r e  mounted on the spine. The so la r  a r r a y  blanket s t r i p s  

a r e  deployed longitudinally,  i n  the  direct ion of s t ruc ture  build, a s  they were i n  t h e  or ig ina l  10 aW SPS. 

Since t h e  indexing s t ructure  can be used t o  deploy the  a r ray  blanket, spec ia l  deployment mechsnisme, as 

were provided fo r  the  end builder,  a r e  not required. 

The antenna, yoke and ro ta ry  Joint  a r e  b u i l t  a s  described f o r  t he  end builder busses. Their 

cons t r -~c t ion  platform is i n  l i n e  with a s e t  of outriggers,  as shown. The antenna/yoke/rotary Joint  

are mated t o  t h e  so la r  a r r ay  i n  t h e t r  >onstr~lcted posit ion.  This leaves them off  set from t h e  center- 

l i n e  of t h e  so la r  a r r ay  i n  two planes. The l a t e r a l  o f f  s e t  r s  t o  allow t h e  ro t a ry  jo in t  t o  c l e a r  the  

re levant  outrigger arm when t h e  completed s a t e l l i t e  i s  indexed t o  c l ea r  t h e  so la r  a r r ay  from t h e  base. 
The la rger ,  v e r t i c a l  o f f s e t  is  t o  avoid maneuvering t he  antenna f o r  mating t o  t h e  so la r  array. This 

o f f s e t  can be eliminated by considerably extending cutr iggers  on one side,  t o  support the  completed 

so l a r  a r r a y  while rmneuvering t he  antenna c l ea r  of i t s  platform and down t o  be aligned with the 

cen te r l i ne  of t h e  array.  This is a t rade  off  between add i t i on r l  etructure,  together with a n t e m  

maneuvering equipment, and control  requirements. 



4 BAY INTERNAL CONSTRUCTION BASE 

/ 

ANTENNA/YOKE 
& SOLAR ARRAY 
MATING 



INTERNAL BASE CONSTRU=TION APPROACH 

Struc tura l  assembly of a s a t e l l i t e  by end bui lders  was addressed i n  a previous chart .  a 
similar procedure w i l l  be followed by the in te rna l  base. Tkre present ci.&rt addresses t he  overa l l  

~lpproach t o  construction i n  t h e  in te rna l  base. The fir& step c o n n t r ~ ~ +  0 t h e  first frame and 

a t taches  so la r  a r r ay  boxes. A t  t h e  game t i m e ,  antenna construction :Is ~ t a r t e d  on i t s  platform. 

The completed frame i s  then indexed f o r  one bay length which, a t  the  same t i m e ,  deploys the solar 

array blanket.  Iiongltudinal busses are ins ta l led  '09 the  f l y r  from a f a c i l i t y  mounted on the base. 

Lateral busses are i n s t a l l ed  during construction while the  s t ructure  i s  stationary.  Having indexed 

t h e  frame, t h e  r e s t  of t he  bay s t ruc ture  i s  then assembled t o  complete t he  bay. A t  the  same time, 

t he  next row of so la r  array blankets i s  ins ta l led  on t h e  next frame. The antenna build continuee. 

The next step indexes the bay ju s t  completed and again deploy8 the array. 

Previous s teps  are repeatee t o  complete t he  a r r ay  build. The antenna l a  completed and t h e  yoke 

and ro t a ry  jo in t  b u i l t  around the  antenna. The last eolar a r r ay  bay t o  be b u i l t  l a  Sndexed suf f ic ien t ly  

t o  allow i n s t a l l a t i o n  of t h e  s t ruc ture  mating it t o  the  antenna assembly. The s a t e l l i t e  is then 

indexed from t h e  base and separated. 
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INTERNAL BASE CONSTRUCTION APPROACH 

L, 

BUIlO REST OF 
BAY STRUCTURE 
ATTACH ARRAV 

I BOXES TO NEW 
INDEXFRAME FRAME 

hK? -* 667.5 PLOYING m OE- SOLAR CONTINUE AN- 
TENNA BUILD 

BUILD Fll iST FRAME 
ARRAY 

8 ATTACH ARRAY CONTINUE AN- 

BOXES 
TENNA BUILD 

INDEX BAY 667.6 m 
DEPLOYING SOLAR 
ARRAY 
REPEAT THIS & 
PREVIOUS STEP 
TO COMPLETE 
SOLARARRAY 
COMPLETE AN. 
TENNA. BUILD 
Y OK€ & 110- 
TARY JOINT 
AROUND AN- 
TENNA 

INDEX LAST 
BAY 300 m 
ADD STRUCTURE 
MATING YOKE TO 
ARRAY 
INDEXASSY 
FORM BASE 

START ANTENNA 
BUILD 



4 BAY INTERNAL BASE FEATURES 

This oase Sui lds  an SPS whose configuration has changed frm t h e  baseline t o  a 

4 x 32 bay layout. Unlike the end builder bases, it builds the s a t e l l i t e  around 

itself. The main features of the base are l i s t e d  under the categories of const.ruc- 

t i o n  system, construction equipment and the  impacts on t h e  satellite. 



D 180-2487'2-1 

4 BAY INTERNAL BASE FEATURES 

@ SINGLE PASS CONSTR. OF 4 x 32 BAY SPS 

CONSTR. SYS 
- UNIT COST (1977 $) a $6.83R 
- SIZE C x W x H  n 2.38 x 2.95 x 0.40 km 
- MASS 

o STRUCTURE = 2 . 5 1 ~  106kg 
0 TOTAL BASE = 5.7Sx106kg - CREW TOTAL = 469 - CREW MODULES 1 6 

' ARRAY MODULE CONSTR. E(HqIP. 
4 - BEAM MACHINES = 10 

- CHERRY PICKERS = 20 - INDEXERS = 8 
- BUS DEPLOYERS I 1 
- SOLAR BLANKET DEPLOYERS .I 0 

SATELLITE IMPACTS 
- SOLAR ARRAY ORIENTATION LONGITUDINAL 
- BUS 1 2 ~  LOSSES = 2.5 x 106 kg - OFF AXIS ANTENNA MOUNT 



BOOTSTRAP CONCEPTS 

Two flavors of concept are considered. The first uses cons tkc t ion  f a c i l i t i e s  

incorporated in to  a bade dedicated t o  the co~istruction of the s a t e l l i t e .  lhis base fabricates 

the s a t e l l i t e  s t ruc tura l  members and assembles thzm while being supported by the l a s t  piece 

of structure it assembled. The levels  of cc .~struct ion f'unctions provided b.1 the base a re  

categorized in to  (a) where a l l  functions are  provided by the f a c i l i t y  and (b) where use i s  

made of operational f a c i l i t i e s  iacorporated in to  the s a t e l l i t e ,  such as  maintenance. The 

s a t e l l i t e ,  however, w i l l  carry no penalty fo r  such use of i t s  f a c i l i t i e s .  -Thus, we have two 

options f o r  bootstrap cons.truction. 

A t h i r d  option, and the second concept category, does not use a dedicated f ac i l i t y .  Here, 

a l l  construction f'unctions are  prodded by the s a t e l l i t e .  Use is  made of bui l t - in  f a c i l i t i e s  provided 

fo r  such fuactions as maintetmce, solar  c e l l  anilealing, e t c ,  Other f a c i l i t i e s ,  including 

additional tracks fo r  construction equipments, s t ruc tura l  s t i f fhess  to  support large equipments, 

and adaptation of maintenance f a c i l i t i e s  t o  snable construction, a re  carried as 3cars by 

each s a t e l l i t e .  Sane eq~ipments, such as 'beam machines,'worfld be removed from the s a t e l l i t e  

a f t e r  it is  b u i l t  and used again. 

The three options are exmined fur ther  on thk next chart. 



BOOTSTRAP CONCEPTS 

DEDICATED CONSTRUCTION FACILITY 
SUPPORTED BY STRUCTURE IT  BUILDS 

ALL CONSTRUCTION 
FUNCTIONS PROVIDED 
BY FACILITY 

OPTION a 

CONST RUCTlON FUNCTIONS 
UTILIZE SATELLITE 
MAINTENANCE 
FACILITIES WHERE 
PRACTICA t 

ALL OTHER CONSTRUCTION 
PROVIDED BY CONSTRUCTION 
FAClL ITY 

SATELLITE CARRIES 
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NO DEDICATED CONSTRUCTION FACILITY 

ALL CONSTRUCTION 
FUNCTIONS PROVIDED 
BY SATELLliE 

UTILIZE SATELLITE 
MAINTENANCE FACILITIES 
WHERE PRACTICAL 
OTHERWISE INCORP. INTO 
SATELLITE AS PENALTY 

OPT ION C;, 



The previoua .har t  considered bootstrap concepts and retsu2'sd in three options. The 

f i r s t  provides a baee which car r ies  eU. equip~ents  neceseary t o  construct the ea t e l l i t e .  

This, i n  fact, ?s the option presently being studled and l a  covered by the 2-bay, 4-bay, 

and 8-bay end builders, as w e l l  as the I+-bay in terna l  base, A minimum eize facility might 

use a platform, sized t o  build the anterm, as 8 l a s e  f o r  solar  array conatructian i n  2 bay 

wide increments. 

The second option uses f a c i l i t i e s  incorporated i n t o  the satellite f o r  operational 

f'unc+,iona euch as maintenance. A l l  other conetruction f a c i l i t i e s  are prov-dad by a 

dodicated base. A posaible exrunple of such a eyfltern i a  shown i n  the sketcvh where a -try, 

pernaps prodded for  acceea t o  the solar  array fo r  maintenance and repair  or  t o  carry c e l l  

annealing equipnent, aezvea t o  depluy the a o h r  blanketti. Other conetruction equipment8 m e  

carried by the b u e ,  This approach appears pranising but c m o t  be developed un t i l  the 

s a t e l l i t e  design and the construction approach have matured. 

The th i rd  opti6n does not 3ave a dedicated base but car r ies  a l l  cons tn~ct ion  equipment8 on 
the s a t e l l i t e .  An example a h m  s t a r t s  with a habitatian/docking/storags module t o  which 

bean. machines are moored. The machines move radially outward from the module on the en& of 

the beams t h a t  they fabricate,  t o  build a s t ruc tura l  bay. This proceee i s  then continued by 

building bay upon bay. Further stuQt of t h i s  approach is not recaawended, a# it appears unduly 

complicated. 
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PHASE ONE CONSTRUCTION ANALY S l  S REMAINING TASKS 

A t  t h l s  p o i n t  I n  t ime, we have narrowed the  number o f  a1 t e r n a t i v e  cons t ruc t ion  concepks f r ~ m  
6 p o s s i b i l i t i e s  down t o  3 v i a b l e  c+ t ions .  I n  the next couple o f  weeks, these opt ions w i l l  be 
character ized t o  equ iva len t  l e v e l s  of d e t a i l ,  i nc lud ing  mass and cos t  est imates. The preferred 

concept w i  11 be selected us ing the se lec t i on  c r i  t e r i a  described e a r l  i e r .  A f t e r  se lec t i ng  the  

winner, i t  w i l l  be necessary t o  assess the p o s s i b i l i t y  of ser les  cons t ruc t ion  r a t h e r  than 
p a r a l l e l  cons t ruc t ion  t o  see i f  there i s  an economic and opera t iona l  advantage. We w i l l  a l so  
i n t e g r a t e  the cons t ruc t ion  concept w i  t h  the cons t ruc t ion  l o c a t i o n  t rade r e s u l t s  . I n  para1 1  e l  

w i t h  the  tasks described above, the antenna and GEO base operat ions w i l l  be updated. A l l  o f  
the analyses w i  11 then be i n teg ra ted  i n t o  a  composite p re fe r red  cons t ruc t lon  approach d e s c r l p t l o n  

t h a t  w i l l  be p a r t  o f  the  updated Pre fer red  Concept System Desc r ip t i on  book t h a t  w i l l  become 

the basis  f o r  Phase Two studies.  
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Phase One Construction Analysis 
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GROUNDRULES 

LEO CONSTRUCTION 4 BY 8 MODULE 2673 m JC 6348 m 

FABRICATION IN DlRECTlON OF MAJOR AXIS OF 
MODULE 

CONSTRUCTION BASE MAJOR AXIS IS EARTH POINTING* 
CONSTRUCTED IN DIRECTION OF VELOCITY VECTOR 

SOLAR BLANKET PRELOADED UNIAXIALLY 

BEAMS ATTACHED CENTROIDALLY 

@ FLATNESS REQUIREMENT 
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DESIGN DATA 

MASSOATA 
SOLAR ARRAYS 5.178 x lo7 kg 

MW ANTENNAS 2.521 x lo7 kg 

WT GROWTH 2.051 x lo7 kg 

TOTAL 9.75 107 kg 
SOLAR ARRAY BLANKET UNIT WElTHT - 0.427 kg/rn2 

SPS NATURAL FREQUENCY INCLUDING SOLAR CELLS 
& ANTENNAS - 0.0012 HZ 

SOLAR BLANKET NATURAL FREQUENCY - 0.0024 HZ 

SOLAR BLANKET PRELOAD NEEDED TO OBTAIN FRE- 
QUENCY = 4.285 N/m (0.0245 LB./IN.) 

FACTOROFSAFETY -1.4 

30 YEAR SERVlCE LIFE 

357 



DESIGN CONDITIONS 

The more s i g n i f i c a n t  c t , ructural  loading condit ions cu r r en t ly  a r e  t h e  s o l a r  a r r a y  blanket 
9 

preload and loads caused by t r anspor t  of t h e  1, bay x 8 bay module t o  CEO. The f i r s t  condi- 

t i o n  causes a h igh  l o c a l  ctsp load i n  the  7.5 meter hem;  t;he second induces the highest  column 

compression load i n  tdhe 7.5 rn by 667.5 m beam. 111 ~ A G  ~ f ~ i ~ c h  as aluminurn t a s  a coef'rjcient. of' 

t,herrral expansion (CTE) greater  t h a n  the u d v u c e d  s t r u c t u r a l  composites, t he  e f f e c t  of gradien ts  

on c l i s tor t ions ,  s t r e s s e s  e tc . ,  are under eval~mtion.  Therrnal con t ro l  f ea tu re s  w i l l  be incorpara- 

Led F n  t he  tlesign t o  minimize f~t.~ermnal/structurrrl response, These include thermal coat ings,  in- 

cor1,oration of l igh ten ing  holes i n  members, e t c .  loads induced during f ab r i ca t ion  and handling 

w i l l  a l s o  r equ i r e  assessment. 
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DESIGN CONDITIONS 

SOLAR BLANKET PRE-LOAD 

TEMPERATURES & THERMAL GRADIENT TIME 
HISTORIES 

TRANSPORT ACCELERATION TO GEO 

ATTITUDE CONTROL & STATION KEEPING 
TORQUES 

STIFFNESS 

INTERFACE LOADS BETWEEN MODULE & 
CONSTRUCTION BASE; BEAM HANDLING 



SOLAR ARRAY PRELOAD DESIGN CONDITION 

The LEO baseline configuration utilizes a four bay wide construction base to fabricate 

the 11 bay by 0 bay module. During module construction, the 15 meter wide solar array blankets 

are installed on the two end bays of the 8 bay length as shown. The 15 meter arrays are 

interconnected along their lengths and uniaxially pretensioned such that the blanket natural 

frequency is 8.64 cph. Bending moments, caused by the pretension result in high axial com- 

pression loads in the caps of the 667.5 m beam, This condition gives the critical load in 

the cap. 



SOLAR ARRAY PRE-LOAD DESIGN CONDITION 

W7.5 m DIRECTION OF 
?RE-LOAD ON -1 SOLAR ARRAY 
----t 

CONSTRUCTION 
BASE 

DIRECTION 
OF MAJOR 
AXIS OF 
SPS I' 

- DIRECTION OF FABRICATION 
FREQUENCY OF UNlAXlALLY LOADED MEMBRANE 

P = LENGTH METERS 
S = TENSION PER UNIT WIDTH 
W = ARRAY UNIT WEIGHT 

REQUIRE0 /,, = 8.84 cph 



LOADS APPLIED TO BEAM BY SOLAR ARRAY 

I 
/ 

/ VERTICAL 
I 
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4 BAY BY 8 BAY MODULE 

THRUSTERS 

MODULE MASS - 6,500,000kg 
ANTENNA MASS - 12,200,000 kg 

MAXIMUM THRUST TO WEIGHT RATIO = 0.0001 



!4ODULE SELF TRANSWIiT TO GEO DESIGN CONDITION 

The maximum compres3ion load in tho 667.; meter member results from the module transfer 

from LEO to GEO. The four thruster forces are .~,pplied to the aodulb and antenna massee aa 

shown in the figure. A dynamic magnification factor of 2.0 and a factcr of 1.4 are applied 

to the member loads. The maximum compression load in the 667.5 meter beam ie -7544 lbe. 
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DESIGN LOADS ON MODULE 

CONDITION 

1 DYNAMIC MAGNlFlCATlCHJ FACTOR - 2 

2886 LB FACTOR Of  SAFETY = 1.4 F3R ULTIMATE 
FOSCE PER THRUSTER = 2886 LB 
ANTENNA INERTIA FORCE = 7632 LB ULT. 
MODULE INERTIA FORCE = 4013 LB ULT. 
ANTENNA SUPPORTED AT POINTS A, B, C, 0 
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SUMMARY TRUSS LOADS DUE TO ORBIT TRANSFER FROM 
LEO TO GEO 

7.5 m BEAMS ( (LB ULTIMATE1 

NOTE: PRETENSION UNIAXIAL SOLAR BLANKET 
LOADS ON UPPER BEAMS DO NOT ACT ON 
ABOVE MEMBERS. BENDING CAUSED BY 
SOLAR ARRAY PRETENSION OCCURS ON 
7.5 m BEAMS NORMAL TO ABOVE BEAMS. 

INCLUDES MODULG & ANTENNA MASSES 



VARIATION OF CRITICAL CAP COMPRESSION LOAD 
VS BEAM DEPTH 

MAX MOMENT ON 667.5 rn BEAM = 2.96 x lo6 IN.-LB ULTIMATZ 
H 

LOAD -6 
l N H & I  
LB n 103 
ULTIMATE -4 t 

0 - r  
0 5 10 16 

- b METERS 



ALUMINlM BEAM DESIGN 7.5 MJiTER 

The aluminum t r iangular  cross section beam d e s i m  incorporates three r o l l  formed cloeed section 

caps interconnected by battens opaced at 7.5 meters, Shear s t i f f ne s s  can be provided by e i t he r  pre- 

loaded cross cables o r  compression/tension members, The cable concept i s  approximately 2 6  l i gh t e r  

and has been selocted f o r  the baseline aluminum struct;ure, Hwever, pretensioned cdblee for ehear 

s t i f fen jng  may induce potent ia l  problema such as: adduetment of a l l  cable tensions t o  the proper 

preloads t o  prevent slack at any time, f a i l u r e  of cable attachments, potent ia l  f o r  excessive material  

creep deformation under sustained load and temperature f o r  30 years increased by an appropriete 

s ca t t e r  fac tor ,  e f fec t  of selected cable system on l a t t i c e  column capabil i ty,  e tc .  

I'he selected cap s ize  f o r  the design loads Is 7.5 inches deep ~d has e thickness of .028 inctler. 
l l ie  betten l a  a l so  a closed section with the bottcin flanges extending outward f o r  attachment t o  the 

cap. The depth is  4 inches and thickness of 0.020 inches. 

LI order t o  min4;oize thermal gradients i n  members and between members, lightening holes heve 

been spaced t o  reduce shadowing as  much aa possible. Thezmal coatings a r e  a l so  being evaluated t o  

maintain temperatures and gradients within acceptable l i m i t s .  

The r o l l  formed cap incorporates longitudinal  et iffening beads near the corner eectione in order 

tc, provide a high compression capabil i ty i n  the corners. Between the lightening holes, be& are 

ro l l ed  i n to  the section fo r  s t i f fening.  The section is  formed on a mandrel which i e  used f o r  support 

during the attachment operation. The lower attachment on the centerl ine i s  not c q l e t s d  u n t i l  a f t e r  

the battens a r e  connected. The gap between flanges permits the mandrel support t o  extend inward t o  

the beam machine; the mandrel support ends, and the two flanges are Joined. 
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ALUMINUM BEAM DESIGN (7.5 METERS) 

IN.) 

b-7.b m --4 
7.5 m CROSS-SECTION 
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BEAM CAP SECTION ROLL-FORMED ALUMINUM ALLOY 
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BATTEN SECTION ROLL-FORMED 
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CANDIDATE MATERIAL PROPERTY DATA 

FTU ksi 

FTY ksi 

F~~ ksi 

EC ksi 

p LBIIN.~ 

a IN.IIN.PF x 10-6 @ 200°F 

K BTU/(HR) ( F T ~ )  t°F)!FT 

C BTU/(LB) ( O F )  @ 200 O F  



ALUMINUM CLOSED SECTION BEAM CAP THICKNESS & DEPTH 
VS CRITICAL LOAD; L = 7.5 m 

0.01 - 
* 

'0 
1 1 1 I 1 I I 

2 
I 

4 6 8 10 12 14 16 
PCR LBF x 103 
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CANDIDATE TRUSS CON$ IGURATIONS 

WEIGHTIUNIT 
LENGTH kg/m 

7.C 

7.8 

ION-TENS DIAGONAL 

6.4 

RE.TENSIONED CROSS CABLES 



PRELIMINARY ESTIMATE OF- lVlODULE SLOPES FOR VARIOUS 
THERMAL GRADIENTS 

0 -8 
SLOPE 8 
DEGREES 

0.6 

II METERS x 103 
MODULE LENGTH 



ESTIMATdD DEFLECTION DUE TO THERMAL GIiADIENT 

An estimate of the solar  ar ray module slopes and deflections was calculated f o r  various 

temperature gradients. The analysis was based on the fallowing assumptions: 

o The mdule  s t ruc tu re  was cantilevered from the coastruction base. 

o The temperature gradient between upper and lower surface did not vary 

spanwise. 

The resul ts  show that  f o r  a temperature difference between upper and lower members of 

200°F the t i p  deflect ion r e l a t i ve  t o  the base is 8 meters; the slope i s  0.8 degrees. 

Updated thermal data  w i l l  be used t o  reevaluate these estimates. 



PRELIMINARY ESTIMATE OF MODULE DEFLECTIONS FOR 
VARIOUS THERMAL GRADIENTS 

CONSTRUCTION 1 '  1 

OEF LECTlON 60 
6 METERS 

STRUCTURE 



ORBITAL ATTITWDE DURING CONSTRUCTION 

Thermal ana?ysis of the construction pboc  ie being performed t o  yield the s t ruc tura l  

teqmrature clistribution necessaw t o  yerfoi . the  diatort ion/stress analysis. Both horior;ontai 

and ver t fca l  beam orientations w i l l  be inveet,iejated for  the first  part of t h i s  study, t o  mini- 

mize thermal grandients, the horizontal beams were oriented 80 that the axes of the elements 
were aligned wi th  the sunla rays so tha t  the sun entering the holes i n  the two sun-f&cing 
surfaces impinged on che th i rd  ( b a c ~ )  a t  0' orb i t  angle (see sketch). A t  the  back aide of 

the orh!.t (before entering the ear th 's  shadow) solar energy enters the holes i n  the back 

surface t r  impinge on the other two. 

Other arratigements t o  be considered a re  the cevere case8 where the Bun is normal to one 
of the  surfaces a t  0' o rb i t  angle and where one element shadows another. The verti-1 beams 

where intermittent  shadowing takes place, i s  a l so  t o  be investigate4, 

For the construction phase, a 300 n, M i  c i rcular  o rb i t  is  considered. 

I n  GEO-synchronous orb i t ,  the gradients between the sun-side horizontal beams, and thooe 

oppositewill be colcuj.ated. 

For t > i s  study, the inside of the element8 ere coated with black srnodize (c = .83, 
oc = .86) and the  outside surface with 2-93 white paint ( 6 =.P, oC =.17). 



ORBITAL ATTITUDE DURING CONSTRUCTION 

HORIZONTAL BEAM 

ELEMENT ORIENTATION 
AT 0" ORBlT ANGLE 

VERTICAL BEAM 
# 
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ALUMINUM STRUCTURE STUDY 

REMAINING TASKS: 

COMPLETE THEHMAL ANALYSES FOR SELECTED 
ORIENTATION 

EVALUATE STRUCTURAL RESPONSE TO 
TEMPERATURE EXPOSURE 

COMPARISON WITH COMPOSITE DESIGN 



G E N E R A L  
ELECTR!C 

RECTENNA CONSTRUCTION 

space dlviaion 



GROUND #)WER STATION 

General E l e c t r i c  i s  ana lyz ing  t h e  rectenna microwav~ phase c o n t r o l ,  ground power die- 
t r i b u t i o n  and u t i l i t y  i n t e r f a c e s  from t h e  s tandpoin t  of a major ground e l e c t r i c a l  power 
gene ra t ion  s t a t i o n .  

A des ign  update  of t he  rectenna is being made us ing  t h e  b a s e l i n e  d ipo le  as a r ece ive r ,  
Those d ipole8  a r e  Lnterconnected forming modular panels ,  E l e c t r i c a l  and mechanical i n t e r -  
connect ione w i l l  t i e  t h e s e  modules toge ther ,  

A computerized program f o r  cone t ruc t ion  and c o ~ t i n g  ana lyzes  t h e  optimum c o s t  verswr 
cona t ruc t ion  methodology, labor ,  ma te r i a l s ,  nlaintenance, e t c ,  

The microwave phase c o n t r o l  scheme is baing implemented i n t o  the  ground power r ece iv tng  
s t a t i o n ;  t h i s  i s  being worked i n  conjunct ion  wi th  t h e  apace antenna phase c o n t r o l  s y r t m  
layout  . 
The b a s s l i n e  ground power distribution developed i n  t h e  l a e t  phase o f  t h e  SPS r tudy  i s  
being updated and i n t e g r a t e d  i n t o  t h e  u t i l i t y  i n t s r f a c e e ,  

The end product of t h i s  s tudy  w i l l  be an end t o  and ground powrr gene ra t ion  s t a t i o n  
d e f i n i t i o n ,  c o n s t r u c t i o n  methodology and coat.  



E L E C T R I C  

RECTENNA 
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GROUND POWER STATION 

a DESIGN UPDATE 
RF 
ELECTRICAL 
MEaANICAL 

CU 

a CONSTRUCTION METHODOL30Y 

a COST 
TYPE (LAND, LABOR, MATERIAL, MACHINES, ETC) 
PHASE (SITE PREPARATION, CONSTRUCTION, OPERATION, MAINTENANCE) 
SENSITIVITIES (MAINTAINABILITY, ALTERNATE USE OF LAND, ETC) 

OTHER 

a MICROWAVE PHASE CONTROL (SPACECRAFT - GROUND STATION) 

a GROUND POWER DISTRIBUTION 

a UTILITY INTERFACES 

* 

AN END TO END GROUND POWER GENERATION 
STATION IS BEING ANALYZED 
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RECTENNA CONSTRUCTION STUDY FLOW 

This c h a r t  ehows how we a r e  conduct ing the  rec tenna  c o n s t r u c t i o n  t a s k ,  The c r i t i q u e  of  
the  recterrna b a s e l i n e  des ign  has  been completed. A a u b s t a n t i n l  e f f o r t  has  been expended i n  
s e a r c h i n g  o u t  advanced concepts  fo r  d e s i g n  and c o n s t r u c t i o n  methodology. The task. i n  n o t  
complete,  because we w i l l  remain r e c e p t i v e  t o  new ideae ,  bu t  no s i g n i f i c a n t  f u r t h e r  e f f o r t  
is planned i n  t h i s  a r e a .  The d e f i n i t i o n  af deeign requirements  i a  complete and repor ted  
h e r e  excep t  if we f i n d  t h a t  some of our  requirement8 a r e  too c o e t l y .  

The major t r a d e - s t u d i e s  have been i d e n t i f i e d ,  and p re l iminary  work has  been accomplished 
on some of thenr. Considerable  e f f o r t  h a s  gone i n t o  examing des ign  a l t e r n a t i v e s ,  end t h e  
major ones have been i d e n t i f i e d .  S i m i l a r l y  , r e s e a r c h  on c o n e t r u c t i o n  methods has  turned 
up s o  many p o s s i b i l i t i e s  t h a t  i t  w i l l  be d i f f i c u l t  t o  s t u d y  them a l l  w i t h i n  the  remaining 
scope o f  our  e f f o r t .  

The c o s t  model has  been e x e r c i s e d  on t h e  computer wi th  example d a t a .  Work i s  j u s t  s t a r t i n g  
on c o l l e c t i n g  a l l  of t h e  necessa ry  c o s t  d a t a .  

The major remaining work i s  s t r u c t u r a l  a n a l y s i a  t o  a i z e  rec tenns  e lements ,  complete the 
c o s t  d a t a  c o l l e c t i o n ,  and then repea ted  passea through t h e  c o s t  model t o  s e e k  t h e  optimum 
mix of pen,  machines, and m a t e r i a l  t o  provide  a minimum cost solution. 
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RECTENNn RF BASELINE 

The f a c i n g  i l l u s t r a t i o n s  a r e  taken from t h e  Raytheon Company "Rectenna Technology Study" , 
Report PT-155 of  March 10, 197e. Th i s  i s  a d e s i g n  concept f o r  a "two plane" rec tenna ;  
a "fore-plant"  and t h e  ground p lane .  The fore-plane  c o n t a i n s  t h e  r e c e i v i n g  d i p o l e s ,  RF 
matching networks,  Sho t tky  d i o d e s ,  f i l t e r ,  and power bus ,  A l l  o f  t h e s e  e lements ,  excep t  t h e  
d i p o l e ,  a r e  con ta ined  w i t h i n  a meta l  s h i e l d  t o  avoid  epur ious  r e - r a d i a t i o n  of microwave 
energy.  The same s h i e l d  becomes t h e  l o n g i t u d i n a l  s t r u c t u r a l  member. 

These fo re -p lane  e lements  a r e  mounted t o  a w i r e  mesh ground p lane  and a " v e r t i c a l  suppor t" ,  
which i s  a c t u a l l y  45 degrees  from h o r i z o n t a l ,  ae shown on t h e  r i g h t .  T h i s  r ec tenna  pane l  is 
two mete r s  wide,  and columns d r i v e n  i n t o  t h e  ground two meters  a p a r t  suppor t  t h e s e  p a n e l s .  

A wind load of 7.5 pounds-force p e r  square  f o o t  (359 Pa) was s e l e c t e d  f o r  des ign.  Thi8 
would be inadequa te  i n  many a r e a s  of t h e  country .  The two meter wid th ,  a t  4 5  degree  e l e -  
v a t i o n  means t h a t  the  d i s t a n c e  between rows of rec tennae  (on a h o r i z o n t a l  f i e l d )  i s  o n l y  
1.414 mete r s ;  too  smal l  f o r  conven t iona l  s e r v i c e  v e h i c l e s  t h a t  may be needed f o r  r ec tenna  
mainta inance.  A t  lower l a t i t u d e s ,  t h e  reduced e l e v a t i o n  a n g l e s  would narrow t h i s  width  
s u b s t a n t i a l l y .  
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RECTENNA RF BASELINE 
space dividm 



RECTENNA STRUCTURAL BASELINE 

The f a c i n g  1 l l u s t . r a t i o n s  were taken from t h e  s tudy  r e p o r t  (May 27, 1977) on rectenna 
c o n s t r u c t i o n  by Bovay Engineers ,  Inc .  under NASA c o n t r a c t  NAS 9-15280. It r e p r e s e n t s  
s t andard  s t r u c t u r a l  des ign  and b u i l d i n g  techniques .  For t h i s  t y p i c a l  desLgn some 8 1/2 
m i l l i o n  ground plane pane l s  have t o  be manufactured and i n s t a l l e d ,  and n e e r l y  a  m i l l i o n  
f o o t i n g s  and columns a r e  needed t o  support  t h e  rectenna.  A l l  of t h i s  work was e v i d e n t l y  
c o s t  e s t imated  wi thout  any c o n s i d e r a t i o n  of automating t h e s e  very r e p e t i t i v e  t a s k s .  
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RECTENNA STRUCTURAL BASELINE 

COST ESTIMATE 

QUANTITIES FOR 1-96 FT. MOOULE 

1422 LBS. ALUMINUM SHAPES 8 1.50 

7584 LBS. LIGHTGAGE STEEL @ .36 

6185 LBS. STRUCTURAL STEEL @ .42 

2 ea. INSULATOR MOUNTS 8 6.00 

1 ea. SLIDING MOUNT @ 8.00 

3ea.2'4 x4'LG. FTG.@O..O 

3 ea. 3' 4 X 7' LG. FTG. 8 150.00 

1 ea. JUMPER CABLE 8 30.00 

5385.6 SO. FT. GROUNDPLANE @ .60 

5% CONT. 

10% PROFIT 

TOTAL NUMBER OF 96' LONG MODULES REQUIRED PER RECTENNA. IS 156,960. 

389 
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DESIGN REQUIREMENTS 

The f i r s t  l i s t e d  design requirement i s  the c e n t r a l  focus of our  study plan. A c o s t  model, 
covering a l l  pha3es of rectenna cons t ruc t ion  and operat ion i s  a t  t he  hea r t  of our methcd- 
ology. We w i l l  input var jous designs,  s i te  c h a r a c t e r i s t i c s ,  and automation techniques 
i n t o  the c o s t  model and g e t  t o t a l  l i f e  cyc le  cos t s .  The lowest cos t  over the rectenna 
l i f e  i s  bes t .  

Our ground r u l e  f o r  s i t e  t e r r a i n  is  t h a t  w e  ~ h o u l d  be a b l e  t o  bu i ld  a rectenna anywhere 
t h a t  heavy, o f f  road machinery - t yp i f i ed  a s  a bul ldozer  - can operate .  

We have spec i f i ed  t h a t  the  rectenna ground plane be (approximately) normal t o  the  inc ident  
microwave beam t o  maximize the  power co l l ec t ed  and, perhaps even more importantly,  t o  reduce 
the  r e f l ec t ed / r e - r ad i a t ed  r a d i a t i o n  which becomes an  RFI source. 

It is  our i n t e n t  t ha t  any spec i a l  purpose automation equipment be genera l ly  u se fu l  a t  any 
s i t e ,  even thcugh the  design environments may d i c t a t e  d i f fe ren t .  mater ia l  thickness  o r  panel 
s i z e s .  varying support column he ights  and spacing, and s o  on. A poss ib le  exception may be 
t he  "foundation machine". It may prove t o  be cheaper t o  use spec i a l  purpose machines 
t a i l o r e d  t o  var ious s o i l  c l a s s i f i c a t i o n s  (e.g., rocky vs .  sandy) t o  i n s t a l l  foundations. 
This w i l l  be evaluated using the  c o s t  model. 
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DESIGN REQUIREMENTS 

DESIGN TO MINIII'UM LIFE CYCLE COST 

WITHSTAND DESIGN ENVIRONMENTS 

BUILD ANVWHERE A RULLDOZER CAN GO 

MAINTAINANCE ACCESS r.lUST BE PROVIDED 

GROUND PLANE IS NORMAL TO INCIDENT BEAM 

INCLUDE AMORTIZATION OF MACHINERY 

C;UIDELIn!Z9 

EVALUATE AUTOMATED CONSTRUCTION METHODS 

BASIC APPROACH TO BE SITE IidDEPENDENT 



MAJOR STUDY ASSUMPTLONS 

On-, i n p o r t a n t  aasun~pt ion  is t h a t  we w i t i  be b u i l d i n g  enough r a c t e n n a s ,  over  a pe r iod  of 
y e a r s ,  t h a t  s p e c i a l i z e d  c o n a t r ~ i c t i o n  equipment can be trmorti~eci  over  i t s  f u l l  uscCul  l i f e .  
Cos t s  w i  11 be expressed i n  1977 d o l l a r s  because tho  itvernge c o s t  of  aluminum, s t e e l ,  Por t l and  
cement, etc .  f o r  a l l  of 1977 i s  che l a t e s t  d a t a  a v a i l a b l e .  

Ic. jcr assumed t h a t  p r o t e c t i v e  c l o t h i n g ,  c o n t a i n i n g  w i r e  meah t o  sd raen  o u t  most microwave 
r a d i a t i o n ,  can be dev i sed  and t h a t  t h i s  w i l l  permit  people  t o  work on mainta inance t a s k s  
from above t h e  rec tennn ,  i r '  necessa ry ,  o r  t o  work below pane l s  removed f o r  ne rv tc ing .  
Such c l o t h i n g  would have t o  l n c l u d e  a helmet and face  maek f o r  p r o t e c t i o n  to be adequate .  

There appears  t o  be no r a  t i o n e l  a 1  t e rna  t i v e  t o  b u i l d i n g  t h e  rec tenna  i n  modular e lements .  
The s i z t !  of t h e  module w i l l  be a e l e c i e d  i n  t h e  r e s t  o f  the  s tudy .  

I n  c- ,der  t o  compare r e - t c n m  des igns  on t h e  b a s i s  of u s a b i l i t y  of t h e  land under t h e  
r e c t e n n a ,  the  income Prom such land u s e  will be t r e a t e d  a s  a n e g a t i v e  c o s t  and used t o  
o f f s e t  operating itnd mairitainanc.: expense.  Also ,  i f  t h e  l r n d  i 8  f o r e s t e d ,  t h e  tCmber 
w i l l  be ha rvea tcd  d t  a  p r o f i t ,  rnd treed t o  o f f s e t  r i t e  preprrrat ion c o s t a .  
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MAJOR STUDY ASSUMPTIONS 

a GROUND PLANE NORMAL TO INCIDENT BEAM 

a CONSTRUCTION EQCIPMENT AMORTIZED OVER USEFUL LIFE 

a COSTS EXPRESSED IN 1977 DOLLARS 

RECTENNA TO BE BUILT WHERE EVER OFF-ROAD EQUIPMENT CAN GO (ON LAND) 

bIAINTENANCE MAY BE DONE FROM ABOVE BY PEOPLE IN  PROTECTIVE CLOTHING 

a RECTENNA WILL BE BUILT ON MODULES 

MINIMUM DISTURBANCE OF ENVIRONMENT IS A GOAL 

a LAND UlCE UNDES RECTENNA IS A NEGATIVE COST 
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DESIGN CRITERIA 

T!-e f i r s t  i tatn h e r e  i~ somewhat i n  q ~ ~ e a t i o n .  The added c o a t  of d e s i g n i n g  t o  w i t h s t a n d  
ex t r eme  wea the r  c o n d i t i o n s  m y  b e  more t han  woclld be  r e q u i r e d  i f  some f a i l u r e s  a r e  
a c c e p t e d  and r e p a t r e d .  We i n t e n d  t o  c o s t  model bo th  o p t i o n s  t o  e e e  which i e  cheape r .  

The second c r i t e ~ i a  iz en a t t e m p t  t o  a v o i d  a wor s t -wors t  c a s e  a i t u a t i o n  which c o u l d  b e  
ve ry  c o s t l y  i n  s t r u c t u r e .  I t  i s  a l s o  B r e c o g n i t i o n  t h a t  meeaive  i c e  a c c u m u l a t i o n s  a t e  
b r i c t l e ;  i f  a h igh  w i n d  hegi.i.2 t o  f l e x  a  R t r u c t u r e  t h e  ice c a n  b r e a k  and be  blown away. 

The b a s i c  s t r u c t u r e  o f  t h e  r e c t e n n a  s h o u l d  be made of m a t e r i e l s  which w e a t h e r  80 well t h a t  
v i r t u a l l y  no  m a l n t a i n a n c e ,  ~ u c h  a s  p a i n t i . n g ,  w i l l  be r e q u i r e d ,  Space: between rows w i l l  .. 
be  a d e q u a t e  t h a t  v e h i c u l a r  a c c e s s  f o r  m a i n t a i n a n c e  purponea w L l l  be p o s r l b l e .  

Lf a ma jo r  i nves tmen t  t n  au toma t ion  equipment  is  made, i t  w i l l  l i k e l y  be economfca l ly  
i m p o r t a n t  t o  p r o v i d e  a l l  wea the r  c a p a b i l i t i e s  for the  c o n s t r u c t i o n  p h a s e ,  Again, t h e  
c o s t  model o u t p u t  w i l l  p e r m i t  eva lua tLon  o f  t h e  impor t ance  o f  t h i s  c o n c e p t ,  
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DESIGN CRITERIA 

DESIGN SHALL WITHSTAND 100-Y EAR WIND/ICE LOADS 

MAXIMUM WIND AND MAXIMUM ICE NEED NOT BE COMBINED IF STRUCTURE IS FLEXIBLE 

BASIC STRUCTURE MUST BE MAINTENANCE FREE 

AUTOMATED CONSTRUCTION SHALL BE CONSIDERED 

ALL--WEATHER CONSTRUCTION SHALL BE EVALUATED 
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RECTENNA HA 2n RDS 

Most O F  the p o i n t s  on t h i s  c h a r t  a r e  f a i r l y  s e l f  e v i d e n t ,  b u t  a  few p o i n t s  can s t and  
c l s r i f i c a t l o n .  Many d i p o l e  e lements  w i l l  be a t  a high e l e c t r i c a l  p o t e n t i a l  r e l a t i v e  t o  the  
ground p l a n .  llence, i n s u l a t i o r ~  on t h e s e  d i p o l e s  needs t o  be r e s i s t a n t  t o  gnawing by t h e  
sha rp  t e e t h  of smal l  roden t s .  

For some pena l ty  i n  c u n s t r u c t i o n  con t s ,  r e c t e n n a s  could make good use  o f  f lood p l a i n  a r e a e .  
The rec tenna  pa1:el.s wot~lci need t o  be placed high enough t o  avoid t h e  f lood wa te r s ,  and 
b a r r i e r s  would have t o  be placed upstream of  t h e  rec tenna s o  t h a t  l a r g e  d e b r i e  would no t  
d r i f t  i n t o  t h e  rec tenna suppor t s  and knock them down. 

The problem of f i r e  ia  underbrush beneath  t h e  antenna i s  likely solved by a  combination of 
a )  and b) , done a s  r o u t i n e  mainta inance.  A s p r i n k l e r  system b u i l t  i n t o  t h e  rec tenna would 
be a s u b a t a n t i a l  added c o s t .  



HAZARD 

WIND/ICE/SNOW 

HA1 L 

k!URRICANE 

EARTHQUAKE 

SMALL ANIMALS 

TORNADO 

FALLING AIRCRAFT 

F L W D  

FIRE IN  UNDERBRUSH 
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RECTENNA HAZARDS 

DESIGN APPROACH 

) DESIGN FOR QUICK REPAIR 

4) AVO;D FLOOD PLAINS 

B) BUILD HIGH, USE HOUSE STRAINER 

A) ROUTINE REMOVAL OF UNDERBRUSH 

B) II?RIGATE 

C) SPRINKLER 

LARGE ANIMALS A) EXCLUDE 
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RECTENNA SITE PLAN - 

To Fntlroduce a s  rnuch r e a l i s ~ n  i .n to  o u r  rechenna c o ~ t i n g  program a a  p o e s i h l e .  we p l a n  t o  
work: w i t h  t h r e e  p o t e n t i a l  s i t e s ;  one from each  of  t h e  c o - o p e r a t i n g  power pools .  Topographic  
maps o f  r )< j s s ib l e  s i t e s  w i l l  be " s a n i t i z e d "  f o r  o u r  pu rposes ;  i . e .  l o n g i t u d e  d a t a  w i l l  be 
removed, l a t i t u d e  w i l l  h e  changed t o  a n e a r l y  m J o r  p a r a l l e l ,  p l a c e  names w i l l  be  removed, 
and popu la t ed  p l a c e s  removed, c t c .  Then, t h e s e  s i t e s  can  be ueed t o  e s t i m a t e  t h e  road  
m i l e a g e  needed o n - s i t e ,  t h e  number and s i z e  o f  b r i d g e s  r e q u i r e d ,  t h e  s o l 1  and w e a t h e r  d a t a  
will be " r e a l " ,  e t c .  

Some o f  the  t r a d e s  i n v o l v i n g  s i t e  c o n s i d e r a t i o n e  a r e  a c c e s s  road  c o n s t r u c t i o n  vs .  more o f f -  
road  r r a n s p o r t c r s ;  w i n t e r - t i m e  cone  true t i o n  e f f e c t s ;  and t r a n e p o r t a  t i o n  c o s t a .  
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MAJOR SlTE VARIABLES 

RECTENNA SlTE PLAN 

TERRAIN CONTOURS 

SOIL CLASSIFICATIONS 

WlNDllCE LOADS 

e CONSTRUCTION 
WEATHER 

ACCESS ROADS, 
WATERWAYS I 

DISTANCE TO MASSIVE 
SUPPLIES 
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RECTENNA CONSTRUCTION FUNCTIONAL FLOW 

The t o t a l  rec tenna c o n s t r u c t i o n  (and o p e r a t i o n )  has  been sub-divided i n t o  e i x  major t e ska  
a s  shovn b e r e .  Each t a s k  i s  sub-divided i n t o  a number of jobs.  Each job invo lves  people  
and ma.-kiaes, and i s  b a s i c a l l y  e i t h e r  making something, moving something, o r  i n s t a l l i n g  
something. C "machine" can he any th ing  from a  sc rewdr ive r  t o  a  moving rec tenna  f a c t o r y .  
Each l ach ine  may have s e v e r a l  o p e r a t o r s ,  o r  a  f r a c t i o n a l  o p e r a t o r  - i . e ,  one pereon 
pe per vising t h e  work of  s e v e r a l  machines. For  "making" jobs ,  t h e  type  and q u a n t i t i e s  of  
inpu t  raw m a t e r i a l s  i s  s p e c i f i e d  s o  t h a t  m a t e r i a l  and t r a n s p o r t a t i o n  c o s t a  can be 
c a l c u l a t e d .  

A few t a s k s ,  such a s  c u t t i n g  t imber ,  may be "un-manufacturing" jobe and invo lve  n e g a t i v e  
c o s t s .  



SlTE I PREPARATION r 
TREES 

ROADS 

RECTENNA CONSTRUCTION 
FUNCTIONAL FLOW 

r 12 
CONTINUE - SITE 
PREPARATION 

- 
L 

OPERATE AND I MAINTAIN 

ERECT 
STRUCTUHE 

I NSTAL L 
PANELS TO 
STRUCTURE 

- 

RECTENNA '4 

14 
MANUFAC- 
TURE 
PANELS 

I 
4 



D 180-24872-1 

RECTENNA CONSTRUCTION COST MODEL 

Our rectenna c o s t  model i s  l i k e  the  rectenna,  simple hut  l a rge .  Although i t  i s  implemented 
on a computer, i t  does nothing t h a t  could not be accomplished with a four  funct ion c a l c u l a t o r  
and a very l a rge  shee t  of paper. The thing t h a t  makes a computer e s s e n t i a l  is the  volume of 
data  invclved. There may be a s  many a s  2400 input  words, and 12000 c o s t  accumulation b ins ,  
so  t h a t  c o s t s  can be accumulated by job type, c o s t  element and month. Sununary data  is 
p r in t ed  ou t  t o  show what the r e s u l t s  a r e .  

The input  da ta  i s  s tored  i n  d i s k  s torage ,  so  t h a t  only a few parameters need t o  be entered 
£rum a terminal each run of the c o s t  model': The c o s t s  a r e  comp~ted from the  lowest elements; 
t he  quant i ty  and p r i ce  of commodities, such a s  s t e e l ,  concrete  o r  diodes;  labor  hours and 
r a t e s ;  machine amort izat ion and maintainance, e t c .  
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RECTENNA CONSTRUCTION COST MODEL 

DESIGN DATA 4 
CONSTRUCT 
RECTENNA PER 

SITE 
WEATHER1 
SCHEDULING 

RAW 
MATERIAL 
Fl  LE 

FLOW PLAN - 
ACCUM, COSTS 

MACHINE 
Fl LE 

i 

OUTPUT 
REPORT 

LABOR 
FILE 
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COST MODEL RESULTS 

Because the c o s t  model has s o  many c o s t  b in s ,  choosing a summery output  format i s  d i f f i c u l t .  
This c h a r t  shows our t n l t i a l  plan t o  d i sp l ay  the  r e s u l t s  of t he  cos t  model, a t  the beginning 
is w summarj of the schedule achieved, and c o s t s  by task and major subdivision. Following 
t h i s  is  a d i sp l ay  of a l l  of the eleven kinds of c o s t s  segregated t o  t he  sub-task ( job)  
l eve l .  F ina l ly ,  a r epo r t  of c o s t s  by cask by month i s  provided f o r  anyone in t e r e s t ed  i n  a 
cash flow ana lys i s .  Task 6,  Operation and Maintainance is  provided f o r  only e s i n g l e  period - 
the u se fu l  rectenna l i f e ,  which i s  defined by input  var iab les .  



COST MODEL RESULTS 
G E N E R A L  
El lECTRlC 

SCHEDULE SUMMARY 

START FINISH 

COSTS BY TASK BY TYPE 

TASK 1 

space divisim 

COST SUMMARY 

TASK 1 

2 

MPCHINES MATERIALS 
CAPITAL 

COSTS BY TASK BY MONTH 

NO. I COL'T I MAINT. LABOR FUEL 

h 

JAN 1999 

FEB 1999 

TRANSP. 

1 

QTY 

I 

4 2 I 3 

i 

CUST 

5 6 



CONSTRUCTION ALTERNATIVES 

The mass of c o n c r e t e  used i n  the  Bovay b a s e l i n e  rec tenna  (whi.chused s u p e r s t r u c t u r e )  
ranged from one t o  two m i l l i o n  m e t r i c  tons .  The t r a n s p o r t a t i o n  c.osts  t o  move euch a mass 
a r e  f a r  from n e g l i g i b l e .  Obviously,  the  sand and g r a v e l  used would bc taken from t h e  s i t e ,  
o r  some nearby l o c a t i o n .  Even s o ,  l imestone and s h a l e  - the  p r i n c i p l e  i n g r e d i e n t s  o f  Por t l and  
cement-are  s o  common and widely  d i s p e r s e d  t h a t  i t  may be economical t o  d e s i g n  a  p o r t a b l e  
cement p l a n t  t o  be  moved from one rec tenna  s i t e  t o  anot l ier .  (Such a c a p a c i t y  a d d i t i o n  is  
p l a i n l y  n o t  e s s e n t i a l ;  1974 cement product ion was about 500 t imes t h e  amount needed f o r  a  
r e c t e n n a ,  accord ing  t o  t h e  1977 US S t a  t q . s t i c a 1  A b s t r a c t  .) Because of  t h e  a v a i l a b i l i t y ,  
and t h e  low c o s t  and low energy c o n t e n t  of  c o n c r e t e ,  i t  i s  considered a  prime cand ida te  f o r  
suppor t  columns, which w i l l  i n c r e a s e  i ts  use .  

The n a t u r e  and e x t e n t  o f  automati.cn t o  be a p p l i e d  t o  r ec tenna  c o n e t r u c r ? ~ ~ ~ ~  LI 4 ,najor s t u d y  
t o p i c .  C l e a r l y ,  t h e  iuanufacture of. RF e lements  must be  h i g h l y  automa-ed, s i n c e  e l e v e n  b i l l i o n  
a r e  r e q u i r e d .  (This  i s  about  350 p e t  second f o r  a  yea r . )  A l a b o r  c o s t  of  two c e n t e  p e r  
element would be $220  M ,  s o  automa tiorr i s  e s s e n t i a l  . 
For c o n s t r u c t i o n  t a s k s ,  l e a s  r e p e t i t i o n  is  invo lved ,  s o  i n t e n s e  automation may n o t  be c o s t  
e f f e c t i v e .  To i l l u s t r a t e ,  c o n s i d e r  a  m i l l i o n  f o o t i n g  excavat ione.  If a  man on a  t r a c t o r  
w i t h  a  e a r t h  auger  s p e n t  t e n  minutes  b o r i n g  a h o l e ,  and was pa id  $12 p e r  hour, the  . .&a1 
l a b o r  c o s t  f q r  f o o t i n g  excava t ion  would be on ly  $ 2  M ,  a t r i f l e  i n  camparibon w i t h  o t h e r  
c o s t  elements.  

Movement of heavy equipment around t h e  c o n s t r u c t i o n  s i t e  is expected t o  b s  a  s u b s t a n t i a l  
c o s t  i t em,  and war ren te  s tudy  o f  c o a t  optivum modes. 
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CONSTRUCTION ALTERNATIVES 

CONCRETE MAKING 

- MOVE CEMENT TO SlTE 

- PORTABLE CEMENT KILN 

- AGREGATE PREPARATION 

SUPPORT STRUCTURES 

- COLUMNS 

- STEEL 

- CONCRETE 

- OTHER 

- AfiCHES 

PANEL MANUFACTURE 

- OFF SlTE 

- ON SITE, FIXED 

- ON SITE, PORTABLE 

AUTOMATION 

- EXTENT 

- FUNCTIONAL COMBINATIONS 

MOVEMENT OF HEAVY EQUIPMENT 

- HL HELICOPTER 

- RIGID AIRSHIP 

- GROUND EFFECT MACHINES 

- ROADS 

- PORTABLE BRIDGES 

- RAILROAD 
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BASIC HOLE MAKING METHODS 

As t h i s  f a c i n g  c h a r t  s u g g e s t s ,  t h e r e  a r e  numerous ways of s e t t i n g  a  support  column. The 
most g e n e r a l l y  accepted method Ls t o  d i g  a f o o t i n g  and s e t  t h e  column i n  concre te .  Thie has  
t h e  exper ience  of c e n t u r i e s  t o  demonstrate i t s  longev i ty .  The ways of making h o l e s  f o r  t h i s  
purpose range from t h e  t r a d i t i o n a l  t o  t h e  e x o t i c .  One new technique of eome i n t e r e s t  is  t h e  
work done a t  Loo Alamos Labora to r ies  on "pene t ra to r s" ,  o r  "sub- terrene#,  " which involver  
mel t ing  a  ho le  i n t o  any kind o f  s o i l ,  l e a v i n g  a  g l a s s y  l i n i n g .  

Alternate methods inc lude  d r i v i n g  the  column i n t o  the  e a r t h ,  a s  i n  p i l e  d r i v e r .  I n i t i a l l y  
we w i l l  cons ider  r e l a t i v e l y  convent ion h o l e  making techniques .  I f  coe ta  a r e  found t o  be 
a  s i g n i f i c a n t  f a c t o r ,  we w i l l  i nven t  an  " e a r t h  punch" us ing  a  combination o f  convent ional  
and e x o t i c  technology t h a t  can r a p i d l y  make a h o l e  i n  any s o i l  type encountered on any r i t e .  
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ALTERNATE KECTENNA PANEL CONCEPTS 

A f t e r  much thought and d i s c u s s i o n  and concep tua l i z ing ,  we have t e n t a t i v e l y  reduced the  f i e l d  
o f  cand ida tes  f o r  rectenna panel  c o n s t r u c t i o n  t o  t h e  two shown h e r e ,  

The "low drag" c o n f i g u r a t i o n  on t h e  l e f t  d e r i v e s  d i r e c t l y  from t h e  Raytheon b a s e l i n e  shown i n  
an  e a r l i e r  c h a r t .  The RF s h i e l d / s t r u c t u r e  box has  been made s t reaml ined ,  and t i l t e d  down 
t o  f a c e  i n t o  the  wind. The d i p o l e s ,  now made of foned  e l l i p t i c a l  w i r e ,  a r e  n o t  normal t o  
t h e  bus b a r s  but bent back t o  be normal t o  t h e  i n c i d e n t  microwave beam. The wire sc reen  has  
been replaced by s t reaml ined  w i r e s ,  s i n c e  t h e  beam i n  l i n e a r l y  p o l a r i z e d .  O v e r a l l ,  t h i e  
arrangement w i l l  p r e s e n t  much lower d r a g  f o r c e s  t o  t h e  wind, which may permit  l i g h t  con- 
s t r u c t i o n  and l a r g e  panels .  This  des ign  has  one n o t a b l e  drawback. I n  gus ty  winds,  a i r f l o w  
i s  no t  p a r a l l e l  t o  t h e  ground, s o  these  a i r f a i l s  w i l l  be  a t  s i g n i f i c a n t  a n g l e s  of a t t a c k  
and develop s u b s t a n t i a l  l i f t .  The ground plane w i r e s  and forward b races  muat be s i z e d  t o  
w i  t h s  rand t h e s e  loads .  

The panel  on the  l e f t  appears  s imple  and cheap t o  make, and s imple  t o  analyze.  It w i l l  
see much l a r g e r  wind loads ,  which t r a n s l a t e s  i n t o  more e u b a t a n t i a l  eupport  s t r u c t u r e e .  The 
c o s t  t r ade-of f  between these  two concepts  i s  by no means obvious. 
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RECTENNA POWER CONDITIONING 



GROUND POWER COLLECSION AND TRANSMISSION SY STPM 

PHASE I SCOPE O F  WORK FOR EUSED (GE) 

BASED ON THE PRELIMINARY OPERATIONAL CHARACTERISTICS OF  THE S P S  POWER SYSTPM, AN ANALYSIS W I L L  BE 
PERFORMED ON THE INTEGRATION O F  S P S  POWER I N T O  ELECTRIC U T I L I T Y  POWER SYSTEMS. THE ANALYSIS WILL 
CONSIDER USING BOTH AC AND DC A T  ALTERNATIVE VOLTAGE LEVELS FOR LONG DISTANCE POWER TRANSMISSIOS.  

THE FAILURE CHARACTERISTICS FOR THE RECTENNA SYSTEM COMPONENTS BETWEEN THE 1 MW PRIMARY U N I T S  AND 
THE U T I L I T Y  G R I D  CONNECTION WILL BE DEVELOPED I N  TERMS O F  FAILURE RATES AND MEAN T I M E  TO REPAIR.  
THIS DATA 'JILL BE DEVELOPED BASED ON AVAILABLE U T I L I T Y  S T A T I S T I C A L  DATA AND BY EXTRAPOLATION FROM 
AVAILABLE DATA WHEW APPROPRIATE.  THE EXTRAPOLATION WILL BE BASED ON U T I L I T Y  POWER S Y S T P I  EQUIP- 
MENT DESIGN AND OPERATING PRACTICES.  

AFTER RESULTS COORDINATION WITH THE FAILURE DATA DEVELOPED FOR THE 1 MU PRIMARY U N I T S ,  A PRELIMINARY 
STUDY WILL BE PERFORMED ON THE EFFECTS OF  THE GROUND SYSTEMS FAILURE MAKES ON GROUND POWER OUTPUT. 

MAINTENANCE REQUIREXI3lTS AND DATA FOR UNSCHEDULED MAINTENANCE R E Q U I R R U N T S  WILL BE PROVIDD AS 
INPUTS T O . T H E  OVERALL FAILURE EFFECTS AND MAINTENANCE REQUIREMENTS PLANS. 



GROUND POWER COLLECTION ArJD TRANSMISSION SYSTEM 

PHASE I SCOPE OF WORK FOR EUSED (GE) 

EUSED TASKS I N  PHASE I 

INTEGPATION OF'SPS.POWER I N T O  A TYPICAL ELECTRIC UTILITY POWER SYSTEN 

FAILURE CHARACTERISTICS OF SYSTEM ELEMENTS 

FAILURE MODES AND RATES O F  THE I'SXYR COLLECTION AND TRANSMISSION SYSTEM 

ABOVE 1 M;J LEVEL 

RESULTS COORDINATION WITH SPACE DIVISION (GE)  tlORK ON THE I MI4 

PRIMARY UNITS 

QUALITATIVE EFFECTS ASSESSMENT OF THE RECTENNA POWER COLLECTION AND 

TRANSMISSION SYSTEM FAILURE MODES ON GROUND POWER OUTPUT 

LNAINTENANCE DATA FOR INPUTS TO MAINTENANCE PLAN 

UNSCHEDULED MAINTENANCE REQUIREMENTS DATA 



GROUND POWER COLLECTION AND TRANSMISSION SYSTEM 

GENERAL LAYObT 

THE PLOT PLAN IS  ASSIMED TO BE CIRCULAR WITH A TOTAL NET OUTPUT O F  5000 MW. THE RECTENNA AREA 
I S  DIVIDED INTO 5 EQUAL AREAS EACH FEEDING ONE 1000 MW STEP-UP-SWITCHING STATION.  EACH STEP-  
LT-SWITCHING STATION I S  I N  TURN FED BY F I V E  2 0 0  MW POWER SECTORS. EACH POWER SECTOR CONTAINS 
F I V E  40  MW BLOCKS. EACH CONVERTER STATION COLLECTS 40 MW DC POWER FROM PRIMARY RECTENNA U N I T S  
AXD INVERTS DC TO AC POWER. 



RECTENNP, POWER COLLECTION 
AND TRANSMISSION SYSTEM 



GROUND POWER C O L L E C T I O N  AND CONVERSION SYSTEM 

EACH 40  ZIW POWER BLOCK C O N S I S T S  O F  FORTY 1 MW P R I Y A R Y  U N I T S  WITH OUTPUT VOLTAGE O F  5 2 kV. T H E  
KX;D O F  EACH P R I X A R Y  L W I T  I S  CONNECTED THROUGH DC C I R C U I T  BREAKERS T O  2 k V  DC CABLES RUNNIXG 
W I A L L Y  A S  S H O W  I N  T H E  DIAGRAii  T O  THE CONVERTER S L A T I O N .  DC SMOOTHING REACTORS REDUCE THE 
R I P P L E  CURXCJTS.  

SISCE THE RECTEL'NAS ARE CONSTAVT POWER DEVICES AND THE DC/AC COLVERTER CAN IN NO WAY AFFECT POWER 
FLO'i. T H E  COSTROL O F  POWER B E  A P P L I E D  ON T H E  DC S I D E .  T H I S  MEANS THAT E I T H E R  T H E  R F  L E V E L  HUST 
BE COSTKOLLED AT I T S  SOURCE OR THE NUMBER O F  RECTENNAS CONNECTED I N  P A R A L L E L  MUST BE VARIED.  
C I R C U I T  B R E A K E R S  P R O V I D E D  FOR RECTENNA P R O T E C T I O N  CAN ALSO B E  USED T O  ADD OR REMOVE U N I T S  I N  ORDER 
T O  COLTROL POWE?, BUT NOT ON A CONTIXUOUS B A S I S .  

I T  I S  RECOGXIZED THAT T H E  S P S  SYSTEM WILT, OPERATE A T  CONSTANT POWER BUT POWER VARLATIO?: IS  NEEDED 
T O  G E T  OX L I N E  AND TC) G E T  O F F  L I N E  FOR SljCH T R I N G S  A S  M O D I F I C A T I O N  OR MAINTENAiiCE. I T  ?kZY SE THAT 
T H E  20 Kd POWER GROUPS A R E  SXALL ENOUGH THAT THEY CAN B E  P I C K E D  U P  OR DROPPED A S  THE MINIMLTI S I Z E  
I S C R E Y E S T .  

T H E  COhVERTER T H Y R I S T O R  B R I D G E  C I R C U I T  F E E D S  ALTERNATING C U r & W T  13 T H E  CONVERTER TRANSFOP.?IER 
k;HICH S T E P S  THE VOLTAGE UP T O  69 k V  AT 60 H Z .  

F I L T E R S  CONSECTEL) T H E  AC BUS ABSORB CL?IRENT HARMONICS GENERATED J'i I'HE CONVERTER. THE AC !<APE 
S M P E  I S  THEREBY KETT W I T H I N  ACCEPTABLE HARMONIC CO.TENT L I M I T S  O R  T H E  U T I L I T Y  G R I D  ASD A S S O C I A T E D  
P U S T  EQL'IPXEST. 

THE CON17ERTER S T A T I O N  OUTPUT, AT 69 k V  AND A MAXIMUM CURRENT O F  4 0 0  AMPERES IS T R A S S Y I T T E D  BY 
LXDERGROLXD CABLE T O  T H E  TRANSFORNER S T A T I O N .  

T!iE COSVERTER S T A T I O X ,  OXC E C O ? . P I I S S I O S E D ,  OPERATES AUTOMATICALLY. A L L  S W I T C H I N G ,  STARTUP ;'LSD 
SHUTDO!;?: M E  D I R E C T E D  AXE X O S I T O R E D  BY A SMALL C C I P U T E R  SYSTEM I N  C O N J U N C T I O S  WITH OTHER COSVERTER 
X!D S T A T I O X  COSTROL EQUIPMEST.  
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GROUND POWER COLLECTLON AND T R A N S M I S S I O N  SYSTEM 

ONE L I N E  DIAGRAM 

T H E  COLLEC.IOS/TRAKBFORMER S T A T I O N  GATHERS T H E  POWER OUTPTJT O F  5 CONVLRTER S T A T I O N S ,  CONNECTS 
T H E S E  C I R C U I T S  I N T O  A RELLABLE S W I T C I I I N C  AR;UNGEMEN'I', AND T M N S P O W S  T H E  AC; POWER FROM 69 kV 
1 2  T O  230 kV. T h I S  I S  DONE YY P H Y S I C A L L Y  AND ELECTRICA1,LY ARRANGING A i i  CONNECTING STANDAKP 
E L E C T R I C A L  EQL'IPMENT J. T O  THE DESIIZLI) C O N F l C U R A T I O N .  I E  E1,ECTRICAL CC , F I G U d A T I O N  P R O V I D E S  
R E L I A B I L I T Y  BY A "ER,XKEH A N D  A 11AL.I:" SCHEME 69 k V  SWITCHYARD. A SI:I(;L. CONTINGENCY OUTAGE 
ChU BE SUSTAINISU I N  'l'HI: 69 kV SkITCl \YAI{D WlTl lOUT LOSS OF POWER OUTPUT C A P A U I L I T Y .  T O  P R O V I D E  
COXPENSATION FOK Ti{[.: INIIEPEN'I' I,A(;GZNC; iJO'~II:R FACTOR CHARACTERTSTTCS 01: T H E  CONVERTER VALVE 
A!!D TRANSFORMER EQUIPME.V?' ONE 100 N V A K  SYNCHRONOUS C0NL)KNSER I S  CONNECTED TO 'I'IIE 69 k V  B U S .  
THE SYNCHROKr3' CONDENSLR RA'I'II;(; I S  CIiOSEN 'I'O ALT,OW SYNCHKONOUS CClNI)EN5F:R blAINTEN\NCE ON 
ADJACENT COI.LtCrION/TKt\NSFOKM~;R S T A T I O N S  WITHOUT S U R T A I L I N C  POWER 0UTI'U.t'. 

T H E  S T E P - U P  SWICCHXNG S T A T I O N  R E C E I V E S  THE OUTPUT F"OM F I V E  COLLECTION/TIANSFORMER S T A T I O N S  
A T  230 kV AND TRANSFORMS THE VOLTACIC TO 500 kV. T H E  "I3RE;AKER AND A HALT" SCHE::!F ENPLOYED CAN 
S; ISTAIN ANY SINGLE CONTl l iCENCY 500 kV SWITCHYARI) FA'JLT WITHOUT REDUCTION I N  S T A T I O N  OUTPUT. 
*,iE S E L E C T I O N  O F  T H E  VOLTAGE L E V E L  FOR T H E  U1,TIMATE BULK POWER T R A N S M I S S I O N  I N T E R F A C E  WITH 
T'1E U T I L I T Y  G R I D  AS WELL AS THE: P O S S I B I L I ' T Y  O F  INTERCONNECTlNG TWO OR PIORE O F  T H E  1000 PIW 
S W I T C H I N G  S T A T I O N S  TOCETHER S I ~ O L L U  B E  O P T I M I Z E D  BASED ON D E T A I L E D  INFORMATION ABOUT THE 
CO;,NECTING U T I L I T Y  SYSTEM. THE SOLU'r lON SHOWN IS ONE O F  SEVERAL P O S S I B L E .  
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RECTENNA POWER CONDITIONING ANALYSIS 

FAILURE CHARACTERISTICS FOR SYSTEM ELPIENTS 

THE FAILLXE CHARACTEXISTICS FOR THE ELEMENTS I N  THE RECTENNA POWER COLLECTION AND TRANSYISSION 
SYSTEM MAY B E  DEVELOPED FROM ELECTRIC U T I L I T Y  INDUSTRY S T A T I S T I C S .  THE FAILURE RATES SHOWN ARE 
I N  TERYS OF FAILURES P E R  YFAR AND THE MEDIAN REPAIR TIME ASSUMES A S U F F I C I E N T  SUPPLY O F  SPARE 
PARTS AND AVAILABLE MAINTENANCE PERSONNEL. THE F A I L L R E  RATES FOR THE DC C I R C U I T  SREAKERS ASD 
THE CONVERTER STATION ARE SOMEWHAT CONSERVATIVE, THE COMPONENTS ASSUMED USED I N  THE DESIGN O F  
THESE DEVICES ARE CURRENT TECl1NOLOGY EQUIPMENT, WHILE THE DETAILED DESIGN NUST RE DEVELOPED. 



RECTENNA POWER CONDITIONING ANALYSIS 

FAILURE CHARACTERISTICS FOR SYSTEM ELEMENTS 

EQUIPMEKT - 
DC CIRCUIT BREAXERS 

FAILURE RATE MEDIAN REPAIR TIME 
PER YEAR HOURS/FAILURE 

CONVERTER STATION . 3 3  10 

SWITCHIlJG STATION (PER 
BREAKER) 

TRANSFORMER . 0 0 4 1  219 

AC CIRCUIT BREAKER . 0 1 7 6  4 

SYNCHRONOUS CONDENSER . 5  11 2 



FAILURE MODE AND EFFECTS ANALYSIS 

PRELIMI:J.iRY L I S T I N G  OF ELECTRICAL FAULTS, 
SYSTEM PROTECTION AND POWER LOSS 

THE DEVELOPMENT O F  THE FAIL'JRE MODES AND EFFECTS FOR THY SROIlND POWER COLLECTION AND TRANSMISSION 
S Y S T P I  I S  CI.JRmENTLY I N  THE PHASE OF DETERMINING THE VARIOUS EVENTS OR FAILURES THAT MAY OCCUR AND 
THE PROTECTIVE SCHEMES AVAILABLE T O  M I N I M I Z E  THE POWER LOSS. THE AREA O F  GREATEST CONCERN AT THE 
MOMENT I S  THE OPERATION OF THE 1 FiW DC C I R C U I T  BREAKERS DURING DC GROUND FAULTS A S  WELL AS THE 
t 8 ~ ~ ~ ~ ~ ~ ~ 8 g  EVENTS INTLRNAL TO THE 1 MW PRIMARY UNLTS. 

T O  BE CAPABLE O F  PROTECTING FOR THESE SITUATIONS,  WHILE ALLOWING AN AUTOMATIC RESUMPTION O F  POWER 
COL1,FCTIO;U AFI'ER A BREAKER T R I P  I T  A P P F M S  THAT THESE BREAKERS WILL BE OF S O L I D  STATE DESIGN TO 
PREVENT FEED-IN FROM THE OTHER PRIMARY UNITS DURING FAULTS, AND MECHANICAL BREAKERS FOR ISOLATION.  

OTHER GRGUND FAULTS I N  THE DC COLLECTION SYSTEM WOULD LIKELY BE CABLE TERMINATION FAULTS, AND ALL 
THE DC C I R C U I T  BREAKERS WOULD T R I P  A TOTAL O F  20 MW. THE 69 kV C I R C U I T  BREAKERS WOULD PROTECT FOR 
CONVERTER FAULTS, 69 kV SWITCHYARD FAULTS, AND SYNCHRONOUS CONDENSER FAULTS. 

LIGHTNING STROKES TO THE OVERHEAD TRANSMISSION S Y S T W  COULD CAUSE POWER INTERRUPTIONS FROM 40 TO 
1900 XW FOR ABOUT 30 CYCLES WHEN U T I L I Z I N G  FAST RECLOSING C I R C U I T  BREAKERS. A TYPICAL FREQUENCY 
O F  LIGHTNING STROKES COULD BE ABOUT FOUR P E R  100 M I L E S  PER YIAR.  



F A I L U R E  MODE AND E F F E C T S  A N A L Y S I S  

PRELIMINARY L I S T I N G  O F  E L E C T R I C A L  FAULTS,  
SYSTEM PROTECTION AND POWER L O S S  

EVENT/FA I LURE 

DC GROUND FAULT W I T H I N  1 MH' 
PRIMARY U N I T  

"CROWBAR" EVENTS W I T H I N  1 MW 
PRIMARY U N I T  

DC GROUND FAULT EXTERNAL 

CONVERTER F A I L U R E  69 k V  SYSTEM 
FAULT 

SYNCHRONOUS CONDENSER FAULT 

L I G H T N I N G  STROKES 
( 3 0  CYCLES OUTAGE/FAULT) 

PROTECTION 

DC C I R C U I T  BREAKER 

DC C I R C U I T  BREAKER 

DC C I R C U I T  BREAKERS 

69 k V  BREAKERS 

69 k V  BREAKERS 

C I R C U I T  BREAKERS 
\( /FAST RECLOSING 

POWER L O S S  
MI4 



KEY RESULTS AT THE END O F  PHASE I 

THE KEY RESULTS AVAILABLE AT THE END OF PHASE I FOR INPUTS TO THE MORE COMPREHENSIVE U T I L I T Y  SYSTEY 
OPERATIONAL INTEGRATION WORK T O  BE PERFORMFD I N  PHASE I1 WOULD BE: 

1. A D I S C U S S I O N  O F  U T I L I T Y  SYSTEM PARAMETERS INFLUENCING THE CHOICE O F  THE RECTENNA OUTPUT VOLTAGE 
LEVELS AND O F  AC OR DC LONG RANGE TRANSMISSION.  THE SELECTED S I T E  LOCATION AND THE S P E C I F I C  
U T I L I T Y  SYSTEM STUDIED WOULD B E  IMPORTANT INPUTS TO T H I S  DECISION.  

2. BY THE HELP O F  PROBABILITY MATHEMATICS, OUTAGE PROBABILITY MODELS WILL BE DEVELOPED FOR THE 
RECTFNNA S U B S Y S T P I S  AND THEN MERGED T O  OBTAIN AN APPROXIMATE PROBABILITY MODEL FOR RECTENNA FORCED 
OUTAC'ij . 
3. RECTENNA E L W E N T  SCHEDULED MAINTENANCE REQUIREMENTS W I L L  BE DEVELOPED FOR INPUTS TO THE OVERALL 
MAINTENANCE PLAN. 



KEY RESULTS AT THE END OF PHASE I 

CONSIDERATIONS FOR SPS POWER INTEGRATION 

PROBABILITY MODEL FOR RECTENNA FORCED OUTAGES 

RECTENNA SCHEDULED MAINTENANCE REQUIREMENTS 
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A s e t  o f  p r e l i m i n a r y  t a s k s  w e r e  p e r f o r m e d  d u r i n q  

P h a s e  I i n  o r d e r  t o  p r e p a r e  f o r  a more d e t a i l e d  e v a l u a t i o n  

o f  m i s s i o n  o p e r a t i o n s  command and  c o n t r o l  d u r i n q  P h a s e  1 1 .  

The o p t i o n s  d e v e l o p e d  d u r i n q  P h a s e  I w i l l  be  e v a l u a t e d  and  a 

b a s e l i n e  c o n c e p t  s e l e c t e d  f o r  u s e  i n  p r e p a r i n q  c o s t  a n d  

t e c h n i c a l  d e v e l o p m e n t  a s s e s s m e n t s .  



TRW 
m..*Y a m  =# nsr,au - 

INTRODUCTION 

PHASE l TASKS 

DEVELOP A REPRESENTATIVE MISSION OPERATIONS COMMAND AND CONTROL (C&C) CONCEPT 

PREPARE A SET OF CPTIONS TO THAT CONCEPT 

DEFINE THE CRITERIA WHICH WILL BE USED TO EVALUATE THESE OPTIONS IN PHASE II 

PHASE II TASKS 

EVALUATE THE PHASE I OPTIONS AND SELECT BASELINE MISSION OPERATIONS COMMAND 
AND CONTROL CONCEPT 

DEVELOP CANDIDATE SOLUTION TO EQUIPMENT, FACILITIES, SOFTWARE AND PERSONNEL 
NEEDS 

WEPARE TECHNICAL DEVELOPMENT AND COST ASSESSMENTS 



S P S  S Y S T E M  M A J O R  E L E M E N T S  

R E Q U I R I N G  COMMAND,  CONTROL AND TRACKING 

This fiqure illustrates the major elements of the 

system which either require or prcvide command and control 

during mission operations. The functions of each of these 

elements and thejr interrelationships during all mission 

operations were analyzed to determtne the mission ope'rations 

C&C functions required. 



SPS SYSTEM MAJOR ELEMENTS REQU l RING COMMAND, CONTROL AND TRACKING 
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DEFINITIONS 

I n  o r d e r  t o  a s s u r e  a common b a s i s  f o r  communication 

i n  t h e  d i s c u s s i o n  o f  t h e  somewhat complex sub. ject ,  a 

d e f i n i t i o n  o f  some o f  t h e  p r i n c i p a l  terms have been 

p r e p a r e d .  Throughout t h i s  p o r t i o n  o f  t h e  p r e s e n t a t i o n  

t h e  a b b r e v i a t i o n  "C&Cu i s  used f o r  the  term command and 

c o n t r o l .  



DEFI IJITIONS 

MISSION OPERATIONS - OPERATIONS CF ALL ORBI7AI.. ELEMEVTS OF THE SPS SYSTEM INCLUDING 
THE TRANSPORTATION VEHICLES WHICH TRAVEL AMONG THESE cLEMENTS 

MISSION OPERATICIN COtVlMAND AND CONTROL - THE COMMAND AND CONTROL OF MISSION 
OPERATIONS. THlS INCLIJDES THE RECEPTION AND INTERPRETATION OF STATUS DATA 
(PREDOMINANTLY TELEMETRY DATA) TO DETERMINE ANY NECESSARY COMMANDS AND THE 
IMPLEMENTATION OF THESE COMMANDS, ORBITAL AND TRAJECTORY TRACKING IS ALSO INCLUDED 
IN THIS TASK 

COMMAND AND CONTROL CENTERS - CENTERS WHICH HAVE BEEN DELEGATED AUTHORITY FOR 
COMMAND AND CONTROL OF SELECl'ED MISSION OPERATIONS 

MlSSlON CONTROL CENTER (MCC) - THE COMMAND AND CONTROL CENTER WHICH HAS CENTRAL 
COMMAND AND CONTROL AUTHORITY FOR MISSION OPERATIONS 



COMMAND A N D  CONTROL  F U N C T I O N S  R E Q U I R E D  D U R I N G  M I S S I O N  OPERATIONS 

T h i s  f i g u r e  summarizes an a n a l y s i s  w h i c h  was made o f  a l l  m i s s l o n  o p e r a t i o n s  

t o  d e t e r m i n e  t h e  C&C f u n c t i o n s  r e q u i r e d  d u r i n g  each  o p e r a t i o n .  A l s o  a s  a  p a r t  

o f  t h i s  a n a l y s i s  a d e t e r m i n a t i o n  was made as  t o  where t h e  r e s p o n s i b i l i t y  s h o u l d  
r e s i d e  f o r  each  f u n c t i o n  i d e n t i f i e d .  The c r i t e r i a  used  f o r  a s s i q n m e n t  o f  
r e s p o n s i b i  1  i t y  were:  

a )  P l a c e  t h e  r e s p o n s i b i l i t y  i n  a c o n t r o l  c e n t e r  I n  t h e  l o c a l  

sys tem e l e m e n t  w h i c h  c a n  most  r e a d i l y  p r o v f d e  t h e  t e c h n i c a l  

e x p e r t i s e ,  o b t a i n  t h e  n e c e s s a r y  i n f o r m a t i o n  and ~ e r f o r m  t h e  

r e q u i r e d  c o m m u n i c a t i o n  w i t h  t h e  s y s t e m  e l e m e n t s  i n v o l v e d .  

F o r  example ,  C & C  o f  H L L V  o r  O T V  d o c k i n g  a t  an  o r b i t a l  base  

i s  a s s i g n e d  t o  t h a t  base s i n c e  i t  has t h e  n e c e s s a r y  s t a t u s  

i n f o r m a t i o n  as  w e l l  as  d i r e c t  c o n t r o l  o f  t h e  d o c k i n g  e q u i p m e n t  

on t h e  base.  A l s o ,  c o m m u n i c a t i o n  w i t h  t h e  c r e w  o f  t h e  d o c k i n g  

v e h i c l e  I s  c o n d u c t e d  o v e r  a r e l a t i v e l y  s h o r t  r a n g e .  

b )  To t h e  e x t e n t  p o s s i b l e  p r o v i d e  c o n t r o l  autonomy t o  l o c a l  s y s t e m  

e l e m e n t s .  

c )  A t h i r d  c r f t e r i o n  was t o  g r o u p  r e s p o n s i b i l i t y  f o r  t h o s e  c o n t r o l  

f u n c t i o n s  w h i c h  do n o t  l e n d  t h e n s e l v e s  t o  l o c a l  c o n t r o l  i n t o  a  

c e n t r q l  c o n t r o l  ( M i s s i o n  C o n t r o l  C e n t e r ,  MCC). An examp le  I s  m l d c o u r s e  

c o n t r o l  o f  t r a n s p o r t a t i o n  v e h i c l e s .  I n  t h i s  case  no l o c a l  s y s t e m  

e l e m e n t  i s  i n v o l v e d  and t h e  s t a t u s  l n f o r m a t f o n  mus t  be o b t a i n e d  

b y  r e l a t i v e l y  5ong r a n g e  r . f .  co rnmun lca t i on .  The MCC ~ $ 1 1  be 

p r o v i d e d  w i t h  t h e  r e r s o n n e l ,  i n f o r m a t l o n  and co rnmun lca t i on  

c a p a b i l i t y  t o  p e r f o r m  t h e  a s s i g n e d  f u n c t i o n s .  



COMMAND AND CONTROL FUNCTIONS REQUIRED DURING MISS ION OPERATIONS 

LOCAL COMMAND AND CONTROL 
SYSTEM ELEMENT CENTERS AND FUNCTIONS 

.--- 
MISSION CONTROL CENTER FUNCTIONS 

LAUNCH AND RECOVERY SITE ----- LAUNCHANDRECOVERYC&CCENTER - LAUNCH AND RANGE COORDINATION 
- HLLV AND PLV - PREPARE AND LAUNCH VEHICLES, - MIDCOURSE CONTROL TO LEO 

PAY LOADS *NO CREW - BOOSTER STAGE SEPARATION AND CONTROL 
- LANDING AND/OR RECOVERY 

LEO BASE 
- HLLV AND PLV 

LEO BASE C&C CENTEA - HLLV; PLV; OTV 
- BASE AND SPS MODULE CONSTRUCTION - RENDEZVOUS COORDINATION 

- O W  MANAGEMENT - I-AUNCH COORDINATION 
- SPS MODULES-IN-TRANSIT - HLLV, PLV. OTV - MIDCOURSE CONTROL 

(SMIT) - DOCKING AND UNLOADING - OTV BOOSTER SEPARATION AND CONTROL - PREPARE AND LAUNCH VEHICLES, - SMlT 
PAY LOADS, CREWS - LAUNCH COORDINATION 

- SMlT - MIDCOURSE CONTROL 
- LAUNCH PREPARATION AND LAUNCH - LEO BASE - TRACKING, STATIONKEEPINO, CONTINGENCY 

------- RESOLUTION -- 
GEO BASE CEO BASE C&C CENTER - OTV; MAINTENANCE VEHICLES 
- OTV - BASE AND SPS CONSTRUCTION - RENDEZVOUS COORDINATION 
- SMlT MANAGEMENT - LAUNCH COORDINATION 
- SPS - OTV - MIDCOURSE CONTROL 
-- MAINTENANCE VEHXLES - DOCKING AND UNLOADING - SMlT 

- PREPARE AND LAUNCH VEHICLES, - RENDEZVOUS COORDINATION 
PAYLOADS AND CREWS - SPS 

- SMlT - ACTIVATION AND COORDINATION 
- RENDEZVOUS AND BEHTHING - MAINTENANCE COOROINATION 

- SPS - GEO BASE 
- MAINTENANCE OPERATIONS - TRACKING, STATIONKEEPING, CONTINGENCY 

-- MAINTENANCE VEHICLES RESOLUTION 
- PREPARE AND LAUNCH VEHICLES, 

CREWS AND PAYLOADS 
- DOCKING AND UNLOADING 

.----- -- ---- -- - 
OPERATIONAL SPS RECTENNA C&C CENTER .- ------- - C&C, TRACKING, STATIONKEEPING 

- MONITOR SPS POWER PERFORMANCE - POWER SUBSYSTEM C&C 
- ECLIPSE SCHEDULESIANTENNA POINTING 
- MAINTENANCE VEHICLES DOCKING AND LAUNCH 

- ----- ----- -- ---- - -- - -- . ---- -. -- ---- --- -----*---- ---...... -- 
COMMUNICATIONS SATELLITES - C&C, TRACKING, STATIONKEEPING 



COMMAND A N 0  CONTROL CENTERS 

As t h e  r e s u l t  o f  t h e  a n a l y s i s  o f  m i s s i o n  o p e r a t i o n s  

t h e s e  f l v e  C L C  c e n t e r s  were e s t a b l i s h e d .  The f l r s t  f o u r  a r e  

l o c a t e d  I n  l o c a l  sys tem seqments, t h e  f i f t h  ( t h e  M C C )  i s  an 

Independent  c e n t e r  d e d i c a t e d  t o  CbC. T h i s  c e n t e r  w i l l  have 

t h e  c e n t r a l  a u t h o r i t y  f o r  m i s s i o n  o p e r a t l o n s .  The o t h e r  

c e n t e r s  w i l l  I n t e r f a c e  and c o o r d l n a t e  w i t h  t h i s  c e n t e r  when 

t h e y  a r e  commandlng and c o n t r o l l l n g  l o c a l  m l s s i o n  o p e r a t l o n s  

f o r  wh ich  t h e y  have been ass igned  a u t h o r i t y .  
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COMMAND AND CONTROL CENTERS 

1. LAUNCH AND RECOVERY COMMAND AND CONTROL CENTER 

2. LEO BASE COMMAND AND CONTROL CENTER 

3. GEO BASE COMMAND AND CONTROL CENTER 

4. RECTENNA COMMAND AND CONTROL CENTER 

5. MISSION CONTROL CENTER 



CATEGORIES OF C&C FUNCTIONS ASSIGNED TO MISSION CONTROL CENTER_ 

A large number o f  diverse C&C functions were assigned t o  the Mission Control Center as 
a r e s u l t  o f  the analysis o f  mission operations. These functions were reviewed w i th  the 
object ive o f  organizing and categorizing them i n  order t o  make e f f i c i e n t  use o f  resources. 
The functions were divided i n t o  the s i x  categories shown by grouping together those functions 
having s im i la r  requirements f o r  the f o l  lowing resources; type o f  informatfon required, technical 
expertise, equipment and software. 

Four o f  these categorles ( i  .e., Transportation Vehicle C&C, SMIT CLC, Operational SPS CLC, and 
Comnunication S a t e l l i t e  C&C) each require the information, expertise, etc. t o  operate space vehicles. 
However, the space vehicles are so widely d i f f e ren t  (i .e., a t t i t ude  control,  propulsion, power, etc.) 
t ha t  special l y  t ra ined crews, widely d i f f e r e n t  software and unique procedures w i l l  be required. Hence 
separate categories were established. 

Space T ra f f i c  Control has the respons ib i l i t y  t o  insure t ha t  the movements o f  a l l  space vehicles 
and other space elements are coordinated and control  1 ed such t ha t  they do not i n t e r f e re  w i t h  each 
other o r  w i th  other space t r a f f i c  and are not  impacted by space debris o r  meteors. This requires 
t racking information plus personnel and software capable o f  pro jec t ing t h i  s Information f n to  fu ture  
t r a f f i c  si tuations. 

Orbi ta l  Base C&C - I t  i s  ant ic ipated t ha t  the o r b i t a l  bases w i l l  be autonomous, however, the 
Mission Control Center may be c a l l  ed upon t o  perform track1 ng, stationkeeping and reposi t l on f  ng I n  
e i t he r  primary o r  back-up mode. 

The s ize o f  the c i r c l es  indicates a prel iminary estimate o f  the r e l a t l v e  magnf tude o f  the e f f o r t  
required f o r  accomplishing the tasks i n  each category. S imi lar ly  the thickness o f  the arrows indicates 
the magnitude o f  the in ter face between each category. 
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CATEGORIES OF C&C FUNCTIONS ASSIGNED TO MISS ION CONTROL CENTER 

a@@) NO INTERFACE 

c 
@ ONLY INTERFACE IS LAUNCH OF COMPLETED SPS FROM GEO 

@ ONLY INTERFACE IS LAUNCH OF MOOU1.C FROM LEO AND DOCKING 
OF MODULE AT GEO 44 1 



C & C  CENTER RELATIONSHIPS TO M A J O R  SYSTEM 
ELEMENTS AND TO EACH OTHER 

T h i s  f i g u r e  i s  a  g r a p h i c a l  p r e s e n t a t i o n  o f  t h e  r e s u l t s  o f  t h e  

m i s s i o n  o p e r a t i o n s  C & C  a n a l y s i s .  The shaded c i r c l e s  f n d i c a t e  t h e  

f o u r  CLC c e n t e r s  w h i c h  ape c o l l o c a t e d  w i t h  m a j o r  sys tem e lemen ts .  

The s i x  c a t e g o r i e s  o f  M i s s i o n  C o n t r o l  C e n t e r  C t C  a r e  shown by t h e  

c r o s s - h a t c h e d  c i r c l e s .  The c l e a r  c i r c l e s  and a r r o w s  i n d i c a t e  

sys tem e l e m e n t s  w h i c h  do n o t  have c o l l o c a t e d  C L C  c e n t e r s .  The 

a n n o t a t e d  s m a l l  a r r o w s  i n d i c a t e  t h e  p r i n c i p a l  i n t e r f a c e s  w h l c h  e x l s t .  

Space T r a f f i c  C o n t r o l  w i l l  i n t e r f a c e  w i t h  a l l  o t h e r  c o n t r o l  c e n t e r s  

and s y s t e m  e l e m e n t s ,  however,  t h e s e  I n t e r f a c e s  a r e  n o t  shown I n  

o r d e r  t o  s imp1 i f y  t h e  f i g u r e .  
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C&C CENTER RELATIONSHI PS TO MAJOR SYSTEM ELEMENTS AND TO EACH OTHER 



MISSION OPERATIONS C&C OPTION CATEGORIES 

The selected concept of a system f o r  command and control  o f  mission operations consists of: 

1) The f i v e  CLC centers previously i den t i f i ed  which include the Mission Control Center 
2) Assignment o f  CLC functions t o  each o f  these centers as previously defined 
3) A Mission Control Center consist ing o f  two f a c i l i t i e s  wh!ch would be separated 

geographj c a l l  y 

a) One f a c i l i t y  which includes Transportation Vehicle CBC and Space T r a f f i c  C8C 
functional categories 

b) Another f a c i l i t y  which Includes Orb i ta l  Base C&C, SPS Modules-in-transit (SMIT) 
C&C and Communication S a t e l l i t e  C&C 

The reason f o r  two f a c i l i t i e s  i s  tha t  i n  the event o f  a catastrophic event (such as 
hurricane, flood, earthquake) which would cause loss o f  power o r  a ma jo r i t y  o f  the 
capab i l i t y  a t  one location, a back-up capab i l i t y  would exist .  I n  addition, i t  i s  
ant ic ipated tha t  the magnitude o f  MCC operations w i l l  become large enough, due t o  
the numbers and types o f  vehicles involved, t ha t  two f a c i l i t i e s  w i l l  be required. 

A large number o f  options t o  t h i s  concept have been considered. This f l gu re  shows the major 
categories o f  these options. These options w i l l  be evaluated i n  de ta i l  $n Phase I1 using c r f k r l a  
which have been defined i n  thfs  Phase. 
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OPTION 

OPTIONS TO M I S S I O N  OPERATIONS C&C CONCEPT 

EXAMPLE ADVANTAGES DISADVANTAGES 

ESTABLISH MORE OR FEWER EACH RECTENNA IS TOTAL RECTENNA IS IMMEDIATELY LARGE NUMBER OF C&C 
C&C CONTROL CENTERS C&C CENTER FOR AN SPS AWARE OF EITHER SPS OR CREWS AND EQUIPMENT 
THAN FIVE I N  THIS CONCtiPT GRID POWER PROBLEMS, REQUIRED 

CAN REACT SWIFTLY 

ASSIGN RESPONSIBILITIES OPERATIONAL BASES REDUCED COST OF MCC BY NO CONTINGENCY 
DIFFERENTLY AMONG THE COMPLETELY AUTONO- ELIMINATING ONE CATE- RESOLUTION CAPABILITY 
FIVE CONTROL CENTERS MOUS. NO C&C CAPABIL- GORY OF FUNCTIONS IN EVENT OF PROBLEMS 

ITY FROM MCC WITHIN THE BASE 

GROUP RESPONSIBILITIES CREATE C&C CENTER FOR EACH TYPE OF VEHICLE IS MAY NOT BE ABLE TO 
DIFFERENTILY THAN SIX EACH TYPE OF TRANS- QUI.TE DIFFERENT. MAY COMBINE USE OF PER- 
C&C CATEGORIES I N  MCC PORTATION VEHICLE GET BETTER C&C OF EACH SONNEL AND EQUIPMENT 

TYPE AS EFFECTIVELY 
ESPECIALLY IN  BACKUP 
MODES 

PUT MCC I N  MORE OR PROVIDE THREE MCC PROVIDES GREATER HIGHER COST 
FEWER FACILITIES FACILITIES POTENTIAL FOR REDUN- 
(GEOGRAPHIC LOCATIONS) DANCY, HENCE 
THAN TWO I N  THIS RELIABILITY 
CONCEPT 



Rectenna Siting 

Investigation 



SITING GROUND RULES 

Data exchdnge agreements were developed between th ree  u t i  1 i t y  reg ions and t h i s  study. 

This enabled us t o  acqui re  more s p e c i f i c  in format ion as t o  u t i l i t y  needs f o r  power 

generat ion and d i s t r i b u t i o n  i n  these areas, and t o  add some r e a l  ism t o  the  quest ions o f  

rectenns s i t i n g  and g r i d  i n t eg ra t i on .  The geographical areas served by these th ree  

u t i l i t i e s  a re  . .   st rated on t he  accompanying map. 
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Siting Groundrules 

INVESTIGATION LIMITED TO THREE UTILITY REGIONS: 

BONNEVILLE POWER ADMINISTRATION (BPA) 
(PAC1 FIC NORTHWEST) 

MID-CONTINENT AREA POWER POOL (MAPP) 
(NORTH CENTRAL USA) 

SOUTHERN CALIFORNIA EDlSON 



S I T I N G  GROUND RULES CONTINUEfl 

Additional graund rules employed i n  the s i t i n g  invest igst ion are tabulated on the facing 

page. Most o f  these can be regarded as candidate s i t e  selection c r i t e r i a .  



Siting Ground Rules, Continued 

TWO "BEAM + BUFFER" REGION WIDTHS (EASl*WEST DIMENSION) 

13.10 km (CORRESPONDS TO 6000 MW OUTPUT) 
9.32 km (CORRESPONDS TO 2600 MW OUTPUT) 

SPS ON THE LONGITUDE OF THE SlTE 

O NORTH-SOUTH DIMENSION A FUNCTION OF LATITUDE 

EXAMPLES: 480 LATITUDE, 23.06 km 
350 LATITUDE, 17.37 km 

@ NO ENCROACHMENT UPON: 

GAME PRESERVES NATIONAL AND STATE PARKS 
BIRD REFUGES INDIAN RESERVATIONS 
NATIONAL MONUMENTS 

MAXIMUM 6 MINIMUM ELEVATIONS IN SlTE TO BE WITHIN 7000 FEET OF 
EACH OTHER 

MINIMUM DISPLACEMENT OF PERSONS AND PROPERTY 



SIT ING APPROACH 

The basic s i  t i n g  approach employs map searches with the steps as lndlcated on the facing 

Page 



Siting Approach 

MAP SEARCH WITH: 

AERONAUTICAL CHARTS 
CONTOUR PLOTS 
ROAD MAPS 

POPULATION COUNTS FROM "ATLAS OF THE UNITED STATES" 

4 APPROACH: 

1. IDENTIFICATION OF PROMISING AREAS 
2, CHECK FOR AGREEMENT WITH QROUND RULES' 
3. CHECK FOR FIT OF 6000 MW RECTENNA 
4. IF FIT O.K., 6000 MW ASSIGNED 
6. IF 6000 MW 010 NOT FIT, 2500 MW WAS TRIO0 



RECTENNA SITING POTENTIAL SITES IDENTIFIED 

Prel iminary studies o f  rectenna s i t i n g  have indicated t h a t  the number o f  potent ia l  s i tes  

i s  considerably greater than presently-es timated requirements . Specif ic s i  tes were 
i d e n t i f i e d  . in  the three areas indicated wi th  t o t a l  numbers o f  s i t e s  as sumnal*ized. 



Rectenna Siting 
Potential Sites   den tified 

ALSO SUITABLE FOR 2600 MW 

b 

UTILITY REGION 

BONNEVILLL POWER 
ADMlN ISTRATION 

MID-CONTINENT AREA 
POWER POOL 

SOUTHERN CALIFORNIA 
EDISON 

TOTALS 

60QOMW SITES 

26 

61 

8 

84 

2600 MW SITES 

27 

34 

9 

70 
i 



RECTENNA S I Z E  EFFECTS 

I t  was found benef ic ia l  t o  have ava i lab le  i n  the inventory two sizes o f  receiv ing antenna. 
The two sizes u t i l i z e d  correspond t o  the two power transmission l i n k  capaci t ies discussed 

e a r l i e r  i n  t h i s  b r i e f i n g  under A1 te rna t ive  Sizes f o r  SPS. I f  both 2500 and 5000 megawatts 

rece iv ing  s i t e s  could be employed, the t o t a l  amount o f  power tha t  could be s i t e d  was much 

greater  than t h a t  f o r  e i t h e r  s ize  o f  rece iv ing  antenna alone. 



IF ONLY 2600 MW RECTENNAS WERE SIT ED, 386 OW OF CAPACIN COULD 
BE INSTALLED 

JC 

IF ONLY 5000 MW RECTENNAS WERE SITED, 420 OW OF CAPACITY COULD 
BE INSTALLED (9% MORE THAN WITH 2600 MW ALONE) 
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Recte~rna Size Effects 

a IF BOTH 2 5 0 0 ' ~ ~  AND SO00 MW RECTENNAS ARE AVAILABLE, 595 OW COULD 
BE SITED (42% MORE THAN WITH 5000 MW ALONE) 



CAPACITY VS . REQUIREMENTS 

As noted, the prel iminary s i t i n g  investigation had no d i f f i c u l t y  i n  f inding s i t e s  equal 
t o  the power generation needs f o r  these u t i l i t i e s  regions a t  about the turn o f  the century. 
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Capacity Versus Requirements 

THIS PRELIMINARY ANALYSIS INDICATES THAT POTENTIAL SITES EXIST 
FOR AT LEAST FOUR TIMES THE 2000 A.D. REQUIREMENTS. . 

SITING IN THE ENERGY INTENSiVE NORTHEAST WAS NOT INVESTIGATED, 
BUT DEMANDS FOR THAT AREA MIGHT BE MET BY MODEST INTERTIES FROM 
RECTENNAS IN THE NORTH CENTRAL U.S. 



SITING CONCLUSIONS 

It i s  qu i te  un l ike ly  that  more deta i led  investigation would r u l e  out many o f  the s i tes  
potent ia l ly  i d e n t i f i e d  i n  t h i s  preliminary analysis. Even i f  h a l f  o f  the s i tes  ident i -  

f i e d  were l a t e r  ruled out ,  however, s i t i n g  o f  adequate c. #ac i ty  to  meet the needs o f  

u t i l i t i e s  i;~ these regions appears t o  be possible. 
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Siting Conclusions 

ADEQUATE SITES APPEAR TO EXIST IN THE AREAS INVESTIGATED 
(ALTHOUGH MORE DETAILED ANALYSIS CAN BE EXPECTED TO RULE OUT 
MANY SITES, AS WOULD LICENSING PHOBLEMS) 

MODEST INTERTIES FROM THE NORTH CENTRAL AREA MIGHT EASE NORTHEAST 
SITING PROBLEMS 

WITH TWO RECTENNA (& SPS) SIZES AVAILABLE, 5000 & 2500 MW, MUCH MORE 
CAPACITY CAN BE SITE0 THAN WlTH EITHER SIZE ALONE 



RECOMMENDATIONS 

Recomnendations for continued s i t i n g  analysis are summarized on the facing page. 



1) CONTINUE ANALYSIS WITH FINE SCALE MAPS (7.5 MINUTE) TO SEARCH 
OUT SITING PROBLEMS AND DERIVE DATA FOR GENERAL ELECTRIC'S 
RECTENNA TASK. 

AVERAGE SLOPES 
SOIL N P E S  
DRAINAGE ChARACTERISTICS 

2) CONDUCT TESTS TO DETERMINE EFFECTS OF PRECIPITATION ON RECTENNAS. 

3) NUCLEAR INOUSTRY EXPERIENCE I S  TYPICALLY 12 YEARS FROM SlTE 
SECECTION/LICENSING TO UNIT COMPLETION. IF  SPS IS TO GO ON-LINE IN 
THE LATE 1990'8, SlTE SELECTION SHOULD RECEIVE EMPHASIS SOON. 



Technology 
Advancement 

Planning 

, . 
*-u--.. 
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OVEkALL SPS DE'IELOP!!Et:: 

A number o f  s tud ies have been c o n d ~ c t e d  at tempt inu t o  i d e n t i f y  tne  developmental evo lu t i on  

needed t c  advance f rom the present paper t tudy  staqe t o  a~h ieve r i en t  hf  operat iona l  so l a r  

poder s a t e l l i t e s .  These s tud ies have var ied  subs tan t , i i l l y  i n  d e t a i l e d  scenari3s and con- 

t en t ,  bu t  a l l  have genera l l y  tended t o  agree on the f o ~ r  major p r o q r w  steps ind ica ted  o r  
the fac ing page. The schematic o f  the program shows ne i t he r  c l ea ra l y  def ined beairrr;nas 
nor ends t o  any of  the sets o r  a r ~ y  o v e r a l l  schedule. The p o t e n t l a l  f a r  s i c l n i f i c b r  : over- 

l a p  between the  phases i s  a l so  ind ica ted .  I t  i s  q u i t e  l i k e l y  t h a t  informat ion-qar l e r i n q  

phases such a s  sys tern def i n i  :ion and eva lua t ion ,  and tec;?nology rr!search and aavar~cerrcnt, 

w i l l  have no c l ea r l y -ae f i ned  end po in t s .  Ghen these a c t i t i i t i e s  have veac+ed s u f f i c f e n t  

m a t u r i t y  t o  i n i t i a t e  technology v e r i  f i ca  t i  fin o r  devel opmer~ta? phaccs they ,v.ri: , c.mtinue t o  

exp lore mcre advanced concepts and techno1 oqy. 
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Overall SPS Development 

SYSTEM DEFINITION 

& EVALUATION 

TECHNOLOGY RESEARCH 

&ADVANCEMENT (LABORATORY AND HIOHSRIORITY SHUTTLE FLIGHTS) 

(FLIGHT PROJECTS) 
VERIFICATION 

- -- 

SPS DEVELOPMENT 

AND COMMERCIALIZATION 



PLANNING PROCESS 

The planning process described here i s  present ly being appl ied t o  the technology advance- 

ment planning area. The f i r s t  pass through the process has reached the p o i n t  indicated. 

T !~ i s  i s  viewed as a cont inuing i t e r a t i  ve process w i t h  each succeeding i t e r a t i o n  improving 

upon the d e f i n i t i o n  and r a t i o n a l i t y  o f  the plan being evolved. We expect t o  provide status 

memoranda o f  the evolving plan f o r  review by J S C  and others a t  regular  I n te rva l s  so tha t  the 

f i n a l  planning document from t h i s  contract  on t h i s  subject w i l l  be a data product representing 

a reasonable consensus regarding technology advancement. 



Planning Process 

IDENTIFY IDENTIFY PRIORITIZE 
MAJOR GOALS GOALS 

AREAS 

DETAILED 
TASKS 

INTERREL- 
ATIONSHIPS 

ANALYSIS (COSTtNO) 

+ 
AUTOMATED 
RESOURCE- 
CONSTRAINED 
SCHEDULING 

WE ARE HERE 



TECHNOLOGY ADVANCEMENT PLANNING 

The technology advancement plan present ly  being prepared covers the  ten areas ind ica ted  

on the  fac ing  page. I n  general the  plan al lows f o r  mu1 t i p l e  technology paths,  converging 

upon select ions o f  technology only a f t e r  l abora tory  v e r i f i c a t i o n  and assessment o f  the  

a1 t e r n a t i  ves i s  accompl 1 shed. 
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Technology Advancement Planning 

OETAILEO PLAN COVERS TEN AREAS 

PHOTOVOLTAICS 

THERMAL SYSTEMS 

POWER TRANSMISSION 

SPACE STRUCTURES 

MATERIALS & PROCESSES 

FLIGHT CONTROLS 
c'. , 

SPACE CONSTRUCTION 

SPACE TRANSPORTATION 

POWER DISTRIBUTION 

SPACE ENVIRONMENT EFFECTS 

. SILICON 

MULTIPLE PATHS IN MOST AREAS, o.o., GALLIUM A R s E N I a  SELECT 

OTHER / 



TECHNOLOGY ADVANCEMENT PLAN AUTOMATED SCHEDULING FXAMPLE 

An automated system ca l l ed  Pro jec t - I1  i s  being u t i l i z e d  f o r  t h i s  analysis.  It provi+es 

automated network scheduling, resources and cost analysis.  Proaram schedules can be 

adjusted t o  f i t  w i t h i n  budget l i m i t s  and observe p r i o r i t i e s  o f  task. The example shown 

here i s  a fragment o f  the present schedule plan f o r  SPS so la r  array development. 
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POTENTIAL SPS PRECURSORY ELEMENTS 

Earlier studies have conceived a number of SPS developmental systems. Several of the 
more recent ideas are pictorial ized here. These range from a large power module designed 
to provide up to 300 kilowatts of electric power to large space payloads, tc 9 so-called 
SPS commercial demonstrator. Each of these is visualized to serve a somewhat different 
need. The developmental test article would demonstrate construction of a large structural 
article, deployment of lightweight high voltage solar arrays, operation of a rotary joint, 
and operation of high power transmitter subarray. The proof-of-concept and productivity 
article would, in addition, demonstrate construction and maintenance procedures more nearly 
like those that would ultimately be used for SPS construction and maintenance. Finally, 
the commercial demonstrator would employ actual SPS elements such as transmitter subarrays 
and solar arrays, on a sufficiently large scale to acquire statistical information on failure 
rates and maintenance cost. Sti 1 1  larger articles such as a 500 to 1000 megawatt SPS prototype 
have been proposed by earlier studies. Finally, the initial full size SPS will be a prototype, 
Whereas earl ier investigations had presumed that the full -size prototype SPS would be a 
5,000 to 10,UOO megawatt system, more recent information suggests that it should be a 2,500 
megawatt system. 

Questions of SPS developmental article configuration include questions of the support 
systems used to accomplish these demonstrations, especially the transportation and construc- 
tion systems. The smailer articles in this illustration could be constructed using the 
space shuttle as traqsportation vehicle and construction support base. The comnercial 
demonstrator would require a shuttle-derived heavy lift vehicle and probably some sort of 
permanently habitable construction base. 

Although some logic can be stated for each of these articles, it is not pratical to think 
of constructing all of them. The question yet to be answered is which o f  these (or which 
other concepts) are really necessary to establish an adequate level of confidence to pro- 
ceed with a true prototype SPS. 
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SPS DEVELOPMENT 

This l i s t  sumnarizes the status of the SPS development program analysis task. 
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SPS Development 

OVERALL FOUR-STEP PROGRAM STRUCTURE IDENTIFIED 

TECHNOLOGY ADVANCEMENT GOALS, OPTIONS, SEQUENCES, 

AND TASK BECOMING CLEAR 

PRESENT TECHNOLOGY ADVANCEMENT PLAN INCLUDES SOME 

GROUND-BASED DEVELOPMENT ACTIVITIES; DISTINCTION NEEDED 

THREE TO FIVE SHUlTLE FLIGHT MISSIONS NEEDED TO 

EXPLORE CRITICAL TECHNOLOGY ISSUES 

ENSURE SUCCESS OF LATER FLIGHT PROJECTS 

4 NATURE OF NEEDED MAJOR FLIGHT PROJECTS NOT YET CLEAR 

RELATIONSHIP TO SPS DEVELOPMENT NOT YET CLEAR 


