NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

g jM6r (3
MlTRE-,BGderd—_——-m‘fn_ -l\
MTR-4729 JSC #16054 l
Uy £ 1979
NASA CR:
/6057
The NASA Bus Communications
Listening Device Software
(NASA-CR-160384) THE NASA BUS | N80-12258
COMMUNICATIONS LISTENING DEVICE SOFTWARE |
(Mitre Corp., Houston, Tex.) 73 p 1
HC AQU/XP AD1 | CSCL 178 Unclas {
G3/22 46170 '
M. A. Allen
JULY 19’79

LN L

MITRE Technical Report
MTR-4729

The NASA Bus Communicafions

CONTRACT SPONSOR

CONTRACT NO.
PROJECT NO.
DEPT,

THE '

MI'TRE

FCiO.R P.ORCA T I O N
HOUSTON, TEXAS

M. A. Allen

JULY 1979

NASA/ISC
F19628.79-C-0001; T5295F
8470

D-74

Listening Device Softuware

This document was prepared for authorized distribution.
It has not been approved for public release,

ok

U | L

T T

—

L i, B Vi i Ting te

-

ABSTRACT

The need for an inexpensive way to monitor the
two-way traffic on the prototype MITRE bus communications
cable system at the National Aeronautics and Space Admin-
istration Johnson Space Center prompted the development of
the bus listener described in this document. This report
is intended to serve as a user's guide Ffor the bug
listener as well as document the code used in the Bus
Interface Unit (BIU). For Bedford users, the source code
resides in TSO account 770 under the name LISTEN.ASM.

LA RS EE LR XS EEEEEEEEEEEET IS EESSEERE S EEETEEE S SRR

NOTICE: THE EQUIPMENT DESCRIBED HEREIN IS THE SUBJECT OF
A PATENT APPLICATION PENDING BEFORE THE UNITED
STATES PATENT OFFICE. THIS MATERIAL MAY NOT BE
USED IN ANY WAY WITHOUT THE EXPRESS WRITTEN
LICENSE FROM THE MITRE CORPORATION. PARAGRAPHS
CONTAINING INFORMATION RELATING TQ THE PATENT

APPLICATION ARE MARKED BY A BAR IN THE MARGIN.
Ahkkhhhhhhhhhhhhhhhh Nk AARR T Ak A AR A AR AN A ARk hh Ak hk

iii

-

- PRECEDING PAGE BLANK NOT Flilor,

. "-:q‘ e FERTI v
s T e e e e g e ey N

W TR SURSRITIES G IS T vy

e H it

e s o ipast

TABLE OF CONTENTS

List of Illustrations

List of Tables

SECTION I
1.0

1.1
SECTION II

2.0

SECTION III

WWWwWwwWwuwwww
(] . L3 . . L]
Houooaoul & WNH

INTRODUCTION

BACKGROUND

Scope

THE BUS COMMUNICATIONS SYSTEM
INTRODUCTION

Protocol

Listen-While-Talk
Bus Addressing
Message Continuity
Message Types

Specifications

Error Detection and Correction
BIU Hardware

BIU Listener

BUS LISTENER OPERATING PROCEDURES
INTRODUCTION

Hardware Set Up

Operator Procedures
Multiple Address Monitoring
Skipping Packets

Maximum Packet Count
Interrupting Processing
Infinite Processing

Normal 'Termination

Error Messages

Error Recovery

Sl B e] e M gy o A

N

Page

vii
vii

o Ul Ut w w w

o Oaguo

10

11
12
12
13
13
13
14

i .
I W AT

L i 2

SECTION IV

4.0

K N N

i] L]

S =
N

B D
.] . *
NI

. L]

W N

>
.
w

B e L
e e+ o s

WWwwwwww
- . £ . . L]
YU W

>
s
s

Lo - = L=
. » L] . L] L]
w o b

L] L]

n

(91 R0 8]
- Ll £]
W

b b
@0 ~J o

Coremes T M - D S i ettt o i

Tabge of Contents
{Continued)

THE BUS LISTENER SOFTWARE
INTRODUCTION
Approach to Development

Circular Buffering
Listen Operation

Reset Operation

Stack Pointer

Page Zero Variables
Buffer Pointers
Initialization Messages

INDEV Subroutine

Valid Inputs

Matching String
Setting Counters
Infinite Count

Monitor All Addresses
Default Second Address

OUTDEV Subroutine

Queue Processing
Data Cutput

IRQ Subroutine

Address Comparison

Acknowledgments

Time Criticality of Acknowledgments
ALLOC Subroutine

ENQ Subroutine

PTSTR Subroutine

vi

fal e ST A P DR T ORPES

L

-l| . at o X T N i

Page

15
15
15

16
16

17

17
18
18
19

19
20
21
21
22
22
23

23
24

25

26
26
27

28
28
28

TP [

Table of Contents
= {Concluded)

APPENDIX I BUS LISTENER SOFTWARE LISTING
APPENDIX II BUS LISTENER FLOW CHART
REFERENCES

DISTRIBUTION LIST

LIST OF ILLUSTRATIONS

Figure 2.1 LWT Bus Packet Format

LIST OF TABLES

Table I Memory Map of Bus Listener RAM

vii

. T Y e R O N SR TG L v e TOrOr N S ek WA

Page

31
55
67
69

19

B T T U S s |

I

R banr e ot

TR B RO L BRI

L L LAY S T S

At

SECTION I
INTRODUCTION
1.0 BACKGROUND

MITRE was contracted by the National Aeronautics

and Space Administration to provide a prototype Bus

Communications System to connect the host Modular Computer

Systems MODCOMP IV of the Trend Monitoring System (TMS) to
several MEGATEK graphics display terminals. Special
software was developed to control the Bus Interface Units
(BIU's) connecting each of these devices to the MITRE
communications cable to form the bus communications
network.

The software development involved extensive
modifications to existing software which was operational
at MITRE's home office in Bedford, Massachusetts. The
primary modifications involved the development of a Direct
Memory Access (DMA), parallel interface to the MODCOMP and
MEGATEK ports. Modification of the original code and
addition of new code led to a long debugging process.
During this test and validation process, it was determined
that the ability to examine data packets as they were
transmitted would be very helpful in establishing which
element of the network was the cause of any particular
difficulty. Itwiwas determined that the most economical
approach to prdvide this capability would be to use an
existing serial terminal device, such as a teletype or
CRT, attached to the jcable through a standard serial BIU

1

B e I s P SR EE R S

B A L S e e e e AT £ 1 0]

A T S, T S W T T R T WIS AR T NI L T

.

s

with special software operating in the BIU. This code
would effectively listen to the bus to monitor any or all
addresses on the network and print the data addressed to
the selected devices on the display.

1.1 Scope

This report is intended to serve as a user's
guide for anyone wishing to employ the bus listener BIU to
monitor network traffic using a serial terminal device.
This monitoring may be required to troubleshoot new or
existing network applications as described above. Any
terminal device, capable of interfacing with a serial BIU
via an RS-232C cable connector, can serve as an output

device.

Section II is a basic discussion of the
architecture employed by the MITRE Bus Communications
System and how the 1listener will interact with it.
Section III is intended as a user's guide to operation of
the bus listener. Section IV is a detailed discussion of
the software modifications made to the standard NASA
serial terminal BIU code. Appendix I and II contain the

software listings and flow charts respectively.

‘ iz
i ek DS e it A o .
S i st iyl vt W e 1 e o

L a

&

SECTION II
THE BUS COMMUNICATIONS SYSTEM

2.0 INTRODUCTION

This section is intended to provide the reader
with a basic understanding of the functioning of a BIU and
its relation with the communications network. It is not
intended to provide the reader with a detailed
understanding of the system. A basic understanding of the
network topology is assumed. for furher information on
the communications system architecture and the system
software, the reader is directed to MTR-4721 (JSC
#14723), "TMS Communications Hardware - Volume II - Bus
Interface Unit" and MTR-4723 (JSC #14793), "Trend
Monitoring Systm (TMS) Communications Software - Volume II
- Bus Interface Unit (BIU) Software."

2.1 Protocol

The MITRE bus communications system uses an
unslotted, carrier-sense multiple access discipline which
employs a contention "listen-while-talk" (LWT) protocol
for network control. Data is packetized for transmission
with header information attached in accordance with the
diagram in Figure 2.1 below:

a T n s

=L

3 o e e i oA

e

T

T T R ol

<=2 bytas-> <-2 bytes-> <~1 byte-> <1 byte-> <-1 byte->

DA 0A SN MT RT
<-1 byte-><-120 bytes max—-><~1 byte->
BC DATA PARITY
DA = Destination Address
OA = Originator's Address
SN = Sequence Number
MT = Message Type
RT = Retry Count
BC = Byte Count (8 bits per byte)
PARITY = Longitudinal Parity Byte

(Not included in byte count)

Figure 2.1l: LWT Bus Packet Format

2.1.1 Listen-While-Talk

When a unit has data to be transmitted on the
cable, it monitors the bus for the presence of the
communications carrier. If the carrier is present, the
BIU is inhibited from entering the transmit mode. In
addition, when a particular unit enters the transmit mode,
it monitors its own transmission to determine if a data
byte was garbled by noise or another BIU transmitting oOn
the network. These collisions can result from the finite
time delay necessary for the data to circumnavigate the
cable. Both BIU's involved in the collision will detect
the error and stop transmitting for a random amount of
time whereupon a retransmission of the last data packet

v T T TR e T N =

would be attempted. Since a random backoff based on a
device's home address is used, the possibility of mutual
deadlock is avoided. This protocol allows the theoretical
system throughput to approach 99% of available bandwidth
when the data requirements of the user are "bursty" in
nature, that is, the data entries are relatively short in
length and randomly distributed in time.

2.1.2 Bus Addressing

The protocol calls for the first two bytes of
each network packet to be the address of the device which
should receive and process the packet. These first bytes
will cause each BIU on the network to register an internal
interrupt when its receive data register becomes full. As
a result of this interrupt, a comparison will be made to a
home address maintained in each BIU (Note: All current
applications use only the first byte of the address). If
the data packet is not addressed to the BIU, the BIU's
receiver will be disabled until a Non-Maskable Interrupt
(NMI) occurs as a result of the communications carrier
being dropped by the transmitting BIU. In this manner,
all BIU's which are not interested in the data packet
(i.e. not addressed) will continue with other processing
and avoid being continually interrupted by unwanted data.

2.1.3 Message Continuity

The message header uses three values to enable
the continuity of data packets to be maintained. Each
received packet is checked to determine who originated the
packet, whether the packet was received in sequence, and

B L e s . wo A i e N T, e e

whether the packet was transmitted more than once. These
values of originateor's address, sequence number and retry
count can be stored and compared to previous values to
determine if message continuity has'been preserved.
Should an unexpected value be detected, the packet can be
ignored or handled in a special manner depending on the
application.

2.1.4 Message Types

Provision has been made to have the BIU recognize
special message types. These special messages include
sign-on, sign-off, an¢ status messages. Other types of
messages c¢an be used depending on the application. A
special code, defined by the application developer to
indicate message types, is inserted into each packet.

2.2 Specifications

The efficiency of the protocol is based on the
ratio of the packet length to the total propagation delay.
In the TMS system a data transmission rate of 307.2
kilobits/second is used with a maximum packet length of

.128 bytes and a minimum packet length of 8 bytes. The

maximum length of the communications cable is determined
by the time necessary for the first two address bytes to
be transmitted on the newtwork. This creates a time
window within which a collision, caused by another ZIU
starting transmission, will be detected. The twenty bits
of the address bytes (including start and stop bits) limit
the maximum cable length to approximately 10 miles.

e i dhie amac

2.3 Error Detection and Correction

The addition of checksums and packet
acknowledgments provides the capability of error detection
and correction. Each packet contains one byte of
longitudinal parity formed by the exclusive ORing of all
other data bytes in the packet. If this checksum is
received in error, the addressee will ignore the packet
and thus cause the sender to retransmit the packet. This
retransmission occurs automatically when the sender does
not receive an acknowledgment of the last transmitted
packet within the acknowledgment time window of 100
microseconds.

2.4 BIU Hardware

The basic digital logic used in the NASBA BIU is
designed around a MOS Techology 6502A microprocessor. It
uses 3072 bytes of random access memory (RAM) with 2048
bytes of programmable read only memory (PROM). The RAM isg
used for the storage of several variable flags and
pointers and the storage of the packetized data buffers
being queued for transmission on the network or received
from the network. The PROM contains the main BIU
operational software. Communication to and from the BIU
is accomplished by means of two Motorola 6850 Asynchronous
Communications Interface Adapters and two MOS Technology
6522 Versatile Interface Adapaters (VIA's). In addition
to the parallel interface capability it provides, each VIA
also contains two timers which can be used as system
clocks. Some variations of the BIU hardware use differing

numbers of these basic chips but the general architecture

remains the same.

A I R PG, - R T T UL N Sl L A T U T Y T T

A o

T IEDhA . - 0 ST T T T T T g T ey T TR R T
. .

2.5 BIU Listener

A basic serial BIU is used to implement the bus
listener described below. It takes advantage of the
normal addressing scheme of the BIU's to eavesdrop on
their communications. Depending on the parameters
supplied by the user, the listener will monitor one, two
or all addresses on the network. When it detects a valid
address, it stores the following data packet in its buffer
and decrements the packet count. Acknowledgements are
treated as packets and will likewise decrement &the packet
count. When the packet count goes to zero, the listener
dumps its memory to the terminal device. The user
interface is described in the following section.

1
%

j

’
3

e

]

SECTION IIIX

BUS LISTENER OPERATING PROCEDURES

3.0 INTRODUCTION

The following paragraphs may be used as an
operator's guide to the use of the bus listener described
in Section IV. The description of the dialog between the
user and the device will be of use in understanding the
software and the terms used in the software. description.

3.1 Hardware Set Up

To operate the BIU Listener it is necessary to
use a standard serial terminal BIU with the special bus
listener PROM's installed. This BIU may then be connected
to any serial terminal device through the RS232C connector
at the rear of the BIU. It is then necessary to connect
the receive MODEM of the BIU to the communications cable.
Since the bus listener never originates any transmissions
on the network, it is not necessary to connect the
transmit MODEM. Messages received by the listener are
never acknowledged.

The data rate for the serial terminal should be
set in the normal manner using the Dual Inline Package
(DIP) switches on the BIU's digital board. For further
information on this function, the reader is directed to
MTR-4724 (JSC #14794), "Diagnostic Procedures for Trend
Monitoring System (TMS) Communications." For terminals
with wmechanical carriage control (e.g. Texas Instruments

L o i b B Y 0 L

N A Y PP U -

=T B n

Silent 706®), a special null routine has been added to

allow time for the carriage to return to the start of each
line.

3.2 Operator Procedures

With the bus listener connected to the cable as
described above the power should be turned on. As a
result of the power up sequence the terminal device will
display the initial message for operation of the listener.
The BIU is now in a tight loop waiting for the operator's
response to a series of these initialization messages.
The series of messages &7 *ﬂﬁe valid responses are shown
in the example below: . f

PACKET COUNT? (00 -~ FF, HEX)
10 (requesting 16 packets)

PACKETS SKIPPED? (00 - FF, HEX)
0 (requesting that no packets be skipped)

MONITOR ADDRESS? (HEX)

BB (requesting that messages to the backboard be
monitored)

OPTIONAL SECOND ADDRESS? (HEX)

41 (Requesting that messages to TERMA be
monitored) ‘ ‘

10

R=e2d

e

KA T
ek e

i

Bl

Y

g T T

It can be seen from the example above that the
operator can monitor one or two specific addresses on the
network. It is assumed that the operator has prior
information concerning valid addresses. This information
can come from an intimate knowledge of the network
architecture or may be obtained from a listing of the data
monitored by a network technical controller or status
recorder. If this information is not available, it is
possible to enter the command 'ALL' in responsa to the
MONITOR ADDRESS or OPTIONAL SECOND ADDRESS requests. This
will result in the printing of the specified number of
packets transmitted on the network regardless of the
addresses. By examining the addresses of these data
packets (see paragraphs 2.1 and 4.4.2.1), it is possible
to obtain valid device codes for future listening

operations.

3.3 Multiple Address Monitoring

The two-address option is wvery useful in
observing two-way communications between nodes of the
network. Since the listener keys on the first packet of
each transmission, the listener records data transmitted
and then the acknowledigment by the addressee. Each
acknowledgment counts as a data packet for packet counting
purposes. In this manner it is possible to determine if a
BIU has received the data and is acknowledging properly.

3.4 Skipping Packets

The ability to skip a given number of packets
before initiating the recording of data allows the

11

e e r———

capturing of packets at the end or in the middle of very
long packet streams. By entering something other than
zero for this value, that number of packets will be
skipped before the packet count starts to decrement. This
value of skipped packets is decremented based on the
addressing information given in the monitor address
commands to insure only packets with wvalid addresses
affect the skip count.

3.5 Maximum Packet Count

The maximum number of packets that can be
presented on any one operation is 22 for BIU's with 3K of
RAM available. Since the bus listener uses a circular
buffer operation, the last 22 packets received will be
displayed. This means that packet counts larger than 16
hex will result in the loss of the first N~22 data
packets.

3.6 Interrupting Processing

At any time during the process of recording
packets, the procedure may be interrupted and the packets
recorded to that point displayed at the terminal. This is
accomplished by pressing the ESC key (hex code 1B) on the
terminal device. This function is useful if the operator
would like to look at some intermediate results or if an
error was made in entering the monitor address and no
apparent recording is taking place. It is also useful to
terminate an infinite recording operation.

12

o

L g L o e Wbl e T
.4 L s -

% y
pevg

- R PG P Sl oty T 1A

LI andadiin i & TV

3.7 Infinite Processing

By entering zero for the packet count, the
reecording of data packets on the network will continue
uiitil halted by the operator. The listener will not count
pickets and will continue to record all transmissions with
the proper address until the ESC key 1is entered. The
pressing of the ESC key will result in the printing of the
PROCESSING INTERRUPTED message on the terminal followed by
the captured data and a new initialization message.

3.8 Normal Termination

When the packet count requested is reached, the
terminal will print the PROCESSING FINISHED message
followed by the data packets and then the initialization

message. This indicates that all processing followed the
normal procedure.

3.9 Error Messages

If, in the course of entering commands to the
listener or during the printing of data packets, an error
is‘detected, an appropriate error message will be printed
and the initialization message presented again. The error
message for key errors is INPUT ERROR, TRY AGAIN. If an
error is detected during the processing of data packets,
the message ABNORMAL ENDING ERROR will be displayed (see
Exror Recovery below).

13

. C . VLt v e o
i iR ol e o AR I 8

U

. i b i

I TNy

3.10 Error Recovery

For most errors, the system will return to the
reset procedure and print out the first initialization
message. Should this fail to occur or should the system
become inexplicably hung, the user can usually regain
control of the listener by pressing the RESET button on
the front panel of the BIU; however, this action will
cause the loss of any data recorded to this point. If it
is desirable to obtain this data, it would be better to
try entering an ESC character before pressing RESET.

14

Py AR T o o R Nt DRV S

Lo Rl e L am o aalbe

SECTION IV
THE BUS LISTENER SOFTWARE

4.0 INTRODUCTION

This section describes the software used in the
BIU's PROM to implement the bus listener. The basic
format of the code is derived from the software which was
designed for the NASA serial terminal BIU. Several
modifications are made to this basic software and are
detailed below. The modified routines include INDEV,
OUTDEV, ENQ, and IRQ, in addition, several routines are
completely eliminated. The deleted routines include NET,
CHKOUT, STIMER, PCONST, and SFINC. The primary reason for
the elimination of these routines is the fact that the bus
listener 1is not required to transmit any data on the
network.

4.1 aApproach to Development

It was determined that the best approach to
programming the bus listener BIU would be to use existing
code for the NASA terminal BIU and adapt it for the
special purpose described above. As cited above, several
routines are eliminated and several others modified. 1In
addition, other routines are expanded to allow for special

processing.

15

P PR ey i B i o ey ol elviiapal 3 2

T T T Vs | Wy

e pp———— T

4.1.1 Circular Buffering

It was determined that the best approach to the
storing of data packets is to use a circular buffer
instead of the first-in-~first-out (FIFO) buffer normally
programmed for use in the BIU. The driving factor for
this change is the need to save an unknown number of
packets with a limited buffer space (see Infinite Count
below) and thus the need to overwrite buffers continually.
A side effect of the FIFO buffer scheme which was never
encountered in normal processing is the long time delay
induced by the search through the queue for the next
available buffer (see Time Criticality below). This delay
results from having only the starting address of a queue
and having to go from buffer pointer to buffer pointer
looking for the last buffer indicator. This delay, which
comes into play during the recording of acknowledgments,
is virtually eliminated by the circular scheme.

4.1.2 Listen Operation

To accomplish the monitoring operation, the IRQ
routine was modified in the following manner. With the
variable ALFLG set by the "ALL" reéponse during the
initialization dialog, address checking is suspended and
each packet received from the network is stored in a
buffer ready to be queued. If ALFLG 1is not set, the
address of each received packet is compared to the two
addresses stored in HOMEl and HOME2 during the
initialization sequence. If either address is found, the
data packet 1is stored ready to be queued pending the
outcome of the packet skip and packet count checks.

16

. T] x . o apeenl o Lyt e e Aiiae i s Y 3

-

T

I

AR s Nt dhai: Amitndintet e i

Regardless of the condition of ALFLG, the data will not be
queued if the packet skip count is still greater than
zero; however, the count will be decremented if the
address is valid. If the packet count is greater than
zero, the packet will be queued and the count decremented
if the address is valid. Once the packet count reaches
zero, the interrupt mask should be set to prevent any more
packets from halting output processing, however, one or
more packets may be detected before this mask can be set.
In this event, the packets will be ignored (not queued)
and control will be returned to the main program to allow
output processing. No acknowledgments are ever sent since
the listener is not the packet addressee.

4.2 Reset Operation

The primary function of the RESET procedure is
maintained in the new software. This routine still
initiaiizes all payge zero variables, sets all buffer
pointers, and initializes the communications interface
chips.

4,2.1 Stack Pointer

Stack pointer initialization is modified to take
advantage of unused space in the page one area of memory
to enable the creation of an additional buffer. It was
determined that to restrict the processor stack to
operation between memory locations 017F and 0100 woulid
have no impact on system operation, For this reason the
stack pointer is initialized to 7F. (Note: The value 01

17

DI T s e W

T T T O e, WO, TR e

is assumed on all stack operations for the high order byte

of the two-byte address.) The area of page one from 0lFF
through 0180 is then used for the second buffer (see
paragraph 4.2.3 below).

4.2.2 Page Zero Variables

The page zero variables start at memory 1loation
0000 and go to the end of the buffer pointers in BUFSTK.
The variables that need to be initialized to zero are
located below CONECT and reset by a tight loop which uses
the address of CONECT as the starting index. The reset
procedure reflects this plan and allows for future
expansion if necessary. It should be pointed out that the
final page 2zero variable currently occurs at memory
loaction 0076.

4.2.3 Buffer Pointers

It was determined that it is useful to squeeze
all the buffer space available out of the RAM. For this
reason the gap between the end of the page zero variables
and the bottom of the stack is used as the first buffer.
During the RESET procedure the first buffer address is set
to 0080. The end of this first buffer is therefore at
address 00FF. The remaining 21 buffer addresses are set

in the buffer initialization loop starting with buffer 2
at 0180 and ending with buffer 22 at loaction 0B80. This
buffer assignment leads to the map of memory shown in
Table I below.

18

;
2B T e e i T D Nl "

=

Table I
Memory Map of Bus Listener RAM

0000 - O007F . Zero Page Variables & Pointers
0080 - 0OFF Buffer #1

0100 - O17F Processor Stack

0180 -~ OBFF Buffers #2 - #22

4.2.4 Initialization Messages

The final modification made to the RESET
procedure involves the addition of code to carry on a
dialog with the user. This process results in the
setting of several flags and gounters to enable the
recording of data packets to proceed automatically. After
each call to the PTSTR routine (see paragraph 4.8), the
message indexed by the Y register will be displayed at the
terminal and a jump to the INDEV subroutine executed. The
INDEV routine is used to process user input from the
terminal.

4.3 - INDEV Subroutine

Several changes to the INDEV routine are needed
to allow the bus listener dialog to proceed. No messages
are sent on the bus so the portion of the routine
dedicated to packetizing the terminal input is removed.
In a like manner, no other BIU will attempt to sign-on to
the listener so the code involved with a sign-on response
is deleted. The remaining code concerned with a reply to
the WHICH SYSTEM? request is modified to accept proper
input responses to the initializing messages.

19

e

4
o
i

e

4,3.1 Valid Inputs

Three types of input from the terminal are
allowed by the INDEV routine: hexadecimal inputs in
response to initialization messages, the phrase "ALL" in
response to the address initialization messages, and the
ESC character during normal processing. The CONECT flag
is used to distinguish between two of the states, With
the CONECT flag set to a negative value, the code assumes
inputs are in response to initialization messages; if the
flag is positive (zero), the code assumes there is an
input during the normal recording prccess. In the latter
case the input 1is examined for an ESC character to
indicate the desire to terminate the recording process and
print the buffered data. Any other entry by the operator
is ignored.

With the COWNECT flag set to a negative value,
inputs are stored until a carriage return is detected or
three characters are entered. Once either of these two
cues is detected, the stored input is compared against a
table of valid hexadecimal charactgys. If the entries are
not valid hex characters, a comparigon is made against the
alphabetic string "ALL" but only if this is the third or
fourth pass through the INDEV routine and an address to be
monitored is expected. If there is still an error, then
the input error message is displayed at the terminal.

20

g, N IR T VT e S PRI O | 17 i

TN,

)

R IR T \\ R -

4.3.2 Matching String

If all the characters are hexadecimal or equate
to the sptring "ALL," then the code branches to MATCH for
hex characters or MATCHA for "“ALL." In MATCH a counter
records the number of valid responses to control the
channelling of the data to the proper £lag or counter.
After the fourth pass through MATCH or a pass through
MATCHA has occurred, the program is ready to begin
listening and control is passed to the main loop.

4.3.3 Setting Counters

Since the input string is in ASCII format, there
must be a conversion made to allow the setting of a binary
counter. This occurs in two subroutines called ALPHA and
CTON. ALPHA checks to see if the hex digit entered is one
of the six possible alphabetic characters. If it is, a
weighting factor is used during the character-to-numeral
conversion in CTON. CTON also takes into consideration
the relative positions of the characters in the input
string to allow proper scaling of the counter. The
maximum value allowed in any counter is 256 (hex FF).
CTON also insures that this 1limit is not violated. If
this wvalue is exceeded, the code will print the input
error message on the terminal and return to RESET and the
initialization routine.

21

WW
e e o s otih

- Boon

e Attt oS

- e T S v e
n -

4,3.4 Infinite Count

Provision is made in INDEV to allow the operator
to inaicate that he wishes the recording of data packets
to continue indefinitely. On the first pass through
INDEV, 1if the value zero is entered for the PACKET COUNT,
it is interpreted to indicate the request for indefinite
data recording and the FLEET flag is set. It should be
pointed out that a carriage return without any input at
this point will result in the same interpretation. To
stop the recording of data packets, the operator enters
ESC during the normal operating cycle to output any
packets that were recorded (last 22 if more than this
maximum were received) or push the BIU RESET button to
start over again.

4.3.5 Monitor All Addresses

If the input during the third or fourth pass
through INDEV is decoded to indicate a request for all
addresses (ALL), the code bkranches to the MATCHA routine.
This routine sets a flag (ALFLG) to indicate that the
address comparison portion of the IRQ routine should be
bypassed. This routine terminates by passing control to

the READY routine, thus eliminating any unnecessary
dialog.

4,3.6 Default Second Address

When a response other than "ALL" 1is made to the
first request for a monitor address, a second address

22

el

et i i b | LBl M ol

N e et 2 B AR oy

R o

v}

request message is printed at the terminal. If the user
ignores this request by entering only a carriage return,
the program stores the value of the first address in the
second address check variable. This will insure that only
the one address is monitored. (Note: Entering only a
carriage return in response to the first address request
is an illegal response and will result in an error message
and return to the RESET routine).

4.4 QUTDEV Subroutine

Changes to OUTDEV routine are required to insure
that an easily understood data format is presented to the
user. In addition, sections of the old OQUTDBEV routine
used in interpreting non~-data message types are
eliminated, and special code is added to handle the
unqueuing of the circular buffer.

4.4.1 Queue Processing

Since it is not advisable for the bus listener to
miss any data packets of interest, no attempt is made to
output data while the BIU is actively listening to the
bus. Once the message count 1is fulfilled, the BIU's
internal interrupt mask is set to prevent data packets on
the bus from interrupting the continuous output of the
stored packets. The queuing scheme used is a circular
buffer. The method used to queue these buffers in the ENJ
subroutine will lead to the first buffer being out of
place if more than 21 packets are stored. For this reason
the variable WRPFLG is set in the ALLOC subroutine to
indicate this condition. If WRPFLG is non-zero, a

23

b ° Y
B ol e =S SR

,:\JE.\ ,u»-——u*"‘"‘"-‘

FPURUPPOPAVSERPSEIE

AR R o et atin A akusk Sabtinnatuminteiio kb o it AU

shifting of the buffer pointers takes place using QSTART
and QEND to insure the data packets will be in proper
order.

4.4.2 Data Output

Outputting characters to the terminal device is
accomplished in the same manner as the old OUTDEY routine;
however, two additional features are added. It is
necessary to convert the binary data received from the bus
into a presentable format for the display. Second, code
is added to limit the number of characters presented on a
line for ease of interpretation.

4.4.2.1 Data Conversion. Data characters, as

received from the network, are 1in binary £forma%. To
enable the display of this information on a terminal
device sensitive to control characters, the data are
converted into ASCII format. This conversion results in
the transformation of each 8 bit data byte into two
hexadecimal characters. For clarity, a space is inserted
between each byte of the packet. A typical BIU status
message 1s presented below as an example.

00 00 41 00 01 DB 00 29 00 03 00 00 00 01 0O 0O
00 03 00 00 00 00 00 O1 01 02 83 0C 24 02 54 45
52 40 49 4E 41 4C 20 42 49 55

As can be seen from the example this is terminal
"A" reporting its status to address "00" which would

normally be the status recorder. Interpretation of the
last 12 bytes shows that this BIU is identifying itself
as a "TERMINAL BIU."

24

e R S e A R A

o g = - S D

4.4.2.2 Line Control. As mentioned above, it

was determined to limit the number of bytes displayed per
line. A variable LINCNT is incremented after each byte is
output. After 16 bytes are presented the counter is reset
to zero and a carriage return and line feed are output.
An extra carriage return and line feed are output after
each packet to improve packet definition.

4.4.2.3 Null String. A problem is encountered

when a device with a mechanical carriage control is used
as the output terminal. A finite amount of time 1is
required for this type of device to position the carriage
at the lefthand side of the page. This usually results in
the loss of several data characters after a carriage
return. To overcome this difficulty, a special PTSTR
routine is used to precede each line of output with six
"null" characters. The shift out and shift in ASCII
characters (SO & SI, or Hex CE & OF) are selected for this
purpose to insure minimum impact on user programs. Hex 00
or NULL could not be used since the standard BIU code uses

this character to signal the end of a terminal message.

4.5 IRQ Subroutine

Only a few minor modifications are made to the
IRQ routine. Since the listener never transmits data on
the bus, it is not necessary to retain the code associated
with the detecting of collisions. 1In a like manner, code
associated with the transmission of acknowledgments 1is
eliminated. A section of code is added to allow the
monitoring of all addresses or any two addresses on the
network.

R S s St aeiie- e bt ol

4.5.1 Address Comparison

IRQ is entered as a result of the receive data
register of the network UART becoming full and registering
an interrupt. The first bytes of a packet are always the
address of the BIU which should receive the packet (To
Address) . For this reason, each BIU on the network
examines these first bytes to determine if the packet is
meant for it. The listener will also examine this packet
if ALFLG is not set to one. Unlike other BIU's, however,
the listener .will compare the address to twoc home
addresses. If neither address matches, the receiver is
disabled until a Non-Maskable Interrupt is registered.

4.5.2 Acknowledgments

Special code is added to allow the recording of
acknowledgments. Normally, ACK's are ignored by all BIU's
except for the one expecting it. To enable the listener
to recognize these one-byte packets, however, it is
necessary to keep normal processing path active when the
transmit key falls. When an ACK is processed, the NMI
resulting from the ACK occurs before the packet can be
processed. Normally the data buffer being full but the
transmission key being off would signal the end of
processing and the code for turning off the receiver would
be executed. Since the NMI (note: the NMI reactivates
the receiver) has already occurred, this chain of events
will leave the receiver turned off and cause the missing
of the next packet. To avoid this problem, a check is
made to see how many bytes were processed. If only one
byte was received, the assumption is that it was an

26

T,

acknowledgment and should be processed accordingly. The
receiver is not disabled in this case and processing

continues normally.

4.5.3 .Time Criticality of Acknowledgment

The standard buffer mechanism of the serial BIU
software performs a search for the end of the queue by
starting at the beginning each time a buffer packet is
enqueued. During this scarch interrupts are disabled to
insure the packet being queued will not be .lost. The time
required for this search depends on the length of the
queue. When approximately ten .packets are queued, the
time required exceeds the window allowed for the
transmission of an acknowledgment. Since it is required
that the acknowledgments be treated like any standard
packet, the interrupt from the ACK will not be registered
after the tenth packet is queued. This difficulty is
overcome by the use of the special circular queue process.
The circular queue is implemented with the NEXT pointers
initialized to reflect which buffer follows the one being
queued. The QSTART pointer is initialized to point to the
first buffer and the QEND pointer is initialized to point
to the last buffer. As buffers are added to the queue,
the QEND pointer is adjusted as indiated by the NEXT
pointer. This inserts the buffer in its proper location
in the gqueue. After 22 buffers are used, the values in
QSTART and QEND are both adjusted to allow for the
circulation of the valid data. This procedure, which sets
at most two pointers, speeds the operation and insures it
will be accomplished before the receipt of the
acknowledgment packet.

27

B R R

SR

|

4.6 ALLOC Subroutine

The ALLOC routine is modified to allow the
implementation of the circular buffer. If the end of the
buffer is ever indicated by the value in STKPTR going to
zero, the WRPFLG indicator is set and a new allocation of
16 buffers is set aside by resetting STKPTR to BUFCNT-1.
Note that WRPFLG is incremented each time this occurs. If
WRPFLG ever loops back to zero, it will automatically be

reset to one to insure an accurate indication to the
OUTDEV subroutine.

4.7 ENQ Subroutine

The ENQ routine is modified in a like manner to
allow the operation of the circular buffer. It uses the
QSTART and QEND pointers to control the positioning of
data buffers in the queue. On the first pass through the
buffer stack only QEND is adjusted to add the currently
processed buffer to the queue. After 21 buffers are
processed, WRPFLG is set and QSTART is also set to insure
the proper circulation of the queue.

4.8 PTSTR Subroutine

As was mentioned above, the PTSTR routine 1is
modified to allow for the transmission of a string of
"null" characters before each message to the terminal
device. This modification involves the addition of a
preface routine which calls the old PUTSTR subroutine.
This preface code saves the original message pointer and

28

e sl it

U

N .- - e
e~ e

substitutes a pointer to the null string. Once the null

string is printed, the 0ld message pointer is retrieved
and the message transmitted normally.

i M s - S

O R R §

29

e

o @4 n
TR el o Mo st saniadnibdi

APPENDIX I

BUS LISTENER SOFTWARE LISTING

PREGEDING PACE BL. :. POT FopED

PUTERppa o 3R T e oA A AR A L 10 e

SR T AT e, TRy WS TS S T E s e T et T et T T e P g T ot = e

1 LISTEN, ASY PAGE 1
CARD # LOC COVE CARD 10 20 30 40 50 60 70
§ 6000 +OPT NOCNT,XREF,MEM,LIST,ERR,GEN '
0000 :
4 0000 7TAIS IS THE NEW NASA BUS LISTENER BIJ CODE AS OF 06/27/79.
5 0000 :
o 0000)
1 0n00 ; JEVIGE ADDRESSES FOLLOA
8 0U0D : -
9 0000 NUARTS = $COO NETWORK UART STATUS
10 0000 NUARYD = SCO1 NETAORK UART DATA
11 ouny DUARTS = $1400 DEVICE UART STATUS
12 000V DUARTD = 31401 JEVICE UART DATA
13 0000 7 _
14 0V0y] THE NEX EQUATES REFLECT THE ACTUAL OPERATIONAL PARAMETERS .) 2
15 0000 i JF THE olu wiTH RESPECT TD BUFFER COUNT AND SIZE :
16 0000 i
17 0000 RAMSIZ = 3072 NJMBER OF BYTES OF RAM AVAILABLE
18 0000 BUFLEN = 128 NUMBER OF BYTES IN A BUFFER (DO NOT CHANGE)
19 0000 BUFMEM = RAMSI1Z-256 AMOUNT OF MEMORY ALLOCATED TO BUFFERS
20 0009 AYFCNT = BUFMEM/BUFLEN VJWBER OF BUFFERS AVAILABLE
[

32

COCIE T R TR I NN

A

PAGE 0 vaRIAwLEY

TARD o
2

Loc
0000

~ 0000

0000
0000
0001
0003
000y
0006
0007
000d
0009
0004
00U
000C
000v
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
001
0019
001¢C
00tcC
001cC
001C
001D
001D
0033
0033
0033
0033
0034
0035
0035
0035
0035
0048
0061
0061

09

0
(]

CJokE

PAGE 2
CARD 10 20 30 a0 50 60 70
THE FOLLOAING VARIABLES ARE CLEARED WHENEVER RESET 18 HIT.

!

INTBC «BYTE

INTPYR * ,DHYTE
Indc «BYTE

OurPTR «DBYTE
uuTdc «3YTE

UuTPL «BYTE

CURVET IYTE

DUTSET +BYTE

INTSET «BYVE

0 SYTE COUNT USED By NINT

0 SUFFER PTR USED BY INDEV

0 BYTE COUNT USED BY INDEV

0 BJFFER PTR USED BY OUTOEV

0 BYTE COUNT USED BY ouTDEY

0 LENGTH OF PACKET BEING SENT TO DEVICE
0 THE CURRENT PACKET BEING READ IN FROM THE NET
v AAETHER A DEVICE 0Ji1pUT 3UFFER I8 SET up
0 NHETHER A NETWORK INPUT BUFFER IS SET up
FLEET oBYTE ¢ FREE RUNNING FLAG

LIVeNT <AYTE 0 LINE COUNTER FOR 0yJpuT FORMAY
SI¢PTR «OYTE ¢ INDEX OF TOP OF FREE BUFFER STACK
HUwe | «HYTE o ADIRESS OF FIRSY MONIIOR NOOE
HOvege «BYTE 0 ADORESS OF SECOND MUNITOR NODE
ALFLG »BYTE o ALL ADDRESS FLAG

INCYTR «BYTE 0 INITIAL MESSAGE COUNTER

MSICNT «AYTE 0 MONITOR

SKOCNT «3YTE ¢ SKIP MESSAGE COUNTER

TEWP SBYTE o FIRST TEMP AREA

TE4PO AYTE 0 SECOND TEMP AREA

rEvpy BYTE THIRD TEMP AREA

EC4y +BYTE 0 ECHO BACK FLAG

WRPFLG «8YTE o BJFFER MEMORY WRAP AROUND FLAG
STRING LELE] INPUT STORAGE FOR INIVTIAL RESPONSES

} TN SUFFEKS EACH HAVE AN ENTHY I THIS ARRAY

COvECT Lav7E o ,

NEXT nexsmupCNT THE NEXT POINTER FOR KACH BUFFER

}THE GJEUE PulnTERS FOLLO

NSTART BYTE ¢ TAZ SIARTING POINTER FOR THE QUEUE 3F BUFFERS
IS 1 THE ENDING POINTER FOR THE GUEUE OF BUFFLR

}
} THESE AXE THE POINTERS TO THE BUFFERS
?

Lu2(R KENeBUFCNT

THE LON HALF OF THE PIRS
HI3TR kSk+BUFCNT

THE HIGH HALF OF THe PTRS

’
BUSSTK AR rUFCNT THE FREE BUFFER STACK

33

. - . e P
g e g e i i Bt o i i i O O YR .

h
i
b
i

s

L

PO T

P D T

T,

RESET . PAGE 3
CARD # LDE; coDE CARD “ibd 20 30 4e “ 50 - Y% <70t
68 007) »? ;
69 0077 # THE CODE FOLLOAB, EXECUTION COMES HERE WHEN HESET 1S HIT. ’
70 0077 3 s ,
M 0077 .. «m3F800
72 F800 D8 RESET, . CLD _ DON'T WANT DECIMAL MODE
73 FBO1 A2 7F LOX #37F INITIALIZE THE STACK POINTER
74 FBO3 9A s .
75 F804 ’
76 F804 A2 53 LOX #X01011011 RESET NEYNORK UART
77 FB06 BE 00 OC STX NUARTS
78 FB09 A2 D8 LDX #X11011000 INITIALTZE NETWORK UART
79 FB0B BE 00 OC STX NUARTS
80 FBOE A2 57 LOX ¥X01010111 RESEY DEVICE UART
81 FB810 BE Vu 14 STX DUARTS
82 FB13 42 1o LOX #%00010110 INITIALIZE DEVICE JART
83 FB15 BE 00 14 STX DUARTS
84 F818 ’
85 FH18 A2 I LDX ®CONECT=1 ZERO OUT FIRST 1F LOCATIONS
Bb F81A A9 00) LDA #00
87 FB1C 95 0o RO STA U,X
B8 FBIE CA DEX
89 FBIF 10 Fi BPL RO
90 FB21 ;
91 FB2L A2 lb LDX #BUFCNT INITIALLY, BUFCNT ITEMS IN THE STACK
92 £825 86 0D STX STKPIR '
33 FB25 CA DEX SET THE GUEUE POINTERS TO NULL
94 F826 M6 33 STA USTART ‘
95 FH28 86 34 STX UEND
96 FB82A i
97 FH24A i A STILL SET TO ZERD FROW ABOVE LODP
36 7824 ;
99 FB2A4 95 43 STA HIPTR,X INITIALIZE FIRST BUFFER TO 50080
100 FB2C A9 %u LDA #<$0UB0
10§ FBRE 95 35 STA LOPTR,X
102 F830 ;
103 FB830 3 INITIALIZE THE FREE BUFFER SYACK AND THE NEXT LIST
104 F830 A0 14 LDY ABUFCNT=2
105 FB32 AA STACKI TXA
106 F833 95 o STA HUFSTK,X PUT THE NUMBER OF EACH BUFFER IN THE' STACK
107 F83% 94 1) STY NEXT,X . .
108 FB37 B8 IEY . ;
109 F838 CA DEX
110 F839 10 F7 BPL STACKI H
111 FB33 €8 INX SET LAST NEXT POINTER i
112 FB3C AD 15 LDY WBUFCNT=1
113 F43E 94 (D STY NEXT,X !
114 F8uo0 ; i
115 F840 42 14 LDX WBUFCNT=2 ' E
116 F842 A9 80 LDA #<$0180 SET THE REMAINING BUFFER LON AND HI POINTERS... i
117 F844 A0 01 LDY #>$0180 .++STARTING AT ADDRESS 50180 ‘ ‘
18 FB4b 95 35 BUFFRI STA LOPTR,X SET THE LOA HALF AUDRESSES
119 FBu48 98 TYA ' T
120 F849 95 43 STA HIPTR,X SET THE HIGH HALF
121 F84B 85 35 LDA LOPTR,X GET BACK THE LDA HALF FOR INCREMENTING : .
122 F840 18 . cLC . S

T A a1

NI lan, . sew-+

34

L e ——— T T e R -

RESET PRGE 4

ot
CARD ¥ LOC CJ0E CARD 10 20 + 30 40 50 60
123 FBUE 49 20 AOC WBUFLEN AOD IN ONE BUFFERS LENGTH
124 F850 Q0 0t 8CC sKlpl IF NO CARRY DON'T INCR HIGH HALF ' e !
125 F8s52 (s INY If CARRY THEN HIGH HALF #ILL) BE INSREMENTED
t2b FB853 CA SKIPL DEX
157 FgSﬂ 10 Fo BPL BUFFRI CONTINUE UNTIL ALL BUFFER ADDR'S sET *
128 F859 ! :
129 F8Ss A0 IC LOY MCRLF PRINT CR/LF
130 F858 20 73 FB JBR PUTSTR
131 F658 A5 1C LDA CONECT. GET OLD CONNECT FLAG
132 FB5D A2 FF LOX #SFF AND SET CONELT TO =i
133 F85F 86 IC 8Tx CONECY
134 F861 00 0% BVE I} NERE WE LISTENING BEFORE?
135 Fd63 A0 95 LOY #PRUINT YES, 80 PRINT "PROCESSING INTERRUPTED"
136 FBbS 20 58 FB JSR PTATR
137 FHé8 !
138 F868 AQ 00 n LOY #PKCNY PRINT PACKEY COUNT REUUESY
139 FBbHA 20 58 F8 JSR PTSTR
140 FBLD 20 WC F8 JSR INDEV GET RESPONSE
141 FB70 A0 IF LOY HPKSKP PRINT PACKET SKIP REQUEST
142 FB872 20 68 FB . JSR PTSTR '
143 F875 20 3C F8 . JSR INDEV * GET RESPONSE v
144 FB78 AQ 4y LDY &MNADD PRINT MONITOR ADDRESS REQUEST
145 FBTA 20 5% F8 JSR PTSIR
146 FE70 20 3C F8 JSR INDEV GEY RESPONSE
147 FBBO A4 {u LDY ALFLG ARE WE MONITORING ALL ADDRESSES
148 fp8e D0 08 BNE 12 YES, SD SKIP NEXT REQUEST
149 FB84 AL 54 LOY #3CADD N3, PRINT SECOND ADDRESS REQUEST
150 FB886 20 o3 F8 JYK PYSTR
151 F889 20 3C F8 JSR INDEV GET RESPONSE 3
152 FBBC 20 8E FA 12 JSR INTBUF SET UP A NETWORK INPUT BUFFER
153 F88F 58 cL1 . ALLOW INTERRUPTS
154 F890 ’
155 F890 7 MLOOP IS THE MAIN LOOP, IT REPEATEDLY CALLS INUEN, QUTDEV AND
156 F84¢0 3 INTBUF UNTIL RESET X8 HIT BY THE USER,
157 F890 i
158 F890 20 C3 F& MLeOP JSR OUTDEV POLL FOR DEVICE OUTPUY
159 F693 20 8E FA JSR INTBUF SEE IF A NETAORK INPUT BUFFER IS NECESSARY
160 FB96 20 9C F8 JER INDEV POLL FOR DEVICE INPUY
164 FB899 4C 90 F8 JMP MLOODP AND LODP FOREVER

35

P USIT PR = =

INDEV:

CARD #
163
164
165
166
167

-168
169
170
171
172
173
174
175
176
177
178
179
184
141
182
183
184
185
186
147
fHy
139
190
131
iv2
194
194
135
194
197
198
199
200
201
2oe
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

LOC

Fesc
Fé9cC
F89C
F89C
F89C
Fe9cC
F89C
FB9F
Faal
FBA3
FBAS
FBAT
Féay
F8AY
FBAD
FBAL
FeAn
Foue
F&Hd
F8n7
F8hY
FBhC
Fetu
FBAF
Foatl
FBC3
F8CY
F8C7
FBCY
FACHY
F8LY
FYCF
F8L
FBO Y
F8hu
F8Dy
F8Lu
Ftny
F8No
FBidy
F8DA
FBnC
FBDE
F8EO
FBE?
FOky
FBeEb
FYER
FBEA
F8EC
FHEE
FUFu
FUF 2
FBF4
F8Fd4

COOE

14

14

Fd

N

1R
GO

1

NU

[+
o

.
’
.
’
’

GE

In
Iy

i
GL

CARD 10 20

PAGE 9
30 40 50 60

INDEV I8 CALLED TO POLL FOR CHARACTERS FROM THE DEV¥ICE, IT IS USED
AHEN THE DEVICE (8 ENTERING PACKETS YO CONTROL THE BIY,
IT TRIES TO GEYT A CHAR, IF IT 13 SUCCESSFuL, THE CHAFACTER I8

ADDED TO THE BUFFER.

OEV LDOA DUARTS
AND #X00000091
BNE GOO
LDA CONECT
8MI INDEV
£l R1S
0 LOA DUARTD
AND #S§7F
TAX
LDA ECHO
3NE NUECHO
LOA px0N000010
0 8IT DUARTS
3EW IND
STX DUARTD
ZCru TXA
LOX COwECT
ML GETRPY
CUP mhisd
dEw GOt
8VE IRET
1 LDA a0v
STA SKPCNT
574 MSGCNT
LOY aPROINT
JSR PTSTR
SEL
RTS

SETRPY ACZUMUJLATES THE

TRPY STA TEMP
LOA #540
BIT TEMP
8EQ [Nt
LOA TEWP
AND #386F
8NE INZ2

1 LDA TEMP

2 LOX INBC
STA STRING,X
CMP #3500
8EQ GLF
CPX m%0R2
BEW GCRLF
INC INBC
3NE INDEV

€ DEC INBC

I“‘i{,;% o
AA.AQL. &%igﬁg

IS THERE ANY DATA READY FROM THE DEVICE?

YES, CONTINUE

ARE WE WAITING FOR A RESPONSE?
YES, SO TRY AGAIN

NOs, SO RETURN

GET THE DATA

GET RID UF THE PARITY

PJT THE DATA IN X

S40ULD wE ECHO TO THE USER?

ND

1S 17 OK TO QUTPUT 10 THE TERMINAL?

NOT YEY

ECAO THE CHAR

PJT THE CHAR IN A

GET THE CURRENT STATE OF THE ODEVICE

IF WAITING FOR REPLY TO INITIAL JUESTION
LOJKING FOR A ESC

YES, SO CONTINUE

N3, SO0 RETURN

YES, SO ZERO OUT SAIP CUUNY
ANO MESSAGE COUNT
SEND PROCESSING INTERRUPTED MESSAGE

DON'T AANT INTERUPTS NOW
RETURN

RESPONSES TO THE INITIAL SIGN=ON QUESTIONS
GET RID DF LOWER CASE

IS TH1S AN ALPHA CHARACTER?

NO

YES, SO MAKE SURE IT7'S UPPER CASE

ALNAYS BRANCH

THE OFFSET IN STRING TO PUT THE CHAR

#AS THE CHAR A CR?

YES, SO OUTPJT A LF

AAS IT THE THIRD 'CHAR?

YES, S50 OUTPUY A CRLF

NEITHER OF THE ABOVE, SO WNALT FOR MIRE INPUT
ALNAYS BRANCH

SUBTRACT ONE FROM INBC FOR THE CR

g

8 it

36

A PR 5

70

N

R S T

B

INDEV

CARD # LOC
218 FBFb
219 FHFY
220 FUFA
221 FHFC
222 FUFE
223 FYUL

Fvo3

225 F903

226 F90S

2271 Fy07

228 Fvo9

Fyue

230 FYUE

231 Fap

232 °f91e

233 Fv13

234 F91Y

235 F9is

236 F91b

237 F918

238 F91A

239 F9IC

200 FYIE

241 F420

242 FY23

243 F9es

auy Fy27

245 F9ay

246 FY24A

eu7 F92b

248 Fyeo

249 Fy2v

250 FWeF

251 Fa93l

25¢ Fui3

253 FY35

254 F9y7

255 F93iY

256 F9iB8

257 Fuip

258 FY3iF

259 F9ai

260 FYy43

26l Fyde

262 F9uy

263 FRuy

264 F9uy

265 FQUE

266 FY50

267 F9S2

268 Fyhd

269 F9S4

270 F958

FYSA

272 F9SsC

N S BT 2 s S NN .S

e ————

o]]

Fi

FC

FC

Fa
Fd

FY

CARD

GLF1

GCALF
GRPJT

i
AS4AGN

AK|

}
MATCH

10 20
BPL GLF1

INC INBC

LDY #LF

8NE GPUT

LOY NCHLF
JSR PUTHTR

LDX 400

LY #00

LVA STRING, X
cHP TAHLE,Y
BVE NMAICH
CPX 1INbC

dEW MATCH

sVE GO

1Y

CPY wio
gvl Bl

LX #00
LYY #00
L0A STRING,X
CMP ALL, Y
4VE ASKAGN
CPX #02
3EU MATCHA
INX

INY

3VE G2

CYP #3500
BNE AKY
LDA HOMEL
LDY INCNTR
CPY #803
dEY MATCH
CPY w302
BEU AKY
LJA #00
3EW MATCH
LDY wERR
JSR PTSTR
JUP RESET

1INC INCNTR
JYR CTUN
Loy «00
LDA INCNTR
CMP 402
gl Mo

BEQ M)

CUP w04y
vl M2

STX HOMER2

’

37

PAGE b

30 40 50 60
AAS ONLY THE CR ENTERLD?
YES, SO PROCESS iT AS THE INPUT

ALAAYS BRANCH
PRINT THE CHARS
INSURE THAY RESPUNSE 18 LEGAL

NOT A NUMERAL

1S 17 TnE LAST CHARACIER

YES

NJ, S0 GET THE NEXT CHARACTER
ALAAYS BRANCH

CHECK THE NEXT NUMBER

HAVE wE LOOKED AT ALL 16 POSSIBILIVIES
NO, SO TRY AGAIN

YES, SO SEE IF IT IS5 JTHE NORD "“ALL"

NUT “ALL", SO ERROR=RESVART
rga fHIRD LETTER YEi?
YES

NJ, GET NEXT LETTER
ALNAYS BRANCH

#A3 THIS CHARACTER A CR

NO, S0 ASK AGAIN

SET UP FOR ONE ADORESS ONLY

AAS THIS THE RESPONSE TO THE SECOND ADDRESS?

YES, 80 GO YO MATCH

AAS THIS THE 18] OR 2ND RESPONSE
NU, SO ERRDR INPUT

YES, 80 ASSUME A ZERO INPUT,

PRINT ERRUR MESSAGE
START AGAIN
COJUNT YHE CORRECT RESPONSES

CONVERT INPUT TO A HEX NUMBER
PREPARE TO SET COUNTERS IF NECESSARY

THE FIRST CORRECT RESPONSE
SECOND CORRECT RESPONSE

THIRD . "
SAVE THE SECOND LISTENING ADDRESS

70

e e

N r—r—

INDEV

CARD & LUC
213 F9SE
274 Fonl
275 F9e61l
276 F983
2717 F94S
218 FYbo
219 F9ol
230 FyobA
281 F9st
282 Funl
233 Funk
Q84 FYv
dBS Fwlu
286 FyyQ
2R7 FQ7u
i Fa7u
2RY Fy7e6
290 Fury
291 F9ra
298 FYIL
293 Fore
294 Fory
295 Fupd
2%6 FyBg
297 FYnd
298 F9us
299 Fyn}
300 Fuwy
301 Fuwy
102 F9uw
303 FunL
3ou Fyau
30 £992
306 F99y
307 F99%
304 Fe9?
309 F997
310 Fuug

L F9vy

312 P

313 FU9F

3tu FIay

315 Fuay

3l Fyab

317 FI9A7

318 F9Aw

31 Foal

Jag FRAL

321 FYAR

322 Fob

323 Fyul

324 FuRe

32y Fada

326 Funy

32T FRae

COOE
1c

L — T -GS
> L [- VIR ARV RV

R

F9

Fe

Fo

CARD

)
MQ

i
WATCHA

ReadY

NRET

13
AL A

Ci
CRYTN

10

Jup
ErPx
BNE
18X
S5Tx
50X
UNE

STX
JER

§TX
AN

LIA
cup
EAN
RN
1vC
STY
STY
Rr8

5TA
L0A
81T
BER

20
READY

¥0y
MOR

FLEET
MSGUNT
MRET

SAPT I
MRET

HOMEL
MRET

INCNIR
1
ASKAGN
ALFLG
CONECT
INCNTR
INpC

TEMPY
#3540
TEMPY
N
TEMPY

#5309
A2
TEMPO
aSOF

INBC
¢

A0é

L
STRING, X
ALPHA
TENPL

C1
STRING X
ALPHA

TTTRRI R

PAGE 7

30 40 50 60
START LISTENING

0D WE WANT FREE RUNNING MUDE?
ND, S0 8YORE X
YES, SO SET FLAGS

SAYE THE MESSAGE COUNY
ALNAYS BRANCH

SAVE THE SKIP COUNRT
AND RETURN

SAVE THE FIRSY MONITUR ADDRESS
AVD RETUIN

IS THIS A RESPONSE 1O THE THIRD OR FOURTH
REWUEST?

ND, SO ERROR=RETURN

YES, 5D SE! ALL FLAG

YET LISTENING FLAG

RESET COUNTERS

AND RETURN

SAVE THE INPUT CHARNCEIER
IS THE CHARACTER A NUMERAL?

YES
NO, SO ADD NINE TO LT

ALAAYS BRAVLH

RETURN

CONVERT CHARACTER TD NUMERAL (HEX)

ONLY A CARRIAGE RETURN, SO SEY DUMNNY N X
NERE THERE THREE CHARACTYERS INPUT?

YES

NQ, SO GET LDOW ORDER CHARACTER

CONVERT YO BINARY HALFWORD

-

LASY CHAR?

NO, S0 GET HIGH ORDER CHARACTER
CONVERT TO BINARY HALFRORD

AND SHIFT 1T INTG WIGH URDER SPOT

COMBINE HALVES
PJT IT IN X REG
AND RETURN

38

T0

g s e e

J—

WA

AN

INDEY

CARD #
328
329
330
LY 31
332
333
334
335
336
337

Loc

F986
F988
F9BA
F98C
FYBE
F9CO
F9Ce
F9CS
F9C7
FYC9

CODE
on
19
30
07
20
03
2n
03
db

Fo

Ce

c3

TR TN

CARD

10

LOX
LDA
cup
8€Q
cup
8EQ
Jrp
LOX
sNE

20
%00
STRING, X
¥330

c3

#3290

c}
ASHAGN
LT

o

PAGE 8
30 T 50

CHECK FIRST CHARACTER ENTERED,
1T MUST BE EITHER 0 OR A BLANK.
1S 17 ZERO?
YES
IS IT A BLANK?
YES ‘
NEITHER, SO ERROR=RESET

ALNAYS BRANCH

(o8
O

60

76

i

R S

Sy wmew o

I T

QUIDEV PAGE)
CARD ¥ LUC LUk CARD 1D 20 30 4o 50 60 70
339 FYCY i
34y FoCY } QJTDEV IS CALLED 10 HANDLE A MESSAGE FRUM THE NETWORK, IT AILL
3yl FuCY t TRANSMIT 1HE MESSAGE TO THE USER DEVICE,
382 F9CY :
U3 FYCY A% 1@ DUTDEV - LDA MSGCWT HAS THE MS6 COUNT LAPSED?
304 FiCu Fu 0 dEv LT YES, S0 CONTINUE
30y FNCD AN TS Nds SU KEEP SAVING MESSAGES
Jue FOCE Ta 11 $g1 HALT INTERRUPTS
307 FYCF A4 18 LY WRPFLG CHECK TO SEE IF UUTPUY BJUFFER WRAPPED ARDJND
348 FuB) FO 0D 38V UT2 Ny SO CONTINUE.
349 FYDI Ab 34 L)X UEND YES, SO PREFORM SAIFY IN GENU AND QSTART
350 FUNS b 33 5TX QSTART THIS IS NECESSARY TO OUTPUT DATA IN
351 FYa? by INK PROPER DRDER.
352 Fue &Y b CPX WBUFCNT
353 FWOA Ju u¢ 8VE UT01
354 FYOC ae Wi LOX %00
355 FINE b Su 0101 8TX GEND
356 F9EQ A% v ura LOA QUISET SET UP FOR GuYPUT?
357 F9RQ Q¢ eV 3NE PUTCHIL YES, SO SEE 1F CAN SEND THE NEXT CHARACTER
358 Fytu Ao 33 LOA WSTART ANYTHING ON THE QUEUE? .
359 Fure Ru $4 CPx WEND
360 FYER pu uF 3NE ute? YES, SO CONTINUE
361 FIka au 14 LDY WRPFLG CHECK TO SEE IF OUTPUT BJFFER WRAPPED
362 FREC D4 D3 BNE Ovay YES, SO ALLON ONE MURE UJTPUT,
363 FAEE L IA FA JMP OUTRET ND, SO EXIT
364 F9Rl Ay QO 0121 LDY K00 ZERO OUT WRAP FLAG
365 FES Nd 1Y STY WRPFLG
36 FY9FY A5 19 LOA NEXT,X
367 FYFT 4% §u STA UEND SEl 50 USTART = QEVD AFTER THIS CYCLE 5
368 FIF9 1w 35 oraz LOY LOPTH, X SET UR THE PTKS ‘
369 Fyky wg Q4 STY OUIRTR . -
370 FuFu Aa 49 LDY HIPTR,X |
371 F9FF s 0% STv UUTPTR4 yoob
372 FAOL &b 09 INC QUTSET SET UP FOR DUTPUT ' “
3713 FAO3 au FF LDY wEFF -
374 FAODS M4 0Ob 5TY OUTHC FIRST CHAR UFESET = 1]
3718 FADT A0 U7 LOY ®07 -
376 FADY 41 09 LDA (OUTPTR),Y GET THE PACKET LENGTH :
377 FAUB &b 07 STA OUTRL .
178 FAQD : .
379 FAOD } PUTCH TRIES TU PUT A CHARACTER FROM THE BJFFER TO THE COMPJTER, 4
340 FAOD /
381 FAOD AU To PUICH] LDY #NULL PRINT & NULL CHARACIERS ON OUTPUT DEVICE
382 FADF 20 73 Fu JSR PUTSTR ;
383 FAl2 AD 0O LDY ®#00 {
384 FALG wu 0OC STY LINCNT
385 FAle A4 06 PUTCH LDY uitdc GE1 'HE NEXT CHAR UFFSEN
386 FALE Cw v7 CPY GUTPL DONE VET?
387 FALA DO 0% gVE TRYDS VO, S0 CHECK THE DEVICE STATUS
388 FAIC Co 09 JEC OUTSET YES, SO ALL DONE
389 FAJE dC hR FA JMP UUTFRE
390 FA2!1 AD 40 ju INTOS LA DUARTS WILL DEVICE TAKE A CHARACTER?
391 FA24 29 0@ ANU #200000010 .
392 FARb Fu F3 3EW IRYDS NO, SO KEEP ~AITING
393 FA8 Ch ENY GET THE UFFSET UF THE CHAR TO SEND :
¢
]
i
v
i
1
i
1
oo
Y
¥
40 :

o T T——

£

7

%

OUTDEV

CARD # LOC

394
395
396
397
398
399
400
401
402
403
404
405
40o
407
qo08
409y
41y
411
412
4yl
414
415
416
417
a1
419
42v
42)
422
a2
424
425
LT
427
4238
429
430
431
432
433
LR
435
430
437
43y
439
449
4y
que

FA29
FA2Y
FA2D
FA2F
FA3O
FA3]
FA32
FA3S
FA34
FA3S
FA3H
FAYd
FA3E
FA4O
Fau2
FAUY
FAUb
FAUy
FA4Y
FA4C
FAup
FAS1
FASq
FASo
FARS
FALA
FASC
FASE
Fhov
FAng
FAod
FAGY
FAbY
FARA
FARD
FaAnk
Fate
FAly
FA1?
FATA
FA7A
FAjC
FATe
FAny
Fabe
Fany
FAlG
Fad8
FaBo

CJ0E
31 04
84 V6
29 FO
18
bA
bA
bA
bA
Ab
49 54
A 0}
A0 00
29 e
Fu F¥

FC
td

FC
14

FH

]
Fa
Fd
Fy

Fry
Fy

Fu
Fo

- T W

CARD

}
OJUTFRE

-1
UUTRET

NUI VAL
SNDMES

10

sry
AND

R0R
ROR
ROKR
RO
TAY
LDA
STA
LDA
AND
BEW
Loy
LOA
AND
TAY
L0A
STA
LoY
JSK
1Ne
Loy
cPY
avr
Loy
STy
Loy
JSR
JuE

LoX
JSR
Loy
JSR
Loy
J3R
Jnp

LDY

20
(OUTPTR), Y
outec
¥3F0

A
A
A
A

TAGLE,Y
DUARTD
DUARTS
a%02

T0

UUTHC
(QUTPTH) ¥
#$0F

TAHLE, Y
DUARTD
sALANK
PUTHIR
L1nCNT
LINCNT
#lo
PUTCH
sy
LINCNT
#CRLF
PUTSTR
PUTCHL

PAGE 10

30 40 50 6)
GET THE CHAR YO SENO
SAVE THE POINTER TO THE CHARACTER
MODIFY IT FOR HEX JUTHPUT

ROTATE IT FUUR TIMES

GE! THE MEX VALUE FROM IHE TABLE
0JTPuUl THE HEX CHARACIER
ATLL THE DEVICE TA<E Iht CHARACTER?

NU, 80 FRY ASAIN

RECALL THE CHARACIER POINTER

YES, 80 LUAD CHARACTERS FOR SECOND HALF
GE! RID OF HIGH ORDER BYTE

LJAD THE HEX CHARAC(EN FRUM THE TABLE
0JTPUT THE CHARACTER .
OJTPUY A BLANK SPACE

CIJINT THE CHARACTERS OUN A LINE
HAVE WE PRINTED A LINt FULL YET?

ND, 80 GEY YHE NEXT CHARACTER
YES, 80 RESET THE LUNE COUNTER

AND PRINT & CR LF
AND THE NE& LINE NULLS

RUSTART=NEXT FREE UP THE PACKET

vl
4CRLF
PUTS TR
H#CRLF
PUTSTR
ure

MSGCNT
NORMAL
NURMAL
#ENDERR

2 SNDMES

SFINISH
CONECT
PISTR
RESET

DJTPUT A CR LF BETVNEEN MESSAGES

AGAIN
AND GO GEY THE NEXT MESSAGE

NORMAL TERMINATION

ABNORMAL TERMINATION

(ALAAYS BRANCH)

SEND THE PROCESSING FINISHED MESSAGE
NO LONGER QUEJING PACKETS

SEND. THE MESSAGE

AND START OVER AGAIN

41

70

5

g A i

g e s

I
;
I
!

INTHUF
CARD #¥ LOC
444 FABL
445 FARE
446 FARE
447 FAHE
448 FAaQ0
449 FARR
450 FAQ3
451 FA94
452 FAY7
453 FAQ9
454 FA9A
4SS FARC
4S6 FAQE
457 FAAD
458 FaaQ
459 FAAY
460 FAANG
461 FAA7
6 FAAY

e g — T

CODE

Fr

CARD

INTBUF

——— e w

NT3JF

INISET
INTRES

10

20

PAGE 11
30 4o 50 60

SETS UP A BUFFER FOR NETWURK INPUT IF IT IS NECESSARY,

LDA
BVE
PYP
SEl
JSR
vl
PLP
LA
S5TA
LDA
S5TA
3TX
NG
EAR-]
PLP
TS

INTSEY
INTRET

ALLOC
INIRES

LUPTR, X
INTPTIR
HIPTR, X
INTPTR+L
LURNET
INTSET

IS A BJFFER SET UP FUK NETWURK INPUT?
YES

SAVE THE INTERRUPT STATUS

TJIN DFF INTERRUPTS, 1F NOT ALREADY OFF
ALLOCATE A BUFFER

IF CAN'T

RESTORE OLD INTERRUPT STATUS

SET UP THE PTR 10 THE BUFFER

S4VE THE BUFFER NUMBER
NON ALL SET upP

RESIORE OLD INITERRJPT 8TAJUS AND RETURN

42

i A N b ez

70

N

i e St e g e K

P A R r

s

S e

e

IRQ AND NINT

CARD & LOC

hed
46S
LYY
487
468
469
470
471
uze
473
474
475
476
417
4ty
47y
48y
481
48¢e
483
494
435
R
487
484
LLL
#9v
491
une
4334
494
495
496
497
438
493
500
501
502
503
S04
505
S0¢6
507
5038
509
5iv
511
512
513
51
51%
S16
S17
518

FAAQ
FAAQ
FAAQ
FAAQ
FAAA
FAAY
FAAC
FAALC
FAAC
FAAC
FAAC
FAAF
FAhZ
FANY
FARY
Fagy
Faido
FAHYT
FARY
FABL
F AR
FANMF
Facl
FAUS
FACY
FAC?
FACY
FACY
FaCe
FANY
FAaYZ
FADY
FAY]
FAGA
FAdA
FALL
FANE
FABF
FAE 2
FALY
FAEo
FAEY
FAEA
EAEC
FAFE
FAFV
FAFe
FAF Y
FAFo
FAFY
FAFU
FAFC
FAFE
FBna
Fane

48
48

AD
LES

44
de
4b
Ab
€0
Fu

-
.

L]
[}
b11]
Ay
)
oy
qc
Ay
20
A9
LIV
4g

Ay
91
Co
LY
29
Fo
29
Fy
o}

AL
AY

FO
40
It
a4
cu
90

-1}

CIDE

[V
3]
oo

0C
oc

Fa

0C

F3

oc

oc

CARD

10

20

N

PAGE 12
30 40 S0 60

i
! IRQ RECEIVES CONTROL WHENEVER THERE IS AN INIERRUPT

!
IRJ

Pra
TYA
PHA

PJUSH ACC AND Y ONTO STACK

H
3 VINT 15 THE NETADRK UART INVERRUPY +4ANDLER, IT IS USED 710 EIVTHER
§ THECK LAT VALIDITY, UR TO READ IN A MSG FRIOM ANOTHER BIJ.

)
NINT

N13

L¥)
NS

No

N7
N

LbA
LY
5TA

TXA
Ptk
TYa
LOX
CPx
E1Y]
Cwp
3EQ
cup
aNE
Loy
BEU
JEC
Jup
Loy
8Nk
Lba
STA
JWP

LDy
STA
Ny
LDA
AND
JEU
AND
e
cPy
3Nk
LDY
LDA
STA
3EU
LDA
STA
TAX
cPy
3cC
SNE
87X

WUARTS
wWUARTD
IN18C

ALFLS
#0}
N3
HOME §
W13
HOMES
NS

SKPCNT

nS

INTSET

MO
#%01011000
NUAR TS
NIRET

LI
CINTPTR)»Y

NUARTS
#X00000101
NB
AX00000100
Nib

LI

NS

NO7

¥00
(INTPTR) .Y
N1

NUARTD
CINTPTR) ¥

807
N7

NG
INTBC

GEF THE STATUS
AND THE DATA
SAVE THE PARLIY ERRUR FLAG

SAVE X

GET ¥THE TRANSMITTED ADORESS
IS THE ALL ADDRESS .FLAG SET?

YES, SD SKIP YHE ADDRESS CHECK
15 THI3 ONE OF THE MONITORED DEVICES?

YES

IS 1T THE OTHER DEVICE?

NO

HAVE WE SKIPPED ENJUGH MESSAGES YET?
YES

N3¢ SU SUBTRACT ONE MURE
ALNAYS BRANCH
AJE #E ALL SET UP FOR INPUT?

YES

CAN'T RECEIVE, 80 DISABLE RECEIVER
AND REVURN

STORE BYTE 0 IN BUFFER

IS ANOTHER WORD READY
IS RECEIVE KEY ON 3UT WORD NOT IN?
IF NOT, GO TO NS

IS RECSIVE KEY ON?

LF NOT, TEST FOR AN AGK

NAS THIS AN ACn?

ND, SU TURN OFF THE RECEIVER

YES, 80 COTINUE

SET THE MESSAGE LENGTH

ALNAYS BRANCAH
READ THE NEXT wORD

SAVE THE DATA CHAR

IS THIS PACKET BYTE COUNT?

IF <, XEEP ON READING IN THE MEADER
IF », COMPARE TQO INTHC

IF =, STORE RECEIVE PACKEY LENGTH

43

70

PP | P

AND NINT

Loc

FBOY
FBOG6
Fbas
FBOB
FHOA
FBOD
FBOF
FBil
FB13
FBLS
FB17
Fd17
FB19
FBicC
FBIE
Feel
FB21
Faee

cy
J0

ay
40
Ay
00
44
Fo
o

Ab
av
Ce
20

b
AA

ConE

(Y
Jde

53
U QC
03
Ve
12
oc
12

0y
WA FB8
oA
HE FA

CaRD
N9

N1OD

i
Nir

i
NIRET

10
CPY
YNk

LDA
STA
Loy
3VE
Loy
LIV
JEC

Lnx
JOR
vEC
JSR

PLA
TAX

20
INTHC
N7

¥X01011000
NUARTS
FLEET

QlT

MSGCNT
NIRET
MSGCNT

CURNET
ENQ

INTSEY
INTBJF

30 40 30 60 70

"DDES Y = PACKET LENGTH?

NO, SO KEEP ON GETTING BYTES

DISABLE THE RECEIVER

ARE WE FREE RUNNING?

YES, SO SKIP THE MESSAGE COUNTING

HAVE AE SAVED ENOUGH MESYAGES YET?

YES

N3, SO SUBTRACT ONE FROM THE COUNT

GUEUE THE MESSAGE TO HE SENT IN TO THE DEVICE

NO LONGER SET UP FOR 1INPUT
TRY TO GET SE1 UP AGAIN

RESTORE X

44

it e et g 1

fi

T . Y

)

DY S

SR IN

s g er— -

AND NMI

Ltoc

F823
FB23
FB23
F823
Foauy
Fa2%
FB2o
FB27
Fea7
F8e7
FBev
[3:14]
Fgea
FB2L
FaaF
FB32
FB33

68
Al
68
40

4d
A9
80
A9
30
1]
v

CO0E

CARD

10

PAGE 14
20 30 40 50 60 10

!
5 REY I8 USED TO RETURN FROM ALL' INTERRUPTS.

}
RET

PLA
TAY
BLA
RT1

1]
i VM1 OCCURS

i
NM1

PrA
LDA
STA
LDA
STA
PLA
3rl

UNSTACK AND RETURN

NAEN THE RECEIVE KEY TURNS OFF.

PJSH A
#%01011081 RESET NETWORK UART
NUARTS

#%11011000 IVITIALIZE NEVAORK UAKT
NUARTS

45

B

e e b Lo A kS

[,

B

SUBRIUTINES

CARD v LOC

S50 FO3y

557 F834

858 FB3y

55y FH3u

560 Fui4

561 FHld a4

S6d FHi6 8y

563 FBIT Fo

564 Fyie 3

565 FB3y 84

966 FH3L 16

867 FBIF o0

S68 FBUY ES6

S68 Fddg J¢

57C¢ FB4y FU

571 fFBu4s AQ

572 FBu4d Vo

573 Fgua

S74 FHUA

575 FBda

57 FBuA

ST7 FBua

578 FBuA

579 FBua

S80 FBUA o5

581 FB4C BY

Spe FBUE A4

583 FB50 DO

S84 FBS2 60

585 FBS3 AA

SB6 FBS4 BS

587 FBSb BS

588 FBSY b0

589 FBS9

590 FB59

591 Fd59

592 FBS9

593 FBS%9 84

594 FBsSH B9

595 FB% 9%

596 FH60 Ab

597 fFBs2 98

598 FB63 95

599 FB65 Eb

600 FB67T &0

601 FU&8

602 FBbd

603 FBoYy

604 FBbd

605 FBbY

60b FHhB

607 FBoed

608 FBbH 48

609 FBH9 98

610 FBba 48

e

COvE

uD

07
(R
(tB]
61

18
FA

16
EC

i0

18
N1

00

CARD 10

P

AlLLUC Loy
ALLJCE JEY
4Eu
84l
ALLJdCe STY
LoX
TS
WRAP INC
BNE
8EQ
WRAPY Loy
BNE

2ROLESS 18§

TT1 ~e “e Sa we “e G4~

N3 LDA
STA
Loy
BNE
RTS
ENJL TAX
LDA
STA
RTS

o we wo e Ne

Q Loy
LDA
STA
LoXx
TYa
STA
INC
RTS

8SCIT IN Y

TN N N e Se e N

20

STKPTR

WRAP
WRAPL
STKPIR
BUFSTK,Y

WRPFLG
ALLOC2
ARAP T
#BUFCNT
ALLOCY

AT AORK.

NEXT,X
QEND
WRPFLG
ENQY

NEXT,X
OSTART

NEXT,X
NEXT,Y
NEXT, X
STKPTR

BUFSTK,X
STKPIR

PAGE 15
30 40 SV 60

ALLOC IS CALLED TO ALLOCAIE A FREE BUFFER AND RETURN ITS NJUMBER IN
X. IF THERE ARE NONE LEFY, THE QUEUE #JLL BE WRAPPED AROQUND AND
JVERARITE ITSELF, X AND Y ARE CHANGED.

GET OFFSET OF THE TUP OF FREE BUFFER
PIINT TQO THE NEXT FREE HBUFFER NUMSER
START ARAP PROCESS ’

NRAP ARGUND IF NONE AVALLABLE

GOT ONE, SO SAVE THE NEW [OP OF THE STACK
GET THE ALLUCATED BUFFER NUMBER

MALE WRAP FLAG NONZERO 10 CONTROL GQJEUE

KRAP AROUND IF CAN'T ALLOCATE A BUFFER
ALKAYS BRANCH

93 1S JSED YO aDD A BUFFER TO THE END OF A GUEJE, IV USES A
CIRCULAR QUEUEING ROUTINE THAT HMAS QSTART AS THE STARYTING POINTER AND
IEND AS THE ENDING POINTER, ARPFLG 1S USED TO INDICATE THE THE
JJEJE HAS BEEN COMPLETELY FILLED A

IS TH1S THE LASY ENFRY?

SET THE END POINVER

ARE HE WRAPING AROUN

YES, S0 CONTINUE

ND, SO RETURN

UPDATE THE STARTING POINTER

AND RETURN

.

OU IS CALLED 70 DERUEUE AND FREE A BUFFER ON A QUEUE. X I8 THE OFFSET
FROM NEXY OF ENTRY PREVIOUS YD THE ONE TD BE FREED. XsA,Y ARE CHANGED,.

Y HAS THE NUMBER OF THE BUFFER 70 BE FREED
A HAS THE NUMBER OF THE NEXT BUFFER IN THE
THE BUFFER IS DEQUEUED

ADD THE BUFFER TO THE FREE BUFFER STACK

NO# IN THE FREE BUFFER POUL
ONE MORE FREE BUFFER

PUTSTR I8 USED TO PRINI A STRING FROM THE ASLII STRING LIST,
IT EXPECTS THE OFFSET OF THE STRING FROM THE BLGINNING OF

PTSTR I8 USED BEFORE THE QUTPUT OF A MESSAGE TO SOLVE A 1IMING

PROSLEM ON SOME OUTPUT DISPLAYS.

TSTR 2HA
TYA
PHA

46

T LEAST ONCE AND THE NRAP AROUND

70

QUEUE

il

RSP SR
e kL A it

R P

SUBROUTINES

CARD ¥
681
612
613
614
615
616
617
618
619
620
621
622
623
624
625

Loc

3-1:]
FBeD
Fa70
FBT1L
FBTR2
FO73
FBT6
FB78
FUTA
To7b
FU7F
FU81
LT
FH8%
FBHS

AO

c00kE
Cé6

20 73 F8

68
LY}
68
AD
2Y
FO
g9
cY
Fo
k1%
Co
4C
60

00
02
F9
a9

07
[}

7%

Fu

14
Fy

CARD

PUTSTR

PO

10

JSR
PLA
TAY
PLA
LoA
AND
JEV
LOA
CuP
LN
5TH
INy
Juwp
LEE]

T T T T T X RS b e

20
SNULL
PUTSTR

DUARTS
#X00000010
PUTSIR
ASClI,v
%00

PO

DUARTD

PUTSTR

PAGE 16
30 40 50 60 70

ARE WAE AT THE END OF THE STRING?
YESe SO RETURN

47

i\

M. £ 5k A i

CONSTANTS

CARD #
627
628
629
630
631
X T4
633
633
633
633
633
633
633
633
633
633
633
633
833
633
634
635
636
637
637
638
639
540
Y4
640
640
640
640
640
X1
640
&4
640
640
640
640
640
641
641
641
642
643
6543
643
643
643
643
643
643
6543

wUC

Fo8%
FBB9
Fyl9
FHa9
F389
F88Yy
FB89
FBAY
FB8D
FBBF
Fy91
FB9S
F895
FB97
F399
FB9B
F890
FU9F
FHAL
Faa3
FYAS
FBAS
Fuhb
FBAb
FBA7
FRAY
FoaB
FBAB
FBAA
FBAC
FBAE
FBBo
reB2
FuBY
Fu86
FBB6
FBBA
FBBC
FuBE
FHLO
Faca
FBCY
FBCY
Fuce
FRCY
FBOA
FBCA
FBCC
FBCE
FBDO
F802
Fuby
FBD6
FBpY
FBDA

- ——

CJDE

29

CARD

- e e e e

PKCNT
ASCLI

CRuF
LF

i
PRSKP

MNADD

PAGE 17
1 20 30 40 50 60 70

CONSTANTS AND 7AALES FOLLOA
I4€ STRING TABLE FOLLONS 3ELOWM. EACH STRING HAS A SYMBOLIC OFFS

=0 PACKET COUNT MESSAGE
+8YTE 'PACKET COMNT? (00 = FF, HEX)'

= x=ASCII CARRIAGE RETURN, LINE FEED
L8YTE $0D
= #=ASCII LINE FEED ONLY

LB3YTE $0A,00

2 A=ASCII PACKETS SKIPPED MESSAGE
LBYTE 'PACKETS SKIPPED? (00 « FF, HEX)!

.BYTE 'PACKETS SKIPPED? (00 = FF, HEX)'
«BYTE $00,504,00

= x=ASCII MONITOR ADDRESS MESSAGE
«BYTE '"MONITOR ADORESS? (HEX)'

48

D

CONSTANTS

CARD #
643
643
[.LL]
buy
[-LY]
645

» 646
646
blo
odbd
646
(X1

B bUb
blio
LT
bl
b4b
blb
blb
bib
bdb
547
647
647
648
649
649
buy
649
649
549
[XL]
649

6u9
649
650
650
650
651
652
652
652
65¢2
652
652
652
652
652
652
652
653

, ! 454

o [P

L. o A FUTRIRY

LoC

FaDC
FBDE
FBEQ
FBE!
FBE2
FBE S
FBE}
FHES
FHBE?
FYESQ
FBEY
FBEV
FBLF
FBF 1
FBF3
FBFYS
FBF7
FHBFY
FBFa
FOFD
FBFF
FCO}
FCoe
FCn3
FCou
Fcod
FCns
FCu8
FCOA
FCOC
FCUE
FC10
FCle
FCly
FCto
FC1bH
FClo
FCiC
FCID
FCIE
FCI1E
FC20
FC22
FCed
FC2o
FC2b
FC2A
FC2c
FC2E
FC30
Fc3e
rFc3s
FC34
FC37
FC3Y8

COOE

4E 2E

R A L T S RS R T SR R e £

CARO

SCADD

PRIINT

FINISH

.1

PAGE
10 20 30 40 50

JHBYTE $00,504,00

T w=ASCII SECUND ADDRESS MESSAGL
LAYTE 'OPTIONAL SECUND ADDRESS? (HEX)'

LYTE $0D,;$0A,00

= «=ASCI] ERROR MESSAGE
+BYTE 'INPUT ERROR, TRY AGRIN.'

«BYTE 'INPUT ERROR, TRY AGAIN,'
«BYTE 30D,80A,00

E *=ASCII PRICESSING INTERRUPTED
«BYTE 'PROCESSING INTERRUPTED.'

+BYTE *‘PROCESSING INTERRUPTED.'
«BYTE $00,80A,00

,e

= w=ASCII PROCESSING FINISHED

49

18

60

70

PRt

i e

CONSTANTS

662
662
(LY
662
662
663
6bd
6ol
[[1-L]
[1.1]
bbbl
[-1-1]
664
bba
6b4
664
bby
665
665
665
66b
667
668
669
670
671
672
673

Loc

FL38
FC3A
FC3C
FC3E
FC40
FCye
Fcay
FC4o
FCus
“C4A
FQuc
FLub
FCUE
FLYF
FUUF
FiS0
FLS1
FL52
FL33
FC54
FL5S
LSS
FLS6
FLS7
FChA
14
FCSE
FCb0
FChe
FCbu
FCue
FC&8
FCBA
FCoA
FCof
FCeE
FC70
FC72
FC74
EC76
FC74
FCTA
FC7C
FCTE
FCBO
FL81
FCH2
FCRY
FLu3
FCA3
FCa3
FFFA
FFFC
FFFE
0G0

on

27
09
A9

F3
F8
FA

CARD

NuLL

HLavK

Al
TA3LE

EVDERR

. v e

VECTOR

PAGE 19

1 40 50

0 20 30
«BYTE 'PROCESSING FINISHEOD,'

«AYTE $00, 304,00

= x=ASCL1
+3YTE 30E,bOF,$0E,30F,30E,$0F

= #=ASCII
+o¥TE $20,00

BLANK SPACE

+JAYTE *ALL!
LHYTE '0125056789A8CDEF"

s x=ASCII ENDING ERROR
«BYTE 'ABNORMAL EVDING ERROR.'

«3YTE $00,50A,00

INTERRUPT VECTORS BELO®

*=$FFFA
«NORD NMI NON=MASKABLE INTERRUPT VECTOR
+HURD RESET RESEY VECTOR
«AQRD IRG 133 VECTOR
50

50

70

ST T TR R T

g

(
CONSTANTS
CARD # LOC CODE
- 874 0000

CARD 10 20 e
.END

END OF MOS/VECHNOLUGY 650X ASBEMSBLY VERSION S,1t

-
3
NJMBER JF ERROR3 =
{
-
W

0, NVUMBER OF AARNIMGS = 0

51

40

PAGE

50

20

60

70

R MRS R AT

s

AT TR

b

a3
¥

‘3‘1

SYMBOL

At

A2

AK1
ALFLG
ALL
ALLOC
ALLAOCH
ALLOCR
ALPHA
ASCII

ASKAGY
HLANVK
gJbhanT
BJFLEN
BJFSTX
BJFMEM
gJFFR]
cu

1

ca2

c3
CONECT
CRLF
CRTN
gcrov
CURNEY
(PR
VJARTY
DJARTS
LCHY
ENDERR
ENg
kNl
ERR
FINISA
FLEET
-0

Gt

G2
GCRLF
LETRPY
GLF1
LLF
530
D
GRUT
HIPTR
HOMER
HAOMEL
11

Ig

1NO
INni

SYMBOL TAadLe

VALUE LINE DEFINED

Fl92
FI94
Foul
00to
FCY7
FYly
Frde
F23b
Fauy
Fad49

Faay
JuL
[UVR N
VR
Wbkl
udt
Fann
FQYF
F 44
F b
FQgy
unte
Q)0
Fanb
Faa¢f
Quny
Faiy
1401
100
R
HIU-S
Fa'la
FHg3
Hu 7
HOAR
IV L)
Fa0y
FaQ7
F21k
FYFE
F334y
FyFA
F8Fy
FaAy
F4C7
FRd0
Qoal
QunfF
NOOE
Fya8
Fasc
FgRu
FiEe

305
304
259

39
Y
S61
Yo
a3
eqd
648

249
oy
¢l
14
bh
13
113
Al3
3eb
320
30
52
6dl
3eh
fay
M
593

300
304
250
147
241
4351
57
S5b9
31y
619
ba®
2ue
g14
5
20
fUs
20
127
I3s
A1
3e
331
%
129
AR AA
bt
ush
4a7

2se
291

$19
634
bhd
29y

63
123
66
317
333
131
222
530

184
83

EL-L]

120
486
249

CROSS-REFERENCES

48
636 b3V bHUQ 45 HUB 651 &6YHY
33q

by bb 91 104 112 113 382
5$94

133 172 185 292 a4

dea 424 430

494 d13 622

fo9 181 390 405 bi6
370 4%¢6

RY!!

52

P Y1 T P v R

657

ERA

et ol

SYMBOL

IN2
INBC
INCNIR
INDEV
INTRES
INTPTR
INTAC
INTSET
INTBUF
INTRETL
IRET
1’y

LF
LINGNT
LIPTH
™0

MNR

M1

M2
MATCHA
MATCH
MLOOP
MNADD
MRET
MSGCWNT
N1Q
NS
Nlb

N3

NS

NG

N7

Ng

NY
NEXT
NINT
NIRET
NMAT(H
NM[
NOECHD
WORMAL
~NJARTD
NJARTS
NJLL
0rol
url
oree
are
or21
QDJTFRE
QJTSET
UJTDEV
QUTIPTR
OJTPL
ouTsc
OJTRET
PO

vaLUE

FUEd
0003
o0u1}
F89C
FAA?
0001
0090
0004
FARE
FaAs
F347
Faag
galhn
0QaL
Uiy
Fanl
FybH
Fout
Fylu
F974
F19
Fua4y
oyl
Fadu
Nule
F39D
Fagh
FAFH
FACE
Fane
FADA
FADE
FaQk
Fa0uy
00ty
FAAL
Farl
FR1%
Fye7
Fyisc
Fang
0Co1
0COy
QuCe
F9uk
F9CE
FFQ
FoEU
FOF{
Fany
oooe
FQC®
o004
0007
uove
Faza
Fg4yy

LINE DEFINED

208
ev
40

169

bl
2h
25
33

a7
it

174

o7

hib
35
)

275

213

2u?

did

283

263

tHR

ofig
vy

d
el
oA
9i2

4y 2

WYy

EEL]

Y00

Y01

Yiv
oy

474

535

R35

S48

oy

433
10

657
3n5
Iub
lo3d
355
3ol
425

kY
343

28

30

ey
433
623

206
208
252
140
hs2
455
471
447
152
YA
189
bl
220
38y
101
2ol
76
2b9
2l
o4y
2t
14}
144
230
14¢
511
33
505
449
437
493
516
503
317
17
Ak
490
229
h70
179
435
475
17
381
353
344
360
348
362
389
356
158
369
377
374
363
hel

214
263
143

4s7
514
459
159

—-
——
fe-N s

254
2nd
279
485

491

520

113
527

436
512

79
611

432
372
371

386
385

CRUSS-REFERENCES
217 219 230
2bb 288 293
146 151 1560
499 510 3513
519
uvye 532
233
417 421
12t 368 454
eny
286
343 434 S5eb
507
366 U426 3530
474 495 50t
388
376 394 409
398 408

53

Lo e

294
173

528

586

rho S A e
L bl N 0

309 335
215

593 594
550 552

95

N U

SYMBOL

PLCNT
P<SXP
PROINT

PTSTR -

PJTCHY
PJTSIR
PUTCH
QEND
GIT
WwSTART
kO
waMS]{
KEZADY
RESET
KEZ]
STAQU
s$<1vl
SaPCil
SioMe s
STACKI
STePIR
STRING
10
TAaLt
TEMRY
1849
12v9y
[IER]
VICTUR
WRAR
niAY
wRRrFLS

VALJUE

0000
WOI1F
0v9b
FauH
FAQU
Fa73
FALG
0034
Fol?
NY3
Fy1C
(VR IRV
FQre
Fguu
Fueld
RI-TY
FYS5S
BUB I
Fany
Frye
I
VRN
Fadh
FChA
0314
DDRRY
RDARY
Fa2i
FEFA
Foly
Frnugp
BHRN:)

LINE DEFINED

052
639
651
604
331
blb
3485
99
559
>R
a7
1/
P2
12
R
L)
129
4?2
4y
(VR
55
48
4\
ool
44
438
43
3J0
XAl
hoh
LYA
47

138
tut
135
136
357
130
a1y
95
525
94
59

E)
obi
RAAR
149
124
11
438
1o

209
qu7
2aht
237
200
315
187
LR ¥
943
bbhy
w7

193
1319
4y
2es
349

550

442

aue

k13
2217

X
299
cug
324
92

S7Tu

s6%

CROSS=-REFERENCES
142 145 1350
3d2 415 423
395 359 387
35K 420 297
nll
U84 490
S0b b9&6 539
240 313 318
q12
301 305
204 207
o S64 HH2

54

194
4eo
581

329

2b0
431

441

612

618 bed

S

T T

5

e

PN TN

L

APPENDIX II

-‘BUS LISTENER FLOW CHART

55

T e e

INITIALIZE
10
DEVices

INPUT-STATE: 0= WAITING FOR A TERMMINAL MOPUT
1~ PROCESBING DATA PACKETS

!

INITIALIZE
RAM, STACK,

OECIONS:
A WERE WE PREVIQUSLY LISTENING FOR PACKETR)

B: 18 THE “ALL" ADDAESS FLAG SET?

VARIABLES,
SUFFERS

t

CALL INDEV

PRINT
"PACKETS SKIPPED™

1

CALL INDEV

PRINT
"MONITOR ADDRESS"

1]

CALL INDEV

<>

PRINT
"SECOND ADDRESS?"

i

CALL INDEV

PRINY PRINT

PACKET ‘PROCESSING
COUNT" INTERRUPTED"
INPUT STATE
-

CALL INTBUF

!

RESET INTERRUPTS|

0

el

s ainiinaaneian e et e

"
e
o
0
]
<

RESET: (CONCLUDED)

MAIN LOOP:

57

CALL
OUTDEV

CALL
INTBUF

CALL
INDEV

llA—50,$67 l

RETURN)

DECISIONS:
A:

IS A CHARACTER READY
FROM THE DEVICE?

ARE WE WAITING FOR A
RESPONSE FROM THE USER?

GET THE
DATA CHAR

GET RID OF
THE PARITY
BIT

58

e am

™ - . ST 0 e T N R el A Bt S

IMDEY; (CONTINUED)

ECHO CHAR
TO TERMINAL

INPUT-STATE = 0 INPUT-STATE = 1

TRANSLATE
CHAR TO
UPPER CASE
ADD CHAR
TO STRING ZERO SKIPCOUNT
ZERO MESSAGE
COUNT
{ { NDev NO
HALT
YES INTERRUPTS
PRINT

CARRIAGE RET.
LINE FEED DECISIONS: < AETURN)

C: IS THE NO-ECHO FLAG SET?

: BRANCH ON CURRENT VALUE OF
INPUT-STATE (OOR 1)
E: WAS THE CHAR A CARRIAGE
RETURN OR HAVE 5 CHARS BEEN
TYPED? '

: WAS THE “ESC” CHARACTER TYPED?

n

1B-50,168

59

L T v o A T T S T S T PR T T P

oy

o

R A R

faa e o mr s

L

F,\——x — af

INDEY: {CONCLUDED)

1B~50,169

YES

I

YES

SET “ALL"
FLAG
INPUT-STATE

RETURN

INCREMENT
RESPONSE
COUNTER

'

CONVERT
INPUT
TO BINARY

)

STORE VALUE
IN APPROPRIATEI
VARIABLE :

NO

YES

INPUT STATE
1
RESET COUNTERS

0

RETURN

aiamiiadnt i be o mutei £ - i St A

DECISIONS:

G: IS THE STRING ALL HEX
CHARACTER®?

H: THIRD OR FOURTH PASS?
1: 1S THE STRING THE WORD “ALL'?
FOURTH PASS?

J:

PRINT
"iNPUT ERROR,
TRY AGAIN"

RETURN

D T . e

T N P O S

ek

e T

HALY

BWAP
POINTERS

|

CLEAR WAAP
FLAG & SEND
ONE MORE

PACKET . i

SET Ue ‘
POINTERS TO !
THE BUFFER f
o PRINT NULL . DECISIONS:
STRING !
A I8 TNE MESBAGE COUNT FINISHED? :
8;: DID THE BUFFER WRAP AROUND?

[+]

: CURRENTLY OUTPUTTING A BUFFER?
;18 A BUFFER QUEUED FOR OUTPUT?
E: WAS THE WRAP AROUND FLAG SET? :
1 HAS THE PACKET BEEN COMPLETELY PRINTED? i
G: CAN THE DEVICE TAKE A CHARACTER?
H: END OF A LINE YET?

-

DEQUE
BUFFER

; !

OUTPUT CARRIAGE
RETURN & LINE
FEED TWICE

LI

OUTPUT BLANK
INCREMENT LINE COUNT

IC~50,1T0

61

et
I e e A
I A .
TR ——— e o o T Twngr e W - ’

1
B . . 2 - P u.
¥ !
m
w“;
1353y
3
~HOYH3 +Q3IHSINIS U_
ONIGN3 TvWuoNgy,, ONISS300y4,, ;
! AINIHd INIHd
o~ K
© '
| ¢aN3 TYWHONEY Nv S1H) SYM |
w ‘SNOISIDIg
: (d3an1oN02) AFaInG
;

L zros i)

T . 5 i
éf
N
|
INTBUF:
DECISIONS:
’ A: HAS A NETWORK INPUT BUFFER
CALL BEEN PRE-ALLOCATED?
ALLOC B: WAS THE ALLOCATION SUCCESSFUL?
" NO
(ak NO.
YES |
i . i
!
SET UP |
POINTERS TO :
THE BUFFER |
;
|
-
i
SET PRE- :
ALLOCATED :
FLAG |
’ i
i
:
S (RETURN)
]
]
<
63

5

e e ——

1B-50,173

S TR I

o e —TET————

SAVE CPU
STATE ON
STACK

:

GET NETWORK|
STATUS AND
DATA

NO

GET THE
xmiT
ADDRESS

DECISIONS:
At IS THE "ALL" FLAG SET?
B: IS THE PACKET FOR US?

Ci: HAVE WE SKIPPED ENOUGH
PACKETS YET?

D: 1S AN INPUT BUFFER READY?

E; 1S THE NEXT BYTE OF THE
PACKET READY?

Fi 18 THE XMIT KEY STIiLL ON?
G; WAS THIS AN ACK?

H: HAS THE PACKEY BEEN
COMPLETELY READ IN?

DECREMENT
SKiP COUNT

READ IN
B8YTE AND
STORE IN
BUFFER

64

SET ACK
PACKET
LENGTH

u

R S PR

18=50,174

{RQ: (CONCLUDED)

Y

TURN OFF
RECEIVER

DECREMENT
MESSAGE
COUNT

“*5?

ENQUEVE
PACKET

'

CALL
INT BUF

TURN OFF
RECEIVER

DECISIONS:

IS THE FREE RUNNING FLAG SET?

J: HAVE WE SAVED ENOUGH PACKETS?

RESTORE
CPU
STATE

RETURN

65

—— iy

I P T S AU NTL L T

B T P T T W

- T T PR
L 9

NMI:

1A~50, 178

66

SAVE THE
CPU STATE

RESET
THE NETWORK
UART

RESTORE
THE
CPU STATE

‘ RETURN ,

(1)

(2)

(3)

REFERENCES

Brown, J. S. and Hopkins, G. T., Trend Monitoring

System (TMS) Communications Hardware - Volume II -

Bus Interface Units, The MITRE Corporation, MTR-4721
(J6C #14723), March 1979,

Gregor, Paul J., Trend Monitoring System (TMS)
Communications Software - Volume II - Bus Interface
Unit, The MITRE Corporation, MTR-4723 (JSC #14793),
April 1979.

Brown, J. S. and Lenker, M. D., Diagnostic Proce-

dures For Trend Monitoring System (TMS) Commuhica-
tions, The MITRE Corporation, MTR-4724 (JSC #14794),
March 1979.

MCS 6500 Microcomputer Family Programming Manual,
MOS Technology, Inc., Norristown, Pennsylvanla,
January 1976.

"MC 6850 Asynchronous Communications Interface
Adapter (ACIA) Data Sheet," Motorcla Semiconductor
Products, Inc., Phoenix, Arizona.

"MCS 6522 Versatick Interface Adapter Data Sheet,”

MOS Technology, Inc., Morristown, Pennsylvania,
November 1977.

67

==

il

	1980004008.pdf
	0001A02.tif
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001A14.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif
	0001B06.tif
	0001B07.tif
	0001B08.tif
	0001B09.tif
	0001B10.tif
	0001B11.tif
	0001B12.tif
	0001B13.tif
	0001B14.tif
	0001C01.tif
	0001C02.tif
	0001C03.tif
	0001C04.tif
	0001C05.tif
	0001C06.tif
	0001C07.tif
	0001C08.tif
	0001C09.tif
	0001C10.tif
	0001C11.tif
	0001C12.tif
	0001C13.tif
	0001C14.tif
	0001D01.tif
	0001D02.tif
	0001D03.tif
	0001D04.tif
	0001D05.tif
	0001D06.tif
	0001D07.tif
	0001D08.tif
	0001D09.tif
	0001D10.tif
	0001D11.tif
	0001D12.tif
	0001D13.tif
	0001D14.tif
	0001E01.tif
	0001E02.tif
	0001E03.tif
	0001E04.tif
	0001E05.tif
	0001E06.tif
	0001E07.tif
	0001E08.tif
	0001E09.tif
	0001E10.tif
	0001E11.tif
	0001E12.tif
	0001E13.tif
	0001E14.tif
	0001F01.tif
	0001F02.tif
	0001F03.tif

