C. THEORETICAL CALCULATIONS & INSTRUMENT DEVELOPMENT & TEST
CHARACTERIZATION OF LOW INTENSITY X-RAY IMAGING DEVICES

Dr. George Ferguson, Marshall Lewis, Rajinderbir Harnal
Howard University

Dr. Javan Anderson, Ms. Sandra Brown
Howard University Hospital

The search for a high resolution imaging device to detect electromagnetic radiation in the 20 Kev to 300 Kev energy range lead researchers at the National Aeronautics and Space Administration (NASA) to the development of the Lixiscope (acronym for Low Intensity X-ray Imaging Scope). A detailed description of the component parts and the principle of operation of this unique instrument is given elsewhere. The device is essentially the combination of a scintillator to convert impinging X-rays to visible light; a photocathode to produce an electron image; a multi-channel plate (MCP) to intensify the electron image; and a phosphor screen to reconvert the intensified image to visible light. Fiber optic plates, which are employed to transmit images between component parts, prevent degradation in resolution of the image.

Radioisotopic sources have been used to excite the Lixiscope in preliminary experimental attempts to evaluate the usefulness of this instrument for industrial and medical applications. The purpose of this study is to explore the characteristics of the Lixiscope when excited by X-rays produced by conventional electrically powered X-ray generators. The broad goal is to determine the optimum X-ray spectrum, and mode of operation of the generator, which yields satisfactory Lixiscope images of medical and industrial specimen.

EXPERIMENTAL PROCEDURE

The experimental arrangement employed with the Lixiscope is shown in Figures 1 and 2.

X-Ray Source

The source of radiation used to excite the Lixiscope is a radiographic inspection system (Faxitron Model 8050–310, manufactured by Field Emission Corporation, McMinnville, Oregon). This self-rectified X-ray system produces a continuously variable output voltage whose range is 10–130 kv, with a maximum current of 3 ma. The X-ray spot size is 0.5 mm.

The photon energy distribution of this source, shown in Figure 3, was experimentally measured using a two-inch NaI(Tl) scintillation detector arranged as depicted in Figure 1. The energy scale for Figure 3 was obtained using radioisotopic sources whose radiations are well known.

Image Standards

Exposures of selected specimen were obtained using a standard medical radiographic unit*. The specimen were placed above, and in direct contact with, an 8” x 10” film cassette, then irradiated using standard techniques employed by radiologists. The specimen selected were (a) a skeletal hand, (b) a portion of a finger of an Alderson phantom patient and (c) a composite wire. The composite wire consisted of a small diameter (0.062” o.d.) inconel tube in

*Medical Radiographic and Fluoroscopic Unit (manufactured by Picker Instrument Corp.), focal point spot 1.4 mm.
Figure 2. Photograph of Experimental Arrangement

Figure 3. Photon Energy Distribution of X-Ray Source-30 KVP (Faxitron Radiographic Inspection System)

Figure 4. Image of a Skeletal Hand using a Medical Radiographic Unit

Figure 5. Image of an Alderson Phantom Finger using a Medical Radiographic Unit

which had been inserted rhodium and zirconium wires of two diameters (0.062" o.d. and 0.013" o.d., respectively) and an Al₂O₃ spacer to fill voids. Images of these specimen, as given in Figures 4, 5 and 6 were used as "resolution standards" against which images obtained by other means were compared. Figures 7, 8
and 9 are images of the specimen obtained in the same manner as above, except that the radiation source used was the Faxitron X-ray generator to be employed in the Lixiscope study. A moderate increase in resolution is seen due to the smaller (0.5 mm) spot size for this generator.

Camera Recording System

Photographic images were obtained using a CU-5 Polaroid Close-Up camera (75 mm focal lens at f/4.5, 2x magnification). Measurements indicated negligible darkening of film due to direct exposure to X-rays in the experimental arrangement shown.

Lixiscope Images

Having ascertained that high quality radiographic images are achievable using the Faxitron X-ray system and that sharply focused photographs (free of background fogging) can be obtained with the camera employed, the Lixiscope images were obtained of specimens (a), (b) and (c) as given in Figures 10, 11 and 12. The resolution of these images is deemed to be acceptable and the Lixiscope could become a useful diagnostic instrument.

Further Studies

The preliminary measurements given above have encouraged us to plan further studies of the characteristics and utility of the Lixiscope. Our plan is to study the response of the Lixiscope as the incident spectral distribution is varied, that is, as the character
and magnitude of the incident radiation is changed. We shall further attempt to investigate the response of the Lixiscope when excited by monochromatic radiation (energy range 20–100 Kv) using an X-ray diffractometer available to us. From these studied we will determine the optimum X-ray spectrum recommended for several categories of specimen being analyzed (i.e. medical specimen, industrial specimen, etc.). In addition, we will investigate the preferred mode of operation of the X-ray generator (i.e. continuous vs. pulsed) which minimizes radiation dose to the specimen and the energy consumed in the operation of the X-ray generator.

REFERENCES

1. NASA Technical Memoranda 78064 (January, 1978) and 79634 (September, 1978)
2. Private Communication: R. L. Webber, Lo I Yin
3. See for example: Heath, *Table of Isotopes*