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PREFACE

This report describes part of a comprehensive and continuing pro-

gram, of research concerned with advancing the state-of-the-art in remote

sensing of the environment from aircraft and satellites. The research

Q	 is being carried out for NASA's Lyndon B. Johnson Space Center (JSC),

Houston, Texas, by the Environmental Research Institute of Michigan

(ERIM). The basic objective of this multidisciplinary program is to

develop remote sensing as a p*-actical tool to provide the planner and

decision-maker with extensive information quickly and economically.

r	 Timely information obtained by remote sensing can be important to

such people as the farmer, the city planner, the conservationist, and

others concerned with problems such as crop ,yield and disease, urban

land studies and development, water pollution, and forest management.

The scope of our program includes:

1. Extending the understanding of basic processes.

2. Discovering new applications, developing advanced remote

sensing systems, and improving automatic data processing

to extract information in a useful form.

3. Assisting in data collection, processing, analysis, and

ground truth verification.

The research described in this Technical Memorandum was performed

under NASA Contract NAS9-15476 during the period from December 15, 1978,

through June 15, 1979. I. Dale Browne/SF3 was the NASA Contract Techni-

cal Monitor. The program was directed by Richard R. Legault, Vice

President of ERIM and Head of the Infrared and Optics Division, Quentin A.

Holmes, Program Manager, and Robert Horvath, Head of the Analysis Department.
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PREFACE

This report describes part of a comprehensive and continuing pro-

gram of research concerned with advancing the state-of-the-art in remote

sensing of the environment from aircraft and satellites. The research

is being carried out for NASA's Lyndon B. Johnson Space Center (JSC),

Houston, Texas, by the Environmental Research. Institute of Michigan

(ERIM). The basic objective of this multidisciplinary program is to

develop remote sensing as a p~actical tool to provide the planner and

decision-maker with extensive information quickly and economically.

Timely information obtained by remote sensing can be important to

such people as the farmer, the city planner, the conservationist, and

others concerned with problems such as crop yield and disease, urban

land studies and development, water pollution, and forest management.

The scope of our program includes:

1. Extending the understanding of basic processes.

2. Discovering new applications, developing advanced remote

sensing systems, and improving automatic data processing

to extract information in a useful form.

3. Assisting in data collection, processing, anglysis, and

ground truth verification.

The research described in this Technical Memorandum was performed

under NASA Contract NAS9-15476 during the period from December 15, 1978,

through June 15, 1979. I. Dale Browne/SF3 was the NASA Contract Techni-

cal Monitor. The program was directed by Richard R. Legault, Vice

President of ERIM and Head of the Infrared and Optics Division, Quentin A.

Holmes, Program Manager, and Robert Horvath, Head of the Analysis Department.

The work has benefited from technical discussions with Richard J.

Kauth, who derived the original reduction of variance factor that is

used as one of the performance measures. I was inspired to explore

the tolerance block approach to clustering by the lively interest of

Richard C. Cicone, who, in addition, contributed creative ideas and

editorial assistance. W. Frank Pont contributed to my understanding
	 d

of stratification in a finite sampling environment. His memorandum on

that subject is included as Appendix B. I gratefully acknowledge the

help of these co-workers.

It is obvious, but easily overlooked, that this study owes its

existence to the supply of good quality Landsat digitized data from
r

Goddard Space Flight Center and Johnson Space Center. Also essential
i

was the pixel-by-pixel ground truth :supplied for many LACIE segments

which has made it possible to draw conclusions about the relative per-

formance of clustering methods.
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INTRODUCTION

This memorandum describes a study whose purpose is to find improved

methods of spectral stratification in the context of Procedure M, a system

for estimating the acreage of an agricultural crop, such as wheat, from

digitized Landsat data [1]. The development of this procedure was stimu-

lated and supported by the Large Area Crop Inventory Experiment (LACIE).

Procedure M as applied to wheat recognition

1. screens and transforms Landsat pixel data from a LACIE segment;

2. clusters the pixels into field-like groups called "quasi-fields"

that are homogeneous spectrally and spatially;

3. clusters the quasi-fields spectrally into strata;

4. labels sample quasi-fields from the strata "wheat" or "non-

wheat"; and

5. from these labels, forms a stratified sample estimate of the

percent wheat in the segment.

Step 3, the clustering of quasi-fields into strata, is designed to

separate wheat from non-wheat strata and thereby achieve a sampling ef-

ficiency. By this, we mean that a smaller stratified sample will give

the same accuracy as an unstratified sample. Another way of putting it

is that when the two samples are the same size, the stratified estimate

is more accurate.

The grouping of pixels into quasi-fields has been largely successful.

Figure 1 is a histogram of the percent wheat in quasi-field interiors.

(The interiors consist of pixels faced on all four sides by pixels from

the same quasi-field.) This histogram was compiled over all quasi-

fields that have interiors from 12 Kansas segments, three acquisitions

each. Most of the quasi-fields have less than 10% or more than 90% wheat.

Between 10% and 90% wheat, there is only a small scattering of quasi-

fields,

1
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Figure 1. HISTOGRAM OF PERCENT WHEAT IN QUASI-FIELD
INTERIORS FOR 12 KANSAS SEGMENTS
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Figure 2. HISTOGRAM OF PERCENT WHEAT IN SPECTRAL
STRATA FOR 12 KANSAS SEGMENT;

0

2



AIM

The picture would not be as pretty if we included edge pixels (i.e.,

those that are not interior) in the quasi-fields but we would not expect

it to be. Edge pixels are often crossed by field boundaries and are tha

ones that suffer most from misregistration.

The corresponding histogram for strata (Figure 2) shows some mixing

of wheat and non-wheat quasi-fields. To make this histogram comparable

to the other, the stratum count is weighted by the number of quasi-fields

°	 in each stratum. Also for comparability, the histogram is based on quasi-

field interior ground truth. So whatever fuzziness is in this histogram

is not caused by edge pixels.

A big group of non-wheat quasi-fields are put together into rela-

tively pure strata. The group is not as big as in the quasi-field histo

gram, for whe'ti we compare tha two figures, we see that some of the 0 to

10 percent quasi-fields in the quasi-field histogram have spilled over

in to the 10 to 20 and 20 to 30 percent bins in the stratum histogram.

Similarly, the stack of wheat quasi-fields is spread out into the 80 to

90 and the 70 to 80 bins,

The stratification was carried out by our unsupervised clustering

algorithm BCLUST [2j. The question we are considering is whether strati-

fication can be improved by a better clustering algorithm.

One problem with BCLUST is its tendency to produce a few large

clusters and many small ones. Figure 3 shows a typical distribution of

pixels in a 40-cluster stratification. We try to sample in proportion

to the size of the strata because this is the best rule when the stratum

wheat proportions are unknown. But in the BCLUST stratification, the big

strata are multiply sampled and many small strata are unsampled. Leaving

the small strata out would create a bias, so we combine the zero-allocation

strata into one wastebasket stratum and sample from it proporti=_! to

size. (But we require at least one quasi-field in the sample.) We can-

not expect that this wastebasket stratum will be pure, so the sampling

from it is inefficient.

3
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The large strata do not have sampling problems if they truly separate

wheat from non-wheat. But if they are so large that they mix up the

wheat and non-wheat quasi-fields then it would be better to divide them

further into smaller strata, more localized spectrally and more homo-

geneous with respect to crop type.

A good clustering algorithm that produced more uniformly-sized strata

iiiight improve on the stratification performance of BCLUST. In Section 2,

we define two candidate algorithms. In Section 3, we define a performance

measure for comparing the three algorithms and in Section 4, describe an

experiment to carry out the comparison.

5
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TWO CLUSTERING ALGORITHMS BASED ON TOLERANCE BLOCKS

An approach to defining a clustering algorithm producing equal-sized

clusters is the use of tolerance blocks, an idea suggested to us by

`	 R. P. Heydorn [3]. "Tolerance blocks" are equally-populated regions

of spectral space constructed as follows. We decide on a small number

of channels, t 1 , ..., tk, to generate the blocks. We consider the first

channel t1 and order all the quasi-fields according to this channel. We

separate this ordered group of quasi-fields into n 1 equal-sized subgroups--

equal in the sense of having approximately the same number of pixels

(Figure 4). Then we consider each subgroup in turn, order it according

to our next channel t 2 , and divide it into n2 smaller subgroups (Figure 5).

We can now consider each one of these smaller subgroups, order it according

to our third channel t 3 , and divide it into n3 still smaller subgroups.

We keep this up for all the generating channels specified. The final

subgroups are the tolerance blocks, n 1 , n2 , ..., n  in all.

Not all channels need be included in this process. If the same set

of channels is used in a different order, the tolerance blocks produced

are not necessarily the same. (The results, however, were very similar

in our tests.) When channel t 2 is used to divide the first set of sub-

groups, the points of division will, in general, be different from sub-

group to subgroup (column to column in Figure 5). Because we don't cut

any quasi-fields in half, but rather assign them to one subgroup or

another, the equality of the pixel size of the subgroups can only be

approximate.

Table 1 gives a handy reference list of combinations of n 1 , n2 , ...,

n  and the number of blocks produced for each. A description of computer

code for generating tolerance blocks is given in Appendix A.

X
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----) Channel t1

n1 = 5

(The cuts in Channel tl separate the quasi-fields
into five regions of nearly equal pixel size.) 	

4

Figure 4. FIRST CUT TO CREATE TOLERANCE BLOCKS

Channel t2

I
I
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n1=5
---).Channel t 

(The columns are equal-sized groups of quasi-fields sepa-
rated by cuts in Channel t l . The rectangles are equal-
sized groups of quasi-fields separated by cuts in Channel t2.)

Figure 5. FIRST AND SECOND CUTS TO CREATE TOLERANCE BLOCKS
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TABLE 1. TABLE OF COMBINATIONS OF CHANNEL DIVISIONS FOR TOLERANCE
BLOCKS AND THE NUMBER OF BLOCKS PRODUCED

w

4

2-Channel

100: 10 10

	

99:	 9 11

	

96:	 8 12

	90:	 9 10

	

88:	 8 11

	

84:	 7 12

	

81:	 9	 9

	

80:	 8 10

	

78:	 6 13

	

77:	 7 11

	72:	 8	 9

	

70:	 7 10

	

66:	 6 11

	

64:	 8	 8

	

63:	 7	 9

	

60:	 6 10

	

56:	 7	 8

	

55:	 5 11

	54:	 6	 9

	

50:	 5 10

	

49:	 7	 7

	

48:	 6	 8

	

45:	 6	 9

	

42:	 6	 7

	40:	 5	 8

	

36:	 6	 6

	

35:	 5	 7

	

32:	 4	 8

	30:	 5	 6

	

28:	 4	 7

	

25:	 5	 5

	

24:	 4	 6

	

21:	 3	 7

	

20:	 4	 5

	

18:	 3	 6

	

16:	 4	 4

	

15:	 3	 5

	

12:	 3	 4

	

10:	 2	 5

	

9:	 3	 3

3-Channel

	

100:	 4	 5	 5

	96: 	 4	 4	 6

	

96:	 3	 4	 8

	

90:	 3	 5	 6

	

84:	 3	 4	 7

	

80:	 4	 4	 5

	

80:	 2	 5	 8

	

75:	 3	 5	 5

	

72:	 2	 4

	

72:	 3	 4	 6

	72: 	 3	 3	 8

	

70:	 2	 5	 7

	

64:	 4	 4	 4

	

64:	 2	 4	 8

	

63:	 3	 3	 7

	

60:	 3	 4	 5

	

60:	 2	 5	 6

	

56:	 2	 4	 7

	

54:	 3	 3	 6

	

50:	 2	 5	 5

	

48:	 3	 4	 4

	

48:	 2	 4	 6

	

45:	 3	 3	 5

	

42:	 2	 3	 7

	

40:	 2	 4	 5

	

36:	 3	 3	 4

	

36:	 2	 3	 6

	

32:	 2	 4	 4

	

30:	 2	 3	 5

	

28:	 2	 2	 7

	

27:	 3	 3	 3

	

24:	 2	 3	 4

	

24:	 2	 2	 6

	

20:	 2	 2	 5

	

18:	 2	 3	 3

	

•16:	 2	 2	 4

	

12:	 2	 2	 3

	8: 	 2	 2	 2

4-Channel

	108: 	 3	 3	 3	 4

	

108:	 2	 3	 3	 6

	100: 	 2	 2	 5	 5

	

96:	 2	 3	 4	 4

	

96:	 2	 2	 4	 6

	

90:	 2	 3	 3	 5

	

84:	 2	 2	 3	 7

	

81:	 3	 3	 3	 3

	

80:	 2	 2	 4	 5

	

72:	 2	 3	 3	 4

	

72:	 2	 2	 3	 6

	

64:	 2	 2	 4	 4

	

60:	 2	 2	 3	 5

	

56:	 2	 2	 2	 7

	

54:	 2	 3	 3	 3

	

48:	 2	 2	 3	 4

	

48:	 2	 2	 2	 6

	

40:	 2	 2	 2	 5

	

36:	 2	 2	 3	 3

	

32:	 2	 2	 2	 4

	

24:	 2	 2	 2	 3

	

16:	 2	 2	 2	 2

5-Channel

	108: 	 2	 2	 3	 3	 3

	

96:	 2	 2	 2	 3	 4

	

96:	 2	 2	 2	 2	 6

	

80:	 2	 2	 2	 2	 5

	

72:	 2	 2	 2	 3	 3

	

64:	 2	 2	 2	 2	 4

	

48:	 2	 2	 2	 2	 3

	

32:	 2	 2	 2	 2	 2

6-Channel

	96: 	 2	 2	 2	 2	 2	 3

	

64:	 2	 2	 2	 2	 2	 2

^f
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The blocks are spectrally homogeneous with respect to the generating

channels. How homogeneous they are depends on the number of divisions in

each channel. But because the number of blocks is the product of the

number of divisions, the number of divisions in each channel must be

small if we are to end up with a reasonably small number of blocks. So

spectral homogeneity of tolerance blocks is limited in two ways: some

channels are left out of the block construction and those that are repre-

sented may have coarse divisions.

In order to achieve a greater spectral homogeneity, we defined a

second tolerance block algorithm that uses all the spectral channels in

the clustering process. The tolerance block means are used as seeds

distributed like a network throughout spectral space. Around the seeds,

clusters are formed by ordinary spectral clustering using a distance

function. Although a subset of channels may have been used to create

the blocks, all channels are used to compute the block means and carry

out the clustering. We hoped to combine in one algorithm the virtues

of uniformly-sized clusters and spectral homogeneity.

How well the tolerance block algorithms have succeeded in equalizing

the clusters can be seen in Figure 6, a comparison of distributions of

strata sizes produced by the three algorithms. BCLUST has a very uneven

distribution as we have seen. Many clusters have only a very small num-

ber of pixels. When the tolerance blocks themselves are used as clusters,

the distribution is very even. When the tolerance blocks are used as

seeds, the distribution is less even than for the blocks but considerably

more even than for BCLUST.

T
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3

MEASURE OF PERFORMANCE: THE FIXED SAMPLE

REDUCTION OF VARIANCE FACTOR

Although the tolerance block approach to spectral clustering equalizes

the size of the strata, the question remains whether it accomplishes its

main purpose: to produce strata that discriminate between wheat and non-

wheat. To answer this question we developed the measure of stratification

performance that is discussed in this section.

3.1 REDUCTION OF VARIANCE FACTOR (RV)

The measure of performance heretofore used [4] to evaluate cluster-

ing parameters and methods is the reduction of variance factor

Fa 	 nip ( 1 - p.)
^tV	

all11 str a i	 i	 i	
(1)

np(1-p)

where n  is the number of pixels in stratum i,

p i is the proportion of wheat in stratum i,

n is the number of pixels in the segment (n = Eni),

p is the proportion of wheat in the segment (p = Enipi/n).

The RV is the ratio of two variances: the variance of the stratified

sample estimate divided by the variance of the unstratif ied sample esti-

mate. It is a number between 0 and 1. A small number is good. It means

that the stratified estimate has a considerably smaller variance than the

unstratif ied estimate and so the stratification is doing some good. We

•

	

	 can verify in expression (1) that if the strata are either pure wheat or

pure other, then either p i or 1 - pi is 0 and the numerator is 0. If

the stratification is worthless, then the p i 's are all the same as p and

the factor becomes 1.
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3.2 RV WITH INTEGER ALLOCATIONS

The RV as a performance measure is unrealistic in two ways. For

one thing, it assumes that we are allocating the sample in proportion

to the size of the strata. Such an'allocation is optimal in the ab-

sence of information about the true percent wheat p i in each stratum.

But it is an approximation because the number of quasi-fields sampled

from a stratum must be an integer whereas with few exceptions, the

proportional allocation is a real number.

The approximation becomes absurd when the number of strata increases

beyond the size of the sample. Then strata must be sampled with a

probability rather than with certainty and the variance should rise.

But the simple expression (1) does not take account of this effect and

continues to decrease (get better) as the number of strata increases.

The approximation is not burdensome when we compare results for

clustering algorithms producing approximately equal numbers of strata.

But when the numbers are unequal, as when we are trying to find the

optimal number of clusters for a given algorithm, the comparison is

invalid.

So we can define a 'better performance measure by assuming a realis-

tic sample size, say 100 quasi-fields, and allocating them to strata

as best we can, that is, as nearly as possible proportional to size.

If some strata are left unallocated, we'll combine them into a waste-

basket stratum and sample it. Then the RV becomes

ni

2

 pi(1 - pi)

strata i	 n	
a 	 (2)

p(1 - p)
a

where n  is the number of pixels in stratum i,

Pi
 is the proportion of wheat in stratum i,

a  is the number of sample quasi-fields allocated to stratum i,

and	 n, p, a are the corresponding numbers for the segment.

V
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The allocations {a i l are made by a subroutine ALLOCB* as follows:

1. Determine the theoretical allocation an i/n for each stratum i.

2. Round this number to the nearest integer.

3. Collect all the strata with allocation 0 into a wastebasket

stratum and allocate sample quasi-fields to it proportional

to size, but as least 1. Thus no strata are left out of the

sampling.

4. If the integer allocations don't add to a, multiply the frac-

tional allocations by 1 + e and repeat. 	 e is chosen by an

algorithm that makes the procedure rapidly converge. There

are, however, some numerical combinations that prevent conver-

gence, and then we settle for an allocation that doesn't quite

add up to a.

The RV with integer allocation (2) is not likely to improve as the

number of strata exceeds the sample size because the number of terms

being summed in the numerator of (2) remains constant and the waste-

basket stratum, in all probability heterogeneous, increases in size.

3.3 THE FIXED-SAMPLE RV

A second unrealistic assumption in using expression (1) is sampling

with replacement. In fact, it is only reasonable to assume sampling

without replacement, implying a hypergeometric, rather than a binomial

model.** The effect on the RV is to multiply top and bottom by correc-

tion factors as follows:

*ALLOCB is very similar to the allocation subroutine in Procedure M.

**We are indebted to T. Pendleton, Johnson Space Center, NASA, for this
suggestion.

/IS
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, ni 2 p ill - pi)

n	 a	 - b - 1
Fixed-Sample RV = 	 (3)

p(l-p)(b
	 1)

where

a 

where n  is the number of pixels in stratum i,

P i 
is the proportion of wheat in stratum i,

a  is the number of sample quasi-fields allocated to stratum i,

b  is the number of quasi-fields in. stratum i,

and	 n, p, a, b are the corresponding numbers for the segment.

This is the realistic performance measure that we will use for com-

paring clustering methods. It is still an approximation because it as-

sumes that all sample quasi-fields are the same size*.

An implication of the finite collection factors is that stratifica-

tion incurs a cost. Let us illustrate by an example. Suppose that we

create 100 strata, so evenly divided that we allocate one sample quasi-

field to each stratum. The correction factor in the numerator is always

1 and drops out. In the denominator, b, the number of quasi-fields might

typically be 400, so the correction factor is 3/4. Now suppose that

the stratification completely fails to discriminate, so that p i is con-

stantly equal to p. Then everything cancels out but the 3/4 and we are

left with a reduction of variance factor of 1 1/3! This means the

variance of the stratified estimate is 1/3 more than that of the un-

stratified estimate. Stratification hasn't helped in this case!

This example is extreme because if the stratification were made at

random, then just by chance we would expect some p i 's to be 0 or 1, and

perhaps others to be closer to 0 or 1 than p. So tvo opposing forces

influence stratification: the finite correction {actors penalize strati-

fication and discrimination of wheat from non-wheat rewards it. If the

* In fact, they are not, and the unbiased scheme used in Procedure M for
sampling from unequal-sized quasi-fields fl, pp 31-37] does not have
a simply-expressed variance.

iH
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stratification is made at random, the two forces would 'be expected to

approximately cancel each other out, as is shown in Appendix B.

A theorem by W. Cochran [5] implies that the simple RV (1) never

increases and will usually decrease when any of the strata are broken

up into smaller strata. This theorem led us into the comfortable belief
r

that stratification ., even if irrelevant, could only help. Cochran's warn-

ing that the theorem does not precisely apply to finite sampling is

exemplified by our sampling problem, in which the gain or loss from

stratification depends on how pure the strata are with respect to the

crops of interest. They have to be pure enough to compensate for the

finite correction factors or stratification hurts.

J
15
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EXPERIMENTS ON 12 KANSAS SEGMENTS TO EVALUATE
THE TOLERANCE BLOCK CLUSTERING ALGORITHMS

To evaluate the tolerance block tec'finiques of clustering, we con-

ducted experiments on 1976 LACIE Phase .F data from 12 segments in Kansas.

The application of -%;he data was to measure the amount of winter wheat

grown in these segments, so stratum pwkrity was defined as the separation

of wheat from non-wheat. The Tasselad Cap transformed channels Bright-

ness and Greenness [2, pp 6-101 front three biowindows were used as

follows:

Bvightness	 Greenness

Biowindow 1	 Channel 1	 Channel 2

Biowindow 2	 (,hannel 3	 Channel 4

Biowindow 3	 Channel 5	 Channel 6

The 12 segments were choser.from the blind sites so that ground

truth could be used to measure the performance of the clusterings. Only

segments with clear data for the.three biowindows were used. They were:

1021, 1035, 1165, 1851, 1852, 1861, 1865, 1886, 1163, 1167, 1860 and

1887.

The fixed.-sample RV was used as a performance measure with a sample

size of 100 a$!.^umed. In the remainder of this report, we will multiply

the reduction of variance factors by 1000 and refer to the RV (expres-

sion 1) and the 100-sample RV (expression 3) as the case may be. The RV

will always be, and the 100-sample RV nearly always be, between 0 and

1000, the smaller, the better.

To review, the three algorithms being compared are:

1.

	

	 BCLUST, which accumulates clusters using a spectral distance

function.
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2. "Blocks alone", in which the tolerance blocks themselves are

clusters.

3. "Block seeds", in which the tolerance block means are used as

seeds for accumulating clusters.

Our motivation in this study was to try to improve the clustering

so that the strata would achieve purity comparable to that of the blob

interiors. Obviously, this goal could not be achieved if we calculated

the wheat proportion p i from all the pixels in stratum i whether they be

edge or interior. The degradation of the RV factor as we move from quasi-

field interiors to the whole quasi-fields would then necessarily be

reflected in the RV factor for strata.

The clustering process operates on the means of the quasi-field

interiors. What we want to know is whether we can so successfully clus-

ter these interior means that the purity of the clusters (as measured by

the RV or the 100-sample RV) approaches that of the quasi-field interiors

themselves.

For this purpose, the ground truth of the quasi-field interiors

extrapolated to the whole fields is appropriate. Such an extrapolation

has been used to provide a close approximation to the percent wheat in a

segment. But as we have pointed out, it would result in strata apparently

purer than a pixel count would verify. But we aren't interested in

purity measured by percent of pixels, but- rather pi,,:,-ity in the sense

that wheat fields are grouped together in strata and so are the non-

wheat fields. The kind of purity we are interested in is best measured

by the truth that best characterizes the quasi-fields.

4.1 TESTS TO DETERMINE WHICH CHANNELS TO USE FOR TOLERANCE BLOCKING

As discussed preva,ously, we can carry out the tolerance blocking

in many diff erent ways (see Table 1). We can use from 1 to 6 channels

for the blocking. The fewer channels we use, the more divisions we can

r'z
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allow in each channel. The order in which the channels are blocked could

make a difference, To find a good blocking configuration in a reasonable

length of time, we carried out the search in three stages.

4.1.1 TEST OF THE HELPFULNESS OF THE CHANNELS IN BIOWINDOW 1

In the f first stage, we conducted a test of the relevance of the data

from Bi,owindow 1. The motivation for thi; test was that the number of

possible combinations of channels is bewildering, and if we could deter-

mine that two of the channels were not really helping, we could cut down

this number considerably.

The experiment consisted of running BCLUST so that exactly 40 clus-

ters were produced, first using Channels 1...6 and then 3...6. The re-

sults are given in Table 2 in terms of the RV. Analogous results would

have been obtained with the fixed-sample RV because the finite correction

factors would have beca similar in each case.

In six of the segments, a substantial reduction in the RV is obtained

by including the first two channels. In the other six segments, the dif--

f erence is trivial. The average difference is 48 points. A t test for

differences shows that the significance level of the improvement in the

12 segments is 0.025. There seems to be no relation between the Julian

date of pass 1 and the improvement in RV.

We conclude that we cannot dispense with Biowindow 1 in our study

of tolerance block clustering.

4.1.2 SEARCH FOR THE BEST PAIR OF CHANNELS FOR TOLERANCE BLOCKING

In the second stage we tested pairs of channels and single channels.

The purpose was to find the best pair of channels and include it in a

.favored position in all the channel combinations tested in the second

stage. A second purpose was to compare results from two orderings of

the same combination of channels.



TABLE 2. RV FACTORS OBTAINED BY RUNNING BCLUST
WITH AND WITHOUT CHANNELS 1 AND 2

(The smaller the RV the better.)

RV Factor

Julian Date
Segment of Pass 1 With 1&2	 Without

1020 92 126 225

1035 312 538 521

11.65 326 814 810

1851 19 349 388

1852 295 361 436

1861 349 317 442

1865 349 552 541

1886 311 453 456

1163 70 512 653

1167 70 516 531

1860 294 350 323

1887 311 462 597

Average Difference	 -48
t Value for Difference 2.59
Significance of t	 0.025

AIM
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The results of the single-channel test are summarized in terms of

RV in Table 3 and of the pair test in Table 4. We would expect analogous

results with the fixed-sample RV because of the constant sample size.

The single-channel results identify Channel 4 (greenness in the

second biowindow) as the most helpful discriminator of all the channels

and indicate that the greenness channels are more helpful than the bright-

ness channels.

The pair results in Table 4 present us with a dilemma: which results

are more relevant, those obtained from blocks alone or from block seeds?

If we were going to limit the number of channels used in the blocking to

two, then the block-seeds results would be most applicable because as we

shall see in Section 4.3, the block-seeds RV is consistently lower than

the blocks-alone RV.

However, to find the pair of channels that will best combine with other

channels to form multi-channel blocks, the blocks-alone results seem most

helpful. The seeding operation carries us one computational step away

from the effect of separating the data space according to the channel pair.

One feels that when the seeding step is applied, differences that showed

up in the blocking stage are to some extent averaged out. This conclusion

is reinforced by the relative uniformity of the block seeds results in

Table 4 and by the invariance of the blocks-alone results over reversed

pairs. Therefore, in our search for the ,best combining pair, we give

greater weight to the blocks-alone results. This is why the single-

channel test, which was run subsequent to the pair test, has the blocks-

alone results only.

Our conclusion is that 3 and 4 (Biowindow 2) are the best nombining

pair of channels and that, at least in an eight-by-eight blocki_ag, it

makes no difference which channel is blocked first. We'll keeF our eye

on Channel 2 because it showed up well, in the single-channel test and

was in the only significant pair in the block-seeds pair test.

v^ U
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TABLE 3. COMPARISON OF 64-DIVISION SINGLE-CHANNEL TOLERANCE BLOCKS

Channel	 RV

Biowindow 1{ Bright
	 1	 37

	

( Green	 2	 -34

Biowindow 2 Bright
	 3	 68

	

Green	 4	 -75*

Biowindow 3 Bright
	 5	 12

	

Green	 6	 -8

(The tabulated number is the average over 12 segments of the dif-
ference between the single-channel RV for a segment and the average
RV over all single channels for that segment. A negative number is
a good score. These results are given for blocks as cluste8 only.)

*Dif f erence signif icant by t test at 0.05 level

TABLE 4. COMPARISON OF 2-CHANNEL TOLERANCE BLOCKINGS CONSTRUCTED
FROM EIGHT DIVISIONS IN EACH CHANNEL

(RV)
Pair	 Blocks as Clusters

3	 4 -56*
4	 3 -54*
5	 6 14
6	 5 10
6	 4 4
4	 6 8
5	 4 -15
3	 6 6
1	 4 2
2	 4 2
1	 2 25
2	 1 36
1	 6 24
2	 6 -4

(RV)
Clusters Seeded by Block Means

2
1

-7
-10

3
7

-8
-2
14
-15*
10
-2
0
6

(The tabulated number is the average over 12 segments of the dif-
ference between the pair. RV in a segment and the average RV over
all pairs in that segment. A negative number is a good score.)

*Difference significant by t test at 0.05 level

a^
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That Channel 3 really does help Channel. 4 is shown by the fact that

the average RV for Channel [, alone is 594 and for the pair (3,4) is 489,

more than 100 points lower. An interpretation of this difference is that

10% fewer quasi-fields are needed in'the sample when Channels 3 and 4

generate the clusters than when Channel 4 alone dces.

4.1.3 SEARCH FOR THE BEST CHANNEL SET INCLUDING THE BEST PAIR

The third stage of the channel search was to test various combina-

tions of channels, each combination incorporating the best pair (3,4).

Although the two-channel test did not help us decide the order of the

channels, other results showed that the last channel in the blocking

process is better ordered by the blocking than the earlier channels.

So in the tested combinations we put Channel 4 last, Channel 3 next to

last and, aside from these two, favored Channel 2.

In all combinations we kept the number of blocks fixed at 96. The

patterns of channel divisions were as follows:

Number of Channels

2

3

4

5

6

Pattern of Channel Divisions

8 12

4 4 6

2 3 4 4

2 2 2 3 4

2	 2 2 2 2 3

The combinations tested were all possible combinations of the

other channels with 3 and 4. The only combinations permuted were

(6, 2, 3, 4) and (5, 6, 2, 3, 4). (6, 2, 3, 4) seemed like a good

bet because it contains the green channels along with 3 and 4, and

(5, 6, 2, 3, 4) seemed also a good five-channel combination to try

because it left out Channel 1, which had been indicated to be least

effective.
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The results of the test are summarized in Table 5. The most re-

markable feature of the results is their uniformity. The largest dif-

ference from average is 20 points, a modest difference compared with

the 75 points that distinguished Channel 4, the 56 points that dis-

tinguished the pair (3,4), the 100-point improvement of (3,4) over 4

alone, and the three-figure differences occasioned by leaving out Chan-

nels 1 and 2.

When the (3,4) blocking was used as seeds, the RV came out a small,

but statistically significant 19 points worse than average. With 8 and

12 divisions in the two channels, it is possible that the seeds were not

scattered widely enough in six-dimensional space. Instead of taking 12

divisions in a channel and chopping it up so fine, we might as well take

one more channel and divide the three channels into four, four and six

parts.

Of the three-channel blockings, (2, 3, 4) seems to be slightly

preferable. This (2, 3, 4), the four-channel, five-channel and six-

channel combinations are all indistinguishable in performance. We will

use a four-channel combination (6, 2, 3, 4) which has the three green

channels and the good pair (3,4).

4.2 OPTIMAL NUMBER OF CLUSTERS FOR THE .ALGORITHMS

In order to compare the two tolerance block clustering methods

with BCLUST clustering, we need to know at what number of clusters,

on the average, each algorithm performs best. Then we will have a

valid comparison between the algorithms at their best parameter settings.

For each algorithm, we computed the most realistic performance

measure, the 100-sample RV, for a variety of numbers of clusters be-

tween 16 and 96. A com puter program interpolated this number for all

integers included in the range and averaged the interpolated value for

the 12 segments.

X
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TABLE 5. COMPARISON OF 96-BLOCK CLUSTERINGS CONSTRUCTED
FROM CHANNEL COMBINATIONS CONTAINING 3 AND 4

	

(RV)	 (RV)

	

Combination	 Blocks as Clusters	 Clusters Seeded	 by Block Means

	

3 4	 5	 19*

	

5 3 4	 11	 3

	

6 3 4	 3	 11

	2 3 4	 -4	 -5

	

1 3 4	 20	 2

	

5634	 -9	 3

	

1234	 4	 -6

	

6234	 -3	 3

	

2634	 -5	 5

	5 2 3 4	 -10	 -6

	

1 5 3 4	 5	 -9

	

1 6 3 4	 3	 0

	

5 6 2 3 4	 -3	 -11

	

25634	 -2	 -5

	

1 5 6 3 4	 -8	 -7

	

16234	 -5	 0

	

1 5 6 2 3 4	 2	 2

(The tabulated number is the average over 12 segments of the dif-
ference  between the combination RV in a segment and the average
RV over all combinations in that segment. A negative number is
a good score.)

*Difference significant by t test at 0.05 level

a^



Am"

The number of clusters produced by BCLUST is varied by adjusting

a parameter T, the greatest distance a quasi-field can be from a cluster

mean and still belong to the cluster. Figure 7 shows the graph of

BCLUST performance as a function of the number of clusters. It is a

smooth curve, because of interpolation and averaging, with a minimum

(best score) at about 40 clusters.

The number of clusters produced by the tolerance block algorithms

is varied by changing the number of division in the channels that

generate the blocks. Table 6 shows the divisions producing 11 cluster

numbers between 16 and 96.

The performance of the tolerance block clustering algorithms as

a function of the number of clusters is shown numerically in Table 6

and graphically in Figures 8 and 9. The block-seeds algorithm has a

minimum of 40 clusters. The blocks-alone algorithm has a minimum at

48. While the minimum is a razor-thin choice of 48 over 96, the next

best numbers are all in the 32 to 54 range, lending support for the

validity of a minimum at 48.

In this section we have seen three examples of an optimal number

of strata considerably smaller than the sample size--examples of how

the benefits from increased stratification were not sufficient to

cover the cost of stratification.

4.3 COMPARISON OF THE TOLERANCE BLOCK ALGORITHMS WITH BCLUST

We can now compare the performance of the three clustering algo-

rithms. The performance measure is the 100-sample RV and is measured

at the optimal number of clusters for each algorithm: 40 for BCLUST

and block-seeds, and 48 for blocks-alone.

The result for each of the 12 Kansas segments and the average

results for the 12 is given in Table 7. The blocks-alone algorithm

averages 70 points worse than BCLUST and 74 points worse than block-

seeds--differences that are significant by a t test. Also, the
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TABLE 6. CHANNEL DIVISIONS AND PERFORMANCE OF THE TOLERANCE
BLOCK CLUSTERING ALGORITHMS AS A FUNCTION OF THE
NUMBER OF CLUSTERS

Channels Used For Blocking

6 2 3 4

100-Sample RV
Number of Number of Divisions in Each
Clusters Channel Block-Seeds Blocks-Alone

16 2 2	 2	 2 553 633

24 2 2	 2	 3 528 621

32 2 2	 2	 4 539 601

36 2 2	 3	 3 537 602

40 2 2	 2	 5 514 641

48 2 2	 3	 4 541 588

54 2 3	 3	 3 541 599

60 2 2	 3	 5 534 653

72 2 3	 3	 4 538 635

81 3 3	 3	 3 532 655

96 2 3	 4	 4 538 589

(The performance measure is the 100-sample RV averaged over 12 Kansas
segments.)
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TABLE 7.	 COMPARISON OF THREE CLUSTERING ALGORITHMS AT
THEIR OPTIMAL NUMBER OF CLUSTERS PERFORMANCE
MEASURE IS 100-SAMPLE RV

Quasi-Field

Se ment
Interior

RV	
40

BCLUST Block-Seeds	 Blocks-AloneClusters 40 Clusters	 48 Clusters
' 	 1020 39 .181

1035 187
217 239

1165 204

624 560 578

1851 155

832 922 872

1852 136

383 404 495

1861
423 454 614

90 355 389 3961865 86 610 580
1886 168 502

615

1163 283
452 532

622 621 7251167 178 652 614
1860 145 385

813

1887 168
361 420

643 588 758

Average 153 518 514 588
Average Difference

4 -74
t

.31 -3.47

Significance
Not Significant	 Significant

at	 .005

^o
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preference is consistent: 11 out of 12 segments for each comparison.

Although the clusters produced by blocks-alone have the sampling advan-

tage of uniform size, they are probably less homogeneous spectrally

than the clusters from the other algorithms. Two of the channels were

not considered at all by blocks-alone, so the clusters would not be very

homogeneous in those channels. The channels that were used had 2, 2,

3 and 4 divisions in them, so homogeneity was imperfect. The clusters

of the other two algorithms, by contrast, were formed by a spectral dis-

tance function and thus emphasized spectral homogeneity.

Between the best tolerance block algorithm (block-seeds) and BCLUST,

there is no significant difference. In addition, the preference for one

algorithm or the other is equally divided among the 12 segments. Thus,

the evidence of this experiment is that tolerance block clustering does

not improve spectral stratification.

The "quasi-field interior RV" column, measuring the purity of the 	 7

interiors of the qua.^i-fields that make up the strata, is included as

a standard of comparison. These low scores show that most of the quasi-

field interiors have zero or 100 percent wheat or very close to it, A

perfect clustering technique would put the zero percent quasi-fields in

some clusters, the 100 percenters in others, and achieve similar RV

scores. Yet Table 7 shows a 361-point average difference Between the

scores. The interior RV was calculated by an expression analogous to

(1), so it is not strictly comparable, but even if we raise all the

scores in the interior RV column by 1/3 to approximate the .effect of

the finite sampling correction factors, a tremendous gap remains.

O
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5

CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

Two tolerance block techniques and a clustering technique for

spectral stratification were evaluated with respect to the estimation

of winter wheat acreage in 12 LACIE segments in Kansas. The techniques

are (1) to accept tolerance blocks as clusters, (2) to use all-channel

means of tolerance blocks as fixed seeds for spectral clustering, and

(3) to conduct unsupervised spectral clustering (BCLUST).

Of the two tolerance block techniques, the seeded clustering tested

significantly better as measured by the 100-sample reduction of variance

factor (a performance measure on the scale of 0 to 1000 that is similar

to a previously-defined reduction of variance factor but which, more

realistically, takes account of sampling efficiency). Blocks as clus-

ters produced more evenly-sized clusters, which enables efficient

sampling, but this advantage was more than balanced by the greater

spectral homogeneity of the seeded clusters.

When the tolerance-block-seeded clustering was compared with the

unsupervised clustering method BCLUST, there was no significant dif-

ference. So in our experiment, the better of the two tolerance block

stratification techniques did not show any improvement over previous

methods.

A gap of better than 300 points remains between the 100-sample RV

scores achieved by ou two best stratification methods (about 515) and

what is theoretically attainable, the score c" 153 for quasi-field

interiors.

{	 The optimal number of strata for a sample of size 100 was not

found to be 100 or anything close to it, but rather, 40 for BCLUST

and the block-seeded algorithm and 48 for the blocks-themselves algorithm.

13.A
}
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The reason the optimum numbers weren't higher is because correction fac-

tors applied to finite sampling variances imply a cost to stratification

that must be made up by purity of strata. In our experiment, 96 fine

strata were not enough purer than 40'coarser strata to defray the cost

of the additional strata.

In pursuit of these main conclusions, some subsidiary conclusions

were reached.

1. Tolerance block clusters were more uniformly sized than BCLUST

clusters, enabling them to be sampled more efficiently. How-

ever, this advantage did not result in better stratification

performance.

2. Channels in the first biowindow do help the clustering as

applied to winter wheat estimation. The reduction of variance

score for BCLUST averaged 48 points better when these channels

were included.

3. The best channel subsets for generating tolerance blocks con-

tain brightness and greenness from the second biowindow.

5.2 RECOMMENDATIONS

The tolerance block study .could be carried a little further by

investigating the use of tolerance block means as seeds and allowing

the updating of means and/or cluster creation and/or iteration of

clustering. But the payoff from this effort is likely to be small

when we compare the distant goal of relatively pure clusters with

the modest scores of the clustering methods tested.

A more promising approach would be to redefine features and test

the clustering of these new features using the criterion of the 100-

sample reduction of variance factor. The Tasseled Cap features we

used in the experiment have the virtue of univeral applicability.

/6
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Their use implies only that different materials and crops are localized

in separate neighborhoods in spectral space. The relative poorness of

the stratification performance indicates the need of features better

tailored to the decision problem being considered. Such features could

be so specialized that they depend on the crops to be recognized, the

`

	

	 confusion crops, the climate, and the prevalent varieties and agricul-

tural practices. There is still room to hope that less special, green-

profile-type features [1, pp 20-301 might have a general application

to agricultural decision problems.

If better features are found, there could be a greater reward for

dividing the feature space into finer strata. Then the sampling advan-

tage gained by the size uniformity of tolerance block clustering could

have a greater effect on the performance comparison with BCLUST. So

it is too soon to dismiss tolerance block clustering methods from

consideration.

The search for f eatures is made in the hope of closing the gap

F	 between the RV of .5 found for the strata and the RV of .15 measuring

the purity of the quasi-fields. The possible existence of confusion

crops inherently inseparable from wheat could define a higher bound

than .15 for achievable separability. It may be possible to measure

this bound directly, possibly on the basis of a count of identical

pairs of data vectors arising from wheat and non-wheat fields, and to

chart its value as a function of the acquisitions available. Such a

study would give useful feedback in the search for features and provide

a warning when multispectral estimation alone is insufficient.

We should not overlook the possibility that other clustering

methods might perform significantly better than the ones we tested.

CLASSY is now running after much theoretical and practical development.

How would it do on the same 12 Kansas blind sites? This would give us

another data point for assessix , the potential of clustering with our

present features and also provide an opportunity to improve the cluster-

ing component of Procedure M.
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As ways are found to improve spectral clustering, the remaining

decision of identifying the clusters becomes less subjective and error

prone. In the extreme, we need make only one identification per cluster

and this could be done from a smoothed mean value with appropriate atten-

tion to historical and economic data. So the finding of better features

and clustering methods leads directly to the goal of objective, accurate

crop acreage estimation.

t
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APPENDIX A

COMPUTER CODE FOR CONSTRUCTING TOLERANCE BLOCKS

For ;onvenience, we will use the word "blob" in place of the word

"quasi-field" in this appendix.

The general outline of the algorithm for constructing tolerance

blocks is given in Figure A.l. Detailed XTRAN code for the construction

of tolerance blocks and computation of mean data vectors for tolerance

blocks is given in Figure A.2. XTRAN is a language extending FORTRAN

in several ways that will be obvious to the reader.

The general outline speaks for itself and we will assume the reader

has gone through it. The detailed code contains conventions particular

to the clustering program containing it. The following are some notes

explaining the code.

We start by assuming that all the blobs being processed are indexed

L = 1,...,QNSS. The channel data values in the blobs are contained in a

data array FDATA(K,L) (floating point) or equivalently DATA(K,L) (integer),

where K is the channel number and L is the blob index, a number between

1 and QNSS.

252: Bypass tolerance block construction if NTOL, the specified

number of tolerance blocks, is 0.

255 and 257: SEGNC is the segment index number of the blob.

A group of segments are given indices, say 1-40, for ease of array

storage. If SEGNO = 0, the data point is not a true blob and should

be disregarded. If IT(SEGNO) = 0, the blob is from a segment that the

user has decided not to process, so the blob is disregarded.

p	 256: PIX(L) is the number of pixels in blob L.

253-261: The NBLOB acceptable blobs are identified by a PO vector

referring to the index of each acceptable blob.

F
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User specifies channels TOL(1) ... TOL(NTOL) for constructing blocks
and the number of classes NCLASS(1) ... NCLASS(NTOL) each channel
divides the data into.

Read blobs 1,...,QNSS. The blobs are thus indexed. Some may be
unacceptable.

Define the first data group as the NBLOB acceptable blobs.

The group is identified by a position vector PO(1) ... PO(NBLOB)
giving the index of each acceptable blob.

The algorithm consists of permuting PO(1) ... PO(NBLOB) until it
orders the blobs into tolerance blocks. Where the blocks begin
and end will be shown by a vector CL(1) ... CL(NC) giving the
number of blobs in each data group. At the end, the data
groups are the tolerance blocks. At the start, there is just
one data group of all NBLOB blobs. During the algorithm, the
data groups are subdivided according to the data values of the
channels used for construction.

So to start with, CL(1) = NBLOB and NC = 1.

Do the indicated scope for each tolerance channel TOL(M), M = 1,...,NTOL.

Di the indicated scope for each data group I, I = 1,...,NC.

Form a vector V of length CL(I) of channel TOL(M) values in
the data group.

Sort V and, at the same time, permute the part of PO corre-
sponding to data group I.

Cut up data group I into NCLASS(M) subgroups of nearly equal

^II	 pixel size, building onto a subgroup vector CC of the
W	 numbers of pixels in the subgroups.

Make the new NC equal to the total number of subgroups.

Move the CC vector to CL.

End with NC: the number of tolerance blocks
CL(l)...CL(NC): the number of blobs in each block
PO(1) ... PO(NBLOB): blob indices ordering the blobs into blocks

Figure A.l. GENERAL OUTLINE OF THE ALGORITHM FOR CONSTRUCTING
TOLERANCE BLOCKS

f^
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249 * COMPUTE	 CL(t)...CL(NC),	 THE	 SI7,ES	 OF	 THE	 TOLFRANCE.	 BLOCKS
250 * AND	 A	 POSITION VECTOP	 PO	 ORDERING	 THE BLOBS BY	 TOLERANCE	 BLOCKS
251 * AT	 PRESENT#	 THIS OPTION ASSUMES	 THAT	 ALL	 THE	 PIXELS	 ARE ON ONE	 LINE
252 IF NTOL	 = 0	 GO TO ENDTOL
253 NBL()B	 =	 0
254 DO	 L=l#	 ONSS
255 SFGNO	 =	 DATA(C19,L)
256 PIX(L)	 =	 BASE*04TA(C14#L)	 +	 DATA(C15#L)
257 IF SEGNO —	 0	 8	 IT(SEGNO)	 •=	 0
258 NHLO8	 = NBLOB +	 1
259 PO(NBLOR)	 = L
260 END	 IF
261 END DO
262 NC	 =	 t
263 CL(1)	 =	 NBLnB
264
265 M =	 07	 DO WHILE	 M < NTOL7	 M = M	 +	 1
266 J =	 0
267 NCC = 0
268 TM	 =	 TOL(M)
269 `NCM	 =	 NCLASS(M).^	 -i	 ` ^tS ± 	r	 y ^y	 r1 i1:'

l	
^}^

270 * ^ ll^r^, ^^ .^i>^^Vli7^_l^^.rlh
(

POOR
271 I = 01	 DO WHILE I < NC;	 I = I + 1	 gRIGIN,AL PAGE
272 CLI	 =	 CL(T)
273 NPIX	 =	 0
274 DO	 Lzl,	 CLT
275 V(L)	 =	 FOATA(TM,	 PO(J+L))
276 NPIX	 =	 NPTX	 +	 PIX(PO(J+L))
277 END DO
278 * SORT	 V	 A kin	 AT	 THE	 SAME	 TIME	 PERMUTE	 PO(J+1) ... PO (J+CL(I))
279 CALL	 VSORTP(V,	 CLI#	 PO(J+1)	 )
280
281 * SPLIT	 C ( I)	 UP	 INTO NCLASS ( M)	 SUBCLASSES	 OF	 "EQUAL"	 PIXEL	 SIZE
282 LPIX	 =	 0
263 SUMPIX = 0
284 OLDL = 0
285 NLEFT = NCM
286 QUO = NPIX/NCM
287 L	 =	 0;	 DO WHILE	 L	 < CLI7	 L	 = L	 +	 1
298 OLDPIX = LPIX
289 LPIX	 =	 LPIX	 +	 PIX(PO(J+L))
2 9 0 IF LPTX >= QUO
291 IF LPIX	 - QUO	 >	 QUO - OLDPIX
292 L	 =	 L	 -	 1
293 LPIX	 = OLDPIX
294 END	 IF

a
	

Figure A.2. LISTING OF XTRAN CODE FOR TOLERANCE BLOCK CONSTRUCTION
(First of Three Pages)
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295 IF	 L > nLnL
296 NCC	 =	 NCC	 +	 1
297 CC(NCC)	 =	 L	 «	 ULDL
298 END	 IF
299 OLDL = L
300 NLEFT	 =	 NLEFT	 -	 1

301 SI.)MPIX	 =	 SUMPIX	 +	 LPIX
302 IF	 NLFFT	 >	 0	 nUr)	 _	 ( NPIX	 SUMPIX)/NLEFT
303 LPIX	 =	 0
304 END	 IF
305 END WHILE
306
307 J	 = J	 +	 CLI
308 END WHILE
309
310 CALL	 MOVER	 (CC,	 CL,	 NCC)
311 NC = NCC
312 END WHILE
313 NCLLL	 = NC
314
315 * IF YOU WANT	 THE	 TOLERANCE BLOCKS	 THEMSELVES AS B CLUSTERS:
316 IF	 BCTOL
317 L =	 0
318 DO	 I =11	 NC
319 CLI	 =	 CL(I)
320 NO(I)	 =	 CL(I)
321 DO	 J=1,	 CLI
322 L	 =	 L	 +	 1
323 PL	 =	 PU(L)
324 DATA(BCHAN,PL)	 =	 1
325 WH	 =	 DATA(C21,PL)
326 S	 =	 IT(OATA(C19,PL))
327 IF WH —	 t0t
328 NP(I,S)	 =	 NP(I,S)	 +	 PIX(PL)
329 NW(I,S)	 =	 NW(I,S)	 +	 PIX(PL)+WH
330 END	 IF
331 END DO
332 END DO
333 GO TO 7
334 END	 IF
335
336 * TOLERANCE	 BLOCK DEBUGGING PRINTOUT
337 IF	 DEHUGT
338 WRITE	 (8,	 "'ODATA	 LIST'/")
339 DO	 L = 1,	 NNSS
340 WRITE	 (8,106)	 L,	 DATA(C14,L),	 DATA(C15,L),	 DATA(C21,L),
341 1	 (FDATA(J,I.),	 J=t,NDAT)
342 106	 FORMAT	 (I5,	 17,	 14,	 26,	 F7.0,	 18F5,0)
3 4 3 END DO
344 WRITE	 (8,	 `--OSURTED	 DATA	 LIST'/")
345 END	 IF
34h

Figure A.2. (continued)
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347	 * COMPUTE TOLERAriCE BLOCK MEANS AS SEEDS FOR 8 CLUS)ERING

348	 L = 0
3 149	 DO	 1=1r NC
350	 CLI = CL(T)
351	 CALL ZERO (4, X(1), X(NDAT) )
352	 NPIX = 0
353	 WHPER = 0.
354	 DO J=1, CLI
355	 L = L + 1
356	 PL = PO(L)
357	 NPIX = NPIX + PIX (PL)
358	 DO K=1,NDATi	 X(K) = X(K) + FDATA(K,PL)*PIX(PL)j 	 END

359	 IF DERUGT
360	 WHPER = WHPER + PIX(PL)*DATA(C21,PL)
361	 WRITE (9,107)	 PL, PIX(PL), DATA(C21rPL)r (FDATA(K,PL),
362	 1	 K=I,NDAT)
363	 107	 FORMAT (I5, 2I7# 3X, 20F5,0)
364	 END IF
365	 ENO Dn
366	 FPIX = NPIX
367	 CON(I) = n.
368	 DO K=1, NDAT
369	 X(K) = X(K)/FPIX
370	 YK = X(K)*WT(K)
371	 MEAN(K,I) _ -2,*YK
372	 CON(I1 2 CON(I) + YK*YK
373	 END DO
374	 IF DEBUGT
375	 WHPER = WHPER/FPIX
376	 WRITE (8,108)	 I, NPIX, WHPERr(X(K), K=1,NDAT)
377	 10,8	 FORMAT ( 0 0 1 , I4, I7, F7.0, 3X, 20F5.0)
378	 END IF
379	 WRITE (9,109)
380	 UPNn(I) = UPTnL
381	 END DO
382	 ENDTOL:

REPRODUCIBILITY OF THE
RPIGINAT, PAGE1 IS POOP,

Figure A.2. (continued)
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265: Loop through the channels specified for constructing blocks,

TOL(M), M = 1,...,NTOL.

266,279,307: J is the index that specifies the part of the PO

vector that corresponds to a data group. It starts at 0 and is incre-

mented by CL(I), the number of blobs in data group I.

271: Loop through the data groups I = 1,...,NC.

275: V is built up of the data values of channel TOL(M) from

blobs in data group I.

279: VSORTP is a handy subroutine from the International Mathematical

and Statistical Libraries that efficiently sorts a vector such as V and,

at the same time, permutes another vector, here PO(J+L) ... PO(J+CL(I)), the

part of the PO vector corresponding to data group I.

281-305: Divide data group I into subgroups of nearly equal pixel

size. The output is building onto a long vector, CC, of subgroup sizes,

starting with the first data group, and updating NCC, the number of sub-

groups so .far. NCC was set equal. to 0 at 267 and is incremented every

time a subgroup is defined. NPIX was computed as the number of pixels

in data group I (276) and LPIX is the number of pixels currently in the

subgroup (289). The idea is to establish a pixel quota QUO, initially

NPIX divided by the number NCLASS(M) of subgroups to be established, and

keep including blobs in the subgroup until the quota is exceeded (290).

At this point, we have to decide whether the current blob L, (or more

accurately, the blob identified by PO(J+L)) belongs in the current sub-

group or the next one. If the number of pixels by which the blob exceeds

she quota (LPIX-QUO) is greater than the remaining pixels in the blob

(QUO-OLDPIX), then the blob belongs in the next subgroup. So the blob

index L is set back 1 (292) and the number of pixels in the subgroup

reverts to the number before the too-big blob was encountered (293).

HI
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We don't necessarily update CC and NCC at this point. What if the

too-big blob were the first one in the data group? We wouldn't want to

count an empty subgroup. So we check the index L of the last blob allowed

in the subgroup against OLDL, the index of the last blob in the previously-

defined subgroup to avoid this anomaly, if L > OLDL (295-298) then the

subgroup is non-empty. We define it by incrementing the count NCC of

subgroups and appending the number, L-OLDL, of blobs in the subgroup

to the CC vector.

The new quota QUO is formed by dividing the number of pixels left

in the group NPIX-SUMPIX by the number NLEFT of subgroups to be defined.

It may be that some groups with one or two large blobs in them cannot be

fully divided into NCLASS(M) subgroups.

310: MOVER simply moves CC(1),...,CC(NCC) into the space formerly

occupied by the CL vector. It is the new CL.

313: NCELL, used later in the program as the number of clusters,

is set equal to the number of tolerance blocks defined.

315-334: The switch BCTOL is set "true" when the tolerance blocks

are to be the clusters. Then this section of code is enabled rather

than the usual clustering mechanism which is located beyond the tolerance

block calculations. This section has to do, therefore, all the chores

the clustering mechanism has to perform: the cluster number is included

in the data array as the user-specified channel BCHAN (324) and certain

running totals are computed to make possible the calculation of the

reduction of variance factors (325-330).

340: C14 and C15 are the data channels specifying the number of

pixels in Blob L. C21 is the ground truth channel, whose value is an

integer between 0 and 101 giving the percent wheat in Blob L. A value

of 101 means the ground truth is unknown.

gI'^^^''^^^^GIpA,G^ IS ppp
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347-381: The means of the data values in all channels are computed

for the tolerance blocks, regardless of how many channels were used in

the construction of the blocks. This section also contains debugging

printout in the sections enabled by the user-set switch DEBUGT.

351: NDAT is the number of data channels containing multispectral

data. X(1)...,X(NDAT), the block mean, is initialized to 0.

348-355: Index I here runs through all the blocks and J runs

through all the blobs in each block while L is counting through the

blobs as a linear index,

358: The block mean X is a pixel mean computed by weighting the

blob channel values by the number of pixels in the blob.

360: 14HPER is the percent wheat in the tolerance block. It is

computed only for debugging printout. In this statement, WHPER is

updated by 100 times the number of wheat pixels in the blob (i.e., the 	 a

number of pixels in the blob times the percent wheat in the blob). In

375, the cumulated WHPER is then divided by the total number of pixels

in the block (357 and 366) to get the wheat percent in the block.

361: In this debugging printout is the original index of the

blob, the number of pixels in the blob, the wheat percent in the blob

and the mean data vector for the blob (computed as always from the

interior pixels).

371,372: The block mean is stored as a cluster seed for later

use in the clustering program. The cluster constant CON(I) and the

multiplication of the mean by WT(K) and -2 are peculiarities of the

clustering program. [Instead of computing (X - X i) 2 for the data

point X and the cluster mean X., the program multiplies it out and

computes X2 - 2X  + Xi2 for each cluster. Because X 2 is the same for

each cluster, it is omitted and the i minimizing -2X i + Xi2 is chosen.

CON(I) is Xi2 . WT(I) is to allow for weighted clustering.]
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376: In this debugging printout is the block number, the number

of pixels in the block, the wheat percent in the block and the mean data

vector for the block.
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APPENDIX B

EFFECTS OF RANDOM STRATIFICATION

(W. Frank Pont)

B.1 INTRODUCTION

It is shown in Section 3 that the stratified random sampling vari-

ance could be larger than the simple random sampling variance of the

°	 same size when sampling without replacement. It should be pointed out

that there are two conflicting factors which affect the sample variance.

These are:

1. Grouping the population elements into strata whose proportions

of grain are possibly closer to 0 and 1 than the proportion of

grain in the population. This factor tends to lower the

variance of the stratified proportion estimate compared to

the variance of the unstratif ied proportion estimate.

2. The number of samples which are obtainable in stratified sampling

without replacement is smaller than the number of samples obtain-

able in simple random sample of the same size. This factor tends

to increase stratified sampling variance compared to the vari-

ance of the unstratified proportion estimate. Sometimes, fac-

tor 2 outweights factor 1.

R. Kauth pointed out that while stratification based on spectral

variables could be defined in such a way as to make the proportion of

grain in each stratum nearly equal (hence defeat the purpose of stratify-

ing), it is very unlikely that stratification which assigns elements

which look alike into the same stratum would have this effect. The worst

that should happen in spectral stratification is that the spectral char-

acteristics of the elements might have nothing to do with the true label,

in which case the stratification would be random with respect to the true

labels. Thus, his conjecture was: The probability structure and sampling

variance of random stratification followed by stratified sampling is the

x
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same as simple random sampling of the same sample size. Using a res-

tricted definition of random stratification, we show that the probabili-

ties of obtaining a given sample are the same under both sampling models.

However, the variance of simple sampling proportion estimate is smaller

unless the stratified sampling is proportional. to size.

0

B.2 NOTATION AND CONVENTIONS

We assume that a sample of size n is to be selected from a population

of size N. We assume that the elements of the population, b=1,2,3,...,N,

are assigned at random in such a way that there are Q strata, denoted as

s=1,2,3,...,Q of size N1 , N 2 , N3 ,..,NQ . In the stratified sampling, n 

elements are to be selected from stratum s. We note the two relations:

N = N 1 + N 2 + ... + N Q

and

n= nl +n 2 + ... + n Q

A stratification is a function which associates every element b with some

stratum s=1,2,...,Q with the above restrictions. Formally, the function

is{l, 2, 3,	 N} j-} {1, 2, 3, ..., Q}

is a stratification if, for s=1,2,3,...,Q, the cardinal.ity of the set

{b:i(b) = s} = Ns

N
There are ^N 1N 2 ...NQ ) possible stratifications. We use i to denote a

fixed stratification and use I to denote a stratification chosen at ran-

dom from all possible stratifications. We also view a sample as a function

which tells us whether an element b is in the sample or not. The sampling

function is

j:{1, 2, 3, ..., N} h+ {0,1}

j (b) =1 if b is in the sample,

=0 otherwise.

r
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There are 
111 

possible simple random samples and

Q (N)
7r	 s

s=1 n 

stratified random samples with respect to a fixed stratification i. We

use j to denote a fixed sample (one which has already been chosen) and

J to denote a sample which is to be randomly selected from all possible

a
samples.

A sample function j and a stratification function i are compatible,

denoted itij, if sample j could have been obtained for the stratification
i. That is, the cardinality of the set {b:i(b) = s and j(b) = 11 is n 

for every s=1,2,...,Q.

We assume every element b has a label 1 or 0 (grain or non-grain in

our case) denoted as L(b). Since we are not only choosing the sample j

at random but also the stratification, we need to define the probabilities

associated with I, J and (I,J).

N	 -1
P
1
 (i) = N1N2 , ... NQ

is the probability that i is chosen as the stratification;

P
i Q)= \ n)

 ) -1

is the probability that sample j is chosen;

n1	 N-n
P IIJ-j (i) = n1n2s..•,nQ)1N1-nIN2-n2...NQ-nJ-1

if itij . Otherwise,

PIIJ=j(i) = 0

This is the conditional probability that stratification i is chosen given

k	 that sample j has been chosen. This result can be obtained by direct

counting or by the use of Bayes theorem.
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(
PJ lI=fij) _ sI1 n 

if inj . Otherwise,

PJII=i(j) = 0

c^

is the conditional probability that sample j is selected given that

stratification i has been chosen.

The joint probability can be defined as:

P IJ ( i , j ) = PI(i)PJ1I=i(j) or

PIJ(i,j) = PJ(j)PIIJ=j(i).

In the first case, for itij

P IJ (i,j) = PI(i)PJ II=i(j)

N	 )-1 Q ( Ns -1
= N1 ,N2 ,...N4 r	 n

s=1

Q
!

_ s=1 ids
	

Q	 ns ! (Ns-ns) !

	

N.	
s=1	 Ns

Q
7r n  !(N S -n s  !

s=1

N!

In the latter case, for itij

PIi(i,j) = PJ(j)P1IJ=j(i)

_ N -1(
	 n	

)-1
	 N-n	 )-1

- ^n	 nl,n2,...n4	 I1-n1,N2-n2"—  Q-n4

Q	 Q

r 	 ^r (N -n ) !
n!(N-n)! s=1 s. s=1 s s

N!	 n!	 (N-n)!

Q

sV1 ns!(Ns-ns)!
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}	 which is consistent with the first definition. Note in both cases,

PIJ(i,j) = 0

if i7 j .

Now that we have defined the joint probability of I and J, we can

view PI and P  as marginal probabilities, that is

PI (i)PIJ(i1j)
j

and

PJ(j) _ PIJUID
i

A consequence of this is that the probability of obtaining a fixed sample

j is the same in simple random sampling and in random stratification fol-

lowed by stratified random sampling.

We now examine the two estimates. The simple random sample propor-

tion P depends only on j, namely

_	 L(b)
= bkj(b)P(j)	

=1
n

Given a stratification i, we can introduce i into this relation

Q ns	

L(b) = 
Q ns 

PP ( j )	 Ij)

	

Sl n b:i(b) =s ns	 S'1 n s(i
j(b)=l

where

1 L L(b)P s (i,J) - n	 b:i(b)=s

	

s	
j (b)=1

r,
The stratified random sample proportion P is defined by

f;
r.	 Q N

	

P ( i ' j ) _	 Ns Ps(i,j)

We note that (1) and (2) are equal if

	

n	 Ns _ s
	n 	 N

(1)

(2)

4-_
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where s=1,2,3,...,Q; i.e., if we are able to sample proportional to size.

B.3 SAMPLE VARIANCE UNDER THE TWO MODELS

In this section, the letter "E"'will stand for "expectation of"

and "V" for "variance of".

EIJP(I,J) = EJP(J) = EJII=iP(I,J) = P

whey e

IT
P = N L L(b)

b=l

EIIJ=jP(I,J) _ EIIJ=jPs(I,J) = P ( j )	 (3)

V(P(I,J)) = E IJ (P(I,J) - P)2

= FIJ IP(I,J) - P(J) + P(J) - P)2

= EIJ (P(I,J) - P(J)) 2 + 2EIJ ((P(I,J) - P(J))(P(J) - P))

+ EIJ (P (J) - P) 2

EIJ (P(I,J) - P(J)) 2 + 2EIJ ((P(I,J) - P(J))(P(J) - P))

+ V(P (J))	 (4)

EIJ ^(P(I J) - P(J))(P ( J) - P)l

Lr [du,j) - P(j))(P( j ) - P)1PIJ(llj)

du	 --,j) -- PQ))PIlJ=j (i) CP(j) - P)P J (j) (5)
j is itij

i

i
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'-
i s i ^

^.(P(i,j) - P(j))PI l Jj
=(i)

= EE
Q
r N s _ 1	 E	 L(b) P I I J=j (i)

i:itij s=1 Nns 	n b:i(b)=s
j(b)=1

QNs -1	 rE	 Nn	 n	 u L(b) P I I J=j (1)
s=1 is itij	 s	 )b: i(b)=s

j(b)=l

Q	 N	 n _
r	 Ns - ns PS(i,j)PTIJ=j(i)
s=1 is itij (

Q N n ^ _

	

= r Ns - ns	
Ps(i,j)PTIJ=j(i)

s= 1	 is itij

Q Ns ns

= r	 s - n P ( j ) by (3)

0.	 (6)

We now have from (4), (5) and (6)

V(P ( I , J)) = ETJ (P(I,J) - P(J)) 2 + V(P(j))

V(P(J))

n	 N
V(P(I,J)) = V(_P(J)), if n  = Ns

We conclude that the variance is increased by stratification which

is .random with respect to the labels unless the strata sample sizes are

proportional to strata size, i.e.,

n	 N
"	 s	 s__

n	 N

Selo,
i

. -i/

j
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