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1.	 INTRODUCTION

Dwindling domestic and world oil and gas supplies with the inevitable

rise in the price of these fuels have generated deep concern within govern-

m nt, industry, and the general public as to how the energy needs of

the country can reasonably and economically be met in the future. The

increased use of coal, our most abundant fossil fuel reserve, during

the next quarter century will necessitate increasing the efficiency of

underground coal extraction. Lon gwall mining techniques have the potential

of greatly increasing the coal yield per acre and coal production per

mast pea` shift since it is essentially a continuous mining process. In

addition, since longwall is a continuous mining process employing continuous

haulage, it is extremely well suited for automation which is the subject

of the present study. Automating longwall coal extraction will not only

increase production but also minimize the amount of foreign material

taken along with the coal thus reducing sortin g time and cutter bit wear.

In additions automating or remoting the longwall mining process will

increase operator health and safety by removing the miner from the shearer

and thus the hazards encountered in the immediate cutting area.

The present study has been divided into two phases. Phase I

was primarily concerned with the analyses and simulation of candidate

Vertical Control Systems (VCS) and Face Advancement Systems (FAS) re-

quired to satisf = rLoriiy automate the longwall system. The purpose of

these studies were to specify the desired overall longwall system con-

figuration for preliminary design which will be performed during Phase

iI of the study. This report outlines the analyses, and simulations

that were performed during Phase I of the subject study which has led

to the satisfactory specification of the overall longwall system on which

a preliminary design will be performed during Phase II.

l
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2.	 SUMMARY AND CONCLUSIONS

In the paragraphs that follow, a summary of the results obtained

and the conclusions drawn during the Phase I portion of the study will

be outlined by major longwall subsystem. These major subsystems are

the Vertical Control System (VCS), and the Face Advance System (FAS)

which consists of the yaw and roll control subsystems.

In a study of this nature, a procedure is needed by which the perform-

ance of various control system configurations could be compared in order

to determine which one is "best" for a particular application. In order

to accomplish this end, "baseline" system configurations for all of the

control subsystems required for longwall automation were defined. The

baseline definitions used the work performed by MSFC as a starting point

and were the "simplest" (arid hence least expensive and probably most

reliable) subsystem configuration that would satisfactorily perform a

particular control function. It was against the performance achieved

by the "baseline" systems that various other control system configura-

tions/additions/modifications were compared.

Proposed modifications/additions to the baseline system definition

were evaluated by considering the improved performance realized vs. the

additional complexity and relative cost introduced by incorporation of

the modification, and only those modifications/additions to the baseline

systems that were cost effective were incorporated. Following this pro-

cedure, a highly reliable and economically advantageous longwall system

design emerged.

:*

	

	 s

2.1 Vertical Contro l System (VCSZ

The function of the VCS is to control the two cutting drums

of the double ended ranging arm shearer so that they remain within the

` 	 coal seam. The VCS should be capable of taking all -the coal on the roof 'r

and floor, or if desired, leave a given amount (i.e., bias) of head and/or
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floor coal while taking a minimum amount of rock. In addition, the dis-
tance between two successive cuts would have to remain within given limits

in order that the roof supports advance satisfactorily.

In order to analyze and design the VCS, a typical longwall

shearer had to be chosen for computer simulation. The longwall shearer

chosen was the Joy LW 300 and all control system studies involving the
shearer were performed with this model. In addition, a reasonable repre-

sentation of the coal/shale interface that would be encountered during

in-mine operations had to be simulated. It became apparent early in
the study that using artificial "worst case" profiles would not be very

satisfactory from two viewpoints:

a. It is very difficult if not impossible to define a

"worst case" coal shale interface without having access

to the actual interface profiles in most or possibly all

of the operational longwall faces and those being projected

for longwall mining.

b. Even if a "worst case" profile could be defined, it

would place extreme requirements on the required longwall

system resulting in an unrealistic and costly system design.

It was, therefore, decided to model typical coal/shale interface

profiles that one would commonly encounter during longwall mining operations.

To accomplish this end, use was made of a survey performed by A. D. Little,

Inc., the results of which were given in a report titled, "Last Cut Survey,"

published in June 1977, in which the coal/shale interface profiles for

six mines representing a variety of geologic conditions and seam heights

were given. Statistical analyses were performed on the twelve profiles

(i.e., top and bottom) given and it was determined that all of the mine

profiles were statistically similar. This result certainly gives credence

2-2
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to the hypothesis that coal/shale interface profiles are more similar

than different when going from mine to mine. Therefore, the York Canyon

profiles were chosen from the given data set as representing typical

(i.e., mean) coal/shale interface profiles that would be encountered

during in-mine operations and most performance runs were made with these

profiles. Performance evaluations made with other mine profiles had

little effect on overall performance as will be discussed in Section 3.

In order to evaluate VCS performance and compare various con-

figurations with respect to each other, a measure of performance had

to be defined. There are numerous performance measures that one can

define for the VCS, no single one of which will be an adequate measure

of performance for,all operational conditions. The most commonly used

to characterize the performance of a control system is the RMS of the

error between the desired and actual control achieved which, in our case,

is the RMS of the difference between the desired and actual cuts achieved,

or the cut error. Although this is generally an excellent measure of

VCS performance, it does not totally specify all aspects of VCS per-

formance. Other performance characteristics that are of interest are

the amount of time spent cutting rock, the volume of rock taken, the

volume of coal erroneously left, and the volume of coal erroneously taken.

Therefore, in order to augment the RMS cut error, a number of other per-

formance parameters were also determined which are: a) percent of time

spent in rock; b) volume of rock taken; c.) volume of excess coal taken;

d) volume of coal erroneously left; and e) the average of the absolute

value of the cut error. These performance parameters, in conjunction

with the RMS cut error completely specify VCS performance over its desig-

nated range of operation.

A block diagram of the VCS computer simulation is shown in

Figure 3-1. The major features of the simulation are listed below:

i
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a. Detailed modeling of the mine geometry including actual

Interface profiles and techniques for generating statisti-

cally similar coal/shale interface profiles from a given

initial profile which is used to give realistic results

.when multiple passes are made.

b. Detailed geometrical model of the shearer including

its location along, and orientation with respect to, the

face.

c. Technique for determining the actual track that would

result when laying five foot conveyor sections along a

roughly cut bottom.

d. Detailed non-linear representation of shearer actuator

dynamics including the hydraulic coupling between the two

ranging arms.

e. Detailed representation of the nucleonic and natural

radiation coal interfaz. , detectors including the nonlinear

calibration curves, Poisson distributed sensor noise, and

air gaps.

i. Complete representation of coal/shale presence sensors

including a probabilistic representation of their correct-

ness.
^I

g. Complete representation of last and present cut followers.

h. Modular hierarchical control law algorithm that is able

e

	 to accommodate a variety of sensor complements and control

law implementations.
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1. The effect of drum filtering on the cut obtained.

For a more detailed discussion of the VCS simulation see sections

3.2 and 3.3

The "baseline" system configuration for the VCS consisted

of the following:

a. An active nucleonic coal interface detector (CID) for

measuring coal thickness on the roof.

b. Sensitized picks incorporated into each of the two

cutting drums in order to detect the presence of coal or

rock.

c. A last cut follower mechanism in order to measure the

present cut relative to the last one made.

d. The bottom cutting drum is slaved to the top one

if a given amount of floor coal is to be left. The reason

for not using a CID for proportional floor cutting drum

control is that it is not feasible to mount such a detector

on the floor given all the debris and water found there.

7

e. Use presently obtained CID data in a measure and cut

algorithm as opposed to optimal filtering/prediction algo-

rithms which can be used to compensate for CID noise and

that the measurement point is some 2.5 feet behind the

actual drum cutting point.

f. Use of the nonlinear hydraulic actuation system commonly

found on longwall shearers.

2-5	 Rj-,,PROPUGIhIT,rfY OF THE
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Modifications/addition:, to the defined VCS "baseline" con-

sidered are listed below.

1. Use of optimal filtering/predictive control algorithms

for cutting drum control.

2. Use of a natural radiation CID.

3. Use of an impact penetrometer/reflectometer for a coal/

shale presence sensor.

A number of techniques for bottom drum slaving were considered.

They are:

1. Maintaining constant height between both cutting drums.

2. Using CID measurements instantaneously and in a delayed

mode.

3. Use of the last cut follower.

4. Use of a last cut follower located in the middle of

the shearer.

5. Use of a separate present cut follower located above

the rear drum.

Figure 3-86 shows the shearer slaving geometry and the various

slaving techniques listed above.

2.1.1 Baseline System Parameter Determination - For the

baseline VCS defined, system parameters (i.e., gains, sensor locations,

sampling and averaging times, etc.) had to be determined in order to
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obtain optimum performance for this configuration. One of the first

parameters to be determined was the loop gain/compensation to be used

for the position loop closed around the actuators which control cutting

drum height. Various loop gains were investigated and it was determined

that a gain of 170 (see Figure 3-21) yielded best overall performance

even though the actuator did have a limit cycle at this gain value.

The only problem that can occur if the actuator is operated in the limit

cycle region is that it may heat excessively. Should that be the case,

a heat exchanger could easily be designed which will maintain tempera-

tures within acceptable limits. Therefore, a loop gain of 170 was speci-

fied and used for the gain of the actuator loop in all of the control

studies subsequently performed.

Another parameter to be determined was the mounting locati-n

of CID sensors. It was clearly shown (see Table 3--3) that system performance

improves as the CID is moved closer to the cutting drum (and hence the

cutting point) since this minimizes the distance between the point measured

and the point being controlled. The closer the CID can be moved to the

cutting point the better is the probability that the CID measurement

reflects the coal/shale interface at the cutting location, hence improv-

ing the measurement. Therefore, the CID's were located 2.5 feet behind

the cutting drum which was as close to the cutting drum as the CID

could be mounted without interference.

Another critical parameter to be determined was the CID

output interval or averaging time. Again, it was clearly shown (see

Table 3-4) that in the absence of CID measurement noise, increasing the

CID output interval degraded system performance. The reason for this

is that as the output interval is increased, greater measurement lags

are introduced into the system degrading its performance. However, the

longer the output interval or averaging time, the smaller the effect

of CID measurement noise and hence the more accurate the measurements

obtained. Therefore, there should be an output interval which will

i

4
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1 balance the detrimental effect of increased output interval due to added

lag against the benefit gained by reducing the effect on CID measurement

noise, thus yielding optimum system performance. Such an output interval

was indeed found (see Table 3-5), and was 0.25 second for the active nucleonic

CID. When a natural radiation CID was employed the optimum output inter-

vals were 1 and 2 seconds for 5 and 3 inch detection crystals respectively.

2.1.2 Baseline VCS Performance Characteristics

2.1.2.1 Effect of Nonlinear CID Calibration Curve

The active nucleonic or passive natural radiation

CID's have calibration curves that are nonlinear (see Figures 3-11 and

3-17) and saturate as the thickness of coal increases. Therefore, for

the same CID measurement noise, the error in the sensor measurement

would increase as the desired thickness of coal to be left approaches

the saturation characteristics of the sensor 'thus giving degraded system

performance. Such an effect has been found and is outlined in Table

3-7 for the active nucleonic CID. Examination of this table indicates

that for a one second output interval the RMS cutting error went from

1.61 inch to 2.39 inch, an increases of 48.45 percent, when the coal

thickness to be left increased from 4 to 6 inches. However, it should

be noted that cut error will remain invariant as the desired coal to

be left is 5 inches or less since in this range the CID calibration curve

is essentially linear.

2.1.2.2 Effect of Adding Sensitized Pick and Last Cut

Follower (LCF) to CID

The effect of adding a sensitized pick and using

it in conjunction with the CID in a hierarchical manner is to improve

cutting performance. The technique that is used is to command the cutting

drums on the basis of CID information and when the pick indicates that

rock is being mined to override the CID command and depress the cutting

P
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head.a given amount.	 The improvement realized by the addition of the

sensitized pick is most pronounced when attempting to leave a small coal

thickness (i.e., between zero and 2 inches), since it is during this
C

mode of operation that using CID information only has a high probability

of commanding the drum to cut the roof due to CID measurement errors.

Once the drum has cut into the roof the CID cannot say how far into the

roof the drum has cut and gives an indication of zero coal thickness

regardless of the depth the cutting drum has penetrated the rock.

Therefore, once the roof is penetrated the cutting drum would only be

.^ comnanded to depress the coal bias amount even if the roof were pene-

trated considerably more than this value, hence degrading cutting per-

,, formance.	 The addition of a sensitized pick does not allow the cutting

drum to appreciably penetrate the roof, thereby keeping the CID in its

linear range, thus improving cutting performance. 	 The addition of a

last cut follower to the CID and sensitized pick and employing this

sensor configuration in a hierarchical manner where the last cut follower

is given highest priority, the sensitized pick next, with the CID having

lowest priority, further improves cutting performance. 	 The reason for

the improved performance when introducing a last cut follower is that

it filters even further errors in the CID measurements since the present

cut cannot deviate more than a prescribed amount (i.e., ± 2 inches) from

the previous cut.

It should also be noted that the cutting accuracy achieved when

using a sensitized pick in conjunction with the CID or CID and last cut

follower, is not appreciably affected as the accuracy of the pick in-

formation degrades to 80 percent. 	 The reason for this is that the pick

is one of two or three sensors controlling the VCS and hence a wrong

piece of information from it does not have a one-to-one effect on system

4 performance.	 The results discussed above are outlined in Tables 3-8

}

z.

and 3-9.
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2.1.2.3 VCS_ Performance with Sensitized Pick Only

When attempting to take all of the coal the VCS

will be controlled by the sensitized pick only, or possibly acting in

conjunction with a last cut follower. In this mode of operation error
'in the sensitized pick information does have a marked effect on system

cutting performance. When the pick information is 100 percent correct

an RMS cut error of 0.68 in, is achieved. However, if the pick information

is 90 percent correct the RMS cut error is 1.24 in., when it is only

80 percent correct the RMS cut error grows to 2.33 in. The reason -for

this sensitivity is that when 'the VCS is under pick control, errors in

the pick information cause an immediate error in the cutting drum command,

hence directly affecting system performance. It is, 'therefore, concluded
that the sensitized pick should bey between 80 to 90 percent accurate

to enable taking all of the coal, while maintaining the rock taken to

a minimum. These results are given in Table 3-10.

2.1.2.4 Effects of Actuator D/nam'ics of VCS Performance

Inserting the nonlinear actuator dynamics into

the VCS control system had little effect on system performance when a
given amount of coal is to be left, and hence a CID is employed. However,

if all of 'the coal is to be taken, and the VCS is under pick control,

then 'the insertion of actuator dynamics has a more marked effect on the
performance achieved with the RMS cut error going from 0.68 inches without

actuators to 2.05 inches when the effect of actuator dynamics are con-

sidered. The reason for this sensitivity is that when the sensitized

pick is employed it actually measures the presence of coal or shale at

the cutting point. Therefore, if the actuators respond quickly, a very

small RMS cut error is realized (i.e., 0.68 inch RMS). Adding the ac-

tuator dynamics has the effect of introducing lag into the system and
hence performance degrades. When the VCS is under CID control the errors

f

introduced by CID noise and its being mounted behind the cutting drum

overshadow the effect of the actuator dynamics thus minimizing its effect

on overall system performance. These results are outlined in Table 3-11.
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2.1.2.5 Effects of Varying VCS Traverse Speed Across

the Face

The nominal traverse speed at which the baseline

system was designed and its performance evaluated was 30 ft/min. In-

creasing this speed to 50 ft/min or decreasing it to 20 ft/min had no

effect on system performance. The reason for this result is that a 0.25

second output inter)^al is being used for the CID which is quite fast

and within the speed range of 20-50 ft/min the shearer does not travel

an appreciable distance between CID information updates. This would

imply that if the CID output interval were increased one should see an

effect of varying shearer traverse speed on overall system performance

with performance degrading the faster the shearer traverses the face.

This effect was observed when "he CID output interval was increased to
..	

one second and the results are tabulated in Table 3-12.

2.2 VCS Performance with Optimum Filtering/Predictive Algorithms

Since the CID is mounted behind the cutting drum it is not

measuring the coal/shale interface at the cutting point. Using the

measured depth of the coal/shale interface at the CID location and saying

that this is the depth at the cutting drum location obviously is in error

since the coal/shale interface changes as one proceeds down the face.

Therefore, one would suspect that using some form of filtering/predictive

algorithm system performance could be improved, since a more accurate

estimate of the coal/shale interface both at the point of measurement

and at the cutting drum could be determined. There are many types of

filtering/predictive algorithms one can formulate, all of which to

varying degrees make use of past as well as the present CID measurements

in the determination of the coal/shale interface. At first glance one

would be tempted to make use of all or many past CID measurements in

order to obtain a "best estimate" of the coal/shale interface at the

present measurement location and cutting point. Implied in such a scheme

4
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would be a method by which all of the CID measurements could be referenced

with respect to each other through some common reference frame. However,

no such frame exists in the longwall system and there doesn't appear

to be any reasonable way by which such a frame could be obtained, There-

fore, if an algorithm were formulated that used many past CID measurements

to aid in the determination of the coal/shale interface at the present

measurement point and the cutting drum, any contribution in these measure-

ments due to the floating reference frame in which the measurements

are taken would go undetected. The frame, with re r.pect to which the

height of the coal/shale interface is measured could be considered the

shearer skid plane. Therefore, measurement changes due to Floor undula-

tions could not be differentiated from changes due to actual variations

in the rnal/shale interface height above the skid plane. Therefore, the

contribution due to floor undulations in the measurement obtained would

be attributed to coal/shale interface variations and the filtering and

predicive alogarithms would yield answers that would be in error by ap-

preciable amounts. Optimum filtering and predictive algorithms that

have extremely good potential of determining and predicting the coal/

shale interface by using many past CID measurements are generally quite

sensitive to unmodeled processes that were not considered in their formu-

lation which in this case would be a floor undulation. In such a case,

performance degrades rapidly to where it is actually worse than that

which would he obtained if these algorithms were not employed. Given

this situation the filtering/predictive algorithms that will be considered

for the longwall are those which employ CID measuremnt s in the immediate

vicinity of the present measurement and cutting points. These types

of algorithms would require a priori knowledge of the coal/shale inter-

face statistics in terms of correlation function, mean and variance as

well as a description of the sensor noise in terms u" its mean and vari-

ance. The reason for this a priori knowledge requireme.c is that the

statistics of the coal/shale interface could not be derived from past

CID measurements due to the lack of a common reference frame.
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Two types of optimal filtering/predictive al orithms employingYp	pg
CID measurements in the immediate vicinity of the present measurement

and cutting points were formulated. One algorithm (Scheme 2) uses the

present CID measurements in conjunction with CID data in the immediate

vicinity of the present measurement to estimate and predict the coal/shale
interface at the measurement point amd cutting drum respectively. The

other technique (Scheme 1) uses the present CID measurement in conjunc-

tion with estimates of the coal/shale interface in the immediate vicinity

of the present measurement point for estimation and prediction. These

two types of algorithms were formulated in a one-dimensional sense using

present cut CID data/estimates, and in a two-dimensional sense using

present and past cut CID data/estimates yielding four different optimal

filtering algorithms for possible use in the VCS control system.

Analyses performed on these algorithms indicated that both

should give, appreciable performance improvement if the floor didn't un-
dulate, with Scheme 1 being better than Scheme 2. In addition, it was

shown that the algorithm employing CID measurements only would be less

sensitive to the unmodeled floor undulations than the scheme employing

CID data in conjunction with coal/shale interface estimates. These re-

sults were verified by simulation for the two one-dimensional algorithms,

and the data indicated that cutting performance degraded due to floor

undulations to the point where it wasn't any better, and in most cases,

worse than that obtained with the baseline measure and cut algorithm

(see Table 3-15). The degradation in performance due to floor undula-

tions would be even worse for the two-dimensional version of these al-

gorithms and hence were not simulated. Therefore, the conclusion of

this investigation was that there is no advantage to be gained by using

optimal filtering and predictive algorithms for VCS control. Thus, the

simple measure and cut control algorithm defined in the baseline system

should be used for cutting drum control.

RF.PROI)UCi:UILITY OF TIIE
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2.3 Use of Impact Penetrometer/Reflectometer for VCS Control

Investigations were conduc".d into the use of an impact pene-

trometer/reflectometer as the coal/shale presence sensor, i.e., to replace

the sensitized pick, The prime difference between the two types of coal

presence sensors from an overall systems viewpoint is the manner in which

they are integrated into the VCS. The sensitized pick, which is mounted

on the cutting drum measures whether the drum is presen"13, cutting coal

or rock, while tie impact penetrometer/reflectometer is mounted at the
approximate CID location, and hence can only measure whether the drum

has cut coal or rock. This difference is basic in determining the VCS

performance obtained when using these two coal presence sensors. The

sensitized pick yielded excellent cutting performance (0.68 inch RMS)

and VCS seam following capability when used by itself since it does

measure what -the drum is cutting virtually instantaneously. However,

the impact penetrometer/reflectometer being mounted some 2,5 feet behind

the cutting drum cannot measure whether the drum is cutting rock or coal

until the shearer has traversed 2.5 feet to the present drum location,

which at 30 ft/min shearer traverse speed takes 5 seconds. During this

total time, if the impact penetrometer/reflectometer is measuring rock,

it is continuously depressing the cutting drum or if it is measuring

coal it is continuously commanding the cutting drum to rise, thus giving

rise to severe system limit cycles and an RMS cut error of 21.7 inches.

When the impact penetrometer/reflectometer is augmented by a last cut

follower, system limit cycles are limited by the deviation allowed between

the present and previous cuts. If, as in our case, 'this value is set

at +2 inches the ensuing RMS cut error is 1,83 inches which is essen-

tially the RMS of a limit cycle ranging between + 2 inches. These results

are outlined in Table 3-10 with the actual system cutting performance

shown in Figures 3-65 and 3-66. Therefore, the conclusion of these

studies are that -the impact penetrometer/reflectometer is not a very
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satisfactory coal presence sensor for our longwall application, parti-

cularly when all the coal is to be taken, and hence is not presently

recommended.

2.4 Use of Natural Radiation CID for VCS Control

The use of a natural radiation CID ins;tead of an active

nucleonic one was investigated. The prime difference between these two

sensors that affects system performance is the number of counts per unit

time for a given coal thickness. The active nucleonic CID has many more

counts per second (approximately a factor of 20) for a given coal thick-

ness than a reasonably sized (i.e., 3 'to 5 inch detection crystal) natural

radiation ICD. The counts per unit time as a function of coal depth

for both types of CIDs are shown in Figures 3-11 and 3-12. Therefore,

the noise and hence the coal depth measurement uncertainty is worse with

the natural radiation than with the active nucleonic CID and degraded

system performance when using the natural radiation CID should be ex-

pected. This indeed has been verified by simulation with RMS cutting

error increasing from 1.64 inches to 2.25 inches when the active nucleonic

CID was replaced by the natural radiation sensor. These results are

documented in Tables 3-5 and 3-11. Therefore, from a performance view-

point the active nucleonic CID is recommended for system implementation.

However, there are drawbacks to the active nucleonic scrisor ranging from

sociological, (i.e., active radiation source) to technical (i.e., sensi-

tivity to air gaps) to potentially severe integration problems (i.e.,

sophisticated suspensioii that must keep the sensor against roof with

a minimum of air gaps, deployment and stowage mechanisms, etc.) that

the natural radiation CID does not have. During preliminary design (i.e.,

Phase II) these problems will be addressed in detail. Should these in-

vestigations indicate that the problems related to the active nucleonic

CID precludes its use or detracts significantly from the merits of its

use, the natural radiation CID would be used instead. Although, as

RI^PRQDUCIBAGI; 
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pointed out above, system cutting performance degrades to a degree by
its use, however, the performance achieved is still quite good when com-
pared to what is presently being obtained manually. In addition, all
of the benefits with respect to the health and safety that one gains

by longwall automation would remain intact when using a natural radiation

CID.

2.5 Slavinq of Bottom Drum

Since it became clear early in the study that it would nol'

he feasible to mount a CID on the floor for controlling the drum cutting

the bottom due to debris and water thatthat will be there, an alternate tech-

nique of control for the bottom drum had to be devised for the condition

where a given amount of coal is to be left on the bottom. (When al"

the coal is to be taken the bottom cutting drum can be controlled by

a sensitized pick in the same manner that roof cutting drum control is

achieved.) The technique used was to slave the bottom cutting drum

to the top one by maintaining the instantaneous height of the cut constant.
A number of ways of accomplishing drum slaving were investigated. The

first of these was to maintain the height between the two cutting drums

constant by using the readouts of the linear actuators controlling both

drums. This implementation was quite sensitive to floor undulations

and did riot yield satisfactory system performance. Another implementation

that was investigated was to use CID measurements to determine the height

of the roof and command the bottom drum to maintain the instantaneous

cut height constant,. This implementation, although better than maintain-

ing the instantaneous height between the cutting drums constant, still

yielded performance that wasn't any better than locking the drum for

a flat floor, and degraded when the actual floor undulations were in-

troduced. Examination of Table 3-2 indicates that four of the six mines

surveyed exhibited a high degree of correlation between the top and

bottom coal/shale interface profiles. This phenomenon suggested that

if the CID measurements were delayed until the bottom cutting drum was

2-16
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directly below the CID measurement point and then used to control the

bottom drum, better slaving performance should be realized. This was

indeed the case (for a flat floor) with the improvement being quite ap-

parent when the top and bottom interfaces were highly correlated such

as in the Robinson Run Mine. It was also true to a lesser degree in

a mine that did not have a high degree of correlation between top and

bottom such as in York Canyon. However, when the floor undulations were

introduced, significant performance degradation resulted and better system

performance would be achieved by locking the bottom cutting drum. The

results discussed above are tabulated in Table 3-16.

One basic problem (besides performance) that the slaving im-

plementations discussed above have in common is that they do not tend

to maintain the difference between two successive bottom cuts within

a prescribed value. Slaving implementations that would tend to maintain

two successive bottom cuts within specified limits would be to slave

the bottom drum to the last cut follower or to a present top cut fol-

lowing mechanism. Slaving the bottom drum to the last cut follower

mechanism was tried and it was found that the system performance was

sensitive to floor undulations. An attempt was made to slave the bottom

drum to a last cut following mechanism located in the middle of the

shearer in order to minimize the effect of floor undulations. This

implementation did indeed improve slaving performance to acceptable

levels; however, roof cutting performance degraded appreciably. Slaving

the bottom drum to a separate present top cut following mechanism was

tried and the performance obtained was the "best" of all of the imple-

mentations evaluated. Having a separate present top cut following mech-

anism above the floor cutting drum essentially eliminates the problems

due to floor undulations and is presently the recommended technique for

bottom drum slaving. These results are outlined in Table 3-17.
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2.6 Recommended VCS System

As a result of the studies performed, the recommended VCS im-

plementation is outlined below as a function of the mining capabilities

desired.

a. Leaving a prescribed amount of coal on top and bottom.

1) Top Drum Control

Active Nucleonic CID

Two sensitized picks mounted 180 degrees apart on

cutting drum

Last Cut Follower

2) Bottom Drum Control

Present Top Cut Follower

Two Sensitized Picks Mounted in the Cutting Drum 180 A

Degrees Apart

b) Leaving a Prescribed Amount of Coal on Top Taking all Coal

on Bottom.

1) Top Drum Control

Active Nucleonic CID

Two Sensitized Picks

Last Cut follower

2) Bottom Drum Control

Two Sensitized Picks
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c) Taking all of the Coal on Top and Leaving a Prescribed

Amount of Coal on Bottom

1) Top Drum Control

Two Sensitized Picks

Last Cut Follower

2) Bottom Drum control

Two Sensitized Picks

Present Top Cut Follower Mechanism

d) Taking all of the Coal on Top and Bottom

1) Top Drum Control

Two Sensitized Picks

Last cut Follower

2) Bottom Drum Control

Two Sensitized Picks

The recommended systems for VCS control are shown in tabular

form in Table 3-20.

2.7 Performance of Recommended System

The average performance of the recommended VCS configuration

is shown in Table 2-1. Examination of this table indicates that the

recommended VCS configuration will outperform a human operator by at

least a factor of two at a shearer speed as high as 50 ft/min. While

LIL. R ai Y



Table 2-1.	 VCS Performance Summary

}

i

r^

AVERAGE RMS ROOF	 AVERAGE RrtS FLOOR AVERAGE RMS
CUT ERROR (IN)	 CUT ERROR (IN) CUT ERROR (IN)

AUTOMATED VERTICAL CONTROL
NUCLEONIC CID	 1.36 2.84 2.1

AUTOMATED VERTICAL CONTROL
NATURAL RADIATION CID	 2 .25 4.63 3.44
5 IN. CRYSTAL

1WgUALLY OPERATED VERTICAL
CONTROL, SYSTEM 	 N/A N/A ** 5.5

AVERAGE OF ALL MEASURED PERFORMANCE
112 FACES IN 10 DIFFERENT MINES
A.D, LITrLE SURVEY (DEC. 1976-JUNE 1977)

3. 1 T.N. MEAN ERROR

SNEAKER VELOCITY - 30 FT/MIN
RZSULTS ESSENTIALLY UNCHANGED AT 50 FTIMIN
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under manual control the shearer can only move approximately 10 to 12

ft/min. These results indicate the increased productivity and hence

economic potential of automating the longwall, in addition to the health and safety

gains.

2.8 Roll Control System

The function of the roll control system is to maintain the

attitude of the longwall s:)earer about its longitudinal (roll) axis at

a specific value regardless of the twists that may be in the conveyor

track on which the shearer is riding. This mode of control is necessary

If the shearer is to be maintained perpendicular to the longwall panel

being mined and hence within the coal seam as repeated passes are made.

Two control loop implementations were investigated. One has

the control loop closed around the inclinometer, i.e., the inclinometer

is within the closed loop. The advantage of this implementation is that

there is no need to instrument the hydraulic ram. However, since the

inclinometer is within the closed loop any filtering that might be added

to eliminate the effects of cross-axis acceleration will affect overall

control loop stability and hence is an added constraint on the filter

design. The other implementation closes the control loop around the

hydraulic actuator with the inclinometer being external to this loop

and furnishing what essentially can be looked at as an update signal.

This implementation has the advantage of eliminating the dependence of

control loop stability on the filter characteristics that may be used

to eliminate the effects of cross-axis accelerations, thus enabling the

filter design to proceed from these considerations only. However, this

implementation requires that the linear hydraulic actuator be instrumented.

RL±'RODUC Tt,jjJTY 0. Tll.l^%
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A computer simulation for the roll control system was developed 	 -

and consisted 'of the following:

a. Full nonlinear model of the linear hydraulic actuation

system.
a

b. Second order inclinometer dynamics

c. Cross axis accelerations due to the cutting forces and

torques as the shearer proceeds along the face.

This simulation was used to evaluate the performance character-

istics of the two roll control system implementations described.

2.8.1 Roll Control Loop Bandwidth Determination

In order to choose the parameters for both control

loop implementations the desired loop bandwidth had to be determined.

This was done by estimating the maximum input frequency that the roll

control loop would have to respond to. Assuming that two adjacent 5

foot conveyor sections are twisted in opposite directions, an input

frequency of 0.05 Hz results for a shearer traverse speed of 30 ft/min.

Hence the desired roll control loop bandwidth was set at 0.05 Hz.

In order to choose system parameters so that the desired

0.05 Hz control loop bandwidth would be realized, system frequency responses

were taken at various amplitude inputs ranging from the maximum commanded

roll angle of + 5 degree to one quarter this maximum. The reason for

taking frequency responses at different input amplitudes is due to system

nonlinearities which make system response characteristics a function

of input amplitude. The gains that were finally chosen for both control

loop implementations were such that a control loop bandwidth of 0.05



Hz would be realized at a 2.5 degree input, or one-half the maximum possi-

ble command. This was judged to be adequate since it is highly unlikely

that the roll control loop would be required to command a larger value

than 2.5 degree. In addition, the loop bandwidth also falls off due

to flow constraints and attempting to achieve the desired loop bandwidth

at 5 degree inputs would probably require a hydraulic modification which

isn't desirable.

Frequency responses for the two control loop implemen-

tations considered are given in Figures 5-4 through 5-6 and 5-8 through

5-10.

2.8.2 Roll Control Loop Performance Characteristics

Both control loop implementations perform well (i.e.,

RMS errors between 0.05 to 0.1 degree) in the absence of cross-axis ac-

celerations, with the implementation that closes a control loop around

the actuator being slightly more accurate. However, system performance

for both implementations degrade significantly even when relatively small

values of cross-axis accelerations are introduced, as outlined in Table

5-1. The reason for this sensitivity becomes clear when one examines

the value of RMS g represented by a 10 percent error in tracking a 1.77

degree (i.e., + 2.5 degree peak) input signal. This value is approxi-

mately 3x10
-3
 g RMS which means that if the sensed accelerations are

in error by approximately 3 milli g's a ten percent tracking error should

be expected. Or alternately, if the cross-axis acceleration sensed

by the inclinometer mounted on the shearer has an RMS level of approxi-

mately 3 milli g's within the control loop bandwidth at least a ten per-

cent tracking error will result. In addition, it should be noted that

if the cross axis RMS g levels within the control loop bandwidth are

in the order of three milli g's or greater, filtering of the inclinometer

RI' VRODUCIBII,ITy OF ME
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output will not yield appreciably better performance if the control' loop

bandwidth is to be maintained at 0.05 Hz. This result was verified by

simulation when the inclinometer bandwidth was reduced from 2.4 to 0.24

Hz to simulate the effect of filtering. These results are also outlined

in Table 5-1.

The conclusion of this portion of the study is that

since both of the control loop implementations yield almost identical

performance for all operational conditions, the open-loop actuator im-

plementation (i.e., the inclinometer within the feedback loop) is re-

commended since it eliminates the requirement for instrumenting the

hydraulic ram. However, due to the sensitivity of roll control system

performance to cross-axis accelerations, it is recommended that measure-

ments be taken of the cross-axis acceleration levels on a longwall shearer

while mining coal, particularly within and around the expected roll con-

trol loop bandwidth. It is possible that when these measurements become

available that it might be more economical to remove the inclinometer

from the feedback loop and implement a position loop around the actuator

in order to better filter the inclinometer output.

2.9 Yaw Alignment Systems

The function of the yaw alignment system is to automatically

advance the conveyor and roof supports in such a manner that the face

"straightness" remains within acceptable limits. The "baseline" system

defined to accomplish this control function consists of an angle cart,

diagrammatically shown in Figure 4-5, which is integrated with the shearer

and measures the angles between respective conveyor sections as the

shearer proceeds along the face. (The conveyor geometry and the angles

measured by the angle cart are shown diagrammatically in Figure 4-6.)

Once a set of measurements are taken the present conveyor profile is

computed. A set of conveyor advance commands are then computed and sent
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°•	 to each roof support, such that if perfectly implemented, would result

in a totally straight conveyor. This procedure is followed (i.e., angle

y	 cart measurements taken, conveyor profile computed, and appropriate con-

veyor advance commands computed) on every advance.

' M

Various algorithms for computing the conveyor profile from

the angle cart measurements were investigated. These algorithms were

a basic angle cart measurement scheme and an optimal weighting scheme.

In addition the effect of not being able to measure the angle between

a number of conveyor sections on either end due to the inability of moving

the shearer far enough into the headgate and tailgate was also investi-

g,ated.

An alternate system implementation to the baseline defined

was also investigated. This implementation consisted of a directional

gyro mounted on the shearer which measures the orientation of each con-

veyor section with respect to a defined reference. These measurements

are then used to compute the present conveyor profile and a set of con-

veyor advance commands are subsequently generated that if implemented

perfectly would straighten the conveyor in much the same manner as in

the angle cart implementation.

Two computer simulations were developed in order to evaluate

the performance of the yaw alignment system. The first was a Monte-Carlo

simulation which evaluated the accuracy with which the conveyor profile

could be computed in the presence of measurement error. This was accomp-

lished by performing 500 measurement runs using particular values of

measurement errors and computing the conveyor profile for each run.

The RMS error between the computed and actual conveyor profiles was then

computed and the average RMS error was determined for the 500 runs made.

z_

2-25



The average of the RMS error for the 500 runs made, called the "mode of

RMS", was used as the performance measure of the measurement scheme

being evaluated in the presence of measurement error. A block diagram

of this simulation is shown in Figure 4-7.

The other simulation developed was the Yaw Advance Simulation.

This simulation actually made repeated advances of the conveyor in the

presence of system measurement, conveyor placement, and roof support

pull-up errors, and yaw advancement stability evaluated. In order to

evaluate whether yaw advancement is proceeding stably, twenty advance-

ments of the conveyor were made in the presence of a particular set of

system errors. System instability was defined when a particular roof

support was commanded to move the conveyor backwards, which is impossible,

within the twenty advances made. If this condition resulted for a par-

ticular set of system errors, the system error vector was perturbated

slightly and two more sets of twenty advances made. The average value

of the error vector for the set of three twenty advances were then used

to define the stability boundary. The yaw advancement simulation block

diagram is shown in Figure 4-12.

2.9.1 Angle Cart Performance Characteristics

The basic angle cart measurement system uses two sets of measure-

ments made by the angle cart. One set of measurements are taken when

the angle cart is totally in a single conveyor section. These measure-

ments are used to estimate the bias or constant error In the resolvers,

and are used in correcting the second set of measurements which are the

angles between contiguous conveyor sections. The angle that the first

conveyor section makes with the desired reference (i.e., line perpen-

dicular to headgate and tailgates) is computed via the relative angle

measurements between the conveyor sections in conjunction with the
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	 knowledge where the ends of the conveyor are with respect to each other.

This is obtained by measuring the distance on both ends of the conveyor

with respect to surveyed points within the headgate and tailgate.

The results with the basic measurement scheme indicate that

the mode of RMS increases linearly with increased measurement error as

shown in Figure 4-8. From a stability viewpoint the maximum allowable

one sigma measurement error that can be tolerated in the presence of

a 0.1 ft (i.e., 1.2 in.) one sigma roof support pullup error and a one

sigma conveyor placement error of 0.02 ft is 0.03 degree. These results

remain unchanged even if the angle between one conveyor section on either

end cannot be measured and hence assumed to be zero. These results are

outlined in Figures 4-14 through 4-17. It should be noted that the angle

sari: employs eight speed resolvers 'to make the angular measurements.

The accuracy of an eight speed resolver is in the order of two arc minutes

(0.033 degree). Since 200 measurements are taken for each angle between

the conveyor sections and averaged, and two resolvers are used to deter-

mine those angles, the basic resolves^ measurement accuracy needed to

achieve a 0.03 degree one sigma measurement accuracy on the angle between

the conveyors is 20 arc minutes (0.33 degree). This is approximately

an order of magnitude greater than the two arc minute accuracy of the

eight speed resolver. Hence, a considerable amount of degradation could

be accommodated by the angle cart sysem due to vibrational errors as

the shearer is traversing the face, while still meeting the required

measurement accuracies for the angles between the conveyor sections.

i
Conversations with mining personnel at Old Ben Mining Company

where they are presently operating longwall faces indicated that the

roof support pullback error does not exceed one inch. In addition, a

ram placement error of 0.02 ft (0.24 inch) represents approximately one

part in 100 for a 30 inch advance which can easily be achieved with state-

of-the-art instrumentation. Therefore, it is seen that the expected

T110
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system errors are within those allowable for stable face advancement

as determined via computer simulation, making the basic angle card system

a viable way of implementing yaw face alignment.

The weighting and bias estimation algorithm for determining

the conveyor profile using the angle cart measurements requires that

the angle between the conveyor sections on both ends be known with respect

to a line perpendicular to the headgate and tailgate. Once these values

are known the algorithm makes use of the fact that the conveyor profile

could be r^mputed with the same set of measurements proceeding from either

end. Therefore, two coordinates could be determined for each Joint of

the conveyor which then could be combined to obtain a minimum variance

estimate of the conveyor profile. This technique yields better results

than the basic angle cart measurement scheme by allowing larger measure-

ment errors, or, for the same measurement errors yielding a more accurate

determination of the conveyor profile. However, in order to obtain any

benefit from the bias and estimation algorithm the angle of the end con-

veyor sections with respect to the desired reference must be known to

0.2 degrees or better as shown in Figures 4-18 and 4-19. This would

require that specialized instrumentation to be located in the headgate

and tailgate to determine these angles to the required accuracy. There-

fore, the basic angle cart measurement scheme is the technique recommended

if the angle cart implementation is used for yaw alignment.

2.9.2 Directional Gyro Performance Characteristics

In order to evaluate the performance of a directional

gyro implementation for yaw alignment and to specify the required gyro

for satisfactory system performance a directional gyro error model had

to be formulated. This model is shown diagrammatically in Figure 4-23

where the errors considered are:

f
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1) Low frequency random walk error (white noise through

the integrator)

2) Constant drift error (eb)

3) High frequency Qrror (white noise through first

order filter)

4) Gyro reference error (ER)

Various types of algorithms for processing the direc-

tional gyro data in order to determine the conveyor profile were investi-

gated and are discussed in section 4.5. The results of these investigations

indicated that the best algorithm for processing the directional gyro

data is one that uses a single measurement as soon as the gyro is aligned

in a particular conveyor section. The measurements thus obtained are

then put through an optimum filtering scheme such that a minimum variance

estimate of the conveyor profile is obtained.

Investigations into the allowable system errors using

the above algorithm with a shearer traverse speed of 30 ft/min, indicated

that a spectral noise intensity of approximately 1x10
-7(rad/sec)2 

could
ra sec

be tolerated in the presence of a gyro reference error of 0.2 degrees

and a roof support pullup error of 0.1 ft (1.2 inch), for stable yaw

advancement (see Figure 4-33). This value of spectral noise intensity

corresponds to a random drift error of approximately 0.6 deg/hr which

is considered to be a good and relatively expensive gyro. In order to

increase the allowable random drift error that can be tolerated the gyro

would have to be towed along the conveyor at a greater speed than 30

f t/min. This implies that the gyro would have to be mounted on a separate

cart which would either have its own motive power or possibly be towed

by the conveyor. In either case, the money saved by allowing the use

REPRODUCIPII ITY OF TIM
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of a cheaper gyro would have to go into the cost of manufacturing a separate

gyro cart. In addition, the use of a separate gyro cart would introduce

operational problems with respect to integrating the measurement with

standard longwall operations requiring additional time to make the re-

quired measurements, and would almost certainly preclude the measurement

of the angles of the end conveyor sections due to interference with the

shearer. Therefore, the recommended system implementation for yaw face

alignment is the angle cart system employing the basic measurement scheme

described above.

2-30

t



1

^f

3.	 VERTICAL CONTROL SYSTEM

t,

3.1	 FUNCTIONAL DESCRIPTION

w

The function of the vertical control system (VCS) is to control

the position of the shearing drums so that their cut follows the coal/

shale interface (CSI) on the top.and the bottom of the mine and leaves a

prescribed amount of top and bottom coal. The VCS must also maintain

the present cut within a prescribed amount of the last cut made. The

shearing drums are positioned by raising and lowering the ranging arms

on which they are mounted, using hydraulic actuators. The drums are

controlled independently and are coupled only through the hydraulic

system, where the pump flow is shared between the two ranging .arm

actuators.

Commands to the hydraulic actuators are generated from a comple-

ment of coal interfaces and drum position sensors. These sensors

include proportional coal interface detectors (CIDs) which measure the

coal depth remaining, and discrete CIDs which indicate the presence of

coal or rock. The position sensors include a last cut follower (LCF)

which indicates the shearing drum's position relative to the last cut

made, and an actuator position sensor which allows the position of the

-	 ranging arms relative to the shearer body to be determined. The propor-

tional CIDs are radiation detectors, either sensing natural background

radiation or backscatter from a radiation source. The discrete or coal

presence sensors use the optical and hardness properties of coal and
x	 rock to detect the difference between them, hence the presence of

either.

<,	
3-1



The sensors are combined in a hierarchical manner to develop actu-

ator commands. The LCF has the highest priority and will never allow

the present cut to differ by more than a prescribed amount from the last

cut. The coal presence CID has the next priority and will move the

shearing drum away from the interface if rock is detected. The propor-

tional CID is the lowest priority and will provide the control for the

cutting drum when it is within the coal beam and the commands are within

the prescribed limits relative to the last cut.

Since the shearer operates in either direction, both drums must be

capable of cutting either the top or the bottom. The lead drum cuts the

top while the trailing drum cuts the bottom, and the individual drum

control Paws are therefore changed appropriately, depending on whether

the drum is leading or trailing. The control laws also change, de-

pending on the desired cowl depth to be maintained. If it is desired to

take all the coal, only the coal presence sensors are used for control.

It appears impractical to use proportional CID sensors on the

bottom, due to loose coal, rock, and water which collect there. The

discrete coal sensors provide the capability of taking all the bottom

coal, but when it is desired to leave the bottom coal, an alternative

control scheme is used. The rear drum is slaved to the top drum, thus

providing the capability of maintaining a constant cut height. This

leaves a prescribed amount of bottom coal. In addition, slaving of the

bottom drum will render the system relatively insensitive to undulations

in the conveyer, thus maintaining the shearer in the coal seam.

I
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3.2	 DETAILED MATHEMATICAL MODEL OF THE VCS

3.2.1	 Overall System Description

The VCS simulation model, shown in Figure 3-1, 	 includes

the control	 system,	 sensors, actuat(rs,	 and shearer dynamics as well 	 as

the mine geometry.	 Asterisks indicate those portions of the figure

which are part of the simulation, but are not part of the actual	 shearer

or control	 system.	 Each portion of the diagram will 	 be discussed in

detail	 in Sections 3.2.2 through 3.2.7.

The chassis location module represents those calculations

necessary to determine the position and orientation of the shearer chas-

sis relative to the mine. 	 This	 includes keeping track of the chassis

position along the face and the chassis pitch angle a. 	 The mine model

is that portion of this simulation which represents the mine geometry.

Actual coal	 seam profiles were digitized and used to realistically

9 simulate the conditions in which the shearer operates.

The ranging arm geometry calculations use the pitch angle

a and the arm angular position relative to the chassis R to calculate

the shearing drum position in the mine. 	 The quantities computed are the

coal	 depth presently being cut, the drim height relative to the CID, P,

and the drum height relative to this list cu p., Q.	 The CID module pro-

cesses the coal	 depth measurements, introducing the appropriate errors

to simulate the various CID sensors. 	 The coal depth output measurement

is designated	 E.

The baseline control compares the measured coal depth with

the desired coal depth bias C g . This difference is summed with the drum

position relative to the CID sersor, resulting in a command Az, the
s Y
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desired change in height of the cutting drum. This information, along

with the last cut data and present actuator ram displacement XAJ1 is used

in the control law computations. The result is X C , the desired dis-

placement of the hydraulic ram.

i`

	

	 Actuator dynamics and the ranging arm dynamics are modeled

in some detail. The actuator model includes the control valve with in-

put thresholds, check valves, and pump flow rates. Ranging arm dynamics

are coupled with the actuator and develop the ranging arm angle p. The

actuator is instrumented with a position sensor and used in a closed

loop so it can be position commanded.

3.2.2	 Chassis Location Model

Figure 3-2 shows the mine coordinate system and defines

major components of the chassis and mine simulation. The shearer posi-

tion along the face is taken to be the +X direction, positive to the

right as viewed from the gob side. The seam height is the Z direction,

positive upward, and the cut is in the y direction positive into the

face (into the plane of the y figure).

The six profiles shown, in Figure 3-2 will be discussed in

Section 3.2.7, which deals with the mine model. These are the interface

or CSI, the present cut, and the last cut for both the top and bottom.

The right drum is designated as drum 1 and the left drum as drum 2.

Drum hub coordinates are designated as XD i and ZDi for i = 1, 2. The

CID sensors are located a distance K R behind the drum hub. The sensor

coordinates are XSi and ZSi . Present cut locations are given by 
(X CC'

Z CC ) and (XFC, ZFC).



c0.I-
•r
Sr

4-
GJ
d

S.
N

NE
L
R1
d

C
N

N

N
t^

v
+3

i=

•v

0
0

Ns
N
cn

c
b

ar
c
•r

N
i
M

(Li

iT
•r
Ll_



5

The shearer chassis contacts the conveyer track at points

(X10 Z 1 ) and ( X21 Z2 ). The motion of the shearer is computed assuming a

constant velocity in the X direction. That is

X 1 = VT + X1I

where T is the integration interval of 0.05 s, and X 11 is the initial

value of X 1 , and V is the chassis velocity given by the profile in

Figure 3-3. In the figure,

TN = LF/Vm

T'F=TN+Tm

	

L F 	length of face to be cut (ft)

V = maximum velocity

	

M	 b lti3	 . Sh. I". ^CIL 18 POOR

The quantity Tm is the time to accelerate to the maximum velocity Vm^

which in most cases was 0.5 ft/s (30 ft/min). The value of T m used was

6 s, and the deceleration time T F - T N is equal to Tm . The time T  is

the total cutting time of a given simulation run.

The chassis pitch angle a is computed from the difference

in z coordinates at the chassis contact points. The shearer chassis is

illustrated in more detail in Figure 3-4. Alpha is computed as

X 2 = X 1 +C cos a
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Z10 Z2 = Z coordinate at X1 and X2

a = sin
	

Zl 	 Z1

finally, Z coordinates of the shearer contact points are

computed from the track. The track simulates the effect of placing the

5 ft conveyer sections on the bottom just cut. This is necessary

because the 5 ft conveyer section effectively filters the bottom cut and

provides a smoother surface than the cut itself. The procedure for

determining the track is recursive, placing the sections one at a time

on the bottom cut. The procedure is as follows:

Let

XS , Zs = coordinates of start of a conveyer section

X F , ZF = coordinates of the end of the section

The above points may or may not be on the bottom cut. An initial value

for X F and ZF is found by searching the bottom cut profile until

(X S - XF) 2 + (ZS - ZF ) 2 > 25

Once the probable conveyer endpoint is found, it is necessary to deter-

mine if any point on the cut is higher than the endpoint (X F , ZF ). The

highest point on the cut between (X S , ZS ) and (X F , ZF ) is found and

designated (X 
H, 

ZH ). The following logic is then used:

It
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(1) If Z  < 7_
F1
 then (XF , ZF ) is the actual conveyer endpoint

(2) If Z  > 'ZF

)

Y	 tan 	 ZH - Z S )/(XH - XS)]

and X  = X S + 5 cos Y

Z F = Z S + 5 sin Y

The above procedure computes the conveyer coordinates. If the point

(X H, ZH ) is higher than (X F , ZF ), then it must determine the slope r and

new endpoint of the conveyer. The procedure repeats with (X S = X F ) ar.d

(7. S = ZF ) until all sections have been placed.

3.2.3	 Ranging Arm Geometry_

Orientation of the ranging arms relative to the shearer

chassis is shown in Figure 3-4. Pivot points of the arms are located a

distance 2a (163 in.) apart and a distance b (35.25 in.) above the con-

veyer pan. The ranging arm angles relative to the shearer are a l and

92 . Note that 
o
  is positive in a counterclockwise sense, while B2 is

positive clockwise. Chassis and ranging arm parameter values are given

in Table 3-1.

Figure 3-5 illustrai.es details of the right ranging arm.

The shearing drum hub is located t (74.5 in.) from the arm pivot point,

at an angle eH (4.04 deg) from the horizontal. The nominal actuator

displacement X  is 23.25 in. The actuator requires an additional

displacement of 3.255 in. to raise the arm 4.04 deg and set S to zero.
w,

..OD Uc
OR'GINAL O-P,

 18 p0©R
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Table 3-1. VCS parameter Values

W	 = 28.324 in.

D	 - 81.0 in.

c	 = 35.25 in.

a	 = 81.5	 in.
L	 = 74.5 in,

X a = 23.25	 in.

r	 = 27.0 in.

- 69.3256 deg

0  = 4.041 deg

3-12
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Figure 3-6 shows the geometry of arm elevation. The triangle of

interest is formed by W, D and X o	XA . From the law of cosines

( X o + XA ) 2 = W2 + D 2 - 2WD cos (^ + OH + e)

This relationship can be solved for the ranging arm rigid position.

Thus,

_1	 W2 + D2 - (Xo -
 XA)'

e=cos	 -(^+e)
2WD	 H

and

XA 	 W2 + D2 - ND cos	 + off + a)	 - Xo

when the arm is horizontal

e = -4.041 deg

XA = 3.2547 in.

The range of X A is between 1.32 and 9.5 in. for

XA	 1.32 in.	 o = -14.6442 deg

XA = 9.5 in.	 o = 32.2444 deg

3-14
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Once the angles 
pl 

and 
02 

are known, it is possible to

compute the coordinates of the hubs of the shearing drums (Xp l , ZOl ) and

(X02 , ZD2 ). When the shearer chassis rotates an angle a in pitch, it

does so by rotating about the track contact which is lowest if about the

point with the smallest Z value. The coordinate equations are as

follows.

XDl = X
T + A l cos a - b sin a + z cos (al + a)

Z
pl 

= ZT 4- Al sin a + b cos a + a sin ( ol + a)

XD2 = XT - A2 cos a - b sin a - R cos (a - s 2 )

Z02 	 z  - A2 sin a + b cos a- a sin (a- 02)

The parameters X T , ZT , A l , and A2 vary, depending on which contact point

is acting.as the pivot. This is determined by the algebraic sign of a.

If

a > 0	 Al = a + C/2

A2 = a - C/2

XT
=Xl

z  = Zi



and for any a < o, q
1 = a - C/2

A2 = a + C/2

XT = X2

ZT = Z2

F

r

fi

i

t

There are several sensors associated with the

shearing drum and the CID. These sensors indicate the elevation of the

shearing drum relative to the CID and to the last cut made. The

geometry of the CID sensor mounted on drum 1 is shown in Figure 3-7.

The CID is mounted on an arm extending from (XD1' ZD O to (XP1' ZP1 ) adistance KR from the drum hub. This arm is maintained parallel to the

chassis, so that any pitching is reflected in the orientation of the arm

relative to the seam. The distance P 1 is measured by a displacement

sensor, Ideally, it is desirable to measure the drum height relative to

the CID in the vertical direction indicated by (X , Zn
P1	 P1) adX( B1'ZBI ). However, when a is nonzero, the distance is measured in the

direction (X P1
1 ZP1) to (XS11 ZS1)' P 1 is therefore

P1 =
	 (XSl °,X P ) 2 + (ZS1 - ZP1 ) 2	 - r1 

The coal depth at any instant is	 c l which is measured vertically and is

cl
(X S1- XCl)

2 + (Z S1_ ZC1)2

0^ ^I^
L
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;where XC1 = XW Figure 3-8 shows the geometry of the last cut follower

for drum 1. The distance Q 1 is the height of drum 1 relative to the

last cut. This measurement is also effected by pitching and is given by

V(X
D1 - Xal) 2

	 2
+ (Z D1- ZLCO	 - r

Figures 3-9 and 3-10 show the sensor geometry for drum 2.

The equations for the measurements are the same.

3.2.4	 CID Sensors

The coal interface detectors or CIDs are of two basic

types: proportional sensors which measure coal depth, and discrete

sensors which indicate the presence of coal or rock. The proportional

sensors are the nucleonic sensor which measures depth by counting

backscattered Y radiation from a cesium source, and a natural radiation

sensor which measures depth by counting natural background radiation

transmitted through the coal. Both of these sensors are mounted behind

the shearing drum. The descrete sensors are a sensitized pick and a

combination impact penetrometer-reflectometer. 	 The sensitized pick

measures forces exerted on instrumented cutting picks to determine rock

presence, while the penetrometer-reflectometer measures surface

hardness and reflectance to sense rock. The pick is of course mounted

on the shearing drum while the penetrometer-reflectometer is mounted

behind the drum.

3.2.4.1	 Nucleonic CID Model

The calibration curve for a 20 in. CID sensor is

shown in Figure 3-11. There is a cesium source emitting gamma radia-

OF TI-Vi,

j\j)
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tion, which is backscattered by the coal. Therefore, the thicker the

coal, the more backscatter. Thus, the number of counts per second

increase with the coal depth. Two basic sources of error are modeled

for this sensor: a variation in the number of counts received in a

given inteval, and the effect of air gap.

The curve in Figure 3-11 illustrates the rela-

tion between coal depth and the number of counts acquired in 8 S. The

counts represent the average number of counts received in this interval.

The number of events occurring in a given interval is Poisson distri-

buted, with density function

	

1	 XT
f^^^ _	 XT 1 	 e-	

i = 0 3 1 9 2, ...

where X is the parameter of the distribution - in this case, the average

number of counts per unit time. For a given time interval T, the mean

and variance of the Poisson distribution are

u = XT

CY = X T

thus, as the interval T is reduced, she average number of counts

decreases as well as the variance. The measurements become noisier,

however, because the ratio of standard deviation to mean becomes larger

as T decreases.

The air gap error occurs whenever the source or

detector is not in complete contact with the coal surface. In this

case, radiation short-circuits the coal and is picked up by the sensor

3-24
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directly, thereby resulting in a larger number than would normally be

expected for a given depth of coal. When the calibration curve shown in

Figure 3-11 is used to interpret this data, the coal depth indicated by

the sensor is larger than that actually present.

The simulation of this sensor was as follows:

(1) Coal depth is computed every 0.05 s and averaged for t

seconds.

n = T/0.05

n

r'A	 n	 F1
i=1

(2) Calibration curve fCA (X) is used to determine the

number of counts/second for e A inches of coal

C	
fCAL (':A)/3

ACT = C'r

(3) Poisson distributed noise is added to CACT with mean

and variance of CT

C N	 CACT + P(CT)

,,p, l?'0I)UCj. ),IT.ITY OF THE

OA 'INAL PAGE IS POOR
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(4) Uniformally distributed noise on the interval (0 - 250)

counts/second is added to simulate an air gap of

0 - 0.5 in.

C N	= C  + U(0 - 250)

(5) The calibration curve is again used to interpret C  as

inches of coal

C 	 = fCAL-1(8CN)

The resultant value of 
cN is treated as the CID output,

available every T second.

3.2.4.2	 Natural Radiation CID Model

The natural radiation sensor measures background

radiation transmitted through the coal, from the naturally radioactive

overburden. Figure 3-12 shows the calibration curve for a 3 in. crystal

detector without shielding. Since the radiation is transmitted rather

than backscattered, the number of counts decreases as coal depth in-

creases. The number of counts is considerably lower than that with the

nucleonic sensor and, as a result, the natural radiation sensor is in-

herently noisy. Since there is no radiation source, air gaps have

little effect on the sensor performance. The simulation is the same as

with the nucleonic sensor, except that the natural radiation calibration

curve is used, and air gap noise is omitted.
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3.2.4.3	 Sensitized Pick Sensor

The sensitized pick sensor is implemented by

instrumenting picks on the cutting drum. The picks are instrumented

with force transducers whose outputs are analyzed to detect the signa-

ture of coal, rock, or air. A minimum of two kicks is used, spaced 180

deg apart. Thus, there is a pick latency of 0.66 s based on a nominal

drum opening of 45 rpm. That is, new data is available only every 0.66 s.

Since it is desirable to measure rock presence, it is necessary to

interrogate the picks only when they are in a region near the interface.

The simulation model determines the presence of

rock, coal, or nothing, under the pick in an approximately 15 deg region

near the top of its rotation. Figure 3-13 shows the point examined on

the top drum. These points are vertical from the drum hub, 3 and 6 in.

in front of the hub. That is

XD11 7D1 + 27 in.

XD1 + 3 in., ZD1 + 26.833 in.

XD1 + 6 in., ZD1 + 26.325 in.

Each of these points is examined to determine if they are in rock or

coal. It is also possible that this area may have been previously cut

and the picks are therefore in air.

The sensitized pick sensor model assumes that a

fixed force threshold would be established and any output above that

level would be rock. Also, the lower forces resulting from cutting coal

or air yield the same output. The simulation model outputs a 0 or 1
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every 0.66 s, depending on whether rock or coal/air is sensed, respec-

tively. A 0 is outputted if any of the 3 test points indicate rock.

The output of the sensor is assumed to be a 2 when it is interrogated

and the data is not fresh. To simulate errors in detection of coal or

rock, the 0 or 1 output which is modified to be correct a percent of the

time is, 90 and 80 percent.

3.2.4.4	 Impact Penetrometer-Reflectometer Sensor

The impact penetrometer-reflectometer detects

the presence of coal or rock by sensing the optical and hardness proper-

ties of the present cut surface. The penetrometer is really not a

penetration device, but rather taps the cut surface. The deceleration

of the impact device can be interpreted to indicate the hardness of the

surface. Since rock -is harder than coal, it can be detected by this

device. The ref lectometer measures light return from the cut surface,

and since there is a reasonable difference in color and reflectance

between coal and rock, the two materials can be detected optically. The

sensor, illustrated in Figure 3-14, contains a penetrometer and two

reflectometer	 which are voted to determine the sensor output.

This sensor was simulated by determining the

presence of rock or coal at the CID location, i.e., behind the shearing

drum. The simulation model would output a 0 for rock and a 1 for coal.

It was assumed that the sensor could provide data as often as required.

The percent correctness could also be varied to simulate sensor errors.
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3.2.5	 Actuator System

A diagram of the VCS hydraulic system is shown in Fig-

ure 3-15. A single hydraulic pump, regulated to 2200 psi, supplies all

the hydraulics on the shearer. Each ranging arm is actuated by a

hydraulic cylinder, which is controlled by a control valve through a

dual pilot check valve and a needle and check valve. The basic system

is a rate command system where a control valve displacement causes the

cylinder to move at a constant rate, determined by the amount of valve

displacement. In manual operation, the ranqinq arm height is adjusted

via the control valve, and held in place by the dual check valves, when

control is stopped. The needle and check valve are used to compensate

the system when lowering the arm. The cylinder piston has different

areas on each side because the actuator ram is attached to one side.

Thiscauses the rate at which the cylinder retracts to be greater than

the rate at which it extends. The needle valve is adjusted to restrict

the flow on retraction and equalize the two rates. The needle valve

also prevents chattering when the arm is lowered.

Figure 3-16 illustrates the simulation model of the

hydraulic actuator and ranging arm dynamics. The input deadband repre-

sents an electrical threshold of the control valve, whose input can

range from ±8 V, with 2.4 V required to produce any valve motion. The

control valve is modeled by a 6 Hz second order loop with a 0.9 damping

ratio. This second order loop is also rate and position limited. The

rate limit is adjusted so that the valve reaches its maximum travel in

0.25 s. The maximum valve travel is limited to ±1, with the valve being

fully open at ±1 and closed at zero. The maximum flow rate available is

8 gallons per minute (GPM), while thecontrol valve capacity is 10 GPM.

:
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Thus, the 1.25 gain, limit, and 8 gain simulate this effect. When the

valve displacement is 0.8, the flow Q
V
 is 8 GPM and limits at that

valve.

The gain K
C
 consists of three parts, which simulate the

dual pilot check valve, a flow split between ranging arms, and a supply

regulator delay. The dual pilot check valve is simulated by a deadband,

where no flow is experienced until the flow rate reaches 5.6 GPM. At

this time, the valve opens and flow jumps to 5.6 GPM and is proportional

from there to 8 GPM. This check valve represents the principal non

linearity in the system, and in conjunction with the control valve rate

limit, creates an effective delay. It takes 0.8 s for the control valve

to open in response to an 8 V command, such that 5.6 GPM flow is achieved,

resulting 'in a delayed response to an 'input. There is an additional

delay due to the supply regulator. If no flow is required, the pump out-

put is diverted by the regulator, and when a flow demand occurs, the

regulator must respond, and restore flow to the system. This procedure

takes 0.33 s. If one cylinder is in use or has been in use in the last

0.5 s, this delay does not occur because the pump is already on line.

The flow split logic simulates the effect caused by simultaneous opera-

tion of both ranging arms, when the pump flow must be shared between

the two cylinders. This sharing of flow reduces the ram extension rate

by a factor of two. However, the retraction rate remains constant since

the arm weight aids in this direction. Figure 3-17 shows a diagram of

the gain AF which varies as a function of 'load torque to simulate flow

split.

The remaining portion of Figure 3-16 comprises the actuator

cylinder and ranging arm dynamics. The actuator model is a simplified

linearized hydraulic model assuming constant supply pressure, and a rigid

coupling between the actuator and ranging arm. Defining the following:

x

rr

,f
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Figure 3-17. Flow Split Gains
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Cx = a

a

CPL	
OP L

Ka = fluid bulk modulus

X	 = valve position

x  = ram position

q	 = flow rate

P	 = load pressure

A	 = piston area

V	 = volume of fluid

D 
	 = ranging arm lever arm

Y1 1 = leakage coefficient

T
L
 = load torque

The actuator equation of motion is given as follows:

A X 	 CXX - 2K
B P
	 (Cp + JL') P

The load equation (ranging arm) is:

T = AD S; P = JO + BO + TL

REPRODUCIBILITY OP THE
ORIGINAL PAGL Iu POOP
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Rearranging:

2K8 
P=C xX - (Cp +P, I ) P - AXA

J6 = -80 + ADF P - TL

To find the relation between k
A
 and 0, the expression from Section 3.2.3

is used here:

XA =	 W2 + 02 - 2WDcos( '+ OH +"'0* )	 - Xo

or

(XA + X 0 ) 2 = W2 + D2 - 2WDcos(c + OH + 0)

Differentiating with respect to time yields

WDsin(^ + OH + e) .

X  =---(X-A—+--X -
o 


 t3

If the leakage terms are neglected, the resulting equa-

tions can be diagrammed as shown in Fi gure 3-16. There is an additional

second order loop shown in this figure, whose output is subtracted from

0 to yield the ranging arm elevation angle S. This loop is a 4.7 Hz

0.05 damped second order loop used to simulate arm flexibility. The

amplitude of this added term was chosen so that the simulation output

agreed with actual test data.

Figures 3-18 through 3-20 show the open loop response of

the actuator to step inputs. The input was an 8 V positive step for

l
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3 s, zero V for 3 s, a -8 V step for 3 s, then zero again. This is the

response of a single actuator so the supply regular delay is very evident.

The total of this and the effective check valve delay is approximately

0.5 s as shown in the figures. The rate oscillations shown in Figure

3-19 are due to the flexibility model described above.

The actuator is used in a closed loop configuration in

the VCS, such that its displacement can be commanded. The ram is instru-

mented with a position sensor and a loop closed around it with a gain

of 170 as Shawn in Figure 3-21. This gain is such that a 0.15 in ram

error will generate 2.4 V and thus exceed the control valve threshold.

Figures 3-22 through 3-24 show the actuator response to a step command

to extend to 7.5 in. It is important to note the pronounced limit cycle

behavior present in this response, which is clearly seen in the rate

time history. Lowering the loop gain will eliminate this behavior at

the expense of positioning.accuracy. Despite this limit cycle behavior,

the loop was operated as shown in the figures because studies showed

better mining performance than with lower gains.

3.2.6 VCS Control Laws

The basic VCS control laws, shown in Figures 3-25 through

3-29, include various combinations of CID and position sensors. Through-

out these control laws, a sensor hierarchy was employed. The discrete

or rock detecting CIDs were given the highest priority of the CID sensors,

and the shearing drum would be moved away from the CSI whenever rock

was detected. The proportional CIDs had the lowest priority and provided

the control for the drum when it is in the seam and within prescribed

limits of the last cut. The highest priority sensor of all was the last

cut follower, which maintained the present cut to within +2 in. of the

last cut. If either the discrete or proportional CID data generated

drum commands which would cause the cut to deviate more than +2 in.,

the drum displacement was limited to +2 in. until CID data again com-

manded the cut within these limits.
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Figure 3-25. CID Control Law
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Figure 3-26. CID and LCF Control Law
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Figure 3-27. Pick Control Law
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CID, PI'

Figure 3-28. CID and Pick Control Law
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Figure 3-29. CID, Pick and LCF Control Law
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The control law for the proportional CID alone, shown in

Figure 3-25, is used for both the nucleonic and natural radiation CIDs.

The desired drum height change command A z is simply the sum of the

measured coal depth c and the drum position relative to the CID P minus

the desired bias C 	 The P sensor maintains the drum at the same dis-

tance from the skid plane as the CID, and the coal depth minus bias

provides the cut error. A x is computed only when there is current CID
data available.

Figure 3-26 is a flow .chart of the proportion CID and LCF

control law. The LCF measurement Q is assumed to be available as often

as necessary; in this case, every 0.05 s, the iteration rate of the simu-

lation. If CID data were not current, the LCF was checked for +2 in,

and the drum commanded, if necessary, to maintain this limit. If CID

data were available, a Az was computed and used if JQ) was not greater

than 2 in., and would not be greater than 2 in. if A z was used. If Q

exceeded limits, the A z was modified to maintain the 2 in. limit in the

direction determined by CID.

Figure 3-27 shows the control law for the pick sensor only.

To use this sensor, the drum is raised until rock is detected, withdrawn,

and alternately raised unti'i rock is encountered again and the cycle

is repeated. Controlling in this limit cycle manner allows the shearing

drum to follow the CSI. The rate of drum rise and withdrawal were adjusted

to yield a good cutting performance. The control scheme used a nominal

depression of 0.25 in. and a noininal withdrawal of 0.5 in. If current
pick data is available, a A z is computed, depending on whether coal or

rock is sensed. If the same sensor indication occurs several times in

a row, the depression command is integrated until the sensor indication

changes. That is, if ts,e pick indicates rock the drum is withdrawn 0.5

in. If the next rear`og is a rock indication, A z is -then set to 1 in.,

then 1.5 in., etc., until the sensor indication changes state.

3-52



lr

The control laws 'or proportional CID arid pick, and CID,

pick, and LCF are shown in Figures 3 . 28 and 3 . 29 respectively. These

are essentially combinations of the previous control laws. When the

pick is used with other sensors, it determines only the withdrawal of

the drum; the depression is controlled ')y the proportional CID. The

last cut follower, when used with other, sensors, has the highest priority

and overrides the other command,;.

These basic control laws were used with other sensors as

well. The same CID schemes were used with the natural radiation CID

providing proportional information. The pick control law was also used

with a penetrometer, and the penetrometer with an LCF. Drum slaving

control, which will be discussed later, uses a control law essentially

like the CID and pick law with the slaving sensor providing the proportional

data.

3.2.7	 Mine Model

For the purpose of simula:ion, it was necessary to develop

a mine model in which to evaluate the US control schemes. To achieve

this, several 1 pass mine surve,>> were ligitized and analyzed to provide

an information base with which to generate subsequent simulated mine

data. The statistical data obtained from these mines, including seam

slopes, CSI variances, and seam heights, are presented in Table 3-2.

An auto-correlation analysis of the top and bottom of each mine was per-

formed, along with the corresponding power spectral density. The auto-

correlation and power spectral densities of the York Canyon and Robinson

Run mines are illustrated in Figures 3-30 through 3-33. A cross-correla-

tion analysis was also performed between the top and bottom of the mines.

The maximum cross-correlations rF the six mines are also shown in Table

3-2. Figures 3-34 and 3-35 shoe , the cross-correlations of the York Canyon

and Robinson Run mines, respectively. It can be seen from these data

ORIGI,1AZ, ^1^1 r	
J	 ', l^^iL
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Table 3-2. Mine Statistics

SLOPE BIAS
STANDARD

CROSS
CORRELATION

MINE
(IN/5 ET) (IN)

DEVIATION

BETWEEN TOP(IN)

SHOEMAKER BOTTOM -.0204 50.01 4.63
.91

SHOEMAKER: TOP -.0214 117.7 4.88

F=EDERAL #1 BOTTOM -.0314 17.24 2.69
.75

FEDERAL #1 TOP -.0349 116.0 3„81

ROBINSON RUN BOTTOM 0.243 -1.5 5.18
.85

ROBINSON FUN TOP 0,236 96.06 4.57

MARTINKA BOTTOM 0.0527 30.8 10.84
.98

MARTINKA TOP 0.057 86.01 10.49

FEDERAL #2 BOTTOM -.0397 51,74 4.86
.27

FEDERAL #2 TOP .0218 136.41 2.27

YORK CANYON BOTTOM 0.513 38.6 3.07
.24

YORK CANYON TOP .486 113.7 2.283
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that, statistically, there is a great deal of similarity between the

mines considered. The CS1 variances and correlation data are quite

similar. In addition, except for the York Canyon and Federal #2 mines

there was a significant degree of correlation between the top and bottom

which will be of some importance when drum slaving is considered.

For the simulation, it was necessary to have more than

the single CSI profile for a given mine. To do this, a procedure was

developed to generate random data with the same statistical and spatial

correlations as the original surveyed data. The profile generation

scheme is based on the following theorem of conditional distributions

with multiple correlations:

Given: a. X = (X 1 , X2 , ..., XN ) r a vector formed from realiza-

tions of a set of N jointly normally distributed random

variables (X l , X2 , ..., XN ) which are all N(0,1).

b. A = (p ij ) an NO correlation matrix of the N sequence

elements

T

C '	 = (PN+1,1' PN+1,2' " " PN+1,N)' a vector (Nxl) of

desired correlations of the (N+1)'th point and the pre-

vious N.

The theorem states that the density of the (N+1)'th point

given X, is N(X N,+1 1 aTA" l^,l-BTA-I N) or normal with mean BTA-17 and

variance 1 - BTA-1B.

The following procedure was used to generate multiple profiles

from the original data:
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1. The original data were detrended by fitting a regression line

and subtracting it off. This results in essentially a zero mean

process. The standard deviation was then estimated and divided

out.

2. Correlation analysis showed that the mine profiles are ap-

proximately exponentially correlated.

dplj_e^D

where d is the distance between points i and j and D is the

correlation distance. D was found to be between 25 and 50 ft for

i.he mines analyzed.

3. To generate a new point on a mine profile, all points original

or generated wd thin D ft of the new point are found s and become

the elements of X.

4. The matrix R and vector Q are formed using the spatial relation-

ships of the selected points and the above correlation function.

5. A is inverted, the mean and variance found, and a new point

generated using a random number generator.

Figures 3-36 and 3-37 show the top and bottom profiles

for the Robinson Run mine. Five profiles were generated along with the

original data shown. These are not 3 dimensional plots but rather the

6 profiles biased apart for plotting purposes. It can be seen that the

generated profiles show similar characteristics to the original data.

Figure 3-38 presents a 3 dimensional view of a 12.5 by 50 ft section

of this simulated Robinson Run bottom. It can be seen that the randomly

generated profiles form a realistic surface.
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The mine data were used in the simulation to provide current

CID measurements and initial conditions. For a simulation run, the first

or the original mine profile was used for initial conditions, providing

the last cut data; and to form the conveyor track. The last cut, taken

as the CSI on the top minus the desired bias, and the CSI on the bottom

plus the desired bias, therefore represented a perfect cut. The track

on which the shearer moved was formed from this perfect last cut. On

subsequent mining passes within the same simulation run, the last cut

was that actually cut, and the track formed from the actual cut surface.

3.3	 SIMULATION DETAILS

3.3.1	 Initialization

The simulation structure follows the diagram shown in Fig-

ure 3-1. The basic iteration cycle of the simulation was 0.05 s, and

the actuator dynamics were integrated at a 0.01 s rate. All the simu-

lation runs were made using the same initial conditions. The shearer

was positioned such that drum No. 1 was cutting the top, with the cut

height initially set to a perfect cut, that is, the interface height

minus the bias. Each mine interface profile was modified so that the
first 30 ft were level. This allowed easy initialization, since a. was

zero in this level section.

Fixing the front drum with a = 0, fixes the position of

the shearer chassis and the rear Arum in the mine. The initial values

of X 1 and (X21 Z 2) are then computed as follows:

Given initial XDI, 
ZDi 

and 'L1,

Z	 Z - b
B 1 = sin-1( D1
	 1	 )

.a
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thus

X l = XU1 - a 4- c/2 - L cos 01

X 2	X1 + C

Z 2 = Z 

The rear drum is then set to a perfect cut position, given ZD2

02
	 - sin-1 (Z

1
 + b + ZD2,

2	 L

The initial values of Z Dl , Z l , and ZD2 are obtained from the mine profile

data.

The cut surfaces were initialized as discussed in Section

3.2.7. The last cuts were assumed to be perfect, and the track formed

from -this perfect cut. The interface data is stored at 5 ft intervals

and therefore the initial last cuts and track replicate the interface

and this data spacing. Present cut data are stored at 3 in. intervals

	

uniformly across the face. Therefor 	 on repeated passes, the last cut

data has this resolution.

3.3.2	 Cut Surface Determination

The determination of the cut surface, the surface which

remains after the shearing drum has passed, is critical to the simulation

of VCS operation and performance evaluation. Since CID sensors ride

on this surface, and measure the coal thickness from the cut surface

to the interface, the cut surface simulation affects CID, and, therefore,

VCS performance. Evaluation of cutting performance, i.e., rms errors,

coal taken and left in error, is also affected by the correctness of

the cut surface representation.
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The cut surface algorithm starts by storing the Z drum

coordinates at 3 in. intervals along the face. To find the cut height

at some location x, the drum positions on either side are checked.

Figure 3-39 shows this procedure. The cut at point x re-

sulting from drum position N is the point where the drum radius r inter-

sects the line X = x. The N'th point is determined by the nearest 3

in. interval to x, and all the points in the range N - 7 to N + 7 are

checked for their contribution at x. The cut at x is taken to be the

highest radius intersection at that point. In Figure 3-39, this would

be the cut from N + 1. The cut Z coordinate is given by

Z = Zg(N + 1) + 
V r

2 - (x - Xn (N + 1))2

3.3.3	 Performance Evaluat ion

A number of quantities are computed for the performance

evaluation of the VCS. Figure 3-49 presents an example of the perform-

ance evaluation computer output. The basic measure used is the rms of

the deviation of the actual cut from the desired bias thickness. The

average of the absolute value of this error is also computed, along with

volumetric coal errors. The excess coal left is that volume of coal

which is thicker than the desired bias, and the excess coal taken is

the volume of coal which is thinner than desired. The volume of rock

taken is also computed. The percentages shown after each of these quan-

tities represent the percent of the total volume of material taken, shown

at the top of the printout. The percent time in rock is the percentage

of the total cutting time that the drum was in rock.
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3.4	 BASELINE SYSTEM PERFORMANCE

3.4.1	 Philosophy and Specification of Baseline System

The baseline system involves specifying a system concept

which will solve the required problem and provide a baseline or standard

against which to compare the results of parameterization studies and

performance of other system concepts. The baseline is generally the
	

t

simplest system which will solve the problem. To this end, a baseline

concept was specified for the VCS. The baseline sensors include a nucle-

onic CID for a proportional measurement and a sensitized pick for a rock

presence sensor. The last cut follower is included to maintain the cut

within a given distance of the last cut. For these studies, this dis-

tance was chosen to be +2 in. Finally, to cut bottom coal, drum slaving

is used on the bottom drum.

3.4.2	 Performance of Baseline System

3.4.2.1	 Performance as a Function of Sensor Location

Figure 3-7 shows the geometry of the CID loca-

tion. The CID is located at distance KR behind the shearing drum. Table

3-3 shows the effect of varying the CID location. It can be seen that

locating the CID closer to the drum results in better cutting perform-

ance. As KR is increased, the delay is larger and performance degrades.

Figures 3-40 through 3-42 show that computer runs were for the 0.75,

1.5, and 2.5 ft displacements. It is therefore desirable to locate the

CID as close as possible to the cutting drum, and with current designs,

the minimum KR is 2.5 ft.
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3.4.2.2	 performance as a Function of Sensor
Output Interval Without Noise

The effects of varying the sensor output

interval, in this case, for the nucleonic CID, are shown in Table 3-4.

A measurement is outputted only at the intervals shown in the table.

Increasing this interval increases the delay from measurement to

i
measurement and also gives a more smoothed measurement, in that the coal

depth is averaged for a longer distance. It can be seen from Table 3-4

that performance degrades significantly as the output interval is

`	 increased, showing that additional delay and smoothing adversely affects

ie	 performance. System cutting performance with a 1, 5, and 10 s delay is

illustrated in Figures 3-43 through 3-45, respectively,.
i .

	

3.4.2.3	 Performance as a Function of Sensor
r	 _-

Output Interval With Noise

`

	

	 Two effects are evident when the sensor output

interval is varied with sensor noise. As seen in Section 3.4.2.2, the

VCS system performance improves with reduction in the sensor output

interval. However, the sensor noise will increase as the output inter-

val is shortened. This is due to the smaller number of counts obtained

in each interval thus resultinq in greater dispersion of these counts.

Since the two effects are in opposition, a clearly defined perfonflance

maximum should exist as a function of output inter- .

t	 Table 3-5 shows this effect for the nucleonic

!	 CID, and for a 3 and 5 in. natural radiation sensor. The 5 in. sensorw

was simulated by scaling up the 3 in. sensor cal ration curve (Fig-

ure 3-12) by the ratio of the sensor areas. It can a seen in Table 3-5

that the nucleonic CID exhibits the best performance at 0.25 s output

,r
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lj

interval. The natural radiation sensors have their best performance at

2 and 1 s for the 3 and 5 in. sensors, respectively. The nucleonic CID

is better over all, having an rms error of 1.33 in. as opposed to an rms
error of 2.05 in. for the 5 in. natural radiation sensor. Figures 3-46

through 3,50 show the nucleonic sensor at 0.25, 1, and 2 s output inter-
val, and the 3 and 5 in. natural radiation sensors at their maximum per-
formance points.

a

3.4.2.4 VCS performance in Different Mines

The statistical data shown in Table.3-2 and

discussed in Section 3.2.7 show that, statistically, the mines surveyed

are quite similar. Several of the previous runs were made on both the

Robinson Run and York Canyon mines. N comparison of results between the

two mines is shown in Table 3-6. It can be seen that the VCS performance

in the cases shown is very similar. The differences are due, essentially,

to the differences between the mines, as shown in Table 3-7. The con-

clusion is therefore that VCS performance is affected very little by the

mine in which it operates. However, mines which are statistically
rougher will show d slightly worse performance than will smoother mines.

Figures 3-51 and 3-52 show VCS performance with a 2.5 ft CID displace-

ment and a l s output interval for the York Canyon and Robinson Run mines,

respectively.

3.4.2.5	 Effects of Nonlinear CID Calibration Curve

I

	

	 The calibration curves for both types of propor-

tional CIDs are not linear in their relationship between coal depth and

number of counts received. For both sensors, the curves flatten out at

larger coal depths. Variation in the number of counts received in a

given interval at the larger depths has a greater effect and produces

larger depth errors than does the same variation at smaller coal depths.

This effect is shown in Table 3-7. It can be seen that at a 1 s output
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4

interval, there is a 61% increase in rms error by going from a 4 to a

6 in. bias. The increase in error is not so evident at larger output

intervals since the dominant effect there is the delay between outputs.

These results show that reasonable performance

Is obtained up to a 4 to 5 in. bias. Results for larger biases will

be worse because of the sensor nonlinearities. Figure 3-53 shows the

VCS performance with a 6 in. bias.

3.4.2.6	 Performance With Various Control Laws

The performance of various VCS control configura-

tions is shown in Table 3-8. These control laws were discussed in detail

In Section 3.2.6. Table 3-8 indicates the rms errors and the percent

time in rock. Comparisons of the data show that the CID, pick, and LCF

offer the best performance, showing a significant improvement over the

CID sensor only. The sensor used here was the nucleonic CID. The pene-

trometer performance appears satisfactory, but is made to look better

because of the limiting effects of the LCF. The CID and LCF offer simi-

lar performance to the CID, pick, and LCF at 2 and 4 in. biases, but

at 0 and 1 in. biases, they have a larger rms error and spend more time

in rock without the pick sensor. Figures 3-54 through 3-58 illustrate

the results of the five cor l-rol laws for a 2 in. bias.

Table 3-9 demonstrates the effect on performance

of introducing errors in the pick sensor data. The CID and pick combi-

nation-is affected somewhatmore than the CID, pick and LCF, with the

latter essentially unaffected by pick errors. It can also be seen in

Table 3-9 that there is little difference between the performance with

11E P.111111 V i...'.LU^1.lI1 .1.. 1.11' THE
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1

'1R ,

80 and 90% correct pick data. Figures 3-59 through 3-62 show the CID,

pick, and the CID, pick, and LCF performance at a 2 in. bias with 90

and 80% pick errors, respectively.

3.4.2.7	 Performance With Discrete CID Control	 *

The discrete sensors, when used alone, provide

a means of taking all the coal and cutting to the CSI. The control law

used for the pick or penetrometer- ref lectometer was discussed in

Section 3.2.6. Results of simulation studies using picks only or a

penetrometer-reflectoreter and an LCF are given in Table 3-10. Per-

formance with the pick control shows that excellent results are obtained

with 100% correct picks. Performance degrades as the percent correct-

ness decreases, but is still acceptable for values between 80 and 90

percent. The percent TIR appears very large for this control configura-

tion, but the percent rock, also shown in Table 3-10, indicates that

only a small volume of rock was actually taken. The pick sensors must

contact rock to produce a change in their output state, and thus be

able to control. As a result, the pick sensors are in contact with the

rock a large percentage of the time, but take very little rock.

The penetrometer--reflectometer control was im-

plemented in the same manner as the picks. While the cutting error

does not appear excessive, the performance is unacceptable. Because

the sensor is mounted behind the drum, and only outputs a discrete measure-

ment, the VCS operates in a severe limit cycle. The LCF limits this

behavior, producing what appears to be acceptable performance. However,

when the penetrometer-reflectometer is used alone, as is also shown

in Table 3-10, the resulting errors are very large. Figures 3-63 and 3-64

illustrate the pick control performance for 100 and 90% correctness while

Figures 3-65 and 3-66 show corresponding runs with the penetrometer-

reflectometer and LCF combination.
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3.4.2.8 Effects of Actuator Dynamics

Table 3-11 shows a comparison between simulation

runs made with and without actuator dynamics, to access the effects of

these dynamics. It can be seen that the control configurations involving

proportional CIDs are not significantly affected by the actuator dynamics

The rms errors increase from 7 to 16% with proportional sensors. It

should be remembered that the VCS actuators are operated in a position

loop which exhibited limit cycle behavior. Therefore, it is seen that

despite this actuator loop response, the VCS performance is still accept-

able,

The only control configuration which was signifi-

cantly affected by actuator dynamics was the pick control. This is due

to the lag introduced by the rate limited hydraulic system. While on

a percentage basis, the performance is significantly affected by the

actuator dynamics, the resulting error of 2.06 in. rms is not excessive.

It may also be possible to achieve some improvement in this error by

modifying the pick control law gains. These gains were selected to

yield good performance with no actuator dynamics and may therefore re-

quire adjustment when used with the actuator.

3.4.2.9 Effect of Variations in Chassis Speeds

All of the preceding results were obtained by

cutting with a chassis speed of 30 ft/min down the face. Results of

varying the cutting speed for different nucleonic CID output intervals

are shown in Table 3-12. It can be seen that at a 0.25 s output interval,

cutting performance is unaffected by cutting speed. However, at a 1

s output interval, the effect of cutting speed is more noticeable. Cutting

speed has a more pronounced effect at the longer output interval because

the system is more sensitive to the distance traveled between measure-

ments.
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3.5 FILTERING AND PREDICTIVE ALGORITHMS FOR VCS

The CID trails the drum and thus does not measure coal seam
thickness at the point the drum is cutting. Hence, it is neces-
sary to develop techniques to predict the depth of coal at the
drum so that the drum can be contrianded to the required height
so as to achieve a desired coal bias. In this section, four
filtering and predictive algorithms for VCS control, using present
cut CID data only and using both present and past cut CID data,
are developed.

3.5.1 Philosophy Behind the Developed Algorithms - The philos-
ophy behind the formulated schemes is to use CID measurements
or estimates of the coal -shale interface (CSI) only in the immediate
vicinity of the prediction point which is at the cutting drum.
This is motivated by the fact that there is no common reference
frame with respect to which the CID measurements of the CSI could
be referenced with respect to each other over an appreciable distance
due to the undulations in the present cut surface (PCS) on which
the CID is riding and due to the ,floor undulations. If the VCS
is doing its job then the C W measurements tend to converge to
a constant value equal to the amount of coal (i.e., bias, B")
to be left and the cut surftice profile will be the same as the
actual CSI. Since the CID rides on this cut surface , it will tend
to measure a constant coal thickness regardless of how the CSI
profile varies. Using measurements or estimates in the immediate
area of the prediction point _ minimizes the effect of a floating
reference frame at the expense of not being able to make an optimum
use of all the CID measurements in the prediction of the CSI at
the cutting drum.

The developed algorithms require a priori knowledge of the
coal-shale interface statistics in terms of the correlation func-
tion and the variance as well as a description of the sensor noise
'n terms of its mean and variance. The question of any adaptive
scheme to estimate the required statistics of the coal-shale in-
terface from the CID measurements is ruled out due to the fact
that there is no common reference frame, as discussed above.

3.5.2 Schemes Using Present Cut Data - The two schemes pre-
sented here use only the present cut CID measurements. The first
scheme uses the present measurement to obtain an estimate of the
CSI at the present point. Coupled with the CSI profile character-
istics, this estimate is used to predict the CSI at the next measure-
ment point and at the cutting drum. The estimate of the CSI at
the next point is then combined with the CID measurement at that
point to obtain an optimum estimate of the CSI at that point.
Once this is obtained the CSI at the following measurement point
and at the cutting drum is made and the process is repeated as
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the shearer proceeds down the longwall face. The second schema	 ,r
uses the present measurement and the immediate previous measure-
ment to obtain an optimum estimate of the CSI at thep	 present point
and this estimate is used to predict the CSI at the cutting drum.
In both schemes the estimates are optimal in the sense that the

3

variance of the estimation error is a minimum.

Before outlining the two schemes, the assumptions and the 	 'k
notation involved are stated as follows.a

3.5.2.1 Assumptions and notation - The output of the CID
is defined as the average coal depth taken over the sensor output
period. Since noise is inherent in any measuring device, the

CID output at the kth measurement (zk) is assumed to be the sum

of the average coal depth (xk) and the CID error in the kth measure-

ment (nk ), i.e.,

Z 	 Jck + nk	( 3.1)

The measurement errors are assumed to be uncorrelated since the

kth measurement error is in no way influenced by the previous
or future measurements. Further, it is assumed that the error is a

zero mean process with a variance a nt . The kth measurement point

on the coal-shale interface (CSI) is assumed to be distributed with

a mean p (same for all k) and a variance ax	 It is also assumed

that the correlation function for the CST profiles is known. For
a perfect cut the final cut surface should have the same profile
as the CSI but B" (bias-the amount of coal to be left) apart from
the latter. Thus the mean u is nothing but B and during the final
pass, the CID measurements would be B" if the control system is
doing a perfect job. The above assumptions are summarized for
convenience:

mean of x  = E{ xk} = }! = B

var {xk} = E{(xk-p ) 2} = Q2

correlation coefficient of xi and xj = pij

E{ nk} = 0

0	 , i	 j

E{ninj} s

larInd = Qn
	

i = j

E{xinj } = 0 for all i and j	 (3.1a)
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It is to be noted that neither the CSI nor the CID measurement
error is assumed to be necessarily gaussian distributed.

The following notation is adopted: R(k+j/k) denotes the pre-

dicted value of the coal-shale interface at (k+j) th point (j - 1,2,3,...),

i.e., of xk+j , using the best estimate of the CSI at the k th measure-

ment point, i.e., ick.

ax .x, is a measure of the correlation of x i and xj and is defined

as

a	 = E{( x.
X . X .	 '	u) (xj u ) }	 R^PROPUCII;IT.I 1'Y OF THE

where U is the mean of xi and xj . It can beOwrz I en in terms of

the correlation coefficient p ij of xi and xj as

ax,.x. - P ax. ax.
tj = ij	 j

where ax. 
and ox, are the standard deviations of x i and xj respectively.

i
Thus, once the variance: and the correlation function of the profiles
are known, ax.X. is known for all x i and xj.

.L
The prediction and estimation errors are defined as

ic(k+j/k) = xk+j - ac(kq•j/k)

xk=xk - Xk

3.5.2.2 Scheme I - Predictor-Corrector Approach - The esti-

mate of xk , the actual coal depth at the k th measurement point,

is obtained by using the predicted value of x  based on the pre-

vious CID measurement and then correcting the prediction with

the new information in the current (k th ) CID measurement, i.e.,
with the difference between the actual current observation and
the best estimate of the current observation, z  - 2(k/k-1).

Thus the algorithm is developed in terms of this predictor-
corrector approach and the estimator R  is of the form
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,J

X  . Vk /k-l) 
'^ gk (Z' k 

- c(k/k-1))	 (3.2)

where gk is a weighting factor to be determined such that the

variance of the estimation error, E{(x k - xk ) 2}, is minimized.

:similarly, the coal depth at (k+j) th point Q - 1,2,...) is pre-
dicted around u, the mean of the coal-shale interface using xk,

the current best estimate:

ic(k+j/k)	 µ + Q) 0	 u)	 (3.3)

whereN3) is to be determined such that the variance of the pre-

diction error., E{.(xk+3 - x(k+j/k))2t, is minimized. The estimator

and the predictor are developed such that they are unbiased, that

%s

xk)- U

E(ic(k+j/k))- N

Thus we have an unbiased minimum variance estimator. The estima-
tion scheme outlined above is illustrated in Figure 3-67.

tat
	 ^;.	 __a. x  CURRENT ESTIMATE

CURONT CID	 +
HEASUREMENT

x(Ic/lc-1	 +_	
a 
	 +

xk^I

u, THE BIAS ( =B"	 PRFVIOUS

PREDICTED VAT.UE	 +	
aj	

+	 ESTIMATE,

AT THE DRUM

.P, THE, BIAS (-B")

Figure 3• ..67. Block Diagram of Scheme 1
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The optimal value of gk , that is, the one that minimizes

the cost function which is the error variance, V a E{(xk-^xk)2

is found using variational calculus approach. Let

gk 4 + CAgk	(3.4)

wheregk is the optimal value of gk and then set

aV	 m 0
aE

E=0

and make this result independent of Ag k . Using (3.2) and (3.4),

- X(k/k-1) - (4 + CA 	 - x(k/k-1)))2}V - E{(xk 

bVI
aC

	

	
° 0 = E{Agk (zk-x(k/k-1))(xk x(k/k-1) -g^(zk-x(k/k-1)))}

C-0

which results in the optimal value of 
gk 

of ( 3.2) as

E{(zk - x( k/k-1))(xk-x(k/k-1))}
gk : _.	 (3.5)

E{(z	 2}k-^ (k/k-1))

Using ( 3.1) and ( 3.1a), (3.5) may be written as

*

	

	 var{x(k/k-1)}	
(3.6)

var {x(k/k-1)} + (111

where

var{x ( k/k-1)}	 E{(xk - X ( k/k-1))2}

'	 k,UURis the error variance a.n prediction. 	 ,; °`.	 . y	 ^^;

1

I
a
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In order to determine the error variance, var{x (k/k-1)), it is

required to find o(j ) of

x(k+j/k-1)	 la + 
aka l 	(Xk-1 	 - ^)	

? x 0,1,2,... (3.7)

Again, using the variational calculus approach, a
(i) 

is found

such that it minimizes the prediction error variance

V1 - E{(xk+j - x(k+j/k-1))21.

Let

%- i = 
ak,l* 

+ etlak-1 (3.8)

Where a W*is the optimal value of ak?1 and then set

aVl
0

' d e	 s^0

Using (3.7) and (3.8)

V 1	E{(xk+j
 - u - (ak-1	+ CAak-l)(xk-1 - u))2}

Vl	

= 0 - E(Aak-1(xk-1-µ)(xk+j-u-otkJ1*(xi,-1-U))}
a

C-o

which results in the optimal value of(j) of (3.7) as

Q
(

^E{(xk-l-u)(xk+j'-,,)}	 02k-lxk+j) _
alc^1	 2	 Q	 a.2

E{C'tc-1-u) } 'k-1

(3.9)

For j	 0, define

(JA

(o)_	 xk,-lxk
('k-1	 N-1 -	 Q2

(3.10)

xk-1

a
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Now expressions for the numerator and denominator of (3.9) are ob-
tained as follows:

QX 	- E{(xk+j-u)(xk-1-u))
k-lxk+j

E{(xk+j-P)(x(k-1/k-2)-u+gk-1(zk-1-x(k-1/k-2)))} using (3.2)

E{(xk+j-U)(ak-2(xk-2-u)+gk-t(zk-l-u-ak-2(Xk-2-u))))
using (3.3)

ak-2(1-gk-1) axk-2Xk+j + gk-1 aXk-lxk+j

Similarly,

aXk-2Xk+j n 
q'k

-3 (1 gk-2) 
Gxk-3Xk+j + gk-2 axk-2Xk+j

and, in general,

6Xixk+^	
ai-1(1-gi) aX

i-1Xk+^ + gi aXixk+^	
(3.11)

for i = 1,2,...,(k-1)

j = 0,1,2,...

Thus the numerator of (3.9) is computed recursively using (3.11).
It may be pointed out that (3,11) need be computed only for x i and

xk+j within the correlation distance and hence the number of

(%i 's and gi 's that are to be stored for evaluating (3.11) are less

than or equal to 2(k-1).
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The denominator of (3.9) can be evaluated as follows:

aX = E{ (Xk - N) 2}
k

s E{((ic(k/k-1) - u) + gk (zk - x(k/k-1)))2}	 using (3.2)

E{(ak_l (xk-1 - µ) + gk (zk--11) - gkak- l(Xk-1 - 
}1)) 2} using (3.3)

a 
ak-lax	 + gk (Qx - ak-laic	 + Q2) +

k-1	 k	 k-lXk	 n

2 2	 2	 2	 2	 2	 }tgkak
-laxk_ 1 g

kak-lane x + 2ak-1 gka^ x - 2gkak-lCr^xk-1 k	 xk-lx

Using (3.10) it can be seen that the terms in the braces cancel
out, resulting in

2	 22	 2 7.
axk ak-1xk-1 + gk(axk - ak-

loxk-lxk + a°)	
(3.12)

The variance of the prediction error may be computed as follows:

var{x(k/k-I)} = E{(x k - x(k/k-1))2}

= E{((	 -}1)xk	 k-1 Xk_1 - )1 )) 2 }	 using (3.3)

a2	 2	 ^	 + 2	 2a
xk	 k- a1 xk-lxk alc-1a

 xk-1

k	 = a2 _	 ^
	ak-1

a

 x	 x	 using (3.10)	 (3.13)xk	
k-1 k
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ra

Thus (3.12), using (3.6) and (3.13) becomes

2	 2 _ 2
(IA	 (I

k ^
xk-1 + 

gk var tINN-01	 (3.14)

The algorithm developed above is summarized as follows:

ALGORITHM I	 k > 1

Filtering:

0%	

*** (k/k-1)	 'X"'(k/k-1))
Xk = x	 + gk(zk

Prediction:

Q)
^X(k+j/k-1)	 11 + Uk-1 x k-1	 j

9k	
variR(k/k-1)J

varti(k/k-1)} + CF 
2
n

var1R(k/k-1)J = CY 
2	 a	 CFO%
x	 k-1 x x

	

k	 k-1 k

CF^

	

(i)	 x 
Ir.-Ixk+j

	

'i-1	 2 	 0,1,2,...
Cr^

x k-1

(0)
'k-1 'k-1

CF.%	

a.-1 
(1-gda^x ixk+,	 L	 x	 x	 + giax x	 i	 0 1 2...

	

j -1 k+j	 i k+j

2
GA	 variMA-01
Xk 

= O'k-l("X'k-lxk + g k
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1

A few remarks are in order.

e. If xk._l and xk+j are farther apart than the correlation

distance of the coal-shale interface then v 	 -► 0 since
xk-lxk+j

0 and hence CA	 + 0, ak_1 + 0 and A(k+j/k-1),Pk-1,k+j ;
k-1 x, k+j

the predicted value of xk+j , becomes p, which is as expected.

b. If the noise variance, an -► 0, then gk + 1 and hence

skk = zk which is as it should be.

c. If the noise variance, a n + 00, then gk + 1 and hence

k = ' Wk-1) which is true, s nce a highly noise corrupte4

observation contains practically no new information.

d. If the variance of the coal-shale interface is large

i . e . , if U X +	 then g ic + 1 and hence xk = zk
k

e. If the variance of the CSI is very small, i.e.,cT 2 + 0
k

then OF ixk + 0 and hence gk + 0 and ak -► 0 and the predicted

value of xk+j is the mean of CSI profile, u and A = u

A. ;Few sample calculations are given illustrating the developed
algorithm.

Sample Calculations:

Initial measurement: z0

Initial estimate xo = x  = z O ;(J	 = Cry + Cr
0	 0

k	 1
or CY

a (j) = 
xOx 

j+l = v x0xj±'- = p	 x0 
j
+10	 Q2	 Q2	 0 Q+l)	

L 

2
x0	 x0	 x0

a = a (0) 
s 

CT

,	

a (1) 
= QxOx2	

etc.
0	 0	 Q2	 0	 a2

x0	
x0
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Prediction:

x(j+1/0) U + a0^)  G0-N)

e.g.	 j	 0: 4X(1/0) - U + (Ap(x0 - 1j)

j	 1: x(2/0) - u + a0 1) (xp u), etc.

var{x(1/0)) - a 2 - at p(T x x
1	 0 1

g	
=	 var{x(1/0)}

1	
var{x(1/0)) j a2

n

xl	 = x(1/0) + g l ( z l x(1/0))

M
F-

xi
	 ap Qx 

0 
x
1 

+ 91 var{x(1/0))

G` k-2
tf

QAx1x2+j = a0(1-gl)6x
0x2+j + 91 xlx2+j

a1 
J)	 ax,x	 /Crx2+j	 1

I  ^a = 
a(0) _ xlx2	 REPRQDUCMILITY Or, THE"

1	 1	
(Y2
	 ORIGIN U I5'.' G1,41 i"S POOR

xl

Prediction:

x(j+2/1) = µ + a1J)(xl_u)

i

.P

t



.^I

{

e.g.	 X(2 /1) = 11 + a 1 (x1 - 11)

U..

x(3/1) W 11 + (x (1) (x 1 -)	 where all) = x
2x3

CY }t

1

and U1	 = a0 (1-gl )ax	 +
1 3	 0 3

glaxlx3
i,

var{ir(2/1)1 _ ax - a
l CA

x

	

2	 1 2

_ vartk(2/1)1
g2	

var{5E(2/1)1 + ann

r

X
2
	 x(2/1) + g2 ( z2 -- x(2/1))

cr	 = a lai x + g2 var[3t(2/01
2	 1 2_	

i

k - 3

. cf_	 8
a 2x3+j _ a

1
(1-$ 	 g

2)^x1x3+1 }L	
%2x3+j

where

ofxlx3+j	
oi0(1~g1) 

ax0x3+j + 9  Qxlx3+j

CY

(j)	
_
	 2x 3+j^

2	 2
UX

2
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V A

aa
(0) 	 x2x3

2	 2	 a2
x2

{

a,

Prediction:

x(3+j/2) s U + aQ) (x2 - 11)

e.g.	 x(3/2)	 11 + a2 (x2 - u),

x(4/2)	 11 + a1) (X2 
- 11), etc.

a^
x

where a(1)	 x 224
a^
x2

and so on.

For an example of prediction at the cutting drum assume that
the chassis velocity is 15 ft/min and that the CID output period
is 10 seconds. Then j = 0 and the prediction at the drum is given
by, say for k=3, x(3/2).

3.5.2.3 Scheme II - Approach Using Present and Immediate
Previous Measurements - In scheme II the best estimate of x k is

obtained as a linear combination of the present measurement z 

and the immediate previous measurement z k-l . That is, the best

estimate xk is sought in the form

xk = 11 + gl(zk-1	
11) + 92 (zk 

- 11)

where gl and g2 are to be determined such that the error variance

V2 - E{(xk xk)21

is minimized. Again using the variational calculus approach,
let

a

S
	

r
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91 : g + '1691

92 = g2 + C2Qg2

where g2 and g2 are the optimal value of gl and 92 and then set

bV2	
bV2

a Q
V C 1 E1.C2 =0 = be  

j Cl=-C2-O

	V2	 E{(xk-li -gi( zk-1-11)-
g2(zk-}1)-Cingl(zk-I-P)-E2Ag2(zk-u))'̀}

av2
	1)C	

- 
Q = E{Agl(zk- l--}a)(xk—}1-91(zk-1-u) g2(zk-fit))}

1 F 1=t 2=

aV2

be2 1^C2=0 
a - E{492(zk-P)(xk-}1-$1(zk-1-11)-g2(zOAM

which .result in

gt (a 2	 + an) + g2ax x	 - ax	k-1	 k le-1	 kxk- 1

>3i ax	 + g2(a2 + a 2 ) = a^
kxk - 1,	 k	 k

Solving for g and g2,

* = 1	 2

gl "k ^naxkxk-1

82 _ 
1

D gk

whereDk = gk + a2a2	 + an
k--1

	and	 gk = Cr2 Cr - vx x + ana2
xit-1 k	 k-1 k	 k



xk = µ + k 
ana

xkxk-l
( zk-l -P) + gk(zk-µ)}

Thus

t

i

5

I1^

The CID coal depth measurement at (k+j ) th point Q - 1,2,...)

is again predicted around the mean of the coal -shale interface
and using xk , the current best estimate:

x(k+j /k) - u + y(j)(xk

whereY (j is to he determined so that the prediction error variance

V3 - E{(xk+j x(k+j/k) ) 2} is minimized. Again using the variational

calculus approach, let

y(j)= Ykj)* + CAyk

then

V3 m E{(xk+j-µ-y(j)*( _4 ) -CAyk (xk-µ))2}

aV3	
= o - E{DY (^ -u)(x .-µ-Y Q)* N -µ))}ae	 k 

xk	
k+^	 k	

xk

e=o

	which results in (3) -	 k	 k+j	 _ kxk+j
Yk

E1,(A µ)2}	 aRk

The numerator and denominator are evaluated as follows:

a	
= E{(xk-µ)(xk+

xkxk+j	
j-µ)}

E{Dk anaxkxk-1(zk-1 µ)(xk+j -u) + Dk gk(zk-^1)(xk+j-µ)2}

using (3.15)

_ 1 a2o	 a	 + 1 
g a

Dk n xkxk-i xk-lxk+j Dk k xkxk+j



a— = E{(xk	
k-N)2}

x D

2 E{`anuxkxk- Y(zk
-1-") + gk (zk-u)) 2} using (3.15)

k

2	 1 2	 2	 1	 2	 2	 2	 2or QXk Dk 
tlxkxk-lDn + D2 gic{^xkxk-l^n + (Qxk + an)gk}

J
The variance of the prediction error can be computed to be

ver{`c(k+j/k)} 	 2	 - YQ) cr„
xk+j	 k	 xkxk+j

A summary of the algorithm developed above is given below.

ALGORITHM II	 a

Estimation:

1	 2	 _

xk - N + D  
{U	

Oxk-lxk tt 
(zk-1-- 

1 4) + gk(zk-p)}

where

2 2	 4Dk gk + Qnt^
xk_l 

^n

2	 2	 2	 2 2and	 gk	 trx 	ox - a.,
	 x + or  CF

k-1 k	 k-1 k	 k

Prediction;

^X(k+`/k) - u + Y j) (xk - P),	 j - 1,2,3...

where
Q^

(j)	 xkxk+ j
Yk	 -	 2

6n
x 
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I

R.	
Q	

n 
1 is	 a 2 + a

lkxk+j Dk xk-Ix
 
x
k-lxk+j n Sk xkxk+j}

	

2 9k 2aQ	 D1 ax x an 
+ 2 ax x a2 + (02 + Q 2 )g }

	

k	 k k-1 k	
D 
	 k-1 k n
	 xk	 n k

Note that:

a. as an ♦ 0, 
xk ♦ z

k

b. asa2 +cc^-► µ
I	 n

C. as aX -+ O, 2 +
k

d. as a2 + w, ick ♦ x
x 
	 k

which are as expected.

Sample Calculations:

Initial measurement: z0

Initial Estimate: x0 = x0 = zO , aX	 aX +a2

	

0	 0	 n

a. Prediction:

XQ /O)	 U + YO^
)

(x0 - P) j = 1,2,3,...

where
k	 a

(j)_ x0x
YO 	 2

G'%
x0

k	 1

2
{	

X1	
µ + Dk{ax0xIan (zO _ u) + 9 1 (z i - u)}

s

t	 Di - 61 + a 

2

na 

2

0 + an
4

$1 = o'X a 2 - a2	+ a2 a2
0 1	 x0x1	 ° x1
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b. Prediction:

GA(j)	
X I x +l

where Y

1	 ax̂l

J = 1,2,3...

GXIj+l = Da axOxlo x0X j+l an + 8laxlxj+l}

g

CAA	

^^ {CT anI
 + 2iax^>xlan + (Cr 1 + an)gl}

1

and so on.

3.5.2.4 Comparison of the Two Schemes - The first scheme is
intuitively appealing in the sense that it is similar to Kalman
Filter of nz ode_n control theory. Any error due to nCS undulations
is minimized by this scheme and it can be shown for some special
cases that it results in less prediction error variance compared
to scheme 11 and it is fair to assume that this is true in general
cases. However, since it is so vitally dependent on all the corre-
lations within the correlation distance it is to be expected that
any errors in the correlation function of the CSI profiles result
in an increased prediction error variance. Scheme II does not
suffer from this drawback as much as scheme I since it is dependent
on only the correlations of points which are close together.
Further, it is computationally sin(pler and so is easier to imple-
ment. However, it is more sensitive to PCS undulations as the
algorithm depends on a previous measurement.

It may be pointed out that when any of the measurements is
zero, say due to cutting the rock, then the drum should be lowered
by B" and the control, algorithms are started afresh (i.e., set
k = O) from the point where the measurement is found to be zero.

It is instructive to compare the developed schemes with the
baseline scheme known as the measure and cut scheme wherein the
present CID measurement at x  is taken as the depth of coal at

the drum (which is at xd ). The prediction error variance in the

measure and cut scheme is equal to 2(l-pkd )ax 
x + ern. Table
kd

3-13 illustrates that the prediction error variances of schemes I
and II are less than the measure and cut scheme. It can easily
be shown for both schemes I and II that
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e

a,
i
a

j

ev (prediction) <_ ev (estimate and cut) < ev (measure and cut)

where ev (.) denotes the error variance for G) and estimate and
cut: ;refers to taking the opr:i.mum estimate of CSI at CID (i.e.,

A k ) as the depth of coal at the drum.

3.5.3 Schemes Using Present and Past Cut Data - In scheme III
all the available (present or past cut) CID measurements that
fall within a. semicircle of specified radius (say, two measurement
distance) with the present CID measurement point as the center,
are etuployed to obtain an optimum estimate of the CSI at the pre-
sent measurement. paint:. The esrimate thus computed is then used
to predict the coal depth at the Arum.	 Sch{me IV uses estimates
obtained during the present and the immediate previous passes,
zeroing in on coax. Phickness at the drum from two directions
one in the direction of the cur and one into the woal seam face.
The present measurement is coupled with the predicted value at
the present point to get an optimum estimate of the CSI at that
point. This estimate, which is along the present cut, together
with the im+ dime previous estimate of ttie CSI along the seam
face (and which is along `h(: i.mnediate previous cur) is used to
predict the CSI at the next CID measurement point as well as at
the drum. This two-•dimcns anal voraion of predictor-corrector
approach ie continued as the shearer proceeds doom the longwall
.face air well as for subseque t passes. Tn both the schemes, the
estimates are optimnl in the sense that the variance of the esti-
mation/prediction error is a minimum.

Before outlining the two developed schemes, the assumptions
and the notation i°rvolved are stated:

3.5.3.2 Assumptions and Notation - Thr.. CID output at chc, kth

measurement during,; the r th pass, denoted by z(k,r), is assumed

to be the :gum of the average coal depth, x k,r), and the. error

in the k th measurement, n(k,r.), i_e.,

z(k,r) ` x(k,r) t n(k,r)	 (3.16;1
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The assumptions made are summarized as follows:

mean of x(k , r)	 E{x(k,r)} = N

variance of x(k , r) = E{(x(k,r ) -p)2} 	 U x(k,r)

mean of n(k,r) = 0

variance of n(k,r) = a2

It is further assumed that the correlation function of the CSI pro-
files x(k l ,rI ) and x ( k2) r2 ) is known. It is also assumed that

the measurement errors are uncorrelated and that the actual CSI
is uncorrelated with the CID measurement error, that is,

E{x(k l ,r 1
 
W k 

2 
r 
2 
)J=  0	 for all kip k2 , r l , and r2

The following notation is adopted x(k,r) and xp (k,r) denote,

respectively, the best estimate and the predicted value of the

CSI at the k th measurement point during the r,th pass of the shearer
down the longwall face. xd(k,r) represents the predicted value

of xd (k,r), the coal depth at th e drum from the k th measurement

point during the rth pass (henceforth referred to as the (k,r)
measurement point).

ax(k r )
x(k r ) is a measure of the correlation of the

1' 1	 2' 2
CSI x ( k l ,r 1 ) and x ( k 21 r2 ) and is defined as

Qx(kl,rl)x(k2'r2) 
= C{(x(kl,rl) -u)(x(k2,r2)-]j)}

It can be rewritten in terms of the correlation coefficient

p(kl,r1)(k2'r2) of x(k
l ,r l ) and x(k2 ,r2 ) as

Qx(kl , r l )x(k2 ,r 2 )	 p(k1,r1) (k2)r2)ax(kl,rl )'Jx(k2'r2)

': t t il1L

111^ POOR
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The estimation and prediction errors are respectively defined
as

1(k,r)	 x(k,r) - X(k,r)

xp (k,r)	 x(k,r) - xp(k,r)

3.5.3.2 Scheme III - Two-Di mensional Version of Scheme II -
The best estimate of x k,s- is obtained from all the CID measure-
ments within a radius of m measurements (z.) from the (k,r) point.
This is illumtrated in Figure 1-68 for m = s 2.

,,PRESENT ESTIMATION r0714T

DRUM POINTr

	

F'ttT"r7;l7T' CUT*	 x{k°2,r) x1-I,r)	 kx^^ 1

^	 f

PAST CUT	 •	 e ^^	 s	 o	 e	 a

f

.. x{tc,r-2)

^	 ^	 o	 s	 @	 a	 E

Figure 3-68. Scheme III

The estimate Ax(k,r) is sought as a linear corabination of the measure-
ments za and the estimator is tf the form

x(k,r) = ji +	 v gi (zi - II)

i=l

or in vector form

R(k,r) = u + r,T(k,r)(z(k,r) - fit) 	 (3.17)

1
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a	 ;
where the vector $(k,r.) is determined so that the estimation error

variance, V 1	E{(x(k,r)--ic(k,r))2}, is minimized.	 For the case

m = 2 (see Figure 3-68) the vector z(k,r) consists of all the measure-
ments within the dotted semicircle. The vector p has U as its
components.

The coal depth at the drum is predicted around ji, the mean
of the CSI, using the current best estimate at (k,r) point ob-
tained from (3.17)

2d(k,r) - U + Yd(k,r)(R(k,r) - p)	 (3.18)

where Yd (k,r) is found so that the prediction error variance,

V2 = E((xd(k,r)-Rd(k,r))2 	 is minimized.

The op-;imal value of $ of (3.17) is found using variational
calculus approach. Let

.&(k,r) - r(k,r) + OR

where r(k,r) is the optimal value of .&(k,r) and then set

aVl
= 0

aE
E=O

and make this result independent of pg. Thus

6Vi	 = 0 = EfA T(z( k,r)-R)(x(k,r)-P-eT(k,r)(z(k,r)-p))}
—

E=0

which results in the optimal Z(k,r) of (3.17) as
-1

.&(k,r) = (Ef(z(k,r)-p)(z(k,r)-p)T}] Ef(z-u)(x(k,r)-u)} 	 (3.19)

Again, using the variational calculus approach, let

Yd(k,r) = Ya(k,r) + EAyd

P,	 bN POOR
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where yj(k,r) is the valae of 
Yd 

(k,r) that minimizes V 2 . Thus

DV 
2

a	 Q " E{&Yd(x(k,r)-11)(xd(k,d(k,r)(x(k,r)-1))}

1 600

so that

E{(^c(k,r)-U	
d	

`^
)(x (k,r)-1^)}	 CX(k,r)^(k,r)

Yj(k,r) =:._.__.	
2
	

A 	 (3.20)

The numerator and denominator of (3.20) can be computed as follows:

CY
x{k,r)xd(tc,r) 	E{(X(k,r)-^u)(x (k,r)-u)} 	

,.

	

(k,r) Et(z(k,r)-R)(xd(k,r)-it)} using (3.17) 	 (3.21)

= ^ (k,r) E{(z(k,r)-u)(x(lc,r)-u)} using (3.17) and (3.19)	 (3.22)

The variance of the prediction error can be found to be

var{xd (k,r)} = Et(zd(k,r)-X(l(k,r))2}

C1 2 	 (3.23)xd(k,r) - 'Y'd(k,r)UX(k,r)x(I(k,r)

using (3.18) and (3.20)

The developed algorithm is surm ►arized for convenience:
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ALGORITHM III

Estimation:	 a

x(k,r) n u + $T (k,r)(z(k,r)-u)

Prediction: ( at the drum from ( k,r) point)

xd (k,r)	 U + ^d(k,r)(x(k,r)-U)

2Yd (k,r)	 Qx(k,r)xd (k,r)1 ax(k,r)	 1

gT (k,r) E{(z(k,r)-p)(x (k,r)-u)}
^x(k,r )xd(k,r)	 —	 d

01'(k,r) _ T (k,r) E{(z(k,r) y)(x(k,r)-P)}-1

$(k,r) -	 z(E{(z(k,r)- )((k,r)- )T}) E{(z(k,r)- )(x(k,r)-u)} 	 i_	 La _.	 .L^	 _	 L1

Note that during the first pass, as well as at the first measurement
of each pass, scheme II is used for estimation and prediction.
During the subsequent passes one can resort to the cases m = 1
or m = 2.

T For the case m = 1, with z(k,r) = (z(k-1,r), z(k,r), z(k,r-
1)) , the (noninverted) symmetric matrix that appears in the ex-
pression for $(k,r) can be explicitly written as Follows:

?.	 2 G
^x(k-1,r) +fin	 x(k-l,r)x(k,r) ^x(k-l,r)x(k,r-1)

E{(z(k,r)-L1)(z(k,r)-p)Tj = Qx(k-l,r)x(k,r) ('x(k,r)*Cyn ^x(k,r)x(k,r-1)

2	 2
Cx(k,r-1)x(k-1,r) ^x(k,r-1)x(k,r) ^x(k,r-1)+fin

Also

^x(k-l,r)x(k,r)

E{(z(k,r)-p)(x(k,r)-u))} = Qx(k,r)

Ux(k,r-1)x(k,r)
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A
The above two expressions determine jj(k,r), Explicit expressions
for (3.21) and (3.22) can be obtained in a similar manner.

3.5.3.3 Scheme TV - Two-Dimenaional Predictor -Corrector
Approach _ The optimum estimate of (k,r) is obtained from the
present CID measurement z(k,r) in,V(M junction with the predicted
value at (k,r) point, i.e., x p (k,r), which is based on

the beat estimate of the previous measurement point along the
cut, and ^X(k,r-•1), the best ostimate of (k,r-1) point out the
seam face from the (k,r) paint. This is illustrated in Figure
3-69.

(k+l,r) Point

P1 um FO; 11L, x^(k,r)

PRESENT CUTO

PAST CUT a	 c

r	 V	 0	 4!	 0

"igure 3-69. Sc:IleMe TV

The estimator is of the f orim

Rl,k,r) = xp(k,r)^g(k,r)(r;k,rJ-xp(k.r)) 	 (3.24)

where Cho weighting factor g{k,r) is determined so that the vari-

ance of the estimaCiori error, V3 = E{(,x(k,r)-R(k,r))2}, is mini-

mized. The coal depth at the next CID measuroment point (3.25)
and at the drum (3.26) are predicted around p, the mean of the CSI.,
using the current best estimate along the cut, x(k,r), and the
immediate previous hest estimate along the seam face, 5Z(k+l,r-1):

^xp (k+l,r) = + (ic,r)( (k,r)-It) (3(k^I,r 1)C CIc^I,rM l)-}) (3.25)
c
	

Rd (k,r) = P+ad(k,r)(R(k,r)-u)+pct(k+l.,r-lM-(k+l,r-].)-p) (3.26)

3-•144

^y

' :. : wrz ^.: °_ _ . :a . .des. ^ `_. ^.., ^ f.x-:	 .n,..maivac+xeac.__e_mra



"

1

Here a(k,r) and 0(k+l,r-1) are weighting constants to be deter-

mined so that the prediction error variance, V4 - E{(x(k+l,r)

xp(k+l,r))2}, is minimized. Similarly, a d(k,r) and $d (k+l,r-1)

are found such that the prediction error variance at the drum,

V5 - E{(xd (k,r)-xd (k,r))2), is minimized.

The optimal value of g(k,r) of (3.24) is found using variational
calculus approach.

Let	 g(k,r) - g*(k , r)+eAg

where g*(k,r) is the value of g(k,r) that minimizes V3 . Thus

av3

ac	
= 0 M E{Og(z(k ,r) xp(k,r))(x(k,r) ^xp(k,r)-g*(k,r)(z(k,r)-

e-0	
A p(k,r))}

which results in the optimal value of g(k,r) of (3.24) as

var{ p(k,r)}
g (k , r ) -

var{xp (k,r)) + vn	 (3.27)

where var{icp (k,r)} = E{(x(k,r)-xp(k,r))2} is the variance of the

prediction error.

Equation (3.25) can be written in a form similar to (3.17) and,
hence, the weighting factors a(k,r) and $(k+l,r-1) can be computed
in a manner similar to p(k,r) of (3.17) (see (3.19)) and can be found
to be

-1

a(k,r)	 ax(k,r)	 ^x(k,r)x(k+l,r-1) 	 6x(k,r)x(k+l,r)

_

2

0 (k+l,r-1)	 CF-1) ox(k+l,r-1)	 4x(k+l,r-1)x(k+l,r)

which results in

a(k,r) = Dkr fox(k+1,r-1)ax(k,r)x(k+1,r)^x(k,r)x(k+l,r-1)Qx(k+l,r-1)x(k+l,r)J

(3.28)
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1

i

j

1

and

Dk
k 
r,((TVk,r)CrR(k+1,r-1)x(Ic+1,x)-QR(k,r)R(k+l,r-l)(N(k,rWk+l,r))

(3.29)

where

Dkr	

2	 2	 2	
(3.30)

^S^(k,r)^R(k+l,r--])-°R(k,rix(k+l,r-1) 

Expressions for all the correlations that appear in the right hand
side of equations (3.28) thru (3.30) can easily be obtained
by using (3.24) and (3.25). Th p se expressions are included in the
summary of the developed algorithm below.

It may be pointed out that during the first pass Scheme I
should be used. Also; the sarne scheme is used (laterally) at
the first measurement point during r,ach pass. This is explicitly
given, in the algorithm below.

ALGORITHM IV

k > 1, r > 2, i > 1, .j	 1

Estimation at the present measurement point, (k,r):

M,r) - Rp(k,r)+g(k,r)(z(k,r)-Rp(k,r))

Prediction at the next measurement point, (k+l,r):

Scp ( k+l,r) = u+a( k,r)(x(k,r)-p)+^(k+l,r-1)(x(k+1,r•-1)-u)

Prediction at the drum from (k,r) point:

S d (k,r)	 p4-ad( k,r)(x(k,r)-j0+(id(k+l,r-l)(x(k+l,r-l)-p)

var{kp(k,r)}

B( k , r ) `^
var{Rp(k,r)}+an

tx(lc,r) - Dkr (^Q(k+1,r-•1)C'11(k,r)x(k+1,r)-^x(k,r)x(k+l,r-I X(k+l,r-1)x(k+l,r))

S(k+l,r-1) = Dkr (Cr x(k,r)ffii(k-tl,r-1)x(k+1,r)-Qx(k,r)^c(k+l,r--1)Qx(k,r)x(k+l,r))

2	 2	 2
Dkr - aR(k,r)G(k+l,r-1)-^R(k,r)R(lcal,r^1)

,.
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1
ax(k+l,r) . 

( 1`g(k+1 , r))2{a2( k,r )
ax(k,r )+(̂ 2(k

+l,r-1)ax(k+l,r-1)

	

+2a(k,r )S( k+l,r- 1)Q„ 	j„	 x(k,r)x(k+1,r-1)

+2g(k+ 1, r)(1-g(k+l,r)){a(k,r)Qx(k,r)x(k+l,r)

+S(k
+l,r-1)aX(k+l,r-1)x(k+l,r)}

+g2(k+l , r)a	 22(k+l , r)+g2(k+l,r)a

a,.	 ^	 RrPItiODUCII^IT
	 OF THE

x(k+l,r)x( j,i) 	 ( 1-g( k+1,r ))a(k,r)ax(k,r)x(.n`jW,INA.Tl PA.G''' IS POOL

+(1-g(k+l,r))O(k+l,r-1)4..
x(k+l,r- 1 )x(j,i)

+g(k+l,r)(Ix(k+l,r)x(j,i)

ax(k+l , r)x(j,i) a (1-g(k+1,r)) ( 1-g(j,i)){a ( k,r)a(j-l,i)c1,.
x(k,r)x(j-1,i)

+a(k,r)1^
(1,i-l)QX(k,r)X(j,i-l)+a(j-1,i)R(k+l,r-1)aX(k+l,r-1)x(j-1,i)

+O(k+ 1,r - l)
$(j,i-1)crX(k+l,r-1)X(j,i-1)}

+g(k+l,r) ( 1-g(j,i)){a(j-L,i )a	 +S(j,i-1)v.,x(j`l,i)x(k+l,r)	 x(J,i`1)x(k+l,r)}

+g(j,i)(1-g(k+1,r)){ a(
k,r)aX(k,r)x( j, i)+R(k+l,r-1)aX(k+l,r-1)x(j,i)}

+g(k+l,r)g(j,i)ax(k+l,r)x(j,i)

(k+l # j when r = r and vice versa)

var{xp(k+l,r)}	
ax(k+1,r)+a2 (k,r)aX(k,r) -2a(k,r )QX(k,r )x(k+1,r)

+2a(k,r ) $(k+l,r-1)Q„
x(k,r)x(k+l,r-1)

2S(k+1,r-1)Qx(k+1,r- 1 )x(k+1,r)+02(k+l,r -1)Qx(k+1 r-1 ) i

i
yti.
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The expressions for ad (k,r) and Rd(k+l,r-1) are similar to

those of a(k , r) and 0(k+l,r-1) appropriately modified.

During the first pass (r-l): k > 1

St(k+1,1)	 Stp( k+1,1) +g(k+l,l)(x.(k+1,1)-Stp( k+1,1))

Skp ( k+1,1)	 U+a{k,1)(S<C(k,l)-U)

$d (k,1)	 O+ad(k,l)(X(k,0-ji)

var (Y.

g (k^+ 1,1) _ __._.

var (%p(k+l,l)} +na 
var[R (k+1,1)1 ` ax(k+1,1)-a(k,l)C4%(k,i)x(k+1,1)

UA,1) - 
Cyic(k,l)x(k+1, 1)

2
aq:(k,l)

a^x(k,l)xd(k,1)
ocd(k,l)	 2

ax(k,1

aSt(j+1,1)x(k+2,1)	 tk( ,1)(1- (jF1,1))oX(j,l)x(k+2,1) +g(j+"')ax(j+1,I)x(k+2,1)

j- 1, 2, ..., k

`,q(j+1,1)xd(k,i) ° 
a( ,1)(1-g( +1,t))ax(j,1)xd(k,l)+$(j+1,1)ax(j+l,1)xd(k,1)

j M 1, 2, ..., k

ax(k+1, 1) - a(k'1)oic(k,1)x(k+1?1)^g(k+1,1) var{xp(k+1,1)}

Initial conditions:

x(1,1) = x(1,1) = z(1,1)

2	 2	 2
a (1,1) = ax(l,l)+"n

1
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At the first measurement point of each pass (k - 1)s r > 1

'*(l,r+l) - Ip(l,r+l)+g(l,r+l)(z(l,r+l) xp(l,r+l))

St (l,r+l) - U+¢(l,r)(x(l,r)-{t)

xd (l,r) - U'Od(l,r)(x(l,r)-v)

var{xp(1,r+1)1

var{%p(1,r+1)}+0n

var{lEp(1,r+1)} 	 x(1,r.+1)-S(l,r)Qx(1,r)x(l,r+l)

S(l,r) s 
QR(1Lr)x(1,r+1)

2
QR(l,r)

QR(1,r)xd(l,r)

Od(l,r) -	 2
QR(l,r)

02(1,i+1)x(1,r+2) - 0(1")(1-g(1,i+1)vR(1,i)x(1,r+2)+9(1" +1)6x(1,i+1)x(1,r+2)

i a 1, 2,	 ., r

QR(l,i+l)xd (l,r) _ 
(L,i)(1-g ( 1,i+1))iii(1, i)xd(l,r) +g(1,i+1)ox(1,i+1)xd(l,r)

i = 1, 2, ..., r

CyR(l,i+l) = $(1,r)Qx(1,r)x(1,r+1)+g(1,r+1)var{xp(1,r+1)}

Initial, conditions same as for the first pass.

y

k



It is seen from Sections 3.5.3.2 and 3.5.3.3 that the basic dif-

ferences between the two developed algorithms is that one employs es-

timates in the immediate vicinity of the present measurement to obtain

an optimum estimate of the coal/shale interface at the present measure-

ment point (algorithm IV), while the other uses CID measurements to

accomplish the same goal (algorithm III). Moreover, algorithm III uses

past cut data that is ahead of the present measurement point (but

obtained during the previous passes) whereas the framework of scheme IV

does riot permit such usage.

Analytical comparison of all the developed schemes is difficult

due to the complexity of scheme IV. However, it is expected that scheme

IV results in the least prediction error variance and is most sensitive

to unmodeled errors.
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3.6	 VCS PERFORMANCE WITH PREDICTIVE ALGORITHMS

3.6.1	 Predictive Algorithm Simulation

Two simulations were used to study the performance of the

predictive algorithms; the VCS simulation previously described, and a

simplified simulation by which parameter studies could be made.

In the simplified simulation, a random process was generated

with known variance and correlatior; properties. The mine correlation

studies showed that an exponential correlation model could be used to ap-

proximate the correlation of the actual mines. Therefore, such a first

order process was generated and inputted to the predictive algorithms.

White noise of known variance was added to the correlated noise input, to

simulate CID measurement noise. The output of the algorithms was then

compared with the input to determine both estimation and prediction per-

formance. This was determined by computing the RMS errors. The RMS of

the input was computed and used as a measure of unaided system performance.

The prediction refers to the performance obtained by projecting the esti-

mated CID measurement ahead to the cutting point. Estimation refers to

the results obtained by processing the CID measurement to remove measu re-

ment noise, and using this estimate as the raw CID data would be used.

C,6
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3.6.2	 Predictive Al9ori . thm Performance
With flmp^i^{fed S mi u ation

3.6.2.1	 Effect of Errors -in Correlation Distance

Table 3-14 shows the simulation results for a

number of parameter studies intended to determine the sensitivity of the

algorithm to unknown statistics. The subscripts ACT and f refer, respec-

tively, to the actual value and the value used in the filtering process.

0CSI denotes the variance of the coal-shale interface. The entries in

the table denote the RM5 error in inches. The nominal run used the

nominal conditions listed in the table. For this run, it was assumed

that the filter had complete knowledge of the process and measurement

noise statistics. The nominal run is in agreement with the analysis of

Section 3.5 where it was determined that prediction has better performance

than estimation, and that both are better than the measure and cut.

The correlation distance in the filter was varied

holding the other parameters fixed. The actual process correlation

distance was a constant 25 ft, while the correlation parameter in the

filter was set to 13.2, 25, and 50 ft. The results shown in Table 3-14

indicate that the algorithms are relatively insensitive to uncertainty

in knowledge of the correlation distances.

3.6.2.2	 Effects of Errors in CST Variance

Filter knowledge of the-1 variance was also

studied. The filter CSI variance was set to ha y ' and twice the nominal

3-1 52
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value. Again, there is little effect, except that slightly worse per-

formance was obtained where the filter variance was higher than the

nominal value. In all cases, the prediction and estimation results were

better than measure and cut results.

3.6.2.3	 Comparison of Schemes
r'

Parameter variation results for schemes 1 and 2

are shown in Table 3-14. It can be seen that scheme 2 is slightly worse

than scheme 1 in both estimation and prediction. Scheme 2, however, is

still better than the measure and cut results. Parameter variations yield

the same conclusion as with scheme 1 namely, that the algorithm is essen-

tially insensitive to parameter variations, and performs as predicted

analytically.

3.6.3	 Predictive Algorithm Performance With VCS Simulation

3.6.3.1	 Effects of Measurement Type

Two possible procedures can be used to derive the

measurement to be inputted to the predictive algorithms. One procedure

is to simply input the CID data directly. However, such a procedure intro-

duces a modeling error because the filters assume that the only randomness

in the measurements is the CSI and measurement noise. The CID measurement

also has randomness due to the roughness of the cut surface-. A quantity

called the total measurement is computed as the sum of the CID measurement

plus the CID relative position sensor. This has the effect of referencing
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the measurement to the shearer chassis and eliminating the cut roughness

error. The total measurement and CID measurement results, shown in rows

2 and 3 of Table 3-15, are essentially the same as the nominal run with 	 J

the simplified simulation. These results show that the total measurement

yields better performance than the CID measurements. It should be noted

that the mine bottom was artificially flattened to remove the effects of
i

chassis undulation. The relationship between schemes 1 and 2 is the

same as previously, in that scheme 1 performs better than scheme 2.

Figures 3-70 and 3-71 show the performance of scheme 1 when total measure-

ments are employed for both estimation and prediction. Figures 3-72 and

3-73 indicate VCS performance with scheme 2 using total measurements for

both estimation and prediction.

3.6.3.2	 Effects of Bottom Undulation

Another source of modeling errors is the undu-

lation of the mine bottom which introduces an additional source of

randomness which affects algorithm performance. Runs with the actual

bottom, i.e., with bottom undulations, are shown in rows 4 and 5 of

Table 3-15. It can be seen that under these conditions, the CID

measurements ,yield better performance than the total measurements be-

cause the undulation causes larger errors in the total computation from

the skid plane than it does in the CID measurement. 3

The effect of undulation has changed the per-

formance of the algorithms relative to each other and relative to the

'	 measure and cut. It can be seen that estimation now performs better
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i
than prediction for both schemes, and scheme 2 now performs somewhat

better than scheme 1. A larger error is made in attf-.^mpting prediction

than in not attempting prediction because of the umnodeled error due to

bottom undulation. Scheme 2 performs better than scheme 1 because the
A e

latter is more sensitive to unmodeled errors. Finally, it should be

noted that both schemes perform worse than measure arl cut in the presence

of bottom undulations. Figures 3-74 through 3-81 present times histories

of the prediction algorithms runs shown in rows 4 and 5 of Table 3-15.

	

3.6.3.3	 Effects of Relative Slope Between Top and Bottom

The prediction algorithms assume that they are

operating on the sum of zero mean, stationary random processes. If the

mine top is not parallel to thf:, bottom, that is, if it has a trend or

slope relative to the bottom, the ;measurements appear nonstationary, and

this affects performance. Rows 6 and 7 of Table 3-15 show this effect

with total and CID measurements. The CID measurements are better than

the total measurements and, again, scheme 2 performs better than scheme

1. Both schemes remain worse than measure and cut, and larger errors
P

are made in prediction than in estimation.

	

3.6,3.4	 Effects of Measurement Noise Model

The simulation resultsp resented in rows 1

through 7 of Table 3-15 were obtained using normally distributed mea-

surement noise. In fact, the measurement is not normal, but involves

.s	 the nonlinear CID calibration curve discussed in Section 3.2.4.1. Rows
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i

8 and 9 of Table 3-15 show the impact on performance of the actual CID(
i

measurement noise. The relationships between the schemes remains the

same, but the errors are approximately 15% larger. Row 9 therefore
1

represents the performance that might be expected in an actual mine.

Figures 3-82 through 3-85 show estimation and prediction results for

schemes 1 and 2, respectively.

3.6.3.5	 Conclusions and Recommendations

Linder ideal conditions, where the measurement

processes are exactly as modeled, the prediction algorithms can achieve

a 21% improvement over the use of unfiltered CID data. The simplified

simulation also showed that precise knowledge of mine statistics was not

essential to performance. However, when the algorithms are used in a
J

realistic environment, with realistic measurement noise, their perfor-

mance is worse than that obtained with unfiltered CID data. This is due

to the presence of unmodeled noise processes in the measurements to be

filtered. The schemes using present and past cut data (algorithms III &

IV) are not simulated because of the degradation in performance by using

schemes I and II with realistic mine conditions.

Also under ideal conditions, scheme 1 performs

better than scheme 2, but this is reversed in the presence of modeling 	
a

errors. prediction was also found to be detrimental to performance under

these conditions because of lack of knowledge of the measurements

structure. It must therefore be concluded that in an actual mine, pre-
a

diction algorithms do not appear to be a viable means of improving system

performance and hence are not recommended.
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3.7 CONTROL OF BOTTOM DRUM FOR BASELINE SYSTEM

3.7.1	 Drum Control Pr«;edures

When it is desired to take all the coal on the bottom, the 	 s
r,

discrete CIDs provide a means by which this can be accomplished. Per-

formance with these sensors is discussed in Section 3.4.2.7, where it

was shown that the ser.itiled pick can successfully control cutting at

the CSI. When it is desired to leave bottom coal, an alternate control

procedure must be used. Since it is impractical to mount a proportional

CID on the bottom drum, locking and drum slaving procedures were

developed and investigated.

s

The drum locking consists of simply setting the drum at a

desired location and applying no further control. The drum slaving

procedures actively control the rear drum to cut a constant seam height

+I 	or a constant distance from the top last cut. The sensor configurations 	
x

used in this study are shown in f =igure 3-86. Drum slaving was done by

computing the distance h indicated, where

h = e l + P 1 + Q sin B1 + r

This represents the interface height above the front ranging arm pivot.

If the desired seam height is H, the ranging arm angle of the trailing

drum is given by

h + r + CB - H
2s =sin:"1
	

k 
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Iî

f

d

where CQ is the desired coal bias on the bottom. A delayed slaving

procedure was also used, where a measurement h was taken and saved until

the trailing drum reached the measurement point. This delayed data was

then used to control the drum.

To control the rear drum to the top last cut, the height

h  (Figure 3-66) was computed as

hL 'QI+R sins, +r

and

02 = sin-1	
h  + r + Cg - H

These measurements were used in the d0 ayed mode as described above.

This same LCF procedure was used without the delaying, using an LCF

mounted in the middle of the shearer. Finally, a rear drum top follower

was used, which provided a direct measurement of the bottom drum

location relative to the top present cut.

3.7.2	 Performance with Bottom Drum Locked

The results of drum slaving and locking studies are

presented in Table 3-16. Rows 1 and 4 show the locking results with a

flat mine bottom and a regular or undulating bottom. These studies were

performed on the York Canyon mine where the top and bottom are uncor-

related, and the Robinson Run mine where the top and bottom are highly

correlated. The correlation of top and bottom has a significant effect

on the performance of slaving.
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	 When the bottom is flat, the RMS error with the drum

locked is the ISMS of the CSI. The desired seam cut height is 5.27 and

7.41 ft in the York Canyon and Robinson Run mines respectively. The

results show that with the drum locked, the mean seam heights are approx-

imately 1 in. in error, with a standard deviation of approximately 2

in. The cutting performance is similar for the two mines. When the mine

bottom is undulating, locking performs worse in the uncorrelated mine

!'-	 than in the correlated mine. Performance in the Robinson Run mine is

k	 essentially the same with undulating or flat floor except that with

undulation, the height standard deviation is larger. Performance in the

York Canyon mine is worse with undulation than with the flat track.

Mean seam height and standard deviation are also worse. Figures 3-87

through 3-90 are simulation runs with both mines, with the flat and

undulating bottom.

3.7.3	 Performance with Bottom Drum Slaved

The system results with drum slaving are shown in rows 2

and 5 of Table 3-16. In the York Canyon mine, slaving produces worse

resul'.5 than with locking. The differences between locking and slaving

are much more apparent with the regular mine bottom. In the Robinson

Run or correlated mine, slaving yields similar results to locking with

a flat bottom, but worse results with regular bottom. Slaving performs

better when the top and bottom are correlated, but in any case, all

results are worse than when the dram is locked.

4
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Slaving yields worse performance than locking because it

tends to accentuate floor undulations. If the shearer chassis pitches

up for instance, the drum cuts into the top. The VCS corrects for this

by lowering the drum, The slaving will then lower the rear drum to main-

tain a constant height, but the pitching motion has already caused the

rear drum to cut into the bottom, and this is now exagerated by the

slaving. As a result, this type of slaving yields poor results.

Figures 3-91 and 3-92 show slaving with an undulating bottom for the

two mines.

	

3,7.4	 Performance with Bottom Drum Delayed Slaving

The delayed slaving procedure uses height measurements

which were made earlier by the front drum to control the rear drum.

This has the effect of reducing the problems caused by floor undula-

tions. With the flat bottom, the delayed slaving yields very good

results with both mines, performing better in the Robinson Run mine

because of the correlation of top and bottom. With the regular bottom,

delayed slaving is better than simple slaving, but still does not

perform as well as locking. The delayed slaving still accentuates the

effects of bottom undulations. Time histories of delayed slaving with

bottom undulations are shown in Figures 3-93 and 3-94.

	

3.7.5	 Performance With Rear Drum Top Follower

Of the systems shown in Table 3-16, the top follower pro-

vides the best slaving performance. The average seam heights cut in the

3-134
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two mines were the desired heights with standard deviations of 0.25 in.

Performance is better in the Robinson Run mine because of the correla-

tion between the top and bottom, The reason for the good performance

with this sytem is that the top follower provides a measure of the

effects of chassis undulation. By directly sensing the drum position

relative to the mine top, and the errors due to undulation are largely

eliminated. Figures 3-95 and 3 .96 show performance with the top

follower in the Robinson Run and York Canyon Mines, respectively.

3.j'.6	 Performance with ` .laving and Sensitized Pick

Table 3 . 17 shows the results of various other slaving

techniques discussed in Section 3.7.1. In all of these schemes, the

rear drum was instrumented with a sensitized pick. The table shows

that slaving to the top LCF does not yield good performance. This

procedure was intended to provide a means of limiting the change in

height from cut to cut on the bottom, but it suffers from the same

problem as the other slaving procedures.

Performance with the middle LCF appears somewhat better.

The use of a chassis mounted sensor was studied as a possible means of

eliminating the LCF on each drum. While slaving performance was ade-

quate, performance of the top drum cut was degraded from 1.12 in. RMS to

3.26 in. RMS. This degradation is due to the fact that the LCF sensor

has the highest control authority, and therefore errors introduced by

displacing the sensor to the center of the chassis have a pronounced

^^^a1zJ 1-'y ^L ^^ ,UUIZ,

U1^
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effect. Finally, the rear drum top follower control was used with a

pick on the bottom drum. It can be seen that use of the pick produces

only a slight change in performance. Figures 3-91 and 3-98 show the

results with the front LCF and middle LCF slaving.

3.8 CONCLUSIONS AND RECOMMENDATIONS

3.8.1	 Recommended Sensor Configurations

Based on the previous performance studies, a recommended

set of sensors can be configured. Table 3-18 lists the sensors and

their characteristics that, from a performance standpoint, should be

used in the VCS. For a given mining application, it may not be

necessary to use all of these sensors. Preferred combinations of these

sensors will be given in Section 3.8.2.

Recommended sensors for the top drum are the nucleonic

CID, LCF, and sensitized pick. The nucleonic CID output interval was

chosen to be 0.25 s because this. represents the minimum error point and

also minimized the effects of cutting speed variations. The CID should

be located as close as possible to ttre shearing drum, indicated here as

2.5 ft. The LCF is assumed to be a continuous sensor with a range

greater than the last cut distance to be maintained. Finally, two picks

yield good performance, with at least 80 to 90% accuracy. The bottom

drum sensors include the sensitized pick, and the rear drum top follower

for slaving. This sensor should also have a continuous output.
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k

Table 3-19 shows results with a sensor configuration

selected from Table 3-18. The sensor configuration was a CID, LCF, and

L:
pick on the top and bottom slaving with the rear drum top follower.

These represent results from the second pass of a two-pass simulation run.

These runs are representative of typical system performance in an actual

mine. Figures 3-99 and 3-100 show performance with the CID sensors on

top and bottom, cutting a 4 in. bias.

•w`a
i

3.8.2	 Recommended VCS Systems For Various Mine Applications

The configuration of sensors recommended for various

combinations of top and bottom mining requirements is shown in Table

3-20. These configurations allow the system to be tailored to the

individual mine in which it will operate.
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Table 3-20. Recommended Sensor Configuration for Various Applications

'i

r TOP

TAKE ALI. COAL LEAVE COAL BIAS

TOP:	 PICKS TOP:	 NUCLEONIC-CID

TAKE PICKS

ALL LCF

COAL

BOTTOM:	 PICKS BOTTOM:	 PICKS

BOTTOM

TOP:	 PICKS TOP:	 NUCLEONIC-CID

LEAVE PICKS

COAL LCF

BIAS

BOTTOM:	 TOP FOLLOWER BOTTOM:	 TOP FOLLOWER
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4.	 YAW ALIGNMENT SYSTEM

4.1 FUNCTIONAL DESCRIPTION

In lonqwall mining after coal is cut along the face, the conveyer

is pushed forward in preparation for the next cut by the roof support

system. A typical sequence of operations is shown in Figures 4-1

through 4-4. In Figure 4-1 the conveyer is straight, the roof support

shields have been pulled up and the shearer is at the headgate. The

tailgate end of the conveyer is then advanced in preparation for the

next cut as shown in Figure 4-2. Figure 4•-3 shows the shearer at the

tailgate end of the conveyer after it has cut the coal face. Finally,

in Figure 4-4 the headgate end of the conveyer is pushed forward and the

roof supports have been advanced along the tailgate end of the conveyer.

The shearer can now travel from the tailgate to the headgate making a

cleanup rut at the tailgate end of the conveyer and completing the cut

at the headgate end. After the cut, the remaining roof supports are

advanced. In this position the conveyer, shearer and roof supports are

back in their original positions ready for another cycle of operation.

t

In the manual mode of operation, the miners push the conveyer a

full stroke and then after cutting, advance the roof supports. Care

must be taken to straighten the conveyer after the roof supports

advance. This is accomplished by the miners sighting down the conveyer

and alternately adjusting the conveyer and roof supports so they are

straight. If care is not taken, the conveyer will rapidly get out of

alignment resulting in the roof supports being unable to advance pro-

perly.
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In an automatic system, measurements are made to determine the con-

veyer yaw alignment. Any misalignment is corrected by pushing the

conveyer different amounts along the face.

The measurements can be taken when the system is in the sequence of

operations as shown in Figure 4-4. The conveyer is relatively straight

at this time and measurements can be made as the shearer travels from

the tailgate to the headgate.

Two types of measurement devices are proposed. One is an angle

cart system that measures the relative angle between two conveyer

sections. The other is a directional gyro which measures the angular

orientation of a conveyer section with respect to a directional ref-

erence.

Detailed descriptions of these measurement systems along with their

performance evaluations are presented in t ,ie following sections.

4.2 DESCRIPTION OF THE ANGLE CART MEASUREMENT SYSTEM

The angle cart measurement device consists basically of two

R

	

	 resolvers as shown in Figure 4-5. One resolver is lined up with one

conveyer section while the other is lined up with an adjacent section.

The sum of the resolver angles GA and e B gives the angle between the

conveyer sections. As the angle cart moves along two conveyer sections,

t	 many measurements (200) can be matte and then averaged. Hence
ft'

1
200

_
6 200 ^ ( eA j a' oB j )

4-6
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i

If the standard deviation of the error in each resolver measurement is

a r , then the standard deviation of the angle a 1s

amn	 M ar-0.lar

The bias b in the angle cart measurements can be determined and re-

moved from the measurements by computing a when the angle cart is on a

single conveyer section. Hence, if there are N conveyer sections, the

bias is computed by

W

bN

	

	 nk

kl

where e k is the angle cart output when it is on the k th conveyer section.

This bias 'is removed by

e = e - b

where a is the corrected angle between the conveyor sections. The

standard deviation of the error i ,t b is given by

1

a b ---T am

4.2.1 Basic Angle Cart Meas urement System

The angle cart measures the angle a between two conveyer

sections. Knowing all the a anglos, the location of the conveyer end

4-8
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i
points, and the length L of each conveyer section allows one to deter-

mine the YAW profile of the conveyer. From the geometry shown in Figure

4.6 the angle cart measures the angles e 2 through ON (assuming N con

veyer sections). The location of Y o and YN can be measured with respect

to surveyor stakes. The computed Y coordinates Y i of the end points of

each conveyer section are found as follows

Y 1 = L sin e1 .a Yo

A
Y2 =Y 1 +L sin (e1 +e2)

n

Y n = Yn-1 + L sin
	 e

i=1
N

Y  = YN-1 + L sin	 ei

.	 i=l

where e i are the measured angles. Since all the angles are measured

except 0 1 , it must be determined n anothe- manner. The last equation

above can be written

N ^i`

Y N = L	 L...,B$ +Yo
i=1 j=l
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r

where Yi is the angular orientation of the i
th conveyer section with

respect to the horizontal. Assuring small angles

N	 N	 i
Y n Y +LY +Ly +...+LY =Y +L	 Y • L 	 (	 e)+Y

N	 o	 1	 2	 N	 o	 f	 j'	 oJ
u l 	 Jul jn l

Assuming that e l	 U yields

N	 i

YN 
s L

_... eJ + Y(,
i=2 j=2

The val ue of e l can their be conpul ed by

YN YNe l a _ NL

As a result, the yaw profile is determined by

i
n	 i

Y n = L	 ej + Y o	n = 1,2,3,...,N

i=1 ^= 1 i

4.2.2 Derivation of Weighting and Bias Estimation System

If the angles e l and 
''N+l 

can be measured, then a method of

weighting and bias estimation can be used to determine the yaw profile.

The equations are derived as follows:

r

R^''I'SLOL -TCTpTF 
j1	 1C^Ii?t ; t n ,	 OP TI3 4

a ^^ P^1GL Is POOR

4.11



Using Yo and the angle e l plus the angles e2 through O N , the

Y coordinate of the N th point is computed by

	

N	 iiE

YN =L
 E	 ej +Yo

i = l j=1

With angle measurement errors Y N will not equal Y N . Therefore a bias b+

on all the angle measurements is computed so the end points match up.

n

b+	
2	 YN - YN

	

= N N + 1	 L

The corrected angle measurements are found by

ON +	 +

0 	 b

and the yaw profile is computed using these angles.

n ^i "

Y n =L	 1: +Yo

	

i- 1 	 ,j=1

Using YN and the angle a 
N+l 

plus the other angles 
e2 

through

ON' the Y-coordinate of the o th point; is computed.

	

^N`	
N+1

	

Ya = 
L L..r	 ej + YN

i=1 j-N-i+2 )



s^

n

Again a bias V is computed

n

n ^
Y O

Also, the corrected angle measurements are found by

n	 n	 n
b-

and the yaw profile by

N-n	 N+l
Y^=L	 e.	 +YN

i=1	 j=N- i+2

As a result, there are two Y-coordinate values for each point depending on which

end of the conveyer was the reference. A weighted combination of the two gives

a good estimate of the yaw profile. Hence

+Y n = a n Y n  + (l - a n ) Y n-

where a n is the weighting function. It is derived as follows:

The one-sided estimates can be written

n	 i

Yn=Yo +L	 (ej +fj)
W j=1

4-13



n	 i

Y n + L E ^ej
W j-1

n

= Y  + L 1: (n-j+l) ej
j=l

=yn+Xl
and

N-n	 N+1
n
n-YY	 +LN	 + E

(ej 
	 j)

i=l j=N-•1+2

N- 
nn
	 N+l

=Y n +L Z E ej
W j=N-i+2

=yn+X2

where

fin"`	

i	 N-n	 N+1

Y n `Yo +L E E e j =Y N +L E Y: ej



k ►

a	 i

f'

and

N+1

X 2 - L 1: (j-n-1) e j
j- n+2

are the errors in Y^ and Yn, respectively.

It is assumed that the angle measurement errors e l , e 2 , -.-,

e N , e N+l are pairwise uncorrelated random variables with zero means and

common variance a m2 . It follows that X 1 and X2 are uncorrelated and

have zero means and respective variances:

n

v
i 

= L1 
L 

(n- j+1)2 
am 

2

j=1

n

= L 2 0 2 k2 = L2 2 n n+1 2n+1
m Z	 m

k=1

and

N+i

v -
1 2	 ( j-n-1)2	 2	 I; .i POOR

2	 °m
j-= n+2

N-n
x L2 

0 
2 1: k2	 L2 a 2 ,(N-n) (N-n+l) (2N-2n+1)

m	 m
k=1

For any value of a n , Y n is an unbiased estimate of Y n , i.e.,

E(Y n ) - Y n. This is true because

4-15



E(Yd = an E(Y n+ ) + (I - an ) E(Y n ))

E (Y n+) Yn + E(XI) = Y n + 0

and

E(Y n- ) a Y n +E(X2 ) =Yn+O

The chosen value of a n is that which minimizes the variance of Yn.

Differentiating the variance of Y n with respect to a n , setting the

derivative equal to zero and solving for a n gives

= v2	 _	 N-n N-n+1 2N-2n+1
an vl+v2	

n n+	 n+ + -n -n+	 - n+

4.2.3 Derivation of Angle Ca rt Measurement Algorithm Assuming that

a Number of End Cony2yer Sections Cannot be Measured

Since the shearer is approximately 30 feet long and it rides

on the conveyer sections, it is possible that not all the angles between

the conveyer sections can be measured. If this is the case, the control

algorithm will simply assume that these angles are zero, i.e., that the

conveyer is straight at the ends.

4.3 DESCRIPTION OF THE MONTE CARLO TECHNIQUE TO DETERMINE THE EFFECT OF

ANGLE CART MEASUREMENT ERRORS

A Monte Carlo simulation was developed to determine the effect of

angle cart measurement errors (see Figure 4.7). This was accomplished

l
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by developing a conveyer yaw geometry consisting of the true conveyer

angles o
n and the Y-coordinates Y n . The true conveyer angles were

sampled from a normal distribution with zero mean and standard deviation

O T , i.e.,

e i = normal (0, a T2 )

where a T = l degree

The Y-coordinate; are then computed by

n	 i

Yn=L E Z_-, 0J

i=1 j=1

Measurement errors were then added to the conveyer angles and using the

measurement algorithms described in Sections 4.2.1, 4.2.2 and 4.2.3 the

computed Y-coordinates Y  were determined. (It was assumed that Y o and

YN were measured without error.) Next, the yaw profile error

A n = Y n - Y  and the RMS of the yaw profile error

N

RMS =	 11	 e i 
2

i=1

were computed. The RMS computation was made 500 times--each time using

different noise measurement errors.

A statistical average of these 500 RMS values is needed for

an evaluation criterion. The statistical average used is the Mode of the

RMS and is computed by

4-18



MR a.

where N s n 500.

"s

L^ (RMS) k

ks 1

^N

1

f	 Al
^ 

}

5

f w

i

t 4.3.1 Basic Measurement System

The basic measurement system is simulated by assuming the

measured conveyer angles e i are given by

+ b
where

ei is the true geometric conveyer angle

e i = the random error in each measurement

and, b	 the bias error in the measurement device.

These errors are simulated by sampling from normal distributions, i.e.,

F i = normal (0, a m2 )

om 2
b = normal	 0, (-

The results of the Monte Carlo simulation are shown in

Figure 4-8. As the standard deviation of the measurement error (am)

increases, the mode of the RMS (MR ) increases linearity.

It will be shown later that the maximum allowable value of

MR (with no other system errors) is approximately 0.2 feet. It can be
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seen. therefore, that the maximum allowable a m is approximately 0.04

degrees.

4.3.2 Performance of Weighting and B i as Estimation System

The weighting and bias estimation system uses two anglen	 A

measurements (e l and a N+1) that are not used in the basic system. These

measurements have an additional error--the directional reference error for

the first and nth conveyor sections. The measured angles are simulated by

A

6 1 =9 1 +e l + b
+eel

A

e N+l = e N+l + C N+l + b + ce (N+l)

where

C,9 = normal (0, c o 2 )

`e (N+1) - normal (0, ae 2 )

The errors in the other angles are the same as in the basic measurement
system, i.e.,

c i = nomial (0, amt)

b = normal	 0, 
a m 2

The results of the Monte Carlo simulation are shown in

Figure 4.9. In this figure MR is plotted versus a m for various values

of 00  It can be seen that using the criterion that the maximum allow-
able MR is 0.2 feet, the maximum allowable ae is 0.3 degrees. If a

s 
=



r^

+s

.ao

r
O

^^

N
iJ

O
HN
CY

_O

O
i	 „.

W 4J
N C

W

W

a 4J
4

Q W
W

i

W ^
ea

V
O ^

a E
LL o tC
O
2
O of

W O
D
O

cm

Q
O
2
Q

n

C2z o o2
v	 =mow

C_9 D,F y

^^	 W 2F't}93aN

c

w
Q LL 
h 

W

O ^^ LU

4-22 i



0, then a larger o m can be tolerated than in the basic measurement

system.

It is concluded that the weighting and bias estimation

algorithm is a viable system and superior to the basic system if the

angle cart measurement inaccuracies are greater than 0.04 degrees but

less than approximately 0.1 degrees. In that case the basic angle cart

system does not provide sufficient accuracy. However, the error in the

directional reference must be less than 0.2 degrees.

4.3.3 Performance of Basic Measurement System When a Number of

Conveyer  Sections Cannot Be Measured

The basic measurement system measures the angles e2 through

O
N 

and then computes the angle e l . If some of the angles at the con-

veyer ends cannot be measured because the shearer is in the way, then

these angles will be assumed zero. In order to check the effect of this

:ondition the Monte Carlo simulation was exercised with a number of

conveyer angle measurements at each end of the conveyer arbitrarily set

to zero.

The results are shown in Figures 4-10 and 4-11 where the

Mode of RMS is plotted versus the number of conveyer angles at each end

of the conveyer that cannot be measured. Figure 4-10 was obtained using

OT - 0.5 degrees while Figure 4-11 is for OT - 1.0 degrees. The con-

veyer profile was simulated by sampling the angles between the conveyer

sections from a normal distribution with standard deviati"jn O
T

. There-

fore, for OT = 1.0 degree the conveyer is more crooked (the angles

between sections are larger) than for OT
	 0.5 degree. By assuming that

some of the angles at the ends of the conveyer are zero, larger errors

4-23
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D^

1

in the computed yaw profile are expected. For OT = 0.5 degrees little

affect on MR is indicated for one or two angles that cannot be measured

at each end of the conveyer. For OT = 1.0 degrees the effect on N is

small only when one angle at each end of the conveyer is not measured.

Since the magnitude of OT depends on operational errors such as the roof

support pullup errors, the effect of not measuring some of the end con-

veyer angles must be studied with.the yaw advancement simulation. The

results of this study are described in Section 4.4.1.

4.4 DESCRIPTION OF THE YAW ADVANCEMENT SYSTEM SIMULATION USING THE

ANGLE CART

As described in Section 4-1, the yaw advancement system consists of

pushing the conveyer forward ; pulling the roof supports up, measuring

the yaw profile and then pushing the conveyer forward again. This same

sequence of operations is modeled in the yaw advancement simulation (see

Figure 4-12).

Conveyer Placement

Each section of the conveyer is pushed forward an amount given by

the placement command 'A Y pn plus a placement error c pn , i.e.,

AY  = aY pn + E pn

where a pn is sampled from a norma''. distribution (0, a p2 ) . The amount

the conveyer is pushed forward AY, is limited between zero and the full

ram stroke YA. The equations are
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If O n > YA , aY n = OYA

If O n < 0, O n * 0

The conveyer sections are pushed from their midpoints. Defining 	 -^

Ymn as the Y-coordinate of the midpoint of the nth conveyer section,

then the Y-coordinate after pushing is given by

Y	 -k	 .;	 k -1
mn Ymn +eYn

r
i

where the superscripts define the sequence before and after pushing.

In the simulation conveyer section 1 i5 placed first. Its orienta-

tion is sampled from a normal distribution (0, a l ). Then its end points

are located:

Y.o = Yml - 2- sin e l

Y l	 Yml + 2' sin el

Again, the advance is limited to Y A , i.e.,

If YO  > Yo k - 1 + YA , Yo k = Yo k-1 + YA and Y l k = 2YMl k - YO 

If 
Y1  > Yl k-1 + Y A , Y l k = Ylk-1 + YA and Y ok = 2Yml k - Ylk

The angle e l is recomputed

e l - sin-1 
Y - Y1 r-- °

f.



Al so

Yl a el

All the other sections are then located in sequence by the

following equations:

Yna2ymn-Yn-1

If Y nk > Yn k-1 + Y A , Y n k = Ynk-1 + YA

Y a sin -1 Yn	 Yn-^l

On a Y n - Yn-1

If after computing any On

On > emax	 (emax = 4 degrees)

or

e n < -emax

then e n is restricted to its maximum value, i.e.,

an = emax
or

e n = -emax

and



Roof Support Pull -up

After the conveyer has been pushed forward, the shearer will move

along the conveyer making its cut. This operation, however, does not	 Y•

affect the conveyer yaw profile. The roof supports are then pulled up.

This operation affects the conveyer profile by pulling the conveyer back

as the roof supports are pulled forward. This operation is simulated by

subtracting a pullup error from the Y-coordinate of the midpoint of each a

conveyer section, i.e.,

Y k = Y	
^

k-i - e
mn	 mn	 snI

where E sn is sampled from a norma , distribution (0, as2).

A yaw profile after this pul up error is computed again in the same

manner as for -the conveyer placement.

Measure YAW Profile

For the basic angle cart measurement system the conveyer angles e2

through e N are measured. Therefore, for all those angles errors are

added, i.e.,

6 i = g i + C  + b

The yaw profile is then computed as described in Section 4.2.1.

The equations are

4-30



N

Y N - L L Le j +Yo
i-2	 j-2

-
YN - YNe l - 

NL:

n

EY n - L 	 L^ e j + Yo
W j=1

For the weighting and bias estimation system, two additional angles

are measured. They are o f and oN+1. Errors in measuring these angles

are the same as for the other antiles except that they have an additional

error. The additional error is n the reference direction. It is simu-

lated by

a

1
i
F

e l = e l + e l + b + ee,

E	 e	 = e	 +	 + b + e0 (N+1)
N+1	 N+1	 N+1

where

Cel and Ee(N+l)

are sampled from a normal distribution (0, 002).

i

RrPRODUCIBILITY OF THE
ORIGINTAL PAGB IS POOL
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'	 N-n	 M+1
Yn- '	 ^ j	 + YN

i=1	 j=N-t+2

N-n N-^n+_'i_)(_2N-2n+1an n n+ n+T)+(N-n ) (N-n+ ZI2n+T)

11

f

{

l	 j

^f

rM

I	 A

e
i

^N"	
i

Y N al 1: E I)i +Yo
W j=1

Yb+ *	 L
"+0^ = O i .. b

Y n+ L 	 e j+ + Yo
W j-1

N	 N+1

Yo = !.	 ^j + YN

i=1 (j-N-i+2

b- -	 2	
Y0 - Yo

A	 Il	 n

e i` = o f - b-

t
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Yn = an Yn+ + (1-an ) Y n-

Conveyer Placement Commands

The conveyer placement commands eY pn are computed using the con-

veyer Y-coordinates Y n* It is desired to advance the conveyer as far

as possible and at the same time straighten it. This is accomplished by

determining the minimum Y-coordinate, advancing that section a distance

YA and all the others an appropriate amount so that it is straight. The

conveyer placement commands that will accomplish that task are derived
from geometry shown in Figure 4.13

eY
pn
 m 

YA + Ymin - 0.5 (Y
n
 + Yn-1)

where Ymin is the minimum value of Yn.

4.4.1 Overall System Performance Using the Angle Cart

t.

t:

i

i

i

E

i
A

The overall system performance using the angle cart

measuring device was determined by exercising the yaw advancement

simulation.

The conveyer initial position was a straight line. Then the

conveyer was pushed forward (with placement errors, o p ) and the roof

supports were pulled up (with pullup errors, v s ). Measurements were

then made (with measurement errors, a m ) and the yaw profile computed.

Next, conveyer placement commands were computed in preparation for the

next advancement. Twenty consecutive advancements were made.

t
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In order to determine tolerable measurement errors, a

placement error a p and a pullup error a s were selected and then twenty

advances were made with a m = 0. The measurement error was then

increased in 0.005 degree steps each time advancing the conveyer twenty

`	 times. As the measurement error was increased, the conveyer became more

and more crooked so that for some value of am the conveyer cannot

advance twenty times without commanding a negative placement of the

conveyer. Such a command would require the conveyer to be pulled back

which is impossible. As a result, the next lower value of a m was deemed

the maximum tolerable measurement error. Three a m maximums were deter-

mined for each placement and pullup error and then averaged. The

results are plotted in Figures 4-14 through 4-17.

Figure 4-14 shows the maximum tolerable measurement error

versus the pullup error for the basic angle cart measurement system.

Two values of the placement error were considered, u p = 0 and 0.05 feet.

The region below the curve is considered stable; above the curve the

region is considered unstable.

Figures 4-15 through 4-17 show the results for the basic

angle cart measurement system where it is assumed that some of the

conveyer angles at each end of the conveyer cannot be measured (J

defines the number at each end that cannot be measured). It can be seen

that for J = 1, system performance is degraded only slightly. For J

2, however, system performance is degraded by a considerable amount.

The reason for this large effect on performance is that the conveyer

pullup errors cause the conveyer angles to be large. Since they are

assumed zero in the yaw profile computations when they cannot be

measured, the pullup errors cause a large effect.

4 l	
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In Figures 4-18 and 4-19, the performance of the weighting

and bias estimation system is shown. Figure 4-18 shows the performance

for op n tl and Figure 4-19 shows the performance for u p = 0.05 feet.

These figure, show that the reference error od (the error in determining

the reference direction of the end conveyer sections) has a large effect

on the maxim w tolerable measurement error am . For example, the maximum

allowable error in the standard deviation of the reference error is 0.2

degree. However, if the reference error can be determined more accu-

rately than 0.2 degree, the weighting and bias estimation system gives a

better performance than the basic angle cart measurement system.

4.4.2 Recommended Measurement Algorithm for the Angle Cart

The recommended measurement algorithm for the angle cart is

the Basic Measurement System. This system uses the measured location of

the conveyer end points and the angles between all the conveyer sections

to compute the yaw profile--the Y-coordinates of the ends of the con-

veyer sections. From the yaw profile, conveyer placement commands are

generated. The advantage of this system over the weighting and bias

estimation system is that a reference direction is not needed. The

basic system is therefore simpler and reference direction errors are of

no concern.

i The angle cart eight speed resolvers have a basic accuracy

of 2 arc minutes or 1/30 degrees. Averaging 200 measurements gives the

angle cart measurements an accuracy of 0.0033 degrees. This accuracy is

an order of magnitude better than the requirement.

4-40

f

fd



H

C Z	 W
LC O uj

y

'Qf;SUWp
O a f'Wacw

WES
LL -j M cca W O a W

N ^	 W

Q

4-41

N

r

N

i

^M

}

i

C
O
.r.

b

N

O 4J
C
d1

V
C
fCt

V
Q

N O
O S

S

	

W	 E

J

	

J	 N

a N

	

H	 O

	

S	 O

	

O	 r-
as ro

	

O	 E

	

y	 4JW NO 
N 

W
S W Ul
W W
^ LL m

	

1L.	 V
	O 	 O

	

2	
to

O rn

	

F=	O

	

Q	 .-a
	> 	 -c

	

W	 Im

BCD
D 3
S
Q
D

	

Q	 'I

	

^ h
	

^

N
L

cm

LL.



2

L6

uj
ka

0

uj
Lu !!:

to
LA. CID

O (0

V

Tm

>

r_I- tA

W 4J 4-)

0 
24

N

O

cq 	 IN	

O

O

a z	 Uzi
GtOW4 uj

tj	 o
12	 cr.

C- w
C:

z	 it 0	 to
0

W	 2	 w4
UA

0Z w

4-42

O
4-)

V)

4-)

la

Occcc
ui

4J

CA. >)
CC

0

4-J

.(a



lip

L
Using the yaw advancement simulation, ten advances of the

basic measurement system were simulated and L.!,e yaw profile plotted

after each advance. An example of these plots is shown in Figure 4-20

where a  = 0.05 feet, as = 0.1 feet and a m = 0.03 degree. It can be

seen that after ten advances, approximately 14 feet of coal was cut.

Without errors 20 feet of coal would have been cut. Therefore, the

^.	 system efficiency is

= 0.7

Figures 4-21 and 4-22 show the efficiency of the basic angle

cart measurement system as a function of the system errors.
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4.5 DESCRIPTION OF THE DIRECTIONAL GYRO MEASUREMENT SYSTEM

A directional gyro mounted on the shearer or on a conveyor cart can be

used to measure (with respect to a fixed directional reference) the angular

orientation of each individual conveyor section. Knowing the location of

the ends of the conveyor along with the conveyor angles xi allows the com-

putation of the conveyor yaw profile.

Four different directional gyro measurement algorithms have been de-

vised. The advantage of each depends partly on the relative magnitude of

the gyro errors.

A description of the gyt ,a error model and the four measurement algo-

rithms is presented in the falinwing sections.

4.5.1 Mathematical Model of Directional Gyro Error

The directional gyro is used to measure the orientation angle

of the cart with respect to a fix(^d reference direction. The gyro measure-

ment error e(t) at time t is assumed to be additive, i.e., the gyro mea-

sured angle at time t is equal to the true angle plus e(t). The dynamic

mathematical model for e(t) is illustrated in the system block diagram of

Figure 4-23.

The input u(t) is assumed to be a Gaussian white noise sto-

chastic process with spectral intensity t:, i.e., the u(t) are independent,

zero mean Gaussian random variables such that

ECu(t l ) u ( t z)J =v 6(t 1 - tZ)

for any t l and t2 , where 6 denotes the Dirac delta function.
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It is seen from Figure 4-23 that e(t) is represented as the

sum of four effects:

(1) An integrated white noise, i.e., "random walk" process

(2) A stationary process obtained by passing white noise through a

linear first order lag filter with gain A and time constant T.

(3) A drifting bias error e bt where eb is the bias rate, assumed to

be a Gaussian random variable with mean zero and variance ob2

(4) A random constant bias error e R , representing a fixed error in

the directional reference, and also assumed Gaussian with mean

zero and variance OR2.

The random variables u(t), t > D, e b and ER are taken to be

statistically independent. From Figure 4-23, e(t) can be expressed as

t	 t-r

C (t) =	 1 + A e- T	 u(r)dr + s bt 
+ FR

or 1' TI1E
i t^1L,T ^^C)C.̂TL

0111U1?^A

For proper mathematical interpretation, the integral above should be under-

stood to be a Wiener stochastic integral, with the term u(r) dr replaced by

dw(r), where w(r) denotes a Brownian motion stochastic process with

variance parameter K. [fie covariance function of e(t) is given by

t i	 f, I-t2-r

E[e(t 1 )e(t2 )] = K	 1+ 
A 

e	 T	
1+ A e	 T	 dr

0 (

+ o b2 t1 t 2 
+ OR 
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t j t 2
	 t2-ti  	 2	

t l+ t2

	

__	 _ 

K t l+ A l- e	 - e T + A(1 + r e	 T _ r e	 s

+ Ob2 
tl t2 

+ aRZ

for n < t1 < t2 . , If ti > t,, then t1 and t2 must be interchanged in the

above formula.

4.5.2	 Derivation of the Di rectional Gyro Measurement Algorithm

W-i'thout Averaging

The directional gyro measurement algorithm without averaging

uses only a single directional gyro measurement of each conveyor section.

Those measurements 
Yn 

are combined with the Y coordinates of the conveyor

end points to compute the yaw profile.

n

Y = L 
1

n	
^ Yk + Yo

k=1

Yn = Yn+ -
 
a
n 

( YN + - YN)

A

where o
n 

is a weighting function derived to minimize the error in Y n . The

derivation of o
n 

follows.

Let T denote the time for the cart to traverse a conveyor

segment. The gyro measurement angle yk = Yk + e k , where Yk is the true

4-50
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n

X 1 = L E ek.

k=1

N

X2 =L E k

k=1

Yn=Yn+X1 -RnX2

wy
	 angle, and the error E k 	 e((k - 1)T) fork	 1, ..., N, since the gyro

measurement is made at the beginning of the segment to obtain the sl^:.11est

error variance. Thus,
A4

n
Y n+ = L 1: ( Tk +c d + Yo = Y n + X1

k=1

Î .	
YN+=YN+X2^r ,Tilt

,.	 ,R^PIIODt1C1^^,I'1^ Or
OItIGINAT' rp,Gl^ IS POOR

where Yn and YN are the true Y coordinates at points n and N, respectively,

and

The value of R n is chosen to minimize the variance of Y n , and

is obtained by setting the derivative of this variance with respect to Rn

equal to zero and solving for an
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!	 1

j	 1

EE(X1
z1X2)

n	
E(X22 )	 I

A	 KT	 b2-F)	
- 1)	

2KA (N + 1 + -F) n + —g n (n - 1)(3N - n -i) + 	
4	

n(n - 1) + nNG

a

KA (N + 1 + ^) N + KT N (N	 1)(2h - 1) +	 a	 NZ (N - 1) 2 + N20 2	 t

The quantities E(X 1 X 2 ) and E(X 22 ) were computed by summing the appropriate
4	

i

covariances given by the error covariance function in Section 4.5.1 and

then, neglecting small terms.

	

4.5.3	 Derivation of the Directional Gyro Measurement Algorithm with

Averaging

The directional gyro measurement algorithm with averaging

uses approximately 200 directional gyro measurements of each conveyor sec-

tion. An average of the 200 measurements is computed and then used as a

single measurement to compute the yaw profile. The equations are: 	 -4

200

	

An - R	 Ymi
i=1

where Ymi are the individual measurements and 
An is the average measured

angle of the n th conveyor section. Then

4

a 4

V

^ F

1F^

r	
I	 i1

S
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n
^+	 t	 ^

Yn=LL, YAk+Yo
{c=1

n	 ^
Yn = Yn _ O n (YN	 YN)

s

itt,A'lWllU`^'x GL I
S ^^DU^.^

ORIGINAL

where R n is the weighting function derived to minimize the yaw profile
r	 error for this condition. Its derivation follows:
l

Proceeding as in Section 4.5.2, t1a error e k is now given by

kT

c k = T	 a (t)dt
1 

f(k-l)T

(k = 1, ..., N)

where the discrete average has been replaced by an integral for computa-

tional simplicity. Hence,

nT

X1 = T	 e(t)dt

0

NT

X2 = T	 e(t)dt

0

NT f nT

E[c(tl) e (t 2 )] dt l dt2

O n
 = o	 0

E [e ( t 1) e (t 2 )] dt l dt2

0	 0
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Again, using the error covariance function in Section 4.5.1, performing the

integrations above and neglecting small terms, it can be shown that

Ln

where

A(A + T)T
P =K -^ n3 +^ Nn2 +AN n+ AA

+ZT n- __-2----
T

T2 a N2
-TT (N+ T+n)+ 

4 
n2+N n aH2

Q=K NAT +AN2 + A(A-2T) N-7(A+2T) -7 (2N+-A2.)
T

?	 2
T ^° b N4 + N2 QR2

4.5.4	 Derivation of the Directional Gyro Algorithm with Drifting

Bias Compensation

The directional gyro algorithm with drifting bias compen-

sation i.s der ,;ved by assuming that the main gyro error is the drifting

bias. The directional gyro at the beginning of a sequence of measurements

is nulled with respect to a fixed directional reference. As the gyro pro-

cpeds at a constant velocity along the conveyor taking measurements, it

drifts at a constant rate. Hence, the error in y l = ay; the error in Y2 =

2ny; and the error in y n = nay. As a result, Ay can be computed using the

measured and computed end points, i.e.,

i

r

e.
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^+ - Y

eY n 	 YN N

where

N

YN s L	 Yk + Yo
k=1

The directional gyro measurements are then corrected by

Yn = Yn - nAY

and the yaw profile is computed by

n

Yn	 L	 ^k + Y
O

k=1

e	 4.5.5	 Derivation of the Directional Gyro Algorithm With Constant

.:	 Bias Compensation

The derivation of the constant bias algorithm is similar to

the drifting bias algorithm except it is assumed that the constant bias

(error in the directional reference e R ) is the most significant. In this

case, each gyro mesurement is in error by Ay. Therefore, the error in Yn =
F

eY and it can be computed by e



Ay = 
1 YNYNI --- L

^	
(N
L.^

YN=L 	 yk+Yo
k=1

where

f

}

wt
i

a	 f

i

4

The gyro measurements are corrected by

Y n =y n - Ay

and the yaw profile is computed by

n

Y n
=L L.: yk +Yo .

k=1

4.6	 DESCRIPTION OF THE MONTE CARLO TECHNIQUE TO DETERMINE THE MEASUREMENT

ACCURACY OF THE DIRECTIONAL GYRO

The Monte Carlo simulation i.sed to evaluate the directional gyro

measurement algorithms is the same as that used for the angle car: system.

Only the measurement systems are ;hanged. The simulation of the various

measurement systems is described i n the following sections.
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t

y.

an = C 1 un

bn = C2 un + C3 vn

i

4.6.1	 Directional Gyro Without Averaging

The directional gyro measurement algorithm without averaging

(making only a single measurement of each conveyor section) is simulated on

the digital computer as follows.

The noise model defined in Section 4.5.1 is simulated on the

digital computer assuming only a single measurement is taken on each

conveyor segment. 'the equations required are:

C 1 =	 Kn

A

C2 = A -^1 Q (1 - e - T )

_n/T
K	 T	 2T 1- e

C3-A	
YT	

1-e	 1-a'	 _eT
l+e

t

X o = yo = zo = 0 (initial conditions)

e b = normal (0
1
 ob2)

un = normal (0, 1)

independent
vn = normal (0, 1)

{

i
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Xn 
= 

xn-1 + an

- a /T

Yn 
s e	

Yn-1+ b n

eR = normal 
(01 OR 

2)

e n =xn +yn +e bn A + e 
R

where

V = velocity at which the -lirectional gyro traverses the

conveyor in feet/second

T = time for directional c ,ro to traverse one conveyor
segment.

A= sampling i nver y al in s , cond s

K = noise spectral intensity in (rad/s)2/(rad/s)

A	 filter gain in second

T = filter time constant

e - T- L
The directional gyrc noise error at the n-1 conveyor

section (e n-1 ) is added to the tri! conveyor angle at the n th section to
give the measured angle:

Yn = Yn + en-1

The yaw profile measurement algori ,.hm is
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i

n
Yn+ -Dirk+Yo

.,	 k-1

.	 A	
°b 2T2 N(N - 1)

KA(N+1+	 Kr
A ) n+ 6n(n-1)(3N-n-1)+	 n(n-1)+nNa 2

Bn	

A KT	 °bz2 2 2KA(N + 1 +^ )N +rN(N - 1)(2N - 1) + -- 4 	N (N - 1) + N2 a 

Y n = Yn+ -
 
O n (YN+ - YN)

The Monte Carlo simulation results for the directional gyro-

single measurement algorithm are shown in Figures 4-24 through 4-28. In

Figure 4-24 the mode of the RMS (M R ) is plotted versus the gyro noise

spectral intensity K for various values of velocity V. It can be seen that

traversing the face at 30 feet/minute (V = 0.5 ft/sec) requires a noise

spectral intensity of 1.0 x 10 -7 rad/sec to produce an MR = 0.2 feet. This

value of K corresponds to a random walk error of approximately 0.6 degrees/

hour. Gyros with such a random walk error are good quality and relatively expensive.

The effect of the filter yain and filter time constant are

shown in Figures 4-25 and 4-26. It can he seen that they have little

effect for values much larger than their- nominal values.

Figure 4-27 shows that the effect of a drifting bias °b 
has

been removed by the optimum weighting measurement algorithm.

The effect of the reference error OR is shown in Figure 4-28.

The results show that the amount A reference error that can be tolerated

depends on the gyro noise spectra intensity. The yaw advancement

simulation was used to study the tolerable limits of these parameters as

reported in Section 4.7.1.
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4.6.2	 Directional Gyro With Averaging

The directional gyro measurement algorithm with averaging is

simulated on the digital computer as follows.

The directional gyro noise (assuming that many measurements

of each section are tauten and averaged) is simulated by the following

equations:

vz = KT

	

2	 2T

	

= KA	 TV ,2 '4— 1-e
REPRODUCIBILITY OF THE
ORIGINAL PAGI-^ IS POOR

3	 T	 T

v3 = K- + AT2 + A2 T + 2 A Te ` - 2AT (A + T) 1 - e T

2	
_ 2T

_ T'

	C12 = KA	 1 - 
e i



G	 v, V2 - C12 
2

F 
i -Fvi

F	
"12

2 7v-,

F3 
A1

f-V 1 (C 13 V 2	 C 12 '2 3 - + 
C12 

(c23 
v 
I - c 12 c13)

^

V	

Iv—, 
4	 G

C 23 V I - C 12 013
F5

2
c1 3
272 + C23 1 - 

2 c c c
 

12 13 23
F6 =JV 3	 G

rt

X0	 = Yo = Zo = c o = 0	 (initid	 conditions)

c  = normal (01 ab 
2

ER normal (01 aR
2

u n = normal (0, 1)

vn = normal (0, 1) incependent

Wn normal (0, 1)
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bn = F Z un + F3 vn

c n = F 4 un+F5 vn+F6wn

x n = xn-1 + an

T
T

Y n = e	 Yn- 1 + bn

T

xn =TXn - 1^ T (1 -e T) Yn- l +Zn- l+cn

`n = z- n-.^ n' 1 + (n - Y) Te b + eft

The quantity en is the averaged gyro noise on the n th conveyor section and

is added in the simulation to the true angle yn to obtain the averaged

measured angle Yn.

Yn =Yn+En

The yaw profile measurement algorithm is given by the following equations.

n

Y n =L^ Yk+Yo

k=1

A

i

4-b7

,k



P - K - T n3+TNn2+ANn+AA+2T	
n- A(7 +T)T	 -AT (N+ A +n)

- 
S '^	 _ _ T -	 Tom-- 7 7

T2o2N2
E -----fib -- n2 + Nn a ,2

N3T	 2	 A + 2z	 AT	 AT	 A
Q K	 3 +AN +A C- T )N _ 2 (A+ 2T) - T (2N + 2T)T

2 2

+ T 4°b N4 + N2 OR 

P
s n 

= 17

Y  = Yn+ - o ntan (YN+ - YN)

The Monte Carlo similation results for the directional gyro

averaging system are shown in Figire 4-29. These results are almost

identical to the single measureme t system. Hence taking a large number of

measurements and averaging does n(L improve the performance over taking a

single measurement.

4.6.3	 Directional Gyro wil l) Drifting Bias Compensation

The directional gyrc measurement algorithm with drifting bias

compensation is simulated using tho same equations for the gyro error as

for the model with no averaging. Itence, the gyro measurements are given by
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Yn=Yn4 en

i
{

is	 bywhere e n 	given	 the equations in Section 4.6.1.	 The remaining,

equations are

f

3
v

N
^+
Y N	 - L	

Yk + Yo

k=l

YN+ - 
YNAY =	 ZY	

T
^ 	 L

Yn = Yn - nAy
.Y-
i

E
N^

YrN=LE	 Yk+Yo

i

k=1 R
i

s
^ A

The Monte Carlo simulation results of the directional	 gyro

system with the drifting bias compensation are shown in Figure 4-30. 	 This

figure shows that for the same cotditions the mode of RMS is slightly

larger than the directional gyro system with single measurements and '.

optimum weighting.	 Since the drifting bias compensation algorithm is much

simpler to instrument, this systev would be preferred if the size of the

computer, on which the algorithm- 	 s implemented, is a factor.



p	 p	 O

1\

O
r
X
O

N

r

N

O
r

X	 O
r-

tn	 L
N	 f^S

V

C1

C

^	 1

O 
N	

Ox Z
OUJ.j

!V Z	 b
N

J	 C
CC
H W O
w G v

O N	 b
r ti^.x

Z y c
C Q 4-

a 4-

^7	 L
J ^ Da 1

0o -0^

W
O ^_
r+	 r

Q	 fd
C
O

V
O
L

O	 C
r
X
In	 O
O	 M

1

d'
NL
O

C1

LL

O

r

i

r

F

3

W N H
ccui0

a cr 2 =uj

4-71
g



4.6.4	 Directional Gyro With Constant Bias Compensation 	 a►

The directional gyro with constant bias compensation is also
d

simulated the same as the model without averaging except for the following

equations
E

Y
Y n = Yn + `n

where e n is the gyro error which is simulated by the equations given in

Section 4.6.1. The remaining equations dre given by 	 i

N

.Y+N s C 1:
 

Yk + Yo	
.,

k-1

1	 YN+	 YN

nY - R ^'

Yn _' 
Yn _ eY

n

Y	 4.	 Y,. +Y
n	 ^,	 o

k=1

The Monte Carlo simulation results of the constant bias

compensation system are shown in Figures 4-31 and 4-32. Figure 4-31

shows that for this system a directional reference error (constant bias)

has little effect on the mode of the RMS. However, now a smaller level
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i.

1

of spectral noise intensity can be tolerated. In addition, as shown in

Figure 4-32, a drifting bias affects the system performance. Selection

of the directional gyro algorithm (between the single measurement system

and the constant bias system) must consider the relative magnitude of

the spectral noise intensity, the drifting bias, and the directional

reference error.
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	 DESCRIPTION OF THE YAW ADVANCEMENT SYSTEM
SIMULATION USING THE DIRECTIONAL GYRO

This simulation is identical to that described in Section 4.4

except that the directional gyro is used for :"he angle measurements

rather than the angle cart. The sequence of operations simulated are:

(1) the conveyer is pushed forward, (2) the roof supports are pulled up,

(3) the angle measurements are made, and (4) the yaw profile and con-

veyer placement commands are computed in preparation for pushing the

conveyer forward again.

Two yaw profile measurement algorithms are simulated: the single

measurement (nonaveraging) algorithm, and the constant bias compensation

algorithm. The Monte Carlo simul Lion performance of the other two

algorithms (averaging and driftin bias compensation) were very similar 	 #

to the single measurement algoritlir. Therefore, they are not evaluated 	 *'

with the yaw advancement simulation.

The yaw profile measurement algorithm for the single measurement

system is simulated by

^r i = Y i +i

where r i is the gyro error° and is a function of K, the noise spectral
intensity, the standard deviation of the drifting bia!o u t , and the

standard deviation of the gyro reference error ako

M

n

Y n + =L^ Yk+Yo

k=1
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A	 KT	 ob2T2N(N-1) 	 2
KA(N+1+ y,-,)n + r n (n-1) (3N-n-1) +	 4-- n(n-1) + nNaR

r
sn	

.2T

KA(N+1+ 'F)N + r N (N-1)(2N-1) + 
o
---4 N2 (N-1) 2 + N2 cR2

Y n = Yn+ - A n (Y N+ - YN)

The yaw profile measurement algorithm for the constant bias

compensation system is simulated by

Yi = Y i + `i

N

YNL	 Yk+Yo
k-1

A +

eY = R Y  - Y 
L 

Yn = Yn -
 

AY

n

Y n =L^ Yk+Y,..,
k=1

i'
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4.7.1	 Overall System Performance Using the Directional Gyro

The overall system performance using the directional gyro

was determined by exercising the yaw advancement simulation.

The conveyer initial position was a straight line. Then

the conveyer was pushed forward (with placement errors Q ) and the roof

supports ;*Ere pulled up (with pullup errors a s ). Measurements were then

made (with noise error K) and the yaw profile computed. Next, conveyer

placement commands were computed in preparation for the next advancement.

Twenty consecutive advancements were made.

In order to determine tolerable noise errors, a placement

error °p and a pullup error a s were selected, and then 20 advances were
made with K = 0. The noise was then increased in 0.2 x 10' 7 rad/s

steps, each time advancing the conveyer 20 times. As the noise was

increased, the conveyer became more crooked so that for some value of K

the conveyer could not advance 20 times without commanding a negative

placement of the conveyer. Such a command would require the conveyer to

be pulled back which is impossible. As a result, the next lower value

of K was deemed the maximum tolerable noise error. Three K maximums

were determined for each placement and pullup error, and then averaged.

The results are plotted in Figures 4-33 and 4-34.

Figure 4-33 shows the maximum tolerable noise error versus

the pullup error for the single measurement (no averaging) system. It

can be seen that gyro reference errors (a R ) as large as 0.2 deg have
little effect on the maximum tolerable spectral noise intensity. Also,

a value of K = 1 x 10 -7 rad/s for the noise can be tolerated. This

amount of noise is equivalent to a random walk standard deviation of 0.6

deg/h. Such a gyro is of good quality and will be relatively expensive.
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Figure 4-34 shows the maximum tolerable noise error versus

the pullup error for the constant bias compensation system. It can be

seen that the drifting bias ab causes a slight decrease in the tolerable

noise level K. A value of K = 0.5 x 10 -7 rad/s can be tolerated for the

nominal bias of a  = 7.27 x 10 -6 rad/s. This value is equivalent to a

drift rate of 1.5 deg/h and represents a good quality gyro.

4.7.2	 Recommended Measurement Algorithm for Directional Gyro

The recommended measurement algorithm for the directional

gyro is the single measurement (no averaging) system. This system uses

the measured location of the conveyer end points and the angular

orientation of all the conveyer sections to compute the yaw profile.

Only a single measurement of each conveyer section is made. An optimum

weighting technique is used to minimize the yaw profile errors.

The single measurement system performance is comparable to

the averaging system but does not need the large number of measurements

for averaging. The drifting bias compensation system has a slightly

inferior performance. The constant bias compensation system requires

the noise spectral intensity to bt , half that of the single measurement

system.

Using the yaw advancement simulation, ten advances of the

directional gyro-single measurement system were simulated. The ratio of

the amount of coal cut compared to that which could be cut without

errors is the efficiency of the system. Figures 4-35 and 4-36 show the

i

,

g1
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efficiency of the directional gyro-single measurement system for various

system errors.
1

4.8 CONCLUSIONS AND RECOMMENDATIONS

The yaw alignment system has been developed to automatically

advance the conveyer and the pullup of the roof supports, keeping the

coal face relatively straight. Angular measurements of the conveyer

sections are made so that the conveyer shape (profile) can be computed.

Conveyer placement commands are then computed to realign the conveyer.

T
Studies to evaluate this system indicate that either an angle cart

	
r^

or directional gyro can be used to measure the conveyer angles. The

angle cart measures the relative angle between two adjacent conveyer 	 -F

sections while the directional gyro measures the angular orientation of

a conveyer section with respect to a fixed reference.

The studies also indicate that the accuracies required of the

directional gyro dictate that a relatively expensive gyro is required.

In addition to this accuracy requirement, there can be some operational

problems. If the gyro is mounted on the shearer, and measurements are

made as the shearer is cutting coal, any delay in traversing the face

will result in gyro errors continuing to build up. Another measurement

pass with the shearer must then be made. If the directional gyro is not

mounted on the shearer to avoid delays and to speed up the measurements,

then a separate cart is needed, increasing the system cost.

As a result, the basic angle cart system is recommended. This

system requires no reference angle measurements--only the angle cart

measurements and the location of the two conveyer end points. Simula-

tion results indicate that the measurement accuracies are an order of

magnitude better than the requireients.
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Roof support pullup errors of 0.1 ft can be tolerated. Estimates

of the pullup errors indicate they are within this requirement. It is

recommended, however, that study on an operating long wall miner be con-

ducted to determine more accurately the roof support pullup errors. In

addition, it is recommended that a dynamically accurate conveyer-roof

support simulation be designed to study the roof support pullup errors

since the present results are overly conservative.
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5.	 ROLL CONTROL SYSTEM

5.1 FUNCTIONAL DESCRIPTION 	

REPRODUCIBILITY OF THE

ORIGINAL PAGE IS POOR
The function of the roll control system is to provide an addi-

tional degree of control for the shearer. The shearer is equipped with

hydraulic actuators which allow it to be rotated about its longitudinal

axis, thus tilting both of the shearing drums relative to the coal seam.

The purpose of roll control is to provide the capability to correct for

twists and undulations in the conveyer. These twists can occur when

coal or other debris becomes lodged under the conveyer.

The roll control system uses a roll sensor to measure the roll

angle of the shearer relative to the local vertical.. This signal may be

biased to allow for operation ii coal seams which are not level. The

hydraulic actuators are commanded by the roll error angle at sensor out-

put, through the necessary comp,nsation. This control system is intend-

ed to be active, that is, to pri,vide continuous control along the face

during the shearing operation. The additional degree of freedom offered

by roll control can be beneficial in maintaining the shearer within the

coal seam.

5.2	 ACTIVE ROLL CONTROL SYSTEM IMPLEMENTATION

Two alternative configurations were considered for the implementa-

tion of active roll control. Tiese systems differ in the treatment of

the roll sensor, and actuator its the control loop. Figure 5-1 illus-

trates the two loop configurations used in this study. Here, the roll

sensor is an inclinometer. The system at the top of this figure is re-

ferred to as the open actuator loop, and the system at the bottom is

referred to as the closed actua or loop. This nomenclature refers to

the treatment of the hydraulic actuator relative to the control loop.

r

i.
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Since the system is intended to be active during shearing opera-

tions, it will be subject to vibrational distrubances which will affect

its performance. The inclinometer used as a roll sensor relies on

gravitational acceleration to detect roll angles and therefore, any

vibrational accelerations along the sensitive axis of this device are

interpreted as roll signals and thus represent noise in the system.

This problem was addressed in design and specification of the control

loops.

The open actuator loop system uses the inclinonenter to sense the

difference between the roll of the conveyor O
R 

anti the roll of the

shearer e. This signal drives the actuators through the compensation

K1 , which is discussed in Section 5.4. With this system, the inclino-

meter is actively within the control loop and, therefore any filtering

required to reduce noise levels will potentially affect loop stability.

The closed actuator loop system is an alternative solution intended to

provide a means of filtering inclinometer data without affecting the con-

trol loop stability. A position loop was closed around the actuator as was

done for the VCS system. The inclinometer is outside of this primary

loop, and therefore, acts as a reference to update the actuator loop.

These two control configurations were modeled and analyzed to determine

their performance.

5.3	 DETAILED MATHEMATICAL MODEL FOR ROLL CONTROL SYSTEM

5.3.1	 Inclinometer Sensor Model

The sensor modeled was a Moog model 86-121 inclinometer.

This device uses the displacement of a sliding mass to detect inclina-

tion relative to the local vertical. The device can be viewed as a mass

free to slide but subject to damping and restoring forces. When the

surface on which the mass slides is tilted with respect to horizontal,



gravitational acceleration moves the mass from its null position. 	 Ex-
terral	 acceleration in the direction of motion of the mass also causes
motion.	 Given the following definitions;

x = mass displacement

M = mass

D = damping force constant

K x restoring force constant

g = acceleration due to gravity

a = disturabnce acceleration

the equation of the mass motion is:

Mx--Dx - Kx+Mg sin	 )+Ma

The angle o	 is the inclination of the mass relative to horizontal, and
is the quantity to be sensed.	 Since inclination angles are small, sin e

may be replaced by o.	 Figure 5-2 shows a block diagram of the solution
for this equation.

The Moog sensor has a natural 	 frequency of 2.4 Hz and a

damping ratio of 0.6.	 The unforced version of the above equation is:

x + D x + K x =0
Pr	 Ff

wi th

5-4
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w	 2.4 Hz - 15.08 rad/s

wN2 =
	 - 227.396

and

2cw = U _ 18.09£
n M

The inclinometer equation can now be rewriten as;

•.

X _ - 18.095X - 227.396X + 32.2e + a

As shown in Figure 5-2, the ou ►.put of the sensor is the displacement

divided by Mg to yield an angular equivalent.

5.3.2	 Vibration Fnviror,,nent

The inclinometer ►ust be mounted on the shearer with its

sensitive axis normal to the face, if it is to sense the desired roll

angle. As a result of this orient;ition, the inclinometer will also

sense cross-axis accelerations normal to the face resulting from

coal shearing. The precise nature of these cross--axis disturbances

was not known, so a bandlimited white noise prc;:.ess was used to simulate

this noise. The simulated noise was a zero mean process with an ex-

ponential correlation, i.e. white noise through a first order

low pass linear filter. The first order filter was set to a 100 Hz

bandwidth in these studies.

Throughout the results which follow, the cross-axis

disturbances will be specified as (CMS g levels.	 The square of this,

the signal variance, represents the total g 2 in the 100 Hz bandwidth, or

the area under the noise spectrum. 1l ►e spectral level of the white

AI&
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noise passed through the low pass filter is found by dividing the

variance by the bandwidth.

5.3.3 Actuator - Shearer Model

The hydraulir. actuation of the roll system is performed by

two hydraulic cylinders operate(' in parallel. These cylinders are 22.25

in. long when retracted, and have a ram extension of 8 in. The actua-
tors are mounted such that a 4 in. ex,tonsion gives zero roll angle rela-
tive to the skid plane. Theref ire,, within the range of the ram exten-

sion, a roll of ±5 deg is possi'le. Figure 5-3 shows the shearer geo-

metry. The distance from the shearer pivot to actuator is 47 in. When

the actuator is at its nominal extension of 4 in., o o = 29.2 deg. The

roll of the shearer a is the ch,inge in roll relative to eo . The equa-

tions for the shearer roll angl e in term of actuator displacement are

given as

e = cos-1D12 + D2 2 - (X0 + Xa)2	
- eo

2D1 02

This is the same relationship used in the VCS, to determine ranging arm

angles.

The model used f(- the .hearer-actuator system is the same

as the VCS actuator system show) in Figure 3-16. For this simulation,

however, the lengths D and W at! repl,iced by lengths D 1 and D2

respectively. The simulation wis also modified such that its range of
roll was +5 deg. The model assumes that the pair of actuators
can be treated as one actuator, and that the roll system has
the same dynamic response and r,)nline3rities as the VCS system.A.

	

	
Finally, the second order loop simulating arm flexibility in the VCS

model was not used in the roll studies.
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5.4 ROLL LOOP DESIGN

5.4.1	 Open Actuator Loop Design

The system diagram in Figure 5-1 shows a compensation K10

This was chosen to be a simple gain so that a roll angle sensed by the

inclinometer would drive the actuator control valve through this gain.

'	 The value of K 1 was selected by simulation, because of the nonlinear

nature of the actuator system. The loop response varies as a function

of both input amplitude and frequency, sc to measure loop performance,

sinusoidal inputs ranging from 1.25 to 5 deg peak were used at frequen-

cies from 0.025 to 0.2 Hz. The performance measure used was the rms of

the loop error designated as a in Figure 5-1. Figures 5-4 through 5-6

r	 show the loop error versus frequency for several amplitudes. Values of

K used	 75 1 75	 d 2 5	 -4	 5-	 r1	 were 2	 3	 an	 7 U for the Figures 5 through 6, es

T`	 pectively.

It can be seen that the low frequency error is reduced by

increasing K 1 , but higher frequency error is essentially the same. This

is due to the rate limited nature of the hydraulic system. At low fre-

quencies, below 0.03 Hz, or at higher , frequencies at the lower ampli-

tudes, the actuator rates required to follow the input are less than

maximum actuator rate, and resulting errors are determined largely by

K 1 . The larger amplitude inputs such as 5 deg, and higher frequencies above

0.05 Hz, require actuator rates beyond its capacity and cause the actuator

to limit at its maximum rate introducing errors.

rw

The maximum input frequency to be expected depends on the

M	 chassis velocity and amount of twist in the conveyor sections. If a

shearer velocity of 30 ft/min is assumed, and letting every 5 ft con-
veyor section be alternately twisted, the resultant roll frequency would

be 0.05 Hz. It was, therefore, decided that the roll loop should

perform well up to this frequency. Since it is unlikely that a 5 deg

0, rl}1L

5-9
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error will occur regularly, an intermediate amplitude was selected as a

reference. Figures 5-4 through 5-6 illustrate that at a 2.5 deg peak

input amplitude, all values of K yielded essential) a constant error up	 p	 ^	 lY	 Y	 p

to 0.05Hz. A gain of 2750 was chosen because of minimum error. A roll

error of 0.05 deg'is sufficient to generate a 2.4 V signal and exceed
l

the control valve input threshold with this gain. Figure 5-7 shows a

time history of the roll angle for the system in response to a 0.05 Hz

	

'•	 input of 2.5 deg peak amplitude.

5.4.2	 Closed Actuator Loop Design

In this system, the actuator is position commanded as in

the VCS system. An actuator position feedback is compared with the

	

•	 command and applied to the acutator control valve through the gain K2.

This gain was also selected by simulation to yield a response similar

to the open actuator loop system. The calculations necessary to de-

termine the desired actuator displacement follow those used in the VCS.

The present shearer roll angle 0' is computed from the current Xa as:

-1 D12 + D22 - 

(Xo + Xa)2

	

..	 cos

2 D 1 D2

The desired value of roll is then 6 + 0 and the necessary X  to achieve
this is:

X  = V D 1 2 + D22 - 2D 1 D2 cos (^ + e ' ) -Xo

RE C
ODUCIPMU,I T Y Off' T11,P,

ORIGINAL P Ae' is 13 ptJ OH

5-1 :;
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Figures 5-8 through 5-10 show error versus frequency plots

for the closed actuator loop system with K2 equal to 85, 170, and 340

respectively. These plots are very similar to Figures 5-4 through 5-6

El
	 except that the low frequency error is lower and less affected by gain

changes. Again, at 2.5 deg input amplitude, the error response is good

to approximately 0.05 Hz. The value of K 2 chosen was 170, the same

gain as in the VCS system. This gain yields good performance without

excessive limit cycles. Time response of the closed actuator loop

system is shown in Figure 5 . 11. It is seen that this system is slightly

more accurate than the open loop system in a noiseless environment.

This is also shown in the frequency response diagrams of the two systems.

5..5. ROLL SYSTEM PERFORMANCE WITH CROSS-AXIS ACCELERATION

5.5.1	 Performance with Openi Actuator Loop

System performance is shov rn in Table 5-1, as a function of the RMS

j	 cross-axis acceleration level, vhich was parameterized from 0.01 to 1.0

g's. The data in this table shows RMS loop error for a sinusoidal input

at a frequency of 0.05 Hz (1120 Hz) and an amplitude of 2.5 deg peak.

These results were also at maximum flow rate. Row 1 of Table 5-1

F

t	

indicates the response of the nominal open loop system to cross-axis

f	 disturbances. It can be seen that even small accelerations introduce
r

errors. The input signal has ai RMS value of 1.77 deg, which would be

the RMS error if no control was applied. Accelerations of 0.05 g produce

errors approximately 45 percent of this value, and with noise above 0.1

g the errors are essentially as great as with no control.

I

5-15
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Row 3 of Table 5-1 shows the results of the open loop with the

bandwidth of the inclinometer artificially-reduced by a factor of 10 to

simulate additional filtering in the loop. Performance at lower g

t	

levels degrades compared with the higher bandwidth, but improves slightly

in the 0.1 to 0.2 g range. The principal reason for the change is the

basic change in system accuracy resulting from the lower randwidth.

Figure 5-12 illustrates the frequency response of the reduced bandwidth

loop. It can be seen that loop errors are higher over the entire

frequency range. No instabilities resulted from this additional filter-

ing. Figures 5-13 and 5-14 show the time responses of the open loop

system at both inclinometer bandwidths with a 0.05 g noise input level.

System performance at a lower input frequency of 0.025 Hz (1/40

Hz) is demonstrated in Table 5-2. Rows 1 and 3 of this table show the

open loop results, which indicate that performance is improved over that

obtained with the 0.05 Hz input This is commensurate with the frequ-

ency response data which also snowed better performance at lower frequ-

ency. Essentially, with the slower input, the system has more capacity

left to follow the input and devil with the noise. At this input

frequency, it takes a 0.5 g dis'urbanci to yield errors approximately

f

	 the same as with no control. Figures 5-15 and 5-16 show open loop

performance at both inclinomete , bandwidths with G'.1 g noise and a

0.025 Hz input frequency.
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	5.5.2	 Performance with Closed Actuator Loop

Rows 2 and 4 of Tables 5-1 and 5-2 also show the results

of the closed loop system with cross-axis disturbances. Table 5-1 shows

the results with the 0.05 Hz input. The closed loop responses are

essentially the same as the open loop responses at the nominal 2.4 Hz

inclinometer bandwidth. At the 0.24 Hz inclinometer bandwidth, the

closed loop and open loop systems perform the same at noise levels above

0.2 g, but the closed loop is worse below this point. The two systems

also behave similarly at the 0.025 Hz input frequency. While errors

are generally smaller than with the 0.05 Hz input, the relative relation-

ships of the loop performance is as described above. It should be

emphasized that this 'loop is therefore equally as sensitive to small

disturbances as was the open loop, Figures 5-17 through 5-20 show time

responses of -the closed actuator loop with various input frequencies

and noise levels.

	

5.5.3	 Effects of Reduce  Flow Rate

The hydraulic system on the shearer is shared between the

roll and VCS control systems. Therefore, the 8 gpm nominally available

can be shared between the 2 VCS cylinders and the roll cylinders. The

flow rate is, therefore, variable depending on the activities of these

systems. When flew must be shared with the VCS, there is clearly less

flow available for roll actuati m, and the maximum actuator extension

rate is proportionately lower. This has a pronounced effect on per-

formance. Figures 5-21 and 5 .22 show that performance at higher input

A
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frequencies has degraded with both loops when the flow rate is cut in

half to 4 gpm.	 Performance with the 2.5 deg input degrades above. 0.025

Hz, thus the effective loop bandwidth has halved because the maximum

flow rate halved. 	 It is, therefore, expected that noise performance

should degrade in the same manner as was seen by varying input frequency.

Table 5-3 shows the noise responses of both loops and both

inclinometer bandwidths. 	 These results were obtained with a 0.025 Hz

input, and they resemble the results obtained with a 0.025 Hz input at

fill flow.	 Results with 0.24 Hz inclinometer bandwidth is somewhat

better than the higher flow conditions. 	 Figures 5-23 through 5-26 show

the time histories with reduced flow rate; Figures 5-23 and 5-24 are

for the open loop and 5-25 and 5-26 are for the closed loop syste m

5o6	 CONCLUSIONS AND RECOMMENDATIONS

While the closed actuator loop is more accurate under no-noise

conditions, both loops perform similarly with cross-axis acceleration

disturbances. The signal input level considered in these studies was

1.77 deg RMS. The nominal closed loop system with an input frequency of

0.05 Hz yields an error of 43 percent of the input with a 0.05 g noise

level. The open loop system er^or is 45 percent under the same conditions.

Reducing the inclinometer bandwidth or equivalently introducing additional

filtering has little effect on noise performance. The major conclusion

of this study is that while the closed actuator loop is slightly better 	 4

than the open loop, both exhibit. appreciable error in the presence of

small g noise levels.
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1

6.	 PRELIMINARY DEFINITION OF CONTROLS AND DISPLAYS

I 6.1	 Control & Display Philosophy for Longwell - Automated guid-

ance and control of the longwal.l system does not eliminate the need

for controls and displays.	 It does, in fact, greatly increase these
J

requirements.	 Currently, the typical longwall C&D system consists

of two small control panels on the shearer and a few lever controls

located on the individual chocks. 	 Figure 6--1 presents the control
'a

panel of the Joy LW300 shearer. 	 Two of these identical panela are

located on the shearer, one on each boom, and are used by the shearer

operator to control boom height, haulage speed and direction, cowl

position, and to start and stop the motors.	 No displays are needed

since the operator is located in direct proximity with the equipment

he is controlling and can visually observe the conse-.jences of his

actions.

With the introduction of an automated control system, it becomes

d
necessary to monitor the automatically performed functions. 	 It is

also necessary to provide the capability for the operator to intervene

^- in the automated process and take command of the control system.

He would then function in a semi-automatic, remote control mode to

control the shearer and chocks from a remote location. 	 Additionally,

F it is desirable for this remote operator to be able to interrogate

the automatic control system with regard to sensed data and operating

parameters in the event of malfunction or degraded performance.
f,

Finally, it is necessary to maintain the capability for manual control

of the	 P	 Psystem as a back-up mode of operation and for certain activitiesy 

more conducive to manual control., such as turn around.

Itir^'R(^I^C^CI?'^Ii,ITY OF THE
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6.1.1 Control & Display Location - The principal locations

considered appropriate for control and display mounting in a longwall

system are the headgate, the tailgate, the shearer, and the chocks.

Of these, the headgate would appear to be the most logical location

for the main control console due to its importance in the overall

operation of the longwall system. The tailgate control station

is some what redundant with the headgate panel and would be considered

most useful if a remote control method of turn around/sump were

employed. A control panel on the shearer itself is mandatory. Such

a panel is needed for manual control whenever the automatic or remote

control systems are not usable. Also, some controls are still nec-

essary on the chock themselves so that they too can be manually

advanced whenever necessary.

6.1.2 Communications & Interlocks - Since operation of the

shearer and chock support machinery will be possible from two or

more locations a system of built-in interlocks and means of communi-

cation must be provided to the operators. If the shearer is being operated

in the manual or local mode, it must be impossible for the shearer

to also be controlled under these circumstances from the Main Control

Console, and system interlocks must prevent this possibility. Like-

wise, a miner working among the chocks must have the capability of

isolating one or all of the chocks from the automatic sequencer to

prevent sudden and unexpected movement of a chock during a maintenance

or inspection activity.

RE, PROD1XIBILITY OF THE
ORIGINAL PAGE,' IS POOR
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Additionally, to coordinate activities between control. stations,

communication will be required between all personnel involved. During

this preliminary analysis communications were determined necessary

between the headgate, tailgate (if implemented) and shearer. It

is also felt that a communications package be installed on every

5th chock, The package would consist of PA type receiver and a trans-

mittemr. This would mean that a miner working along the row of chocks

would never be more than 12'k ft from a communication link. Additionally,

each chock should have a control valve to isolate it, or all chocks

from the processor to allow manual operations to be performed.

6.2 Control. and Display Definition - A functional requirements

analysis was conducted on a subsystem by subsystem basis to establish

control and display requirements for the longwall system. The results

of the analysis is presented in Table 6--1. By subsystem, functions

to be commanded and functions -o be nr)nitoLed are noted. For each

of these functions a preferred location is given from which to control

or monitor the function and an indication as to whether this function

should be controlled or monitored from a dedicated or shared C&D.

The importance of the function and th-i necessity of seeing the data

in "real time" determines whet'Ler a dedicated display is warranted.

The type of control or display which can be used to satis ry the re-

quirements is also given.

It must be emphasized tha. this functional requirements analysis

is preliminary and it is expected that" as the subsystems become better

defined the control and display requirements will also become better

defined. It appears at this stage that the majority of those functional

requirements listed in Table 6 1 are accurate and will remain unchanged.
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However, additional require.ments will most likely be generated to

complement those already defined,

6.2.1 Processor Accessed Dispj !ja -- Of all the display requirements,

the proceesor accessed displayo Are probably least known at this

ti'.me. The ability to interrogate tho engineering proto-type system

is vary ties i ,̂ .abl,. , once the syatem hao been proved out, these display

requirementu may m long ,r exint. Ilowever, during the initial ex-

porimental system dove.iopment a great number of system parameters

avd	 inte;rwat-ion ,,an b(^ vIntialized as being logically
	

1'

displayed, on command, by the procecinor. A. very preliminary list

of displaye which may be nocos q ary iEt shown in Table 6-2. This list

in expectea to gruw extensively as Lhe procesoor design develops,

6.L2 Procpoeor Accesped Cotumn.ads  As in the case of the

processor accessed displays, the comimands too are ill-defined at

tnis point in the system development. Those co ,,unands that have

been identified include the following: the ability to adjust the

threshold triggering level from + 2" to some other figure should

it be demonstrated that the acceptable variation between the last

cut follower and the CID should be more or less stringent than the

proposed + 2"; the ability to bias the roll Sensor 
in 

order to

accommodate sefurt conditions inolined to the local vertical;

access to the chock command logic in ordev to modify the control

algorithm; ehc- ability to shut down an individual chock and remove

it from automatic control ghoul  soine malfunction degrade its per-

V
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Table 6-2. Preliminary List of Processor.
Accessed Displays

CID - DRUM POSITION

L.H. & R.H. BOONS HYDRAULIC PRESSURE

POWER SUPPLY OUTPUT VOLTAGE & CURRENT

LINE VOLTAGE & CURRENT

HYDRAULIC PRESSURE

OUTPUT OF CONTROL LAW COMMAND

ROLL SENSOR SIGNAL OUTPUT

SENITIZED PICK SIGNAL OUTPUT

INCLINOMETER SIGNAL OUTPUT

LAST CUT FOLLOWER SIGNAL OUTPUT

DACE MISALIGNMENT AT VARIOUS MEASUREMENT POINTS

CHOCKS INDIVIDUALLY CALLED UP BY NUMBER

CHOCK ENABLE/DISABLE STATUS

_. RAM EXTENDED/ RETRACTED

— LOADED AGAINST ROOF/UNLOADED

MALFUNCTION ISOLATION & TROUBLESHOOTING

i
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6.3	 Preliminary Control and Display Concepts

6.3.1	 Readmate ControlSta4i.on_Panel Layout - The preliminary

headga.te control station panel layout is shown in Figure 6-2.	 The

control panel measures 19 1/4" by 11 1/4" and provides for an ap-

proximate 15% growth factor. 	 It is felt, however, that should the

growth of the C&D exceed 15% a somewhat larger panel should not

pose any particular problem. 	 Although actual C&D components have

not yet been selected, representative components have been used in

layout	 insure	 both in front	 behindthe panel	 to	 adequate spacing	 and

the panel:.	 Controls and displays are functionally grouped by subsystem.,

machine component, and control functions. 	 Each of the functionalp	s

groups will be described separately.

a.	 O	 xatisS_Aode - Two toggle svriL .:es are used. 	 One to control

sy9tem power on/off and one to select the operating mode.	 Only

the retaote or automatic mode; can be selected from this panel. k

Should the "local" (or manual) mode be selected at the shearer,

all command functions of the beadgate control station are inter-

locked inoperable,	 Which ever of the three operation modes
s

are being used would be indicated by the illumination of that

display indicator.

b.	 Caution and Warning- The caution and warning enunciators

are LED'a with incorporated lens covers such as the Shelly/

Datatrora "Brite-Eyes".	 These enunciators would give positive

indication of satisfactory operation-green, cautionary condition-

amber, or malfunction-red.	 Should the methane concentration

6-14
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rise to 2% or should a u4ilfunction occur in an important component

threatening personnel safety, the system would be automatically

phut down with the enunciator indicating the reason.

a. Shedrer - The shearer controls consist of two double-acting

switch-lights to turn the pump motor and cutter motor on and

off, a three position toggle to select desired course of the

shearer ) and a selector switch to select shearer speed, Although

shearer speed fn ftfinitely %rarlable from slow to fast, a selector

switch of approximately 8 position is used here rather than a

potentiorater, ezince thVi would, essentially yield continuous control.

and is a uimplar avd more: reliable implementation particularly if

mulf-iptex-Ing ifs to be eiffip'll-oyed.

d. Lrer o4.1 Ign -.ol 2 qM - The cut-ter drums are raised and

lowered by weaus of wo center ,--off momentary toggles. LED digital

reAdouto are used Lo display drum height above the skid plane

in inches.

Shearer cowi g are altar gcd from 
the 

forward to reverse position

by me^no of two center-ai g momentary toggles. Rear illuminated

displaya indicate the cowl posit.iov. While the cowl is in tran-

sition between, pointe, both lights would be off.

Shearer location is an. LET) display system to indicate where

the shearer is with respect to the headgate and tailgate. If

the shearer is at the headgato -r t:-.ilgate, that rear illuminated

display will so indicate. As the shearer begins to move from

the headgate the first LED will flash until the leading edge

of the shearer arrives at the 50 foot mark. At this time the

6-16
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first LED will burn steady and the second will flash until the

shearer reaches the 100 foot mark. The actual distance from

the headgate will be displayed above the row of light on a LED

digital readout.

The CID is deployed or stowed by use of a two position toggle.

The desired cos! thickness to bit left uncut is set in with

thumb wheels with the sensed coal thickness shown via a LED

i

digital readout in inches and t(inth of inches.

The Sensitized Pick displays whether it is into coal or shale

by the illumination of one side of the rear illuminated display.

The LED digital readout represents a RMS Level readout from

the sensor and the thumbwheel control allows a change in out-

put level to be comctanded .

The cutter drum commands indicat.e the following-using LED digital readouts:

1) the difference between the last cut follower measurement

and the CIT3 measurement, 2) thr. control law command to the

t

	 lead drum, and 3) separation between the two drum. All read-

outs are in inches. A two position toggle is used to deploy

7
	 or stow the last cut follower,

e. Face Ali nmenntt Sv$tem - Two LED digital. readouts are used.

The first one indicates the maximum deviation of the --.onveyor

in inches from a true path or measure along some pre selected

points. The second indicates the output of the inclinometer

in degrees. The third display in this group is a rear illuminated

indicator which will show whether the :oll actuator is fully

extended or retracted.

6-17
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f. Processor - The p.:oceuso ,'- input and call up control consists

of a keyboard and a numeric readout. This keyboard would require

a code book t •) allow call. up of functions to be. displayed and

to input conxnando. A mode, switch !..,i shown which could be used

to simplify '-he coding operas ion, Viz. with mode "C" (for

chocks) gelected, any of- the 11.5 ^hocks could be called up

eirdply by it puling its number.

Aa ioug as the nurabe^r of itinctio-as to be called up are

kept to a m4 nimum this aystem wottld provide a simple method

of processor in.i ,orface. H ,Dwever, should the number of processor

accesAed clisplaYs and comiiand grow significantly it might be

desirable to utiline a fiAl cr-mputer input keyboard and an

alphas-numeric readout.. Such a concept is shown in Figure 6-

3.

6.3.2 HeadRate Contro", Station Console Configuration - Should

the preliminary control panel shown ; n Figure 6-2 be large enough

to accomodate all the neceusary conteols and displays, a lightweight,

easily portable control console shouLd be possible. Such a concept

is shown in figure 6-4. Th y console would be intrinsically safe

and contain no power supply. Conditioned power would be supplied

either from the shearer or front a separate power supply located near

by at the hea,dgate. Should the control panel grow significantly

in size or should the more complex computer keyboard ba required,

a mobile chassis mount might be necessary. The concept shown in

Figure 6-5 uses large pneumatic tires for ease of movement over

6-18



s_»

l3 n

xr {

^Y s

;^ a	 R

OF 11M

(1141t i"AT, 1"'^AGE, 18 DOOR

°-- CAUTION d WARNING	 r
OPERATING MODE "T 	 CH	 CID	 s Plc LCF	 SHEARERPOWCR	 „	 , .	 .. r 	 PUMPMQU Et1RE 01[	 YAW	 ROLLROLL PWR	 HYD	

^^ry	
MOTOR	 MOTCU(TOR FWD y ,^7J^^~FASt

lt^adee c^7e^ J	 e:ci	 r r	 ar r	 cr r	 [	 4JJ	 ON	 ON , OF
OFf Sle 	 AUTO 

	
OFF	 OFF	

REV

—	 •VEPTICAL CONTROL S-ISTEM- -- -- ,---------	 FACE ALIGNMENT SYSTEM -
r »-CU i 7ER DRUMS ----I r-SHEARER COWLS? 	 SHEARER LOCAN014 --------^

	

L H DRUM	 PH DRUM	 LH COWL PH COWL	 MAXIMUM

	

-FIGHT	 H I NTINCLINOMET[R

	

S ! 5	 l2 G	
TCfRWAR	 +'JRWARD	 / ? 5	 H	 vin

II 1i0)

M-l! Sr:

F

IaevERSE

9 ETRACT

IU000000000 0 0
G	 0	 6	 A	 0	 ]	 3	 2	 L	 1	 I
U	 5 0S 0	 S 0 5 0	 705

U0, 
0 g 0 0 0 0 0 0 0 0 0 0

UOAA

l"7	 03e'
ROLL

ACTUATOR
EXTEND

LOWER	 LOWER	 REV	 REV

	

C I 0^ •--^	 r-$kNSITIZEONICM,•^	
I"LCFTCIO DRUMlOMMAMtgMM

COAL crate	
L72. 47T	 +l, 5" O^ f e 5

^» 7

	

DEPLOY-	 DEPLOY	 DRUM SEPARATION
(^	 tt	

y 2.5
STOW	 STOW

DEL	 # $ %	
QI 2 3^ 5 6 7 p 8 9	 C{	 XMIT

	

TRH DCI ETB ENQ DC2 OC4 EM ' NAKHT SI DLE DEL	 ^- a
	 b^ W E	 R	 'f	 Y	 U	 110	 P -

SOH DC3 E,OT AC 

	

OCK A S D F G H J K L	 j	 0RIN

F SUB CAN ETX SYN STX SO CR ( ) 7 W 	 TAB CSR NEW2 X C	 V 8 N M	 /	 LI NE

Figure 6-3. Headgate Control Panel with
Alpha-Numeric,. Keyboard

4

EMERGENCY
STOP

6 - 19



•	 N

r

X: =':sw.^zawK..w^^ras"

	

r	 ,^
r

IN

Cd

GG C \	
1	 \	 W

G

w

r.^

{

6-•2`l



4

4-J
P4

0

r-4
a)

wo

ai

r%4

I "	 , I

RODUCIBIT Xry
	

"r1l"

6-21

V .lox



rough surfaces. The i.-onsole could be constructed as either a "sit-

down" or "staved-up" station, Although every effort would be made

to keep this console latrin-O.cally safe, such a mobile chassis mount

could accomodate a permiseaWe unit or could possibly house a per-

missable power supply package in addition to the intrinsically safe

console.

6.3.3 Shearer Control Puar,,.i -- The preliminary concept of the

shearer control panel is -hoinn in Figuvt^ 6-6. The panel consists

of the present Joy runt-tol pan(4 With the a,.!dition of the operating

mode controls & displvjEs and the ^.aution and warning enunciators.

Vixrther cottsiderad-an Weill be given to this control panel during

phase 11.

6.3.4. TaLl ^'!ewtat Control Station - As a result of the phase-.--

I study, no firm x ,equirew.ent rain be seen for a tailgate control

station. However, it 4es aut felt that the concept should be def-

initely eliminated at this f,-iw, and it is proposed that it be carried

over into -A ase 11 as an open item,

6.3.5 Chock Contrt)l Panel - Each chock would maintain the

control levels supplied by the Tianufact-aver, In addition a switch

or a series of switches would be provided to disable that particular

chock from automatic control.. Possibly the chock on either side

might also be disabled from this same position, and/or all of the

chocko on line might be disabled as a group.
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6.3.6 Control and Displace Component Selection - As mentioned

earlier, components were investigated during this phase although

component selections have not yet been made. Some decisions were

reached about component selection and recommendations made. These

include the following.

a. Utilization of LED teadoutG and displays should be made

whereever possible since they are low power self-illuminating

devices and meet : ntrinsie safety requirements.

1). It :L q not felt nocpqsary to hermetically seal the control

panel, but oi.')- tight swftt,be-.: will be u_,_,^-d, all connections

potted, and RJJicone gasket material. will be used on every

panel opening.

c. When requir(-.id, rear iLluminated displays will be used in pref-

erence to non-illuminated displays which would require external

illumination.

6.4 'Proposed Phase It Trade Studipa - During phase II a pre-

liminary design of the loagvaU control and display system will be

completed. Interfac.es will be defined with the communications sub-

system, power conditioning and distribution, and i/o assemblies.

The functional. requirements w1. 1.1 be updated and panel layout mod-

ified. Component selection will be made and various analyses con-

ducted to insure that system safety, reliability, maintainability,

and human engineering requirements are met.

Additionally a number of trade studies will be conducted during

phase II. 'rhese will include:

a. Panel Lighting - A review of the benefits ) cost, power

requirements, and human factor aspects of various panel lighting

schemes. Comparisons will be made of area lighting, electro-

luminescence and exterior lighting.
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b. Processor Keyboard -- A trade study will be made of an alpha-

numeric vs an all numeric system of processor addressing. Con-

sideration will be given to the use of a code book and the added

volume resulting from an alphanumeric keyboard.

c. Power Supply Location - A trade study will be conducted

to deterruine whether the C&D power supply should be located

in the console itself, in the shearer, or as a separate unit.

d. 'Tailgate Control/Monitor Station M The usefulness of a

tailgate C&D will be reviewed and a determination of its need

will be specified.

4
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7.	 OVERALL LONGWALL SYSTEM REQUIREMENTS

The following paragraphs outline the requirements of the recommended

longwall system design by major subsystems.

7.1 Vertical Control System

Shearer Traverse Velocity 30 ft/min nominal

Operational Modes

`fake all coal on 'top and bottom.

Leave a prescribed amount of coal on top and take all coal

on bottom.

Take all coal on -top and leave a prescribed amount of coal

on bottom.

Leave a prescribed amount of coal on top and bottom

Manual turn around at headgate and tailgate

Manual Operation of VCS

Maintain present cut to within a prescribed amount of previous cut.

Bottom and top drum interchangeable depending on cutting direction.

Sensor complement for taking all coal on top and bottom.

Top Drum Control

Sensitized Pick .. At least two mounted 180 deg. apart in

cutting drum

Last Cut Follower •- Range greater than 2 in.

ItEPNODUC'ILIT;TTY OF
ORIGI ,rAL	 ►s' P:)oiz
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Bottom Drum Control

Sensitized Pick w At least: two mounted 180 deg. apart

on cutting drum

Last Cut Follower - Required when drums alre.interchanged

Sensor complement for leaving a prescribed amount of coal on

-top and taking all coal on bottom.

Top ►rum Control

Active Nucleonic CID mounted 2.5 ft behind cutting drum

Sensitized Pick - At least two mounted 180 deg. apart

on cutting drum

Last Cut Follower - Range greater than 2 in.

Bottom Drum Control

Sensii,ixed Pick - At least:-two mounted 180 deg. apart

on cutting drum

Active Nucleonic CID - Required when drums are interchanged

Last Cut Follower - Required when drums are interchanged.

Sensor complement when taking all the coal on -top and leaving a

prescribed amount of coal on bottom

Top Drum Control

Sensitized Picl? - At lease; two mounted 180 deg. apart on

cutting drum

Last Cut Follower - Range greater than 2 in.

Present Cut Follower - Required when interchanging drums

7-2

fi

t
l:



Bottom Drum Control	 (Drum Slaving)

I
Sensitized Pick	 At least two mounted 180 deg. apart

on Cutting drum

Present Cut Follower - Range compatible with seam height
4

Last Cut Follower - Required when interchanging drums

Sensor complement when leaving a prescribed amount of coal on

top and bottom

Top Drum Control

` Active Nucleonic	 CID mounted 2.5 ft behind cutting drum

Sensitized Pick - At least two mounted 180 deg. apart

on cutting drum

c
Last Cut Follower - Range greater than 2 in.

E= Present Cut Follower - Required when cutting drums are

interchanged

Bottom Drum Control 	 (Drum Slaving)
Y

'^

p

y
Sensitized Pick - At least two mounted 180 deg. apart

i

T
on cutting drum

Present Cut Follower - Range compatible with seam height

Last Cut Follower - Required when cutting drums are

interchanged.

`
F ^=

Active Nucleonic CID - Required when cutting drums are

interchanged.

p Active Nucleonic CID

r^ Mounted 2.5 ft behind cutting drum

Twenty inch separation between source and detector.

0f U-1E

r F	 1Ze1v"^ ^.L
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CSI crystal detector

Source - 30 mCi CS-137

Averaging time (Output Internal) - 0.25 sec.

Sensitized Pick - 80 to 90 percent accurate. Discrete indica-

tion whether coal or shale,

Natural Radiation CID

Used if shown to be advantageous during Phase II

Mounted 2.5 ft behind cutting drum

5 in. detection crystal

Averaging time (Output Internal) - 1 sec,

7.2 Roll Control Lo

Control loop Bandwidth - 0.05 Hz at 2.5 deg. peak sinusoidal input

Inclinometer mounted on shearer

Inclinometer- chay-acteristics

Bandwidth - between .5 and 2.4 Hz

Damping ratio - between 0.4 to 0.8

Second Order Dynamics

Noise within control loop bandwidth - No greater than 10 -3 g RMS

Roll Actuation Range .. a 5 in.	 Y

Roll Actuation Rate n Greater than l drag/sec

7.3 Yaw Alig nment System

Automatic Face Advance

Manual Face Advance

7-4
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Each roof support individually commanded to advance conveyor.

Angle cart system implementation with basic measurement algorithm

(See Section 4.0).

Angle cart integrated with shearer

Required angle measurement accuracy - 0.03 deg one sigma

'Required resolver measurement accuracy - 2 min one sigma

Sample size of resolver measurements	 200

Allowable ram placement error - 0.02 ft one sigma

Allowable roof support roll up error - 0.1 ft (1.2 in) one sigma

7.4 Controls and Dis^la s

Main control and display station in headgate.

Control and displays on shearer for manual operation

Computer access through digital address keyboard on headgate

control and display panel.

No present requirement for control and displays at tailgate.

Control and display panel inoperative when shearer is under

manual control,

Critical functions have dedicated display and controls in head-

gate panel (See Section 6, Figure 6-2).

Utilization of LED readouts whereLver possible

Use oil tight switches, all connections potted, and silicone

gasket material used on every panel opening.

Rear illuminated displays used as much as possible.

Y f^

.J

4tr

L

	

7-5


	1980004287.pdf
	0044A02.jpg
	0044A03.tif
	0044A04.tif
	0044A05.tif
	0044A06.tif
	0044A07.tif
	0044A08.tif
	0044A09.tif
	0044A10.tif
	0044A11.tif
	0044A12.tif
	0044A13.tif
	0044A14.tif
	0044B01.tif
	0044B02.tif
	0044B03.tif
	0044B04.tif
	0044B05.tif
	0044B06.tif
	0044B07.tif
	0044B08.tif
	0044B09.tif
	0044B10.tif
	0044B11.tif
	0044B12.tif
	0044B13.tif
	0044B14.tif
	0044C01.tif
	0044C02.tif
	0044C03.tif
	0044C04.tif
	0044C05.tif
	0044C06.tif
	0044C07.tif
	0044C08.tif
	0044C09.tif
	0044C10.tif
	0044C11.tif
	0044C12.tif
	0044C13.tif
	0044C14.tif
	0044D01.tif
	0044D02.tif
	0044D03.tif
	0044D04.tif
	0044D05.tif
	0044D06.tif
	0044D07.tif
	0044D08.tif
	0044D09.tif
	0044D10.tif
	0044D11.tif
	0044D12.tif
	0044D13.tif
	0044D14.tif
	0044E01.tif
	0044E02.tif
	0044E03.tif
	0044E04.tif
	0044E05.tif
	0044E06.tif
	0044E07.tif
	0044E08.tif
	0044E09.tif
	0044E10.tif
	0044E11.tif
	0044E12.tif
	0044E13.tif
	0044E14.tif
	0044F01.tif
	0044F02.tif
	0044F03.tif
	0044F04.tif
	0044F05.tif
	0044F06.tif
	0044F07.tif
	0044F08.tif
	0044F09.tif
	0044F10.tif
	0044F11.tif
	0044F12.tif
	0044F13.tif
	0044F14.tif
	0044G01.tif
	0044G02.tif
	0044G03.tif
	0044G04.tif
	0044G05.tif
	0044G06.tif
	0044G07.tif
	0044G08.tif
	0044G09.tif
	0044G10.tif
	0044G11.tif
	0044G12.tif
	0044G13.tif
	0044G14.tif
	0045A02.tif
	0045A03.tif
	0045A04.tif
	0045A05.tif
	0045A06.tif
	0045A07.tif
	0045A08.tif
	0045A09.tif
	0045A10.tif
	0045A11.tif
	0045A12.tif
	0045A13.tif
	0045A14.tif
	0045B01.tif
	0045B02.tif
	0045B03.tif
	0045B04.tif
	0045B05.tif
	0045B06.tif
	0045B07.tif
	0045B08.tif
	0045B09.tif
	0045B10.jpg
	0045B10.tif
	0045B11.tif
	0045B12.tif
	0045B13.tif
	0045B14.tif
	0045C01.tif
	0045C02.tif
	0045C03.tif
	0045C04.tif
	0045C05.tif
	0045C06.tif
	0045C07.tif
	0045C08.tif
	0045C09.tif
	0045C10.tif
	0045C11.tif
	0045C12.tif
	0045C13.tif
	0045C14.tif
	0045D01.tif
	0045D02.tif
	0045D03.tif
	0045D04.tif
	0045D05.tif
	0045D06.tif
	0045D07.tif
	0045D08.tif
	0045D09.tif
	0045D10.tif
	0045D11.tif
	0045D12.tif
	0045D13.tif
	0045D14.tif
	0045E01.tif
	0045E02.tif
	0045E03.tif
	0045E04.tif
	0045E05.tif
	0045E06.tif
	0045E07.tif
	0045E08.tif
	0045E09.tif
	0045E10.tif
	0045E11.tif
	0045E12.tif
	0045E13.tif
	0045E14.tif
	0045F01.tif
	0045F02.tif
	0045F03.tif
	0045F04.tif
	0045F05.tif
	0045F06.tif
	0045F07.tif
	0045F08.tif
	0045F09.tif
	0045F10.tif
	0045F11.tif
	0045F12.tif
	0045F13.tif
	0045F14.tif
	0045G01.tif
	0045G02.tif
	0045G03.tif
	0045G04.tif
	0045G05.tif
	0045G06.tif
	0045G07.tif
	0045G08.tif
	0045G09.tif
	0045G10.tif
	0045G11.tif
	0045G12.tif
	0045G13.tif
	0045G14.tif
	0046A02.tif
	0046A03.tif
	0046A04.tif
	0046A05.tif
	0046A06.tif
	0046A07.tif
	0046A08.tif
	0046A09.tif
	0046A10.tif
	0046A11.tif
	0046A12.tif
	0046A13.tif
	0046A14.tif
	0046B01.tif
	0046B02.tif
	0046B03.tif
	0046B04.tif
	0046B05.tif
	0046B06.tif
	0046B07.tif
	0046B08.tif
	0046B09.tif
	0046B10.tif
	0046B11.tif
	0046B12.tif
	0046B13.tif
	0046B14.tif
	0046C01.tif
	0046C02.tif
	0046C03.tif
	0046C04.tif
	0046C05.tif
	0046C06.tif
	0046C07.tif
	0046C08.tif
	0046C09.tif
	0046C10.tif
	0046C11.tif
	0046C12.tif
	0046C13.tif
	0046C14.tif
	0046D01.tif
	0046D02.tif
	0046D03.tif
	0046D04.tif
	0046D05.tif
	0046D06.tif
	0046D07.tif
	0046D08.tif
	0046D09.tif
	0046D10.tif
	0046D11.tif
	0046D12.tif
	0046D13.tif
	0046D14.tif
	0046E01.tif
	0046E02.tif
	0046E03.tif
	0046E04.tif
	0046E05.tif
	0046E06.tif
	0046E07.tif
	0046E08.tif
	0046E09.tif
	0046E10.tif
	0046E11.tif
	0046E12.tif
	0046E13.tif
	0046E14.tif
	0046F01.tif
	0046F02.tif
	0046F03.tif
	0046F04.tif
	0046F05.tif
	0046F06.tif
	0046F07.tif
	0046F08.tif
	0046F09.tif
	0046F10.tif
	0046F11.tif
	0046F12.tif
	0046F13.tif
	0046F14.tif
	0046G01.tif
	0046G02.tif
	0046G03.tif
	0046G04.tif
	0046G05.tif
	0046G06.tif
	0046G07.tif
	0046G08.tif
	0046G09.tif
	0046G10.tif
	0046G11.tif
	0046G12.tif
	0046G13.tif
	0046G14.tif
	0047A02.tif
	0047A03.tif
	0047A04.tif
	0047A05.tif
	0047A06.tif
	0047A07.tif
	0047A08.tif
	0047A09.tif
	0047A10.tif
	0047A11.tif
	0047A12.tif
	0047A13.tif
	0047A14.tif
	0047B01.tif
	0047B02.tif
	0047B03.tif
	0047B04.tif
	0047B05.tif
	0047B06.tif
	0047B07.tif
	0047B08.tif
	0047B09.tif
	0047B10.tif
	0047B11.tif
	0047B12.tif
	0047B13.tif
	0047B14.tif
	0047C01.tif
	0047C02.tif
	0047C03.tif
	0047C04.tif
	0047C05.tif
	0047C06.tif
	0047C07.tif
	0047C08.tif
	0047C09.tif
	0047C10.tif
	0047C11.tif
	0047C12.tif
	0047C13.tif
	0047C14.tif
	0047D01.tif
	0047D02.tif
	0047D03.tif
	0047D04.tif
	0047D05.tif
	0047D06.tif
	0047D07.tif
	0047D08.tif
	0047D09.tif
	0047D10.tif
	0047D11.tif
	0047D12.tif
	0047D13.tif
	0047D14.tif
	0047E01.tif
	0047E02.tif
	0047E03.tif
	0047E04.tif
	0047E05.tif
	0047E06.tif
	0047E07.tif
	0047E08.tif
	0047E09.tif
	0047E10.tif
	0047E11.tif
	0047E12.tif
	0047E13.tif
	0047E14.tif
	0047F01.tif
	0047F02.jpg
	0047F02.tif
	0047F03.tif
	0047F04.tif
	0047F05.tif
	0047F06.tif
	0047F07.tif
	0047F08.tif
	0047F09.tif
	0047F10.tif
	0047F11.tif
	0047F12.tif
	0047F13.tif
	0047F14.tif
	0047G01.tif
	0047G02.tif
	0047G03.tif
	0047G04.tif
	0047G05.tif
	0047G06.tif
	0047G07.tif
	0047G08.jpg
	0047G08.tif
	0047G09.tif
	0047G10.tif
	0047G11.tif
	0047G12.tif
	0047G13.tif
	0047G14.tif
	0048A01.jpg
	0048A01.tif
	0048A02.tif
	0048A03.tif
	0048A04.tif
	0048A05.tif
	0048A06.tif
	0048A07.tif
	0048A08.tif
	0048A09.tif
	0048A10.tif
	0048A11.tif
	0048A12.tif
	0048A13.tif
	0048B01.tif
	0048B02.tif
	0048B03.tif
	0048B04.tif
	0048B05.tif
	0048B06.tif
	0048B07.tif
	0048B08.tif
	0048B09.tif




