
NASA CONTRACTOR
REPORT

(NII
2

DO JT	 Suj•y
FT(J RAP

I"

NASA CR-161213

RESEARCH STUDY: DEVICE TECHNOLOGY
Star Router User's Guide

By M&S Computing, Inc.
Huntsville, Alabama	

19

MAY 1983

February 27, :1979	
&f

FOR EARLY DOMESTIC DISSEMINATION

Because of its significant early commercial potential, this information,
which has been developed under a U. S. Government program, is being dissemi-
nated within the United States in advance of general publication. This information
may be duplicated and used by the recipient with the express limitation that it not
be published. Release of this information to other domestic parties by the
recipient shall be made only with prior NASA approval and appropriate export
licenses. This legend shall be marked on any reproduction of this information
in whole or in part.

Date for general release: May 1979

Prepared for:

NASA - George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

v1	 7C)

I LP1NIL.AL REPORT STANDARD TITLE PAGE 1. REPORT P40. 	 2. GOVERNMENT ACCESSION NO. 	 3. RECIPIENT'S CATALOG NO.
NASA CR- 161213

4. TITLE AND SUBTITLE	
S. REPORT DATE

Research Study: Device Technology	 February 1979
Star Router User's Guide	 6. PERFORMING ORGANIZATION CODE

7. AUTHOR(S)	
8. PERFORMING ORGANIZATION REPORT # R. A. Wright

9. PERFORMING ORGANIZATION NAME AND ADDRESS	 10. WORK UNIT NO.

M& S Computing, Inc. 	 __________________________

11. CONTRACT OR GRANT NO. Huntsville, Alabama	
NAS8-32632

12. SPONSORING AGENCY NAME AND ADDRESS 	

13. TYPE OF REPOR & PERIOD COVERED

National Aeronautics and Space Administration	 Contractor Report
Washington, D. C. 20546

14. SPONSORING AGENCY CODE

15. SUPPLEMENTARY NOTES

This work was done under the technical supervision of Mr. Jerry B. Franks, George
C. Marshall Space Flight Center, Alabama.

16. ABSTRACT

The STAR Router program has been developed to perform automated layout of
LSI discretionary interconnection masks. The input and output for the router are standard
PR2D data files. A state-of-the-art cellular path-finding procedure, based on Lee's
Algorithm, has been developed to produce fast, shortest distance routing of microcircuit
net data.

17. KEY WORDS	 18. DISTRIBUTION STATEMENT

For Early Domestic Dissemination

7
F. BROOKS MOORE
Director, Electronics and Control Lab, MSFC

19. SECURITY CLASSIF. (of this reportl 	 20. SECURITY CLASSIF. (of this page)	 21. NO. OF PAGES 22.NTRICE

Unclassified	 Unclassified	 47	 IS
MSYC'- F—M 2 101 (R.,

jr OY sale by National Technical Information Service, Springfield, Virginia 22161

PREFACE

This report contains the user information and software
specifications for the STAR Router Program. This work was
performed by M&S Computing, Inc., under Contract No. NAS8-32632
for the Electronic Development Division of the George C.
Marshall Space Flight Center (MSFC).

Prepared by:

R. A. Wright

Kz. P -A^--
/IVVIP-

RFbnald E. Pitts

11

TABLE OF CONTENTS

Section Page

1.	 INTRODUCTION 1

2.	 DESIGN PHILOSOPHY 2

3.	 USER INFORMATION 4

3.1 General Operation 4

3.2 Operating Techniques S

3.2.1	 Multipass Routing 5
3.2.2	 Input Editing 6

APPENDIX A- Grid Codes A-i

APPENDIX B- Fanout Rules B-i

APPENDIX C- Retrace Rules c-i

APPENDIX D- Run Time Messages D1

APPENDIX E- Star Router Structure E-1

APPENDIX F- Module Descriptions F-i

111

1.	 INTRODUCTION

The STAR Router program has been developed to perform
automated layout of LSI discretionary interconnection masks.
The input and output for the router are standard PR2D
data files. A state-of-the-art cellular path-finding
procedure, based on Lee's Algorithm*, has been developed to
produce fast, shortest distance routing of microcircuit net
data.

Lee. "An Algorithm for Path Connections and Its
Applications," IRE Transactions on Electronic Computers,
Vol. EC-10, September, 1961, pp. 346-365.

-1-

2.	 DESIGN PHILOSOPHY

Current routing technology allows the designer three
areas of emphasis: • routing speed, distance efficiency, and
physical efficiency. Lee's Algorithm was chosen as a basis
for the STAR router logic because it is ideally suited to
orthogonal path finding on a. cellular plane. The algorithm
has the intrinsic characteristic of seeking shortest distance
routes through and around various types of obstacles. The
STAR router enhances this algorithm with level switching
logic, and has designed-in speed efficiency as well as logic
to avoid routes which are physically inferior with respect
to the microcircuit technology in use.

Speed efficiency was achieved in two ways: minimization
of input and output to secondary storage, and routing performed
completely in memory.

Input and output were kept to a minimum throughout the
program. The STAR router makes only one interpretive pass
through the PR2D input file. During this pass all net data
is stored in memory. When the entire input file has been
scanned, the accumulated data is sorted to produce a single
package of information for each net; this information is
then placed in an auxiliary input file. Each record of this
file is read once during the routing phase. Produced route
data is written to a scratch file temporarily. When routing
is complete, this scratch data is merged with the input file
to form the PR2D output file.

In order for the route selection logic to require only
memory access, it was necessary to encode all information
about a discrete position on the circuit planes in only four
bits of memory. Each bit or combination of bits describes
whether a signal path lies on each level of the circuit for
a given position. This coding scheme results in a two-dimensional
appearance for the grid, as the codes indicate a directional
entry characteristic in a single plane, rather than positional
occupancy on a level-by-level basis. Different codes are
used for a net while it is being routed so that its segments
may be distinguished from other circuit elements.

The heart of the program is the route selection phase.
This phase consists of five sequences which are performed
for each route.. Before routing is begun for a net, the data
package for the net is fetched from the auxiliary file.

-2-

Then a sequence is begun to find discontinuities in the net.
One arbitrarily selected segment is coded as "home," as are
all segments connected to it. The remaining portion of the
net is then coded as a "target." Lee's algorithm is applied
next to seek a route from home to target. First a sequence
called the "fanout" is begun. This involves searching
outward in a wave from home, leaving ordered codes behind as
the wave front is propagated in all directions. This sequence
ends when a target segment is reached. This sequence automatically
eliminates most lengthy or otherwise inefficient routes,
due to the ordering of the codes left behind the wave. Thus,
only a few path options remain to be examined. The next
sequence, called the "retrace" or "traceback," analyzes
these paths by following the fanout codes in reverse order
(from target to home), recording obstruction and distance
information for each possible route. Logic is then exercised
to find the single path with fewest corners and level changes,
as well as shortest distance.

After retrace, a fourth sequence recodes the grid to its
original state so that future fanout and retraces can be
performed. The final sequence takes the new route and codes
it into the circuit grid, then saves the route information
in a scratch file (in PR2D format). During this sequence,
logic is exercised to eliminate any physical inefficiencies
(such as adjacent feed-throughs) in the new route.

These five sequences are repeated until the current net
is completely continuous, or until no path can be found to
resolve remaining discontinuities. The scratch data is then
merged with the original input to form the program's output
file.

-3-

3.	 USER INFORMATION

3.1 General Operation

To run the router, the user must build a Xerox CP-V
format batch deck on cards or on disk. This deck must contain
the job control language to assign the input data control
block (DCB) and the control input DCB to data files. These
DCB's are F:3 and F:l, respectively. The deck must also
contain limit information and a run card to start the router.
The following is an example of a deck which will initiate
routing of the data in file XXX, using control input from ZZZ:

Card #	 Image

1	 !JOB
2	 !LI1IT(TIME,3O),(CoP.E,72)
3	 !SETA F:3A /XXX;IN
4	 !SET' F:lA /ZZZ;IN
5	 !RUNA (LMN, L: ROUTE)

Note that in the above example, a core limit of 72K
words is specified. The program is actually about 63K words
in size, and has no overlays. Also, the load module name
used is L:ROUTE, but the name can be changed as desired.

The following command (from TEL) will submit the batch
job for execution:

!BATCH NNNN

where NNNN is the name of the file above.

If files other than XXX and ZZZ are to be used for the
job, the following command should be used:

!BATCH NNNN XXX' = 'AAA', 'Z Z Z' = 'BBB'

where AAA is the file to use in place of XXX, and BBB is
the file to use in place of ZZZ.

The file assigned to the input DCB must contain data in
standard PR2D format. See Appendix E for restrictions on
this data.

The control input file requires three card images as
follows:

-4-

Card #	 Image	 Description

1	 xxx,zzz	 These are the x and y grid dimensions.
The product may not exceed 160,000,
due to memory limitations.

2	 aaa,bbb These are biases to be subtracted
from x and y coordinate data.

3	 nnn	 This is the scale factor applied
after removal of the biases.

An optional fourth card, described in Section 3.2.1,
may also be included.

During execution, progress messages and error messages
will indicate the status of the routing. These are described
in Appendix D.

The program output will be written to I/O unit 10,
unless multipass routing is invoked. In multipass routing,
the output may reside on I/O unit 10 or 11. In any case,
the output unit will be listed for the user on the message
printout. The files for units 10 and 11 are D:10 and D:ll,
respectively.

3.2 Operating Techniques

3.2.1 Multipass Routing

If the user has a data set for which it is desirable to
perform short distance routing before longer routing, the
multipass capability of the STAR router should be used. This
feature allows the user to specify a set of sequential distance
limits which will be applied in consecutive complete routing
passes through the net data. During each pass, only those
routes which can be completed within the distance supplied
will be inserted.

To activate multipass, the user must include a fourth
card in the control input file. This card should contain the
sequence of up to twenty limits (in whole grid units),
separated by commas.

NOTE: Though this feature may produce better routes for
short connections, the overall quality of the routes may be
lower than that which a single pass would produce.

-5-

3.2.2 Input Editing

If a user's data set contains one or more nets which are
difficult to route using single or multiple passes, the user
may wish to give these nets a higher priority than the others.
An effective technique for accomplishing this is editing of
the PR2D input file. This involves finding the first occurrence
of level six data for the difficult nets, then moving these
first entries up to the top of the level. This will cause the
moved nets to be routed first, often enabling complete routing
of the data set which previously did not finish.

-6-

APPENDIX A

GRID CODES

The following is a list of the meaning of each of the
possible numerical values of a four-bit grid position.

Hex Value	 Meaning

0	 Vacant position
1	 Fanout code 1
2	 Fanout code 2
3	 Home segment code
4	 Level 8 occupancy
5	 Level 8 and fanout code 1
6	 Level 8 and fanout code 2
7	 Home code (special)
8	 Level 6 occupancy
9	 Level 6 and fanout code 1
A	 Level 6 and fanout code 2
B	 Target segment code
C	 Level 6 and Level 8 occupancy
D	 Level 7 occupancy (feed-thru)
E	 Unused
F	 Target segment

A-i

APPENDIX B

FANOUT RULES

During fanout, or the process of searching from home
to target segments, several rules apply to the propagation
of the wave front. They are as follows:

1. Each cell on the edge of the current wave front is eligible
to propagate.

2. All cells propagated to durin g a scan of the wave front
will form the new wave front.

3. The four cells orthogonally adjacent to the propagating
cell are eligible for propagation.

4. Each level of the grid has a direction associated with
it as follows: Level 6 = X-axis, Level 7 = Z-axis,
Level 8 = Y-axis.'

5. Propagation from or to an occupied cell may not take
place along the axis associated with the occupant.

6. Cells previously propagated to are ineligible.

7. Vacant cells are always eligible.

8. Dually occupied and feed-through cells are ineligible.

9. Fanout codes are logically ordered with existing codes.

10. Fanout codes proceed in the order 21122112211...

11. If a target is encountered during a wave front scan,
fanout will cease at the end of that scan.

B-i

APPENDIX C

RETRACE RULES

The retrace sequence, which proceeds from targets back
to home, is guided by the codes left during fanout. The
following rules apply:

1. Retrace will follow the code sequence . ..221l2211...,
starting with the reverse of the last two codes used
by fanout.

2. Propagation will proceed one cell at a time in a straight
line until an incorrect code or barrier is encountered.

3. When a forced turn is produced as in rule 2, both
directions of escape will be tested.

4. If more than one target cell was hit durinq the last
fanout wave scan, separate retraces will be attempted
from each target cell hit.

5. Retrace ends when a home segment is encountered.

C-i

APPENDIX D

RUN TIME MESSAGES

The following messages may appear on the run printout.
Their meaning is described at right.

Error Messages

ERROR OR END-OF-FILE
WHILE READING CONTROL
INPUT

MAXIMUM GRID SIZE EXCEEDED

PREMATURE END-OF-FILE HIT
ON PR2D INPUT

GRID DIMENSIONS EXCEEDED
IN RIDP

Meaning

Bad or missing cards were
found in the control input
file.

The product of the X and
Y grid dimensions exceeds
160,000.

Input file scan did not
find the end of Level 8
in the file.

Coordinates were found
in the input file which
exceed the specified
grid dimensions.

CORE LIMITS EXCEEDED WHILE 	 The maximum space allocated
PROCESSING PR2D INPUT 	 for processing input data

has been overflowed. Input
file is too large.

NON-ORTHOGONAL SEGMENT
FOUND IN NODE XXXX.

STACK OVERFLOW IN XXXXX

MAXIMUM NODE SIZE EXCEEDED
IN XXXXX

FANOUT FAILURE ON NODE XXXX

Nonorthogonal data has
been found, but the segment
will be processed as a Y-axis
segment.

A fatal overflow of
available work space has
occurred.

Fatal overflow of node
data storage area.

Fanout from a home
segment is completely
blocked. Routing continues
with the next net.

D-1

Error Messages	 Meaning

ROUTE FAILURE ON NODE XXXX 	 This message accompanies
the previous one. If it
occurs singly, an unexplained
failure to complete a route
has occurred.

The following progress messages will normally be printed
out in sequence.

• PROCESSING INPUT DATA
..BUILDING AUXILIARY INPUT FILE
..ROUTING PROCESS INITIATED
FINAL AUXILIARY FILE IS ON I/O UNIT XX.
PR2D OUTPUT FILE IS ON I/O UNIT XX.
• . ROUTING COMPLETE
..BUILDING PR2D OUTPUT FILE

FoWn

APPENDIX E

STAR ROUTER STRUCTURE

E-1

LU
=
L) =

C,)

LU

=

F-
C,)

APPENDIX F

MODULE DESCRIPTIONS

F-1

08:47 FEB 13,79 DC/PRE:RCTRL.MS03

*

	

• *	 **1*	 *******	 *********	 ********	 *	 *
* *	 *	 *	 * *	 *

	

*	 *	 *	 *	 *	 *	 *	 *	 *
i .	 *

	

*	 *	 *	 *	 *	 *	 *	 *	 *
*	 *

	

*	 *	 *..	 *******	 *	 *.	 *	 *********	 *
*

************** **************************************.********************

FUNCTION:	 *

	

*	 THIS MODULE IS THE CONTROL ROUTINE FOR A 2-PLANE	 *

RINTEU CIRCffTROUTE RaGRAM.

	

*	 ENTERED PARAMETERS AND THEN INITIATES THE ROUTING	 *

FRIJCESS0	 *

	

*	 *

H * *	 * *-	 **	 cwu* wW**** **W* * ********	 ******* ** *** *

	

*	 *

	

*	 ..	 *
* A * * A * * *

	

*	 .	 *
CALL1N (.	 5EUUENCE

	

*	 *
* A A * A A A A * A A * * * * * * * *'** * * *'***************'**********WW*****W*********

	

*	 *

	

*	 (STARTED BY OPERATOR AS FOLLOWS)	 *

* !ROUTER.*

A A A A** **-**-* ** * *** * * * **'* ' ***	 W***** * ***	 ************* *

	

*	 *

XTtRNAL	 REt	 RENCES

	

*	 .	 *
A A A A A A **-*-* * * * * A * * * * * - * * *'*'*''* *** w* ** * * * **W	 *W*W*WUW* ***

*
MuUuLS THAT CALL RCTRL

*

ThUN

	

*	 *

	

A	 MDU1jtCttDfRC?RL

	

*	 *
RTDP - ERflESTNPUTFILE

	

*	 RNSR - PERFORMS ROUTING SEQUENCE
	 *

E;-E SLATWDUTPUTS

INPUT STEP PROCESSING STEP OUTPUT

1 Call a module (RIDP)	 to 2
initialize grid and process
input data.

2 Set up a loop for lirits on 3
fanout.	 (Make a route pass
for each limit.)

3 Call RNSR to perform routing 4
function.

4 Call a module (RMRG) to build R
output file.

RCTRL HIPO

F-3

08:48 FEB 1,79 DC/PRE:RjDp.p.1S03

*********	 *******.*	 ******** *
*
* * *	 *	 *	 *	 * * * if

*	 * *	 *	 *	 * *

Ar

*	 *

*	 *

*********	 ********	 * *

FUNCTION:
*
*

___ THIS MODULE READS THE PR2D INPUT FILE AND BUILDS AN
*
*

AUXILITRYTNPUT F 1LE. ITALSPDrJCE	 THE	 G1NAL'GRXD
• IMAGE USED BY THE PROGRAM. *

*
CALL 1MG	 SEQUENCE	 *

*

	

__________________	 *
CALL RIOt'

*

'F

EXTERN AL	 REF E R E N C ES	 *

MODULES THAT CALL RIDP	 *

RCTRL - ROUTER MASTER CONTROL ROUTINE

MODULES CALLED BY RIDP	 *

	

GRID - GRID VALUE RETRIEVAL	 *
RTDGRIfl-1JAUJ PL'ACtJ'ENT

..

F-4

INPUT STEP PROCESSING STEP OUTPUT

/1 Rewind input and output files 2

2 Initiate loop for three levels: 3 I,	 CL
63 (loop

counter)

CL 3 Search for beginning of current 4
level.	 If found, continue,
else report error and stop.

4 Check for line set declaration 5
and parameter lines and skip.

5 Begin scanning data records: 6 AGRID,
all record pairs are to be
coded in to the qrid as

NDNM, Xl
Yl,	 X2,

segments.	 All node data is Y2
also saved in the node arrays.

6 Repeat Step 5 until end of 7
line set and level are
encountered, then continue.

7 If all three levels have been 8/3
processed, continue. 	 Else
loop back to Step 3.

8 Beginning scanning node array 9
as follows:	 scan down the arra
until a nonzero name field is
found.	 Scan the remainder of
the array, zeroing all nodes
with the same name while
building an output record of
count-plus-data format.

9 Write the formed record R
to the scratch file and check
for any unused names in the
node array.	 If any are left,
go back to 8.	 Else return.

RIDP HIPO

F-5

08:48 FEB 13,79 0C/PRE:RNSR.MS03

H *	 ******** * *	 *******	 ********	 *
** *	 *-----	 *	 -ft.-	 *

*	 *	 ft * * *	 *	 *	 *	 *

-*	 k****'* *-_*-___* --***.**-.*-* _____•__•*•.**--**_*-*-_-___-_--
*	 *	 * *	 ** *	 *	 *	 *

*	 *	 *	 *	 *	 *******	 *	 *	 *

* FUNCTION:	 *

*

	

	 THIS MODULE OBTAINS RECORDS FROM AN AUXILIARY	 *
ETLE iCWCOrnW1ODEINFDRNATTCNtTTHENTERFORN5

*	 THE SEQUENCE OF CALLS NECESSARY TO COMPLETE ALL POSSIBLE	 *
P-A11rCrnmciiurs FURTEAC}FNODE. 	 *

*	 *

*

*

	

0	

*

A	 CALLING	 SEuN
0*

*

* CALL RNSR
A	 .	 -

*
-*k*k*A_*******A**A****AAA*A*AA*A****AA**A**AAAA****-****A****A*AAAA****

*

EX_r_ERN_A_L_R_E_F E_R_N -t - E S
*

*

0•	
-	 *

A	 R?C8 - R-OTEOOtflflT!4
*

1LECALZDRW	 -.
*	 -	 *

RFiR-F1NfltJTINi1iALI7TtON	 ----------	 -..
*	 REAN - FAt-lOUT SEQUENCE	 *

RET	 RETRCE'SZQUENCE 0___ 	 - ft0.

*	 RCLN - CLEANUP SEQUENCE
RCCtE - RcflDOFt1JWRt7—NpD;

INPUT STEP PROCESSING STEP OUTPUT

1 Rewind the auxiliary file. 2

Aux file 2 Read a pair of records from 3/12 CNT,
aux file to obtain a node NAME,
segment list.	 IF EOF is ci
encountered, go to Step 12;
else continue.

CNT 3 If fewer than 2 segments are 4/2
in this node, no routing will
be needed, so go back to 2.
Else continue.

4 Call a module (RFIR) to 5 DONE
initialize for fanout.

DONE 5 If no connections need be made 6/2,
• for this node, qo back to

• Step 2.	 Else continue.

6 Call a module (RFAN) to 7 LIM
perform fanout until a target
is hit or limit is exceeded.

LIM 7 If a limit was exceeded in 8/2
Step '6, 	 go to Step 2, else
continue.

8 Call a module (RRET) to 9 OPMAP
perform retracing from the
target back to home, selecting
the optimum path.

9 Call a module (RCLN) to clean 10
up after fanout.

OPMAP 10	 • Call a module (RMAP) to code 11
in the path produced in Step
8, as well as outputing the
data to scratch files for late
use.

11 Go back to Step 2. 2

RNSR HIPO

F-7

RNSR HIPO (Continued)

INPUT STEP PROCESSING	 : STEP OUTPUT

12 Return. R

RNSR HIPO (Continued)

F-8

08:48 FEB 13,79 DC/PRE:RMRG.MS03

******************-**** * ************-******* ******************************
*

*	 *	 ********	 ******-*	 *
*	 **	 *-*	 *	 * __*	 *	 *

*	 *	 *	 ** **	 *	 *	 *	 *
* * * *	 ***i**	 *	 *****	 * *	 *	 *	 *	 *	 *•	 *	 *	 *	 *	 *
2'	 *	 *	 *

*	 *	 *	 *	 *	 *	 *	 *******	 *
*

*
*	 FUNCTION:	 *

*
*	 THIS MODULE READS FILES CONTAINING SCRATCH OUTPUT 	 *

FRDWTFERDTINGOPET

	

1011 -1-rID-RE'R-G-E 5- T 	 fl4FOMT N
*	 GENERATED WITH THE ORIGINAL INPUT FILE, FORMING THE	 *

-*	 r 1NLPRUDUCTOFTHE	 *
*

A A * A * w A * --* -Xw w * *******"****W*****'*****	 W
*	 *

*	 *

*	 *
-A	 UALLIN(i	 5 E WUNC
*	 *

*	 *

*	 CALL RMRG	 *

*

	

	 *
A ** A A A LA LA AL LA ** **A********k** ************'

*	 *
.ATKN AL	 RNcS

*	 *

*	 *
MODUL.S THAT LALt R14j

*
RPCB - ROtflER CONTR1JL ROUTINE

*	 *
A -MODUCEM LALLOYRR
*	 *

*	 *
A A A A A A A A A A A * A-A A kA** *********'*'*-w**-**** * *****	 *******AW***** **'*

F-9

INPUT STEP PROCESSING STEP OUTPUT

1 Rewind scratch files and 2
input file.

2 Loop to perform the merging 3
operation for three levels of
data.

3 Read a record from the 4
original input file and write
it to the output file.

4 If the appropriate "end level"
card is found, go to Step 5.
Else go to, Step 3.

5 Continue reading cards from 6
the input file until an "end
line set" card is found; hold
this card until later, and
proceed to Step 6.

6 Transfer all cards from the 7
scratch file for the current
level to the output file.

7 Write the saves cards	 (55) 3/R
to the output file. 	 If any
levels remain to be merged,
go back to Step 3. 	 Else
copy the remaining cards from
the input file to the output
file and return.

RT'IRG HIPO

F-lO

08:47 !E13 , 79 DC/PRE:RFIR.MS03

**** ******.* ********************** **************************************

* ********	 *********	 *********	 ****.**** *

*
-w

*	 *	 * *	 *	 * *

* *	 *	 •* *	 *	 * *

* *	 *..	 * *********	 *	 *	 • *

-

* FUNCTION: *

* THIS MODULE TAKES THE CURRENT NODE ARRAY AND SCANS IT, *

*
CUDIr	 TIt	 SEGMENTS
INITIAL FANOUT

AS HUME3D	 TAWCETS7AND FRODUCES THE
ARRAY. *

*	 *

.** **********************

	

*	 CALLING	 SEQUENCE	 *
A

******•******************************* ***********************************

	

*	 *

	

A	 CALL IWIR .

	

*	 EXTERNAL	 REFERENCES	 *
A•

A

	

*	 MODULES THAT CALL RFIR 	 *

	

*	 RNSR - ROUTING SEQUENCE CONTROL	 *

MODULES CALLED BY RFIR	 *
A

	

*	 GRID - GRID VALUE RETRIEVAL	 .	 *
CiqOM E	 COO 'ES SE1Mt4TS kS11MES

	

*	 CTARG - CODES SEGMENTS AS TARGETS	 *

	

-k	 ------------.---------------	
-----k..--

F-il

INPUT STEP PROCESSING STEP OUTPUT

1 If we have been here before 2/7
for this fanout, go to Step 7.
Else continue.

2 Initialize stack and segment 3
test flags.

3 Use the stacked segment as 4/7
home.	 If non left, go to Step
7.

4 Start a loop to scan all the 5
segments to see if they
intersect the home segment.

5 Get the next segment, and test 6/3
it.	 If it intersects home,
go to Step 6.	 Else loop back
to Step 3.

6 Flag this segment as a part of
home and place it on the stack
for testina.	 Go back to
Step 5 until all segments are
checked.	 Then go to 3.

7 Loop for each segment of the 8
current node.	 If it is home,
code it as such.	 Same for
targets	 (anything that is not
home); modules CHOME and
CTARGare called for these
purposes.

8 If no targets found call RCODE R
then return.

PFIR HIPO

F-12

08:47 FEB 13,79 -DC/PRE:RFAN.MSO3

* *	 ********	 *********	 *	 *	 *	 * *	 *	 **	 **	 *	 * *	 *	 *. *	 *	 *	 **	 *	 *
*	 *	 *	 *	 *	 *	 *	 **	 *
*	 *	 *.	 *	 *	 *	 *	 *
*************************.***lr****

*	 FUNCTION:	
*

*

	

	 THIS MODULE PERFORMS THE FANOUT SEQUENCE FOR THE 	 *
RUUTERPRUR.q. TTfEFANUUT --TS - COD INSE1JENCEf *	 STARTS AT HOME SEGMENTS AND EXPANDS INA WAVE IN ALL

_
	 *

*	 THE HITS ARE RECORDED FOR RETRACING.	 *

*	
..	 * -4.

A

CALLING	 SEQUENCE	 *
**** ***********************1r
4.

*	 .

----:	 CALL. RAN	
- *

*
--	 *

* ** *** * * **** * * *** **** ** * *** ** *** ** *

*	 EXTERNAL	 RE FERENCES	 .	 *

-4.

*	 MODULES THAT-CALL RFAN	 .

RNSR - ROUTING SEQUENCE CONTROL	 *

MODULES CALLED BY REAN	 .	 *-k

GRID - - GRID VALUE RETRIEVAL	 * -	 --' - -- -
*	

* A * ft * *A A A A P. A A A A	 **-*k-** A A * * * *	 _____

INPUT STEP PROCESSING STEP	 7OUTPUT

FCNT 1 Start a loop for each member 2
of the fanout wave front.

GRID, 2 Check each of the four 3 FAN
FAN adjacent cells for fanout

eligibility, and code them
where eligible.	 Add coded
nodes to new fanout wavefront.

HIT 3 If any target hits were found 2/4 HIT,
in Step 2, save them.	 Repeat HSTK
2 for the loop established in
Step 1.

HIT 4 If any hits were saved by 1/5/
by Steps 2 and 3, go to Step 6
5.	 Else repeat 1 to 3 for

- new wavefront.	 If new wave-
front is blocked completely,
go to Step 6.

HIT 5 Hits were found during last R LIM
fanout step, so return with
successful status.

6 Fanout is limited or blocked, R LIM
so return no success status.

RFAN HIPO

F-14

08:48 FEB 13 1 79 DC/PRE:RRET.MS03	 S

A ** * ****** * * ** ** ** * A ** **
* I *	 ********	 ********	 *********	 *********	 *

	

* *	 * s—	
* *	 *	 * *	 *	 *	 *	 *

*	 *	 *	 *	 *	 *
* *	 *	 *	 *	 *	 *********	 *	 *

*

* *	 FUNCTION:	 *
* *

	

	 THIS MODULE PERFORMS THE RETRACE SEQUENCE 	 *
FUR THE

• *	
BUILT BY THE PANOUT ROUTINE AND TRACES THE PATHS 	 *
i Ui TCET	 TMETflD SLEC S T H UOPT'IM U M

	

*	
* A A	 -A * * * * * * * w w w	

ww**w-

	

*	
*
*

A A A A AA*A

	

*	
*

ALLIN	 SWUENC

	

*	
* A A A A A A * A A A * * A * * * A A * * * *	 ____

	

*	

*

	

*	 CALL RRET	 *

	

*	 .•	
* A A * A A A A A A A A A A * A A A A ** *-**-*--****- '*A *W*-* **-* *j****'*-*.**-**.*.*.*-* * ***'w-*-----

	

*	
* EATIRNAL

	

*	 * * AA AA A *A	 *w**A ww*,r A A A

	

*	

*
MODULES THAT cAL.L RREI

*

R_SR - Uu?INt SE1U rcE CUNTOL

	

*	
*

	

A	 MUUULj CALLED UT1RT[

	

*	
*

A GRID

	

*	

S	 * AAA ****A AA

INPUT STEP PROCESSING STEP OUTPUT

HSTK, 1 Initialize tree stack with hit 2 PSTP,
points from fanout. PSTK

PSTK, 2 Get next tree point from the 3
PSTP stack.	 If stack is empty,

leave.

GRID, 3 Start at the current tree point 4
TP14AP, and its associated code,
TRCNT direction, and trace map

position: and proceed with
retracing.

GRID 4 If a barrier is encountered, 5 PSTK,
stack the point as a tree PSTP,
point, then turn right or left TRCNT,
and proceed. TRMAP

GRID, 5 If a home is encountered, check 6 TRMAP,
TRMAP, the current trace map against OPNAP
OPMAP the optimum 'map and save

better one.

6 Continue tracing in a straight 3/2
line until either 4 or 5
applies, dropping back to
Step 2 when blocked completely.

RET HIPO

F-16

:47 FEB 13,79 DC/PRE:RCLN.MS03

* *	 * *

*	 *	 .* * **	 *_
****-****.	 * -*- *_* *
*	 *	 *
- .*-

* *	 ** *

*	 *	 ******* ********* *	 * *

.** **************************** ************************* **************

FUNCTION:	 *

THIS MODULE RESTORES NORMAL CODES TO THE GRID ARRAY 	 *
AFTER THE t AiO1JT7 i TRIC SEQtENtE TS PERYOR}FED

*
*A**rA	 _____

*

*

*

CALL 1MG	 SEQUENCt
*

*

CALL RCLN	 *

*****k*AA.AAAA*AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*AAAAAAAAAA&

EXTE1NAL	 REFERENCES
*

*
kODutET1tAT LACL HLLN

*
RNSR - ROUTING SEUENtE CONTROL

*
Mo-o1Jt-ES CALLErrRtC&

*
G1ID - GR131AIERtTRTEUL

SCRID - GRID VALUE PLACEMENT

r********** *** *** ************.******** ***-*** *******************•********

F-17

INPUT STEP PROCESSING STEP OUTPUT

XMIN, 1 Scan through all areas of the 2 GRID
XMAX, grid altered by fanout,
YMIN, restoring codes to normal form.
YMAX,
GRID.

ISTK, 2 Recode all cells whose values R GRID
ISTP were saved on the stack by

CHOME and CTARG.

RCLN HIPO

F-18

08:48 FEB 13,79 DC/PRE:RMAP.MS03

I * *	 * *	 ******** *

w **	 ** **	 *

* *	 * * *	 ** *	 *	 *	 * *

* * * * * -w -w* * * W	 **	 *W****** -
* *	 * *	 *	 *

x
*	 *	 *
*	 -

*

* *	 * *
*

*	 -:.	 -	 • *

* FUNCTION:.*

*

	

	 THIS MODULE CODES IN THE OPTIMUM RETRACE PATH SELECTED	 *
BYrHE ?ANUUT/ETAtE QVENCE, ANDDUTPUTSTME GENERATED

*	 INFORMATION TO SCRATCH FILES.	 *

*	 *
w

*	 CALLING	 SEQUENCE	 *
A	 .

*********************** ******************** *****************************

*	 *
A	 CALL-RHAP	 -	 --*	 .	 *
A	 ..
********.*****.******.***** **,******** *********************************.*****

*	 EXTERNAL	 REF ERENCES	 *

A	 .
*	 MODULES THAT CALL RMAP	 *

*	 . RNSR - ROUTING SEQUENCE CONTROL

*	 MODULES CALLED BY RMAP	 *
A
*	 GRID - CR10 VALUE RETRIEVAL	 -	 *

-lOUE--P FORM AT-ION------------------
*	 PCODE-- PERMANENT CODING OF SEGMENTS	 *

-.-.---- ---------------.--------------------------------.--......---------.-....

INPUT STEP PROCESSING STEP OUTPUT

OPMAP, 1 Check to make sure a route 2/R DONE
OPCNT was found.	 If none, return

error status.

OPMAP, 2 Determine whether to place 3 J,K
GRID feed-throughs on route end

points.

OPCNT, 3 Start a loop to code in feed- 4
J,K throughs.

4 If feed-throughs are required 4/5 GRID
and no adjacent, code them
in.	 Repeat this step as
determined by Step 3.

OP.CNT, 5 Loop to place all segments R GRID
OPMAP in the new route into the

grid and net data.

RMAP HIPO

F-20

08:47 FEB 13,79 DC/PRE:CHOME.MS03

*
* * *******	 *	 *	 ********* *

*	 * * *--	 *	 **	 **
* *	 * * *	 *	 * *	 * *	 * *
A *A***-*-* *	 -*	 ****-

*

A

*	 *

A	 *

*

*

*.	 *	 *	 *	 *	 *

k

*

* *******	 * *

*	 *	 w	 *

*******	 *	 *	 ****.***** *

******•** ***********.** ***

*	 FUNCTION:	 *

*	 THIS MODULE CODES SEGMENTS AS HOME IN THE GRID ARRAY.*

-	 *

,**************** **

*	 CALLING	 SEQUENCE	 *

*	 .	 *
A	 CALLC1flMETxTiYj,x2,y7)	 .
*	

*
A	 WER E X , X 27Y17TAND y 2XRE cuURDTFrATEs *	 DESCRIBING THE SEGMENT	 .	 *
A-

*

*	
*

A	 EXTERNAL	 REFERNCEs
*	 .	 *
*AAAAAAAAAAA&AAAAAA******W*A***AAAA******A****A******

*
A	 MOflUtSTHAT CAtLC1fltE

*
A	 FtRF1NflUT INIIIAtTZATJUN

*
MODULES (..ALLD B y Cii1J4t	 .

*	 *

*	 SCRID - GRID VALUE PLACEMENT	 *
---------.-.-------------.-.---------

.F-Z1.

INPUT STEP PROCESSING STEP OUTPUT

Xl,	 X2, 1 Save grid values of segment 2 ISTK
Yl, Y2 ISTP

Xl,	 X2, 2 Scan along the segment, coding 3 GRID
Yl, Y2 in appropriate values to

designate the segment as home.

X, Y 3 Place each value of the home R FAN,
segment into the initial FCNT
fanout array.

CHOME HIPO

F-22

08:41 FEB 13,79 DC/PRE:CTARG.MS03

****************.***** **************************** *************-*********
*

I	 * ********-*	 * ******** ******* *
*	 ** *	 * *	 * *

* *	 *.	 *	 .*. ,*	 * * *
*	 ***** *

* *	 *	 *•	 * *	 * *	 * *
* *	 -*

* *******	 *	 *	 * *	 * ******* *

*
*	 FUNCTION:	 *

*
*	 THIS MODULE CODES SEGMENTS AS TARGETS IN THE GRID ARRAY..	 *

ft

*
*	 *

************ *********************.***************************************

*	 CALLING	 SEQUENCE	 *

ft	 *

CALL. CTARU(X1,Y1,X2,Y2)
*	 *

wiiE xi,x211 1 ANU Y2 ARE CUORDINATES
*	 -	 DESCRIBING THE SEGMENT	 .	 *

*
* A A A A A * * * w * * ** ** * * *,1,_**Uw_*__*** ** **
*	 .	 *

XTRNAL
*	 .	 *

*

KFIR - ArJUUT IN,LT1ALIZATIIJN 	 .
*

NUUULIS cALLc.0 6Y LTARG	 .
*

-	 GRIGTDVWJTRIEVL
*	 SCRID - GRID VALUE PLACEMENT	 *

__________	 _______	 -------.-------------.-----.----.----------.-..------.	 --.-_-*-----

INPUT STEP PROCESSING STEP OUTPUT

xl,	 X2, 1 Save grid values of the 2 ISTK,
Yl, Y2 segment. ISTP

Xl,	 X2, 2 Scan along the segment, placinc R GRID
Yl, Y2 codes' to desginate target

cells.

CTARG HIPO

F-24

08:48 FEB 13,79 DC/PRE:ROUT.MS03

*	 ********	 *******	 *	 *	 *********
w	 *

*	 *	 *	 *	 *	 *	 *	 *

*	 *. :*	 *	 *	 *	 *	 *

*	 *	 *	 *.******	 **.*****	 *

•****************************

*	 FUNCTION:	 *

*	 THIS: MODULE RECORDS PATH INFORMATION PRODUCED BY THE	 *
HUUT1Nt	 QUENC IN SCRATCH DISK FTUES

*	 *
* A A Si w* * * * .*-*'W .W X	 *********** ***W** ***
*	

*

*
A A A A w A * * * *** * **** ** **
*	

*
A	 CALL1H	 sEQuN
*	 *

*	 *

*	 CALL ROUT(X1,Y1,X2,12)	 *

*	 WHERE X1,X2,Y1,Y2 DESCRIBE A SEGMENT TO BE SAVED. 	 *
A

*

	

ASiA	 A AAA AAA AA*& ********A AAA ASiA *.A SiA A***** A
*	

*
A	 EATERNAL	 REFERENCES
*	 *

*	 *
A	 MODØttS THAT CALL ROUT

•	 *.	
*

A	 RMTAP- - RtUTi4TAPpTN G A NODUTF UT
*	

*
A
*	

*
NON E	 ' ____	 ____

* ---*-**-*-****-** *-* * * *-* -****-* * * *****-**** -*-k*-* **-k * A *** * * *-***-*-** * ****** 	 *-*** * * * - -

-	 F-25

INPUT STEP PROCESSING STEP OUTPUT

Xl,	 X2, 1 Determine the level (and I/O 2 LVL Yl, Y2 unit) on which to write the
data.

Xl, X2, 2 Convert the in-core data to 3 Xxi, XX2 Yl,	 Y2, original units with scale yl, SCALE, and biases. Y2 BX, BY

LVL, 3 Write the segment data to the R Xxi, XX2, chosen I/O unit in the output
YY1, YY2 format.

ROUT HIPO

F-26

08:47 FEB 13,79 OC/PRE:PCODE.MS03

*
* ******** *****.**	 ******.*	 ******** ********* *

* *	 * *	 *	 *	 *	 * * *
*	 *__	 ___* *

* *	 *	 *	 * * *
.*	 *	 *	 *	 * *

•	 * * *******	 *******	 ******** ********* *

*	 FUNCTION:	 *
*

*

	

	 THIS MODULE PRMANNTLY CODES A SEGMENT INTO THE 	 *
GRiD ARRAY.

*	 *

	

* *A'w*,ur *w	 ***-** *-*-**.*.******* *•*****
*	 *

-	 •• -________________
*	 *

*	 *
C A L L I N G	 IS E

*
* A A A *-* * w * Ar w c* www *W	 .**' W,**,*.****_'*** *W ****'*'* * * ******'*** * * ****'*UW'***
*	 *

*	 CALL PCODE(X1,Y1,X2,Y2)	 *

*	 WHERE X1,X2,Y1, 112 DESCRIBE THE SEGMENT	 *

*

*	 .	 *
1. X T t R N A L	 R E,FERE NCEST

*	 *
- - ------- - ---- * w w * ** * w ** **	 *'W'*'* * *WW'*
*	 •	 .•	 *
A	 MU!JUL.tj THAT CALL t'CuDi	 -

-. RUUE M?PTNGKNu LJ1TFI'UT
*

MUUUL1 LALLbI) BTPCDD1	 -_____________
*	 *
A
*	 SGRID - GRID VALUE PLACEMENT	 *
A ------------------ ----------•-----.• -_-___..... _

INPUT STEP PROCESSING STEP '	 OUTPUT

X1, Yl, 1 Add the segment to the current 2 CIN,
X2, Y2 node. CNT

Xl,	 X2, 2 Add each cell of the new R GRID
Yl, Y2 segment to the grid.

PCODE HIPO

F,28

08:48 FEB 13,79 DC/PRE:SGRID.S03

-*_
*	 *******	 *******	 .********	 ***,******	 ********-	 *
A	 *	 *	 w	 *

*	 *	 *	 *	 *	 *	 *	 *	 *
*	 *w***'**W***	 *

*	 *	 *	 *	 *	 *	 *	 *	 *	 *
w

*	 •*******	 *******	 *	 *	 *****,****	 ********	 *

*********r*******************

*	 FUNCTION:	 *

*	 THIS kODULE PLACES	 FOUR BIT CHUNKS OF GRID DATA.	 *

****.************************ ****** **

*	 *

*	 CALLING	 SEQUENCE	 *

*	 *
CALL SGRIO(xjY7V)

ARE-11UD COuRDTNATE, AND V.15 *	 THE VALUE TO BE PLACED.	 *
A
*	 *

*	 *
EXTERNAL	 REFERNUS

*	 *

*	 *
MODULES THAT CALL s-c-ri

*
<CALLED BY MUST ROUTIN

*	 *
A	 MODULs CALLED i	 RiD
*	

S	 *

NONE
*	

S	 *

-****-*** ** * * ** **-**-*-*-* A * A A**-** *** **.*-*-*****-* tA A **-*-*****-***-** ** A **-*****--

F- 29

INPUT STEP PROCESSING STEP OUTPUT

X,Y 1 Compute from coordinates the 2 I,J,K
word offset into the grid
array, and bit offset into
word.

J,K 2 Obtain the word with old data 3 L
AGRID masked off.

Z,K,L, 3 Set the new value into R AGRID
J position and replace the word

in the grid array.

SGRID HIPO
F-30

08:47 FEB 13,79 DC/PRE:GRID.MS03

*********	 ********	 *
w	 w	 -	 *

*	 *	 *	 *	 *	 *	 *	 *
-*	 *	 w*w*•X	 '*W*	 *

*	 *	 * *	 *	 *	 *	 *	 *
w w -

*	 *	 *********	 ********	 *
-*

_w	
*

*	 FUNCTION:	 *

THIS MODULE IS FUNCTION SUBROUTINE USED TO RETRIEVE	 *
FuuR BIT I1iUNKS UFcRTDCDD DATA.

*
** A A A A A 4*1 * * * ** * * w w Y **W***w-**-*--*-*-*-*-* *W**W*U ***********- 	 *W-*** *

*
A

*	
*

A A A A A A A * 1 A * * A * * * ** * * * * * * **** *'***'* *
*	

*
CALL LN SQUNC *	 *

*	 *
*	 GRID(X,Y)	 *
A	 -
*	 WHERE XAND Y ARE THE GRID COORDINATES	 *

*

* A	 EXTERNAE.	 REF -ERENtES	 *
*	 S	

*

*	
-	 *

MODULES THAT CALL. GRID
*	 1.	 *

<CItLE DaY[OST R Uli TT?S) 	 f
*	

S	 * 1.	 MODU.LES CALLCD8t GRID 	 1
*

NONE
*

S	 *

____	 F-31

INPUT STEP PROCESSING STEP OUTPUT

X,Y 1 Compute from coordinates the 2 I,J,K
word offset into the grid
array, and bit offset into
word.

J,K 2 Obtain the word and mask off 3 L
AGRID undesirable portion.

L,J 3 Right justify the resulting R GRID
data and place into the output
variable.

GRID HIPO
F-32

*U.S. GOVERNMENT PRINTING OFFICE 1979-640-081/583 REGION NO.4

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51

