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THE ZERO MODULE AND ESSENTIAL INVERSE SYSTEMS*
 

Bostwick F. Wyman** and Michael K. Sain
 
Department of Electrical Engineering
 

University of Notre Dame
 
Notre Dame, Indiana
 

USA 46556
 

Abstract: The the6ry of inverse dynamical systems has been and is con­
tinuing to be a keystone in the development of the theories of multi­
variable feedback control systems and of coding theory for reliable com­
munication. Advances in understanding of the role of plant inverses in 
control system design have brought about additional insights, for example, 
in the general areas of decoupled design and of realistic possibilities 
for closed loop dynamical performance. Surprisingly enough, almost all 
the existing literature on inverse systems is cast in terms of matrices. 
Though the well known module theoretic approach to systems has been in 
place for a decade or more, this approach has not been fully exploited 
to bring out the foundations of a theory for inverse systems. This pa­
per begins to lay such a foundation by developing a definition of zero 
module for a system. When inverse systems exist, their "pole modules" 
can be shown to contain the zero module in an appropriate algebraic sense. 
If the containment is tight, these inverses are called essential. Exis­
tence of and constructions for essential inverses are provided. 

*This work was supported in part by the National Aeronautics and Space
 

Administration under Grant NSG-2388.
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1. INTRODUCTION
 

Control engineers have been interested in the problem of inverting 

linear dynamical systems for more than a quarter century. A classic and 

pivotal illustration is the work of Bode and Shannon [1] in 1950. In that 

paper, the basic results of the famous Wiener-Kolmogorov theory for smoothing 

and prediction of stationary time series were reconsidered by methods based 

upon what was called at that time "electric circuit theory". Pointing out 

that the Wiener-Kolmogorov theory involved "formidable mathematics" and that 

Wiener's report had come to be known as "The Yellow Peril", Bode and Shannon 

saw the need for methods which had "the advantage of greater simplicity" and 

which had associated with them the insights of a "direct physical interpre­

tation".
 

Of course, every student of the subject is now exposed to the resulting 

concept of a whitening filter, which was intimately related to the inversion 

of transfer functions.. Moreover, these original steps have now extended to 

the more general modern interpretations of innovations processes. 

Another basic step along the line of development of inverse systems 

tended to occur when engineers began their efforts to extend the classical
 

frequency domain theories to the matrix case, in which the model was assumed
 

to have more than one input and one output. Many matrix design equations
 

were developed at that time. Basically, these matrix inversions were pri­

marily to solve linear equations whose coefficients were from the field of 

rational functions in the Laplace variable s and with coefficients from the 

re~l number field R. Some interesting .examples of this literature may be 

found just prior to 1960 [2, 3, 4, 5].
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These studies were to encounter some very nontrivial conceptual questions, 

however, inasmuch as there were cancellations of all types to be considered. 

Combined with the fact that the theory of the relationship between "interior" 

or state descriptions and "exterior" or transfer matrix descriptions was in 

its infancy, these cancellations left hard questions about internal stability 

unanswered. With the recent advent of the concept of multivariable zero, it 

is possible to see in retrospect just how difficult some of these questions
 

were.
 

The formal study of the question of inverting linear dynamical systems 

arose again from several sources in the late 1960s. Occurring independently
 

and within six months of each other, the papers by Youla and Dorato [6], 

Sain and Massey [7], and Silverman [8] initiated what is now becoming an in­

creasingly important research area.
 
I 

Though inverse system studies in the matrix sense have proceeded apace 

[9], and although inversion problems are demonstrably important in a wide 

variety of recent applications [10,!!,12]including transport theory, met­

eorology and radar and optical imaging, almost no work has been carried out 

to extend the theory of inverse dynamical systems beyond the matrix view­

point to the very fundamental underlying modular viewpoint. This is quite 

surprising, since a well known [13] module theoretic approach to dynamical 

systems has been in place for a decade or-more.
 

In this paper, we explore further the relationship between multivar­

iable zeros and inverse systems. Section 2 provides preliminaries and no­

tation. Section 3 defines a zero module which is given in such a way
 

that it is basis independent. Every system with a suitable abstract input/ 
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output description has such a zero module, even if it does not have in­

verses. When a system input/output function is epic or monic, then there 

are right or left inverses. Section 4 shows that every such inverse has 

poles which "contain" (either as a quotient module or a submodule) -the 

zeros of the system. If the inverse has no additional poles, it is said 

to be "essential". Section 5 establishes the existence of essential right 

and left inverses. The way in which the abstract zero module captures 

previous definitions of multivariable zeros is explained in Section 6; 

and examples are given in Section 7. 
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2. PRELIMINARIES AND NOTATION 

Let k be an arbitrary field. We denote by k[z] the ring of poly­

nomials in the indeterminate z, with coefficients from k, and by k(z)
 

the quotient field of k[z].
 

If U is an m-dimensional k-vector space, then
 

n ±
 
U[z] = { [ u.z3 : n > 0 , u.

i 
01 

i=0 I 

is the free k[z]-module of polynomials with coefficients from U. As a
 

free module, U[z] has rank m, because it is free on any basis of U.
 

Inasmuch as U kin, we can think of U in terms of column vectors of 

height m with entries from k. Then U[z] may be visualized also as
 

column vectors with entries from k[z], which is a statement of isomor­

phism U[z] I (k[z])m. In this spirit, we denote by U(z) the k(z)-vector 

space of column vectors of height m with entries from k(z). 

Now U[z] is a k[z]-submodule of U(z), and so it follows that 

the factor module 

FU = U(z)/U[z]
 

is a k[z]-module, sometimes called a "Kalman output module". In 'this 

language, U[z], also denoted by U, is called a "Kalman input module". 

Actually, MU as here defined is the torsion submodule of the Laurent 

series module U((z-))/U[z] which is more commonly used in the theory
 

[14 , 15]. 

If Y is a p-dimensional k-vector space, then the corresponding
 

k(z)-vector space Y(z) and k[z]-modules Y[z] and 1Y can be formed 

in the same way. 
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A transfer function is a k(z)-linear map 

G(z) : u(z) Y(z). 

Alternatively, G(z) becan considered as a pxm matrix with entries 

from k(z). The matrix G(z) 
will not be assumed proper. In general,
 

then, we may write
 

~z) - CPoly (z ) + G#(z)
 

where Gpoly(z) has entries from 
k[z] and G (z) is strictly proper 

sense ofin the that each its entries has numerator degree strictly less 

than denominator degree. We will call G (z) the strictly prover part
 

of G(z). The map G#(z) defines a k[z]-module map
 

S#(z) :2U 3 ry 

as shov 
in the upper part of the diagram in Figure 1.
 

A strictly proper G#(z) becan realized by a linear dynamical system 

7 = (X, U, Y ; A, B, C) 

Here X, U, and Y are finite-dimensional k-vector spaces; and 

A :X eX , B: U-- X , C: X y 

are k-linear maps. The system 2 realizes G (z) if 

-1
G#(z) = CCz I - A) B ,
 

or, equivalently, if there exists a commutati4e realization diagram of 

k[z)-modunes as shown in the lower part of Figure 1. In this figure, 

AX is a k[z]-module w±t underlying vector space given by S and module 
action given by
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u(z) G(z) - Y(z) 

p 

0(z) r ry
 

Ai 

Figure 1. 



zx=Ax• 

he maps B and C are k[z]-module maps defined by 

B(uz1) = A' B u 

C(x) C x z7 + CA x z- 2 +. (modYfz]). 

The system 2 is a minimal realization of (z) if B is epic 

(reachability) and C is monic (observability). The module AX is then called 

the minimal state module of the realization (A, B, C). Since all minimal 

realizations of C#(z) are isomorphic as systems, it follows that all min­

imal state modules are isomorphic as -kfz]-modules. 

The major technical tool used in this paper is the theory of modules 

over a principal ideal domain ring. k readable account of the whole theory 

can be found in [16 ]; and a quick summary (without proofs) is presented 

here in the special case of modules over the polynomial ring k[z]. 

Let M be a finitely generated k[z]-modle. Then M is isomorphic 

to a direct sum 

where
 

F (k~z]) t 

is a free module of rank n and T is a torsion module. The rank of F,
 

and the torsion module T, are uniquely determined by M. Concretely,
 

the torsion module T is given as a finite dimensional k-vector space,
 

also called T, together with a k-linear endomorphism A r T - T. The 

k[z]-module action on T is given by
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p(z) v =-p(A) v 

for all v in T and all polynomials p(z). The module T can also
 

be described in the manner
 

T k[z]/(l(z)) E... ak[z]/ (Tz)) 

where {N'.(z), i = 1,2,...,s} are nonzero polynomials with the property 

Til~i+l, i = 1,2,...,s-l. The T9i are called the invariant factors of 

T and are uniquely determined by T. (Ti) is the ideal generated by Ti 

in k[z]. 

Two torsion modules are isomorphic if and only if they have the same 

invariant factors. 

The module M is frequently given as the cokernel of a polynomial 

matrix. Suppose N(z) is such a matrix, say of size pxm. Then N(z) 

represents a morphism
 

N(z) : (k[z])m + (k[z])p
 

of free modules. The cokernel of N(z) is defined by 

coker N(z) = (k[z])P/N(z)(k[z])m
 

which is a finitely generated module. The invariant factors of coker N(z) 

can be computed from the Smith form of N(z). 

The Smith form is given as follows. There exist a pxp polynomial 

matrix E(z) and an mxm polynomial matrix F(z), both with unit de­

terminant in k[zl, such that 

E(z) N(z) F(z) = S(z) 

where S(z) is as "diagonal as possible" with invariant factors on the
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"diagonal". For instance, if p > m, then
 

Pl(z) 0 ... 0 

S(z) = 0 'y2 (z). 0 

0 0 pI(z) 
p
 

where, for some s < p,
 

Ts+l(z) =...T (z) 0
 

and TIf.(z), i = 1,2,...,s, are nonzero with Til'i+l for i = 1,2,...,s-l.1 

The Smith form S(z) is uniquely determined by N(z).
 

Furthermore, S(z) and N(z) have isomorphic cokernels;'and
 

- s
coker N(z) " k[zl/(T(z)) .. i k[z]/( (z)) ( (k[z])p

This means that the rank of the free part of coker N(z) and the invariant
 

factors of the torsion part are all determined by the Smith form of N(z).
 

In particular, note that coker N(z) is finite dimensional if and only
 

if s is equal to p, that is, if N(z) has full rank.
 



3. THE -ZERO MODULE OF A TRANSFER FUNCTION 

Consider a given transfer function
 

G: U (z) Y(z). 

The purpose of this section is to capture, in a abstract, module theoretic 

sense, the multivariable generalization of the classical notion of zero. 

In so doing, it is intended not only to characterize the multivariable 

zeros of the transfer function G(z), with multiplicity, but also to 

describe a finitely generated, torsion module structure which gives rise 

to the zeros.
 

This goal is accomplished in two steps. The first step is to give a
 

definition of the module which depends only on the basic concepts of module
 

theoretic system theory and not upon any of its particular matrix embodi­

ments. The second step is to supply a module isomorphism which makes
 

clear the finitely generated torsion structure-


It is helpful to give a brief intuitive prelude to the basic module
 

definition. Consider the classical case in which
 

p = m = 1. 

Then the matrix of the transfer function G(z) could be visualized in
 

the manner
 

a(z)
 
b(z)
 

where a(z) and b(z) are relatively prime elements of k[z]. The basic
 

idea of a "zero" .wasunderstood as follows. If u(z) in U(z) had
 

representation
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11(z) n (z) 

d(z) 

for n(z) and d(z) relatively prime in k[z], and if d(z) and a(z) 

had non-unit factors in common, then the "modes" of u(z) indicated by 

these common factors failed to appear in the corresponding output 

n(z) a(z)

y(z) = d(z) b(z) 

because of cancellation. Note that the identically zero output was of 

little interest in this regard, since it was the failure of certain ex­

citing modes to appear in the response that was paramount. Though this
 

is an academic point in the classical case, when there are no nonzero ex­

citations which produce zero responses, it is an important observation
 

in a multivariable generalization where ker G(z) is not necessarily 

zero. And its meaning is that ker G(z) can safely be neglected. Note 

also that, if
 

u(z) = p(z) e k[z]
 

no zero effect could have been observed in the classical case, because 

u(z) would have had no "modes" which could fail to appear in y(z). 

Thus, k[z] is of no interest insofar as producing test inputs to dis­

cover zeros; and thus QU, which is its generalization, can safely be
 

neglected in an abstract multivariable definition. In defining this ab­

stract module, then, it is consistent with the classical case to ignore
 

ker G(z) + SU , 

which can be accomplished by forming an algebraic quotient
 

It remains to describe abstractly what is meant by a "zero". Here 

again the classical case can be quite notivating. Simply focus on the 
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excitations which can produce no "modes" whatsoever in the response. As
 

an example,
 

z
b(z) p(z)
u(z) ~(z) 

for p(z) in k[z]. Such excitations produce response 

y(z) = p(z) e k[z] 

having no "modes". The "modes" of these excitations, which are expressed 

by G0 (k[z]), capture the classical concept of "zero"; since k[z] 

generalizes to 2Y, the class of excitations of interest -can be extended 

easily to 
-
G 1 (0). 

With these motivations, define the zero module Z(G) of the transfer
 

function G(z) by
 

+ OU
G-1((y)

Z(G) =-ker G(z) + QU 

where the addend QU in the numerator of the quotient is provided so that 

the denominator is contained in the numerator. Because QY and 2U are 

k[z]-modules, it follows that Z(G) is a k[z]-module.
 

Before establishing the finitely generated, torsion structure of
 

Z(G), it is a useful illustration to check the definition algebraically
 

for the classical case. In that case, ker G(z) vanishes, and
 

G-!(nY) = {u(z) s k(z) -a(z)u(z) = p(z) s k[z]} 

L :b(z)Pze k[z]}.
p(z)
a(z)-

Then 

G-1Y) + U = Ib(z)(z) + q(z) : p(z), q(z) e k[z]}
a(z)
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1 b(z)p(z)b + a(z)q(z) p(z), q(z) e k[z]} 
a(z) : ' 

1 

For the last step, use the fact that a(z) and b(z) are relatively
 

prime so that any polynomial r(z) in WU can be written 

r(z) = b(z) p(z) + a(z) q(z) 

for suitable p(z) and q(z) in k[z]. Accordingly,
 

Z(G) = 2U/nU
a(z)
 

for the classical case.
 

Notice that there exists a k[z]-module isomorphism
 

1
 

a(z) f'U OU k[z] 
£2U a(z) 2u a(z)k(z] 

defined by the action
 

r(z)a(z) mood £U r(z) mood a(z) £U1, 

so that the zero module gives the expected result in the classical case.
 

Next consider the second step, which establishes a k[z]-module iso­

morphism between Z(G) and a finitely generated torsion module.
 

For this step, assume a left coprime factorization 

G(z) = D-l(z) N(z)
 

where the k(z)-vector space homomorphism N(z) and automorphism D(z)
 

can also be understood as free k[z]-module homomorphisms
 

N(z) :1U flY 

and 

D(z) flY + fY 
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which satisfy
 

D(z) A(z) + N(z) B(z) =Sy 

for appropriate free k[z]-module homomorphisms 

A(z).: OY + 2Y 

and 

B(z) QY 2U. 

Notice that, as a k[z]-module homomorphism, D(z) is only an endomorphism 

and not an automorphism. 

The nature of the zero module Z(G) is then established by the fol­

lowing result.
 

Theorem 1
 

Given any transfer function G(z) : U(z) + Y(z), with left coprime 

factorization D- (z) N(z), then the zero module Z(G) is isomorphic as 

a k[z]-module to the torsion submodule of QY/N(z)U. 

Proof: Consider the k[z]-homomorphism
 

+
a : G-1 (Y) QU oY 

whose action is given by 

al (u(z)) = N(z) u(z), 

with the calculation in the right member following from N(z) regarded as
 

a k(z)-linear map. Notice that
 

c±1 (mU) C aY 

trivially. Moreover, if u(z) G- (S2Y), then 

D- (z) N(z) u(z) = y(z) E 2Y, 

so that 
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N(z) u(z) = D(z) y(z) s PY 

as required. Now let 

p : 9Y - S2Y/N(z)TU 

be the natural projection, and define 

a2 = pa 1 

by composition. To establish the theorem, examine the diagram of Figure 2,
 

where q is the natural projection 

G-1(9y -G-1(MY) + QU+QU 
ker G(z) + QU 

To show the existence of the k[z]-module homomorphism a2' together with
 

the fact that it is monic, it suffices to verify that
 

ker a2 = ker G(z) + QU.
 

Suppose that u(z) s QU. Then
 

a2 u(z) = p a u(z)
 

= p N(z)u(z)
 

- 0. 

Moreover, if u(z) E ker G(z), then 

D- (z) N(z) u(z) = 0 

from which 

N(z) u(z) = 0 

so that 

a2 U(z) = 0. 

Accordingly, 

ker G(z) + QUC ker a2. 

For the opposite inclusion, let
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1
(y) +2u q G-1(Y) + rn 
ker G(z) + U 

QYMq(z)QU
 

Figure 2.
 

-u(z) E G 1 (aY) + MU 

be such that 

a2 u(z) = 0. 

Since a2 = p '' it follows that 

a1 u(z) e ker p = N(z)QU 

so that 

aI u(z) = N(z) u1(Z) 

for some u1 (z) E fU. Therefore 

u(z) - u1 (z) a ker N(z) = ker G(z), 

and it is a consequence that 

u(z) = (u(z) - uI(z)) + uI(Z) 

with u(z) - uI(z) in ker G(z) and u1 (z) in QU. Thus every such u(z) 

lies in ker G(z) + U. 

This establishes that the k[z]-module homomorphism a2 exists, is 

unique, and is monic. It remains to show that the image of a2 is the 
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torsion submodule of QY/N(z)QU. For u(z) in U(z), there is a poly­

nomial t(z) in k[z] such that 

t(z)u(z) = u1(Z) s U. 

Then 

t(z)N(z)u(z) = N(z)t(z)u(z) 

= N(z)ul(z) s N(z)QU, 

and
 

t(z) a2 u(z) = 0, 

which means that 

im = i a2 = Ma2 

is contained in the required torsion submodule. Next consider an arbitrary
 

torsion element of QY/N(z)PU, expressed as p y(z) for y(z) in QY. 

Using left-coprimeness, write 

y(z) = D(z) A(z) y(z) + N(z) B(z) y(z). 

Because 

N(z) B(z) y(z) s ker p, 

it follows that p(D(z) A(z) y(z)) is also a torsion element in g/N(z)QU. 

Thus there is a polynomial t(z) in k[z] such that, for some u(z) in 

QU,
 

t(z) D(z) A(z) y(z) = N(z) u(z). 

Let 

v(i) u(z) + B(z) y(z).t(z) 

Then 

N(z) v(z) = D(z) A(z) y(z) + N(z) B(z) y(z) 

= y(z). 
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Furthermore, B(z) y(z) is in QU, and 

1u(z) G-l(Y)
 
t(z) 

as may be verified by the calculation 

1 -1
C(- . u(z)) = fl (z) 14(z) (- z) ) 

= Dl(z) f(z) A(z) y(z) 

= A(z) y(z) e nY. 

This implies that 

v(z) G (ay) + QU,
 

so that 

y(z) c im al, 

so that 

mpy(z) sict 2 = n 2 

Thus a2 maps onto the entire torsion submodule of QY/N(z)QU, which 

completes the proof of the theorem, except for establishing the fact that
 

Z(G) -is finitely generated. However, this conclusion follows-from the 

discussion of coker N(z) in Section 2, where it is shown that the torsion
 

submodule is a direct sum of finitely many modules each of which has one
 

generator.
 

It should be noted that no assumptions concerning the rank or-nullity
 

of G(z) have been made in this section.
 

As an application of zero module concept, the next two sections re­

late Z(G) to inverse systems associated with G(z), for the cases in 

which such notions exist, namely when G(z) is epic or monic. 
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4. ESSENTIAL POLE STRUCTURE OF INVERSE SYSTEMS
 

As pointed out in the introduction to this paper, the concept of in­

verse systems has played a very useful role in the various applications,
 

including feedback control theory and coding for reliable communication. 

The notion of multivariable zero tends to arise quite naturally in such 

contexts along the lines of the intuitive statement "the zeros of G(z) 

appear as poles of an arbitrary (left or right) inverse G(z) of G(z)".
 

The purpose of this section is to give a precise algebraic version of this
 

intuitive statement.
 

The discussion is divided into two parts, according to whether the
 

transfer function G(z) is epic or monic; and a theorem is given for
 

each case.
 

Consider first the case in which G(z) is epic. Then there exist 

right inverses 

G(z) Y ­Y(z) U(z) 

such that 

G(z) 0(z) = ly(z). 

Let G(z) be any such right inverse. It follows from Section 2 that 

G# has a uniquely determined minimal state module X(G), Jas indicated 

in Figure 3. Because X(G) is isomorphic to a submodule of fU, it is 

possible to write 

X(G) (a) 

G(QY) + flU 
nu 

The first of the two theorems can now be stated.
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Figure 3. 

C( Y) + QU 
inclusion -l 

G (9Y)+ Qu 

q 7Tp 

c(aY) + SU . . . .. . . 

Figure 4. 
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Theorem 2A (Right Inverse Case) 

Suppose given an epic transfer function G(z) : U(z) - Y(z).' Let 

G(z) : Y(z) -)U(z) be an arbitrary right inverse, and let X(G) be the 

minimal state module of G. Then there is an epic k[z]-module homomorphism 

7r x(o) --Z(G). 

Proof: Let u(z) e G(z)QY, so that 

u(z) = G(z) y(z) 

for a suitable y(z) in 9iY. Then 

0(z) u(z) = G(z) G(z) y(z) 

= y(z), 

which implies that u(z) s G-!(Y). Thus
 

GM)CG (QY), 

and the diagram of Figure 4 can be constructed. The natural projection p 

has kernel ker G(z) + EM; 7r is defined by composition; and the natural 

projection q has kernel U. To complete the proof, it is to be shown 

that the kfz]-module homomorphism 7r exists, is unique, and is epic. Ex­

istence and uniqueness follows from the fact that 

RU C ker p n (G(QY) + U) = ker 7r. 

To show that 1T is epic, suppose given some element C in Z(G). Write 

C- p u(z)-, 

and assume without loss of generality that u(z) is in G-1 (Y). Then 

for some y(z) in SY, 

G(z) u(z) = y(z). 

Now calculate
 

7r 0(z) y(z) - C = p G(z) y(z) - p u(z) 

= p[G(z) y(z) - u(z)]. 
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But
 

0(z) [0(z) y(z) - u(z)] = G(z) G(z) y(z) - G(z) u(z) 

- y(z) - G(z) u(z) 

- 0, 

so that
 

G(z) y(z) - u(z) e Ker G(z) C Ker p, 

and thus 

it G(z) y(z) - = 0, 

which means that iT is epic. Finally, 

im it = im i, 

so that i is epic; and the theorem is proved. 

In general, the homomorphism ; is n6t monic. If 5 is monic, then
 

the right inverse G(z) is called an essential right inverse. Notice
 

that the minimal state module of an essential right inverse is isomorphic
 

as a k[z]-module to the zero module Z(G) of G(z). Further discussion
 

of essential right inverses, including a proof of their existence, is pro­

vided in Section 5.
 

Next consider the case in which G(z) is monic. Then there exist
 

left inverses
 

G(z) : Y(z) - U(z) 

such that
 

G(z) G(z) = Cz)" 

If G(z) is any such left inverse, it follows once again from Section 2
 

that C has a uniquely determined minimal state module X(G) which
 

satisfies, as before,
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x(o) -v U
 

Theorem 2B (Left Inverse Case)
 

Suppose given a monic transfer function G(z) : U(z) + Y(z). Let 

G(z) : Y(z) + U(z) be an arbitrary left inverse, and let X(G) be the 

minimal state-module of G. Then there is a monic k[z]-module homomorphism 

Z(G) --X(G) 

Proof: Because G(z) is monic, ker G(z) vanishes; and 

Z(G) = G-(fY)U 

Now let u(z) s G- (y), so that 

G(z) u(z) = y(z) 

with y(z) e aY. Then 

u(z) = G(z) G(z) u(z) = G(z) y(z), 

so that u(z) E G(QY) also. Thus 

o-(flY) C G(Y),
 

and the diagram of Figure 5 applies. In the figure, p and q are natural
 

projections with kernels fU, and i is defined by composition. Observe
 

that 

ker i = ker p n (G-I(Y) + fU) 

= nU n (G 1 (oY) + SU) 

= U = ker q, 

so that 1 exists and is,unique. 'Moreover, because of the equality 

ker i = ker q, 

± is monic as well, which establishes the theorem. 

IAgain, ± need not be epic. Should it happen, however, that 
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G-I(0y) + au inclusion G(OY) + QU 

q p 

G(nY) + OU 

Figure 5. 

is epic as well, then the left inverse G(z) is called an essential left 

inverse. Just as in the previous case, the minimal state module of an 

essential left inverse is isomorphic as a k[z]-module to the zero module
 

Z(G) of G(z).
 

In the following section, the existence of essential inverses is dem­

onstrated by construction for both cases. 
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5. CONSTRUCTION OF ESSENTIAL INVERSES
 

The preceding section examined transfer functions G(z) : U(z) -+ Y(z) 

which were either epic or monic. If 0(z) : Y(z) - - U(z) is a (right or 

left) inverse, then it was established that the minimal realization of 

G(z) has poles which "contain" (either as a factor module or as a sub­

module) the zeros of G(z). In this context, the zero module of G(z) is 

called the essential pole module of G(z). If G(z) has no additional 

"inessential" poles, then G(z) is' called an essential inverse.
 

More formally, suppose G(z) : U(z) + Y(z) is an (epic or monic) 

transfer function, and suppose G(z) is a (right or left) inverse of G(z). 

Let X(o) be the minimal state module of 0(z), and let Z(G) be the 

zero module of G(z). Then G(z) is an essential inverse of G(z) if 

X(G) % Z(G) 

as k[z]-modules. 

The purpose of this section is to show that essential inverses exist
 

by giving an explicit construction for them. Right inverses and left in­

verses will be treated separately.
 

Begin with the case in which the transfer function G(z) : U(z) e Y(z) 

is epic. Suppose that 

G(z) D-1 (z) N(z) 

is a left-coprime factorization as discussed in Section 3. As a k(z)-linear 

map, N(z) must be epic, inasmuch as G(z) is assumed to be epic. On 

the k[z]-linear level, then, N(z)OU is a free module of rank p; and 

it then follows from Section 2 that fY/N(z)2U is a finitely generated
 

torsion module. Moreover, by Theorem 1,
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z(o) ' 

To construct an essential right inverse 0(z) : Y(z) + U(z) with mini­

mal state module Z(G), start by choosing a basis
 

fYl' Y2' "'' Yp}
 

for the free module N(z)MU. Next choose
 

ful, u 2 , ... , U p 

in QU such that
 

N(Z)ui = Yi , i = 1,2,....p. 

Because the N(z)QU-basis is also a k(z)-vector space basis of Y(z), there
 

exists a k(z)-linear map 

N(z) : 7(z) U(z) 

with action satisfying 

N(z)y i = u. , i 1,2,...,p. 

Now regard D(z) as a k(z)-linear map on Y(z) to itself, and define 

G(z) : Y(z) - U(z) 

by 

G(z) = N(z) D(z). 

The claim is that G(z) is an essential right inverse of G(z). 

It is straightforward to verify that 0(z), so defined, is a right
 

inverse. Indeed, the calculation
 
^ D-l~z 

G(z) G(z) = D (z) N(z) N(z) D(z) 

= D-1 (z) D(z) 

= :y(z) 

is sufficient, provided that the fact 

N(z) N(z) = l(z), 
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which follows by the construction, is recognized.
 

The next goal is to show that G(z) is essential; and this is accom­

plished by constructing a minimal realization diagram with state module 

isomorphic to Z(G). Regard D(z) as a k[z]-linear map QY - Y of free 

modules. Let 

p : 'Y+ 92Y/N(z)QU n Z(0) 

be the natural projection, and set 

DT 
= pD(z) 

by composition. Then 

D' : QY QY/N(z)QU I Z(G) 

is a k[z]-module homomorphism. Now regard N(z) Y(z) UU(z) as a trans­

fer function, which gives rise to
 

N ay-Y rTJ 

as in Section 2. Because {yi, i = 1,2,...,p} is a basis for N(z)U, 

and 

N(z) yi u. e SU
 

for i = 1,2,...,p, it follows that
 

N(z)SU C ker N 

But this means that N induces a unique k[z]-module homomorphism 

N' : &Y/N(z)QU -) MU 

which makes the diagram of Figure 6 commute. Piecing these ideas together 

yields a candidate for a realization diagram, as in Figure 7. To complete 

the proof, it is necessary to show that the diagram commutes, which means 

G =1N' D)',
 

that D' is epic (reachability), and that N' is monic (observability). 
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pYP QY/N(z)U
I 

I 

I 

ru 

Figure 6. 

Y(z) G(z) , U(z) 

G(z) ~t ru 

12l/ N Q 

Figure 7. 
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Consider commutativity of the diagram. Select y(z) in QY. Then
 

G y(z) = N(z) D(z) y(z) mod 2J, 

= N# D(z) y(z) 

= N' p D(z) y(z) 

--N' Dt y(z), 

as required. Next consider whether N' is monic. This property is a con­

sequence of the equation
 

ker N#= N(z) QU. 

The inclusion
 

N(z)QM C ker It 

follows from the fact that N(z) takes a basis for N(z)QU into flU. To
 

establish the reverse inclusion
 

ker N # C N(z) U, 

suppose that 

N y(z) = 0, 

for some y(z) in QY. Then 

N(Z) y(z) = u(z) s nu. 

Apply N(z) to obtain 

N(z) u(z) = N(z) N(z) y(z) 

= y(z), 

which means that y(z) s N(z)QU as needed. Finally, consider whether D' 

is epic. From Section 3, recall the existence of A(z) : QY OY and 

B(z) :SY -)- MU such that 

D(z) A(z) + N(z) B(z) = ly. 

Then 

p y(z) 	= p D(z) A(z) y(z) + p N(z) B(z) y(z) 

= D' A(z) y(z), 
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so that for every y(z) s 2Y, p y(z) is in 

im D' A(z) C im D' 

This discussion shows that essential right inverses exist and gives a
 

prescription for constructing them. There is an element of freedom of choice
 

in the procedure, particularly in the choice of ui such that N(z)ui = Yi
 

(where y 1 , ..., yp is a fixed basis for N(z)fU.) Although details will 

not be included here, this procedure does not give all possible essential 

inverses.
 

The next step is to consider the construction of essential left in­

verses. To provide an alternate construction procedure, this part of the
 

development proceeds in a manner slightly different from the right inverse 

case. 

Suppose that G(z) : U(z) + Y(z) is monic. In this case, the zero 

module is given by
 

U
Z(G) G-1(9Y)+
nU 

The goal of the present discussion is to construct an essential left in­

verse G(z) : Y(z) + U(z). This means that the minimal state module X(G) 

must satisfy 

K(G) I Z(G). 

Consider the set
 

m = G(z)tuL()n nY. 

M is a free k[z]-module of rank m, because it is a submodule of QY and
 

because G(z) is monic. Choose a k[z]-module basis
 

{YI' Y2' -'' Ym 
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for M. Because G(z) is monic, there exist uniquely determined vectors
 

in U(z) such that
 

G(z) ui = Y i=l, 2, ... , m. 

Notice also that Lui, i = 1, 2, ... , ml is a basis for the free module 

GI(gY). To see this, suppose u(z) e U(z) and 

G(z) u(z) s fY. 

Then 

G(z) u(z) C M 

and there exist unique a.(z) s k[z], i = 1, 2, ... , m such that2.
 

m 
G(z) u(z) = a(z) Y 

i-1
 
m 

a.(z) a(z) u. i=l 1
 

m 
- 0(z) [ ajz) uu. 

i=1l 

Inasmuch as G(z) is manic, this means that 

m 
U(Z) = I a.(z) u. 

uniquely.
 

Now consider the factor module
 

N = nY/, 

which is torsion-free. In fact if y(z) in 9Y represents a torsion ele­

ment in N, then for some t(z) in k[z] and u(z) in U(z)
 

t(z) y(z) = 0(z) u(z)
 

But then
 

y(z) = G(z) (.--Lz) u(z))
 

t(z)
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is itself in M, and represents '0 in N. But N is finitely generated 

over kfz], hence free; and since M has rank m, the module N has 

rank p-m. Choose ... , yy in fY which represent a basis of N. 

Then {y1' .... 7ym, ' ... , yp is a module basis for SY. To see this, 

bM+ k[z]suppose y(z) lies in QY. Then there exist l , ... bp in 

such that 

y- b YM+i bp yp nod M,;hm+ + "" + 

that is,
 

y - bm+! YM+l-"" -bp yp S M, 

so there exist b1, b2 , ... , bm in k[z] such that
 
7-bm+l ym+]. bp b, 71 + + Ym
- = ... b 7u 

Thus {y1,..., y} span Y. It is easy to see that these y, are in­

dependent. If 

al(z) Yl + ... + ap (z)yp = 0, 

then 

am+, ym+l + ... + ap yp = 0 mod M 

and so a , ... , a are all zero. But then a, ... , am are zero too 

because Yl' Ym are independent. It follows immediately that 

Y(z). Notice that 
{y,' Y2' yp} is a k(z)-vector space basis for 


lyM+i , ,y p} is highly non-unique; different choices of these vectors
 

will give different essential left inverses. Define
 

G(z) : Y(z) - U(z) 

by the action
 

G(z) y, = , , = 1, 2, .. , m
 

G(z) yi = 0 , i = rei-,m +2, ... , p.
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Clearly, 

G(z) G(z) U u , ± = 1, 2, ... , m 

so that G(z) is a left inverse for G(z), with the help of the observation 

that {u., i = 1,2,...,m) are a basis for U(z). The claim is that G(z) 

is an essential left inverse. 

Proof involves the es.licit.construction of a minimal realization dia­

gram. First note that since (yl" " y'" is a module basis for the
yp QY, 


map G(z) can be considered as a k~z]-module homomorphism 

G(z) :2 -YG ( 2Y) + QU 
-l1
 

defined by G yi = ui in G (fY), i = 1, ... , m, and G y. = 0, j =m+l,..,p. 

Now let 

G 0+ 9Y) Wp : l(9Y)+sOU- fU 

be the natural projection. Then define
 

SG- 1 (fy)+ fU 

• flU 

by
 

G= p GJQY. 

G1 is a k[z]-module homomorphism because p and G(z) IfY are k[z]-module 

homomorphisms. Moreover, G is epic. To see this, note that 

G1 7i = p G(z) i 

p ui, i = , 2, ..., m; 

and {p ui, i 1,2, ..., ml span 

C- (2y) + .fU 
92U 

because {ui, i = 1, 2, ... , m} span G- (fY). Next, consider the in­

clusion
 

i : G-1(fy) +fU ) U(z). 
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Let v : U(z) e ru be the natural projection. Then 

ker i = U C G (QY) + oU, 

and therefore iti induces a monic k[i]-module map 

G-1 (fY) + u 

as indicated in the diagram of Figure 8. This means that a candidate for 

realization diagram is given by Figure 9. 

Inasmuch as G1 and have already been shown to be epic and monic, 

respectively, it only remains to establish that the diagram conutes. 

Select an arbitrary y(z) in CY; then 

G16Y y(z)G, y(z) = i1 p 

- Wi GjlY y(z) 

= 7t G(z) y(z) 

GG y(z) , 

as desired. 

In this case, then,
 

X(G) = Z(G) 

Of course, the minimal state module is only unique up to isomorphism. 

Section 5 then has established the existence of essential right in­

verses and 'essential left inverses for the cases in 

which G(z) has right and left inverses, respectively--namely when G(z) 

is epic or monic. Thus a fundamental -connection has been established be­

tween the zero module and the prolific area of inverse systems. In the 

next section, it is shown that the zero module concept captures the var­

ious matrix notions of multivariable zero which have been discussed in 

the literature.
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-1 p - +u 
G (NY) +SJ QQU 

7rif 

ru
 

Figure 8. 

Yx) G(z) 1(z)
 

Y~ (Z)C)Z~ 

Figure 9. 
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6. THE ZERO MODULE AND MULTIVARIABLE ZEROS
 

One of the most interesting developments over the past few years in
 

system theory has been the definition and application of the concept of
 

"multivariable" zeros. The purpose of this section is to show that the
 

zero module concept captures the various notions of multivariable zero
 

which have been discussed, for the system considered in this paper.
 

Begin by showing that the zero module Z(G) as defined in this
 

paper is a natural sharpening of the popular definition of multivariable
 

zeros in terms of the Smith-Macmillan form of the matrix of G(z).
 

Suppose G(z) : U(z) - Y(z) is a transfer function and choose bases 

{ul' u2' .". u } 

fYl' Y2' "'' p} 

for U and Y, respectively, over k. Notice that these bases serve
 

also for U(z) and Y(z) over k(z), so that there arises a p x m
 

matrix
 

[G(z)] 

for the transfer function G(z). Then from Section 2 it follows that 

M(z) = R(z) [G(z)] L(z) 

for L(z) and R(z) unimodular matrices over k[z] is 

14(z) ..
 

where the O's are zero matrices of appropriate sizes and G* is a
 

square matrix
 

G* = diag {si(z)/.i(z)}
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for relatively prime elements s.(z) and TY.(z) in k[z] satisfying 

s i(z)Iei+l (z) , i = 1,2,..., r-l, 

Ti(z)Iyi.l(z) , i = i,r-1,..., 2. 

The product
 
-r
 

Z(Z) = E.(z) 
i=l ­

is called 	the zero polynomial of G(z). Now Z(z) is the characteristic
 

polynomial of the finitely generated torsion module Z(G) defined in the 

present 	paper, and in fact a much stronger result is true.
 

Theorem 	 3. The polynomials e(z),...,Sr(z) defined above are the in­

variant 	factors of the zero module Z(G).
 

Proof: 	 Abstractly, the zero module of G has been defined as
 

SG-1(y) + ?U' 
Z() =ker G(z) + U" 

A choice of bases for U and Y as made above gives 

G-I(1Y) = {u(z) s k(z)m : [G(z)] u(z) s k[z]P}. 

On the other hand, 

Z(M) 	 1- (kf[zJP) + k[zm 

ker M(z) + k[z] m 

It is now 	shown that Z(G) I Z(M) as k[z]-modules. In. fact
 

-l(k[z] p ) 	 = {u in k(z) m : M(z) u(z) e k[z] P } 

= {u in k(z)m : R[G] L u(z) s k[z]p } 

= {u in k(z) m : [G) L u(z) £ k[z] P } 

= {u in k(z) m : L u(z) s G- 02Y)}. 

Thus 

L : M-l(k[z]p) - G-1 (92y) 

is an isomorphism of free k[z]-modules. It
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is also easy to see that 

L(z) (ker M(z)) = ker G(z) 

by the relationships 

M(z) u(z) = 0 <=> R(z)[G(z)] L(z) u(z) = 0 

<=> [G(z)] L(z) u(z) = 0. 

Furthermore, 

L(z) (k[zfm ) = k[zlm 

because L(z) is unimodular and over k[z]. Then by the diagram of Fig­

ure 10, there exists an epimorphism of k[z]-modules 

L -l(k[z]P) + k[z] m Z(G). 

Now calculate 

ker L = {u(z) : L(z) u(z) e ker G(z) + k[z]m} 

= {u(z) : u(z) E ker M(z) + k[,Iml, 

which then permits the construction of Figure 11, where L1 is a k[z]­

module isomorphism. This establishes that 

Z(M) z(G) 

as k[z]-modules. The proof is concluded by an explicit calculation of
 

Z(M). Write
 

M(z) = D7!(z) N(z)
 

for
 

D(z) = diag ITl(Z), ... ' Tr(Z), 1, 1, ... ,} 

and 

N N 0]LOL);j---f- ; J 

with
 

N* = diag [el(Z), ..., er(z)}.
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M- (k[z]p) + k[zl' L(z) G-1 (k[z]p) + k[zt'
 

proj ection
 

Figure 10. 

::0 M____(k[zlp) + k[zt - (M_ -1 
IC
-1 
(k[z]p ) + k[zfm W m = Z(M) 

ker 1M(z) + k[z] 

Li
 

Z(G) 

Figure 11. 
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The reader may verify that D(z) and N(z) are left coprime. By 

Theorem 1, Z(M) is isomorphic to the torsion submodule of 

nyIN(z) aU. 

Moreover, in this case, Section 2 establishes that
 

-i2y/N(z)QU W a e k[z]/(Sr(Z)) k[z]P rk[z]/(S1 (z)) ... 

Then
 

Z(M) '.k[z]/(Sl (z)) (D... ek[z]/(S:r(W)) 

which means that the si(z), i = 1, 2, ..., r are the invariant factors
 

of Z(G), as required.
 

Rosenbrock [17] defined the zeros of the transfer function matrix 

[G(z)] in terms of the zero polynomial Z(z). Clearly, the zero module 

Z(G) agrees with that definition and extends it to an invariant factor 

structure. In a paper on the role of transmission zeros in linear multi­

variable regulators, Francis and Wonham [18] have established essential 

equivalences between the Rosenbrock definition and definitions given by
 

other authors.
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7. EXAMPLES
 

In this section some examples of epic and monic transfer functions
 

are considered. In each case the zero module is computed, and several 

distinct essential inverses are derived. Various techniques are used 

which reflect in an algorithmic way the different proof techniques in 

the previous section.
 

Consider the epic transfer function G(z) : U(z) - Y(z) with ma­

trix given by 

where U and Y are real vector spaces of dimension two and one, respec­

tively. As an- R(z)-linear transformation, G(z) has rank one and nullity 

one. A left coprime factorization
 

D-
 (z) N(z)
 

for G(z) can be given by
 

D(z) = (z+l)(z+2)
 

N(z) = [z(z+2) z(z+l)]
 

The essential state module for right inverses is given by
 

Z(G) - Y[z]/N(z) U[z] 

1[z]l(Z) . 

To compute an essential inverse for G(z) explicitly, consider
 

N(z) : U[z] -*Y[z]. 
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Let 

uI = U2 = [,+(z+2 

so that
 

N(z) u, = z 

is a basis for N(z) U[z], u2 is a basis for ker N(z), and Ul,U2} is
 

a basis for U[z]. Next define
 

No : N(z) Ufz] eU[z] 

by 

^NO(Z) = uI1 

The R[z]-linear map N0 can also be considered as an R(z)-linear map 

No: Y(z) - (z) given in the standard basis by 

N0(l) ~--

Consequently, we obtain the essential right inverse 

G0(z) = N0 (z)D(z) 

(z+l) (z+2)
 
z 

(z+l) (z+2).
 
z 

This particular construction, by a careful choice of u!, ensures
 

also that G(z) is an essential left inverse for G0(z). Such a special
 

occurrence need not be the case. For example,
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[l001(z) = 2) = _ 

G(z); but G(z) is not an essen­are both essential right inverses for 


tial left inverse for either Gl(Z) or G2(z). ^ Incidentally, G0(zA , Gl(z),
 

an& G2 (z)have distinct strictly proper parts which come from three non­

isomorphic canonical s~stems each having state module Z(G). 

Next consider the case p = 2, m = 3, with the matrix of G(z) given 

by 

z+3 - 2(z+5) 2 z(z+3) 
z2-l) (z+2) (z+2) (z+-) (z+2) 

1 (z+5) 2z z 
(z+i)(z+2) z+2 (z+l)(z+2)
 

A suitable left coprite factorization Dl (z) N(z) for G(z) is 

z 2 

D(z) = L 
1 0 z 

(z) = 0 (z+)(z+5)2 0 

The map N(z) is regarded as an R[z]-modle map U[z] Y[z] with
 

.U R3 and Y n R2 The essential pole module is given by 

Z(G) = Y[z]/N(z) U[z] 
F-R[z]/(z+I) e R[z]/(z+5) 2
 

To compute an explicit essential inverse, choose a basis
 

==Y! []' 72 
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for N(z) U[zl, where
 

(()
z+l)(z+5)2 .
 

Furthermore, choose a basis {ui, U2 , U3) for U[z] where 

0 -3=[0J 

Then
 

N(z) u 7y 

N(z) u= Yz
 

and u3 is a basis for ker N(z). Next, define 

No Y(z) U(z) 

by 

NO i t , i = l42 

With respect to standard bases, N(z) has the matrix
 

1 07 
o 1 

0 0 

Finally, define 

A [(zN0() D(z) 

z21 
-1 Z+i3i
 
fo(Z) X(z) 

0 oj 

which is an essential right inverse for G(z). Again, essential inverses
 

44 



are not unique. For illustration,
 

N(z) =1(j)0 

gives essential inverses 

( 

0(z) = N(z) D(z) 

when 
1
 

with 4(z) a nontrivial divisor of Y(z); and these inverses have dis­

tinct strictly proper parts.
 

Next, consider the monic transfer function G(z) :U(z) Y(z) (with
-

one-dimensional U and two-dimensional Y) given by 

F z+l 
G(z) = +)2­

z+3 

The zero module Z(G) can be computed either from a matrix factori­

zation or directly from the definition. For example, write
 

G(z) = 2]- [(2)2] 

so that
 
[z+l
 

N(z) =~ 2] 

( z+l) 

Here
 

OY/N('z)QU = k[z]2/M
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where -

M= [:::2 ] z) 2 p(z) s k[zl} 

is a free rank-one submodule of k[z] Thus 

QY/N(z)QU I k[z]/(z+l)k[z] e k[z], 

and Theorem 1 gives 

Z(G) 11k[z]/(s+l)k[z] 

To compute Z(G) directly from the definition 

Z(G) = G7(1Y) + QU 

write 

G- (MY) = {c(z) E k(z) : G(z) c(z) S k[z] 2 

(z+2) (z+3) z]}

- p(z) : p(z) s k[z]I, 

and 

G-1 (QY) + OU - (z+2)(z+3) p(z) + q(z) : p(z), q(z) s k[z]}
(z+l) 

So
 

G7-(92y) + QU z+1 k[z]
()z k[z] k[z]/(z+l)k[z]


nU k[z]
 

To compute an essential inverse G Y(z) U(z) using the method 

of proof used in Section 5, first compute a basis element yl of the 

rank-one free module 

G(z) u(z) fn ny 

Now 

z+l 1 
z-+-2 a(z) s nY 

z+3 
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if and only if
 

a(z) = (z+2)(z+3)i(z)/z+l
 

for some q(z) in k[z]. In fact, if
 

(z+2)(z+3)
U(z) = 
(z+l)
 

then
 
(z-i3)1 

G(z) u(z) = I= 7 

can be taken as a basis for G(z) U(z) n SY. Next, let Y2 in nY be 

any vector such that {yl' Y2} is a k[z]-module basis for gY. According 

to Section 5, the map G(z) : Y(z) - U(z) defined by 

G(z)(yl) = u(z) 

G(z) Y2 = 0 

is an essential left inverse for G(z).
 

Because {yI' Y2} is a basis for 2Y if, and only if, the partitioned 

2 x 2 matrix [yl IY2] has a non-zero scalar determinant, it follows that 

Y2j
 

is a suitable choice. To compute a standard basis representation for the
 

resulting 0(z), note that
 

[2= - + (z + 3) y2) 

so that
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--

) z(z+2)(z+3) -(z+2)(z+3)
G(z) =-2 [ zl z+l ]" 

A different essential inverse, available in this case by inspection,
 

is
 

z+2
A = 

G1 (Z) 01
 

Note, however, that the attempt
 
^ z+3] 

G2(z)= o z+ 

leads to an inverse which is not essential.
 

Consider next a "decoupled" 2 x 3 example
 

020(z) = 

Then
 

(z) Li k[z] 3 
GC (RY) I E 0~) ] . 

La2J za-


But z+l
 
2 

(z)al z 2
 

so that z+ 

z+l 
1 -- p-(z) 

a 1 (Zz+ 2 
=---- p2 (z)
a2 


z 

for some polynomials p,(z), p2 (z) in k[z]. Thus, G-1 (Y) is a
 

rank-two free module with basis
 

U1 

= 
4r 
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=u 2 

Z+2]'

2
 

Because
 

and
 
2 -L + z u2 


2=z
 

it follows that G-1 (Y) + QU is a free module with basis
0o[1] 
-11 

R[z ] etk[z ] -

G (QY) + RU = 1 2 

k[z] [ k[z] 

1 

k[z] - I k[z] ---2 
z z 

1(z] k[z] 

k[z]/(z)k[z] E)kz]/(z2)k[z]- 2 

This establishes the expected result that
 

Z(G) = k[z]/(z)k[z] e k[z]/(z 2 )k[z] 

To compute an essential inverse, consider the vectors
 

07,= Gu 
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2= u 2 = [1j 

Then the calculation of G-1 (Y) above shows also that {y1 ' Y21 forms 

a basis for 

G(z) U(z) 9Y. 

Now choose a vector Y3 such that {y1, Y2 ' y3} is a bais for all of 

2Y. In this case 

3 =[ 10j 
works. An essential inverse G(z) can then be defined by 

G(yl) = u1 

G(y2 ) = u2 

;(y3) = 0 

giving the expect(d matrix 

•G = 2 
Z+2 

0
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8. CONCLUSIONS
 

In this paper, we have given an abstract, module theoretic defini­

tion of zero module which captures the features of existing matrix def­

initions without being dependent upon any particular representation of
 

the transfer function. Every transfer function has a zero module, whether 

or not it has right or left inverses. If such inverses exist, however, 

their minimal state modules must "contain" the zero module either as a 

quotient module or as a submodule. When containment is exact, inverses 

are called essential. Existence of essential inverses has been established
 

by construction.
 

The existence of the zero module, together with its many useful 

features, suggests that a given system might be regarded as having a 

zero module as defined herein and a pole module which is a renaming 

for the previous usage minimal state module. 

The pole module of an essential inverse system is then the zero mod­

ule of the system itself. 
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