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Foreword
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version of some of the results has been presented by Drs., Wyman and Sain
at the 18th IEEE Conference on Decision and Control, December 1979. The

results reported here have been submitted for journal publication.
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Abstract: The theory of inverse dynamical systems has been and is con-
tinuing to be a keystone in the development of the theories of multi-
variable feedback control systems and of coding theory for reliable com-
munication. Advances in understanding of the role of plant inverses in
control system design have brought about additional insights, for example,
in the general areas of decoupled design and of realistic possibilities
for closed loop dymamical performance. Surprisingly emough, almost all
the existing literature on inverse systems is cast in terms of matrices,
Though the well known module theoretic approach to systems has been in
place for a decade or more, this approach has not been fully exploited

to bring out the foundations of a theory for inverse systems. This pa-
per begins to lay such a foundation by developing a definition of zero
module for a system. When inverse systems exist, their "pole modules”
can be shown to comntain the zero moduls in an appropriate algebraic sense.
If the containment is tight, these inverses are called essential. Exis-
tence of and constructions for essential inverses are provided.

*This work was supported in part by the Nationmal Aeronautics and Space
Administration under Grant NSG-2388.

#%0n leave from the Department of Mathematies, Ohio State University,
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1. INTRODUCTION

Control engineers have been interested in the problem of inverting
linear dynamical systems for more tham a quarter century. 4 claggic and
pivotal illustration is the work of ﬁode and Shamnon [1l] in 1950. 1In that
paper, the basic results of the famous Wiener-Kolmogorov theory for smoothing
and prediction of stationary time series were recomsidered by methods based
upon what was called at that time “electric circuit theory". Pointing out
that the Wiener-Kolmogorov theory involved "formidable mathematics™ and that
Wiener's report had come to be known as "The Yellow Peril"”, Bode and Shanmon
saw the need for methods Whiéh had "the advantage of greater simplicity" and
which had associated with them the insights of a "direct physical interpre-

tation".

Of course, every student of the subject is now exposed to the resulting
concept of a whitening filter, which was intimately related to the inversion
of transfer functions. Moreover, these original steps have now extended to

the more general modern interpretations of innovations processes.

Another basic step alomg the line of development of inverse systems
tended to occur when engineers began their efforts to extend the classical
frequency domain theories to the matrix case, in which the model was assumed
to havé more than one input and one output. Many matrix design equations
were developed at that time. Basically, these matrix inversions were pri-
marily to solve linear equations whose coefficients were from the field of
rational functioms in the Laplace variable s and with coefficients from the
real number field R. Some interesting .examples of this literature may be

found just prior to 1960 [2, 3, &, 5].



These studies were to encounter some very nontrivial conceptual questions,
however, inasmuch as there were cancellations of all types to be considered.
Combined with the fact that the theory of the relationship between "interior”

or state descriptions and "exterior” or transfer matrix descriptions was in

its infancy, these cancellations left hard gquestions about internmal stability
unanswered. With the recent advent of the concept of mltivariable zero, it
is possible to see in retrospect just how difficult some of these questions

were.

The formal study of the guestion of iaverting linear dynamical systems
arose again from several sourcas im the late 1960s. Occurring independently
and within six months of each other, the papers by Youla and Dorato [6],
Sain and Mzssey [7], and Silverman [8] initiated What-is now becoming an inw-

creasingly important research area.
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Though inverse system studies in the matrix sense have proceeded apace
[9], and although inversion problems are demonstrably important in a wide
variety of recent applications [10,11,12]including transport theory, met-
eorology and radar and optical imaging, almost nmo work has been carried out
to extend the theory of inverse dynamical systems beyond the matrix view-
point to the very fundamental underlying modular viewpoint. This is quite
surprising, since a well known [13] module theoretic approach to dynamical

systems has been in place for a decade or more.

In this paper, we explore further the relatiomship between multivar-
iable zeros and inverse systems. Section 2 provides preliminaries and no-
tation. Section 3 defines a zero module which is given in such a way

that it is basis independent. Every system with a suitable abstract imput/



output description has such a zero module, even if it does not have in-
verses. When a system input/output function is epic or monic, then there
are right or left inverses., Section & shows that every such inverse has
poles which "contain" (either as a quotient module or a sﬁbmadule}-the
zeros of the system. If the inverse has mo addifional éolés, it Is said
to be "essential'. Section 5 establishes the existence of essential right
and left inverses. The way in which the abstract zero module captures
previous definitions of multivariable zeros is explained in Sectiom 6;

and .examples are given in Section 7.



2. PRELIMINARIES AND NOTATION

Let k be an arbitrary field. We denote by k[z] the ring of poly-
nomizls in the indeterminate z, with coefficients from k, and by k(2)

the quotient field of k[z].
If U is an m—dimensional k-vector space, then

23 .
— l -
ulz] = {‘E w,z :m>0 , u e u}
i=0 .

is the free k[z]-module of polynomials with coefficients from U. As a
free module, U[z] has rank m, because it is free on any basis of U.
Inasmucﬁ as U i Em, we can think of U in terms of columm vectors of
height m with entries from k. Then U[z] may be visualized zlso as
column vectors with entries from k[z], which is a statement of isomor-
phism Ulz] i ([z])™®. In this spirit, we denote by U(z) the k(z)~vector

space of column vectors of height m with entries from k(z).

Now U{z] dis a k[z]-submodule of TU(z), and so it follows that

the factor module

™0 = U(2)/U[z]

is a2 k[z]-module, sometimes called a "Kalman output module". 1In this
language, U[z], also denoted by QU, is called a "Kalman input module.
Actually, TU as here defined is the torsion submodule of the Laurent

series module U((z-l))/U[z] which is more commonly used in the theory

[14 , 15].

If Y is a p-dimemsional k-vector space, then the corresponding
k(z)~-vector space Y(z) and k[z]-modules Y[z] and TY can be formed

in the same way.



A transfer fumction is a k(z)~linear map

G(z) @ U(z) - Y(2).

Alternmatively, G(z2} can he considered as a pmm matrix with eucries
from k{(z). The matrix ©6{z} will not be assumed Proper. In general,
then, we may write

Glz) = ¢ (z) + G#(z) N

poly
# .

where Gpoly(z} has entries from k[z] and ¢ (z) is strictly proper

in the sense that each of its entries has numerator degree strictly less

#
than denominator degree. We will cail G (z) the strictly prover part

of G(2). The msp @'(2) defines a k[z]-module map

G#(z) P QU - Iy

as shown in the upper part of the diagram in Figure 1.

A strictly proper G#{z) can be realized by a linear dynamical system

L=1(X U, ¥4, B, C .
Here X, U, and Y are Tinite—dimensional k-vecror spaces; and
A'X=+X , B:U+2X s L X =+Y
#
are k-linear maps. The gystem z realizes G (z) if
# -
G(z)-—-cézz~ﬁ.}13,

or, equivalently, if there exists z commutative reslizatien diagram of
kiz}-modules as shown in the lower part of Figure 1. In this figure,

Ax is a kiz]-wodule with underlying vector space given byﬂ~§- and modnle

action given by



G(z)

U(z) L ¥(z)
i b
- #
au G (z) 3 Y
AX
Figure 1.



zx = Ax .

at Ay
The mapg B and C arg k[zl-module maps defined by

o
B(uz") = Ai Bu,
A L1

Cxy=Cxz +CAx z‘-2 + .. {mod Yiz1).

. . - - 7 . N, .
The system 2 is a minimal realization of G {z2) if B 43 epic

(reachability) and C is momic (observability). The module ,X is them called
A

the minimal state module of the realization (A, B, C). Since a1l minimal

realizations of .G#{z} are igomorphic as systems, it follows that all min-

imal state modules are isomcrphic as klz]-modules.

The major technical tool used in .this paper is the theory of modules
over a primcipal ideal domain ring. A readable account of the whole theory
can be found in {16 ]; and a gquick summary (without proofs) is presented

here in the special case of modules over the polymomial ring klz].

Let M be a finitely generated k[z]-module. Then M is isomorphic
to a2 direct sum
MAFDT,
where

F oo (k[zDT

is a free module of rank n and T is a2 torsion module. The rank of F,
2nd the torsien moduls T, are uniquely determined by M. Concretely,
the torsion module T is given as a finite dimemsional k-vector space,
also called T, together with a k~linear endomorphism A ¢ T - T. The

k[zl-module action on T is given by



p(z) v=p(A) v

for all v dn T and all polynomials p(z). The module T can also

be described in the manmer
T % k[z]/ (¥ (2) @ ... @kl21/(¥ (2)) ,

where {yi(z), i=1,2,...,8} are nonzero polynomials with the property

?.|W. , 1=1,2,...,s~1. The V¥, are called the invariant factors of
i'7i1 i

T and are uniquely determined by T. (¥i) is the ideal generated by Wi

in kiz].

Two torsion modules are isomorphic if and only if they have the same

invariant factors.

The module M is frequently given as the cokernel of a polynmomizl
matrix. Suppose N(z) is such a matrix, say of size pxm. Then N(z)

represents a morphism

N(z) : (k[zDT =+ (k[z])P
of free modules. The cokernel of N(z) is defimned by
coker N(z) = (k[zDP/8(z) x[zD™ ,

which is a finitely generated module. The invariant factors of coker N(z)

can be computed from the Smith form of N(z).

The Smith form is given as follows. There exist a pxp polynomial
matrix E(z) and an mxm polynomial matrix F(z), both with unit de-

terminant in k[z], such that
E(z) N(z) F(2) = S(=z) ,

* where 8(z) is as "diagonal as possible" with invariant factors on the



"diagonal”. For instance, if p > m, then

;&(z) 0 ceo O ]
S(z) = | 0 ¥, (2) 0
0 o éfp(z)

where, for some s < p,

?S+l(z) ey = ?p(z) =0,

and Wi(z), i=1,2,...,8s, are nonzero with wilwi+l for 1i=1,2,...,8-1.
The Smith form S(z) is uniquely determined by WN(z).

Furthermore, S(z) and N(z) have isomorphic cokernels; and
a% -
coker N(z) ~ k[2]/(¥;(2)) @ ... ® kl21/(¥_(2)) @ x[z]P7° .
This means that the rank of the free part of coker N(z) and the invariant
factors of the torsion part are all determined by the Smith form of N(z).

In particular, note that coker N(z) is finite dimensional if and only

if s is equal to p, that is, if N(z) has full rank.



3. THE "ZERO MODULE OF A TRANSFER FUNCTION

Congider a given transfer function

g(z) : U(z) - Y(2).

The purpose of this section is to capture, in @ abstract, module theoretic
sense, the multivariable generalization of the classical notion of zero.

In so doing, it is intended not only to characterize the multivariable
zeros of the transfer fumction G(z), with multiplicity, but also to
describe a finitely generated, torsion module structure which gives tise

to the zeros.

This goal is accomplished in two steps. The first step is to give a
definition of the module which depends only on the basic concepts of module
theoretic system theory and not upon any of its particular matrix embodi-
ments. The second step is to supply a module isomorphism which makes

clear the finitely generated torsion structure.

It is helpful to give a brief intuitive prelude to the basic module
definition. Consider the classical case in which

p=m= L.

Then the matrix of the transfer function G(z) could be visualized in

the manner

where a(z) and b(z) are relatively prime elements of k{z]. The basic
idea of a "zero' .was understood as follows. If u(z) in TU(z) had

representation

10



n{z)
d(z) ?

u(z) =

for n(z) and d{(z) relatively prime in k[z], and if d(z) and a(z)
had non-unit factors in common, then the "modes" of u(z) indicated by
these common factors failed to appear in the corresponding output

_ n(z) a(z)
v(2) = T

because of cancellation. Note that the idemtically zero output was of
little interest in this regard, since it was the failure of certain ex-
citing modes to appear in the response that was paramount. Though this
is an academic point in the classical case, when there are no nonzero ex-
citations which produce zero responses, it is an important observation
in a multivariable generalization‘where ker G(z) is not necessarily
zero. And its meaning is that ker G(z) can safely be neglected. Note
also that, if

u(z) = p(2) = k[z] ,

no zero effect could have been observed in the classical case, because
u(z) would have had no "modes" which could fail to appear in y(z).
Thus, k[z] is of no interest insofar as producing test inputs to dis-
cover zeros; and thus QU, which is its generalization, can safely be
neglected in an abstract multivariable definition. In defining this ab-
stract module, then, it is consistent with the classical case to ignore

ker G(z) + QU ,
which can be accomplished by forming an algebraic quotient .

It remains to describe abstractly what is meant by a "'zero". Here

again the classical case can be quite mtivating. Simply focus on the

11



excitations which can produce no "modes" whatsoever in the response. As

an example,

b(z)

HORE~ e

p(2) ,

for p(z) in k[z]. Such excitatioms produce response
y(z) = p(2) e k[z]

having no "modes". The "modes" of these excitations, which are expressed
by G-l(k[z]), capture the classical concept of "zero"; since k[z]
generalizes to QY, the class of excitations of interest can be extended
eagily to

¢t am.

With these motivations, define the zero module Z(G) of the transfer

function G{z) by

G-l(QY) + QU
ker G{z) + QU ?

z(g) =

where the addend QU in the numerator of the quotient is provided so that
the denominator is contained in the numerator. Because Y and QU are

k{z}-modules, it follows that Z(G) is a k[z]-module.

Before establishing the finitely generated, torsion structure of
Z(G), it is a useful illustration to check the definition algebraically

for the classical case. In that case, ker G(z) vanishes, and

chay) = {ulz) e k(z) : g%:; u(z) = p(z) ¢ klz]}
- 22208 . 1) ¢ w2l

Then

G-l(QY) + QU = ‘E£§%§§El.+ a(z) : p(z), ql(z) ¢ k[z]}



_ {b(Z)p(Z) + a(z)q(z)

2(2) : p(2), ql2) ¢ k[z]}

For the last step, use the fact that a(z) and b(z) are relatively
prime so that any polynomial r(z) din QU can be written

r(z) = b(z) p(2) + az) q(=2)

for suitable p(z) and q(z) in k[z]. Accordingly,

Z(G) = -é% QU/RU

for the classical case.

Notice that there exists a2 k[z]-module isomorphism

1 .
@™ s _ _k=]
Qu al(z) QU - alz)kl=z]

defined by the action

zgzg mod QU + xr(2) mod a(z) QU ,

so that the zerc module gives the expected result in the classical case.

Next comnsider the second step, which establishes 2 k[z]-module iso-

morphism between Z(G) and a finitely generated torsion module.

For this step, assume a left coprime factorization

e(z) = D (z) N(z)

where the k(z)~vector space homomorphism N(z) and automorphism D(z)
can also be understood as free k[z]-module homomorphisms

N(z) : QU -~ OY
and

D(z) : Q¥ + Q¥

13



which satisfy

D(z) A(z) + ¥(z) B(=2) = lQY

for appropriate free k[z]-module homomorphisms
Alz) .« QY - QY
and
B{(z) : Q¥ - QU.
Notice that, as a k[z]-module homomorphism, D(2) is only an endomoxrphism

and not an automorphism.

The nature of the zero module Z(G) is then established by the fol-

lowing result.

Theorem 1
Given any transfer function G(z) : U(z) + Y(z), with left coprime
factorization D“l(z) N(z), then the zero module Z(G) is isomorphic as

a kjz]-module to the torsiomn submodule of QY/N(z)QU.

Proof: Comsider the k[z]-homomorphism

o, : G_l(QY) + QU -~ QY

1

whose action is given by
oy (u(2)) = N(z) u(z),
with the calculation in the right member following from N(z) regarded as
a k(z)-linear map. Notice that
o, (Q0) C 0¥
trivially. Moreover, if u(z) e G-ICQY), then
D_l(z) N(z) u(z) = y(z) £ Q¥,

so that

14



N(z) u(z) = D(z) y(z) ¢ Q¥
as required. Now let .
P : ¥ - QY/N(z)Q0
be the natural projection, and define
Bp T Py
by composition. To establish the theorem, examine the diagram of Figure 2,

where q 1s the natural projection

G_l(SZY) + QU
ker G(z) + QU °

G-l(QY) + QU +

To show the existence of the k{z]-module homomorphism 32, together with
the fact that it is mondc, it suffices to verify that

ker @, = ker G(z) + QU.

Suppose that u(z) e QU. Then

¢, u(z) = p oy u(z)

]

p N(z)u(z)

O.
Moreover, if u(z) e ker G(z), then
Dpl(z) N(z) u(z) = 0
from which
N(z) ulz) =0
so that

a, u(z) = 0.

2
Accordingly,
ker G(z) + QU C ker oy

For the opposite inclusion, let

i5



-1
~1 ! G (RY) + QU
¢ (aY) + QU > Yt Glz) + o0

QIM(z)qU

Figure 2.

u{z) e G_l (¥} + QU
be such that

o, ulz) = 0.

2
" 8ince Gy = P Qg it follows that

o, u(z) € ker p = N(z)QU

1
so that

oy u(z) = ¥(z) ul(z)

for some ul(z) e QU. Therefcre

u(z) - ul(z) e ker N(z) = ker G(z),
and it is a consequence that
u(z) = (w2) - u (2)) + u,(z)
with u(z) ~ ul(z) in ker G(z) and ul(z) in QU. Thus every such u(z)

lies in ker G(z) + §&U.

This establishes that the Lkl{z]-module homomorphism o exists, is

2

unique, and is monie. It remains to show that the image of 52 is the

i6



torsion submodule of QY/N(z)@U. TFor wu(z) in U(z), there is a poly-
nomial t(z) in k[z] such that
t(z)u(z) = ul(z) e QU.

Then

t(2)¥{z)u(z) N{z)t(=2)u(z)

]

N(z)ul(z) e N(z)qU,
and
t(z) o, u(z) = 0,
which means that
im a, = im 52
is contained in the required torsion submodule. Next consider an arbitrary
torsion element of QY/N(z){U, expressed as p y(z) for y(z) in QY.
* Using left-coprimeness, write
v(z) = D(z) A(z) y(2) + N(z) B(z) y{(=).
Because
N(z) B(z) y(z) ¢ ker p,
it follows that p(D(z) A(z) y(z)) is also z torsion element in QY/N(z)QU.

+

Thus there is a polynomial ©(z) in k[z] such that, for some u(z) in

qu,

t(z) D(z) A(z) y(z) = N(z) u(z).
Let

v(2) = ooy (D) + B(2) (2.
Then

N(z) v{(z) = D(z) Aéz) y(z) + N(z) B(z) y(=2)

= y(z).

i7



Furthermore, B(z) y(z) is in QU, and

E?%T-u(z) £ G-l(QY) ,

as may be verified by the calculation

L
G(t(z)

w(2)) = D7(2) M2) (g u(@)
p1(z) D(z) A(z) y(2)

A(z) y(z) £ QY.

n

This implies that

v(z) € G'lcnY) + QU,

so that
v(z) e in oy
so that
p y(z) £ im 6, = im o, .
Thus 32 maps onto the entire torsion submodule of Q¥/N(z)QU, which

completes the proof of the theorem, except for establishing the fact that
Z(G) -is finitely generated. However, this conclusion follows from the
discussion of coker N(z) in Section 2, where it is shown that the torsion
submcdule is a direct sum of finitely many modules each of which has one

generator.

It should be noted that no assumptions concerning the rank or-nullity

of G(z) have been made in this section.

As an application of zero module concept, the next two sections re-
late Z(G) to inverse systems associated with G(z), for the cases in

which such notions exist, namely when G(z) is epic or moniec.

18



4, ESSENTIAL POLE STRUCTURE OF INVERSE SYSTEMS

As pointed out in the introduction to this paper, the concept of in-
verse systems has played a very useful role in the various applications,
including feedback control theory and coding for reliable communication.
The notion of multivariable zero tends to arise quite paturally im such
contexts along the lines of the intuitive statement "the zeros of G(z)

.appear as poles of an arbi£rary (left or right) inverse é(z) of G(z)".
The purpose of this section is to give a precise algebraic veréion of this

intuitive statement.

The discussion is divided into two parts, according to whether the
transfer function G(2) is epic or monic; and a theorem is given for

each case.

Consider first the case in which G(z) is epic. Then theré exist

right inverses

a(z) : Y(z) - U{z)
such that

G(z) 6(z) = lY(z)’
Let a(z) be any such right inverse. It follows from Section 2 that
é# has a uniquely determined minimal state module X(é), ras indicated
in Figure 3. Because ‘ﬁté) is isomorphic to a submodule of TU, it is
possible to write

(@) v ¢

_c@y) + au
-

The first of the two theorems can now be stated.

19



QY > U
X(G)
Figure 3.
. inclusion -1
G(QY) + QU > G () + v
q 1r P
Qu -
T
Figure 4.

20



Theorem 24 (Right Inverse Case)
Supp;se given an epic transfer function G(z2) : U(z) - Y(z). Let
G(z) : Y(z) + U(2) be an arbitrary right inverse, and let X(a) be the
minimal state module of é. Then there is an epic k[z]-module homomorphism
7X@ 20,
Proof: Let u(z) ¢ é(z)ﬁY, so that
u(z) = a(z) y(z)

for a suitable y(z) in QY. Then

G(z) u(z) = G(2) é(z) y{(z)

]

y(z),
which implies that u(z) ¢ G—l(QY). Thus
st € ¢ e,
and the diagram of Figure 4 can be constructed. The natural projection p
has kernel ker G(z) + QU; v is defined by composition; and the natural
projection q has kernmel QU. To complete the proof, it is to be shown
that the k{z]-module homomorphism T exists, is unique, and is epic. Ex-
istence and uniqueness follows from the fact that
U C ker p [} (G(Y) + OU) = ker m.
To show that T is epic, suppose given some element £ in Z(G). Write
z = p u(z),
and assume without loss of gemerality that wu(z) is in G-l(ﬂY). Then
for some y{(z) in QY,
6(z) u(z) = y(=2).
Now calculate
D é(z) y(z) - p u(z)

plE(z) y(2) - u(=)].

T &(z) y(z) - ¢

21



But
az) @(z) y(z) - 6(z) ul2)
y(z) - G(z) u(z)

:-..0’

e(z) [8(z) y(z) - ulz)]

It

so that
E;(z) v(z) - u(z) e Rer G(z) & Ker p,
and thus
r e(z) y(z) -z =0,
which means that T is epic. Finally,
imT=dm ¥ ,
so that 7 is epic; and the theorem is proved.
In geperal, the homomorphism 7 is not monic. If ¥ is momic, then

the right inverse G(z) is called an essential right inverse. Notice

that the minimal state module of an essential right inverse is isomorphic
as a kiz]-module to the zero module Z(G) of G(z). Further discussion
of essential right inverses, including a proof of their existence, is pro-~

vided in Section 3.

Next consider the case in which G(z) is monic. Then there exist
left inverses
&z) : () + U(z)
such that
(E(z) G(z) = lU(z)"
1f (;(z) is any such left inverse, it follows once again from Sectiom 2
that E;# has a uniquely determined minimal state module X(a) which

satisfies, as before,

22



A GIOY) + QU
X(6) ~ ——

Theorem 2B (Left Inverse Case)
Suppose given a monic transfer function G(z) : U(z) =+ ¥(z). Let
é(z) : Y(2) -+ U(2) be an arbitrary left inverse, and let X(é) be the
minimal state module of é. Then there is a monic k[z]-module homomorphism
I:2(6) X0 -

Proof: Because G(z) is monic, ker G(z) vanishes; and

G'lcsm + QU

z(G) = 0 .

Now let uf(z) ¢ G—l(QY), so that
G(z) u(z) = y(z)
with v(z) e QY. Then
u(z) = 6(2) 6(2) ulz) = 6(2) y(2),

so that u(z) ¢ &(QY) also. Thus

¢ Har) Ceten),
and the diagram of Figure 5 applies. 1In the figure, p and ¢ are natural
projections with kernels QU, and i is defined by composition. Observe

that

1]

ker p n @ Loy + au

Qu ﬂ ¢ty + v

ker 1

= QU = ker q,
so that I exists and is unique. Moreover, because of the equality
ker i = ker q,

i is monic as well, which establishes the theorem.

Again, 1 need not be epic, Should it happenm, however, that I
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inclusion

G_l(QY) + QU - > é(QY) + QU
q i P
Y ? :
L
Figure 5.

is epic as well, then the left inverse G(z) is called an essential left

inverse. Just as in the previous case, the minimal state module of an
essential left inverse is isomorphic as a k[z]-module to the zero module

Z(G) of G(z).

In the following section, the existence of essential inverses is dem-

onstrated by construction for both cases.
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5. CONSTRUCTION OF ESSENTIAL INVERSES

The preceding section examined transfer functiéns G(z) : U(z) + 1{(=2)
which were either epic or monic. If a(z) : Y(z) - U(z) is a (right or
left) inverse, then it waé established that the minimal realization of
&(z) has poles which "contain" (either as a factor module or as a sub-
module) the zeros of G(z). In this context, the zero module of G(z} is

called the essential pole module of G(z). If G(z) has no additional

"inessential™ poles, then G(z) is called an essential inverse.

More formally, suppose G(z) : U(z) - ¥(z) 4is an (epic or monic)
transfer function, and suppose G{z) 1is a (right or left) inverse of G(z).
Let X(G) be the minimal state module of G(z), and let Z{(G) be the

zero module of G(z). Then G(z) is an essential inverse of G{(z) if

X(G) ~ 2(G)

as k[z]-modules.

The purpose of this secticn is to show that essential inverses exist
by giving an explicit construction for them. Right inverses and left in-

- verses will be treated separately.

Begin with the case in which the transfer function G(z) : U(z) - ¥(z)
is epic. Suppose that
6(z) = D" (2) N(2)
is a left-coprime factorization as discussed in Section 3. As a k(z)-linear
map, lN(z) mist be epic, inasmuch as G{z) ig assumed to be epic. On
the k[z]-linear level, then, N(z)RU is a free module éé rank p; and

it then follows from Section 2 that QY/N(z)QU is a finitely generated

torsion module. Moreover, by Theorem 1,

25



Z(G) ~ QYA(z)QU.

To construct an essential right inverse é(z) : Y(z) -+ U(z) with mini~
mal state module Z(G), start by choosing a basis
Ay v ees T
for the free module N(z)QU. ﬁext choose

{ul, Ups vy up}

in QU such that

N(z)ui =y i=1,2,...,p-

Because the N(z)NU-basis is also a k(z)-vector space basis of ¥(z), there
exists a k(z)-linear map

N(z) : ¥(z) + U(z2)
with action satisfying

N(Z)Yi =u; i=1,2,...,p.

Now regard D(z) as a k(z)~linear map on Y(2) to itself, and define
() : Y(z) + U(=2)

by
6(z) = N(z) D(z).

The claim is that G(z) is an essential right inverse of G(=z).

It is straightforward to verify that G(z), so defined, is a right

1

inverse. Indeed, the calculation

G(z) é(z) D_l(z) N(z) ﬁ(z) D(z)

pY(2) D(2)

lY(Z)

is sufficient, provided that the fact

N(z) N(z) = Loy
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which follows by the comstruction, is recognized.

The next goal is to show that a(z) is essential; and this is accom~
plished by constructing a minimal realization diagram with state module
isomorphic to Z(G). Regard D(z) as a k{z]-linear map QY + QY of free
modules. Let

p: Y + Q¥/N(2)QU & Z(G)
be the natural projection, and set
D' = pD(z)

by composition. Then

D' : QY + QU/N(2)QU ¥ Z(E)
is a k[z]-module homomorphism. Now regard ﬁ(z) : Y(z)} = U(z) as a trans-
fer function, which gives rise to

ﬁ# : QY - TU

as in Section 2. Because {yi, i=1,2,...,pt dis a basis for N(z){U,

and

N(z) v, =u; € QU

for i=1,2,...,p, it follows that

N(z2)QU C ker ﬁ#.

- it

But this means that N~ induces a unique kl[z]-module homomorphism
N' : QT/N(2)QU + 1T
which makes the diagram of Figure 6 commute. Piecing these ideas together
yields a candidate for a realization diagram, as in Figure 7. To complete
the proof, it is necessary to show that the diagram commutes, which means
B o,

that D' is epic (reachability), and that N' is monic (observability).

27



oy L 3 OY/N(z)QU

l
N
N
U
Figure 6.
¥(z) 8(z) 3 U(z)
(‘_‘;#(Z)
3 I
D' N
D/ y(z)au

Figure 7.
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Consider commutativity of the diagram. Select y{(z) in Y. Then

”

G# v(z) ﬁ(z) D(z) ‘y(z) mod U,

~

nf D(z) y(z)

N' p D(z) y(2)

N' D' y(2),

as required. Next consider whether N' is monic. This property is a con-

sequence of the equation
ker N7 = N(z) au.
The inclusion
N(z)QU C ker 1:1#
follows from the fact that l:I(z) takes a basgis for N(z)QU into QU. To
establish the reverse inclusion
ker I’&# C N(=z)QU,
suppose that
o i

N" v(z) =0,

for some y(z) in QY. Then
N{(z) v{(z) = u(z) e QU.
Apply WN(z) to obtain

N(z) uz) = N(z) N(z) y(z)

y(z),
which means that y(z) e N(z)QU as needed. TFinally, consider whether D'
is epic. TFrom Section 3, recall the existence of A(2) : 9¥ - Q¥ and
B(z) : Q¥ = QU such that

D(2) Al2) +N(2) B(2) = 1,
Then

1

p v(z) = p D(z) A(z) y(z) + p N(z) B(z) y(=z)

D' A(z) vy(z),
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so that for every vy(z) e @Y, p y(z) is in

im D' A(z) C im D'

This discussion shows that egsential right inverses exist and gives a
prescription for constructing them. There is an element of freedom of choice
in the procedure, particularly in the choice of ug such that N(z)ui =¥y
(where Tqs eves Yp is a fixed basis for N(z)QU.) Although details will

not be included here, this procedure does not give all possible essential

inverses.

The next step is to consider the construction of essential left in-
verses. To provide an alternate construction procedure, this part of the
development proceeds in a manner slightly different from the right inverse

case.

Suppose that G(z) : U(z) - Y(z) is monic. In this case, the zero

module is given by

G'l(m:) + QU
QU :

z(@ =
The goal of the present discussion is to construct an essential left in-
verse G(z) : Y(z) - U(z). This means that the minimal state module ZX(G)

must satisfy

() ~ z(C).

Consider the set
M= 6(2)U(z)} 0.
M dis a free kiz]-module of rank m, bhecause it is a submodule of QY and

because G(z) is monic. Choose a k[z]-module basis

{Yls st seey Ym}
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for M. Because G(z) is monic, there exist uniquely determined vectors
{ul, Upys oees um}
in U{z) such that

G(z) u =y s i=1, 2, ..., m.

NVotice also that {ui, i=1, 2, ..., m} is a basis for the free module
Gml(ﬁY). To see this, suppose u(z) ¢ U(z) and

c(z) u(z) ¢ QY.
Then

G(z) u(z) ¢ M

and there exist unique ai(z) e kfz], i=1, 2, ..., m such that

G(z) u(z)

m
iZl a (z) y;

m
iZl ai(z) G(z) u,

m
G(z) Z ai(z) u,.
i=1

Inasmuch as G(2) i1s monic, this means that

m
u(z) = izl ai(z) uy

uniquely.
Now congider the factor module
N =QY/M s

which is torsion-free. In fact if y(z) din QY represents a torsion ele-

ment in N, then for some t(z) in k{z] and u(z) in TU(2)
t(z) y(z) = G{(z) u(z) .

But then

7(z) = 6(z) cﬁg u(z))
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ig itself in M, and represents 0 in N. Bur N is finitely generated
over k{z}, hence free; and since M has rank m, the module ¥ has
rank p-m. Choose ¥ el? 0T yp in §Y which represent a basis of N.

Then {yl, cems Too Tpegs tceo yp} is a module basis for §Y¥. To see this,

suppose y(z) lies in QY. Then there exist buri" s eees bp in k[z]

such that

vyeb

L ATy Foaee * bp y? mod M,

that is,
y“bmﬁ-lymi-l— -bpypsl\i,
so there ewist bl, bz, cers bm in k[z] such that

Y_bmlynri-lu""bpyp=blyl+'”+bmym‘

Thus {yl, caey yp} span @Y. It is easy to sse that these y; are R

dependent. I
al(z} Yyt oeee ¥ ap(z) yp = 0,
then

am‘*‘lym.}.l+...+apypﬁ0modl{;

and so =z 5wy aD are all zeroc. But then a

a are zZerg oo
m+l m

1, LAC I B

because y;, ..., ¥, are independent. It follows immediately that

-

{yl, Yor wres yp} is a k(z)-vector space basis for Y(z). Notice that
{Ypi1s »oes yp} is highly non-unique; different choices of these vectors

will give different essentizal left inverses. Define

G(z) : Y(2) - U(z)
by the action
G(z) v, = uy s i=1, 2, sy |

c{z) yi=0 , i=otl, m+2, ..., D-
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Clearly,

G(z) G(z) u, =ug i=1, 2, ..., mn
so that G(z) is a left inverse for G(z), with the help of the observation
that {ui, i=1,2,...,m} are a basis for U(z). The claim is that G(z)

is an essential left inverse.

Proof involves the explicit. comstruction of a minimal realization dia=-
gram, First note that =ince {yl, ‘el yp} ié a2 module basis for QY, the
map &(z) can be considered as a k[é]-module homomorphism

a(z) : 0¥ + G L(aY) + U

defined by Gy; = u, in G"l(mr), i=1, ..., m, and G vy = 0, j = ml,..,p.

Now let
p: ¢ lay) + av ~ ‘%-l(mgw"' oy
be the natural projection. Then define
é’l .oy - G"l(mrzm-;- au
by
&1 =P é]ﬂY.

~

G1 is a k{z]-module homomorphism because p and G(z)|QY are k[z]-module

homomorphisms. Moreover, Gl is epic. To see this, note that

~

G

1 74P G(z) vy

and {p s i=1i, 2, ..., m} span

G"l(mf) + QU
QU

because {ui, i=1, 2, ..., m} span G-l(QY). Next, consider the in-
clusion

i G'l(mz) + QU -+ U(z).

33



Let 1w : U(z) -+ TU be the natural projection. Then
ker Ti = QU € G “(RY) + Qu,
and therefore wi dinduces a monic k[z]-module map

. ¢ty + au "
’ Qu

1§i)

as indicated in the diagram of Figure 8. This means that a candidate for

realization diagram is given by Figure 9.

-~

Inasmuch as Gl and i1 have already been shown to be epic and monic,
respectively, it only remains to establish that the diagram commutes.

Select an arbitrary y(z) din QY; then

i &1 v(z) = i P a|9Y y(z)
= i élﬂY v{(z)
=7 é(z) y(z)
~
=6 y(=2 ,

as desired.

In this case, then,
X =2(6) .

0f course, the minimal state module is only unique up to isomorphism.

Section 5 then has established the existence of essential right in~
verses and .essential left inverses for the cases in
which G(z) has right and left inverses, respectively~--namely when G(z)
is epic or monic. Thus a fundamental connection has been established be-
tween the zero module and the prolific area of inverse systems. In the
next section, it is shown that the Zero module concept captures the var-
ious matrix notioms of multivariable zero which have been discussed in

the literature.
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6. THE ZERO MODULE AND MULTIVARIABLE ZERCS

One of éhe most interesting developments over the past few years in
system theory has been the definition and application of the concept of
"multivariable"” zeros. - The purpose of this section is to show that the
zero module concept captures the various notions of multivariable zero

which have been discussed, for the system considered in this paper.

Begin by showing that the zero module Z(G) as defined in this
paper is a natural sharpening of the popular definition of multivariable

zeros in terms of the Smith-Macmillan form of the matrix of G(z).

Suppose G(z) : U(z) =+ ¥Y(z) dis a transfer function and choose bases
{ul, Ugs o5 um}
{715 ¥9s =ees yp}

for U and Y, respectively, over k. Notice that these bases serve
also for U(z) and ¥(z) over k(z), so that there arisesa pzxm
matrix
[e(2)1
for the transfer function G{(z). Then from Section 2 it follows that
M(z) = R(z) [6(2)] L(z)
for L(z) and R(z) unimodular matrices over kfz] is

G* 0

Miz) =

———f——

10 0
where the O0's are zero matrices of appropriate sizes and G* is a

square matrix

G* = diag {ei(z)/WiCZ)}
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for relatively prime elements ei(z) and Wi(z) in kiz] satisfying

ei(Z)Isi+l(z) , i=1,2;..., r=1,

v (@Y, (= , i=iz-1,..., 2

The product
T
Z(z) = 7 e£.(z)
i=1 =

is called the zero polynomiazl of G{z). Now Z(z) is the characteristic

polynomial of the finitely generated torsion module Z(G) defined in the

present paper, and in fact a much stronmger result is true.

Theorem 3. The polynomials el(z),...,aé(z) defined above are the in-
variant factors of the zero medule Z(G).

Proof: Abstractly, the zero module of G has been defined as

- ¢ eav) + ov
ker G(z) + QU °

Z({G)

A choice of bases for U and Y as made above gives

ey = {u(2) & k(2P ¢ [6(2)] ulz) € k[z]P}.

On the other hand,

=1, .. .p m
Z(M) = M (K[z]Y) + k[z] .

ker M(z) + k[z]"

It is now shown that Z{G) ¥ Z(M) as k[z]~modules. In fact

¥ Lk[z]P) = {u in k(2)® : M(z) u(z) e k[z]P}

(o in k()™ : R[C] L ulz) e k[z]P}

i

{u in k(z)™ : [6] L u(z) e k[z]P}

fl

{uin kK(z)™ : L u(z) ¢ G”l(QY)}.
Thus
Lo M Ek[z]®) = ¢len)

is an isomorphism of free k{z]-modules. It

37



is also easy to see that
L(z) (ker M(2)) = ker G(z) ,
by the relationships
M(z) u(z) = 0 <=> R(2)[c(2)] L(z) u(z) = 0
<=> [G{z2)] L(z) u(z) = O.
Furthermofe,
L(z) (Rlz]™) = k[z1"

because L(z) is unimodular and over k[{z]. Then by the diagram of Fig-
ure 10, there exists an epimorphism of k[z]-modules

Tl ek[21P) + k2] - 2(6).
Now calculate

ker T {u(z) : L(2) u(z) & ker G(z) + k[z]m}

{fu(z) : u(z) e ker M(z) + k[z]"},
which then permits the construction of Figure 11, whére Ll is a kizl-
module isomorphism. This establishes that

Zf) ~ 2(6)
as k{z]-modules. The proof is conclﬁded by an explicit calculation of
Z(M). . Write

M(z) = DTI(z) N(z)

for
D(z) = diag {¥,(D), ..., ¥ (2), L, 1, n.,1}
and
N* } 0
N(z) = R
o0 1t 0
with

N#% = diag {sl(z), cens sr(z)}.
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L{z)

M (k[2]1P) + k(z]™ » ¢ (k21D + K[z]®

projection

¥

™~ z(6)

Figure 10.

> M (k2P + k[z]™
ker M(z) + k[z]m

M k[2z1®) + k[zI™ = Z(m)

by

e

|
]
l
\

Z(G)
Figure 11.
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The reader may verify that D(z) and N(z) are left coprime. By

Theorem 1, Z(M) is isomorphic to the torsion submodule of
QY/N(z) au.

Moreover, in this case, Section 2 establishes that

QI/N(2) QU ¥ k[z1/(£,(2)) @ ... ® k[2]/(c, (2)) @ k[21P" .

Then

200 ¥ k[z1/(e1(2)) B ... Bkl2]/(e (2)) ,

which means that the ei(z), i=1, 2, ..., r are the invariant factors

of 2Z{(G), as required.

Rosenbrock [17] defined the zeros of the transfer function matrix
[6(z)] in terms of the zero polynomial Z(z). Clearly, the zero module
72(G) agrees with that definition and extends it to an invariant factor
structure. In a paper on the role of transmission zeros im linear multi-

variable regulators, Francis and Wonham [18] have established essential

equivalences between the Rosenbrock definition and definitions given by

other authors.
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7. EXAMPLES

In this section some examples of epic and monic transfer functions
are considered.” Ip each case the zero module is computed, and several
distinet essential inverses are derived. Various techniques are used
which reflect in an algorithmic way the different proof techniques in

the previous section.

Consider the epic transfer function G{(z) : U{z) > ¥(z) with ma-

trix given by
=_ 2
z+1l z+2 |°
where U and Y are real vector spaces of dimension two and ome, respec-—

tively. As an R(z)-linear tramnsformatiom, G(z) has rank ome and nuliity

one. A left coprime factorization
0™t (2) N(z)
for G(z) can be given by

D(z)

N(z)

[}

(z+1) (2+2) ,

[z(z+2) z(z+1)] .

The essential state module for right inverses is given by

Y[z]/8(z) Ulz]

R{z]/(z) .

2(®

e

To compute an essential inverse for G(z} explicitly, consider

N(z) : U[zj +~Y[z].
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Let

so that

N(z) u =z

is a basis for N(z) U[z], u, is a basis for ker N(z), and {ul,uz} is

a basis for TU[z]. WNext define

~

NO : W(z) vl{z] = Ulz]

by

No(z) =uy .

The R{z]-linear map NO can also be considered as an R{z)-linear map

A~

NO : Y(z) - U(z) given in the standard basis by

Counsequently, we obtain the essential right inverse

6y(2) = Ny(2) D(2)

(z+1) (242) |
z

_ (z#1) (2+2)
z

e ——

This particular comstruction, by a careful choice of g5 ensures
also that G(z) is an essential left inverse for Go(z). Such 2 special

occcurrence need not be the case. For exzample,
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N z+1 - 0
= Z =
G, (2) 5 s 6@ 242
are both essential right inverses for G(z)}; but G(z) is not an essen-
tizl left inverse for either Gl(z) or Gz(z). Incidentally, Go(z%, Gl(z),
and Gz(z) have distinet strictly proper parts which come from three non-

isomorphic camomical systems each having state module Z(G).

Next consider the case p = 2, m = 3, with the matrixz of G(z) given

by
243 — 2(z45)° 2(z43) |
(z+1) (242} (2+2) (z+1) (2+2)
1 {z+5)2z z '
(2+1) (2z+2) zt2 (z+1) (z+2)

A suitable left coprime factorization D-l(z) N(z) £for G(z) is

z 2
D(z) = ,
=1 z+3
1 0 z

N{z)

]

0 (z#1)(z+5)% ©

The map N(z) is regarded as an R[z]-module map 'U[z} + Y[z] with

u o
T~ R3 and Y v RZ. The essentizl pole module is given by

I

Y{z]1/N(z) Ulz]
R(z1/(2+1) ® R[z]/(z+5)° |

(&)

ee

To compute an explicit essential inverse, choose z basis
1 0

V. = y ¥4 = 3
1 4o 2 vz
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for N({z) U[z], where

¥(z) = (z+i)(z+5)2 .

Furthermore, choose a basis {ul, Yy, u3} for TUlz] where

1 ¢ -z
=10 s W, =1 s ., =] 0 .
"1 0 2 7|y 3 1

Then

N(z) Ty =Y, s

and ., iz a basis for ker W(z). Wext, define

-~

NO : T(z) > Uz

by

4

u, , i=1,2.,

Noy) =y

Witk respect to standard bases, Ne(z} has the matrix

i ¢
1
0 0

Finzlly, dafine

-~

¢.(z) = %O(z) D{z)

0
z 2
o2 z+3
Biz) ¥(z) |°
0 0

which is an essential right inverse for G{z). Again, essentisl inverses
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are not unique. For illustration,

1 - 8z
- 1
N(z) =10 ¥(2)
0 B
gives essential inverses
‘ - {
&(z) = N(z) D(z)
when
1

g = 0(z) ’

with d)(z) a nontrivial divisor of V¥(z); and these inverses have dis-

tinct strietly proper parts.

Next, consider the monic transfer funmetion G6(z) : U(z) - ¥(z) {with
" one-dimensional U and two-dimensiomal Y) given by

zHL

242
(z+1)2

z+3

G(z) =

The zero module Z(G) can be computed either from a matrix factori-~

zation or diresctly from the definition. For example, write

| 242 0 -t z41
G(z) = S
0 z+3 (z+1)
so that
z+1
N(z) = 5
{z+1)
Here

QT/N(2)au = kz]2/M
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where -
z+1

M= 9 p(z) : p(z) e kizl}
(z+1)
is a free rank-one submodule of k[z]z. Thus

QY/N(2)Q0 ~ k[z]/(z+1)klz] @ k{z],

and Theorem 1 gives

7(6) ~ kl[z]/(z+D)k[z]

To compute Z(G) directly from the definition

-1
2@ = & (szzgm+ .

write
LD = {al2) e k(z) : o(z) alz) = k[z]>}

- ((252) (243)

(oD p(z) : p(2) e k[zll,

and

{(z+2)(z+3)

o) + v = 22 5(2) + q(2) ¢ (), a(@) & Kl21)

p(z) .
= g;%— : p(z) e k[=zl}.

So
1

-] L
G (oY) +ou _ =zl klzl
au | k[z] v k[z]/(z+1) k[z]

To compute an essential inverse é : Y(z) - U(z) wusing the method
of proof used in Section 5, first compute a basis element ¥y of the
rank-one free module

G(z) U(z) N oY .

Now

z+1
z+2

{(z+1)

z+3

alz) ¢ ¥
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if and only if

a(z) = (z+2) (z+3)qlz)/2z+1

for some q(z) in k[z]. In fact, if

o (z42) (z+3)
u(z) = (z+1) ?

then
(z+3)

G(z) u(z) =¥y

(z+1) (2+2)
can be taken as a basis for G(z) U(z) N} NY. Next, let b in QY be
any vector such that {yl, yz} is a k[z]-module basis for QY. According
to Section 5, the map é(z) : Y(z) - U(z) defined by

6(2) (y)) = ()

c(z) Yo 0

is an essential left inverse for G(z).

Because {yl, YZ} is a basis for QY if, and only if, the partitioned
1
2 % 2 matrix [ylgyz] has a non-zero scalar determinant, it follows that

1

]

bp)
z

is a suitable choice. To compute a standard basis representation for the

resulting G(z), mnote that

1
_a 2
. == {z vy - (z5 4+ 3z + 2) yz)
0 1
1 = - E (—Yl + (Z -+ 3) Yz)

so that
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6 = - 3

z(z+2) (z+3) ={z+2) (=z+3)
z+1 z+1

1.

A different essential inverse, available in this case by inspectionm,

is
- z+42
Gl(z) = [.z-i-_l 0] .
Note, however, that the attempt
e () = [0 —Z]
(z+1)

leads to an inverse which is not essential.

Consider next a "decoupled" 2 x 3 example

i -
z+1 22
G(z) = 0 )
C
Then -
o I
¢ = {[1] e k(2)? : 6(z) 1] e k[z]°1.
o o
2 L
it
But z+1
o} zza
G(z){ 1 — 2
o J z+2 4
2
B 0
so that
+1
c>":L = zz Pl(z)

_zt2
%272 py(2)

for some polynomials pl(z),rpz(z) in k[z]l. Thus, G_l(ﬂY) is a

rank-two free module with basis
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Because

and

Therefore

i 0
z
0 1
2
z
17 0 |
klz]1{ * |@ klz] ;_J
L) + o _ L0 22
QU - 1) 0
k{z] & kz]
| 0 1
1
A, k[z] - }' k[z] - 2
My 4 9 b4
klz] kiz]
v k[21/(Dk[2] © Klz1/(zD)klz] .

This establishes the expected result that

2(6) = k[z]/(2)klz] @ k[z1/(zD)k[z] .

To compute an essential inverse, consider the vectors

Y]_:

11
0,

°]

1
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Then the calculation of G_l(ﬁY) above shows also that {yl, yz} forms
a basis for

e(z) U(z) N ax.
Now choose a vector ¥4 such that {yl, Yoo y3} is a basdis for all of

Y., In this case

Y3"’

H oo

works. An essentizal inverse €(z) can then be defined by

&(yl) =y
a(yz) =u,
&(Y3) =0
giving the expectéd matrix
. ER 0
G = . Ei% o .
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8. CONCLUSIONS

In this paper, we have given am abstract, module theoretic defini-
tion of zero module which captures the features of existing matrix def-
initions without being dependent upon any particular representation of
the transfer function. Every transfer function has a zero module, whether
or mot it has right or left inverses. If such inverses exist, however,
their minimal state modules must "contain" the zero module either as a
quotient module or as a submodule. When contaimment is exact, "inverses

are called essential. Existence of essential inverses has been established

by construction.

The existence of the zero module, together with its many useful
features, suggests that a given system might be regarded as having a
zero module as defined herein and a pole module which is a renaming

for the previous usage minimal state module.

The pole module of an essential inverse system is then the zero mod-

ule of the system itself.
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