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SUMMARY

• The behaviorof a sound in a jet is investigatedboth experimentally

and numerically. It is verifiedthat the far-fieldacousticpower increases

with flow velocityfor the lower and medium frequencyrange. Experimentally,

an attenuationat higher frequenciesis also observed. This increaseis

found numericallyto be due primarilyto the interactionbetween the mean

vorticityand the fluctuationvelocities. Spectraldecompositionof the real

time data indicatesthat the power increaseoccurs in the low and middle

frequencyrange,where the local instabilitywaves have the largestspai_ial

growthrate. The connectionbetweenthis amplificationand the local

instabilitywaves is discussed,

INTRODUCTION

The purposeof this paper is to study the interactionof an acoustic

disturbancewith a jet, both numericallyand experimentally. An attempt

will be made to clarifythe role of the shear interactionterms in the overall

sound pattern. The Lighthillacousticanalogy(refs. l and 2) accounts for

this interactionin principle,since it includesas source terms on the

right hand side all of the interactionterms in the Navier-Stokesequations.

However,the Lighthilltheory requiresprior knowledgeof the solution in

order to specifythe sources.

Lighthilldid point out, however, that jet noise may beamplified by

shear interactionterms (ref. 2). At present,this phenomenonhas not been

satisfactorilyanalyzed. In fact, it may not be adequatelyresolvedfor
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some time, since complete specificationof the Lighthillsource terms

requiresa solutionof the Navier-Stokesequationswith turbulence. How-

ever, much progresshas been made since the publicationof the Lighthill

analogy. .,

The first modificationof the Lighthillformulationwas by Phillips

(ref. 3) who shiftedsome convectionterms from the right hand side to the

left hand side, resultingin a second order convectivewave equation. As

pointedout by Doak (ref. 4), the Phillipsformulationdoes not account

for all of the first order interactionterms betweenthe fluctuatingand

mean fields. However,these terms are not generallyconsideredimportant

at the higher frequencieswhere refractionpredominates(ref. 4).

A furtherextensionof the Lighthilltheorywas obtained by Lilley

(ref. 5). Lilley developedas his propagationoperator (i.e.as his left

hand side) a third order wave-likeequationwhich explicitlyaccounts

for all of the first order interactionterms betweenthe fluctuatingand

the mean fields, includingthe shear interactionterms. The left.hand side

of the Lilley equation is nothingbut the Orr-Sommerfeldequationfor the

stabilityof the mean flow and in fact is equivalentto the Euler equations,

linearizedabout the mean flow.

Severalauthorshave studiedthe Lilley equation. Most of these studies

have been restrictedto a parallel,transverselyshearedmean flow. Tester

and Morfey (ref. 6), for example,obtainedboth numericaland analytical

resultswith sourcesmodelled by quadrupoles. They computeda strong ampli-

ficationat mid angles from the jet axis due to the shear interaction. This

work was restrictedto parallelmean flows. Mungur et al (ref. 7), on the

other hand, studiedthe Euler equationslinearizedabout a spreadingjet,
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using a semi-analyticalapproach. They dividedthe region into spherical

shells and obtaineda sequenceof directivitymodes in each shell. A

" difficultyof this method is that it is not clear how to match the solution

betweenshellsand thus obtain the solutiondue to a given source on the

right hand side.

Furtherstudiesof the shear interactionterms were done by using a

vortex sheet model for the mean flow. In this model, the shearinteraction

terms a_e replacedby jump conditionsat the interface. This model has

been studiedwith both fixed and moving sources. As the disturbanceinter-

acts with the vortexsheet, the vortex sheet becomesunstable (Milesref. 8,

Ribner ref. 9, Mani ref. lO, and Dowlinget al ref. ll). It has been shown

that such an instabilitycan lead to significantamplificationof sound in

supersonicflow. This is especiallytrue when the acoustic couplingbetween

oppositesides of the vortex sheet becomeslarge (Howeref. 12). These

studieswere restrictedto parallelor weakly nonparallelflows. Morris and

Tam (ref. 13) have also computedthe far-fieldacoustic sound from instability

waves in a supersonic,spreadingjet using the method of matchedasymptotic

expansions.

Experimentsby Vlasovand Givensky (ref.14)have shown that local

instabilitywaves in a jet can be excitedby acousticdisturbances. This

was confirmedanalyticallyby Tam (ref. 15). Moore (ref. 16) and Bechert

and Pfizenmaier(ref. 17) have shown that broadbandsound can be increased

when a jet is excitedby an acousticwave impingingfrom upstreamof the

nozzle. Kibens (ref. 18) acousticallyexcitedthe jet at the tip of the nozzle

and also obtainedan increasein the far-fieldsound accompaniedby a near-field

pulsationof the jet. Theseresults supportthe conjecturethat instability

waves can significantlyamplifysound.
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In the presentpaper,the effect of the flow on the total power output

of an acousticsource in the potentialcore of the jet will be considered.

Since only the resultof the interactionbetweenthe acousticfield and the

jet is to be studied,no attemptwill be made to model the real sourcesof

the jet. It will be shown both numericallyand experimentallythat sig_

nificantincreasein power output occurs at low frequencieswhere the insta-

bilitywaves are known to have the largestgrowth rate (refs.19 and 20),

The numericalsimulationwill be obtainedby solvingthe full, time

dependentEuler equations,linearizedabout a realisticspreadingjet.

These equationscontainall of the first order interactionterms between

the acousticfield and the mean flow. This permitscomputationof a more

completeinteractionthan can be obtainedfrom computationsof classical

refractioneffects (refs.21 and 22).

In section2, the governingequationsare introduced. Detailsof the

numericalschemeand the numericalboundaryconditionsare given in sections

3 and 4. In section5, the experimentalconfigurationis described. Results

and discussionare presentedin section6.

II. GOVERNINGEQUATIONS

The equationsof fluid flow can be writtenas a first order system

_-P-+div(p_)= OBt
(2.1)

l_vi 8vi_ _p _eij

P_-_--+_ @Yj/+ _Yi : _yj

Here p is the density,v the velocity,p is the pressureand eij the

viscousstress tensor. In the system (eq. (2.1)),use is made of the summa-

tion conventionon repeatedindices.
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We now divide the flow variablesinto mean and fluctuatingparts. We

thus write

p:p+p'

-). -). -_

v=U+u '

p=p+p'

where the bar denotesa mean quantity independentof time.

We can thus rewriteequation (2.1)as a systemfor the fluctuating

quantitiesalong

B_p_'+Btdiv(p'U)+ div(p-_')= -div(_U) - div(p'.u')

@U_ Bui' ' @Ui @Vi
-- +uj +p'Uj--+ =

-_- + Uj Byj By_ Byi Byi
(2.3)

q I

,
@yj - Byi By---_.- puj Byj

. --. Uj

(_j @U'i , BU'i @u;I"p' --+ uj --+
Byj Byj -_t-/

Beforeproceedingto give physicalmeaning to the system (Eq. (2.3)),

we reformulateitbY replacingthe fluctuatingdensity p' by the fluctuat-

ing pressure p' which is the more naturalacousticvariable,(see ref. 4).

We assumethat the flow is isentropicand has no mean temperaturegradient.

It then followsthat

p = ApY
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or

p':_Az+o(p'2)--_-_+q (2.5)
• CO CO

where co is the ambient speed of sound (constantunder the above assumptions)

and q is some quadraticterm. We can then replace p' in (2.3) by p' and

get

I_ @_p_'+ div(p'U)+ div(pu'):-div(_U + p'u' + qU) - Bq .2at at '
CO CO

- [ 1@eij BE-- U-jByj puj - qUjByj Byj Byj Byj

@ui , _Ui @ui
-p' + uj +

The system (2.6) has on the left hand side all of the first order inter-

acting terms betweenthe fluctuatingand mean quantities (provided q as

given in (2.5) is quadratic,which will be the case if the jet is isentropic).

The terms on the right hand side are consideredas the sourceterms and are

all of higherorder. (Notall of these terms are of equal importancein the

generationof sound, see reference5.)

In this study, it is assumedthat an artificialsource is injectedinto

the jet and that the magnitudeof this source is much larger than the real

sources in the jet. Therefore,the system (2.6)will become the following

inhomogeneouslinear system
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1 %._t'+ 12 _ div(p'U) + div(_u') : fl (t'x'y'z)

Co Co (2.7)

+ @Ui _p' gi (t,x,y,z)

For this study, the forcing terms will be chosen as

f(t,x,y,z) = f(t)_(l_ - %1)

gi(t,x,y,z) = 0

where xo is a given axial point downstream of the jet exit. The function

f(t) is chosen to give rise to a pulse-like solution and has the form

-(at 2 + t-_)
fit) = e t > 0

for suitable (positive) constants a and b. The _-function is modelled by a

Gaussian. This source corresponds to a monopole source if there is no flow.

As mentioned previously, it is not the intention to model the real sources in

the jet, but rather to study the interaction between an acoustic source and

the mean flow.

The system (2.7) is a linear first order hyperbolic system which includes

all of the first order terms for the fluctuating field in response to the given

input forcing term. The fluctuating quantities will have an irrotational

component in the near field (see refs. 23 and 24) where the mean square
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velocitydecays inverselywith the fourth power of the distance. Farther

from the source,the mean square fluctuatingvelocitywill decay with the

second power Of the distancethus reducingto a purely acousticfield.

If a paralleltransversemean flow is assumed, then (2.7) can be reduced

to the third order Lilley equation. This is not efficientfor a full numerical

solution. In this work, we will use a realisticjet velocityprofileof an

axiallysymmetricspreadingjet obtainedby Maestrello (ref. 24). Assuming

an axiallysymmetricsource on the right hand side, the fluctuatingsolution

to (2.7)will also be axiallysymmetricand thus the system (2.7) can be

reducedto a system for three dependentvariables,the fluctuatingpressure

p', and the fluctuatingaxial and normalvelocities u' and v'.

It is clear from the system (2.7) that in order to correctlysimulatea

real jet, both the type and the locationof the sourcesfor a given mean flow

are important(as pointedout in ref. ll). In the presentpaper,we will study

the phenomenaof interactionfor a fixed type of source,and the dependenceof

this interactionon the locationand the mean velocity.

III. NUMERICALSCHEME

In this section,we discussthe numericalschemeused to solve (2.7).

We will use z and r as cylindricalcoordinatesalong the axis of the jet

and normal to the jet respectively. A typicalcomputationaldomain is shown

in figure I. In this figure,the computationsare conductedin the piecewise

rectangularregion downstreamof the nozzle boundaryand boundedby the far-field

boundary. The solutionis extremelysensitiveto the far-fieldboundarycon-

ditionsand these as well as the boundaryconditionsat the nozzle boundary

will be discussedin the next section. Note that the shear layer is not a
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boundary. The mean profileof Maestrellomodels the shear layer as a continuous

function (see ref. 24). Coordinatestretchingis used to increasethe resolu-

tion in the vicinityof the shear layer and the sources.

To describethe numericalscheme,we will rewritethe system (2.7) in

simplerform assuming

Po = P_ = constant (3.1)

The assumption(3.1) is reasonableas far as investigatingthe interaction

phenomena. With this assumption,and droppingthe primes and the bars for

simplicity,we obtain the followinglinearfirst order system (in normalized

coordinatesso that Co2 = l).

+ VoP + v
Pt + (UoP+ U)z + (VoP + V)r r - f ;

ut + (UoU+ P)z + (VoU)r= UVo,r - VUo,r ;

(3.2)

+ (VoV+ P)r VUo,zvt + (UoV)z = _ UVo,z ;

where Uo and Vo are the mean axial and radial velocitiesrespectively,

and the subscriptsdenote differentiation. The solution is assumed to start

from a state of rest i.e., p, u, v = 0 at t = O. The above system can be

written in the followingsjnnbolicform

wt + Fz + Gr = H (3.3)

where w is the vector (p, u, v) and F, G, H are explicitfunctionswhich

can be obtainedfrom (3.2).
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To advancethe solutionfrom time t to t + 2At, we use the method of

time splitting(ref. 25). Thus, if Lz(At) and Lr(At) denote symbolic

solutionoperatorsto the one-dimensionalequations

l

w t + Fz = HI
(3.4)

2
w t + Gr = H2

then the solutionto (3.3) is advancedby the formula i

w(t + 2At) = Lz(At)Lr(At)Lr(At)Lz(at)w(t) (3.5)

This procedureis secondorder accurate in time.(i.e.,the truncationerror in

(3.4) is O(t3).)

Using the method of splitting,one can employ spatialdiscretizations

solvingonly one-dimensionalsystems. In this study, it was soon realized

that a high order accurateschemewas essentialto resolvethe solutionup to

the far field. We, thus, use a scheme developedby Gottlieband Turkel

(ref. 26), which is fourth order accurate in the spatialvariables. For the

one-dimensionalequationsin (3.4),we have

w-i(t+ At) = wi(t) + 6_x (7Fi - 8Fi+l + Fi+2) + AtHi
(3.6)

w_c_+_: _c_(_+_(_+_+ _ c_+___-_-___I+_

here _ denotes F evaluatedat wi etc. Furtherdetails can be found in

reference26. The scheme based on (3.6) can be implementedon the CDC

STAR-IO0with great efficiencies.

Since the solutionis requiredat many jet diameters(~ 50), large

numbersof grid points are requiredfor accuracy. This restrictsthe
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applicabilityo_ the method to cases where the wave length is of the order of

the nozzle diameter. If only time harmonicsolutionsare of interest,the

solutionof the time dependentequationscan be regardedas a relaxationscheme

to obtain the time harmonicsolution. In this case convergenceis achieved

by integratinguntil the transienthas passed out of the computationaldomain.

A solutionof the time harmonicproblemby direct methods is not possible

becauseof the large numberof unknownsinvolved. Assuming a single wave

solutionof the form

A(_)eikS(_)

for slowlyvaryingreal quantities A and S, as done in references21 and

22 is not feasible,since multiplewaves can be expectedto be presentdue

to interactionwith the shear layer.

IV. BOUNDARYCONDITIONS

Our experiencehas indicatedthat the most importantfeature in obtaining

accuratesolutionsis correct specificationof the boundaryconditions. We

point out that the problemis posed in the spatiallyinfiniteregion without

the far-fieldand nozzle boundariesin FigureI. These artificialboundaries

are necessaryOnly forthepurposesof numericalcomputation. Care must be

exercisedto preventfalse reflectionsgeneratedat the boundariesfrom moving

in and destroyingthe solution.

" As indicatedin the figure,two types of artificialboundariesare

present. The far-fieldradiationboundarywhere an approximationto outgoing

waves must be specifiedand the nozzle boundarywhere one must stipulatethat

no acousticenergyflows down the pipe into the computationaldomain.
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We first deal with the far-fieldradiationboundaries. It is clear that

if Uo vanishes in say (3.2),p will satisfythe wave equation. Spherical

outgoingwaves have the form (if co is normalizedto unity).

p(t,d) = f(t - d)/d (4.1)

where d = I_I and _ denotesthe spatialposition. The formula (4.1) was

extendedto generalsolutionsof the wave equationby Friedlander(ref. 27)

who proved that under certainconditions p would have a convergentexpansion

of the form

p(t,d) : Z fj (t - d,O)/dj (4.2)
j=l

where e is the polar angle (axialsymmetryis assumed). Less restrictive

conditionsunder which (4.2) is valid as an asymptoticexpansionare given by

Baylissand Turkel (ref. 28).

In order to derive boundaryconditionsto match the solutionto (4.2),

we introducethe operator

+ @ (4.3)
L = B-t @7

and point out that, in the case of harmonictime dependence,the operator

(4.3)reducesto

B
-ik +@--_

Then, the statement

Lp + 0 (d . =)
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is exactlythe Sommerfeldradiationcondition. However,at a finite d, the

relation

Lp = 0

is not exact even for the first term in the expansion(4.2) (or for a spherical

wave (4.1)). If, however,(4.3) is modified by introducing

l
Bl =L+_

then it is easy to verify that

BlP = 0 (4.4)

is exact for the first term in (4.2) or for (4.1). This is, therefore,the

appropriate,finite form of the Sommerfeldradiationcondition.

In general (4.4)will not be accurateif the boundaryis close in and if

the sourcesare not monopoles. To obtain accurate boundaryconditionsin

these cases,we extend the operator Bl to annihilatemore terms in the

expansion(4.2). In fact, introducingthe operator

m

Bm = j_l (L + 2j_ I)

it can be easilyverifiedthat Bm annihilatesexactlythe first m terms

in the expansion(4.2).

It can also be shown (ref. 27) that the boundaryconditions

BmP = 0

give rise to well posed problemsin the cylindricalspace of FigureI. The

second order operatorhas been appliedto the study of severalsources in a
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jet and quadrupolesourceswhere (4.4) is not sufficientlyaccurate. For

most of the work reportedin this paper, it has been verified by computing

the solutionwith differentboundariesand comparingthe solutionat fixed

interiorpoints that (4.4) is sufficient. It has also been verifiedthat

direct applicationof the Sommerfeldconditionis very inaccurate.

It is finallypointedout that, since the fluctuatingvelocitiesare

dependentvariables,it is possibleto use (2.5) (with Uo = 0 in the far

field) to solve

=_
@d Bt

where u is the radialvelocity. Thus, B can be replaced by the operator

Bt _t-+ _ = 0

which can be implementedwithout spatialdifferences.

We next considerappropriateboundaryconditionsin the nozzle.

Physicallyit is intendedto simulatea semi-infinitepipe of constant

diameter. This is a reasonableassumptionsince the numericalsourcesare

locatedin the jet. The boundaryconditionmust simulatethat no acoustic

informationtravelsdown the •pipeinto free space. We assume that, in the

pipe, the mean flow, Uo, is constantand is purely axial. We will also work

with nondimensionalcoordinatesand will, therefore,denote the mean flow by

M, where M is the exit Mach numberof the•jet. The system (2.5) then

becomes

__.p_+M B__z+ _u @v v 0 (a)_t _ + Br-+ _ =
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Bu + M _u_ + : 0 (b) (4.5)

_)v + M i)v + : o . (c)

The system (4.5)can be reducedto a convectivewave equationfor p,

@2p + 2M @2p + M2 B_p_ Ap : 0 (4.5d)
.. @t2 @z2 @z -

where a = V • V. If the pipe has normalizeddiameter l, then the boundary

conditionsfor p are

B_p_: 0 (r : ½) (a)Br
(4.6)

@P : 0 (r : O) (b)Br

The condition(4.6a)is equivalentto the condition v = 0 on the pipe

wall, while (4.6b)is a consequenceof axial symmetry.

We now look for solutionsto (4.5d)with the dependence

p = eikt ei_z h(r)p (4.7)

where k, the nondimensionalizedfrequency,is taken as positive. The condition

for modes to propagateup the pipe is

Real Part _ > 0 . (4.8)

Upon substituting(4.7) into (4.5d),we obtain an equationfor h,

l

_(rh')'+ _.h: 0 (4.9)
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where

: k2 + 2_kM - _2(I - M2).. (4.10)

The solutionto (4.9) satisfying(4.6b)is

h(r) = Jo(_,½r)

and thus the values of _ are restrictedto a discreteset {_n}, such that

• |

_n½ is twice the nth zero of Jo " Solving (4.11)for _ results in the

formula

kM ± /k2M 2 + (k2 - Xn)(l - M2)
_n = (4.11)

(l - M2)

Thus, for any k, there are only a discrete set of modes present in the duct,

with longitudinalwavenumbersgiven by (4.11).

If n = O, _ = O, (4.11)yieldsn

k (a)C=I_
(4.12)

-k (b)_'=I+M

and (4.8) impliesthat only (4.12a)correspondsto a mode travelingup the

pipe. For n > O, C will not be real for sufficientlysmall k. In fact,

this will be so provided

k<_ -M2 (4.13)

and <_7.66 (twicethe.firstzero of Jo )" For these values of k, the
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upstreampropagatingmodes will decay exponentiallyas the distance up the

pipe increases. It then followsthat upstreamof the nozzle,if k is

restrictedbY(4.13), the mode given by (4.12a)will describethe upstream

- propagatingsolution.

It only remainsto describethe velocitiesassociatedwith (4.12a)so

that appropriateboundaryconditionscan be obtained. It followsfrom

_o = 0 and (4.5c)that v = O. Upon setting

u = eiktei_Zh(r)u

and substitutinginto (4.5b) (makinguse of (4.7)),we obtain

iku + Mi_u + i_p = 0

and from (4.12b)we obtain

u + p = 0 ,

i.e. u + p = O. The resultingboundaryconditionsin the nozzleare thus

u + p = 0 (a) (4.14)
v = o (b)

The boundaryconditions(4.14)are generallyappliedat the same distance

upstreamas the far,fieldboundary. Of course, in principlethe problemof the

nozzle boundarycan be avoidedby taking the nozzle boundarysufficiently

far upstreamso that no spuriousreflectioncan occur during the time that it

takes for the pulse to pass throughthe computationaldomain. This, however,

would severelycomplicatethe program. In practiceextensivenumericalexperi-

ments have revealedvirtuallyno effect on the far-fieldsolutionby applying
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the conditions(4.14)at any distanceupstreamof the exit pipe. This is

probablydue to the exponentialdecay of the higher modes and the fact that

very littleenergy propagatesupstreamof the nozzleexit.

V. EXPERIMENT

Measurements of the time dependent pressure in the far field were made

inside an anechoic chamber about an arc of 5.79 m from the source. The source

consisted of a 1.0 cm diameter tube exiting from the center of a standard

convergent type nozzle with diameter D : 5.08 cm. The tube extends downstream

1.25D from the nozzle exit. Upstream, the tube extends into the settling

chamber, diverges and exits through the settling chamber to the outside. The

mean flow profile and the experimental configuration are shown in figure 2.

The profile has a virtual origin (z o) at 2.57 D upstream of the nozzle exit

and a spread of nearly II ° In the figure, Uj denotes the jet exit velocity.

The static pressure shown in the figure has not been included in the numerical

calculations at the present time, Further details can be found in reference 24.

Two types of sources were studied. A pure tone was generated•by using

an acoustic driver at the end of the tube. A pulse was generated by using a

conventional shock tube type of chamber with a diaphragm. The pulse is created

by breaking the diaphragm. The pressure across the diaphragm exceeds I00 psi

(.6.3 x 105 pascal).

Because of this high pressure, the amplitude from the pulse was greater than

the noise produced by the jet flow for the conditions tested by 30 dB. The

high pressureof the pulse also insuredthat the power output from the source

was unaffectedby the presenceof theflow. It was not possibleto generate

a pure tone with output unaffectedby the flow and thus only the pulse will be

consideredfurther.
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The temperaturein the jet was ambientand tests were conductedat exit

Mach numbersrangingfrom 0.33 to 1.2. Two differentsizes of condensertype

microphonesWere used independently.Their diameterswere 1.25 cm and 0.63 cm.

The microphoneswere verifiedto have a flat responsein the range of frequencies

considered. Only the data obtainedby the 1.25 cm microphonesare considered,

becauseno differencein either frequencyresponseor amplitudelevel was

found betweenthe two differentsize microphones.

Themicrophones were placed at lO° intervalsbetweenlO° and 130° from

the directionof flow. The acousticpressurewas recordedon an FM magnetic

tape recorder in the range 25 Nz to 40 kHz althoughthe data presentedin

this paper only cover the range 200 Hz to 15 kHz. Data reductionwas accom-

plishedusing both analog and digitalmeans.

VI. RESULTSAND DISCUSSION

Experimentaland numericalresultsare presentedfor the far-field

acousticpressure. These resultsinclude:

a) The real time pressurepulse with and without flow,

b) The intensityas a functionof the angle e for a range of Strouhal

numbers. (St = Uf-_Dwhere f is the frequencyand D the jet diameter),
J

c) The acousticpower integratedover a large far-fieldsphere as a

functionof Strouhal number,

d) The acousticpower integratedover a large far-fieldsphere as a

functionof Strouhal numberbased on the source positionfor differentsource

" location.

Figures3a through6b show the nondimensionalfar-fieldtime dependent

pulse p(t), with and without the flow throughthe nozzle,for both the

experimentand the numericalsimulation. Figures3a and 3b show the
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experimentalresultsfor 0 (measuredfrom the jet axis) betweenI0° and

130° with no flow. It is clear from the figure that the experimentalsource

is not omni-directional.In fact, the peak output occurs near the jet axis

and decreasesnearly uniformlyas the angle 0 increases. It is known

(ref. 29) that, at low pressure,the output from the tube is omni-directional

(at least for low frequencies). However,at such high pressures,the experi-

mental source is not a monopole.

Ffgures4a and 4b show the equivalentpulse with the flow at an exit

Mach number of 0.66. The effect of refractionof sound throughthe shear

layer is clearlynoticeableby the stretchingout of the pressurefield and

by the decay in amplitudeat low angles from the axis of the jet. At mid

angles (i.e. 0 _ 300), both positiveand negativepeaks well exceed the

amplitudeof the no flow case indicatinga low frequencyamplification,a

phenomenanot totallyaccountableby classicalrefractiontheory. The high

frequencyoscillationsafter the main peaks are also stronglyreduced.

Figures5a and 5b show the numericalcounterpartwith no flow for angles

from 0° to 170°. As can be seen, the input source is nearly omni-directional

and thus can be considereda monopole source. The experimentalsource on the

other hand, containsboth a mass and a force fluctuationas can be seen in

figure 3. At present,the numericalsimulationhas only been run with monopole

sources,since the monopolewill exhibitqualitativeagreementwith the

experiment. The time durationof the numericalpulse is nearly twice as

long as the durationof the experimentalpulse. This was necessarybecause

of numericaldifficultiesin computingnarrowerpulses at large distancesfrom

the source.

Figures6a and 6b show the equivalentpulse with flow (exit Mach number

.66). As with the experimentalpulse, the effectof refractionis noticeable
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by a severe stretchingout of the pulse accompaniedby a decay in •amplitude

• at low angles from the jet axis. It is also clear that an increasein

• amplitude,similarto that measured in the experiment,occurs at mid angles.

. An additionalfeatureof the numericalpulse is the occuranceof a low fre-

quencyoscillationbehindthe main peak of the pulse. This is presentonly

in the mid angle range where the amplificationoccurs.

The previousfiguresindicatethe possibilityof amplificationof sound

in the Presenceof flow. In order to quantify the amplificationor attenua-

tion of the sound due to the flow, a comparisonis made of the power ratio

with and withoutflow. The power output is computedaround a large sphere

surroundingthe source. However,a small amount of acousticenergy propagates

upstreamthroughthe nozzle. This additionalenergy flux through the nozzle

is computedby the followingformula (ref. 30):

I l__po(p' + P°U' • Uo)(PoU'+ p'Uo) (6.1)

which is the acoustic intensityin the presenceof an irrotationalmean flow.

Here, the primed quantitiesdenote the acousticperturbationwhile Uo and

Po denote the mean velocityand density. The energy flux throughthe nozzle

is computedupstreamof the nozzleexit as indicatedin figure I.

At the upstreamnozzle boundary,we use (4.4) with (6.1) to obtain the

followingtotal intensity(usingnondimensionalizedcoordinates)

f2IT = dt(l - M)2p2 (6.2)

An experimentalattemptwas made to measurethe acoustic power due to

the pulse upstreamof the nozzle,using two microphonesinsidethe settling
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chamber. The output from the microphones,during and immediatelyafter the

burst, showedan insignificantincreasein level from the background. This

indicatedthat very little sound is propagatedupstream. The numericalcom-

putationof the power upstreamthroughthe nozzle also showed that this was z

always much less than 5 percentof the total acousticpower.

In the far field (6.1),togetherwith the boundaryconditionsdiscussed

previously,yields the well known result (againusing nondimensionalcoordinates)

f?IT = p2(t)dt (6.2)

for the total intensityat a point on the far field arc. In the frequency

domain,the intensityper unit frequencyat an angle 0 is

I(@,_) : Ip(m) l 2

where p(m) is the Fourier transform of the pressure pulse.

Figures 7a and 7b show the experimental acoustic intensity ratio

l(8'f)flow/l(O'f)no flow (where m = 2_f) for various Strouhal numbers, as

a function of the far-field angle O. The figures show that the maximum

amplification occurs at about 30o from the jet axis for all of the frequencies

plotted. For some of the frequencies, there is also an amplification at

130o. There is, however, very little energy present at large angles and thus

this does not affect the total acoustic power. It is noted that the angle of o

maximumintensity is relatively insensitiveto frequency, a feature that would

not be expected from classical refraction theory.

Figure 7c shows the numerical counterpart of the previous figures.

The peak amplification now occurs at about 40o because the numerical pulse
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is omni-directional.Since the numericalcomputationis restrictedto a

broaderpulse, the numericalresultsare limitedto the low frequencypart

• of the spectrum. In this range of frequencies,the numericaland experi-

mental resultsare qualitativelyconsistent.

Figures8a and 8b show the power ratio W(f)flow/W(f)noflow for both

the experimentand the numericalsimulation,as a functionof both Strouhal

numberbased on jet diameter (fD/uj)and Strouhal number based on the

distance of the sources (z) from the nozzle exit (fz/uj). The evaluationof

the experimentalacousticpower is limitedto an arc between0° and 130°

from the directionofflow. The experimentalpulse is very weak for angles

approaching130° (see figs. 3a, b and 4a, b) and thus the higher angles

would make a negligiblecontributionto the total power. The numerical

computationof the power includesall angles up to 170° at lO° intervalsas

well as the power propagatingupstreamof the nozzle. There is virtuallyno

differencein the power ratio, when it is summed at 50 intervals.

The experimentalcurve shows amplificationup to fd/Uj = 1.2.witha

maximum at fD/Uj = .4. In addition,there is a reductionfor fD/Uj greater

than 1.5. The numericalcurve shows an increasein power for fD/Uj between

.15 to .3 with a peak at fD/Uj = .21 which appearsto be independentof the

jet velocity. Since the numericalsimulationcanno_ at presen_accurately

computehigher frequencies,the power reductionat higher Strouhalnumbers

cannot be verified. It is believedthat turbulentscatteringwill have some

contributionto this reduction. The numericalresultsalso show an increase

in power ratio for fD/Uj of the order O.l. This cannot be shown experimentally

becausethe far-fieldmeasurementswould have to be taken at severalhundred

diametersto accountfor the low frequenciesand also becausethe anechoic
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chamberis not an effectiveabsorberat these frequencies. This effect,

however,can be seen in the experimentby observingthe stretchingof the

real time pulse with flow (see fig. 4a). The total power in this frequency

range is very small for both the experimentaland numericalpulse.
7

The power ratio curves are sensitiveto the pulse width and the distance

of the source from the jet exit. Flowever,when the power ratio is plotted

in terms of Strouhalnumber based on the distanceof the source from the jet

exit (fz/Uj)it is found that the maximumoccurs at a Strouhal number nearly

independentof source position. This can be seen in figure 9 where the power

ratio is shown for numericalsimulationsat four differentsource positions.

The behaviorof this far-fieldamplificationis very similarto the

growth rate of instabilitywaves in an unexcitedjet. Such behaviorhas

been verifiedboth experimentallyand analytically(refs. 16 and 19). The

resultsin figure 9 indicatethat virtuallyno amplificationoccurs if the source

is well downstreamof the potentialcore, where instabilitywaves are known to

be insignificant(seeref. 19). This is clear evidencethat ampli.fication

will occur only if the source is within or just after the potentialflow core

of the jet where instabilitywaves can be sustained. In addition,the maximum

amplificationoccursat roughly3 diametersdownstreamof the nozzle,which

is consistentwith the experimentalmeasurementsin reference19.

The presentexperimentalresults (fig. 8a) show a maximumamplification

rate at fz/Uj of about .6, which is roughlytwice the positionof the numerical

peak. This may be due to the fact that the numericalpulse is nearly twice
7

as broad as the experimentalpulse,or to the fact that the numericalpulse is

omni-directional.

The resultspresentedhere supportthe hypothesisthat an acoustic source

placedwithin the potentialcore of the jet excites instabilitywaves, the
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resultof which is an amplificationof the far-fieldsound. This is also

consistentwith the experimentsof Moore (ref. 16) and Bechertand Pfizenmaier

• (ref. 17) where an increasein broadbandpower wasobserved by acoustically

excitingthe jet upstreamof the nozzle.

The strong amplificationat the mid-anglesand at frequenciesof maximum

power ratio is due to the terms involvingthe _nteractionof the acoustic

velocitieswith the gradientof the mean flow (see (3.2)). If one omits

these terms, a directivitypattern is obtainedwhich increasesmonotonically

with the angle from the flow, similarto the patternsobtained in references

20 and 21. This indicatesthat these terms are very importantin producing

the power amplification.

The variationin total acousticpower with Mach number (T(M)flow/T(M)no flow)

for both the experimentaland numericalpulses is shown in figure lO. The

experimentalpower increaseswith increasingMach number and rises rapidly

beyonda Mach number of 0.5. This figurewill changewith the shape of the

pulse and the sourcepositionbut the qualitativefeatureswill be similar.

The experimentalresultsexhibita larger total amplificationthan

the numericalsimulation. A possiblereason is the lack of nonlineareffects

in the numericalscheme. The experimentalso contains interactionbetween

the acousticand turbulentfieldswhich is not present in the numerical

calculationsand which is known as a cause of attenuationat high frequencies.

It is clear, however,that the experimentaland numericalresultsare quali-

tativelyconsistent.

VII. CONCLUSION

An amplificationof total power output is observedwhen a source is located

within the potentialflow core of a jet. This amplificationoccurs in the
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range of frequencieswhere the local instabilitywaves have the strongest

growth rate. The acousticpower amplificationexhibitsa peak which is

similarto that which is observedboth experimentallyand analyticallyfor

instabilitywaves in an unexcitedjet. This is particularlytrue when lthe

amplificationrate is plottedas a functionof Strouhalnumber based on the

distanceof the source from the nozzle. These resultsshow that instability

waves can act as a mechanismto amplifythe sound from an acoustic source.

Furtherevidence is found in the fact that no peak occurs if the source is

far downstreamof the potentialflow core. The quantitativedifferences

betweenthe numericalsimulationand the experimentare probablyassociated

with nonlinearterms, the presenceof turbulence,and possiblythe different

source structures. For higher frequencies,a reductionin sound is

experimentallyobserved. This result suggeststhat modificationof the

stabilitycharacteristicsof the jet, togetherwith the observedattenuation

at higher frequencies,may be viable mechanismsfor the suppressionof sound.
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