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SUMMARY

The behavior of a sound fn a jet is inVesfigated both experimentally
and numerically. It is.verified that the far-field acoustic power increases
with flow velocity for the Tower and medium freqﬁency range. Experimentally,
an attenuation at higher frequencies is also observed. This increase is
found numérica]Iy to be due primarily to the interaction betwéen the mean
‘vorticfty and the fluctuation velocities. Spectral decomposition of the real
time data indicates that the power increase occurs in the Tow and middle
frequency range, where the local instability waves have the largest spatial
growth rate. ‘The connection between this amplification and the local

instability waves is discussed.

INTRODUCTION

The purpose of this paper is to study the interaction of an acoustic
disturbance with a jet, both numerically and experimentally. An attempt
will be made to clarify the role of the shear interaction terms in the overall
~ sound patfern. The Lighthill acoustic analogy (refs. 1 and 2) accounts for
this interaction in principle, since it includes as source terms on the
right hand side all of the interaction terms in the Navier-Stokes equations.
However, the Lighthill theory requires prior knowledge of the solution in
order to specffy the sources.

Lighthill did point out, however, that jet noise may be amplified by
sHear interaction terms (ref. 2). At present, this phenomenon has not been

satisfactorily analyzed. In fact, it may not be adequately resolved for



some time, since complete specification of the Lighthill source terms
requires a solution of the Navier-Stokes equations with turbulence. How-
ever, much progress has been méde since the pubiicétion of the Lighthill
analogy. .

The first modification of the Lighthill formulation was by Phillips
(ref. 3) who shifted some convection terms from the right hand side to the
left hand side, resulting in a second order convective wave equation. As
‘pointed out by Doak (ref. 4), the Phillips formulation does not account
for all of the first order interaction terms between the fluctuating and
mean fields. However, these terms are not generally considered important
at the higher.frequencies where refraction predominates (ref. 4)..

A further.extension of the Lighthill theory was obtained by Lilley
(ref. 5). Lilley developed as his propagation operator (i.e. as his left
hand side) a third_order wave-like equation which explicitly accounts
for all of the first order interaction terms between the fluctuating and
the mean fields, including the shear interaction terms. The left. hand side
of the Lilley equation is nothing but the Orr-Sommerfeld equatioh for the
stability of the mean flow and in fact is equivalent to the Euler equations,
linearized about the mean flow.

Several authors have studied the Lilley equation. Most of these studies
have been restricted to a parallel, transversely sheared mean flow. Tester
and Morfey (ref. 6), for example, obtained both numerical and analytical
results with sources modelled by quadrupo]es. They computed a strong ampli-
fication at mid angles from the jet axis due to the shear interaction. This
work was restricted to parallel mean flows. Mungur et al (ref. 7), on the

other hand, studied the Euler equations linearized about a spreading jet,
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using a semi-analytical approach. They divided the region into spherical
shells and obtained a sequence‘of directivity ques in each shell. A
difficulty of this methqd is that it is not clear How to match the solution
between shells and thus obtain the solution due to a given source on the
right hand side. |

Further studies of the shear interaction terms were done by using a
vortex sheet model for the mean flow. In this model, the shear .interaction
‘terms are replaced by jump conditions at the interface. This model has
been studied with both fixed and moving sources. As the disturbance inter-
acts with the vortex sheet, the vortex sheet becomes unstable (Miles ref. 8,
Ribner ref. 9,.Mani'ref. 10, and Dowling et al ref. 11). It has been shown
that such an instability can lead to significant amplification of sound in
supersonic flow. This is especially true when the acoustic coupling between
opposite sides of the vortex sheet becomes large (Howe ref. 12). These
studies were restricted to parallel or weak]y nonparallel flows. Morris and
Tam (ref. 13) have also computed'the far-field acoustic sound from.instability
waves in a supersohic, spreading jet using the method of matched'asymptotic
expansions.

Experiments by Vlasov and Givensky (ref.14) have shown that local
instability waves in a jet can be excited by acoustic disturbances. This
was confirmed‘ana]ytica11y by Tam (ref. 15). Moore (ref. 16) and Bechert
and Pfizenmaier (ref. 17) have shown that broadband sound can be increased
when a jet is excited by an acoustic wave impinging from upstream of the
nozzle. Kibens (ref. 18) acoustically excited the jet at the tip of the nozz]e-
and also obtained an increase in the far-field sound accompanied by a near-field
pulsation of the jet. These -results support the'conjecture that instability

waves can significantly amplify sound.



In the present paper, the effect of the flow on the total power output
of an acoustic source in the potential core of the jet will be considered.
Since only the result of the interaction betweeh the acoustic field and the
jet is to be studied, no attempt will be made to model the real sources of
the jet. It will be shown both numerically and experimentally that sigéi
nificant increase in power output occurs at low frequencies where the insta-
bility waves are known to have the largest growth rate (refs. 19 and 20).

The numerical simulation will be obtained by solving the full, time
dependent Euler equations, linearized about a realistic spreading jet.
These‘eqdations contain all of the first order interaction terms between
the acoustic field and the mean flow. This permits computation of a more
complete interaction than can be obtained from computations ofAc1assica1
refraction effects (refs. 21 and 22).

In section 2,lthe governing equations are introduced. Details of the
numerical scheme and the numerical boundary conditions are given in sections
3 and 4. In section 5, the expefimenta] configuration is described. Results

and discussion are presented in section 6.

IT. GOVERNING EQUATIONS

The equations of fluid flow can be written as a first order system
3 .
5%-+ Q1v(p7) =0

avi 3Vi '897 ) aeij
p + V. + = .
J 3¥j Byi 3y

(2.1)

Here p 1is the density, V the velocity, p 1is the pressure and eij the

viscous stress tensor. In the system (eq. (2.1)), use is made of the summa-

tion convention on repeated indices.
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We now divide the flow variables into mean and fluctuating parts. We

thus write

p=p+p'
NN
v=1U+u'
p=p+p

where the bar denotes a mean quantity independent of time.

We can thus rewrite equation (2.1) as a system for the fluctuating

quantities along

al‘ = R ._: . >
.5%-+ div(p'U) + div(pu') = -div(p U) - div(p'u')

du; 3u, , o0, _ U, '
P YUz~ +u;, =— +p'U, —+ =
ot J .Vj a.yJ' J 3.V-i ay.l
(2.3)
— 1
&1__3@_35,8”1_‘)“ _au_i_
QYJ a‘y'i J 3y1- J ay:j
' ' -
ot J .Yj. J 3.Yj

au’ aU: du'
o' Uj 8y1. + u; 3y1. * at1>
J -d
Before proceeding to give physical meaning to the system (Eq. (2.3)),
we reformulate it’by replacing the fluctuating densit& p' by the fluctuat-
ing pressure p' which is the more natural acoustic variable, (see ref. 4).

We assume that the flow is isentropic and has no mean temperature gradient.

It then follows that
p =AY



or

o' = Byt 0(p'?) = Byt g (2.5)
o %

where c/ is the ambient speed of sound (constant under the above assumptions)
and q 1is some quadratic term. We can then replace p' 1in (2.3) by p' and

get

]".@EI ] ] li 2ol s ? : —i YL = ._a_g.
;‘?‘at + ;—2-d1v(p U) + div(pu') = -div(p U + p'u' + qU) - ot

(0] 0
.t U. U.

‘3-au—1 +U.;]l +u.' 2‘ + p'zﬁ. o + aap'=
at J .VJ' J .Yj co J a.Yj yj
de; = | _ U au, )
7w P Y M |
j j j j j

u. 0.  su.
-'__._1 + ' __1.+_1
P’|Y; P ”J-ayj 3t

The system (2.6) has on the left hand side all of the first order inter-
acting terms between the fluctuating and.mean quantities (provided q as
given in (2.5) is quadratic, which will be the case if the jet is isentropic).
The terms on the right hand side are considered as the source terms and are
all of higher 6rdert (Not all of these terms are of equal importance in the
generation of sound, see reference 5;)

In this sfudy, it is assumed that an artificial source is injected into
the jet and that the magnitude of this source is much larger than the réa]
sources in the jet. Therefore, the system (2.6) will become the following
inhomogeneous linear system
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> —_
1_2@_ + c_]f div(p'U) + div(pu') = f;(t,x,y,2)

ot
(o
° ° (2.7)
bu,'_ au A A
__1— _1 P 1 -L 1 _BL=
+ U- + U, + . — . .

J
For this study, the forcing terms will be chosen as

f(t,x,y,z) = F(t)s(|X - §6

)

gi(t,x,y,z) =0

where §6 is a given axial point downstream of the jet exit. The function
f(t) is chosen to give rise to a pulse-like solution and has the form

~(at? + _bg')
t t>0

f(t) = e

for suitable (positive) constants a and b. The §-function is modelled by a
Gaussian. This source corresponds to a monopole sdurce if there is no flow.
As mentioned previously, it is not the intention to model the real sources in
the jet, but rather to study the interaction between an acoustic source and
the mean flow. . '

The system (2.7) is a linear first order hyperbolic system which includes
all of the first order terms for the fluctuating field in response to the given
input forcing term. The fluctuating quantities will have an irrotational

component in the near field (see refs. 23 and 24) where the mean square



velocity decays inversely with the fourth power of the distance. Farther
from the source, the mean square fluctuating velocity will decay with the
second power of the distance thus reducing to a puré]y acoustic field.

If a parallel transverse mean flow is assumed, then (2.7) can be reduced
to the third order Lilley equation. This is not efficient for a full numérica]
solution. In this work, we will use a realistic jet velocity profile of an
axially symmetric spreading jet obtained by Maestrello (ref. 24). Assuming
an axially symmetric source on the right hand side, the fluctuating solution
to (2.7) will also be axially symmetric and thus the system (2.7) can be
reduced to a system for three dependent variables, the fluctuating pressure
p', and the flﬁctuating axial and normal velocities u' and v'.

It is clear from the system (2.7) that in order to correctly simulate a
real jet, both the type and the location of the sources for a given mean flow
are important (as pointed out in ref. 11). In the present paper, we will study
the phenomena of interaction for a fixed type of source, and the dependence of

this interaction on the location and the mean velocity.

IIT. NUMERICAL SCHEME
In this section, we discuss the numerical scheme used to solve (2.7).

We will use z and r as cylindrical cobrdinates along the axis of the jet

and normal to the jet respectively. A typical computational domain is shown

in figure 1. In this figure, the computatfons are conducted in the piecewise
rectangular region downstream of the nozzle boundary and bounded by the far-field
boundary. The solution is extremely sensitive to the far-field boundary con-
ditions and these as well as the boundary conditions at the nozzle boundary

will be discussed in the next section. Note that the shear layer is not a
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boundary. The mean profile of Maestrello models the shear layer as a continuous
function (see ref.'24). Coordinate stretching is used to increasé the resolu-
tion in the vicinity of the shear layer and the sources.

To describe the nuherica] scheme, we will rewrite the system (2.7) in

simpler form assuming

P, = constant | (3.1)

n

Po

The asshmption (3.1) is reasonable as far as investigating the interaction
phenomena. With this assumption, and dropping the primes and the bars for
simplicity, we obtain the following linear first order system (in normaIized

coordinates so that co2 = 1).

Pt (Ugp +u), + (Vp+y), + —5—=f
uy + (Uou + p)z + (Vou)r = uVO’r - VUo,r :

(3.2)
Ve * (Uov)z * (Vov * p)r - VUo,z h uvo,z ’

where U0 and Vo are the mean axial and radial velocities respectively,
and the subscripts denote differentiation. The solution is assumed to start
from a state of rest i.e., p, u, v=0 at t = 0. The above system can be

written in the following symbolic form

Wy * FZ + Gr = H (3.3)

where w 1is the vector (p, u, v) and F, G, H are explicit functions which

can be obtained from (3.2).



To advance-the solution from time t to t + 2At, we use the method of
time splitting (ref. 25). Thus, if LZ(At) and Lr(At) denote symbolic

solution operators to the one-dimensional equations

+
-
1
po =

W t ¥4 1 ' (3.4)

+
[
n
X

then the solution to (3.3) is advanced by the formula
w(t + 2At) = LZ(At)Lr(At)Lr(At)LZ(At)w(t) (3.5)

This procedure is second order accurate in time. (i.e., the truncation error in
(3.4) is 0(t3).)

Using the method of splitting, one can employ spatial discretizations
solving only one-dimensional systems. In this study, it was soon realized
that a high order accurate scheme was essential to resolve the solution up to
the far field. We, thus, use a scheme developed by Gottlieb and Turkel
(ref. 26), which is fourth order accurate in the spatial variab1e§{4 For the

one-dimensional equations in (3.4), we have

Wi(t + At) Wy (t) + 6A (7F 8Fi+] + F1+2) + AtH;

X
(3.6)

W (t + At) >(w (t) + w;(t + At) + Bt (7F + 8F, ;- F;_,) + AtH,)

here ?} denotes F evaluated at i& etc. Further details can be found in

reference 26. The scheme based on (3.6) can be implemented on the CDC
STAR-100 with great efficiencies. |

Since the solution is required at many jet diameters (~ 50), large
numbers of grid points are reduired for accuracy. This restricts the
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applicability of the method to cases where the wave length is of the order of
the nozzle diameter. If only time harmonic so]utions are of interest, the
solution of the time dependent equations can be regerded as a relaxation scheme
to obtain the time harmonic solution. In this case convergence is achieved

by integrating until the transient has passed out of the computational domain.
A solution of the time harmonic problem by direct methods is not possible
because of the large number of unknowns involved. Assuming a single wave

'solutioﬁ.of the form

AG)eikS (x)

for slowly varying real quantities A and S, as done in references 21 and
22 is not feasible, since mu]tfple waves can be expected to be present due

to interaction with the shear layer.

IV. BOUNDARY CONDITIONS

Our experience has indicated that the most important feature in obtaining
accurate solutions is correct specification of the boundary conditfons. We
point out that the problem is posed in the spatially infinite region without
the far-field and nozzle boundaries in Figure 1. These artificial boundaries
are necessary only for the purposes of numerical computation. Care must be
exercised to prevent false reflections generated at the boundaries from moving
in and destroying the solution. |

As indicated in the figure, two types of artificial boundaries are
present. The far-field radiation boundary where an approximation to outgoing
waves must be specified and the nozzle boundary where one must stipulate that
no acoustic energy flows down the pipe into the computational domain.
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We first deal with the far-field radiation boundaries. It is clear that
if U0 vanishes in say (3.2), p will satisfy the wave equation. Spherical

outgoing waves have the form (if c, 1is normalized to unity).

0

p(tad) = (¢ - d)/d (8.1)

where d = |X| and X denotes the spatial position. The formula (4.1) was
extended to general solutions of the wave equation by Friedlander (ref. 27)
who provéd that under certain conditions p would have a convergent expansion

of the form

fi(t - d,6)/,] (4.2)

p(t,d) = f

£M8

J

where 6 1is the polar angle (axial symmetry is assumed). Less restrictive
conditions under which (4.2) is valid as an asymptotic expansion are given by
Bayliss and Turkel (ref. 28).

In order to derive boundary conditions to match the so]ution to (4.2),

we introduce the operator

L = 2 4 (4.3)

2
ot  ad
and point out that, in the case of harmonic time dependence, the operator
(4.3) reduces to |
. 9
-ik + 3
Then, the statement

Lp—)O (d+co)
12



is exactly the Sommerfeld radiation condition. However, at a finite d, the
relation

Lp=20
is not exact even for the first term in the expansion (4.2) (or for a spherical

wave (4.1)). If, however, (4.3) is modified by introducing

of—

By = L+

then it is easy to verify that

B]p =0 (4.4)

is exact for the first term in (4.2) or for (4.1). This is, therefore, the
appropriate, finite form of the Sbmmerfe]d radiation condition.

In general (4.4) will not be accurate if the boundary is close in and if
the sources are nof monopoles. To obtain accurate boundary conditions in
these cases, we extend the operator B] to annihilate more terms in the
expansion (4.2). In fact, introducing the operator

m .2j-1)

Bm=j£] (L+d

it can be easily verified that Bm annihilates exactly the first m terms
in the expansion (4.2).

It can also be shown (ref. 27) that the boundary conditions

give rise to well posed problems in the cylindrical space of Figure 1. The
second order operator has been applied to the study of several sources in a

13



jet and quadrupole sources where (4.4) is not sufficiently accurate. For
most of the work reported in this paper, it has been verified by computing
the solution with different boundaries and compéring the solution at fixed
interior points that (4.4) is sufficient. It has'a1so been verified that
direct application of the Sommerfeld condition is very inaccurate. |
It is finally pointed out that, since the fluctuating velocities are
dependent variables, it is possible to use (2.5) (with U, = 0 in the far

field) to solve "

p-_2
od

Q
ﬂ-l:z

where U is the radial velocity. Thus, B can be replaced by the operator
3

+ g-= 0

which can be imp]emented without spatial differences.

Q
i

P _
ot

We next consider appropriate boundary conditions in the nozzle.
Physically it is intended to simulate a semi-infinite pipe of consfant
diameter. This is a reasonable assumption since the numerical sources are
located in the jet. The boundary condition must simulate that no acoustic
information travels down the pipe into free space. We assume that, in the
pipe, the mean flow, Uo’ is constant and is purely axial. We will also work
with nondimensional coordinates and will, therefore, denote the mean flow by
M, where M 1is the exit Mach number of the jet. The system (2.5) then

becomes
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B,y u, .
ot TMaztaz=0 (b | (4.5)

i yBog. (o)

The system (4.5) can be reduced to a convective wave equation for p,

2 .2
9_12’.+2M§—52’-+M2§E-Ap=0 - (4.5d)
ot 9z z

where A =V - V. If the pipe has normalized diameter 1, then the boundary

conditions for p are

B-o(r=% ()
(4.6)
P - =
B-0(r=0 (b)
The condition (4.6a) is equivalent to the condition v = 0 on the pipe
wall, while (4.6b) is a consequence of axial symmetry. |
We now look for solutions to (4.5d) with the dependence
p = e1kt eigz'h(r)p (4.7)

where k, the nondimensionalized frequency, is taken as positive. The condition

for modes to propagate up the pipe is
Real Part & > 0 . (4.8)

Upon substituting (4.7) into (4.5d), we obtain an equation for h,

Hrh')' +an =0 | (4.9)
15



where

X = k2 + 20kM - 22(1 - M

2).. (4.10)
The solution to (4.9) satisfying (4.6b) is
h(r) = JO(A%r)
and thus the values of A are restricted to a discrete sét'{xn}; such that

L ’
An2 is twice the nth zero of Jo'. Solving (4.11) for & results in the

formula

s SR 2 - A (1 - M2)
-

(4.11)

2 .
(1 - u)

Thus, for any k, there are only a discrete set of modes present in the duct,
with longitudinal wave numbersgiven by (4.11).

If n=0,1 =0, (4.11) yields

(4.12)
2R =2 O

and (4.8) implies that only (4.12a) corresponds to a mode traveling up the

pipe. For n > 0, £ will not be real for sufficiently small k. 1In fact,

this will be so provided
k< /g /1-0 (4.13)

and v A] < 7.66 '(twice the .first zero of Jo'). For these values of k, the
16



upstream propagéting modes will decay exponentially as the distance up the
pipe increases. It thén follows that upstream of the nozzle, if k is
restricted by (4.13), the mode given by (4.12a) Qi]1 describe the upstream
propagating solution.

It only remains to describe the velocities associated with (4.12a) 50
that appropriate boundary conditions can be obtained. It follows from

A, =0 and (4.5c) that v = 0. Upon setting
- eikteizzh(r)a
and substituting into (4.5b) (making use of (4.7)), we obtain

iku + Migu + igp = 0

and from (4.12b) we obtain

j.e. u+ p=0. The resulting boundary conditions in the nozzle are thus

]
e

(a)
v=0  (b)

u + P
(4.14)

The boundary conditions (4.14) are generally applied at the same distance
upstream as the far-field boundary. Of course, in principle the problem of the
nozzle boundary can be avoided by taking the nozzle boundary sufficiently
far upstream so that no spurious reflection can occur during the time that it
takes for the pulse to pass through the computational domain. This, hoWever,
would severely complicate the program. In practice extensive numerical experi-
ments have revealed virtually no effect on the far-field solution by applying
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the conditions (4.14) at any distance upstream of the exit pipe. This is
probably due to the exponential decay of the higher modes and the fact that

very little energy propagates upstream of the nozzle exit.

V. EXPERIMENT

Measurements of the time dependent pressure in the far field were made
inside an anechoic chamber about an arc of 5.79 m from the source. The source
consisted of a 1.0 cm diameter tube exiting from the center of a standard
convergént type nozzle with diameter D = 5.08 cm. The tube extends downstream
1.25D from the nozzle exit. Upstream, the tube extends into the settling
chamber, diverges and exits through the settling chamber to the outside. The
mean flow profile and the experimental configuration are shown in figure 2.
The profile has a virtual origin (zo) at 2.57 D upstream of the nozzle exit
and a spread of nearly 1%, 1In the figure, Uj denotes the jet exit velocity.
The static pressure shown in the figure has not been included in the numerical
calculations at the present time., Further details can be found in reference 24.

Two types of sources were studied. A pure tone was generated‘by using
an acoustic driver at the end of the tube. A pulse was generated by using a
conventional shock tube type of chamber Qith a diaphragm. The pulse is created
by breaking the diaphragm. The preésure'across the diaphragm exceeds 100 psi
(6.3 x 10° pascal).
Because of thfs high pressure, the amplitude from the pulse was greater than
the noise produced by the jet flow fbr the conditions tested by 30 dB. The
high pressure of the pulse also insured that the power output from the source
was unaffected by the presence of the flow. It was not possible to genérate-
a pure tone with output unaffected by the flow and thus only the pulse will be
considered further.

18



The temperdture in the jet was ambient and tests were conducted at exit
Mach numbers ranging from 0.33 to 1.2. Two different sizes of condenser type
microphones were used independently. Their diameters were 1.25 cm and 0.63 cm.
The microphones were verffied to have a flat response in the range of frequencies
considered. Only the data obtained by the 1.25 cm microphones are considered,
because no difference in either frequency response or amplitude level was
found between the two different size microphones.

The microphones were placed at 10° intervals between 10° and 130° from
the direction of flow. The acoustic pressure was recorded on an FM magnetic
tape recorder in the range 25 Hz to 40 kHz although the data presented in
this paper on1y cover the range 200 Hz to 15 kHz. Data reduction was accom-

plished using both analog and digital means.

VI. RESULTS AND DISCUSSION
Experimental and numerical results are presented for the far-field
acoustic pressure. These results include:
a) The real time pressure pulse with and without flow,
b) The intensity as a function of the angle © for a range of Strouhal

numbers. (St = 52 where f is the frequency and D the jet diameter),

J

c) The acoustic power integrated over a large far-field sphere as a
function of Strouhal number,

d) The acoustic power integrated ovef a large far-field sphere as a
function of Strouhal number based on the source position for different source
Tocation.

Figures 3a through 6b show the nondimensional far-field time dependent
pulse p(t), with and without the flow through the nozzle, for both the

experiment and the numerical simulation. Figures 3a and 3b show the
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experimental results for 6 (measured from the jet axis) between_]Oo and
130% with no flow. It is clear from the figure that the experimental source
is not omni-directional. In fact, the peak outbut'occurs near the jet axis
and decreases nearly uniformly as the angle 6 dncreases. It is known
(ref. 29) that, at low pressure, the output from the tube is omni-directfona1
(at least for low frequencies). However, at such high pressures, the experi-
mental source is not a monopole.

Figures 4a and 4b show the equivalent pulse with the flow at an exit
Mach number of 0.66. The effect of refraction of sound through the shear
layer is clearly noticeable by the stretching out of the pressure field and
by the decay fn amplitude at Tow angles from the axis of the jet. At mid
angles (i.e. 6 & 30%), both positive énd negative peaks well exceed the
amplitude of the no flow case indicating a Tow frequency amplification, a
phenomena not totaj]y accountable by classical refraction theory. The high
frequency oscillations after the main peaks are also strongly reduced.

Figures 5a and 5b show the ﬁumerica] counterpart with no flow for angles
from 0° to 170°. As can be seen, the input source is nearly omni-directional
and thus can be considered a monopo]e source. The experimental source on the
other hand, contains both a mass and a force fluctuation as can be seen in
figure 3. At present, the numerical simulation has only been run with monopole
sources, since the monopole will exhibit qualitative agreement with the
experiment. The time duration of the numerical pulse is nearly twice as
Tong as the duration of the experimental pulse. This was necessary because
of numerical difficulties in computing narrower pulses at large distances from
the source.

Figures 6a and 6b show the equivalent pulse with flow (exit Mach number
.66). As with the experimental pulse, the effect of refraction is noticeable
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by a severe stretching out of the pulse accompanied by a decay in amplitude
at low angles from the jet axis. It is also clear that an increase in
amplitude, similar to that measured in the experimeht, occurs at mid angles.
An additional feature of the numerical pulse is the occurance of a low fre-
quency oscillation behind the main peak of the pulse. This is present oh]y
in the mid angle range where the amplification occurs.

The previous figures indicate the possibility of amplification of sound
in the presence of flow. In order to quantify the amplification or attenua-
tion of the sound due to the flow, a comparison is made of the power ratio
with and without flow. The power output is computed around a large sphere
surrounding thé'source. However, a small amount of acoustic energy propagates
upstream through the nozzle. This additional energy flux through the nozzle

is computed by the following formula (ref. 30):

—=l_| b, ' 1

I ) (p* + pyu' = U )(ou' +0'U,) (6.1)
which is the acoustic intensity in the presence of an irrotational mean flow.
Here, the primed quantities denote the acoustic perturbation while Uo and
Po denote the mean velocity and density. The energy flux through the nozzle
is computed upstream of the nozzle exit as indicated in figure 1.

At the upstream nozzle boundary, we use (4.4) with (6.1) to obtain the

following total intensity (using nondimenéionalized coordinates)

I = jmdtu - M)%p? (6.2)

- 00

An experimental attempt was made to measure the acoustic power due to
the pulse upstream of the nozzle, using two microphones inside the settling
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chamber. The output from the microphones, during and immediately after the
burst, showed an insignificant increase in level from the backgrouhd. This
indicated that very little sound is propagated upstkeam. The numerical com-
putation of the power Qpétream through the nozzle also showed that this was
always much less than 5 percent of the total acouﬁtic power.

In the far field (6.1), together with the boundary conditions discussed

previously, yields the well known result (again using nondimensional coordinates)
o= [ 2
T = p-(t)dt (6.2)

for the total intensify at a point on the far field arc. In the frequency

domain, the intensity per unit frequency at an angle 6 is
- In 2
1(6,w) = [p(w)]

where p(w) is the Fourier transform of the pressure pulse.
Figures 7a and 7b show the éxperimenta] acoustic intensity ratio

I(e’f)ﬂow/l(e’f)no flow

a function of the far-field angle 6. The figures show that the maximum

(where w = 2nf) for various Strouhal numbers, as

amplification occurs at about 30° from the jet axis for all of the frequencies
plotted. For some of the frequencies, there is also an amplification at
130°. There is, however, very little energy present at large angles and thus
this does not affect the total acoustic power. it is noted that the angle of
maximum intensity is relatively insensitive to frequency, a feature that would
not be expected from classical refraction theory.

Figure 7c shows the numerical counterpart of the previous figures.
The peak amplification now occurs at about 40° because the numerical pulse
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is omni-directional. Since the numerica] computation is restricted to a
broader pulse, the numerical results are limited to the low frequency part
of the spectrum. In this range of frequencies, the numerical and experi-
mental results are qua]ifatively consistent.

Figures 8a and 8b show the power ratio w(f)flow/w(f) for both

no flow
the experiment and the numerical simulation, as a function of both Strouhal
number based on jet diameter (fD/uj) and Strouhal number based on the
distanceé of the sources (z) from the nozzle exit (fz/uj). The evaluation of
the experimental acoustic power is limited to an arc between 0° and 130°
from the direction of flow. The experimental pulse is very weak for angles
approaching 130° (see figs. 3a, b and 4a, b) and thus the higher angles
would make a neg]igfb]e contribution to the total power. The numerical
computation of the power includes all angles up to 170° at 10° intervals as
well as the power propagating upstream of the nozzle. There is virtually no
difference in the bower ratio, when it is summed at 59 intervals.

The experimental curve shows amplification up to fd/Uj =1.2.with a
maximum at fD/Uj = .4, 1In addition, there is a rgduction for fD/Uj'greater
than 1.5. The numerical curve shows an increase in power for fD/Uj between
.15 to .3 with a peak at fD/Uj = .21 which appears to be independent of the
jet velocity. Since the numerical simulation cannot, at present, accurately
compute higher frequencies, the power reduction at higher Strouhal numbers
cannot be verified.. It is believed that turbulent scattering will have some
contribution to this reduction. The numerical results also show an increase
in power ratio for fD/Uj of the order 0.1. This cannot be shown experimentally

because the far-field measurements would have to be taken at several hundred

diameters to account for the low frequencies and also because the anechoic
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chamber is not an effective absorber at these frequencies. This effect,
however, can be seen in the experiment by observing the stretching of the
real time pulse with flow (see‘fig. 4a). The tdta]vpower in this frequency
range is very small for both the experimental and numerical pulse.

The power ratio curves are sensitive to the pulse width and the distance
of the source from the jet exit. However, when the power ratio is plotted
in terms of Strouhal number based on the distance of the source from the jet
exit (fz/Uj) it is found that the maximum occurs at a Strouhal number nearly
independent of source position. This can be seen in figure 9 where the power
ratio is shown for numerical simulations at four different source positions.

The behavior of this far-field amplification is very similar to the
growth rate of instability waves in an unexcited jet. Such behavior has
been verified both experimentally and analytically (refs. 16 and 19). The
results in figure 9 indicate that virtually no amplification occurs if the source
is well downstream 6f the potential core, where instability waves are known to
be insignificant (see ref. 19). This is clear evidence that amplification
will occur only if the source is within or just after the potential flow core
of the jet where instability waves can be sustained. In addition, the maximum
amplification occurs at roughly 3 diameters downstream of the nozzle, which
is consistent with the experimental measurements in reference 19.

The present experimental results (fig. 8a) show a maximum amp]ification
rate at fz/Uj of about .6, which is roughly twice the position of the numerical
peak. This may be due to the fact that the numerical pulse is nearly twice
as broad as the experimental pulse, or to the fact that the numerical pulse is
omni-directional.

The results presented here support the hypothesis that an acoustic source
placed within the potential core of the jet excites insfabi]ity waves, the
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result of which is an amplification of the far-field sound. This is also
consistent with the experimentslof Moore (ref. 16) and Bechert and.Pfizenmaier
(ref. 17) where an increase in brdadband power was observed by acoustically
exciting the jet upstreém of the nozzle.

The strong amplification at the mid-angles aﬁd at frequencies of maximum
power ratio is due to the terms involving the interaction of the acoustic
velocities with the gradient of the mean flow (see (3.2)). If one omits
“these terms, a directivity pattern is obtained which increases monotonically
with the angle from the flow, similar to the patterns obtained in references
20 and 21. This indicates that these terms are very important in pfoducing
the power ampiification.

The variation in total acou;tic power with Mach number (T(M)flow/T(M)no ﬂow)
for both the experimental and numerical pulses is shown in figure 10. The
experimental power increases with increasing Mach number and rises rapidly
beyond a Mach numbér of 0.5. This figure will change with the shape of the
pulse and the source position but the qualitative features will bg similar.

The experimental results exhibit a larger total amplification than
the numerical simulation. A possible reason is tﬁe lack of nonlinear effects
in the numerical scheme. The experiment also contains interaction between
the acoustic and turbulent fields which is not present in the numerical
calculations and which is known as a cause of attenuation at high frequencies.
It is clear, howevér, that the experimental and numerical results are quali-

tatively consistent.

VII. CONCLUSION
" An amplification of total power output is observed when a source is located
within the potential flow core of a jet. This amplification occurs in the
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range of frequencies where the local instability waves have the strongest
growth rate. The acoustic power amplification exhibits a peak which is
similar to that which is observed both experimeﬁta11y and analytically for
instability waves in an ﬁnexcited jet. This is p;rticular1y true when the
amplification rate is plotted as a function of Strouhal number based on the
distance of the source from the nozzle. These results show that instability
waves can act as a mechanism to amplify the sound from an acoustic source.
Further ‘evidence is found in the fact that no peak occurs if the source is
far downstream of the potential flow core. The quantitative differénces
between the numerical simulation and the experiment are probably associated
with nonlinear.terms, the presence of turbulence, and possibly the different
source structures. For higher frequencies, a reduction in sound is
experimentally observed. This result suggests that modification of the
stability characteristics of the jet, together with the observed attenuation

at higher frequencies, may be viable mechanisms for the suppression of sound.
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