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ABSTRACT
 

Various reciprocity relations in duct acoustics have been derived on the I 

of the spatial reciprocity principle implied in Greents functions for linear waves. 

The derivation includes the reciprocity relations between mode conversion coeffi­

cients for reflection and transmission in nonuniform ducts, and the relation be­

tween the radiation of a mode from an arbitrarily terminated duct and the absorp­

tion of an externally incident plane wave by the duct. Such relations are well de­

fined as long as the systems remain linear, regardless of acoustic properties of 

duct nonuniformities which cause the mode conversions. 

LIST OF SYMBOLS 

A, B uniform duct elements (Fig. 1) 

S() ambient sound speed 

fj (0, qm) radiation directivity function of j duct mode (far-field measure­

ment at spherical angle (0, q)) 

h)r) spherical Hankel function of the first kind 

j2 (kr) spherical Bessel function 

k Ikl
 

k , k axial wave numbers of m and p. modes 

k wave (or propagation) vector in free space 

kk/k
 



n unit normal vector outward from a surface 

qj, fm constant matrix element 

Rmn mode conversion coefficient (first subscript is mode number of 

incident wave; second subscript is mode number of reflected 

wave) 

r radial coordinate variable in a spherical coordinate system 

S surface of integration (Figs. 1 and 6) 

SA ' SB cross-sectional surfaces of duct elements A and B 

Sm(a,I) scattering matrix element for plane wave with incident angle (a, y) 

and spherical wave (fin) scattered by the duct 

Sw surface made of duct wall 

T iA mode conversion coeffici6nt for transmission (first subscript is 

mode number of incident wave; second subscript is mode num­

ber of transmitted wave) 

volumeV 

x duct axial coordinate variable 

-x spatial coordinate variables ((xlx 2 , x3 ) in Cartesian coordinate 

system; (r, 0, q in spherical coordinate system) 

xs,- s spatial coordinate variables on a surface 

YIm spherical harmonics (asterisk superscript denotes complex con­

jugate) 

a polar angle of -i 

I - function,complex 

p (Xs) admittance of locally reacting boundaryrecigsudr 
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-7 azimuthal angle of -i 

5(xss) surface Dirac delta function 

0,0' polar angles in spherical coordinate system 

p(tS) mean density of air 

an(a, y) amplitude of j duct mode induced by the external plane wave with 

incident angle (6, y) 

m' n normalized eigenfunctions 

, azimuthal angles in spherical coordinate system 

*acoustical velocity potential function (subscript A or B is used 

to indicate duct element if necessary) 

w angular frequency of wave 

Subscripts: 

A,B 

ab J -) - uniform duct elements A, B 

j,2,m, n, mode numbers (each represents, collectively, a pair of integers
 

P, v, fI for a mode of a three-dimensional duct)
 

Superscripts:
 

a,b uniform duct elements A, B 

INTRODUCTION 

Modal analysis is a frequently used method of studying duct acoustics. The 

major merit of this method is that a mode remains undistorted in a uniform duct 

section. However, in the application of modal analysis to realistic systems, 

problems are often encountered. Some of the difficulties are due to duct nonuni­

formities such as duct termination, variation of duct cross section and wall im­

pedance, alteration of duct axis (duct bending), 'axial gradients of mean fluid var­
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iables, etc. The complexities can be reduced by virtue of basic physics laws 

such as the reciprocity principle. Furthermore, such a principle helps one to 

gain physical insights into the problems, often without detailed analyses. This 

paper discusses in some detail the reciprocity principle in duct acoustics. 

The reciprocity principle implies a symmetry property between a source and 

the excited field in systems of linear vibration. 1 The symmetry property is well 

elucidated in Green's functions for waves. 2 The reciprocity principle applies to 

a variety of systems of linear vibration, including those which are bounded, un­

bounded, or partially bounded. A ducted acoustics system may be considered as 

one which is partially bounded. Because a physics law should not depend on rep­

resentations which are chosen for description of the system, the reciprocity prin­

ciple, which is well established in spatial coordinates, 1-3 should be equally well 

describable in eigenfunction spaces. Note that eigenfunctions in a duct are in one­

to-one correspondence with the duct modes. 

Some limited discussions of the reciprocity principle with the duct mode rep­

resentation are given in a number of previously reported works. Levine and 

Schwinger briefly discussed the reciprocity relation between the radiation direc­

tivity of the fundamental mode and the absorption of a plane wave by the duct. 4 

The reciprocity relation between mode conversion coefficients for reflection of 

the propagating duct modes was used by Weinstein for discussion of the Wiener-

Hopf solutions of radiation problems from hard-walled uniform circular and 

two-dimensional wave guides. 5 In his numerical studies of sound transmission 

through two-dimensional duct bends, Tam found that the mode conversion coeffi­

cients satisfy the reciprocity relation. 6 Eversman discussed the reciprocity 

principle for sound reflection and transmission in a two-dimensional hard-walled 

duct with partially variable cross section. 7 Koch found that the reciprocity rela­

tion is also satisfied by numerical results of the mode conversion coefficients for 

reflection and transmission in partially lined rectangular ducts of uniform cross 
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section. 8 A more fundamental view of the reciprocity principle in duct acoustics 

was offered by l'6hring. 9 His approach is not, however, applicable to a lossy 

system like a lined duct, because the scattering matrix fails to be unitary in such 

a system. 

As noted in Ref. 1, Chapter V, the reciprocity principle applies to linear vi­

bration systems involving dissipative force fields as well as conserved force 

fields if the dissipative forces are linear functions of the particle velocity. A 

wide range of dissipative forces belong to this type, including those pertinent to 

lossy boundaries involved in acoustic liners of ducts. 10 The reciprocity principle 

also applies to systems involving an inhomogeneous medium, 3 inclusive of gra­

dients of mean density, pressure, and temperature, as long as the systems re­

main linear. 

In this paper, the reciprocity relations are derived for mode conversions 

caused by the-duct nonuniformities which have been mentioned thus far. The de­

rivation is based on the reciprocity principle implied in Green's functions for 

waves, and includes the reciprocity relation between mode conversion coefficients 

for reflection and transmission in nonuniform ducts and for reflection due to an 

arbitrary duct termination. Also included is the reciprocity relation between the 

radiation directivity of a duct mode and the excitation of the mode from the ab­

sorption of an externally incident plane wave by the duct. 

RECIPROCITY RELATIONS IN NONUNIFORM DUCTS 

In this section, we consider sound reflection and transmission in a nonuniform 

duct as schematically illustrated in Fig. 1. The duct is composed of two uniform 

duct elements A and B, which are connected through a nonuniform transition sec­

tion. The two uniform elements may differ from each other in cross-sectional 

shape and area, duct axis, wall impedance, and mean fluid variables. Also shown 

in the figure are the surfaces SA, SB, and SW, which are, respectively, the 

cross sections of duct elements A and B, and the duct wall. 
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On the assumption of harmonic time dependence e-it, the wave equation is, 

in the absence of mean flow, reduced to 

LxC+ IP(Xx=U 

where the sound speed c(x) may vary due to a spatial gradient of the mean fluid 

variables. The analysis includes boundary conditions on the duct walls which can 

be given by 

n Vr(x) +x /(xs,,x 5) (x)d x? = 0 

SW(2
 
.Xs"where P is a complex function of is and This relation is a general form of 

homogeneous boundary condition. Note that boundary conditions for eigenvalue 

problems are always homogeneous. 2 This equation can be used to account for 

duct walls of extended reaction as well as for locally reacting walls. For the 

latter, P is given by 

where P is the wall admittance, and 6(isIs) is the Dirac delta function. 

Reciprocity for Transmission 

We first derive the reciprocity relation for sound transmission in the duct. 

We use a method similar to one which is used for the proof of the spatial reci­

procity principle in Ref. 3. Consider two different incident waves. One is com­

posed of a single mode m generated in the duct element A (see Fig. 2), and the 

other of a single mode gt generated in the duct element B (see Fig. 3). Both in­

cident waves propagate towards the nonuniform section. 

The incident wave from A, upon arrival at the nonuniform section, is partly 

reflected back to A and partly transmitted to B, as schematically illustrated in 

Fig. 2. The waie will be attenuated unless the duct walU is hard. The resultant 

wave, denoted by TA, can be written in the uniform duct elements as follows: 
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At A, 

ika kaX a e am nne (4a) 

Incident Reflected 

At B, 

a
TAT C b eik~xb (4b) 

Transmitted from 
Ato B 

Similarly, the resultant wave due to the incident wave from B (see Fig. 3) 

can be written as follows: 

At B, 

b bikbb -ik 
VB=bb e b + (Sa) 

cident Reflected 

At A, 

1P b b Ia 

TbBbIke(5b)A a 

Transmitted from 

Bto A
 

Note that mode numbers m, n, and f"are used for duct element A; and p, v, 

and 7r are used for element B. Each mode number represents, collectively, a 

pair of integers for a mode of a three-dimensional duct. The sub- or superscript 

a or b is used on , k,x, and R to indicate the corresponding duct element, 
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A or B. For the transmission coefficient T, the superscript refers to the duct 

elemnt in which the incident wave is generated. It should also be noted that the 

two sets of eigenfunctions, a) and {Db}, can differ from each other. 

Let us consider the volume integral 

I=]) (PA V2qB - *IB V2,FA)dx 3 (6) 

where V is the volume enclosed by the surfaces SA ' SB' and SW. It follows 

from Eq. (1) that the integrand is identically zero everywhere. Thus, the inte­

gral is equal to zero. By virtue of Green's theorem, the integration is trans­

formed into 

I AdS=0 (7),SW@(AV WB-B 

It is convenient to carry out the integration separately on the surfaces SA' SB , 

and SW. It can be readily shown by using Eq. (2) that the integration over SW 

vanishes, The integration on SA is written as 

IA= - " S (8) 
a a/ 

Substituting Eqs. (4) and (5) into Eq. (8) and utilizing the orthonormality of eigen­

functions yields 

2 ib 0 (9)IA 

Similarly, the integration on SB results in 

0)i B = 2iTa kb 

It follows from Eqs. (9), (10), and (7) that 

kaTa kbTb 
m " im m1 
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This equation specifies the reciprocity relation between the mode conversion coef­

ficients for transmission, or simply, the transmission coefficients. Recall that 

the transmission coefficient Ta is the amplitude of mode p of duct element B, 

which is induced by the incidence of mode m of duct element A. On the other 

hand, Tb is the amplitude of mode m of duct element A, induced by the mci-
Jm 

dence of mode p of duct element B. Once the value of Ta is computed, then 

the value of Tb0pm is determined (or vice versa) from Eq. (11). 

Reciprocity for Reflection 

For the reciprocity relation for reflection, we consider two waves, TA and 

*. Wave I is the resultant wave due to the incidence of a new single mode 

j ($m) of duct element A. It can be written in the uniform duct elements as 

follows: 

At A, 

aikXa - ikaXa 
akJ a e a 

L nn 
a nnxaa (12a) 

Incident Refected 

At B, 

Tabikb 
TA T -be :kxb (12b) 

Transmi ed fom
 
Ato B
 

where j m. We then have, in the place of Eq. (7), 

(13)k- A). AaS=0LASB, SW (*A 
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The integral over SW again vanishes. With the substitution of Eqs. (4) and 

(12) into Eq. (13), the integration on SA and S. is easily carried out. The con­

tribution from the integration over SB is also zero, and the integration over SA 

gives 

= 2i(Ro'I Az k~m - R kaj m M)/ (14) 

It follows from Eqs. (13) and (14) that 

Ra .a = a ka (15)
km jm mj 

This is the reciprocity relation for reflection. Note that this reciprocity relation 

is valid for reflection due to any type of duct nonuniformity if the linearity re­

quirement is fulfilled, that is, if Eqs. (1) and (2) are valid, respectively, in the 

media and on the boundaries. This can be readily proven from the fact that in 

the derivation of Eq. (15), the integrations on SB and SW make no contributions 

to the integral in Eq. (13). 

It should be mentioned that the reciprocity relations derived here are valid 

for the whole frequency range. In other words, Eqs. (11) and (15) are valid for 

real, imaginary, or complex values of axial wave number. 

RECIPROCITY RELATION IN RADIATION PROBLEM 

In this section, we derive the reciprocity relation-between the radiation di­

rectivity of a duct mode and the excitation of the mode due to the absorption of an 

externally incident plane wave. The geometry of the problem is schematically 

illustrated in Figs. 4 and 5. 

We consider again two incident waves. One is composed of the j mode of the 

uniform duct element A, which is propagating toward the duet termination. This 

wave is partly reflected back to duct element A, and is partly radiated. It will 

be also partly attenuated if the duct wall is soft. The resultant wave, denoted by 

* A$ can be expressed as follows (see Fig. 4): 



In duct element A,
 

ik.xX -ikx
 
=1A (b e + Rjn n e (16a) 

Incident Reflected in duct 

in duct 

where the super- or subscript a has been dropped from the variables without the 

loss of clarity. The radiated wave can be written in terms of the spherical Hankel 

function of the first kind and the spherical harmonic, the product of which will be 

referred to as outgoing spherical wave functions: 

*A , I Ilmh) (kr)Yfm(O, (16b) 

m~ I .0,V 

Radiated Trom duct 

Here, the radiation is into the three-dimensional space; k and m are single in­

teger numbers; and qj,ym is a constant matrix element, 

In the far-field region, Eq. (16b) can be written as 

A ik - f] (0"0) (17) 

r 

where 

f (0,q') =d- (-i)qj, mYm(O,) (18) 
km 

It follows from Eq. (17) that fj (0, q,) completely determines the radiation direc­

tivity of the duct mode. It will be herein referred to as the radiation directivity 

function. 

The other incident wave under consideration is an externally incident plane 

.wave e Since the present problem deals with a constant sound frequency, 

the magnitude of the wave (or propagation) vector is predetermined by k = (w/c). 

Thus, this incident wave is specified primarily by the direction of its propagation. 



k. We will use the incident spherical angle (d, y), which is in one-to-one corre­

spondence with k. 

The externally incident wave is partly scattered by the duct and partly trans­

mitted into the duct, as shown in Fig. 5. The scattered wave can be expressed in 

terms of the outgoing spherical wave functions. The resultant wave outside the 

duct is then written as 

=9FB - l--eik'x + ESm (6!, y)h (1 ) (kr)Y,.m,(0, (P) (19a) 

Incident Sca ered 

Here, the constant of the first term is the nortalization factor of the plane wave 

in the sense of the Dirac delta, and S m(av) l's the scattering matrix element. 

The wave transmitted into the duct element A lis written as 

-ik x 
-I B an(a,y) kn e n (l9b) 

in 

Transmitted into 

duct A 

where 0n (2,,) is a constant matrix element. 

We now consider the integral 

(20)" dS=OB ­

where the surface S is shown in Fig. 6. This integral vanishes as long as 

Eq. (1) is valid throughout the medium enclosed by S. The contribution from the 

integration on the inner and outer walls of the duct is zero if the wall boundary 

condition can be given as in Eq. (2). Consequently, we have 

IA + IB = 0 (21) 
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where 

I (A ''B - 1dS (22) 

8fA ;Tx /x 

f_-E)IA\r2
aBri sine dO dq (23) 

Inserting Eqs. (16) and (19) into Eqs. (22) and (23) and utilizing Eqs. (18) and (21) 

yields 

- ikjo ay) (24) 

Here, in evaluating the integral I,, we have used the various function properties 

given in Appendix A. 

Equation (24) specifies the reciprocal relation between the radiation direc­

tivity of a duct mode and the amplitude of that mode induced by external plane 

waves. Note that oi (a, y) is the amplitude of the j mode of the duct, which is 

induced by an external plane wave incident to the duct termination with the incident 

angle (a, -y). On the other hand, fj (a, -y) is the amplitude of the far-field measured 

at the spherical angle (a, -y)for the radiation of the j mode. If the radiation di­

rectivity of a duct mode is known, the amplitude of the mode induced by an exter­

nal plane wave is computed by this equation. Or conversely, the radiation direc­

tivity of a duct mode can be indirectly determined by measuring the amplitude of 

the mode induced by external plane waves of various incident angles. 

CONCLUDING REMARKS 

Various reciprocity relations with modal analysis of duct acoustics have been 

The existence of such relations are solely due to the linear characteris­derived. 

tic of the vibration systems under consideration. The derivation is general and 

is valid regardless of the complexities of the duct nonuniformities involved. The 
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reciprocity relations are-useful in studies of sound propagation in nonuniform 

ducts and radiation from a duct. For instance, the numerical computation in­

volved in such studies can be reduced by means of the reciprocity relation. For a 

radiation problem, the far-field directivity can be studied indirectly by measuring 

the transmission of external plane waves into the duct. Finally, it is always ad­

vantageous for studies of a system to have a rule which is not affected by compli­

cations of the system. 
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APPENDIX A
 

EQUATIONS PERTAINING TO SPHERICAL WAVES
 

Listed here are the various equations used in deriving Eq. (24).
 

The orthonormality of the spherical harnionics: 

0 o YQ(,pY.m(,p sinG0 dO 4, =-~62IV 6 min, (Al) 

The completeness of the spherical harmonics: 

9 ) (A2)Z Ykm(O,qo)Y;m(',') = 6(cos O6-.cos O')6(q ­

2=0 m-

The relation between the plane wave and the spherical harmonics: 

eik-x = 4 r Ym(*r,'')Ylr.(0,P)(i)% (kr) (AM 

2=0 m=-2 

where the vectors are given in terms of spherical coordinate variables as (see 

Fig. 5) 

x = (r, 0,q) 

kQ,at,yt 

and j2 (kr) is the spherical Bessel function. 

Also used is 

YRm(0,9) = (-1)'Ym(T- 0, 7r+ q') (A4) 

Note that the direction corresponding to the spherical angle (ir - 0, 7r + 99) is the 

reverse of the direction corresponding to the spherical angle (0, qp). 
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The asymptotic form of the spherical Hankel function: 

() kr -1ikr 
h2 cr) w (-i) - .kr (A5) 
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Figure 1. - Schematic of nonuniform duct. 
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Figure 2. - Schematic representation of wave function 
WA given in Eqs. (4a),and (4b). 
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Figure 3. - Schematic representation of wave function 
TB given in Eqs. (5a) and (5b). 
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Figure 4. - Sound radiation from an arbitrarily terminated duct. 
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Figure 5. - Scattering and absorption of an external 
plane wave by aduct. 
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Figure 6. - Surface of initegration, S,in Eq. (201. 
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Figure?7. - Example case of sound reflection due to 
-duct nonuniformity. 
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