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Chapter 1
INTRODUCTION

The steady operation of a liquid-propellant rocket
engine 1is often disturbed by the occurrence of large
pressure oscillatilons in the combustion chamber. These
oscillations, which can lead to damage to or failure of the
motor, are caused by amplification of initially small
acoustic disturbances due to the energy released by unsteady
burning of the propellant. This is usually referred to as
combustion instability. It is generally accepted that
unsteady burning can be correlated with the gas pressure
(pressure sensitivity) and the magnitude of velocity of the
fuel drops relative to the gas (velocity sensitivity).

This disgsertation 1s concerned with mathematical modeling
of velocity-sensitive combustion instability in liquid-
propellant rocket motors.

A survey of 1literature dealing with mathematical
modeling of pressure-sensitive combustion instability can
be found in the dissertation of Powell (1). One of the
first papers to examine nonlinear effects 1s that of Maslen
and Moore (2) who considered only the fluid mechanical
effects in a circular cylinder. The paper by Priem and
Guentert (3) is one of the first to include the effect of
velocity sensitivity. They discussed combustion instability

1



in a thin annulus.

Since direct numerical solution of the governing
equations is very time consuming and difficult to extract
information from, many investigators such as Powell and
Zinn (4), Lores and Zinn (5), and Peddieslon, Ventrice, and
Purdy (6) have employed methodé of weighted residuals such
as Galerkin and collocation methods.

Previous applications of the method of welghted
residuals to combustion-instability problems have dealt with
pressure—-sensitive combustion. In this work this method will
be extended to handle situations in which velocity sensitivity
1s important. Both the collocation and Galerkin methods will
be considered. Stability boundaries and pressufe'wave forms
will be computed numerically for transverse motion in a
cylindrical combustion chamber. In addition a finite-
difference method will be used to solve the one-dimensional
problem of transverse motion in a thin annular chamber,

These results will be compared with those obtained by a
method of weighted residuals solution of the same problem
in order to assess the accuracy of the approximate solution.

In this study, attempts to solve the velocity-
sensitive combustion instability problem by various
numerical methods are considered. The governing equations
that describe the flow conditions inside liquid-propellant
rocket motors will be derived in Chapter Two. An analytical
solution is obtalned in Chapter Three for nonlinear acoustic

motion in a cylindrical chamber. The collocation method 1is



applied to combustion instability in a cylindrical chamber
in Chapter Four. in Chapter Five, the Galerkin method is
applied to the same problem. In Chapter Six, attention 1is
given to the analysis of combustion instability in a thin
annulus. This allows the comparison of the Galerkin method
and a finite-difference solution in a one-dimensioned

context. Finally, a summary of this research is contained

in Chapter Seven.



Chapter 2
COMBUSTOR EQUATIONS

It is the objective of the discussion presented in
this chapter to analyze the combustor conservation equations
and reduce them to a tractable system. The simplification
will be done in such a manner that will allow the resulting
equations to retain both the mathematical and physical
essence of the original problem.

Under the assumptions that the usual balance
principles of mechanics can be applied separately to each
phase, the following equations are derived by applying the
laws of conservation of mass, momentum, and energy to an
arbitrary stationary control volume.

Conservation of mass of the fluid reguires that the
fime rate of change of mass in a volume v equals the rate
at which mass enters v plus the rate at which mass 1is
generated inside V and can be expressed as follows (for a

fixed volume):

*
* * *
%/ pdy = = J pu-nds + S wav
N S . v

%
where n is an outward unit vector normal to s, p 1s the

*
density of fluid, % is the velocity of fluid, w 1s the rate

#
at which mass 1s generated per unit volume, and t is the time.



Using the divergence theorm and the arbitrariness of
the stationary control volume, yields

% *
* * *
Bt*p + vn(pﬁ*) = W. (2-1)

Similarly, the balance law of mass for fuel phase 1is

* u% %
$~(5Lﬁ ) = =W (2.2)

5. xp. +
t*Py, L

*
where §L 1s the density of fuel and GL is the velocity of
fuel,

The balance law of linear momentum states that the
rate of change of linear momentum in the volume Vv equals
the rate of entry of 1ineér momentum across the surface s
plus the sum of all external forces actling on the volume v

and can be expressed as

* ¥ ¥ * ¥
*

¥ * *
3 4/ pUdv = - / oU(d-n)ds + /_Fdv + / wipdv - / Pnds
tT v S v v s
*
where ¥ is the force per unit volume applied to the gas by
% ,
the fuel and P 1s the pressure of the gas.

Using the same argument, the equation becomes

* * * % *

% *
% ¥ * ¥
2, x(ot) + Ve (oUl) = F + wil, - VP. (2.3)

Similarly, the balance of momentum for the fuel phase is



*-X- * *** * **
9 W) + V(.0 T) = = F - w. b
cx CPpUp) v (o T U.) B - (2.4)
Substituting (2.1) in (2.3) yields
% * ¥ %¥% * ** * **
p(3 40 + UT0) = F + w(ly - ) - Ve, (2.5)
Similarly for the fuel phase
* kd 2 xx ¥
pL(Bt*uL + upVup) = - F. (2.6)

The law of conservation of energy states that the
rate of change of energy in a volume Vv equals the rate at
which energy enters the volume v plus the rate at which
energy 1is generated internally plus the rate at which work

is done by external forces and gives

* *
* % * ¥ % *
deaf,ple +2u?)dv = =/ p(e + u2)(d-ndds - /_(PH)-Uds

* % ¥
- * % * :
+ 5 Feldpdv + £ owlep + %u)av + [ Qdv

* % * *
where e + %u? is the energy of gas per unit volume, e. + %u

2
L L

¥
is the energy of fuel per unit volume, and Q is the heat

transfer rate from the fuel to the gas.

Followlng the same argument, the equation becomes



* % : ¥
* - -~ *
at*(p(é FR2)) + Ve (p (2 + %82)0) = 7. (PO)
* ¥
> ¥ % 1/*2 %
+ f-uL + w(eL + 2uL) + Q. (2.6)

% % ¥, R E *
o xloplep +%u2)) + 7-(p (e + Hu2)u )
% %
_ N % % %, #
= ﬁouL W(eL + ;_uL) - Q. (2.7)

Substituting (2.1), (2.2) into (2.6), (2.7) respectively

yields
o(a, x(e + %u2) + TG e uhe)) - - A
R Lu2) - (6 + 4u2)) +§ - (2.8)
L L L
op (3, % (8, + %U2) + 3 e
+ %3%)) = - %‘EL - 4. (2.9)

It is more convenient to work with the thermal energy

equation for each phase. For gas phase thls is done by



%
_+

dotting U into (2.3) to obtain the mechanical energy

equation and subtracting this from (2.8) and using (2.1) to

get
¥_ % x X ¥ * ¥ * * *®, % %
pDE/Dt"= PD /Dt " (logp) + F-(HL ~4) +Q + w((e, - &)
¥ % ¥ *
%2 %2 %
+ (up - u)/2 + u(u - GL) - P/p) . (2.10)
In a similar way, it can be shown that
6D & /ptt g (2.11)
e = - .
110
. ¥ % *' % %
= a +' = 1 .
where D /Dt t*+ u 7, DL /Dt at*+ uL ¥ are the

comoving derivatives for each phase.

For simplicity, gas phase viscosity and heat
conduction were neglected in the previous analysis. Since
these produce dissipation, equétions derived in this way
should give a conservative estimate of the stability of the
system.

It appears {see, for instance, Powell (1)} that the
primary effect of the burning fuel is that of interphase
mass transfer. Thus,the balance laws for mass, momentum,
and thermal energy for each phase will be further
simplified by neglecting all interphase transfer terms

other than those appearing in the mass-balance equations.



This leads to the system of equations:

** % * %
oDuU/Dt" = — VP

*
¥ > ¥
pLDLuL/Dt = 0

% ¥ % * % %
pC,DT/Dt" = P(D /Dt ") (logp)

*

S ¢ DT /Dt¥= 0 (2.12)
°LovL L - .

* * * %
where the constitfutive equations e = CVT and e, = C__T

L vL L
* . o
have been used (with T denoting temperature and CV specific

heat). The equation of state for an ideal gas 1is

* %
P = pRT (2.13)

where R is the gas constant.

The governing equatilons will now be nondimensionalized
with respect to a steady reference state, which will be
denoted by the subscript "r". All lengths will be referred
to some characteristic length L,, such as the chamber radius.

The characteristic velocity is the speed of sound at the
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reference state, and the characteristic time is the wave
travel time L,/C,. The dimensionless quantlitles are

defined below:

%

> >

v =V /L, £ = L.t/C,,

* %

¥ - o@ &= o

# %

P = Pyp P1,= PpPT,

* %

P = PP w = prCrW/Lr

* 2 * 2

T = C.T/(yR) T;= C,Tr/(yR)
2 2

Cr= vPn/pp Pr= 0pnCp/y

The dimensionless conservation equations become

Continulty

Do/Dt + pV-u

Il
=

Dpp/Dt + prVelly = = w (2.14)
lMomentum

DU/Dt = - VP/y



DEL/Dt = 0 (2

Energy

DT/Dt = (y - 1)P (D /Dt)(loge)

DTL/Dt =0 (2.

Equation of state

P = pT. (2.

By solving (2.16a) one obtains

T o= oY1, (2

Substituting (2.19) to (2.15a) produces

Du/Dt = =¥(pY"1)/(y= 1) . (2

Taking the curl on both sides of equation (2.20) gives

Vv X Du/Dt = O . (2.

It can be shown using vector identity that (2.21)
leads to the following equation which describes the

generation of the vorticity % =V X 4§ in the flow.

11

.15)

16)

17)

.18)

.19)

.20)

21)

D&/Dt = 2-(V 1) - S(V-1) . (2.22)
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This equation describes the variation of vorticity
for a given fluid particle. Suppose that at t = 0, this
particle has zero vofticity and at the point where it 1is
located the velocity gradients are bounded. Then by (2.22)
the rate of change of vorticity of the particle vanishes.
It follows from this that the vorticity will be zero at the
next instant. By induction, it 1s seen that as long as the
velocity gradients are bounded at each point occupiled by the
particle, its vorticity will remain gzero for all time. If
all fluid particles in the system have zero vorticity at
t = 0, the vorticity will vanish at all points in the flow
field and for all t >0, therefore, as long as the velocity
gradients are bounded through the flow field ( as they would
not be, for example, at a shock wave ). Assuming this
condition to be satisfied implies irrotational flow (2 = 0)
‘ and allows the definition of a velocity potential ¢ defined

such that
U= Ve . (2.23)

Substituting (2.23) to (2.20) gives

2.0 + HUgVe +oY"1/(v-1) = F(t)

Since the veloclity 1s the space derivative of ¢, 1t
is permissible to add to ¢ any arbitrary function of time.
This 1s equivalent to a statement that F(t) 1s arbitrary.

For future convenience F(t) was selected to be 1/(y-1).

This choice yields
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S T (y=1) (oo + LV6-Ve) . (2.21)

Substituting (2.24) into (2.14a), (2.18) and (2.19) gives
- y2 - (= 194V V47
att¢ V2 (1 Cy l)(3t¢ + LV¢-Ve)) + V¢ V(28t¢
+uTe-Te) + (1 - (y=1)Ca s + He-Te)) (12 (-1hyn o
To=1 - (y=1)(a,¢ + %Ve-V4)
P o= (1= (v-1)(3.4 + Ble-Te)) "/ (D), (2.25)

This system of equations contains nonlinear gas
dynamics terms of all orders.

Due to their highly nonlinear and mathematically
complicated nature, the system of equations obtained above
cannot be solved exactly. In order to obtain simpler, but
approximate, equations which can be more easily analyzed, all
nonlinear terms of order higher than two are neglected.

This has the effect of retaining the most important
nonlinear effect, while greatly simplifying the form of the

equations. The system of equations then becomes
o= 1 - (3.9 + %Vg-To) + %(2-y)(2.9)2

T

]

1 - (Y—l)(3t¢ AT D)
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Po= 1 -y(a,0 + %V6-¢) + %y(5,4)2
—v2 - (e V.U
att¢ v2¢ (1 (v 1)at¢) + 2V v(at¢)
(1= (y=2)3, ¢)w =0 . (2.26)

For a cylindrical combustor, it is desired to
investigate the stability of the steady-state solution of
(2.26d). To do this the steady-state solution must be
obtained. It is assumed that the steady-state burning rate
depends on z only (w = w(z)) and that the flow is axial

(¢ = ¢(z)). Thus (2.26) simplifiles to
du/dz = w (u = d¢/daz)

T=1-%(y=-1)u?

0 = 1 -~ 1/222 R (2.27)

It can be seen from (2.27) that the deviations of the
steady-state solution from a uniform state are 0(u?). To
allow a discussion of orders of magnitude of wvarious terms

define the ordering parmeter e such that

e = max (u). (2.28)
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This implies that
u = 0(e), w = 0(e), b = 0(e). (2.29)

The stability analysis will now be carried out by assuming

that

¢ = ¢(z) + €¢'(x,y,2,t)

w =w(z) + e?w'(x,y,2,t) (2.30)
where ¢' = 0(1), w' = 0(1). (2.31)

It is being assumed that the unsteady perturbation of the
velocity potential from the steady state is of the same
order of magnitude as the deviation of the steady state

from a unifo:m state and that the unsteady burning rafte
perturbation 1s of the same order as the unsteady nonlinear
gas—-dynamic terms. The first assumption is necessary to

be consistent with the quadratic apprbximation inherent in
(2.26) while the second eliminates nonlinear terms involving
products of w' and ¢'. These assumptions are made for
simplicity and are not meant to imply that other orders of
magnitude for the various terms are impossible or even
unlikely. The objective of this work is to pick one case
which is mathematlcally tractable and subjJect it to extensive
analysis. While it is felt that most of the features of the
stability problem will be reflected by this case, it is
recognized that many other possibilities remain to be

explored.
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Substituting (2.30) and

p=p + ep', P P+ eP', T =T+ T (2.32)

i

{p'" = 0(1), P* = O0(1), T 0(1)} into (2.26),retaining all

terms of 0(e3) or lower,and dividing all resulting equations

by e leads to

_ g2
ppd’ = VIO ¥ 2ud 0t + Wage!

+ e {(y=1)V29' 0, 6" + 2V¢'+V( 3 9') + W'} = O

't = - {097 + ud o'+ Be(Ve'-To' - (2-7)(5,0")2)}
PUo= = y{o,¢" + ud ¢ + Be(Vo' Vot - (o, 670203
T' = =(y-1)(0,¢" + ud ¢' + %evo'-Vo'). (2.33)

The equations derived from this perturbation analysis
are expected to be valid as long as the amplitudes of the
perturbation quantities are finite and smaller than unity.

For simplicity the primes appearing in the above
equations will be dropped and it will be understood that
unprimed quantities are associated with perturbation from

the steady state.



Chapter 3
ANALYTICAL SOLUTION OF WAVE EQUATION

In this chapter a second-order solution for the
velocity potentilal associated with transverse acoustic wave
motion of an ideal gas in a circular cylinder is obtained.
The solution is found in the form of a Fburier—Bessel
series. This provides a standard to compare the proposed
methods which will be discussed in the following chapters.

The governing equation is obtained from (2.33a) by
assumption that the burning raﬁé function is absent. Then
the equation reduces to the second-order form of the one
discussed by Maslen and Moore (2) for pure gas motion in a

cylinder.
9 by — V2¢ + e(2V¢peVD 'A+ (y—l)v2'3 ) =20 (3.1)
’th) ® € ¢ t‘P ¢ t¢) U \3.

For a cylinder of radius L., a set of cylindrical
polar coordinates (r,6,z) with the z axis being coincident
with the cylinder's axis of symmetry is used. In seeking

a second-order transverse wave solution, one assumes
b = ¢1(r,e,t) + €¢2(P,6,t) + oo, . (3.2)

Substituting (3.2) into (3.1) and (2.33) leads to

17



18

et ~ v2¢1 = o’
bped, - 20 = = (ap(u?) + (y-1)724 age ) (3.3)
P=1+ceP + esz (3.4)
where P, = - yat¢1, P2 = —y(3t¢2 + %(ui - (Bt¢1)2)) (3.5)

VZ2¢y = .pbyg T 0n0;/T + aee¢i/r2, i=1,2
ui = (ar¢l)2 + (ae¢l/r)2. (3.6)

Three different cases are discussed below. For the

initial conditions

¢(r,6,0) =J (S r)cose, 8t¢(r,e,0) = 0 (3.7)
1 11

the solution of (3.3a) is

¢ =J (S r)cosecos(S t),
1 1 11 11

Substituting this equation to (3.3b) produces

2 o) .
att¢2_vz¢2=(b00+ nto nt Jm(Smnr)co§(m8))Sln(Esllt) (3.8)

m# 1

where Jn is used to denote an n'th order Bessel function of
the first kind”smn is used to denote the m'th root of

the equation Jﬁ = 0, and a prime indicates differentiation
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with respect to the argument of the Bessel {inction., The
coefficients bmn are integrals of Bessel functions which

must be computed numerically. The details of this

calcuation are discussed 1in appendix A.

Solving (3.8) one obtains
¢ = (b /(45%> )Y)(23 t - sin(2S t))
2 00 11 11 11

2

o0 2 - o
+m£o ngl (bmn/(Smrl MSll))Jm(Smnr)cos(me)(sin(2Sllt)

m# 1

- (2Sll/Smn)sin(Smnt)). (3.9)

The other two solutions to be discussed subsequently are

found in the same way. For the initial conditions

6(r,9,0) = 0, 8t¢(r,6,0) = SllJl(Sllr>cose (3.10)

it is found that

¢ =J (S r)cosesin(S t) (3.11)
1 111 11

and that ¢, is given by the negative of (3.9). For the

initial conditions

¢(r,e,0) Jl(sllr)cose,

% ¢(r,0,0) =3 J (S r)sinsé (3.12)
11 1 11

the solution is
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¢1 = Jl(Sllr)COS(Sllt —9)

t)

N8

' - (a2 o2 ‘ A
and ¢2 = 1{2b2n/(S2n —4011)}J2(S2nr)(sin(26){cos(¢8

11

- cos(Sznt)} + cos(26){sin(2sllt) - (2811/82n)Sin(82nt)}).

It can be seen that for these initial conditions ¢,
represents a spinning wave but ¢; + e¢, does not. Some
typical results for the pressure functilons Pl and P2 were
computed using the solutions for initial conditions (3.7)
(labeled standing wave) and initial conditions (3.12)
(labeled traveling wave) for r = 1, 6 = 0, and y = 1,2.
These data are presented graphically in Figure 1. For
these computations the series expansions were terminated at
n = 5. Thefe is virtually no difference between the results
“for n =4 and n = 5, and even the results for n = 1 provide
a reasonably accurate solution.

The results discussed above were used to check the
numerical calculations to be discussed in the next two chap-
térs. These results generalize those of Maslen and Moore (2)

to initial conditions which do not lead to periodic solutions.



Chapter 4
COLLOCATION

In previous investigations of velocity-sensitive
combustion instability {see, for instance, (6) and the
references therein} the most widely used burning-rate
equation 1s that assoclated with the vaporization limited
combustion model discussed by Priem and Guentert (3). In
the notation of the present thesis the second-order version

of this equation can be expressed as
2 \ 2 2y% I
= - L - : - .

w = (w/e2)((1 sed ¢)((1 - u /up) +(ut/uL) ) '=1) (4.1)
where u, is the component of perturbed gas velocity in the
axial direction and ut 1s the perturbed component normal to
the axis of symmetry, and ur, is the magnitude of the droplet
velocity vector which assumed to be axial. Substituting
(4.1) into (2.33a) yilelds

- g2 - -
Bed t WA ¢+ 2ud ¢ v2¢ (1 e(y=1) 3 ¢)
T -1 - 2
+ 2eV¢ $at¢ + (/) (1 = %e3 ¢)((1 - 3 ¢/up)

+ (Vg-To = (3,9)2)/u2)%- 1) = 0. (4.2)

21
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No exact solutions are to be expected to (4.2). Fully
numerical solutions, on the other hand, are expected to be
quite time consuming for multidimensional problems. For
these reasons it was decided to attempt approximate
partially analytical solutions using the method of weighted
residuals {see for instance, (6)}. For problems of pressure
sensitive combustion instability Powell (1) successfully
employed the Galerkin method. This method is limited in
applicability, however, to equations containing nonlinear-
ities involving only polynomial functions of the dependent
variable and its derivatives. It is clear that (4.2) is not
of this form. The orthogonal collocation method was,
therefore, chdsen because of its simplicity and adaptability
to equations containing nonlinearities of any algebraic
form. The application of this method to the problem of
transverse wave motion in a cylindrical chamber will be
discussed below.

Consider the transvefse wave motion in a cylindrical
combustor. It is convenient to describe this problem in

terms of cylindrical polar coordinates (r,6,z). Then
q) = (\b(r,e,t)' (Ll"?))

It will also be assumed that w and uL are constants. Then

(3.2) becomes

) - (5 ¢ % 2 2y(1 = e(y=1)3
att¢ + Ept¢ (arr¢ + I)q;/r' + Bee¢/r 1 (1 e (y=1) t¢)
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+ 2e(§P¢§Pt¢ + ae¢aet¢/r2) + (w/e)((1 - %ep ) ((1
P (0,002 + (age/m)2)/u2)® - 1) = 0. (BB)

Now, assume an approximate solution of the form

P Q
¢ = Lz I

= nfonts Jm(Smnr)cos(me)fm (t). (4.5)

n

Equation (4.5) is a supérposition of the normal modes
assoclated with the corresponding linear acoustic problem.

A solution of this form allows one to investigate the
influence of nonlinearities on.the behavior of modal
amplitudes which would exhibit simple harmonic motion in

the linear case. Only standing modes can be described by
(4.5). To represent spinning modes another series involving
- sin(mg) must be added. This is omitted for simplicity in

this discussion. It is convenient to rewrite (4.5) as

N
o = ElJm.(Sm.n r)oos(mje)fj(t) (4.6)

J 3

where N = (P + 1)Q .

The equation 1s now evaluated at N points (the collocation

points) to yield

, N
‘bi = .z Cijfj 1= 1,2,--~N ()J,_?)
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where Cyy = ij(Smjnjri)cos(mjei). ' (4.8)

Next, (U4.7) is inverted to obtain

N1
£, = leclj¢J | (4.9)

Then the various derivatives of (4.6) can be expressed in

terms of value of ¢i as

N N
= r _ rr
(o 0)y = J=lCijan, (arr¢)i = 321013¢J
(3,0), = g c? . (3,.4), = ? c®%y, 1=1,...8  (1.10)
6771 g=1 1373 8671~ j=3 135 %3 >
where cf o =(s ¢ )C_l ctl = (s C )C_l
ij rik’ ki’ 1] r.r, ik’ kj
1 i 1
6 -1 089 -1
, = . . .. = . by,
®1; (ae?lk)cka’ i3 (aeieicik)ckj (4.11)

Substituting into (4.4), a set of N ordinary second-order

differential equations having the following form is

generated.
. N N N .
.t R - . . .
¢, t woy 351 lJ¢J(1 e(y- 1)¢ ) + 2eJ§ k§1013k¢3¢k
. N N )
+ (w/e) ((1-%e9,) (1 + 351 k§1013k¢j¢k/u ) 1)=0 (4.12)
v _ . rr r 08 , o
where Cij cij + Cij/r'i + Cij/r'i
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- A AT 8 .6 2
Cijk = C13Cik * Ci3Cix/Ty - (4.13)

Solutiéns were obtalned by a fourth-order Runge-Kutta
method to the set of equations (4.12). Tt was found that
the results were very sensitive to the number and locations
of collocatlon points, especially to the radial distribution
of points. It was found that even in cases when w was equated
to zero (no combustion) it was possible to find many choices
of collocation points which lead to the computed modal
amplitudes increasing without bound.

In order‘to illustrate the difficulties involved 1in
a simple case, consider a one-dimensional problem of
longitudinal wave motion with vy = 1, u= 0 and w = 0. 1In

this case (U4.2) reduces to

att¢ - aZZ¢ + 26(8z¢azt¢) =0 . (h.14)
First consider the boundary condition
az¢(0,t) = 0, o(m,yt) =0 (4.15)
A one-term solution satisfying (4.15) is
¢ = £(t)cos(%z). (4.16)

Applying the collocation method with a collocation point z,

produces an equation for ¢, = ¢(z,,t) of the form
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- tan? 5 ) = 0. .1
¢0 %¢0 + % (tan (20/2)¢0¢0) ( 7)

The Galerkin method (to be discussed in detail in the next

chapter) when applied to the same problem yields an equation

for £ of the form

£+ %f + 4 ££/(31) = 0. (4.18)
As another example consider the boundary conditions
BZ¢(O,t) =0, 3,9 (m,t) = O, (4.19)

A solution satisfying (4.19) is

¢ = f(t)cos(z) (4.20)

for which the collocation method leads to

5 + ¢ - 2ctan2z 6 ¢ = O (4.21)
0 0 0 0 0

and the Galerkin method leads to

£+ f = 0. (L.22)

From the above two cases, one can observe that the
last term in each of the equations obtained by collocation
can take on any value between 0 and = depending on the
location z, of the collocation point. No such difficulty
is encountered when using the Galerkin method. Fven if more

points were used, the same behavior was obtained. Therefore
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there appears to be no way to fationally decide which sets
of collocation points can produce the correct result. For
this feéson, after the expenditure of much effort, the
collocation method was abandoned and the Galerkin method

was adopted. This will be discussed in the next chapter.



Chapter 5
THE GALERKIN METHOD

The Galerkin method is a special application of the
method of weighted residuals (usually referred to as MWR).
It has been extensively used in the solution of wvarilous
stability and aeroelasticity problems {see for instance
Powell (1)} and proved itself as a useful tool for the
solution of both linear and nonlinear problems. Although
it is an approximate mathematical technique, it has
nevertheless produced results which were in excellent
agreement with available exact solutions. These approximate
soiutions are usually simpler in form than the exact
solutions obtained by numerical integration, and their
guantitative evéluation requlires considerably less
computation time. However, this method 1s known to be
reliable and applied conveniently only to equations
involving nonlinearities of a polynomial type. Therefore,
if this method is used in conjunction with the varporigzation-
limited burning rate function of (4.1) the problem becomes
intractable. Thus,the following simpler purely phenomenolog-
ical burning-rate function was employed for the case of

instantaneous combustlon response.
W = wnu? (5.1)

28
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where n 1s a constant which will subsequently be referred to
as the interaction coefficient. It can be determined either
by éomparison of predictions of the theory directly with
exoeriment or by comparison with burning rate laws meant to
apply to special types of combustlon processes. As an
example of the latter method consider the vaporization-
limited burning rate law (4.1). As it stands (4.1) exhibits
both pressure and velocity sensitivity. A purely veloccity
sensltive law can be obtained by assuming e << 1 to get

W, o= (w/e2)((1 + (u/uL)z)])f+ - 1) (5.2)

where the v is used to denote the vaporization model. If one
equates the slopes of (5.1) and (5.2) at u? = 0 and plots

both functions, the graph would look as follows.
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It can be seen that (5.1) would overestimate the burning
rate. Thus the upper bound for n can be computed. From
(5.1) and (5-2)

i

a0 = wn, 4wy = (/(keu2))/(1+usuy) 230,

= = (2172
Thus _ duzw(o) = wn, duZWv(O) = w/(le uL).
Equating these results, one gets

= 2u2). .
noox 1/(be uL) (5.3)
The phenomonological law (5.1) can bhe related to other
special burning-rate laws in a similar manner.

If it is deslred to consider history-dependent
combustion processes,this can be done through the general

formula
‘ t
w =n/ G(t—g)dg(uz)dg (5.4)
0

where G is memory function and £ is a dummy variable. If
G(t) = H(t) (H being the unit step function) all increments
of change in u? occurring in the past are counted equally
and (5.1) is recovered. If G(t) = H(t) - H(t-t) all
increments of change in u? are counted equally up to t units
of time in the past while those previous to that time are

not counted at all. Substituting this expression into (5.4)
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and integrating one obtains
w = wn(u? - u2) (5.5)

where uT=u(t—t) and 1 1s called the time delay. Equation
(5.5) will be used to account for the history of the burning
process in a rough way. More sophisticated treatments of
this phenomenon could be obtained by employing a more
realistic function for G(t). Substitutiné.(S.S) and (5.1)

into (2.33a) one obtailns
dppd = V26 + 2ud, . 6 + w4 + e((y-1)V2¢d. 4 + ATRER
+ Ep($¢-$¢ - j$¢r-$¢T)) =0 (5.6)

_where J = 0 for instantaneous combustion and j = 1 for
history-dependent combustion.

The most general solution of (5.6) (subject to hard-
wall boundary conditions for the unsteady variables) can be
written in the form of the following Fourier-Bessel series.

[20]

6 = Loo8) + E £0,(8)30(S,m)

[oe]

+m§1n§1 (fmn(t)cos(me)+gmn(t)sin(m8))Jm(SmnP) (5.7)

Substituting (5.7) into (5.6) and applying the usual

Galerkin orthogonalization procedure leads to an infinite
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set of coupled ordinary differentlal equations governlng the
functions fmn and 8nn* No solution can be obtained unless
the series (5{7) is truncated so as to produde a finite set
of equations. If the terms neglected are actually small,an
accurate solution will‘result.

In this thesis attention will be focused on initial
dlisturbances having the form of the first tangential mode.
The simplest finite series contained in (5.7) capable of

modeling the effect of quadradic nonlinearities in (5.6) is
= f (t)J (S + f J o +
b O( ) O( Olr) 1(t) 1(811?)005 fg(t)J2(821r)cos2e
+ g(£)3,(Sqr)sine + g,(t)T5(S,qr)sin2e. (5.8)

The Galerkin method then produces the followlng ordinary

.differential equations governing these five wvariables.

e + . + 2 . . .
ot wfy + 82 £+ e(Cof fo + C (. + g og,)

+ P+ : + 2 + 2 2 2 4+ g2
Co(f,f, + 8,8,) + wn(C),f5 + C ,(f] + g7) + C 5(£3 + g5)

_ 2 2 2 2 =
J(C  fg, + Cp(E7 + By ) + C(£] 4 85.0))) =0

. . 2 . + . . + .
fl + Hfl + Sllfl + E(Cufofl CSflfO + 06(g1g2 flf2)

+ s+ £.f) + + £+
C, (8,81 ofy) +un(Cpyfofy + C (£, 1, + &.8,)
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- j(clufOTflT + ClS(flrf2T + glrg2t)))) =0

+ 5(08f0f2 + C,f, T, + Clo(glgl—flfl)

. . -
f, + wf, + S 1f 9f2fg

2 2 2172

2_52 __" 2 52 =
+un(Cy o (£1-g3)+C £ Tp= J(C (£ ~87 ) + 017foxf21>))) 0

.. . 2 . . - _ -
g, +wg, + Sig + e(Cyfyg, + Cog fy *+ Cc (8, g,f5)
+ P fg) + -
Colgyfy = £ogp) + wn(Cyyfogy + G 5(f 8, = &)F)

- J(c + - ngf2T)))) =0

145081, T C15(fy 8o,

e+ wg. + S2 + o+ Fo-C £
g, t g, + 53,8, e(C8fog2 09g2f0 1O(gl 1

+f g )+ c f + 20 F
18,0 +un(C o8, 16 181

- 3efo e, + 2cl6f1Tg1T)))) = 0 (5.9)
The coefficients Ci (i=1,2,...17) are integrals of
Begsel functions which must be computed numerically. The
details of this calculation are discussed in appendix A.
The stability boundaries in the (n,e) plane
were determined first. For a given value of w, a value of
¢ was selected and solutions were obtained for various values
of n. In each case, if the modal amplitudes exhlbited
gfowth with time, the value of n was decreased for the next

run while if decay of modal amplitudes was observed, the
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value of n was increased accordingly. A systematic
iteration process.was devised so that the computer could
éaffy out theséréalculations without analyst intervention.
In this way ,one point on the stablility boundary was
established. Then a new value of ¢ was chosen and the
iferation process was repeated to deférmine another point
on the stability boundary. This procedure (which consumed
a considerable amount of computer time) was continued until
enough points had been found to establish the shape of the
stability boundary. It should be pointed out that the
amplitude of the 1T mode always initially decreases due to
the fact that purely velocity—éensitive combustion
‘instability is always linearly stable. Thus it is necessary
to continue the calculation for a considerable period of
timé to determine whether a given set of conditions

- corresponds to nonlinear stability or instability.

Figures 2 and 3 show some‘typical stabillity

boundaries for instantaneous combustion using the initial

conditions

r,(0) = 1, £y(0) = f2(0) = g1(0) = g,(0) =0

£o(0) = £1(0) = £5(0) = g1(0) = g5(0) = 0 (5.10)
and £.(0) = 1, £,(0) = £,(0) = g,(0) = g,(0) = O

g,(0) = 1, £ (0) = £,(0) = £,(0) = g,(0) = 0, (5.11)
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respectively. The region below and to the left of the
stability boundary is associated with stable conditions,
‘while therregion above and to the right is associated with
unstable conditions.

In the case of linear acoustics, the first éet of
initial conditions would lead to a standing wave and the
second set of initial conditions corresponds to a traveling
wave. In both cases,it can be seen that the stability
boundaries have roughly the forms of rectangﬁlar hyperbolas.
As expected, increasing the steady-state burning rate reduces
~the value of n required to produce instability. This effect
is somewhat more pronounced fof the traveling waves than for
the standing waves. There does not appear to be a distinct
pattern to the results. Thus for w = 0.2 standing waves are
more stable than traveling waves while for w = 0.1 traveling
. Waves are more stable than standing waves.

Figures 4 and 5 show stabiiity boundaries assoclated
with initial conditions (5.10) and (5.11), respectively, for
history-dependent combustion. It is apparent that the
influence of the time delay parameter on the results for
standing waves 1s much greater than on the results for
traveling waveé. Again, no clear pattern emerges from the
results. Comparing Figures 2 and 4, and 3 and 5 shows that
instantaneous combustion can be either more or less stable
than history dependent combustion dependihg on the value of
the time-delay parameter. Comparing Pigures 4 and 5, it

can be seen that standing waves can be either more or less
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stéble than standing waves for history dependent combustion.
Figures 4 and 5 also illustrate the fact that increasing the
amoﬁnt of ti&e deiéy can elither increase or decrease'the ‘
stabllity of the syétem. Thus ,for both standing and
traveling waves,Tr = 7 corresponds to a more stable situation
than either t = 0.57r or T = 1.57 . The lack of patterns
exhibited by these results emphasizes the need for numerical
methods of the type developed during the présent research.
It appears that the only way to find out what will happen in
a gilven situation is to solve the equations for that
particular case. This matter will be discussed further
subsequently. |

The pressure perturbation can be calculated from the
velocity potential perturbation by substituting equation
(5.8) into (2.33c¢c), expanding the result in a Fourier-Bessel
series and retaining only the terms corresponding to the 1T,

2T and 1R modes to obtain

- _ : € 2 4 2 4 g2 2 4+ o2
P v((dg Ty + S(dp, 0 + dpa(f] + g3) + g, (£5 + &5)

+dgsth + dgg(f2 + 85) + dgo(£h + £3)))T(Syr)

t ((dyqfq + eldyfofy + dp3(f T, + g98,) + dq)fpfy

+ dlSQflf2 + glgz)))cose
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+

(dy181 + e(d ,fp8y + di3(fi8q = 89F,) + dqTq8,

-+

d15(f1g2 - f2gl)))sine)Jl(Sllr)

. + 2 _ 2 + - .

+

P2 _ g2 052
d25(fl 1)))cos 8

.

t (dyp8y * e(dy T, + 2d,50,8) + d,), 48,

-+

2d25flél))sin2e)J2(S2lr))- (5.12)

The coefficients d d d are calculated in the same

0s’ "1s’ "2s
fashlon as those discussed previously and the values are
listed in table 8 of the appendix.

Some typical results for wall pressure waveforms are
presented in figures 6 through 37.

Figures 6 through 9 correspond to instantaneous
combustion with € = .05, w= .1, n= 175, and initial
conditions (5.10). This leads to a stable standing wave
oscillation and the pressure can be observed to decrease
gradually. However,by changing the interaction index to
n = 220 (Figures 10-13) the pressure is seen to grow
gradually. This is an unstable situation. In both cases
the responseé 1s dominated by the 1T mode but distorted to
some extent by the presence of the 2T and 1R components.

Figures 14 through 17 correspond to history-dependent
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combustion with n = 345, while the other parameters are the
same as before. This is a stable situation and the amplitude
of the pressure slowly decays with time.

Figures 18 through 21 are obtained by changing the
interaction index to n = 352. This is an unstable situation
as indicated by thevgrdwth of the pressure amplitude with
time. In both of these cases the presence of the 2T and 1R
components is much more noticable than it was in the first
two situations.

Figures 22 through 25 correspond to instantaneous
combustion with n = 180, ¢ = .05, w = .1, and inltial
condition (5.11). This produces a traveling wave. The
pressure 1s obgerved to be decreasing with time (a stable
situation) while changing the interaction index n to 210
(Figures 26 through 29) causes the pressure to increase
(an unstable situation). Figures 30 through 37 show the
significance of the time delay function. Figures 30 through
33 are obtained by setting v = » and n = 197. This 1s a
stable case. The pressure is observed to decrease. Setting
n = 199 (Figures 34 through 37), on the other hand, produces
an unstable situation when the pressure lincreases very
rapidly. In both of these situations the response appears
to be dominated by 2T contribution to the pressure.

From these figures one can conclude that the pressure
waveforms exhibit a strong second harmonic distortion and
this distortion arises from‘the effect of the guadratic

nonlinear terms. A variety of behaviors are possible
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depending on the nature of the combustion process and the

parametric values involved.



Chapter 6
ONE-DIMENSIONAL MODEL

In this chapter an annular combustion chamber with a
gap width much smaller than the inner radius is considered.
This geometry will henceforth be referred to as that of a
narrow annulus. While this geometry is not of much practical
interest,it is quite useful for the purposes of analysis.
This 1s because only one space coordinate is needed to
describe the problem. This makes a direct finite-~difference
numerical solution of the original partial differential
equation feasible and also simplifiles the algebra required
to carry out the Galerkin modal analysis. In what follows
three questions will be investigated. First,the effect of
chgnging the numerical values of certain coefficients
appearing in the governing equations for the modal amplifudes

will be discussed. Second,the Galerkin solution will be

- checked using a finite difference numerical solution of the

compleﬁe equation. Third, numerical solutions of the
complete wave equation using the vaporization-limited
burning-rate law will be compared to similar solutions
assoclated with the phenomenological burning-rate law
employed 1n the previous chapter.

The appropriate wave equation for transverse wave

motion in a narrow annulus can be obtained from (5.6) by

4o




41

setting r = 1 and ar = 0. To further simplify the results
the parametic values y = 1 (isothermal process) and j = 0
(insﬁantenous burning response) will be employed. For this

situation (5.6) simplifies to
- : 2 =
Bipd + WhL 4 Dogd t 2€3 93 .0 + gpa(ae¢) 0. (6.1)

To carry out the modal analysis, i1t is assumed that

the potential function can be expressed as
¢ = fl(t)cose + f2(t)cos26 + gl(t)sine +g2(t)sin2e. (6.2)

Then applying the usual Galerkin orthogonalization

procedure leads to

- 2 . . - . -
fl + Qlfl + Efl + eAl(flf2 + f2f1 + .8, + g2g1)

+ ewnA (f f + g = 0
EW] 2( 155 gng)

. 5 . - _ . 2— 2 _
f2 + Q2f2 + ng + €A3(glg1 flfl) + egpAu(gl fl) = 0

. + 2 + - + . _ * _ .
g, * efg) twey + oeh (g, f) + fig, - 8T, - £,8)

g. £ ) =0

+ -—
cunh,(f,8, - 8,7,
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where Ql =1, 92 =2, A, =2, A

The symbols &

=2, A 1 and Ay = .5.

2 3 "
10 92, 12 A5, A3 and A, have been inserted to

illustrate the effect of changing their numerical values.

A

McDonald (7) in hils analysis of combustion-
instability in;an annulus found that for a given value of €
the value of n required to produce 1nstabillty was approx-
imately twice as high for standing waves as for traveling
waves. The results discussed in the previous chépter for
a full cylinder indicated no such relationship. Equations
(6.3) were employed in an attempt to determine the factors
which have a significant effect on the stability boundary.
Several calculations were made and a representative sample
of the data thus obtalined is presented in Tables 1 and 2.
It was determined by McDonald that the terms representing
gas—-dynamic nonlinearities, had a small qualitative effect
on stability calculations. Thus the coefficients Al and A3
were held fixed dufing these calculations.

The entries in the first two lines of each table
were computed uslng the correct equation for an annulus. It
can be seen that the standing wave is twice as stable as the
traveling wave, in agreement with the results of McDonald.
The third and fourth lines in each table were computed by
changing AM from .5 to .77 (This makes the ratio AM/A3
the same as the ratio of the corresponding terms in the:
governing equations for the full cylinder.). It can be
seen that this lowers the stability 1limit in all cases but

does not alter the fact that an initial disturbance in the



Table 1

Stability Limits for Standing Wave
in Annular Combustor

91 2 .5 .05
46 2 .5 .1
74 2 17 .05
37 2 17 .1
735 1.66 .5 .05
379 1.66 .5 1
595 1.66 CT7 .05
307 1.66 1T 1
Table 2

Stability Limits for Traveling Wave
in Annular Combustor

n 92 A” €

Ly 2 .5 .05
22 2 .5 1
36 2 77 .05
18 2 LT7 .1
66 1.66 .5 .05
31 1.66 .5 1
54 1.66 CT7 .05
26 1.66 77 .1

43
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form of a standing wave is twice as stable as one in the
form of a traveling wave.

The fifth and sixth 1ines in Tables 1 and 2 are found
by restoring Au tobits original value .5 and changing Q2
from 2.00 to 1.66 (This makes the ratio 92/91 equal to the
ratio 821/511 associéted with the full cylinder.,). For this
situation 1t can be seen that the standing wave is approx-
imately ten times as stable as the traveling wave. Further-
more, the effect of the value of 9, on the location of
stabllity boundary is much greater for a standing-wave
motion than for a traveling-wave motion. The last two lines
are assoclated with implementing both of the changes dis-
cussed above simultaneously. These results confirm that the
change in A) lowers the stabllity limit in all cases but
does not affect the relative stability of standing-wave and
traveling-wave disturbances.

The data presented above indicate that standing waves
will be twice as stable as traveling waves only under very
special circumstances (92/91 = 2). There is no reason to
expect this to be a characteristic of other systems exhibit-
ing combustion instablility as, in fact, it is not for a full
cylinder.

In this section, a finite different procedure is

employed to generate a set of second order differential

equations. The central difference formulas

Poy = {8y, = ¢y 1)/(200)
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= - 2
Baets = (0447 — 204 *oq_q)/(a0) (6.14)
are used to produce the following set of governing equations
i

by = ~Woy t (o, 0 = 26, * 6y )1 = e(y=1)0,)/(08)2

) ) S i
by = 05 )00y = 0y 50/ (208)
- W, 2 <i<N-1 | (6.5)

where N 1s the number of points employed. A forward

difference formula
ae¢1 = (_3¢1 + M¢2 —¢3)/(2A9) (6.6)
and backward difference formula
Pty = (onoo = Héyoq + 3oy)/(2a0) (6.7)
are used for the boundary conditions
346(0) = 0, 8¢9 (m) = 0. (6.8)
Hence, along the boundaries, (6.5) becomes

6o = o, + 200, = ) (1 = e(y=1)6,)/(3802)
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- - L 2y -
8e(¢3 ¢2)(¢3 ¢2)/(9A6 ) ew2

and ¢y o T “Wop 4+ 20y 5 - ¢N_l)(1—e(Y—1)¢N_1)/(3A92)

- 4, 5)/(9802) ~ ew . (6.9)

—‘8e(¢N_l - ¢N_2)(¢ N1

N-1

For the phenomenological model, the burning rate

function becomes

w, = n3§¢i+l - ¢i_1)2/(4A62) 2 < i < N-1. (6.10)

Combining (6.8) and (6.10) one obtains
Wy = 4nﬁ(¢3 - ¢2)2/(9A62)
- 2 2
regpectively.

For the vaporization model, the burning rate

function becomes

Wy o= wl(L —eo /2)(1 + (4,

i 1

- ¢i_1)2/(2A6uL)2)% - 1)/e2 2 <1 < N-1 (6.12)

and,along the boundary, yields
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W, = w1 - %ep (1 + (2o, - 0,)/(306u.0)2)% - 1)/¢2

Wy = ((ses V(14208 —0y )/ (300u;))2)%-1)/e2,  (6.13)

N ~ON-2

accordingly.
x;Using either the phénomonological or.the vaporilzation-
limited combustion model,(6.5) and (6.9) can be solved by
thg Runge—Kg?pa method to obtain 95 i=2,3,..., N=1.
Thén the.modaluamplitudes can be obtained by using the

Fourier-cosine trahsform
™
fi(t) =2f0¢cosiede/n. (6.14)

These intégrals must be computed numerically since ¢ is
known only at the grid points.

| Some typical results for standing waves are presented
in Table 3. They are intended to illustrate the
accuracy of the two-term Galerkin solution and to compare
the results associated with the phenomenological and
vaporization-limited combustion laws. The column labeled
PG indicates the results with a two-term Galerkin solutién
using the phenomenological model, the column labeled PF
contains the results of a finite-difference solution of
these equations, and the column labeled VF presents results

of a finite difference solution using the vaporization-

limited model.
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Table 3

Stability Limits For Phenomenological and
Vaporization-Limited Combustion Model

PG PF VF
€ n n U.L
1 46 28 1.3
.05 91 56 2.1
.01 52 286 5.2

It can be seen that the order of magnitude of the
interaction index n required for instability for both the
finite difference and Galerkin methods are roughly the same
but the stability boundaries predicted by the Galerkin method
are approximately twice as high as those predicted by the
Finite~difference method. It is to be expected that the
Galerkin method will lead to higher stability 1limits than
the use of an exact solution procedure. This can be explained
as follows. The instability mechanism is basically a feed-
back process. Consider the form of (6.3) assoclated with

standing waves in an annulus. This is

f o+ wh. + f. + 2e(fl£

1+ Wy 1 + f2f1) + 2ewnf.f, = O

2 1°2

.. * _ - ]/ 2-
£, + wf, + Uf, - ef,f; - %ewnf; = O. (6.14)



49

For clarity -the gas-dynamic nonlineérities will be neglected

to give

f. o+ wf

1 f

+ £, + 2ewnf

1 v 5y =0

12

ae . 2
+ + 4 - % = 0, .
f2 Efz ML2 aegpfl 0 , (6.15)
A one-term Galerkin solution would lead to the

equation

This would indicate unconditional stability. Instability

can arise only when the presence of the last term in (6.15b)
causes f2 to gfow and this then causes fl
of the last term in (6.15a). The growth of f

to grow because

, also produces
the growth of higher modes which in turn causes additional
growth of fl. The contributions of these higher modes are
neglected in a two-term Galerkin analysis and thus the energy
input due to unsteady burning is underestimated. For this
reason the Galerkin analysis will overestimate the stability
of the system. This overestimation will decrease as the
number of terms retained is increased. An example of this
can be seen by comparing the one~ and two-term analyses.

A one-term solution predicts that the system 1s always

stable. A two-term solution predicts the correct qualita-

tive behavior but overestimates the system's stability by
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roughly a faéééfﬁof two. It 1s to be expected that fufther
increasesliﬁ<accﬁracy can be obtained by keeping more terms
Wihrfhe>aséu%gd soiufiﬁn but that this will not seriously |
affect the quatitative prediction.

In Chapter 5, it was. found that equating dw/duf the
phenomenological and vaporization-limited combustion laws

at u? = 0 lead to the formula
n = 1/(ue2uﬁ), (6.16)

Assuming that the actual data can be fitted to a formula of

the form
n = C/(uezui) (6.17)

the data give in Table 3 provide an opportunity to estimate

C. The results are shown below.

C 1.89 2.47 - 3.09

It appears that a value of C = 2.5 would give accept-
able accuracy over this range of e.

For a given value of u, the n computed from (6.16)

L
will overestimate the burning rate. Thus it might be
thought that C should be less than unity. The stability

criterion was, however, based on the magnitude of the modal

amplitudes. Inspection of Tables 4 and 5 shows that the



51

vaporizationéiiﬁited combustion model involves the highér
modes to & gbeatér extent than does the phenomenological
combustion model. Thus,a given value of uj, can be associated
with lower individual modal amplifudes in the former case
than in the latter. These two éffects interact and calcuvla-

tion shows that C is greater than unity in this range of e.
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EUGICAL MODEL

TABLE 4

MODAL AMP
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Chapter 7

CONCLUSIONS

The primary objective of this study wsas the
development of a new analytical technique to be used in the
.solution of nonlinear velocity-senslitive combustion
instability problems. Such a method shduld be relatively
easy to apply and should redquire relatively little
computation time.

Ih an attempt to achieve this aim, the orthogonal
collocation method was investigated first. However, it was
found that the results were heavily dependént on the location
of the collocation points and characteristics of the
equations. Therefore, the method was rejected as unreliable.

Next, the Galerkin method, which has proved to be
very successful In analysis of the pressure sensitive
combustion instability, was considered. This method proved
to work very well. It was found that the pressure waveforms
exhibit a strong second harmonic distortion and a varilety
of behaviors are possible depending on the nature of the
combustion process and the parametric values I1involved.

Finally, a one-dimensional model provided further
insight into the problem by allowing a comparison of
Galerkin solutions with more exact finite-difference

computations.

5k
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Some méjbr~cdncluéions of this research are as follows.
(1) The forﬁ of,(2.33a) is somewhat insensitive to the
Specific aséumptions used to derive 1t. This 1s demonstrated
by the fact that Powell (1) developed an equation of a very
similar form using a different éet}of assumptions. (2) The
orthogonal collocation method is unsulted to solution of
problems of the type under discussion heré. (3) The Galerkin
method is well sulted to the solution of such problems. (4)
Stability boundaries and preSsure wave forms appear to be
highly dependent on the parameters of the problem (interac-
tion index, time delay, steady-state burning rate, etc.).
Furthermore ,there appears to be no clear pattern to the
computed results. (5) The bhenomenolbgical‘burning—rate law
employed in the majority of the work discussed predicts
results which are qualitatively similar to those assoclated
. With the vaporigzation-limited burning-rate law used by
previous investigators. The pheﬁomenclogical law, further-
more, can be used in conjunction with the Galerkin method
while the vaporization-limited law cannot. (6) The computer
programs developed in the course of this work can be
employed to determine stability boundaries and pressure
waveforms without the expenditure of excessive computer
time. This is important because the lack of clear trends
discussed above make an individual analysis of each

situation desirable.
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APPENDIX A

DERIVATION OF THE COEFFICIENTS

In this section, the ccefficients b,.,., C..,, and d.,
1J 1J id

appearing in chapter 3 and 5 are derived and their numerical

values are presented in Table 6, 7,and 8 respectively.

In chapter 3, for initial condition (3.7), one assumes

o

- y2 = . o
3reds = V20, mEOHm(r)cos(me)31n(2ollt).

By comparing coefficient yilelds

Ho(r) = %8,,(283,3% = (y=1)82,32 - 45,,7,T /7 + B33/r2)
| Hl(r) =0

Hy(r) = %8,1(28§,78 - (v-1)8§,7% - 48;13¢J1/r)

Hm(r) =0 form= 3, 4,...,

Then expanding ¢2 in a Fourier-Bessel series and expanding

Hm(r) in a Bessel seriles leads to

b

— 1 + 2 2
15 = 2s§jf0Hi(r)Ji(S r)rdr/{(S - i )Ji(sij)}

13

94



95

This integral”mﬁst,be computed numerically. For the sake
of brevity dhly the first five coefficients in each series
are calculated and'presented in Table 6.

Table 6

BESSEL SERIES COEFFICIENTS FOR ANALYICAL SOLUTION

n Pon Pop

0 1.11738-0.37246y

1 0.50462+40.37912y | 0.27181-1.09482y
> -0.09246-0.00802y | -0.11390-0.01110y
3 0.05019+0.00184y | 0.05479+0.00208y
1 ~0.03290-0.00067y | =0.03451-0.00071y
5 0.02375+0.00030y | 0.02451+0.00033y

In Chapter 5, equation (5.8) can be written as

¢ = fO¢O + f1¢1 + f2¢2 + g1¢3 + 82¢u (A"l)

where ¢O JO, ¢1 = chose, ¢2 = J2c0526

-
1

3 Jlsine, ¢4 = J281n26.

By substituting (A-1) into the governing equation (5.6),

yields

R = D(¢) (A-2)
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Where D is thé"ﬁoni£near differential operator of equation
(5.6). If CA—l)Vrepfesented the exact solution to (5.6), R
rvwould‘vaniSh.WiSihéé this is not the case R has a finite
value. The Galerkin procedure consists of making R orthog-

onal to-each of the ¢ifs. This leads to the equations
1 27
fofo R¢irdrd =0 1i=20,1,...,4 (A=3)

and a set of five second order differential equations are
generated. The angular part of integration can be performed
in closed form while the radial part of integration must Dbe

computed numerically and 1eads>to the integral

Q
i}

1 .

il

2 2 2vT2(a
where By 2Skl/{CSkl - k )JKCSkll}. CA—S)

The numerical values of Ci are listed in Table 7 for

y = 1.2. Also listed in this table are the functional forms

of Fi's. In writing these the notation
= 2 _ ' - 32 2 = -
Ry Sil(y l)J& + 8,4J/r - 12J,/r%, 1=0,1,2 (A-6)
is used. Similarly the numerical values of

d

i

1
1j = 84/ 81375 (83 rivdr (A=)



and functional forms of G

ij

's are listed in Table 8.
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COEFFICIENTS APPEARING IN

Table 7

EQUATIONS (5.9) vy

1.

2

F

0121 0 2

1 i
0 4,137 | Rodq + 28%17})2
2 0 1.042 | RyJ,/2 + 82,312+ J2/r2
3 0 |=0.208 | RpJ,/2 + S3,742 + 4J3/r2
I 1 [-1.939 | RyJ, + 2543811747}
5 1 |-2.312 | RyJ, + 28715777374
6 1 1.719 | RyJ,/2 + 8,,8,,J1J) + 23,7 /r?
T 1 1.483 | R,J,/2 + 8;,8,,71J} + 23,7,/r?
8 2 |-2.785 | RoJ, + 254,8,7947}
9 2 |-3.039 | R,J, + 28,,8,,3}7}
10 2 1.132 | RyJ,/2 + 82,712 - J2/r2
11 0 2.586 | S§1Tp2 |
12 0 0.480 | %(8%3:712 + J3/r2)
13 0 |-0.196 | 83,J452/2 + 2J%/r2
14 1 |-4.849 | 28, .5 3!
15 1 1.503 | 8,8 J1J) + 2J1J2/r2
16 | 2 |-0.576 | %(S2,312 - J2/r2)
17 2 |-3.481 | 25 __S__J'J!
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COEFFICIENTS APPEARING IN EQUATION (5.12)

Table 8

3| ay, G,

1| 1.000 | J¢(Sg1r)

2 | 1.293 | %33,712

3| 0.240 | %(S2,712 + J2/r2)

4 |-0.098 | 3(S3,712/2 + 2J2/r?)

5 1-0.176 | -%J3

6 | 0.061 | -xJ2

7 | 0.049 | %72

1| 1.000 J1(S11r)

2 |-1.212 | 84,S,,7471

3] 0.927 | %(81;8,,713) + 23,7,/r?)
0.165 | -J,3,

5 1-0.199 | -%J.7,

1| 1.000 J2(8,1r)

2 |-1.781 | §4,8,,7!9}

3 |-0.223 %(5%,3%2 = J2/r2)

b | 0.237 | =33,

5 |-0.175 | -%J%
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APPENDIX B

PROGRAM FOR STABILITY BOUNDARY CURVES
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SET LIST FREE

KIN-WING WONG JUN 30 1978
CIMBUSTION INSTABILITY

METHOD GALERKIN METHOO
THIS PROGRAM GENERATE THE STABILITY CURVE.

IMPUT INFORMATION
THE PHOGRAM USED THE FORMAY FREE INPUT OQUTPUT. A

CCMMA SERVES AS A DELIMITER AND ThE INPUT VARIABLES
AFE ENTER IN VYHE FOLLOWING ORDER

71 INITIAL TIME
TF FINAL TIME
DT STEP SIZE FOR TINE
WB BURNING RATE
TDELAY  DELAY TIME
El INITIAL EPS
EF FINAL EPS
DE STEP SIZE FOR EPS
DA ASSUME POSITION FOR N
FOsFD ARE THE INITIAL CONDITION MODIFIER AND

HAVING THE VALUE EITHER 1 OR O

ANOTHER SETS OF DATA CAN BE ENTER BY ENTERING
EI>EZF»DE>DA»FO AND FD.

CIMENSION DYC10)FO0(S),DF(5),G(10,500)»YC10)
CLMMOX EP> RKswB-EPANY

CCMMON /ZSLIST/S50,51,52

COCMMON /BLK1/C1sC25C3sChoC5-,C05072080oC9»C105C115C122
1,013-C14» Ci1s5»Cle»C1i7

LCGICAL PASS»GRON

CATA MAXITR,EPS/¢cCrel/

CATA PI1/73.14159/

READ(S»/7) TI»TFsDT+sHWB>TDELAY
PRINT«//» 71, TFsDTonBs TOELAY
TLELAY=PI«TOELAY

K=TDELAY/DT

Klz=K+1

If (K1.G7.5C0) GO T3 105

1F (KCLT.ICAND'NDFDEGQI) K=1
NETEP=(TF-TI)/DY

h=z10Q

HEALF=DT*s5

NFROB=0

READUS»/»END=959) EI»EF»DEsDAPFO»LCF
MROB=NPR(GB¢1



(g

i¢

24¢

3¢
4G

50

60

7¢C

8¢C
50
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FEREINY2//,NPERQY

FRINT =2//»FCsDF
MSTEP=(EF~EI)/DE

Ef=E1

1F (EP«LT.0) EP=,01
AkVY=DA

FASS=oFALSE,

CC 10C ISTEP =0»,MSTEP !
CC 80 ITR=1>MAXITR
EFANV=EP*ANY

IF (EPANV.EGC.CG) EPANY=ANY
LC 10 I=1,K

£C 10 J=1»N

GlJdriIld=0.

CC 20 I=1,N

Y(I)=C.

INITIAL CONDITION

Y(2)=FQ(1)3Y{4L)=FO(2)3Y(6)I=FO(333Y(8)=FO0L4I3;VY(L0)=FO
1(5)

YL 3=CF{1)=xCS03V(3)=DF(2)+513Y{S5)=DF(3)%S52
Y(7)=CF(4)*SL13Y{5)=DF(5)252

CALL DLYFUN (N»Y»GoKsEPS»K1)

=11

UL 40 I=1,NSTEP

caLL RKDELY(N’Tv?ﬂDYDDTpG!KnEF:&llOnHHALFrKl)
CL 30 J=2sN»2
IFCABS(Y(J))GT-2) GO TO 60
CONTINLVE

CONTINUE

GFOW=.FALSE.

1F (PASS) GO 10O 50
ANVDHWN=ANV

ARV=ANVSDA

GC TO 89

CONT INUE

AMVDHA=ANY

GC T30 70

CCNTINUE

PESS=e TRUE.

GF0W=TRUE «

ANVUP=ANY

CONTINLE

IF (CABSUANVUP=ANVDUHN).LT.EPSY GO T0 90
ANV=CANVUP # ANVD iN) %5
CONTINUE

CINTIMNUE

NNU=ANY

PRINT =//+,EP»NNULITR
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1GC

1¢s

11¢

569

OO0,

103

IF (ITR.EQMAXITR) PRINT //»%a2ea WARNING s+s THE
1 ANSWERMAY NOT CONVERGE®
EF=EP4DE
ANV=ANVUP /25 ANVDHN=0
CONTINUE
6C TO 9 ,
PFINT //>9DELAY TIME TOO LARGE ®,TDELAY
GC.TO 999
FFINT #//,?ILLEGAL DELAY FUNCTION®
s1oP
ERD
SUBROUTINE DIFFUN (T»YsDY)

TrIS SECTION PROVIDE A SET OF FIVE SECOND ORDER
EQUATIONS

WHERE
FO=Y(2) ' G1=Y(8)
Fl=Y(4) G2=Y(10)
F22Y(5)

CIMENSION Y(1C2,EY(10)

CCMMON EP» FKoWBSEPANY

COMMON s/SLIST/SC»S1,S2

CCHMON /BLK1/ C1eC25C35C4»C5,L0625C7,C82,C9»C10»C11-C12
1,013-Ci4» C15sC160C17

CY(2r=Y()
CY(1)==50%SC*Y(2)~EP2(CLlaY(2)*Y{1)aL2a(V{4)eY(3)+Y(8)
12Y(7)) L3 (YLD I*Y(9)+Y¥(6I*V(5]3)

CY(4)=Y(3)
BY(3)==51#S1aY(L)~EP*(CheY(232Y(3)2C52Y(L)2Y(1)} ¢

1 Cox(Y(8I2Y(9)4Y{4)eY(5))eCTa(Y{6)eY(3)4Y(10)*Y(7)))
EY(62=Y(5)
CY(S)==S2«S5Z%«Y(B)I-EP2(CBxY(2)2Y(5)¢LO+V(6)2Y(1)¢ C1l0%
1LYCBI&Y(T)=Y(4)2Y{3)))

LY(BY=Y(7)
CY(7)=z=51%51«Y(B8)-EP=(CL2aY(2)eY{7)4C5+Y(B8)*Y(1)+ (b~
1CYCA) Y (9)=Y(B)wY(S5))eLT2(Y(LO )Y (3)=Y(B)2Y{7)))
0YCigd=y(9)

CY(9)==52« 52*Y (10D =EP*{CB8xY(2)#Y{S5)+CI92Y(10)*Y(1) CiQ
Le(Y(B8Y*Y(3)Y(432Y(7)))

IF (RK.EQ. 2) RETURN

TFEIS PROVIDE THE COMBUSTION TERMS

CYCL1)=DYC1)=WBRCY(L1))+EPANVA(CIL12Y(2)*Y(2)4C122LY(k)*Y
104)e  Y(B)=Y(8))+ C13«L{Y (L0« X(iG)+Y{(6)xY(53)))
CY(3)=DY(3)=uBx (Y(I)+EPANVA(CI4*Y (20 Y (L) CLISH{Y(4)xY
1¢e)+ Y{8)*Y(1Q3)M)
CY(S)=DY(S5)~WBe(Y(5)IEPANVA(CL1O*(Y(4)2Y(4)=VY(B)*Y(8))
1 +C172Y(2)%Y(6)))
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CYC?)=DY(7 ) =WB (Y (TICEPANVR(CLAaY(2)2Y(B8)I+CLS*{Y{4)nY
1(10) Y€8¥=2Y(8))3)

0Y(9)=DV{9)~- HB*(Y{9)0EPANV*(C1?*Y{2)*Y(10)42*016*Y(Q)
12Y(81}))

RETURN

EAND

SLBROUTINE RKDELY(N»T»>YrDYsrHrGoKosEPS» #p HHALF »K 1)

THEIS SECTION PERFORM A FOURTH ORDER RUNGE=KUTTA METHOD
RITH TIME DELAY FUNCTION

CIMENSION Y(10)»D0YC10),Y2410)»Y3C10)»GC10,500)
CIMMON EP» AKsWBSEPANY
COUMMON /BLK1/ CleC2»C32C45C5s062C7»C85C95C105C115C12
1,C13,C14> C15-,C16,C17
CALL DIFFUN(T»Y»DY)
LC 10 I=1»N .
Y2CI)=Y(I) ¢+ HHALF#(DYC(I} * G(I1-1))
G{I»1)=(G(1,1)¢G(152))/2.
CONTINLE
T=T¢+HRALF
CiLL CIFFUN(T»YZ2,DY)
£C 20 I=1sN _
YICIX)=YC(I) ¢ HHALF«(DY(C(I) ¢ G{1-13)
Y2(Id)= Y2<(I) % 2.#Y3{])
CALL DIFFUNT T»Y3-0Y)
EC 40 I=1»N
YI(I)=Y(I) + He(DY(I) ¢ G(I»1))
IF{X.LT.1) GO TO 40
CC 30 Jd=1i,K
GUI»Jdl=G(IsrJ+l)
Y2CI)=y2(l) % Y3(1)
Y=TeHHALF
CéLL CIFFUN (T »Y3,DY)
LC 50 I=1»N
YCID) = (Y2(I) = Y(I) ¢ HHALFe(DYKI) + G(I»1)))/3.
CONTINUE
EXTRY DLYFUN (N»Y»GsKrEPS»K1)

TEIS GIVES THE FCRM OF DELAY FUNCTION G

IF (X«LT.1) RETUGRN
IF (RR«EQe2) RETLRN

G(1l,K1)= HB = EPANV'(Cll*Y(Z)*Y(Z)*ClZ*(Y(#)*Y
1C6)+ Y(B)*Y(8))+ CLA« (Y1 CI*xY(10)+Y(HB)I*Y(6)))
C(3,K1)= WE* EPANV*(CL14%Y(2)* Y(4IHCLSa (YL 4) =Y

1(e)+ Y(8)i»Y(10)))

G(S,KI)=HWB «EPANVA(CLEX(Y (L) *Y(4)=Y(8)%xY(B))+CLT»Y(2)*Y
1(€))

G(7,K1)= W8 « EPANVA(C14aY(2)«Y(8)4CIS*(Y(4)rY
1(10) Y(8)xY(6)))
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G(I»K1)=WB*EPANV#(CL17#Y(2)%Y{10)424C16*Y(4)eY(8))

RETURN
“END o

BLOCK DATA

COMMON /7BLK1/C1oC2»sC3sChsCS5»C6sC7»C85C99C10,C11»C12
1,C13»,C14» Ci%,C16»,C17

CLCMMON /SLIST/50+51552

CATA S0»51»82/3.83171-,1.84118,3.05424/

CATA C1sC25C3sCa/4.1373,1.04235=,20845=1.9394/

CATA CS5eC60C72C8sC9 /-223123-,1.7168751.4828»"2.785»
1-31.0388/

CATA C10,C115C12+C13/1.1318+,2.586+-480»=.196/

CATA Cl4,C25oC165C177/-2.42432128534445,=447»~3.481/

END



APPENDIX C

PROGRAM FOR MODAL AMPLITUDE AND PRESSURE
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$SET LISTUTOBIND

58IND = FRQOM #FORTLIB/= FREE

FILE 1(KINC=DISKsMAXRECSIZE=15,BLOCKSIZE=420»AREAS=4
1»AREASIZE=1400,FILETYPE=7)

KIN=WING WONG JUN 30 1978
CCMBUSTION INSTABILITY

METHOD: THIS PRCGRAM USED THE GALERKIN METHOD 7O
GENERATE FIVE SECOND ORDER DIFFERENTIAL EQUATIONS.
A FOURTH ORDER RUNGE-KUTTA METHOD IS USED 70 SOLVE
THE RESULTING EQUATIONS.

THE PROGRAM GIVES THE MODAL AMPLITUDE AND THE PERTUBED
PRESSURE IN GRAPHICAL FORM.

THZRE ARE THO TYPES OF INPUT DATAS. THE FIRST SET OF
INPUT DATA USED FORMAT FREE INPUT. A COMMA SERVES
AS A DELINITER AND THE DATA ENTER AS FOLLOw:

TI INITIAL TIME

TF FINAL TIME

DT STEP SIZE FOR TIME

NP PRINT FREQUENCY

NDF 1 FOR THIZ DELAY TIME APPROCHING O
0 OTHERWISE

IGAS 1 FOR GAS=-DYNAMIC TERMS
0 OTHERwWISE

FO» INITIAL CONDITION MODIFIER

DF tITHER 1 OR O

R RADIUS OF THE CYLINDER

THE STZCOND SET OF DATA USED THE NAMELIST (LIST)
INPUT QUTPUT OPTION. THE DATA CAN BE ENTERED IN
ANY ORDER. HCWEVER THE FOLLOWING DATA MULST BE
PROVIDED INITVIALLY.

TOELAY DELAY TIME IN MULTIPLE OF PI
Ep ORDER PARMETER
W8 STEADY BURNING RATE
ANV INTERACTION PARMETER
PLOT T FOR PRESSURE PLOT
f OTHEFWISE

IF PLOY IS TRUE» ONE MORE DATA (NUMPT) IS NEEODED o
PROVIDE THE NUMBER OF POINT WITHIN O AND 2+PI.

ﬂﬁﬁﬁﬁﬁﬁﬂ(3ﬁnﬂ()(’)r’ﬂhﬁﬂﬁﬁf)ﬂﬁOK‘)(‘?C’)(“)F7O(')(’70 OO0

CIMENSION XX(100),YY(1C0),DY(10)sP{5)sFO0(5)»DF(5)»G
1¢10,5C0)»Y(10)

CCMMION EP» IGAS, RKs WB» EPANV

CCMMON /SLIST/SC»S1»S52

CCMMON /8LK1/ C1,C2,C3+C4»C5,C6+C7»C8,C9»C10,C11,C12
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999

30

10

4C

1,C135C14, C15,C165C17

COMMON /BLK2/C02,C03sC04»C05,C06sC07»C12P+C13P»C14P
1,C15P>» ‘ C22,C23,C245C25,GAHA

COMMON /BLK3/ BUQ»BJ1,BJ2,C0S50,C0S520Qs SINQ»SIN2Q
OATA PI/3.14159/

LCGICAL PLQT .

NAMELIST /ZLIST/7 TDELAY,CP»¥WB» ANV,PLOT
READ(S55/) TI»TF,DTsNPrNDF2»IGAS»FO»0F2R
PRINT #//+T1,7F sDTsNPsNDF

IF (IGAS.EQ.0) PRINT //,*GAS CYNAMIC TERM IS OFF?
PRINT %//,FQ»DF»R

EFS=1.E-6

CALL BESJ(SO*R,0,8J0,EPS»IER)

CALL BESJ(S1«R»1,BJ1»EPS»IER)

CALL BESJ(S2%R»2,BJ2,EPS»IER)
READ(S,LIST»END= 99)

REWIND 1

TCLY=PI*TDELAY

EFANV=EP=ANY

IF (EPANVeEQ.0) EPANV=ANY
WRITE(6,LIST)

N=10

HHALF= DT*.S

K=TDLY/DT

Kl=K41 .

IF (K1 .G7. 500) GO Y0 500

IF (Kol T2l .AND.NDF.EQe1) K=1

0C 30 I=1,K

CL 30 J=1,N

G(J’I)::O.

D8 10 I=1sN

Y{I)=q.

INITIAL CONDITION

T=71
YC2)=FO0C1)3Y(A)=FOC2)3Y(6)=FO(3)I3VY(8)=FO0(4)3Y(10)=FO
1(3)

Y(1)=DF(1)=S05Y(3)=DF(2)*S13Y(S)=0F(33*x52
Y(7)=DFCa) «S13Y{9)=DF(5)*S2

NSTEP=(TF~TI)/DT

IF (.NOT.PLOT) GO 7O 40

CALL PRESUE(YsP)

RRITECL) TP

CONTINUE

PRINY //»"FUNCTIQONT

WRITE(E6s100) T»(Y(I)»1=2,N»2)

CONTINUE

CALL DLYFUN (N»Y»GrKrEPS»K1)

GC 20 I=1,NSTEP

CALL ﬂKDELY(NrT;YvDY’DTvGrKoEP; 2400 HHALF »K1)
OC 55 J=2sN»2
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IFCABSIY(J)).LT.2) GO YO 55
RE=2 ‘
CGNTINUE
IF (MODC(I>NPJY«NELD) GD TO 20
IF (.NOT.PLOT) GO TO 60
CALL PRESUE(Y»P)
WRITE(L) T»P
ARITE(62,100) Ts(Y(JI»J=2sN»r2)
CONTINUE
CCNTINUE
IF (RK.GY.0) PRINT /77»%UNSTABLE?
If (LNOT.PLOT) GO TO 70
ENDFILE 1
REWINC 1
PRINT //»'PRESSURE?
READ{S5»/) NUNMPT
DE=P I 4«2, /7NUMPT
LM=NUMPT+ 1
TEMP=C3XX(1)=03
LC 75 I=2,NUM
TEMP=TEMP+ DA
XXCI)=TEMP
READ(1,END=70) T,P
PRINY /7/7»7"TINE= "7
SUMY=C.
0C 80 I=1, NUHM
Qe=XX(I)
YYTI)=s =GAMA®(P({1)2P(2)*C0SCQQIEP(3)=C0S(22QQI4P{(4H)
1#SINCGQ)Y+ P(5)#SIN{2=QQ))
SUMY=SUMY2YY(I)
CONTINUE
IF (SUMYJNE.DO.) CALL PLOTZ2D(XX»YY>»NUM»1020,100)
60 70 98
CCNTINUE
RK=0
GG 19 999
PRINT /7, TLLEGAL DELAY FUNCTION?
GC 70 99
PRINT «//,*DELAY TIME TDO LARGE®
S10P
FCRMAT (X»B8E12.5)
FORMAT(13X»7E12.5)
£ND
SUBROUTINE DIFFUN (T»Y»DY)
CIMENSION Y(1G)»DY(10)
CCMMON EP-»IGAS» RKsHWB,EPANY
CCMMON /SLIST/SG»S51»52
CCHMMON /BLK1/ C1»C2»C3,C4r»CS5»C6,C75C85C9»C105C115C12
1»C13,C14» C15,C1i6,C17

Cyt2ry=y(1)
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CY(1)==S0%S0«Y(2)=EP«IGAS#(CL#Y{L2)xYL1)4C22(Y(L)aY(3)
1+Y(3Y®Y(7)) FCI«(YCL10)*Y(IIHYL(HI*Y(S)))
oOves2=v(3y -~
CY(3)==51a351«Y(L)=EP*IGAS*(CL*Y(2)xY(3)+CO*Y(4)*Y (1) ¢
1 Cow(Y{BI#Y(9 )Y (L)Y (S))4+CT#{YL(HIXY(3)eYL10)»Y
217YM)
DY(5)=Y(5)
DY(5)==52+S24Y(6)=EP*IGAS«(CBaY(2)«Y(5)#C92Y(H)*Y(])+
1 ClOo«(Y{83«Y(7)=Y{4)=Y(3)))
DY(RI=Y(7) :
CYCT7)==S1«312Y{R3)=EP*IGAS*(CL*Y{2)*Y(TI4CSeY(3)xY{1)+
1 CoOxLY (L)Y LG)=YLBI*Y(S)I4CT*# {YL10)*xY{(3)=YL(B)I*YL(7)I))
DY(10)=Y(9)
DY(9)==52%524Y(10)~EP*IGAS*(C82Y(2)*Y(9)+C92Y(10)2Y(1)
1 ClOx(Y(B))*Y(3)aYL4d=Y(T)))
IF (RK.EQe 2) RETURN ,
CY(1)=DY(L ) =WHB«(YLL)YEPANY2(C1L*Y{2)2Y{2)4CL2*{Y (4 )*Y
104)e Y(8)=Y(8))+ Ci3+(Y(1032YL(L10)+Y{(B)I)xY(H))))
CY(3)=DY(3)=HB& {Y{3ILEPANY *(C 14#Y 2) YL L)+ CI15*L Y{ 4 )Y
1¢€)+ Y(8Y#Y({1033 M)
CY(5)=DY(S5)=WB* {Y{S)Y+EPANVx(CI6={Y( &I *Y{4)=Y(B)*Y(8))
1 +C17=Y{2)YaY¥(HI))
DYL(T)I=DY(7 )=uBe{ Y{T7ICEPANV#{CLl42Y(2)2xY{BIHCIS*(Y(4)*Y
1C10)  Y(8y=~Y{(&})2))
CY(I)=DY(I )=HBx (Y(IILEPANV*(CLT7*Y(2)aY{10)e2xCL02Y(4)
1xY(8)))
RETURN
END
SUBROUTINE RKDELYI{N»T»Y,DY>HrGeKeZPSs #s HHALF»K1)
CIMENSION Y(13),0Y{10)»Y2{10),Y3(10),G{105»500)
CCHMMON EP» IGAS» RK»WB»EPANY
CCMMON /BLK1/ Cl,C2sC3sC4sC5+CH2C7»CB8»C9»C10,C11,5C12
1,C135C1l4> Cis5,C1l6sC17
CALL DIFFUN(T2Y,DY)
0C 1 I=1.,N
Y2CI)=YC(I) 4+ HHALF*(DY(I) + G{(I»1))
G(I»1)=(GCI,1)4G(1»2))/2
CCNTINUE
T=T+HHALF
CALL DIFFUN(T»Y2,0Y)
00 2 I=1»,N
Y3CId=Y(I) + HHALF*(DY(I) + G(I-1))
Y2(I)= Y2(I) # 2#Y3(I)
CALL DIFFUNC T,Y3sDY)
DC 3 I=1,N
Y3CID)=YC(I) + H&(DYCI) + G(1»1))
IF(X.LT41) GO TO 3
BC 10 J=1,K
G I,J)=G(15J+1)
Y2CI)=Y2(1) + Y3(I)
T=T+HHALF
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CALL CIFFUN (T. »Y3,0Y)

0C & 1=1,N

YD) =(Y2C1) = YCI) ¢+ HHALF#*(DY(I) ¢ G(I’l)))/3.
CCNTINUE

ENTRY DLYFUN (N>Y»sGrKsEPS»K1)

IF (K.LT<1) RETURN

IF (RK.EQ.2) RETURN

G(i1r,K1)= WB* EPANV=(C11#Y(2)%Y(2)4C122(Y(4)wY
1(6)+  Y(B)=Y(8))+ C13»x{Y(L1Od)*Y(10)2Y(H)I2Y(5)))
G(3»R1i)= W8 = EPANVA(C142Y{(2)xY(4)+C15s(Y (L )2Y

1(€)+ Y(8)*Y(10)))

G{(5,K1)= HB*EPANV*(CI&*(Y(Q)*Y(Q)‘Y(8)*Y(B))+C1?*Y(Z)*Y
1(6))

G(7.K13= WB* EPANV*(CL4aY(2)*Y(8)4CAS*(Y{4) Y
1(10) Y(3)=Y(56)))
G(I»K1)=WB*EPANV#(C17«Y{2)*Y(10)42*C16%Y{4&)*Y(8))
RETURN

END

SUBROUTINE PRESUE(YSP)

THIS SECTION PERFORM THE PRESSURE CALCULATION

DIMENSION Y(10)»P(5)

CCMMON EP»IGAS» RK»WB»EPANY

CCMMON /BLK2/C02,C03,C04,C05,C06»C07»C12P»C13P»C14P
1-C15P, C225C23,C24 »C25,GAMA

CCMMON /BLX3/BJ0,BJU1,BJ2sC052,C052Q0,SINQ»SIN2Q
DFO=Y(1);DF1=Y{3230F2=Y(5)3DG1=Y(7)5D62=Y(9)

FO=Y(2)3 Fl=Y(4)3 F2=Y(6)3 G1=Y(3); G2=Y{(10)
PC1)=BJ0*(DFO+EP*(CO2«FO*FO+CO3*(F1eF1+Gl+GL)¢C04*(F2
1#F2¢G2%52) +CO5«DFO«DFO+CO06*#(DF1=«DF1¢DG1*DG1)+CO7 ~

2(CF2x0F 2+ DG2%DG23))
P(2)=8J1«(DFi+EP={C12P#FC*F1¢C13Px{F1»F2+G1#G2)4C14P
1+DF0*«DF 14 CIS5P=(DF1+«DF24DG1%DG2)))
P(3)=BJ2«(DF2+4EP*{(C22+FO*F2+C23*(F1«F1-GiwG1)4C24*DFO
1:0F2+ C25«(DF1«DF1-DG1*DG1)))
PU4)=B8J1*(DG1+EP*{(CI2P*FO*GI1+C13P2(F1+G2-G1l*F2)eC1l4P
1*LFO«DG1+ C15Px(DF1+«DG2-DF22DG1)3)
P(5)=BJ2¥{DG2+EP*{C22#FOQ*G242 . *C23+F1#«G1le C24*DFO*DG2¢
1 2.%C25*DF1+DG1))

RETURN

END

BLOCK DATA

CCMMON /BLK1/ C1,C2,C3,C4»C5,C5»C7»CB»C9»C10-C115C12
1,013,C14» C15,C16.,C17

COMMON /SLIST/S50»51»52

CCMMON /BLKZ/COZ;CGS»CO&:COS»COS:COT»CIZP;CISP:Cth
1,C15P, C22,C23,C24,C25,GAMA

CATA S0»,51552/3.83171,1.84113,3.05424/

DATA C1,C2,C3sC4/0a1373,1.0423s=.2084,~1.9394/

DATA C5»C6»C75C8,C9 /=2.3123s1.718751.4828,-2.7855
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1-3.03¢88/ :
DATA C10,C112C125C13/1.1318+2.5865.480s=.196/
DATA Cil4»C15sC16,C17/7=2.424351a85344565rab4T79»=3.081/
GATA C02,C03,C045C05»C065C07/1429305042400,~20982»
1=.1762 7 5.0607,.0494/C12P»C13P»C14P»C15P/~1.2121

2949267516515 ~.1987/C22+,C23,C24»C25/~1.7406»~.2235
3re23719=a1754/

DATA GAMA/Z1.2/
END
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