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FOREWORD 

This report summarizes a portion of the work done for NASA 

Grant NGR 43-003-015. It is the Ph.D. research of the first author, 

Kin-Wing Wong. John Peddieson was the advisor; M. Ventrice was 

the principal investigator of the grant. 
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Chapter 1 

INTRODUCTION 

The steady operation of a liquid-propellant rocket 

engine is often disturbed by the occurrence of large 

pressure oscillations in the combustion chamber. These 

oscillations~ which can lead to damage to or failure of the 

motor~ are caused by amplification of initially small 

acoustic disturbances due to the energy released by unsteady 

burning of the propellant. This is usually referred to as 

combustion instability. It is generaliy accepted that 

unsteady burning can be correlated with the gas pressure 

(pressure sensitivity) and the magnitude of velocity of the 

fuel drops relative to the gas (velocity sensitivity). 

This dissertation is concerned with mathematical modeling 

of velocity-sensitive combustion instability in liquid­

propellant rocket motors. 

A survey of literature dealing with mathematical 

modeling of pressure-sensitive combustion instability can 

be found in the dissertation of Powell (1). One of the 

first papers to examine nonlinear effects is that of Maslen 

and Moore (2) who considered only the fluid mechanical 

effects in a circular cylinder. The paper by Priem and 

Guentert (3) is one of the first to include the effect of 

velocity sensitivity. They discussed combustion instability 

1 



in a thin annulus. 

Since direct numerical solution of the governing 

equations is very time consuming and difficult to extract 

information from, many investigators such as Powell and 

Zinn (4), Lores and Zinn (5), and Peddiesion, Ventrice, and 

Purdy (6) have employed methods of weighted residuals such 

as Galerkin and collocation methods. 

2 

Previous applications of the method of weighted 

residuals to combustion-instability problems have dealt with 

pressure-sensitive combustion. In this work this method will 

be extended to handle situations in which velocity sensitivity 

is important. Both the collocation and Galerkin methods will 

be considered. Stability boundaries and pressure wave forms 

will be computed numerically for transverse motion in a 

cylindrical combustion chamber. In addition a finite­

difference method will be used to solve the one-dimensional 

problem of transverse motion in a thin annular chamber. 

These results will be compared with those obtained by a 

method of weighted residuals solution of the same problem 

in order to assess the accuracy of the approximate solution. 

In this study, attempts to solve the velocity­

sensitive combustion instability problem by various 

numerical methods are considered. The governing equations 

that describe the flow conditions inside liquid-propellant 

rocket motors will be derived in Chapter Two. An analytical 

solution is obtained in Chapter Three for nonlinear acoustic 

motion in a cylindrical chamber. The collocation method is 



applied to combus~ion instability in a cylindrical chamber 

in Chapter Four. In Chapter Five, the Galerkin method is 

applied to the same problem. In Chapter Six, attention is 

given to the analysis of combustion instability in a thin 

annulus. This allows the comparison of the Galerkin method 

and a finite-difference solution in a one-dimensioned 

context. Finally, a summary of this research is contained 

in Chapter Seven. 
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Chapter 2 

COMBUSTOR EQUATIONS 

It is the objective of the discussion presented in 

this chapter to analyze the combustor conservation equations 

and reduce them to a tractable system. The simplification 

will be done in such a marmer that will allow the resulting 

equations to retain both the mathematical and physical 

essence of the original problem. 

Under the assumptions that the usual balance 

principles of mechanics can be applied separately to each 

phase, the following equations are derived by applying the 

laws of conservation of mass, momentum, and energy to an 

arbitrary stationary control volume. 

Conservation of mass of the fluid requires that the 

time rate of change of mass in a volume v equals the rate 

at which mass enters v plus the rate at which mass is 

generated inside v and can be expressed as follows (for a 

fixed volume): 

* 
*-+ -+ * f pU'nds + f wdv 

s v 

-+ * where n is an outward unit vector normal to s, p is the 

density of fluid, ~ is the velocity of fluid, : is the rate 

* at which mass is generated per unit volume, and t is the time. 
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Using the divergence theorm and the arbitrariness of 

the stationary control volume, yields 

(2.1) 

Similarly, the balance law of mass for fuel phase is 

* * dt*~L + V'(~L1iL) * = - w (2.2) 

* * + where P
L 

is the density of fuel and u
L 

is the velocity of 

fuel. 

The balance law of linear momentum states that the 

rate of change of linear momentum in the volume v equals 

the rate of entry of linear momentum across the surface s 

plus the sum of all external forces ,acting on the volume v 

and can be expressed as 

* *+ 
d *! pudv 

t v 

* 

*+ ! Pnds 
s 

where F is the force per unit volume applied to the gas by 

* the fuel and P is the pressure of the gas. 

Using the same argument, the equation becomes 

(2.3) 

Similarly, the balance of momentum for the fuel phase is 



E 

* - - F (2.4) 

Substituting (2.1) in (2.3) yields 

* * * **. 
p(at*~ + ~.~) = 

Similarly for the fuel phase 

* * :;;. * ~ 
1" + w (uL 

* ** ~u) * - vP. 

* ~ 
- - F. 

(2.5) 

(2.6) 

The law of conservation of energy states that the 

rate of change of energy in a volume v equals the rate at 

which energy enters the volume v plus the rate at which 

energy is generated internally plus the rate at which work 

is done by external forces and gives 

* f (Prt) .Uds 
s 

* * * * where e + Yzu 2 is the energy of gas per unit volume, e
L 

+ Yzut 

* is the energy, of fuel per unit volume, and Q is the heat 

transfer rate from the fuel to the gas. 

Following the same argument, the equation becomes 



. * .; *+ 
-1/ • (Pu) 
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(2.6) 

Similarly, the balance of energy for the fuel phase becomes 

= -
* * F.\i 

L 
* Q. 

Substituting (2.l), (2.2) into (2.6), (2.7) respectively 

yields 

* * F.\i 

* * -+ ,!+, = - 1/, I...t'U) 

* * * (e + ~u2» + Q 

* 
L 

Q. 

(2.8) 

It is more convenient to work with the thermal energy 

equation for each phase. For gas phase this is done by 



* 
8 

dotting U into (2.3) to obtain the mechanical energy 

equation and subtracting this from (2.8) and using (2.1) to 

get 

* * * * * ~D§/Dt *= PD /Dt * (lOg~) + F. (i!L ~ * * * li) + Q + w((e
L 

- e) 

*2 *2 * * * * * 
+ (uL - u )/2 + ~.(~ - ~L) - P/p) 

In a similar way, it can be shown that 

* * * * p D e /Dt = - Q 
L L L 

* * * * 
where D /Dt* = 0t*+ i!.V, DL /Dt* = o + U 'V are the 

t* L 

comoving derivatives for each phase. 

For simplicity, gas phase viscosity and heat 

(2.10) 

(2.11) 

conduction were neglected in the previous analysis. Since 

these produce dissipation, equations derived in this way 

should give a conservative estimate of the stability of the 

system. 

It appears {see, for instance, Powell (l)} that the 

primary effect of the burning fuel is that of interphase 

mass transfer. Thus, the balance laws for mass, momentum, 

and thermal energy for each phase will be further 

simplified by neglecting all interphase transfer terms 

other than those appearing in the mass-balance equations. 



This leads to the system of equations: 

* * * * *:± -+ * Dp/Dt + pV'u ~ W 

* ~D1VDt * 

* - - w 

** VP 

* * * * ~CVDT/Dt* = P(D /Dt )(logp) 

9 

* * * p C DT /Dt = 0 
L vL L 

(2.12) 

* * * * where the constitutive equations e = CvT and e L = CvLTL 

* have been used (with T denoting temperature and Cv specific 

heat). The equation of state for an ideal gas is 

* * * P = pRT 

where R is the gas constant. 

(2.13) 

The governing equations will now be nondimensionalized 

with respect to a steady reference state, which will be 

denoted by the subscript urll. All lengths will be referred 

to some characteristic length Lr , such as the chamber radius. 

The characteristic velocity is the speed of sound at the 
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reference state, and tbe characteris-tic timE is the wave 

travel time Lr/Cr · The dimensionless quantities are 

defined below: 

* -+ -+ 
/Lr ~ Lrt/Cr 'V ='V = 

* * -+ -+ -+ C -+ u = Cru u - rUL L-

* * P = PrP PL= PrPL 

* * P = PrP w = PrCrw/Lr 

* * 2 2 
T = CrT/C yR) TL= CrTL/(yR) 

2 2 
C = r yPr/Pr P = r PrCr/ y . 

The dimensionless conservation equations become 

Continuity 

-+ -+ Dp/Dt + p'V·U = w 

(2.14) 

I,Tomentum 

Dll/Dt = - VP/y 
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(2.15) 

Energy 

bT/Dt :::; (I' - l)P (D /Dt) (logp) 

DTL/Dt = 0 (2.16) 

Equation of state 

P = pT. (2.17) 

By solving (2.16a) one obtains 

T = 1'-1 P • (2.18) 

Equation (2.17) then becomes 

P = pl'. (2.l9) 

Substituting (2.19) to (2.15a) p~oduces 

+ + 1'-1 ) Du/Dt = - IV' ( P ) / (1'- 1 . (2.20) 

Taking the curl on both sides of equation (2.20) gives 

v X Dlr/Dt = 0 . (2.21) 

It can be shown using vector identity that (2.21) 

leads to the following equation which describes the 

generation of the vorticity n = V X ~ in the flow. 

(2.22) 
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This equation describes the variation of vorticity 

for a given fluid particle. Suppose that at t = 0, this 

particle has zero vorticity and at the point where it is 

located the velocity gradients are bounded. Then by (2.22) 

the pate of change of vorticity of the particle vanishes. 

It follows from this that the vorticity will be zero at the 

next instant. By induction, it is seen that as long as the 

velocity gradients are bounded at each point occupied by the 

particle, its vorticity will remain zero for all time. If 

all fluid particles in the system have zero vorticity at 

t = 0, the vorticity will vanish at all points in the flow 

field and for all t ~O, therefore, as long as the velocity 

gradients are bounded through the flow field ( as they would 

not be, for example, at a shock wave). Assuming this 

condition to be satisfied implies irrotational flow (~ = 0) 

and allows the definition of a velocity potential ~ defined 

such that 

+ + 
u = v~ 

Substituting (2.23) to (2.20) gives 

(2.23) 

Since the velocity is the space derivative of ~, it 

is permissible to add to ~ any arbitrary function of time. 

This is equivalent to a statement that F(t) is arbitrary. 

For future convenience F(t) was selected to be l/(y-l). 

This choice yields 
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Y-l ()( + ±) P = 1 - y-l at~ + ~V~·v~ . (2.24) 

Substituting (2.24) into (2.14a), (2.18) and (2.19) gives 

+ + + + 
a ~ - v2~(1 - (y-1)(a ~ + ~v~·v~» + V~.V(2at~ 
tt t 

+ +) ( ()( + +» (y-2)/(y-l)w= + ~v~·v~ + 1 - y-l at~ + ~v~·V~ 0 

P = (1 - (y-l)(a ~ + ~v~.v¢»Y/(Y-l). 
t 

This system of equations contains nonlinear gas 

dynamics terms of all orders. 

(2.25) 

Due to their highly nonlinear and mathematically 

complicated nature, the system of equations obtained above 

cannot be solved exactly. In order to obtain simpler, but 

approximate, equations which can be more easily analyzed, all 

nonlinear terms of order higher than two are neglected. 

This has the effect of retaining the most important 

nonlinear effect, while greatly simplifying the form of the 

equations. The system of equations then becomes 
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(2.26) 

For a cylindrical combustor, it is desired to 

investigate the stability of the steady-state solution of 

(2.26d). To do this the steady-state solution must be 

obtained. It is assumed that the steady-state burning rate 

depends on z only (w = ~(z)) and that the flow is axial 

(~ = t(z)). Thus (2.26) simplifies to 

du/dz = w (u = dt!d z) 

(2.27) 

It can be seen from (2.27) that the deViations of the 

steady-state solution from a uniform state are O(~2). To 

allow a discussion of orders of magnitude of various terms 

define the ordering parmeter E such that 

E = max (u). (2.28) 
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This implies that 

u = O(E), w = O(E), 1 = O(E). (2.29) 

The stability analysis will now be carried out by assuming 

that 

~ = fez) + E~' (x,y,z,t) 

w = w(z) + E 2W'(X,y,z,t) 

where ~' = 0(1), w, = 0(1). 

(2.30) 

(2.31) 

It is being assumed that the unsteady perturbation of the 

velocity potential from the steady state is of the same 

order of magnitude as the deviation of the steady state 

from a uniform state and that the unsteady burning rate 

perturbation is of the same order as the unsteady nonlinear 

gas-dynamic terms. The first assumption is necessary to 

be consistent with the quadratic approximation inherent in 

(2 .. 26) while the second eliminates nonlinear te~ms involving 

products of w, and ~'. These assumptions are made for 

simplicity and are not meant to imply that other orders of 

magnitude for the various terms are impossible or even 

unlikely. The objective of this work is to pick one case 

which is mathematically tractable and subject it to extensive 

anal~sis. While it is felt that most of the features of the 

stability problem will be reflected by this case, it is 

recognized that many other possibilities remain to be 

explored. 
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substituting (2.30) and 

p = £ + ep', P = P + eP', T = T + eT' (2. 32 ) 

{p' = 0(1), pI = 0(1), T' = O(l)} into (2.26),retaining all 

terms of 0(e 3 ) or lower,and dividing all resulting equations 

by E leads to 

() cp' - 'iJ 2 </>' + 2u () <1>' + w d </>' tt - zt - t 

+ + 2 pI = _ Y{d </>' + ud </>' + ~E('iJ</>"'iJ</>' - (d </>') )} 
t - z t 

The equations derived from this perturbation analysis 

are expected to be valid as long as the amplitudes of the 

perturbation quantities are finite and smaller than unity. 

For simplicity the primes appearing in the above 

equations will be dropped and it will be understood that 

unprimed quantities are associated with perturbation from 

the steady state. 



Chapter 3 

ANALYTICAL SOLUTION OF WAVE EQUATION 

In this chapter a second-order solution for the 

velocity potential associated with transverse acoustic wave 

motion of an ideal gas in a circular cylinder is obtained. 

The solution is found in the form of a Fourier-Bessel 

series. This provides a standard to compare the proposed 

methods which will be discussed in the following chapters. 

The governing equation is obtained from (2.33a) by 

assumption that the burning rate function is absent. Then 

the equation reduces to the second-order form of the one 

discussed by Maslen and Moore (2) for pure ga.s motion in a 

cylinder. 

(3.1) 

For a cylinder of radius. Lr , a set of cylindrical 

polar coordinates (r,8,z) with the z axis being coincident 

with the cylinder's axis of symmetry is used. In seeking 

a second-order transverse wave solution, one assumes 

1> = 1> (r,8,t) + E1> (r,8,t) + •.•. (3.2) 
1 2 

Substituting (3.2) into (3.1) and (2.33) leads to 

17 
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(3.3) 

P = 1 + EP + E2p (3.4) 
1 2 

where PI = - yo ~ 
t l' 

U 2 = (0 ~ ) 2 + (a e ~ /r) 2, (3.6) 
1 r 1 1 

Three different cases are discussed below. For the 

initial conditions 

~(r,e,O) = J (s r)cose, 0t~(r,e,O) = 0 
1 11 

the solution of C3.3a) is 

~ = J (S r)cosecos(S t), 
1 1 11 11 

Substituting this equation to (3.3b) produces 

att¢2-v2~2=(bOO+ mla n~1 Jm(Smnr)cos(me))sinC2s1
1
t) 

mil 

where J is used to denote an n'th order Bessel function of 
n 

the first kind, Smn is used to denote the m'th root of 

the equation J' = 0, and a prime indicates differentiation 
n 



with respect to the argument of the Bessel f mction. The 

coefficients b are integrals of Bessel functions which mn 

must be computed numerically. The details of this 

calcuation are discussed in appendix A. 

Solving (3.8) one obtains 

~ = (b /(4S2 ) )(2S t - sin(2S t)) 
2 00 11 11 11 

2 00 

+ l: l: (b /(S2 - 4S2 ))J (Smnr)cos(me)(sin(2S11t) 
m=o n=l mn mn 11 m 
mjil 

- (2S /S )sin(Smnt)). 
11 mn 

The other two solutions to be discussed subsequently are 

found in the same way. For the initial conditions 

19 

~(r,e,O) = 0, at~(r,e,O) = S J (S r)cose 
11 1 11 

(3.10) 

it is found that 

~1 = J (S r)cos8sin(S t) (3.11) 
1 11 11 

and that ~2 is given by the negative of (3.9). For the 

initial conditions 

~ (r ,8 ,0) 

dt ~ (r ,8 ,0 ) 

the solution is 

= J (S r)cos8, 
1 11 

= S J (S r)sin8 
11 1 11 

(3.12 ) 
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and 1j>2 

It can be seen that for these initial conditions Ij>l 

represents a spinning wave but ~l + €~2 does not. Some 

typical results for the pressure functions P l and P2 were 

computed using the solutions for initial conditions (3.7) 

(labeled standing wave) and initial conditions (3.12) 

(labeled traveling wave) for r = 1, 6 = 0, and y = 1.2. 

These data are presented graphically in Figure 1. For 

these computations the series expansions were terminated at 

n = 5. There is virtually no difference between the results 

for n = 4 and n = 5, and even the results for n = 1 provide 

a reasonably accurate solution. 

The results discussed above were used to check the 

numerical calculations to be discussed in the next two chap-

terse These results generalize those of Maslen and Moore (2) 

to initial conditions which do not lead to periodic solutions. 



Chapter 4 

COLLOCATION 

In previous investigations of velocity-sensitive 

combustion instability {see, for instance, (6) and the 

references therein} the most widely used burning-rate 

equation is that associated with the vaporization limited 

combustion model discussed by Priem and Guentert (3). In 

the notation of the present thesis the second-order version 

of this equation can be expressed as 

where u is the component of perturbed gas velocity in the z 
axial direction and u

t 
is the perturbed component normal to 

the axis of symmetry, and uL is the magnitude of the droplet 

velocity vector which assumed to be axial. Substituting 

(4.1) into (2.33a) yields 

(4.2) 

21 
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No exact solutions are to be expected to (4.2). Fully 

numerical solutions, on the other hand, are expected to be 

quite time consuming for multidimensional problems. For 

these reasons it was decided to attempt approximate 

partially analytical solutions using the method of weighted 

residuals {see for instance, (6)}. For problems of pressure 

sensitive combustion instability Powell (1) successfully 

employed the Galerkin method. This method is limited in 

applicability, however, to equations containing nonlinear-

ities involving only polynomial functions of the dependent 

variable and its derivatives. It is clear that (4.2) is not 

of this form. The orthogonal collocation method was, 

therefore, chosen because of its simplicity and adaptability 

to equations containing nonlinearities of any algebraic 

form. The application of this method to the problem of 

tr!:l.Dsverse wave motion in a cylindrical chamber will be 

discussed below. 

Consider the transverse wave motion in a cylindrical 

combustor. It is convenient to describe this problem in 

terms of cylindrical polar coordinates (r,8,z). Then 

<I> = <p(r,8,t). (4.3) 

It will also be assumed that ~ and u
L 

are constants. Then 

(3.2) becomes 

d
tt tP + Wd <p - (d <I> + d <p/r + d <p/r21Cl - €(y-l) dtct» 

- t rr r 88 



+ (d ~)2 + Cd ~/r)2)/u2)~ - 1) = 0 • 
r e L 

Now, assume an approximate solution of the form 

~ = 
P Q 
L L 

m=on=l 
J (3 r)cos(me)f (t). m mn mn 

Equation (4.5) is a superposition of the normal modes 

23 

(4.4) 

(4.5) 

associated with the corresponding linear acoustic problem. 

A solution of this form allows one to investigate the 

influence of nonlinearities on the behavior of modal 

amplitudes which would exhibit simple harmonic motion in 

the linear case. Only standing modes can be described by 

(4.5). To represent spinning modes another series involving 

sin(me) must be added. This is omitted for simplicity in 

this discussion. It is convenient to rewrite (4.5) as 

~ = 
N 
L J (3 r)cos(m.e)f.(t) 

j=~ mj mjnj J J 
(4.6) 

where N = (P + l)Q 

The equation is now evaluated at N points (the collocation 

points) to yield 

i = 1,2, ... N (4.7) 



where 

Next, (4.7) is inverted to obtain 

f. = 
1 

N -1 
I: C. j 4>.' 

j =1 1 J 

24 

( 4.8) 

(4.9) 

Then the various derivatives of (4.6) can be expressed in 

terms of value of 4>. as 
1 

( dr 4> ) i 
N r 

( orr 4> ) i = I: C .. ~., 
j = 1 lJ J 

N 8 
(d84»i = I: C'j4>., (d 88 4»i j = 1 1 J 

where r 
(d C, k) C~: , crr C

ij = 
r.l J ij 

1 

8 -1 
C

88 Cij = (08Cik)Ckj' ij 
i 

N rr 
= I: C .. 4>. 

j = 1 lJ J 

N 88 = I: Ci . <j>. i=l, ... N (4.10) 
j =1 J J 

( ° C ) c-1 
= 

r.r. ik kj 
1 1 

-1 (4.11) = ( ° 8 C. k) Ck · . 
8 i i 1 J 

Substituting into (4.4), a set of N ordinary second-order 

differential equations having the following form is 

generated. 

N v . N N 
<j>l' + w<j>. - I: c .. <j>.(1-s(y-1)<j>.) + 2£ E I: C. 'k<j>·4>k 

- 1 j = 1 lJ J J j = 1 k= 1 lJ J 

(4.12) 

where 
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(4.13) 

Solutions were obtained by a fourth-order Runge-Kutta 

me~hod to the set of equations (4.12). It was found that 

the results were very sensitive to the number and locations 

of collocation points, especially to the radial distribution 

of points. It was found that even in cases when ~ was equated 

to zero (no combustion) it was possible to find many choices 

of collocation points which lead to the computed modal 

amplitudes increasing without bound. 

In order to illustrate the difficulties involved in 

a simple case, consider a one-dimensional problem of 

longitudinal wave motion with y = 1, u = 0 and w = O. In 

this case (4.2) reduces to 

3
t 

t ~ - 3 rp + 2 d 3 ~ 3 ~) = 0 • 
zz z zt 

First consider the boundary condition 

3 ~ (0, t) = 0, 
z ~(7f,t2 = 0 . 

A one-term solution satisfying (4.15) is 

~,= f(t)cos(~z). 

(4.14) 

(4.15) 

(4.16) 

Applying the collocation method with a collocation point Zo 

produces an equation for ~o = ~(zo,t) of the form 



. .. 
~o + ~~ + ~(tan2(z /2)~ ~ ) = o. 

o 000 
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(4.17) 

The Galerkin method (to be discussed in detail in the next 

chapter) when applied to the same problem yields an equation 

for f of the form 

. 
f + ~f + 4 ff/(3~) = o. (4.18) 

As another example consider the boundary conditions 

az~(o,t) = 0, (4.19) 

A solution satisfying (4.19) is 

~ = f(t)cos(z) (4.20) 

for which the collocation method leads to 

~O + ~o (4.21) 

and the Galerkin method leads to 

f + f = O. (4.22) 

From the above two cases, one can observe that the 

last term in each of the equations obtained by collocation 

can take on any value between 0 and 00 depending on the 

location zo of the collocation point. No such difficulty 

is encountered when using the Galerkin method. Even if more 

points were used, the same behavior was obtained. Therefore 
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there appears to be no way to rationally decide which sets 

of collocation pOints can produce the correct result. For 

this reason, after the expenditure of much effort, the 

collocation method was abandoned and the Galerkin method 

was adopted. This will be discussed in the next chapter. 



Chapter 5 

THE GALERKIN METHOD 

The Galerkin method is a special application of the 

method of weighted residuals (usually referred to as MWR). 

It has been extensively used in the solution of various 

stability and aeroelasticity problems {see for instance 

Powell (I)} and proved itself as a useful tool for the 

solution of both linear and nonlinear problems. Although 

it is an approximate mathematical technique, it has 

nevertheless produced resulta which were in excellent 

agreement with available exact solutions. These approximate 

solutions are usually simpler in form than the exact 

solutions obtained by numerical integration, and their 

quantitative evaluation requires considerably less 

computation time. However, this method is known to be 

reliable and applied conveniently only to equations 

involving nonlinearities of a polynomial type. Therefore, 

if this method is used in conjunction with the varporization­

limited burning rate function of (4.1) the problem becomes 

intractable. Thus,the following simpler purely phenomenolog­

ical burning-rate function was employed for the case of 

instantaneous combustion response. 

w = wnu 2 (5.1) 

28 
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where n is a constant which will subsequently be referred to 

as the interaction coefficient. It can be determined either 

by comparison of predictions of the theory directly with 

eXyeriment or by comparison with burning rate laws meant to 

apply to special types of combustion processes. As an 

example of the latter method consider the vaporization­

limited burning rate law (4.1). As it stands (4.1) exhibits 

both pressure and velocity sensitivity. A purely velocity 

sensitive law can be obtained by assuming € « 1 to get 

(5.2) 

where the v is used to denote the vaporization model. If one 

equates. the slopes of (5.1) and (5.2) at u 2 = 0 and plots 

both functions, the graph would look as follows. 

w 

w 
v 
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It can be seen that (5.1) would overestimate the burning 

rate. Thus the upper bound for n can be computed. ·From 

(5.1) and (5.2) 

Thus 

Equating these results, one gets 

n = 1/ (4 e: 2u
L
2 ) • 

max 
(5.3) 

The phenomonological law (5.l) can be related to other 

special burning-rate laws in a similar manner. 

If it is desired to consider history-dep~ndent 

combustion processes,this can be done through the general 

formula 

t 
w = n! G(t-s}d (u 2 )d s (5.4) o s 

where G is memory function and s is a dummy variable. If 

G(t) = R(t) (R being the unit step function) all increments 

of change in u 2 occurring in the past are counted equally 

and (5.1) is recovered. If G(t) = R(t) - R(t-.) all 

increments of change in u 2 are counted equally up to • units 

of time in the past while those previous to that time are 

not counted at all. Substituting this expression into (5.4) 
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and integrating one obtains 

w = wn(u 2 (5.5) 

where u =u(t-.) and • is called the time delay. Equation 
• 

(5.5) will be used to account for the history of the burning 

process in a rough way. More sophisticated treatments of 

this phenomenon could be obtained by employing a more 

realistic function for G(t). Substituting (5.5) and (5.1) 

into (2.33a) one obtains 

(5.6) 

where j = 0 for instantaneous combustion and j = 1 for' 

history-dependent combustion. 

The most general solution of (5.6) (subject to hard-

wall boundary conditions for the unsteady variables) can be 

written in the form of the following Fourier-Bessel series. 

+ ~ ~ (f (t)cos(me)+g (t)sin(me»J. (S r) 
m=ln=l mn mn m rnn 

(5.7) 

Substituting (5.7) into (5.6) and applying the usual 

Galerkin orthogonalization procedure leads to an infinite 
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set of coupled ordinary differential equations governing the 

functions f and g . No solution can be obtained unless mn mn 

the series (5.7) is truncated so as to produce a finite set 

of equations. If the terms neglected are actually small,an 

accurate solution will result. 

In this thesis attention will be focused on initial 

distu~bances having the form of the first tangential mode. 

The simplest finite series contained in (5.7) capable of 

modeling the effect of quadradic nonlinearities in (5.6) is 

¢ = f (t)J (3 r) + f (t)J (3 r)cos6 + f (t)J (3 r)cos26 
o 0 01 1 1 11 2 2 . 21 . 

(5.8) 

The Galerkin method then produces the following ordinary 

. differential equations governing these five variables. 

. . . 
fO+ wfO + 361f O + £(C1

f OfO + C2(f l f 1 + glg1) 

. .. 
f1 + wf1 + Silf 1 + £(C 4

f Of1 + C5f1fO + C6 (glg2 + f 1f 2 ) 

. . 
+ C7 (g2 g1 + f2fl) + ~n(C14fof1· + C15 (f1f 2 + glg2) 



. . . 
f2 + wf2 + S~lf2 + £(C Sf Of2 + C9f2 f O + C10(glgl-f1f1) 

. . 
gl + wg 1 + s11g 1 + £(C 4f Og 1 + C

5
g 1f o + C6(f1g 2 - gl f 2) 

. . 
+ C7 (g2 f 1 - f 2g 1 1 + ~n(C14fog1 + C15Cf1g2 - glf 2) 

. 
g2 + wg

2 + S~lg2 + £CCSfog2 + C9g 2f o 

. 
+ f g ) + wn(C f g + 2C 6f g 

1 1 - 17 0 2 1 1 1 

The coefficients C, (i=1,2, ... 172 are integrals of 
1 

Bessel functions which must be computed numerically. The 

details of this calculation are discussed in'appendix A. 

The stability boundaries in the (n,£) plane 
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were determined first. For a given value of w, a value of 

€ was selected and solutions were obtained for various values 

of n. In each case, if the modal amplitudes exhibited 

growth with time, the value of n was decreased for the next 

run while if decay of modal amplitudes was observed, the 
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value of n was increased accordingly. A systematic 

iteration process was devised so that the computer could 

carry out these calculations without analyst intervention. 

In this waY,one point on the stability boundary was 

established. Then a new value of £ was chosen and the 

iteration process was repeated to determine another point 

on the stability boundary. This procedure (which consumed 

a considerable amount of computer time) was continued until 

enough points had been found to establish the shape of the 

stability boundary. It should be pOinted out that the 

amplitude of the IT mode always initially decreases due to 

the fact that purely velocity-sensitive combustion 

instability is always linearly stable. Thus it is necessary 

to continue the calculation for a considerable period of 

time to determine whether a given set of conditions 

corresponds to nonlinear stability or instability. 

Figures 2 and 3 show some typical stability 

boundaries for instantaneous combustion using the initial 

conditions 

. . . . . 
fOCO} = fl(O) = f 2 CO) = gl(O) = g2CO) = 0 C5.10) 

. . 
gl(O) = 1, fOCO) = fICO) = f

2
CO) = g2(0) = 0, (5.11) 
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respectively. The region below and to the left of the 

stability boundary is associated with stable conditions, 

while the region above and to the right is associated with 

unstable conditions. 

In the case of linear acoustics, the first set of 

initial conditions would lead to a standing wave and the 

second set of initial conditions corresponds to a traveling 

wave. In both cases,it can be seen that the stability 

boundaries have roughly the forms of rectangular hyperbolas. 

As expected, increasing the steady-state burning rate reduces 

the value of n required to produce instability. This effect 

is somewhat more pronounced for the travelin~ waves than for 

the standing waves. There does not appear to be a distinct 

pattern to the results. Thus for w = 0.2 standing waves are 

more stable than traveling waves while for w = 0.1 traveling 

waves are more stable than standing waves. 

Figures 4 and 5 show stability boundaries associated 

with initial conditions (5.10) and (5.11), respectively, for 

history-dependent combustion. It is apparent that the 

influence of the time delay parameter on the results for 

standing waves is much greater than on the results for 

traveling waves. Again, no clear pattern emerges from the 

results. Comparing Figures 2 and 4, and 3 and 5 shows that 

instantaneous combustion can be either more or less stable 

than history dependent combustion depending on the value of 

the time-delay parameter. Comparing Figures 4 and 5, it 

can be seen that standing waves can be either more or less 



stable than standing waves for history dependent combustion. 

Figures 4 and 5 also illustrate the fact that increasing the 

amount of time delay can either increase or decrease the 

stability of the system. Thus,for both standing and 

traveling waves,. = ~ corresponds to a more stable situation 

than either L = O.5~ or • = 1.5~. The lack of patterns 

exhibited by these results emphasizes the need for numerical 

methods of the type developed during the pr~sent research. 

It appears that the only way to find out what will happen in 

a given situation is to solve the equations for that 

particular case. This matter will be discussed further 

subsequently. 

The pressure perturbation can be calculated from the 

velocity potential perturbation by substituting equation 

(5.8) into (2.33c), expanding the result in a Fourier-Bessel 

series and retaining only the terms corresponding to the IT, 

2T and IR modes to obtain 

. 
p = - Y((dOIf O + £(d02f~ + d03 (fi + gi) + d04(f~ + g~) 
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. 
+ ((d21f 2 + €(d

22
f Of2 + d 23 (fi - gy) + d 2 4f of2 

. 
+ (d21g 1 + €(d22 f Og 2 + 2d23f1g1 + d 24 f og2 

(5.12) 

The coefficients dOs' d
1s

' d
2s 

are calculated in the same 

fashion as those discussed previously and the values are 

listed in table 8 of the appendix. 

Some typical results for wall pressure waveforms are 

presented in figures 6 through 37. 

Figures 6 through 9 correspond to instantaneous 

combustion with € = .05, w = .1, n = 175, and initial 

conditions (5.10). This leads to a stable standing wave 

oscillation and the pressure can be observed to decrease 

gradually. However,by changing the interaction index to 

n = 220 (Figures 10-13) the pressure is seen to grow 

gradually. This is an unstable situation. In both cases 

the response is dominated by the IT mode but distorted to 

some extent by the presence of the 2T and lR components. 

Figures 14 through 17 correspond to history-dependent 
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combustion with n = 345, while the other parameters are the 

same as before. This is a stable situation and the amplitude 

of the pressure slowly decays with time. 

Figures 18 through 21 are obtained by changing the 

interaction index to n = 352. This is an unstable situation 

as indicated by the growth of the pressure amplitude with 

time. In both of these cases the presence of the 2T and lR 

components is much more noticable than it was in the first 

two situations. 

Figures 22 through 25 correspond to instantaneous 

combustion with n = 180, E = .05, w = .1, and initial 

condition (5.11). This produces a traveling wave. The 

pressure is observed to be decreasing with time (a stable 

situation) while changing the interaction index n to 210 

(Figures 26 through 29) causes the pressure to increase 

(an unstable situation). Figures 30 through 37 show the 

significance of the time delay function. Figures 30 through 

33 are obtained by setting T ~ nand n = 197. This is a 

stable case. The pressure is observed to decrease. Setting 

n = 199 (Figures 34 through 37), on the other hand, produces 

an unstable situation when the pressure increases very 

rapidly. In both of these situations the response appears 

to be dominated by 2T contribution to the pressure. 

From these figures one can conclude that the pressure 

waveforms exhibit a strong second harmonic distortion and 

this distortion arises from the effect of the quadratic 

nonlinear terms. A variety of behaviors are possible 



depending on the nature of the combustion process and the 

parametric values involved. 
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Chapter 6 

ONE-DIMENSIONAL MODEL 

Ln this chapter an annular combustion chamber with a 

gap width much smaller than the inner radius is considered. 

This geometry will henceforth be referred to as that of a 

narrow annulus. While this geometry is not of much practical 

interest,it is quite useful for the purposes of analysis. 

This is because only one space coordinate is needed to 

describe the problem. This makes a direct finite-difference 

numerical solution of the original partial differential 

equation feasible and also simplifies the algebra required 

to carry out the Galerkin modal analysis. In what follows 

three questions will be investigated. First,the effect of 

changing the numerical values of certain coefficients 

appearing in the governing equations for the modal amplitudes 

will be discussed. Seconct,the Galerkin solution will be 

checked using a finite difference numerical solution of the 

complete equation. Third, numerical solutions of the 

complete wave equation using the vaporization-limited 

burning-rate law will be compared to similar solutions 

associated with the phenomenological burning-rate law 

employed in the previous chapter. 

The appropriate wave equation for transverse wave 

motion in a narrow annulus can be obtained from (5.6) by 

40 

------ ----------------- ------------~------



setting r = 1 and a = O. To further simplify the resu.lts 
r 
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the parametic values y = 1 (isothermal process) and j = 0 

(instantenous burning response) will be employed. For this 

situation (5.6) simplifies to 

To carry out the modal analysis, it is assumed that 

the potential function can be expressed as 

Then applying the usual Galerkin orthogonalization 

procedure leads to 

. . 
fl + ~ifl + wf l + £A1 (f1f 2 + f2f1 + glg2 + g2 g1) 

+ £wnA (f f + g g ) = 0 
- 2 1 2 1 2 

. . 
f2 + ~~f2 + ~f2 + £A 3(glg l flfl) + £wnA 4 (gi - fi) = 0 

. . 
gl + ~igl + wg

1 + £A1 (g2 f l + f l g 2 - g1f 2 - f 2g l ) 

. . 
g2 + ~~g2 + wg 2 - £A 3(gl f l + f 1g 1 ) - 2s~nA4flgl=O (6.3) 
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where ~1 = 1, ~2 = 2, A1 = 2) A2 = 2, A3 = 1 and A4 = .5. 

The symbols ~1' ~2' A1 , A2 , A3 and A4 have been inserted to 

illustrate the effect of changing their numerical values. 

McDonald (7) in his analysis of combustion­

instability in an annulus found that for a given value of E 

the value of n required to produce instability was approx­

imately twice as high for standing waves as for traveling 

waves. The results discussed in the previous chapter for 

a full cylinder indicated no such relationship. Equations 

(6.3) were employed in an attempt to determine the factors 

which have a significant effect on the stability boundary. 

Several calculations were made and a representative sample 

of the data thus obtained is presented in Tahles 1 and 2. 

It was determined by McDonald that the terms representing 

gas-dynamic nonlinearities, had a small qualitative effect 

on stability calculations. Thus the coefficients Al and A3 

were held fixed during these calculations. 

The entries in the first two lines of each table 

were computed using the correct equation for an annulus. It 

can be seen that the standing wave is twice as stable as the 

traveling wave, in agreement with the results of McDonald. 

The third and fourth lines in each table were computed by 

changing A4 from .5 to .77 (This makes the ratio A4/A3 

the same as the ratio of the corresponding terms in the 

governing equations for the full cylinder.). It can be 

seen that this lowers the stability limit in all cases but 

does not alter the fact that an initial disturbance in the 



Table 1 

Stability Limits for Standing Wave 
in Annular Combustor 

n Q2 A4 E 

91 2 .5 .05 
46 2 .5 .1 
74 2 .77 .05 
37 2 .77 .1 
735 1.66 .5 .05 
379 1.66 .5 .1 
595 1.66 .77 .05 
307 1.66 .77 .1 

Table 2 

Stability Limits for Traveling Wave 
in Annular Combustor 

n Q2 A4 E 

44 2 .5 .05 
22 2 . 5 .1 
36 2 .77 .05 
18 2 .77 .1 
66 1. 66 .5 .05 
31 1. 66 .5 .1 
54 1. 66 .77 .05 
26 1. 66 .77 .1 

43 
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form of a standing wave is twice as stable a~ one in the 

form of a traveling wave. 

The fifth and sixth lines in Tables 1 and 2 are found 

by restoring A4 to its original value .5 and changing Q2 

from 2.00 to 1.66 (This makes the ratio Q2/ Ql equal to the 

ratio S21/Sll associated with the full cylinder.). For this 

situation it can be seen that the standing wave is approx-

imately ten times as stable as the traveling wave. Further-

more, the effect of the value of ~2 on the location of 

stability boundary is much greater for a standing-wave 

motion than for a traveling-wave motion. The last two lines 

are associated with implementing both of the changes dis-

cussed above simultaneously. These results confirm that the 

change in A4 lowers the stability limit in all cases but 

does not affect the relative stability of standing-wave and 

traveling-wave disturbances. 

The data presented above indicate that standing waves 

will be twice as stable as traveling waves only under very 

special circumstances (Q2/ Q1 ~ 2). There is no reason to 

expect this to be a characteristic of other systems exhibit-

ing combustion instability as, in fact, it is not for a full 

cylinder. 

In this section, a finite different procedure is 

employed to generate a set of second order differential 

equations. The central difference formulas 

d8~l' = (~ - ~ )/(268) 
i+l i-I 
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(6.4) 

are used to produce the following set of governing equations 

.. . 
~i = -w~i + (~i+l - 2~i + ~i_l)(l E(y-l)~i)/(lle)2 

. . 
- E(~i+l ~ ~i-l)(~i+l - ~i_l)/(211e)2 

- EW. 
1 

2 < i < N - 1 

where N is the number of pOints employed. A forward 

difference formula 

and backward difference formula 

are used for the boundary conditions 

Hence, along the boundaries, (6.5) becomes 

. 
~2 = -~~2 + 2(~3 - ~2)(1 - E(y-l)~2)/(311e2) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 



. 
- 8e(~3 - ~2)(~3 -~2)/(9~e2) - eW 

2 

. 
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~N_1)(1-e(y-l)~N_1)/(3~e2) 

. . 
- 8e(~N_1 - ~N-2)(~N-1 - ~N_2)/(9~e2) - eW • 

N-l 
(6.9) 

For the phenomenological model, the purning rate 

function becomes 

2 < i < N-1. (6.10) 

Combining (6.82 and (6.10) one obtains 

(6.11) 

respectively. 

For the vaporization model, the burning rate 

function becomes 

2 < i < N-1 (6.12) 

and,along the boundary. yields 
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accordingly . 

. Using either the phenomonological or.;th.e vapor:ization-

limiteq c9mbustion model,(6.5) and (6.9) can be solved by 

the Runge-Ku~~a method to obtain ~i' i = 2,3, ... , N-l. 
. . ,'. 

Then t,p.e moda+. amplitudes can be obtained by using the 

Fourier-cosine transform 

1T 
f.(t) =2f ~cosiede/1T' 

l 0 
(6.14) 

These integrals must be computed numerically since ~ is 

known only at the grid points. 

Some typical results for standing waves are presented 

in Table 3. They are intended to illustrate the 

accuracy of the two-term Galerkin solution and to compare 

the results associated with the phenomenological and 

vaporization-limited combustion laws. The column labeled 

PG indicates the results with a two-term Galerkin solution 

using the phenomenological model, the column labeled PF 

contains the results of a finite-difference solution of 

these equations, and the column labeled VF presents results 

of a finite difference solution using the vaporization-

limited model. 



Table 3 

Stability Limits For Phenomenological and 
Vaporization-Limited Combustion Model 

PG PF VF 

E n n uL 

.1 46 28 1.3 

.05 91 56 2.1 

.01 452 286 5.2 

It can be seen that the order of magnitude of the 

interaction index n required for instability for both the 
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finite difference and Galerkin methods are roughly the same 

but the stability boundaries predicted by the Ga1erkin method 

are approximately twice as high as those predicted by the 

Finite-difference method. It is to be expected that the 

Galerkin method will lead to higher stability limits than 

the use of an exact solution procedure. This can be explained 

as follows. The instability mechanism is basically a feed­

back process. Consider the form of (6.3) associated with 

standing waves in an annulus. This is 

. . 
f1 + ~f1 + f1 + 2E(f1 f 2 + f2f1) + 2E~nf1f2 = 0 

.. 
f2 + wf 2 + 4f2 - Ef1f1 k: wnf2 = 0 2E_ 1 . (6.14) 
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For clarity the gas-dynamic nonlinearities will be neglected 

to give 

f2 + wf
2 

+ 4f - ~Ewnf2 = O. 
- 2 - 1 

(6.15) 

A one-term Galerkin solution would lead to the 

equation 

This would indicate unconditional stability. Instability 

can arise only when the presence of the last term in (6.l5b) 

causes f2 to grow and this then causes fl to grow because 

of the last term in (6.l5a). The growth of f2 also produces 

the growth of higher modes which in turn causes additional 

growth of fl' The contributions of these higher modes are 

neglected in a two-term Galerkin analysis and thus the energy 

input due to unsteady burning is underestimated. For this 

reason the Galerkin analysis will overestimate the stability 

of the system. This overestimation will decrease as the 

number of terms retained is increased. An example of this 

can be seen by comparing the one- and two-term analyses. 

A one-term solution predicts that the system is always 

stable. A two-term solution predicts the correct qualita-

tive behavior but overestimates the system's stability by 
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roughly a factor of two. It is to be expected that further 

increases~in accuracy can be obtained by keeping more terms 

in the assumed solution but that this will not seriously 

affect the quatitative prediction. 

In Chapter 5, it was found that equating dw/dul the 

phenomenological and vaporization-limited combustion l~ws 

at u 2 = 0 lead to the formula 

(6.16) 

Assuming that the actual data can be fitted to a formula of 

the form 

(6.17) 

the data give in Table 3 provide an opportunity to estimate 

C. The results are shown below . 

E .1 . 05 .01 

C 1.89 2.47 3.09 

It appears that a value of C = 2.5 would give accept-

able accuracy over this range of E. 

For a given value of uL the n computed from (6.16) 

will overestimate the burning rate. Thus it might be 

thought that C should be less than unity. The stability 

criterion was, however, based on the magnitude of the modal 

amplitudes. Inspection of Tables 4 and 5 shows that the 
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vaporization-limited combustion model involves the higher 

modes to a greater extent than does the phenomenological 

combustion model. Thus,a given value of uL can be associated 

with lower individual modal amplitudes in the former case 

than in the latter. These two effects interact and calcula-

tion shows that C is greater than unity in this range of €. 



TABLE 4 

MODAL AMPLITUDE fOR PHENOMENLOGICAL MOOEl 
IN ANNULAR COMBUSTOR 

., , 
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--~----------------------------------------------------------T ~QDE 1 MODE 2 MODE 3 HODE 4 MODE 5 MODE 6 MODE 7 MODE 8 -------------------------------------------------------------
0.00 
1.25 
2.50 
3.75 
'5.00 
6.25 
7.50 
8.75 

10. GO 
11.25 
12.50 
13.75 
15 .. 00 
1 6. ~5 
17.50 
18.15 
20.CO 
21.25 
22.50 
23 • ., 5 
25. CO 
26.25 
27.50 
28.75 
3 O. CO 
31.25 
32.50 
33.75 
35.QO 
36.25 
37.50 
38.75 
40.00 
41.25 
42.50 
43.15 
45.00 
46.25 
47.50 
48.75 
50 .. (lO 
51.25 
52.50 
53.75 
55.CO 
56.25 
57.50 
58.75 
60.00 

1.000 
0.337 

-0.687 
-0.700 

O.2C9 
0.751 
0.237 

-0.535 
-0.523 
0.187 
0.585 
0.153 

-0 .. 440 
-0.390 

0 .. 183 
0.463 
0.085 

DOe 374 
-0.281 
0.184 
0.371 
0.030 

-0.327 
-0.2 C 6 

0 .. 191 
0.302 

-0.019 
-08297 
-0.141 
0.207 
0.252 

-0.067 
-0.284 
-C.085 

0 .. 236 
0.218 

-0.122 
-0.292 
-0.029 
0.290 
0.192 

-0.207 
"0.328 
0.055 
0.404 
0.151 

-0.403 
-0.412 
0.324 

0.000 
O. 029 

-0.018 
0.064 
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MODAL AMPLITUDE FOR VAPORIZATION MODEL 
IN ANNULAR COMBUSTOR 
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-------------------~----.-------------.------------------~~-~ T ~ODE 1 MODE 2 MODE 3 HODE 4 MODE 5 MODE 6 MODE 7 MODE 8 
------------------------------------------------------ -~-----

0.00 1.000 0.000 -0.000 0.000 -0.000 00000 -0.000 0.000 
1.25 0.384 -0.193 0.039 -0.007 0.002 -0.001 0.000 -0.000 
2.50 ·0.455 0.095 -0#033 0.009 -0.002 O~OOO 0.000 -00000 
3.75 -0.514 -0.111 0.042 0.018 ·0.001 -04 003 0~002 0.000 
5.eo 0.060 -0.035 -0.036 -0.029 -0.020 -0.012 -0.007 -0.003 
6.25 0.443 0.106 -0.022 -0.041 -0.021 -0.002 0.006 0.006 
7.50 0.293 -0.225 0.077 0.020 -0.043 0.019 0.007 -0.013 
8.75 -0.324 0.160 -0.104 0.071 -0.049 0.034 -0.024 0.017 

10.00 -0.717 -0.029 0.192 -0.037 -0.072 0.042 0.020 -0.032 
11.25 -0.224 -0.455 -0.330 -0.172 -0.040 0.041 0.065 0.047 
12.50 1.281 0.558 00300 0.131 0.040 -0.003 -O~021 -0.030 
13.75 2.176 -0.505 -0.474 0.087 0.172 0.024 -O~018 -0.053 
15.00 .0.264 -0.961 0.644 -0.321 00068 0.076 -0.105 0.051 
16.25 -2.9C7 0.857 -0.311 0.100 -0.053 0.005 0.019 -0.031 
17.50 -3.416 -1.125 Oe382 0.037 -0.193 04052 Q.072 -0.074 
18.75 0.448 -0.794 -0.551 -0.324 -0.057 0.085 0.110 0.056 
20.00 3.619 0.546 0.200 0.017 0.001 -0$024 -0.039 ·0.044 
21.25 2.747 -1.259 -0.224 0.106 0.160 ~O.024 -0.087 -0.025 
22.50 -1.442 -0.328 0.340 -0.271 0.145 -0.042 -0.032 0.063 
23.75 -3.229 0.136 -0.113 -0.068 0.068 -0.080 0.058 ·0.038 
25.00 -1.329 -1.066 0.005 0.181 -0.028 -0.102 D.012 0.059 
26.25 1.794 0.024 -0.009 -0.085 eO.Oao -0.083 -0.067 -0.049 
27.50 2.388 -0.063 -0.093 -0.167 ·0.089 -0.030 0.022 0.041 
28~75 0.463 -0.881 0.235 0.090 -0.114 -0.006 0.069 -0.027 
30.CO -losel 0.272 -0.195 0.095 -0.067 0.043 -0.031 0.021 
31.25 -2.088 -0.294 0.261 -0.143 -0.024 0.075 ·0.052 -Oe003 
32.50 ·0.063 -0.796 -0.404 -0.100 0.077 0.093 0.025 -0.040 
33.75 2.115 0.417 0.250 0.120 0.079 0~049 0.033 0.021 
35.CO 2.172 -0.647 -0.302 -0.018 0.128 0.062 -0.032 -0.059 
36.25 -0.447 -0.603 0.422 -0.241 0.058 00049 -0.079 0.050 
37.50 -2.586 0.434 -0.193 0$045 -0.004 -0.025 0.035 -0.039 
3A.15 -2.044 -1.000 0.179 0.126 ~O.121 ~O.044 0.074 0.000 
40.00 1.142 -0.253 -0.260 -0.241 -0.154 -0.072 -0.004 0.038 
41.25 2.848 0.253 0.055 -0.083 -0.089 -0.081 -0.054 -0.027 
42.50 1.497 -1.140 0.032 0.196 0.007 -0.109 0.00& 0.063 
43.75 -1$721 00082 OeOll -0.091 0.095 -0.093 0.071 -0.057 
45uGO -2.759 -0.014 0.116 -0.188 0.105 -0.038 -O.O~O 0.044 
45~25 -0.807 -1.084 -0.251 0.126 0.118 -0.033 -O.OBl -0.012 
47.50 2.050 0.301 0.193 0.083 0.050 0.024 0.010 -0.001 
48.75 2.514 -0.289 -0.260 -0.186 -0.011 0.062 0.068 0.023 
502CO 0.206 -0.932 0.405 -0.043 -0.111 0.082 0.014 -0.063 
51.25 -2.255 0.397 -0.263 0.134 -0.096 0.066 -0.051 0.040 
52.50 -2.287 -0.575 0.312 -0.076 -0.106 0.084 -0.002 -0.053 
53.75 0.331 -0.709 -0.439 -0.200 -0.000 0.083 0.074 00017 
55.CO 2.477 0.407 0.229 0.082 0.038 O~004 -0.011 -0.021 
56.25 2.025 -0.858 -0.236 0.073 0.141 -0.002 -0.072 -0.031 
57.50 -0.115 -0.377 0.322 -0.252 0.129 -0.030 ·0.036 0.060 
58.75 -2.669 0.303 -0.109 -0.033 0.057 -0.068 0.057 -0.042 
60.00 -1.588 -1.060 0.038 0.179 -0.051 -0.099 0.028 0.055 -------------------------------------------------------------



Chapter 7 

CONCLUSIONS 

The primary objective of this study was the 

development of a new analytical technique to be used in the 

solution of nonlinear velocity-sensitive combustion 

instability problems. Such a method should be relatively 

easy to apply and should require relatively little 

computation time. 

In an attempt to achieve this aim, the orthogonal 

collocation method was investigated first. However, it was 

found that the results were heavily dependent on the location 

of the collocation points and characteristics of the 

equations. Therefore, the method was rejected as unreliable. 

Next, the Galerkin method, which has proved to be 

very successful in analysis of the pressure sensitive 

combustion instability, was considered. This method proved 

to work very well. It was found that the pressure waveforms 

exhibit a strong second harmonic distortion and a variety 

of behaviors are possible depending on the nature of the 

combustion process and the parametric values involved. 

Finally, a one-dimensional model provided further 

insight into the problem by allowing a comparison of 

Galerkin solutions with more exact finite-difference 

computations. 
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SOme majbr cbnclusions of this research are as follows. 

(1) The form of (2.33a) is .somewhat insensitive to the 

specific assumptions used to derive it. This is demonstrated 

by the fact that Powell (1) developed an equation of a very 

similar form using a different set of assumptions. (2) The 

orthogonal collocation method is unsuited to solution of 

problems of the type under discussion here. (3) The Galerkin 

method is well suited to the solution of such problems. (4) 

Stability boundaries and pressure wave forms appear to be 

highly dependent on the parameters of the problem (interac­

tion index, time delay, steady-state burning rate, etc.). 

Furthermore,there appears to be no clear pattern to the 

computed results. (5) The phenomenolbgicalburning-rate law 

employed in the majority of the work discussed predicts 

results which are qualitatively similar to those associated 

with the vaporization-limited burning-rate law used by 

previous investigators. The phenomenological law, further-

more, can be used in conjunction with the Galerkin method 

while the vaporization-limited law cannot. (6) The computer 

programs developed in the course of this work can be 

employed to determine stability boundaries and pressure 

waveforms without the expenditure of excessive computer 

time. This is important because the lack of clear trends 

discussed above make an individual analysis of each 

situation desirable. 
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Figure 25. The Wall Pressure Waveforms for Traveling Waves 
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Figure 26. The Wall pressure Waveforms for Traveling Waves 
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Figure 27. The Wall Pressure Waveforms for Traveling Waves 
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Figure 28. The Wall Pressure Waveforms for Traveling Waves 
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Figure 29. The Wall Pressure Waveforms for Traveling Waves 
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Figure 30. The Wall Pressure Waveforms for Traveling Waves 
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Figure 31. The Wall Pressure Waveforms for Traveling Waves 
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Figure 32. The Wall Pressure Waveforms for Traveling Waves 
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Figure 33. The Wall Pressure Waveforms for Traveling Waves 
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Figure 34. The Wall Pressure Waveforms for Traveling Waves 
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:Figure 35. The Wall Pressure Waveforms for Traveling Waves 
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Figure 36. The Wall Pressure Waveforms for Traveling Waves 
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Figure 37. The Wall Pressure Waveforms for Traveling Waves 
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APPENDIX A 

DERIVATION OF THE COEFFICIENTS 

In this section, the coefficients b .. , C .. , and d .. 
lJ lJ lJ 

appearing in cpapter 3 and 5 are derived and their numerical 

values are presented in Table 6, 7,and 8 re3pectively. 

In chapter 3, for initial condition (3.7), one assumes 

00 

r H (r)cos(me)sin(2S11t). 
m=o m 

By comparing coefficient yields 

H (r) = 0 m for m = 3,4, ... ,00. 

Then expanding .2 in a Fourier-Bessel series and expanding 

Hm(r) in a Bessel series leads to 
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., 

.---

TIlls integral must be computed numerically. For the sake 

of brevitj only the 'first five coefficients in each series 
.< 

are calculated and presented in Table 6. 

Table 6 

BESSEL SERIES COEFFICIENTS FOR ANALYICAL SOLUTION 

n I 

bOn b2n 
! 

0 l.ll738-0.37246y 
1 0.50462+0.37912y 0.27181-1. 09482y 
2 -0.09246-0.00802y -0.11390-0.01110y 
3 0.050l9+0.00184y 0.05479+0.00208y 
4 -0.03290-0.00067y -0.03451-0.00071y 
5 0.02375+0.00030y 0.02451+0.00033y 

In Chapter 5, equation (5.8) can be written as 

95 

(A-I) 

where 

By substituting (A-I) into the governing equation (5.6), 

yields 

R = D(<t» (A-2) 



where D is th~~onlinear differential operator of equation 

(5.6). If (A-l) rep~esented the exact solution to (5.6), R 

would vanish. Since this is not the case R has a finite 

value. The Galerkin procedure consists of making R orthog­

onal to each of the t~'s. This leads to the equations 
1.. . 

1 21T 
f f Rtirdrd = 0 

a a 
i = 0,1, ... ,4 (A-3) 

and a set of five second order differential equations are 

generated. The angular part of integration can be performed 

in closed form while the radial part of integration must be 

computed numerically and leads to the integral 

(A-4) 

where k 2 1 J f CSkll } . (A-52 

The numerical values of Ci are listed in Table 7 for 

y = 1.2. Also listed in this table are the functional forms 

of Fi's. In writing these the notation 

(A-6) 

is used. Similarly the numerical values of 

(A-7) 
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and functional forms of Gij's are listed in Table 8. 



Table 7 

COEFFICIENTS APPEARING IN EQUATIONS (5.9) y = 1.2 

i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

1.3 

14 

15 

16 

17 

k 

o 

o 

o 

1 

1 

1 

1 

2 

2 

2 

o 

o 

o 

1 

1 

2 

2 

4.137 

1.042 

-0.208 

-1.939 

-2.312 

1.719 

1.483 

-2.785 

-3.039 

1.132 

2.586 

0.480 

-0.196 

-4.849 

1.503 

-0.576 

-3.481 

RaJa + 2S61J02 

R1J 1/2 + S2 J,2+ J2/r2 
11 1 1 

R2J 2/2 + S~IJ22 + 4J1/r2 

RaJ 1 + 2301S11JOJ1 

R1J O + 2S01S11JOJ1 

R1J 2/2 + S11 S 21 J l J ; + 2J 1J 2/r
2 

R 2J 1/2 + S11S21J1J2 + 2J 1J 2/r
2 

R OJ 2 + 2S01S21JOJ2 

R2J O + 2S01S21JbJ; 

R1J 1 /2 + SIIJ12 - JI/r2 

.SnlJ b2 

~(S!1J12 + Jr/r2) 

S~1J22/2 + 2J~/r2 

2S01S11J~J~ 

S S J'J' + 2J J /r2 
11 21 1 2 1 2 

~(S2 J'2 - J21/r2) 
2 11 1 

2S S J'J' 01 21 0 2 
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Table 8 

COEFFICIENTS APPEARING IN EQUATION (5.12) 

i I j d .. G
ij lj 

0 1 1.000 J O(S01r ) 

0 2 1.293 ~S2 J T2 
2 01 0 

0 3 0.240 \(32 JT2 11 1 + Jy/r2) 

0 4 -0.098 
I 

!z(S2 JT2/2 21 2 + 2J2/r2} 2 

0 5 -0.176 -!zJTI 

0 6 0.061 -\J1 
I 

0 7 0.049 -~J~ 

1 l l.OOO J 1 (Sllr) 

1 2 -1. 212 S01 S11J OJ l 
1 3 0.927 !z(S11S 21 J 1J z + 2J1J 2/r

2) 

1 4 0.165 -J OJ 1 I 

1 5 -0.199 -!zJ IJ 2 

2 1 1.000 J 2(S21 r ) 

2 2 -1. 741 SOIS21J~J~ 

2 3 -0.223 ~(S2 JT 2 11 1 - J2/r2) 1 

2 4 0.237 -J OJ 2 

2 5 -0.175 -~Jf 



APPENDIX B 

PROGRfu~ FOR STABILITY BOUNDARY CURVES 
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$ S £T 
C 
C 
C 
C 
C 
C 
C ... 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 

LI H. FREE 

KIN-WING WONG 

C(MBUSTION INSTABILITY 

METHOD GALERKln METHOD 

JU N 3() 1918 

!t .. I S PRO GR AM G EN ER ATE THE S T A S I l I 1 Y C U ~ V E • 

I~PUT INfORMATIOh 

101 

ThE P~OGRAH USED THE fORMAT fREE INPUT OUTPUT. A 
ceMMA SERVES AS A DELIMITER AND ThE INPUT VARIABLES 
AFE ENTER IN THE fOLLOWING ORDER 

T I I N I n A l TI ME 
TF FINAL lIME 
Of STEP SIZE FOR 'I~E 
wB BuRNING RATE 
TOELAY DELAY TIME 

EI 
EF" 
DE 
OA 
f O,FO 

INITIAL EPS 
FINAL EPS 
STEP SIZE fOR EPS 
ASS~ME POSITION fOR N 
ARE THE INITIAL CONDITION HOOIF"IER AND 
HAVING THE VALUE EITH£R 1 OR 0 

C A~OTHER SETS OF DATA CAN BE ENTER BY ENTERING 
C EI,£fpDE,OA,FO AND FD. 
C 

C1MENSION OY(10),FO(S),OF(S),G(lO,SOO),Y(lO} 
CCMHO~ (P, RK.wB,EPANV 
ceHMON ISLIST/SO,Sl,S2 
ceHMON IBlKI/C1,C2,C3pC4,CS,C6,C7,C8,C9,CI0,C11,C12 

1,(13,C14, C1S,C16,C17 
LCGICAL PASS,GRO~ 
C~TA ~AXITR,EPS/~C,.ll 
C~TA PI/3.141591 
~EAD(Sp/) TI,Tf,OT,W8,TDELAY 
P FIN T" II, T I, TF, D h 118, TD E LA Y 
TCELAY=PI*TDELAY 
K=TOElAY/OT 
IH=K+l 
If (Kl.GT.SCO) GO TO 105 
IF (K.LT.l.ANO.NOF.£Q.l) K=l 
N HEP = <TF- TI)/D T 
h=lO 
Hr.ALF=OT*.5 
NfROB=O 

9 REAO(S,I,END=999) EI,EFpDE,DA,fO,CF 
~FROB=NPROB.t 



C 

FFINT·/I"NP~OB 
PfiINT */J,.FO,Df' 
MSTEP=(Er-EI)/OE 
E f=E I 
IF (EP~lT.O) EP=.Ol 
A~\I=DA 

FASS=.f'ALSE. 
(CtOC lSlEP =O,MSIEP 
C( 80 ITR=l,MAXllR 
EfANI/=EP*ANV 
IF (EPANV.EQ.O) £PANV=ANV 
C( 10 I=l"K 
CC 10 J=l,N 

lC G(J"I)=O. 
C( 20 I=l,N 

2C ~(I)=C. 
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C l~ITIAL CONDITION 
C 

c 

V(2)=fO(1);Y(4):.:FO(2);Y(6)=f'O(3);Y(S>=fO(4);Y(lO)=FO 
1( ~) 

'(1)=CF(1)·SO;V(3)=DF{2)*SlJY(S)=Df'(3)·S2 
Y(7)=DfC4)*SlJY(S)=OF(S)*S2 
CALL OLYfUN CN"Y,G"K,EPS,Kl) 
T=T I 

C( 40 I=bNSTEP 
C~LL RKOELY(N"T,Y"OY,DT,G,K"EP"&110,HHALF,,Kl) 
CC 30 J=.2,N,2 
lFCABS(v(J».GT.2) GO TO 60 

30 CCNTINLE 
4C CCNTlt\UE 

GFOW= .. fALSE. 
If (P~SS) GO TO 50 
"f\ V 0 fiN:.: AN iJ 
A~V=A~V+OA 
GG TO 80 

50 CCNTINUE 
A~VDW~=ANV 
GO TO 70 

60 CCNTINUE 
P#SS=. TRtiE. 
GI'OIol=.TRUE. 
A~IIUP=ANV 

7 C C C N· TIN L E 
IF (ABS(ANVLP-ANVDWN).LT.EPS) GO TO 90 
API V = CA N V UP + A N \I 0 'w N ) ... 5 

a c ceNT INUE 
90 C(NrI~UE 

t\l\L.=AN II 
PfiINT *I/,EP"NNU,ITR 



c 
c 
c 
C 
C 
C 
C 
C 

c 

c 

lce 

105 

11C 
99~ 

IF (ITR.EQ.MAXIT") PRINT 11,- ••• w~RNING *** THE 
1 ~NSWERHAY NOT CONVERGE' 

EP=EP"OE 
ANV=ANVUP/2iANVOWN=O 

CCNTtNUE 
GC TO 9 
Pf.INT II.'DELAY lIME TOO LAf'GE ',TDELI\Y 
GeT a .999 
FrINT *",'ILLEGAL DELAY fUNCTION' 
SlOP 
E 1,0 
S~BROUlINE.DlfFU~ (l,Y,DY) 

IrIS SECTION PROVIDE A SET Of FIVE SECOND ORDER 
EQLA lION S 

WhERE 
FO=Y(2) 
Fl=Y(4) 
f2:Y(6) 

DIMENSION Y(lO),CY(10) 
CCMHa~ EP, FK,wB,EPANV 
COMMON ISLIST/SC,Sl,S2 

Gl::,(6) 
G2=Y(lC) 
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CeHMaN IBLKll Cl,C2,C3,C4,CS,C6,C7,Ca,C9,Cl0,Cl1,C12 
1,(13,(14, C15~C16,CI7 

CH2)=YU) 
O~(1)=·SO*SC*Y(2)~EP6(Cl*Y(2)*Y(1).C2~(Y(4)*Y(3)+Y(8) 

1*~(7») +C3*(Y(10)*Y(9)+Y(6)*V(S») 
CH4)=Y(3) 
O~(3):-Sl*Sl*Y(4)-EP*(C4*Y(2)*Y(3)+CS*Y(4)*Y(1) + 

1 C6*(Y(8)*Y(9HY{4)*Y(S)}+Cl*{Y(6)*H3HY<10)*Y<7») 
CH6)='1(S) 
Cl(S):-S2*S2*Y(6)-EP*(C8*Y(Z)*Y(S)+C9*Y(6)*Y(1). C10* 

1(Y{B)·Y(7)-Y(4)·Y{3») 
CH8).::Y(7) 
C~(7)=-Sl.S1.Y(8)-EP.(C4*Y(2)*Y(7)+C5*Y(8)*Y(1). C6* 

1(Y(4).Y{9)-Y(8)*Y(S»+C7*(Y(10)*Y(3)-y(n)*Y(1») 
0'1{ lO)=Y<9) 
C'(9)=-S2*S2*Y(lO)-EP*(C8*Y(Z)*Y(9)+C9*Y(lO)*Y(1) C10 

1*(Y(8)*Y(3).Y(4)*Y(7») 
IF (RK .EQ. 2) RETURN 

C TrIS PROVIDE THE COMBUSTION TERMS 
C 

C~(1)=DY(1)-WB·(Y(1)+EPANV*(Cl1*Y(2)*Y(2)4C12~(Y(4)*Y 

1(q+ Ha}-Y(S». C13*{Y(10)*H10)+Y(6)*YC6»» 
C'(3)=DY(3)·w8*(Y(3)+EPANV*(C14*Y(Z)*Y(4)+C1S*(Y(4)*Y 

l{c)+ Y(8).Y(10)) 
CY(5)=DY(S)-W8*(Y(S)·EPANV*(C16*(Y(4)*Y(4)-V(8)*Y(8» 

1 +C17*Y(2)*Y(6») 
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t'(7)~OY(7)-W8*(V(7)+EPANV.(C14.Y{2)*Y{8).C15*<Y(4).Y 
1(10) 1(8).Y(6»» 
O~(9):DY(9)-W8*(Y(9)"EPANV*{Cl1*Y(2)*Y(lO)+2*Cl&*Y(4) 

1·'((8») 
RETURN 
E~D 

SlBROlTINE RKOELV(N,T~Y~OY,H,G,K,EPS~ .,HHAlf,Kl) 
C 
C ThIS SECTION PE~fORM A fOU~TH ORDER RUNGE-KUlTA METHOD 
C kITH TIME DELAY FUNCTION 
C 

DIMENSION Y(10)~OY(10),Y2(10)'V3(10),G(10,500) 
C(MHO~ EP, ~K'WB,EPANV 
ceHMON IBlKll Cl.C2,C3,C4,C5,CG,C7,C8,C9,ClO,C11,C12 

I,C13,C14, C15~C16,C17 
CAll OIFFUN(T,Y,OY) 
CG 10 I=l,N , 

12(I)=Y(I) .. HHAlf*(OYCI) + G(1,1» 
G<I,1)=CG(I,1)+G(I,2»/2. 

It CCNTIl'\LE 
T=T+HtlALf 
CJlL CIFfLN(T,Y2,DY) 
CC 20 I=1,.N 

Y3(1)=Y(I) • HHAlF*(DY(I) • G(l"I}) 
20 Y2(I)= 12(1) • 2.*Y3(1) 

C'LL OIffUN( T,Y3,OY) 
CC 40 I=l,N 

Y3(1)=Y{}) + H*(DY(I) + G(1,1» 
IF<K.lT.U GO TO 40 
DC 30 J=l, K 

3C G(I~J)=G(I~J+l) 

4C Y2{1>=Y2(1) t Y3(I) 
T=ffHHALf 
C~lL DlffUN (1 ~Y3,DY) 

CC 50 I=l~N 

Y(I) = (Y2(I) - Y(l) • HHALF*(OY<I) + G(I,1»)/3. 
5C (ONTINtiE 

E~TRY OLYfLN (N,Y,G,K,EPS,Kl) 
C 
C T~lS GIVES THE fO~M Of DELAY FUNCTION G 
C 

IF (K.lT.1) R£TU~N 

If (R ~. EQ. 2) RET LR N 
G(l,Kl)= WS* 

1(~)+ Y(8)*Y(8». 
G(3,IO)= we* 

l<E)+ Y(8)*Y(lO») 

EPANV*(Cl1*Y(Z)*Y(2)+C12*(Y(4)*Y 
Cl 3* (y <1 G )* y< 10)-t y< 6) *Y (6) » 
EPANV*<C14*Y{Z)*Y(4)+C15*(Y(4)*Y 

G(5,Kl)=wa*EPANV*(C16*(Y(4)*Y(4)-~{8)*Y(8»+C17*Y(2)*Y 
1 <E» 

G(7,Kl)= \;8* 
1(10) Y(8)*Y(6») 



G(9,Kl)=WB*EPAN~*(C17*Y(2)*Y(lO)+2*C16*Y(4)*y(e» 

~ETURN 
E~D 
BLOCK DATA 
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CGHMON IBLKI/C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,CI2 
1,C13,C14, C15,C16,C17 

CeHMON ISLIST/SO,Sl,S2 
C~TA 50,SI,52/3.83171,1.84118,3.054241 
CITA Cl,C2,C3,C4/4.1373,1.0423'·o2084,-1.93941 
CAIA C5,C6,C7,C8,C9 1-2.3123,1_1181,1.4828,-2.785, 

1-3.03881 
CITA CI0,Cl1,ClZ.C13/1.1318,2.Sa6#.48~,-.1961 
C~TA C14,C1S,C16,Cl1/-Z.4243,1.3S34445,-.441.-3.4811 
E~O 



APPENDIX C 

PROGRAM FOR MODAL AMPLITUDE AND PRESSURE 

1Q.6 



$5£T lISTUTOI3IND 
SBIND = FROM *FORTLIB/= FREE 
FILE 1(KINC=DISK,HAXRECSIZ£=lS,BLOCKSIlE=420,AREAS=4 

1,AREASIZE=1400,FILETYPE=7) 
c 

KIN-WING jojONG JUN.lO 1978 

CCM9USTION INSTA8ILITY 

l07 

c 
c 
c 
c 
c 
c 
c 
c 
c 

METHOD: THIS PROGRAM ~SED THE GALERKIN METHOD TO· 
GENERATE fl~E SECOND OR~£R DIFFERENTIAL EQUATIONS. 
A FO~RTH ORDER RUNGE-KUfTl METHOD IS USED TO SOLVE 
TH£ RESULTING EQUATIONS. 

c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

THE PROGRAM GIVES THE MOD4L AMPLITUDE AND THE PERT~BED 
PRESSURE IN GRAPHICAL FOR~. 

T~~RE ARE TWO TYPES OF INPUT DATAS. THE FIRST SET OF 
INPUT DATA USED FaRHAT FREE INPUT. 4 COMMA SERVES 
AS A DELIMITER AND THE DATA ENT~R AS FOLLO~: 

Tl INITIAL TIME 
TF FINAL TI~E 

DT ST~? SIZE fOR TIME 
N? PRINT fREQUENCY 
~OF 1 FOR TH~ DELAY TIME APPROCHING 0 

o OTHERWISE 
I~AS 1 fOR GAS-DYNAMIC TERHS 

o OTHERwISE 
fO, INITIAL CONDITION MODIfIER 
Of ~ITHER 1 OR 0 
R RADIUS OF THE CYLINDER 

c TrE S~COND SET OF DATA USED THE NAMELIST (LIST) 
C INPUT OUTPUT OPTION. THE DATA CAN BE ENTERED IN 
C ANY ORDER. HCwEVER THE fOLLOwING DATA ~~ST BE 
CPR 0 1/ I DE DIN I T B L l Y • 
C TDELAY DELAY TIME IN MULTIPLE OF PI 
C EP ORDER PARMETER 
C "6 STEADY BURNING RATE 
C ANV INTERACTION PARMETER 
C PLOT T fOR PRESSURE PLOT 
C f OTHEFwISE 
C 
C IF PLOT IS TRUE, ONE MORE DATA (NUHPT) IS NEEDED TO 
C PRovIDE TH( NUMBER OF POINT wITHIN 0 AND 2*PI. 
C 

CI~E~SION XX(lOO),YYC100),OY(10),P(S),fO(S),Df(S),G 
1(10,5(0)''1'(10) 
CC~'ON EP,IGAS, RK,W8 .. EPANV 
CCH~O~ ISlIST/SO,Sl,S2 
CCM~aN IqLK11 Cl,C2,C3 .. C4 .. CS,C6,C7,CB,C9,ClO,C11,C12 



1~C13.C14, C15,C16.C17 
COHMON IBLK2/C02,C03.C04,C05,C06,CQ1.C12P,C13P,C14P 

1,C15P, C22,C23.C24,C25,GAMA 
COMMON IBLK31 aJO,BJ1,BJ2,COSQ,COS2Q,SINQ,SINZQ 
DATA PI~3.141591 

LCGICAL PLOT 
NAMELIST ILISTI TDELAY;EP,W8,ANV.PLOT 
READ(S./) TI,Tf,OT,NP.NOF,IGAS,f07DF,R 
PnlNT *11,TI,Tr,DT,NP.NDF 
If (IGAS.EQ.O) PRINT Il,tGAS DYNAMIC TERM IS OfF' 
PRINT *II,FO,DF,R 
EFS=1.E-6 
CALL BESJ(SO*R,O,BJO,EPS,IER) 
CALL 8ESJ(Sl*R,1,BJl.EPS,lER) 
CALL 8ESJ(S2*R,2.BJ2,EPS,IER) 

999 READ(S,LIST,END=99) 
REWIND 1 
TCLY=PI*TDELAY 
EFANI/=EP*ANV 
IF (EPANV.EQ.O) EPANV=ANV 
~RITE(6,LIST) 

N=10 
HHALF=DT*.5 
K=TDlY/DT 
Kl=K-tl 
IF (Kl .GT. 500) GO TO 500 
IF (K.LT.l.AND.NDF.EQ.l) K=l 
DC 30 l=l,K 
C( 30 J=l"N 

30 GeJ"I>=o. 
DO 10 I=l"N 

10 YO >=0. 
C INITIAL CONDITION 
C 

T=Tl 
Y(2)=Fb(1)JY(4)=FO(Z);Y(6)=FO(])JY(S>=FO(4)JY(lO)=FO 

1(5) 
Y(1)=DF(1)*SO;Y<3)=DF(2)*SlJY<S)=OF(31*S2 
Y(7)=DF(4)*Sl;Y(9)=DFCS)*Sl 
NSTEP=(TF-TI)/DT 
IF (.NOT.PLOT) GO TO 40 
CALL PR£5UECY,.P) 
wf1ITE{l) T,P 

4C CCNTINUE 
P~INT II,"FUNCTION" 
wAITE(6,100) T,CYCI>,I=2,N,Z> 

45 CONTINUE· 
CALL DLYF~N (N,Y,G,K,EPS.Kl) 
DC 20 I=l,.NSTEP 
CALL AKD£lYCN,T,Y,DY"OT,G,.K,EP, &4QO,HHALF,Kl) 
DC 55 J=2,N,Z 
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c 

IF{ABS(V(J».LT.2) GO TO 55 
R~=2 

55 CONTINUE 
IF OtOO(!,NP).NE.O) GO TO 20 
IF (.NOT.PLOT) GO TO 60 
C~Ll PRESUE{Y~P) 
IHITEU) T,P 

60 ~RITE(6~100) T,(Y(~)~J=2,N,2) 

65 CONTINUE 
20 CCNTINu£ 

If (RK.GT.O) PRINT II,'UNSTABLE' 
IF (.NOT.PLOT) GO TO 70 
E~DF I L£ 1 
REWINO 1 
P~INT II,'PRESSURE' 
RE~D(5,/) NUHPT 
DG::?! *2./NUMPT 
NI.M=Nt..MPT+ 1 
TEM?=C;XX( 1 )::OJ 
CC 75 !::2,NUM 
TEMP=TEMP+OQ 

7S X)«(!)=TEMP 
98 R£AO{l~£ND=70) T,P 

PAINT II,"TIHE:: ",T 
SUMY=C. 
DC 80 1=1, NUH 
QG=XX(l) 
YY{I}= -GAM4*(P(1)tP(Zl*COS(QQ)fP(3)*COS(2*QQ)+P<4) 

l*SIN(QQ)+ P(S)*SlN{2*QQ» 
SUMY=SUMY+ yy(J) 

80 CONTINUE 
IF (St..HY.NE.O.) CALL PLOT20{XX,Y¥,NUM,100,lOO) 
GO TO 96 

70 CCNTINUE 
R~=O 

GG fa 999 
400 P~!NT *II,'ILLEGAL DELAY fUNCTION' 

GeT 0 99 
SOC PRINT -II,'DELAY TIME TOO LARGE' 
99 STOP 
100 FCRMAT (X,8E12.5) 
l1e FORHAT(13X,7E12.5) 

St'\D 
SU8ROUTINE OIFFUN CT,Y,DY) 
CIMENSION Y(lO),OY(10) 
CCM~ON EP,lGAS, RK,W9,EPANV 
ceHMON ISlIST/SO,Sl,S2 
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COMMON IBLK11 Cl,C2,C3rC4,C5,C6,Cl,C8,C9,ClO,Cl1,C12 
1,C13,C14, C15,C16,C17 

CH2)=Y(1) 



llO 

OY(1)~~SO*SO*Y{2)-EP*lGAS*(Cl*Y(2)·Y(l).C2*{Y(4)*Y(3) 
I+Y(31*Y(7» .C3*(Y(10)*Y(9)+Y(6)*Y(5») 

OH 4) =Y< 3) 
OY(3)=-Sl*51*Y(4'-EP*IGAS*(C4*Y(2)*Y(3).C5*Y(4)*Y<l) + 

1 C6*<Y(8).Y(9)+Y(4).YCS))+C7*(Y(6)*Y(3)+Y(lO)*Y 
2( 1» ) 

OH6)=Y(S) 
DY(S>=-S2*S2*Y(6)-EP*IGAS*(C8*Y(2)*Y(S).C9*Y(6)*Y(1). 

1 CI0*(Y(8)*Y(7)-Y(4)*Y(3») 
D't(I3)~V(7) 

DY(1)=-Sl*Sl*Y{S)-EP*IGAS*(C4*Y(Z)*Y(1)+C5*Y(8)*Y(1)+ 
I C6*(Y(4)*Y(9)-Y(8)*Y(5»+C7*(Y(10)*Y(3)-Y(6)*Y(1») 

OHI0)=Y(9) 
OY(9)=-S2*S2*Y(10l-EP*IGAS*(C8*Y(Z)*Y(9)+C9*Y(lO)*Y{1) 

1 CIO*(V{8)*Y(3)+Y(41*Y(7») 
IF (RK.EQ. 2) RETURN 
DY(1)=DY(I)-WS*(Y(1)+EPANV*(Cl1*Y(Z)*Y(2)+C1Z*{Y(4>*Y 

Hit). Y(8)kYC8»+ C13*(YUO)*YUOH·Y<6)*V<6»» 
G Y( 3 ) = OY ( 3 ) - WS * ( Y( 3 H EP AN II \!r(C 14*y( 2) ,. Y ( 4 } .. CIS* ( Y( 4 )* If 

l(E). Y(B)*Y(10»» 
GY(S)=DY(S)-W8*(Y(S)+EPANV*(Cl&*C¥(4)*y(4)·Y(S)*Y(8» 

1 +C17*Y(2)~Y(6») 

DY(7)=DY(7)·w8*(Y(1)+EPANV*(C14*Y(2)*Y(8)+C15*(Y(4)*Y 
1(10) Y(8)*Y(6}))) 

C H 9) = 0'« ') ) - WB* ( Y< 9)+ EP AN V. (C 17* Y (2)* Y< 10)+ Z*C 1 6*y< 4) 
I*H8») 

RETURN 
END 
SU8ROUTINE RKDELY{N~T,Y,OY;H;G.Kp£PS, *,HHALF,Kl) 
DIMENSION Y(lO),DY{10),Y2(10),Y3(10),G(10,S~O} 

ceHMON EP,IGAS, RK,w8,EPANV 
CCMHON /BLK1/ Cl,C2,C3,C4,CS,C6,Cl,C8,C9,ClO,Cll,C12 

1,C13,C14, C15,C16,C17 
CALL DlffUN(T,Y,DY) 
DC 1 l=l"N 

Y2(I)=Y(I) ~ HHALF*(DY(I) .. G{I,I» 
G{I,1)={G(I,1)+G(1,2»/2 

1 CCNTINUE 
T=T+t-lHALF 
CALL 0IfFUN(T,Y2,OY) 
DO 2 I=I,N 

Y3(I)=Y{I) .. HHAlF*(OY(X) .. Gel,I» 
2 Y2(1)= Y2(I) • 2*Y3(1) 

CALL DlfFUN( T,Y3,OY) 
DO 3 I=I,N 

Y3<1>=Y(I) .. H*(O'((l) + G(I"l» 
IF(K.LT.l) GO TO 3 
DC 10J=1,K 

10 G(l,J)=G{I,J+l) 
3 Y2(1)=Y2(1) .. Y3(1) 

T=T+HHALF 



G 

tALL CIFFUN (T ,Y3,OY) 
DC 4: I=l,N 

III 

YO) = (Y2o) - V{I) • HHAlF*,OY<!) + G(I,1»)/3. 
4 CONTINUE 

ENTRY DLYFUN (N,Y,G,K,EPS,Kl) 
IF (K.lT.1) RETURN 
IF (RK.EQ.2) RETURN 
G(l,Kl)= WS* EPANV*{Cl1*Y(2)*Y(2}+C12*<Y(4'*Y 

1(4). Y(8)*Y{8». C13*{Y(10)*Y(10).V(6)*Y(6») 
G(3.Kl)= W8* EPANV*(C14*Y(Z)*Y(4)+C15*(Y(4)*Y 

leE). Y(8)*V(10») , 
G(5,Kl)=w6*EPANV*(C16*(y(4)*Y{4)·Y(8)*Y(S».C17*Y(Z)*Y 

1(6» 
G(7,Kl)= WS* EPANV*(C14*Y(Z)*Y{8).C15*(Y(4)*Y 

1(10) Y(8)*V(6») 
G(9,Kl)=W6*EPANV*(Cl1*Y{2)*Y(1~)+2*C16*Y(4)*Y{8» 
A£TURN 
E~O 

SUBROUTINE PRESUE(Y,P) 

C THIS SECTION PERfORM THE PRESSuRE CALCULATION 
C 

DIMENSION Y(10),P(5) 
GGHMON EP,IGAS, RK,wB,EPANV 
ceHMaN 18LK2/C02,C03,C04,C05,C06,C01,C12P,C13P,C14P 

1,C15P, C22,C23,C24,C25,GAMA 
CC~MON 18LK3/BJO,8Jl~BJ2,COSQ,COS2Q,SINQpSIN2Q 

DFO=Y{l);Ofl=Y(3};OF2=Y(5)~DG1=YC7);DG2=Y(9) 

FO~Y(2); Fl=Y(4); F2=Y(6); Gl=YC3>} G2=Y{10> 
PCl)=8JO*(DfO+EP*(C02*FO*FO+C03*(Fl~fl+Gl*Gl)+C04*(f2 

1*F2tG2*G2) +COS*OFO*DfO.C06*<Ofl*frfl+DG1*OGl).C01* 
2(CF2*Of2+ DG2*DG2}» 

P(2)=BJl*(OF1+(P*<C12P*FO*Fl+C13P*(fl*F2+Gl*G2)+C14P 
1~DFO*DF1+ G15P*(DFl*DF2+DGl*DGZ») 

P(3)=BJ2*(DF2+EP*(C22*FO*F2+C23*(fl*Fl-Gl*Gl)+C24*OfO 
1*OF2+ C25*(Ofl*DFl-DGl*OGl») 

P(4)=BJl*(DG1+EP*(C12P*fO*Gl.C13P*(fl*G2-Gl*Fl).C14P 
l*CFO.OGl. C15P*<OF1*DG2-0f2*DGl») 

P(S)=8J2*<DG2+EP*(C22*FO*G2+Z.*C23*Fl*Gl*C24*DFO*OG2+ 
1 2 • * CZ 5 * OF 1 * 0 G 1 ) ) 

RET\,;RN 
El\D 
BLaCK DATA 
CCM~ON IBlKll Cl,C2,C3,C4,C5,C6,C7,C8,C9,ClO,Cll,C12 
1~C13,C14' C15,CI6,C17 
CQM~QN /SlIST/SO,Sl,S2 
ceMMON IBLK2/C02,C03,C04,C05,C06,C07,C12P,C13P,C14P 

1,C15P, C22,C23,C24,C25,GAMA 
CftTA 50,51,52/3.83171,1.84118,3.054241 
DATA Cl,C2,C3,C4/4.1373,t.0423,-.2084,-1.93941 
DATA C5,C6,C7,C8,C9 1-2.3123,1.7187,1.4828,-2.785, 



1-3.03861 
DATA CI0,Cll~C12,C13/1.1318,2.S86,.480~-.196/ 

DATA C14,C15,C16,C17/-2e4243,l.8534445,-.447,-3.4811 
DATA C02,C03,C04,C05~C06,C07/1.2930pO.2400,-.0982, 

1-.1762 I.0607,.0494/C12P,C13P,C14P,C15P/-l.2121 
2,.9267,.1651,-.1987/C22,C23,C24,C25/-1.1406,-.2235 
3,.2371,-.17541 

DATA GAMA/I.21 
END 
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