REACTUIONS OF CALCIUM ORTHOSILICATE AND BARIUM ZIRCONATE WITH OXIDES AND SULFATES OF VARIOUS ELEMENTS

Isidor Zaplatynsky
National Aeronautics and Space Administration
Lewis Research Center

October 1979

Prepared for
U.S. DEPARTMENT OF ENERGY
Energy Technology
Fossil Fuel Utilization Division
NOTICE

This report was prepared to document work sponsored by the United States Government. Neither the United States nor its agent, the United States Department of Energy, nor any Federal employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.
REACTION OF CALCIUM ORTHOSILICATE AND BARIUM ZIRCONATE WITH OXIDES AND SULFATES OF VARIOUS ELEMENTS

Isidor Zaplatynsky
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

October 1979

Work performed for
U. S. DEPARTMENT OF ENERGY
Energy Technology
Fossil Fuel Utilization Division
Washington, D.C. 20545
Under Interagency Agreement EF-77-A-01-2593
SUMMARY

Calcium orthosilicate and barium zirconate are being evaluated as the insulating layer of thermal barrier coatings for air-cooled gas turbine components. Surface temperatures of such coatings might reach 1300°C - 1400°C in hot spot locations. Thus chemical stability of these compounds was studied at 1100°C and 1300°C in the presence of some oxides and sulfates for times to 400 and 200 hours respectively. The oxides and sulfates studied represent some of the oxidation products of impurities found in either the combustion air, or the fuels as well as the elements in the bond coat alloys. These compounds are listed below in four groups, according to their reactivity with calcium orthosilicate (actual composition was $1.78\ \text{CaO} \cdot \text{SiO}_2$) and barium zirconate.

- Compounds that reacted with $2\ \text{CaO} \cdot \text{SiO}_2$: Na_2O, BaO, MgO, CoO, Al_2O_3, Cr_2O_3, SiO_2^*, P_2O_5 and V_2O_5.

- Compounds that did not react with $2\ \text{CaO} \cdot \text{SiO}_2$: Na_2SO_4, K_2O, K_2SO_4, BaSO_4, $\text{Na}_2\text{S}_2\text{O}_3$, ZnO and Fe_2O_3.

- Compounds that reacted with BaZrO_3: Al_2O_3, Cr_2O_3, Fe_2O_3, SiO_2, P_2O_5 and V_2O_5.

- Compounds that did not react with BaZrO_3: Na_2O, Na_2SO_4, K_2O, K_2SO_4, MgO, CaO, CoO and ZnO.

When comparing these results with data available for reactions between similar compounds and ZrO_2-$8\%\\text{Y}_2\text{O}_3$ it can be noted that all three materials reacted with SiO_2, P_2O_5 and V_2O_5. Also, zirconia was susceptible to attack by alkaline and alkaline earth metal oxides. Calcium orthosilicate and barium zirconate were not susceptible to such attack but reacted readily with Al_2O_3 and Cr_2O_3 which did not react with ZrO_2-$8\%\\text{Y}_2\text{O}_3$.

INTRODUCTION

The yttria-stabilized zirconia thermal barrier coating (TBC) developed at the NASA Lewis Research Center (refs. 1 and 2) has shown significant improvement in adherence and spall resistance over earlier efforts in this area (refs. 3 to 6). However, it has been found that yttria-stabilized zirconia is susceptible to attack by a number of compounds that might exist as impurities in turbine combustion gases (ref. 7). This might not be a problem in the case of aircraft.

*The reaction of SiO_2 with $2\ \text{CaO} \cdot \text{SiO}_2$ was not studied in these experiments, but based on reference 11 a reaction would be expected to occur.
gas turbines, since they burn high purity kerosenes. However, even here one could expect some difficulties if such zirconia thermal barriers were used in a salt air (marine) environment. In non-aircraft gas turbines, burning dirtier fuels such as crude or residual fuel oils and possibly future synthetic fuels, the potential problems would be expected to be much worse. Indeed, very short lives were observed in burner rig tests of ZrO2-12w/oY2O3/NiCrAlY thermal barriers exposed to combustion gases doped with 5 ppm Na and 2 ppm V (ref. 8). Analysis of these tests indicated that the worst condition occurred when the impurity condensed as a liquid (ref. 9). In the search for alternate coatings with improved resistance to corrosion, calcium orthosilicate and barium zirconate are being tested as potential materials for thermal barrier coatings. The former material has already been shown to offer a significant improvement over zirconia in resistance to sodium and vanadium-doped combustion gases (ref. 8). The present investigation supports this quest for improved coatings. Its specific purpose was to use laboratory tests to provide insight into the chemical stability of calcium orthosilicate and barium zirconate in the presence of potential fuel, air and bond coat derived impurities. The experiments were performed in furnaces at 1100°C and 1300°C for times to 400 and 200 hours, respectively. The test temperatures reflect hot spot conditions for TBC coated components in current industrial gas turbines and TBC surface temperatures expected on larger areas in advanced gas turbines. As in the study of ZrO2-8w/oY2O3 (Ref. 7), the phase compositions of the reaction products were determined by X-ray diffraction (XRD) analysis.

EXPERIMENTAL PROCEDURE

MATERIALS

The calcium orthosilicate used in this investigation was in the form of commercially available plasma spray powder (-200 +325 mesh). While the chemical analysis indicated that the calcium and silicon content in the material corresponded to a 1.78 CaO:SiO2 composition, the XRD pattern taken with Cu Kα radiation revealed that this silicate was primarily a monoclinic form, called larnite or β-Ca2SiO4 (ref. 10). Some of the diffraction lines, due to the closeness of their spacings, were not resolved but recorded as one. For example the strong lines (200) and (022) or (013), (103) and (121) were observed as one diffraction line. Spectrographic analysis revealed the presence of impurities in weight percent or PPM (parts per million): 0.8% Al, 5 PPM Co, 60 PPM Cr, 100 PPM Cu, 410 PPM Fe, 0.2% Mg, 20 PPM Mn, 40 PPM Mo, 90 PPM Ni, 320 PPM Ti and 120 PPM Zr. Barium zirconate (BaZrO3) was prepared by mixing high purity monoclinic ZrO2 (particle size 1-5 microns) with reagent grade BaCO3 powder and reacting the mixture for 100 hours at 1300°C in a platinum dish. These conditions were sufficient to complete the synthesis of BaZrO3. The completion of the reaction was verified by XRD. All the diffraction lines were accounted for as belonging to BaZrO3 (perovskite structure) except one weak line (d = 3.048Å), which could not be identified.

The following reagent grade compounds, representing impurities in the fuels and in the combustion air as well as the elements of the bond coat alloy were reacted with 2CaO·SiO2 and BaZrO3: Na2O, Na2SO4, K2O, K2SO4, CaO, BaO, BaSO4, NiO, CoO, MgO, ZnO, Fe2O3, Al2O3, Cr2O3, SiO2.
V_{2}O_{5} and P_{2}O_{5}. For practical reasons Na_{2}O, K_{2}O, CaO, BaO and CoO were introduced in the form of their carbonates. Also (NH_{4})_{2}HPO_{4} was substituted for P_{2}O_{5} to facilitate handling.

Preparation of the Specimens

Binary powder mixtures of 2CaO·SiO_{2} or BaZrO_{3} with the above listed compounds were prepared by thoroughly mixing, in a mortar, 1 gram of 2CaO·SiO_{2} or BaZrO_{3} with an "equivalent" amount of the compound. The "equivalent" amounts were calculated in the manner that for each atom of Ca or Ba there would be an atom of an element such as Na, Ni, Fe, etc. All mixtures were packed in small cylindrical containers made of 0.6 cm diameter platinum tubing with one end welded shut. After filling with the powder mixtures, the other end of each tube was pinched tightly.

Heat Treatment and XRD Analysis

One set of samples so prepared was heated at 1100°C for 200 hours, after which time a small amount of material was removed from each container for XRD analysis. The remainder of each sample in the set was heated at the same temperature for an additional 200 hours. Thus, we obtained samples which were heat treated for 200 and for 400 hours. Similarly the second set of samples was heated at 1300°C for 100 and 200 hours.

After each heat treatment, the samples were ground in a mortar and subjected to XRD analysis in a diffractometer equipped with a copper X-ray tube. During analysis of the data, attention was paid not only to the phases which were present, but also to the absence of certain phases. Mainly two publications were used as guides in the analysis: Powder Diffraction File Search Manual (ref. 10) and Phase Diagrams for Ceramists (ref. 11).

RESULTS

The results obtained in this investigation are shown below. The 2CaO·SiO_{2} and BaZrO_{3} systems are discussed separately.

CaO·SiO_{2}

There is a ternary equilibrium diagram for the Na_{2}O-CaO-SiO_{2} system (ref. 11), however the zone connecting Na_{2}O and 2CaO·SiO_{2} is uncharted. At 1100°C sodium oxide reacted with larnite. The extent of reaction increased with time. The detected phases were 2CaO·SiO_{2} and Na_{2}O·CaO·SiO_{2}. After 100 hours at 1300°C the observed phases were also 2CaO·SiO_{2} and Na_{2}O·CaO·SiO_{2}. However, after 200 hours a new unknown phase appeared and the amount of Na_{2}O·CaO·SiO_{2} decreased substantially. This indicates that Na_{2}O·CaO·SiO_{2} was unstable at this temperature.
The original mixture contained two compounds, namely $2\text{CaO} \cdot \text{SiO}_2$ and Na_2SO_4 (thenardite). After heat treatment at 1100° and 1300° C, thenardite disappeared and the presence of a new phase was observed. Based on previous results (ref. 7) this phase is some other form of sodium sulfate.

K_2O

The existing equilibrium phase diagram in the K$_2$O-CaO-SiO$_2$ system is incomplete and does not cover the area connecting K$_2$O-2CaO·SiO$_2$. XRD analysis of the sample after 200 hours at 1100° C revealed the presence of 2CaO·SiO$_2$ and of a few weak lines, that could not be accounted for. The diffraction lines produced by this sample are considerably weaker than those obtained from the unreacted sample. The same can be said about the sample, which was heat treated at 1100° C for 400 hours, except that XRD lines due to 2CaO·SiO$_2$ were much better defined. Similar results were obtained at 1300°C. No CaO·K$_2$O·SiO$_2$ or KOH were detected. Either the K$_2$O did not react with 2CaO·SiO$_2$ and was lost by evaporation or a glassy phase formed, which could not be detected by XRD.

K$_2$SO$_4$

The XRD data obtained indicated that, at 1100° C, K$_2$SO$_4$ did not react with 2CaO·SiO$_2$. After heat treatment at 1300° C for 100 hours, the detected phases were 2CaO·SiO$_2$, K$_2$SO$_4$ and an unknown compound. Continued heat treatment reduced the amount of K$_2$SO$_4$. Because the intensities of diffractions lines produced by 2CaO·SiO$_2$ were not affected by the heat treatments, one can conclude that there was no reaction between K$_2$SO$_4$ and 2CaO·SiO$_2$. The observed unknown phase was probably some form of K$_2$SO$_4$.

BaO

According to the existing equilibrium phase diagram for BaO-CaO-SiO$_2$ system (ref. 11), barium oxide should react with larnite by forming barium silicate and calcium oxide. At both temperatures (1100° and 1300° C), the reaction was complete as no larnite XRD lines were detected. The predominant phase was a compound, the lines of which could be indexed in a manner similar to (Ba$_{1.55}$ Ca$_{0.45}$)·SiO$_4$. It is reasonable to assume that this compound represents compounds with the general formula 2(Ca$_x$Ba$_{1-x}$)·SiO$_2$. The few unindexed lines were weak and could not be related to 2BaO·SiO$_2$, CaO, etc.

BaSO$_4$

No reaction between 2CaO·SiO$_2$ and BaSO$_4$ was observed.

MgO

According to the existing equilibrium diagram for the CaO-MgO-SiO$_2$ system, MgO should react with 2CaO·SiO$_2$ to form certain amounts of 3CaO·MgO·SiO$_2$ (merwinite). The phases observed after heat treatment at 1100° C were MgO,
2CaO·SiO₂ and an unknown compound, isomorphic with \((2\text{CaO} \cdot \text{SiO}_2)_{5.6} (3\text{CaO} \cdot \text{MgO} \cdot 2\text{SiO}_2)_{4.4}\) (ref. 10). The heat treatment at 1300°C caused disappearance of 2CaO·SiO₂; the remaining phases being the unknown compound and MgO.

NiO

Nickel oxide did not react with larnite at 1100°C nor at 1300°C. This observation is in agreement with the tentative CaO-NiO-SiO₂ equilibrium diagram (ref. 11).

CoO

The ternary CaO-CoO-SiO₂ equilibrium diagram is not available. Very little reaction occurred at 1100°C and only a trace of an unknown phase was detected by x-ray. The main phases were 2CaO·SiO₂ and CoO. At 1300°C the reaction advanced to the point where the predominant phases were CoO and an unknown compound. The strongest XRD-lines of larnite were only detected as a weak line. Thus, it can be stated that CoO reacted with 2CaO·SiO₂.

ZnO

An equilibrium diagram for the ZnO-CaO-SiO₂ systems exists (ref. 11). In agreement with the diagram, the experimental data indicated that ZnO did not react with larnite at 1100°C nor 1300°C. The samples, heat treated at both temperatures, produced well defined XRD patterns of 2CaO·SiO₂ and ZnO.

Fe₂O₃

At 1100°C no reaction was detected between larnite and Fe₂O₃ (hematite). After heat treatment at 1300°C, the detected phases were larnite, hematite and an unknown compound. According to the existing equilibrium diagram (ref. 11), no reaction should take place between these two compounds.

Al₂O₃

At 1100°C and 1300°C, alumina reacted completely with larnite. No free alumina was observed. The detected phases were 2CaO·Al₂O₃·SiO₂ and 2CaO·SiO₂ which is in agreement with the existing equilibrium phase diagram (ref. 11).

Cr₂O₃

At 1100°C, Cr₂O₃ reacted with larnite to give 3CaO·Cr₂O₃·3SiO₂ (uvarovite). No Cr₂O₃ was detected. However, at 1300°C no uvarovite was detected. Only the original compounds, 2CaO·SiO₂ and Cr₂O₃ were observed. This is consistent with the equilibrium diagram (ref. 11). If the experiment were performed at 1300°C only, one could draw a logical conclusion that Cr₂O₃ did not react with larnite. However, the data obtained at 1100°C suggest that during the heat-up period to 1300°C, Cr₂O₃ reacted
with 2CaO·SiO₂ to form uvarovite which later decomposed at the higher temperature into the two original compounds.

P₂O₅

According to the existing equilibrium diagram (ref. 11) the reaction products should have been 3CaO·P₂O₅, CaO·SiO₂ and SiO₂ (α-cristobalite). However, after heat treatment at 1100°C, the diffraction lines of one or two unknown compounds were detected. The reaction at 1300°C produced 3CaO·P₂O₅ (calcium orthophosphate) and an unknown compound with an XRD pattern different from the one observed at 1100°C. It was difficult to establish the presence or absence of α-cristobalite because its diffraction lines were coincident with the lines of the unknown compound or compounds.

V₂O₅

Experiments at 1100°C revealed that V₂O₅ (vanadium pentoxide) reacted with larnite to form an unknown compound. Some unreacted V₂O₅ was also found to be present. No larnite was detected. During experiments at 1300°C, the sample crept out of the platinum container and consequently no analysis was performed. Thus, it is reasonable to assume that V₂O₅ reacted at 1300°C with 2CaO·SiO₂.

BaZrO₃

Na₂O

Apparently there was no reaction between Na₂O and BaZrO₃. XRD patterns obtained from the samples heat treated at 1100°C and 1300°C revealed strong, well defined lines of BaZrO₃ and a few weak lines of an unknown phase. No Na₂O, NaOH or Na₂ZrO₃ were detected. Apparently most of Na₂O was lost by evaporation.

Na₂SO₄

At both temperatures, 1100°C and 1300°C, no reaction was observed. The samples gave a very strong BaZrO₃ pattern and some weak lines which did not correspond to Na₂SO₄ or any other known form of sodium sulfate. However, based on previous results (ref. 7), these lines can be attributed to an unindexed form of sodium sulfate.

K₂O

K₂O did not react with BaZrO₃ at 1100°C or 1300°C. No K₂O was detected. The XRD pattern of BaZrO₃ remained unchanged. It is reasonable to assume that K₂O was lost by evaporation.

K₂SO₄

As with Na₂SO₄, BaZrO₃ did not react with K₂SO₄. After heat treatments at 1100°C and 1300°C, the observed phases were BaZrO₃ and some
K₂SO₄. It is of interest to point out that unlike Na₂SO₄, K₂SO₄ did not form any complex potassium sulfate.

MgO

MgO did not react with BaZrO₃.

CaO

No reaction was observed between CaO and BaZrO₃. Obviously, barium zirconate must be a more stable compound than calcium zirconate.

NiO

NiO did not react with BaZrO₃ at 1100° or at 1300° C. The XRD patterns were rather deceptive because all NiO diffraction lines (except (311)) coincided with those of BaZrO₃.

CoO

CoO did not react with BaZrO₃.

ZnO

No reaction was observed between ZnO and BaZrO₃.

Fe₂O₃

Analysis of the diffraction patterns of the samples reacted at 1100° and 1300° C revealed that Fe₂O₃ reacted with BaZrO₃. The detected phases were BaZrO₃, Ba₀·₆Fe₂O₃ and monoclinic ZrO₂ (small amount). In addition the samples became black and magnetic. The black color and the magnetic property should be attributed to Ba₀·₆Fe₂O₃ as BaZrO₃ and ZrO₂ have a light color and are not magnetic.

Al₂O₃

The obtained data indicated that Al₂O₃ readily reacted with BaZrO₃ at 1100° and 1300° C to form BaO·Al₂O₃. In addition to the above compound, the heat treated sample contained BaZrO₃ and monoclinic ZrO₂. No Al₂O₃ was detected. (However, in the presence of compounds containing heavy elements like Ba or Zr, small amounts of Al₂O₃ would not be detected.)

Cr₂O₃

At 1100° and 1300° C, Cr₂O₃ reacted with BaZrO₃ to form BaCrO₄. In this reaction, chromium changed its valency from 3 to 6. In addition to BaCrO₄, monoclinic ZrO₂ was detected. No BaZrO₃ or Cr₂O₃ were observed.
SiO_2

SiO_2 reacted with $BaZrO_3$ at 1100$^\circ$ and 1300$^\circ$ C. In accordance with the existing $BaO-ZrO_2-SiO_2$ equilibrium phase diagram (ref. 11) the detected phases were $2BaO \cdot ZrO_2 \cdot 3SiO_2$ and $BaZrO_3$. It appears that the samples heat treated at 1100$^\circ$ C might also contain a small amount of unreacted silica (α-cristobalite).

P_2O_5

At both temperatures, 1100$^\circ$ and 1300$^\circ$ C, P_2O_5 reacted with $BaZrO_3$ to form $BaO \cdot ZrO_2 \cdot P_2O_5$. No $BaZrO_3$ was detected. There were a few XRD lines, some of them relatively strong, that could not be identified.

V_2O_5

V_2O_5 reacted readily with $BaZrO_3$ at 1100$^\circ$ and 1300$^\circ$ C. Even after only 200 hours at 1100$^\circ$ C, all $BaZrO_3$ and V_2O_5 were consumed. The observed phases were $3BaO \cdot V_2O_5$, monoclinic ZrO_2 and an unknown compound.

DISCUSSION

The results obtained in this investigation are summarized in tables 1 and 2. These tables list all the chemical compounds used and the products of their reactions with calcium silicate and barium zirconate at 1100$^\circ$ and 1300$^\circ$ C. They also include columns marked with the letters "N" or "Y" indicating that essentially no reaction took place (N) or that, yes, there was a partial or complete reaction (Y). The entry "unknown phase" was used when some lines of an XRD pattern could not be attributed to any compound listed in the Powder Diffraction File Search Manual (ref. 10). In general the heat treatments at 1100$^\circ$ and 1300$^\circ$ C produced similar results. When reactions were observed, they were usually the same at both temperatures. If there was no reaction at 1100$^\circ$, there was generally none at 1300$^\circ$ C. It is noteworthy that no monovalent or divalent oxides and sulfates reacted with barium zirconate. Similarly, calcium orthosilicate was not affected by sulfates, however, it was attacked by sodium, barium and cobalt oxides. Vanadium and phosphorous are impurities generally contained in industrial fuels and their pentoxides reacted readily with both barium zirconate and calcium orthosilicate.

Al_2O_3 and Cr_2O_3, which are oxides of the component elements of the bond coat, reacted with both materials. This indicates that at very high oxide/bond coat interface temperatures, calcium orthosilicate and barium zirconate might not be compatible with $MCrAIY$ type bond coat oxidation products.

In order to compare the chemical stability of calcium orthosilicate and barium zirconate with yttria-stabilized zirconia under the same conditions, table 3 was prepared. It shows how the three thermal barrier materials behaved in the presence of the same impurities when exposed at 1300$^\circ$ C for 200 hours. Because some of the reaction experiments were not performed, the information necessary to complete this table was obtained from reference 11. It can be seen
that 10 out of 17 impurities reacted or would have reacted with calcium orthosilicate and ZrO2-8w/oY2O3 and 7 out of 17 reacted or would have reacted with barium zirconate. The impurities that reacted with all three materials were BaO, SiO2, P2O5 and V2O5, whereas alkali metal sulfates did not react with any of them. The information obtained from this investigation should be of interest in the analysis and solution of problems encountered during the development and testing of thermal barrier coatings.

SUMMARY OF RESULTS

The chemical stability of calcium orthosilicate and barium zirconate were studied at 1100° and 1300° C in the presence of some oxides and sulfates for times to 400 and 200 hours, respectively. These oxides and sulfates represent some of the potential impurities that may be found in gas turbine combustion gases or that may be formed as oxidation products of the elements of bond coat alloys.

The impurities that reacted with 2CaO·SiO2 are Na2O, BaO, MgO, CoO, Al2O3, Cr2O3, P2O5 and V2O5.

The impurities that did not react with 2CaO·SiO2 are Na2SO4, K2O, K2SO4, BaSO4, NiO, ZnO and Fe2O3.

The impurities that reacted with BaZrO3 are Al2O3, Fe2O3, Cr2O3, SiO2, P2O5 and V2O5.

The impurities that did not react with BaZrO3 are Na2O, Na2SO4, K2O, K2SO4, MgO, CaO, CoO and ZnO.

As a result of this study and a previous study of reactions of potential impurities with ZrO2 8w/oY2O3 (7) it was noted that BaO, SiO2, P2O5 and V2O5 react with all three materials after 200 hours at 1300° C and that alkali metal sulfates do not react.

REFERENCES

<table>
<thead>
<tr>
<th>Temperature</th>
<th>1100°C</th>
<th>1300°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>200 hr</td>
<td>400 hr</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2CaO·SiO₂</td>
<td>Y</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>2CaO·SiO₂</td>
<td>N</td>
</tr>
<tr>
<td>K₂O</td>
<td>2CaO·SiO₂</td>
<td>N</td>
</tr>
<tr>
<td>K₂SO₄</td>
<td>2CaO·SiO₂</td>
<td>N</td>
</tr>
<tr>
<td>BaO</td>
<td>2(CaₓBaₙ₋ₓ)SO₄</td>
<td>Y</td>
</tr>
<tr>
<td>BaSO₄</td>
<td>2CaO·SiO₂</td>
<td>N</td>
</tr>
<tr>
<td>MgO</td>
<td>MgO</td>
<td>2CaO·SiO₂</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2CaO·SiO₂</td>
<td>N</td>
</tr>
<tr>
<td>CoO</td>
<td>CoO</td>
<td>2CaO·SiO₂</td>
</tr>
<tr>
<td>ZnO</td>
<td>2CaO·SiO₂</td>
<td>N</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2CaO·SiO₂</td>
<td>N</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>2CaO·Al₂O₅·SiO₂</td>
<td>Y</td>
</tr>
<tr>
<td>Cr₂O₅</td>
<td>3CaO·Cr₂O₃·SiO₂</td>
<td>Y</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>One or two unknown phases</td>
<td>Y</td>
</tr>
<tr>
<td>V₂O₅</td>
<td>Unknown phase</td>
<td>Y</td>
</tr>
<tr>
<td>Temperature</td>
<td>1100°C</td>
<td>1300°C</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Time</td>
<td>200 hr</td>
<td>400 hr</td>
</tr>
<tr>
<td>Na₂O</td>
<td>BaZrO₃</td>
<td>unknown phase</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>BaZrO₃</td>
<td>unknown phase</td>
</tr>
<tr>
<td>K₂O</td>
<td>BaZrO₃</td>
<td>N</td>
</tr>
<tr>
<td>K₂SO₄</td>
<td>BaZrO₃</td>
<td>N</td>
</tr>
<tr>
<td>MgO</td>
<td>BaZrO₃</td>
<td>MgO</td>
</tr>
<tr>
<td>CaO</td>
<td>BaZrO₃</td>
<td>CaO</td>
</tr>
<tr>
<td>NiO</td>
<td>BaZrO₃</td>
<td>NiO</td>
</tr>
<tr>
<td>CoO</td>
<td>BaZrO₃</td>
<td>CoO</td>
</tr>
<tr>
<td>ZnO</td>
<td>BaZrO₃</td>
<td>ZnO</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>BaZrO₃</td>
<td>Y</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>BaZrO₃</td>
<td>Y</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>BaCrO₄</td>
<td>Cr₂O₃</td>
</tr>
<tr>
<td>SiO</td>
<td>Ba₂O₃·Zr₂O₃·3SiO₂</td>
<td>Ba₂O₃·Zr₂O₃·3SiO₂</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>Ba₂O₃·Zr₂O₃·2P₂O₅</td>
<td>Ba₂O₃·Zr₂O₃·2P₂O₅</td>
</tr>
<tr>
<td>V₂O₅</td>
<td>Ba₂O₃·V₂O₅</td>
<td>Ba₂O₃·V₂O₅</td>
</tr>
</tbody>
</table>

-Y - REACTION WAS DETECTED; N - NO REACTION WAS OBSERVED

TABLE 2. SUMMARY OF REACTIONS BETWEEN BARIUM ZIRCONATE AND OXIDES AND SULFATE OF VARIOUS ELEMENTS
TABLE 3. COMPARISON OF CHEMICAL REACTIONS BETWEEN ZrO₂ 8w/o Y₂O₃, 2CaO-SiO₂, BaZrO₃ AND OXIDES AND SULFATES OF VARIOUS ELEMENTS AFTER 200 hr AT 1300°C
(Y - REACTION WAS DETECTED, N - NO REACTION WAS OBSERVED)

<table>
<thead>
<tr>
<th></th>
<th>ZrO₂-8w/o Y₂O₃</th>
<th>2CaO·SiO₂</th>
<th>BaZrO₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂O</td>
<td>Na₂ZrO₃</td>
<td>2CaO·SiO₂</td>
<td>BaZrO₃</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>ZrO₂ cubic</td>
<td>2CaO·SiO₂</td>
<td>BaZrO₃</td>
</tr>
<tr>
<td></td>
<td>Na₂ZrO₃</td>
<td>known phase</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K₂O</td>
<td>2CaO·SiO₂</td>
<td>N BaZrO₃</td>
</tr>
<tr>
<td></td>
<td>K₂SO₄</td>
<td>2CaO·SiO₂</td>
<td>N BaZrO₃</td>
</tr>
<tr>
<td>BaO</td>
<td>BaZrO₃</td>
<td>Y 2(CaₓBa₁₋ₓ)SiO₂</td>
<td>N Y</td>
</tr>
<tr>
<td>BaSO₄</td>
<td>Not tested</td>
<td>Y 2CaO·SiO₂</td>
<td>N Not tested</td>
</tr>
<tr>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
<td>Y BaZrO₃</td>
</tr>
<tr>
<td>CaO</td>
<td>Ca₂ZrO₃</td>
<td>Y Not tested</td>
<td>Y BaZrO₃</td>
</tr>
<tr>
<td>NiO</td>
<td>NiO</td>
<td>Y Not tested</td>
<td>N BaZrO₃</td>
</tr>
<tr>
<td>CoO</td>
<td>CoO</td>
<td>Y BaZrO₃</td>
<td></td>
</tr>
<tr>
<td>ZnO</td>
<td>ZnO</td>
<td>Y BaZrO₃</td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>Fe₂O₃</td>
<td>Y BaZrO₃</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Al₂O₃</td>
<td>Y BaZrO₃</td>
<td></td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>Cr₂O₃</td>
<td>Y BaCrO₄</td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>SiO₂</td>
<td>Y BaO·ZrO₂</td>
<td></td>
</tr>
<tr>
<td>P₂O₅</td>
<td>P₂O₅</td>
<td>Y BaO·ZrO₂</td>
<td></td>
</tr>
<tr>
<td>V₂O₅</td>
<td>V₂O₅</td>
<td>Y BaO·V₂O₅</td>
<td></td>
</tr>
</tbody>
</table>

1See reference 7.
2According to reference 11 a reaction should occur to form ZrO₂·3SiO₂.
3Reference 7 indicates that BaSO₄ reacted easily at 1400°C. Therefore, it is reasonable to assume that some reaction would also take place at 1300°C.
4See reference 7.
5According to reference 11 a reaction should occur to form 7BaSO₄·ZrO₂.
6According to reference 11 a reaction should occur to form CaO-SiO₂. Therefore, it is reasonable to assume that reaction would take place at 1300°C, also.
7Reaction occurred at 1100°C. It suggests that during the heat up period, Cr₂O₃ reacted to form uvarovite (3CaO·Cr₂O₃·SiO₂) which later decomposed at a higher temperature.
8According to reference 11, a reaction should occur to form CoO·SiO₂.
9Reaction occurred at 1100°C. It is reasonable to assume that reaction take place also at 1300°C.
Abstract

Calcium orthosilicate and barium zirconate are being evaluated as the insulation layer of thermal barrier coatings for air-cooled gas turbine components. Their reactions with various oxides and sulfates were studied at 1100°C and 1300°C for times to 400 and 200 hours, respectively. These oxides and sulfates represent potential impurities or additives in gas turbine fuels and in turbine combustion air as well as elements of potential bond coat alloys. The phase compositions of the reaction products were determined by X-ray diffraction analysis. BaZrO₃ and 2CaO·SiO₂ both reacted with P₂O₅, V₂O₅, Cr₂O₃, Al₂O₃, and SiO₂. In addition, 2CaO·SiO₂ reacted with Na₂O, BaO, MgO, and CoO and BaZrO₃ reacted with Fe₂O₃.
End of Document