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ABSTRACT

For the first time, it has been shown experimentally that the Marangoni

phenomenon is a primary mechanism for the movement of a gas bubble in a non-

isothermal liquid in a low-gravity environment. In such a two-phase flow sys-

tem, local variations in surface tension at the bubble surface are caused by a

temperature gradient in the liquid. Shearing stresses thus generated at the

bubble surface lead to convection in both media, as a result of which the bubble

begins to move. A mathematical model consisting of the Navier-Stokes and

thermal energy equations, together with the appropriate boundary conditions

for both media, is presented. Parameter perturbation theory is used to solve

this boundary value problem; the expansion parameter is the Marangoni num-

ber. The zeroth, first- and second-order approximations for the velocity,

temperature and pressure distributions in the liquid and in the bubble, and the

deformation and terminal velocity of the bubble are determined. Experimental

zero-gravity data for a nitrogen bubble in ethylene glycol, ethanol, and silicone

oil subjected to a linear temperature gradient were obtained using the NASA

Lewis zero-gravity drop tower. Comparison of the zeroth order analytical re-

suits for the bubble terminal velocity showed good agreement with the experi-

mental measurements. The first- and second-order solutions for the bubble
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deformation and bubble terminal velocity are valid for liquids having Prandtl

numbers on the order of one, but there is a lack of appropriate data to test the

theory fully.

INTRODUCTION

The Marangoni flow phenomenon, the flow generated by a gradient in sur-

face tension, could be the driving flow mechanism in a low-gravity environ-

ment. Because of the role of this flow phenomenon in materials processing in

space, fluid storage and transfer operations in space, and boiling heat trans-

fer as applied to propellant management in space, it is receiving increasing

study.

The phenomenon of surface tension induced flow requires a liquid-vapor

interface and local variations in interfacial tension. In this two-phase flow

system, local variations in the surface tension at the bubble interface are

caused by temperature variations in the liquid and gaseous media. According

to the Marangoni flow phenomenon. liquid should flow around the bubble and the

bubble should migrate toward the hotter region. However, it is difficult to

study this flow phenomenon in normal gravity because of buoyancy effects. In

normal gravity, buoyancy driven flows generally mask surface tension induced

flows, that is, the magnitude of the buoyancy force is much greater than the

thermophoretic force and buoyancy driven convection may further complicate

the study. It is, therefore, virtually impossible to carry out a quantitative

experimental investigation for "pure" surface tension induced flows in normal

gravity. As a result, the experimental investigation of this flow phenomenon

was conducted in the NASA Lewis Research Center Zero-Gravity Facility,

The primary objective of this work was to observe the behavior of a single

noncondensible bubble in a liquid under the influence of a linear temperature

gradient in a weightless environment, and then to compare these experimental

I



data with existing theory. A secondary objective was to extend the analytical
i

model of this flow phenomenon beyond that which is presently available.

Although the Marangoni flow phenomenon is a classical fluid physics prob-

lem, only a limited amount of experimental and analytical work has been done

in this area for the reasons mentioned above. Hershey in 1939 (ref. 1) conduc-

ted an experiment in which it was shown that if a temperature gradient exists 	
s

t
along a free liquid-vapor interface, a dynamic steady state is achieved. Block

in 1956 (ref. 2) carried out experiments to prove that Benard (convection) cell

motions are produced by variations in the surface tension due to thermal gra-

dients. The first experimental work concerned with the study of surface ten-

sion induced flow of a bubble in a heated liquid was done by Young, Goldstein,

and Block in 1959 (ref. 3). Experimentally, they obtained a temperature gra-

dient in a liquid sufficient to hold a bubble stationary in normal gravity by bal-

ancing the gravity force with the thermophoretic force. Their experimental

data was in fair agreement with their theoretical predictions. Hardy (ref. 4)

repeated Young, et al.'s experiment in a more precise manner, and concluded

that his data were in good agreement with the previous study. McGrew in 1968

(ref. 5) conducted experiments to verify the theory he developed for computing

the static thermophoretic force on a bubble. Papazian and Wilcox (ref. 6) were

the first to conduct a Marangoni experiment in a low-gravity environment.

Using a Space Processing Applications Research (SPAR) sounding rocket to

achieve this type of environment, they were not successful in observing this

flow phenomenon, primarily due to experimental difficulties. Theoretical analy-

ses similar to that of Young, et al., were performed by Kuznetsov, et al.

(ref. 7) and by Lyubin and Povitskiy (ref. 8). Bratukhin's analysis (ref. 9) dif-

fered from the previous investigators in that perturbation theory was used,

where: the dependent variables were expressed in a series expansion with the

Marangoni number being the control parameter.



4

To date, relatively few quantitative experimental measurements of the

111arangoni bubble motion flow phenomenon have been made to compare with the

theory. The theory developed by the abo%e in v estigators has been limited to

the solution of the linearized Navier - Stokes equations (creeping flow approxi-

mation) and the assumption of pure conduction which permitted the use of

Laplace's equation, together with the appropriate boundary conditions on

velocity, stress, and temperature. For a spherical bubble, the corrected ex-

pression for the bubble terminal velocity as determined by young, et al, is

_ 2 1	 1	 :411a	 da dT	 _	 2

1	 .i µ 1 (2µ l + 3µy) 2 + h -h, ^l'1' dz - 
(I^ 1 	E^2)ga ^^1 + µ.2 )	 (1)

(See the symbol list for definitions of the quantities.) By setting the velocity

equal to zero and neglecting the ratios of Viscosities, densities, and thermal

conductivities of the inner to outer media, the temperature gradient required

to hold the bubble motionless can be found and is given by

(IT	 21)1ga	
(2)

dz	 ;s du/dT

EXPERIMENTAL PROGRAM

Initially, there were three key feasibility issues identified. The first had

to do with the developnv:nt of a bubble injection system to introduce a single

bubble into the liquid with minimal disturbance to the liquid and such that bub-

ble size could be controlled. The second had to do with the development of a

heating system to establish and maintain a linear temperature gradient ill

liquid without causing any buoyanc .v driven convection. The third issue was an

operational one, that is, the test run had to be completed within an S-hour time

shift. Other concerns were the selection of test liquids, the determination of

tank size, safety considerations, effect of bubble oscillations, selection of tern-

perature instrumentation, visual observation of bubble behavior, effect of sur-

face contamination, drop-tower limitations, etc.
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Based on the above mentioned key feasibility issues anti other concerns,
1

the experimental apparatus used to observe the Marangoni flow phenomenon

was designed around the Lewis Research Center's 155 m zero-gravity facility,

shown in Figure 1. Data were obtained by allowing a capsule housing the ex-

periment to free-fall for a time of 5.2 seconds.
f

Experimental Apparatus

A schematic of the experimental apparatus is shown in Figure 2. A cy- 	 i

lindrical test container, 12 cm in diameter and 12 cm high was fabricated from

a transparent plastic material to permit % isual observation of the bubble rising

in the liquid. The container side walls were insulated using a vacuum jacket

fabricated from a transparent plastic material. The bubble injection system

consisted of a supply of pressurized gas, a valving system consisting of a

micrometer valve and a solenoid valve mounted in series, and a nozzle. A

noncondensible bubble (nitrogen) was formed anti introduced into the liquid from

a submerged orifice at the bottom of the test compartment. To establish and

maintain the desired temperature gradient, a heater was employed at the top

of the test container and a cooling bath at the bottom. Thermocouples attached

to a rake, 2 cm apart and 3 cm from the tank centerline, were employed to

monitor the liquid temperature before and during the test drop. Another ther-

mocouple embedded in the heater plate was employed to monitor the plate tem-

perature. The bubble movement was recorded by two high-speed cameras

which were mounted 90 0 apart to observe the motion if the bubble path deviated

from rectilinear. The elapsed free-fall time was obtained from two digital

clocks in view of the cameras. A centimeter scale was mounted to the lower

plate for scaling purposes. The bubble distortion resulting from the refractive

index of the cylindrical tanks was accounted for when the data were analyzed.

A photograph of the test apparatus is shown in Figure 3.

r
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Initial Tests - Feasibility Issues

Preliminary zero-gra%ity tests were conducted to verify the bubble injec-

tion system. The bubble was introduced into the liquid a fraction of a second

after the drop was initiated. As a result of these tests, several experimental

problems of Aiarangoni flow became apparent. First, a finite time for bubble

oscillations to damp out was required, leaving fewer seconds of free-fall time

to observe the Marangoni flow phenomenon. Second, the bubble had all

 residual velocity even after 5.2 .ceonds of free-fall time. To illustrate

these problems, Figure 4 shows a representative plot of bubble displacement

as a }unction of tree-tall time for distilled water. The bubble residual velocity

still persists after 5.2 seconds of tree-fall time, but it appears to be decaying

roughly exponentially. .Also, note oil 	 figure the free-fall time at which the

bubble oscillations damped out as determined photographically. In other tests,

methylene blue dye was introduced into the liquid to determine liquid disturb-

ance as a result of bubble injection. These tests showed that the initial dis-

turbance to the liquid decayed rapidly, and no gross motion of the liquid oc-

curred. It was noted, however. that the dye affected the bubble formation and

separation processes, and it was impossible to form a single bubble.

Besides the bubble injection system, another key feasibility issue identi-

fied at the onset of this experin ent Nvas whether or not the desired temperature

gradient could be established and maintained in the liquid. The apparatus just

described was designed with the intent of having the greatest flexibility for

realizing this objective, without having any buoyancy driven convection present.

Prelimill(1 ►'y ground tests Were conducted With distilled water to sec if a linear

temperature gradient could be obtained, and to determine the required heating

time. figure 5 shows a representative temperature profile after 260 minutes

of heating. As can be seen, a linear temperature gradient is approached in the

top half of the tank. The liquid Was heated from the top to avoid Raleigh insta-
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bilities. Radial heat loss was minimized by the sidewall va 2uum jacket insu-

lation. As a further check to insure there was no buoyar: y driven convection

present, a separate thermocouple prolv was used to measure the liquid tem-

perature along the centerline :axis of the container. As the thermocouple was

lowered into the liquid through the standpipe, it took only a few seconds for the

measurements to stabilize at each position. The results, when compared with

the temperatures measured a cm from the centerline, were nearly identical,

indicating there was no buoyancy driven conv ection occurring within an annulus

of fluid approximately 6 cm in diameter.

Another key feasibility issue identified early in the program was the time

required for a test. Although it was an operations problem rather than a tech-

nical one, it was imperative that a test be completed with an 8-hour working

shift. Time estimates of the carious phases of the test program included

ground preparation, transport of the experiment vehicle, heating of the liquid,

evacuating of the drop chamber, and recovery of the experiment. Summing up

the maximum time estimates for each of the test stages, ii was found that a

complete test could be completed within an S-hour time frame.

Test Fluids

Several factors were taken into consideration in the selection of the test

fluids, the most important being the thermophysical properties, clarity, pre-

sence of surfactants, and potential safety and health problems. The liquids

chosen Nvere distilled water, ethylene glycol, DC 200 silicone oil, and ethanol.

Although distilled water is known to contain surfactants, it was chosen because

of its high surface tension gradient ;uul safety cons Werations, and was expected

to provide experimental data outside the creepin g; flow regions. P'thvlene glYcol

and silicone oil were selected because any surface active ageals present tend

to staff• in the bulk phase rather than migrate to the bubble surface. Fthanol was

chosen because it is ;available as a reagent grade pure liquid, and experimental

k
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data can be obtained outside the creeping Ilow regime. A table of properties of

these four test liquids is shown in Table 1,

F\PFRIMFNTAL RESULTS

Meaningful data %% ,ere obtained from about `to percent of the 38 tests per-

formed in the 155 m drop tower. Complete results are presented by the author

in reference 10. Single bubbles wcre generated in about half of the tests, but

the tests when multiple bubbles were formed (generally two) were also of value

and arguments are presented to validate their usefulness. The importance of

the nozzle configuration is also discussed, as are bubble displacements, bubble

size, shape, and oscillation measurements. The nozzle characteristics which

were varied in the experiment included the nozzle height, that is, the distance

measured from the bottom of the test container to the top of the nozzle, the in-

sic e diameter, and the nozzle material.

The basic raw data collected from the experiments consisted of (1) taking

bubble displacement measurements as a function of free-fall time from the

films; (2) bubble shape measurements as a function of time; and (:t) bubble us-

cillntians as a function of time. For accuracy of measurement and convenience,

bubble displacement was measured from the orifice to the bottom of the bubble,

while the tins was measured from the initiation of free-fall. Bubble shapes

Nvere corrected for distortion using appropriate scale factors, while the bubble

oscillations, after the initial vertical rise, were in the second mode, that is,

the bubble oscillates between an oblate and prolate shape.

Figure u shows the comparison of a typical isothermal run with a typical

nonisothermal run for distilled water. As can be seen, the isothermal bubble

displacement was continually decreasing with time, having : ► residual velocity

of u. 3 cm sec in the last second of free-fall. The nonosithermal run shown is

the one having the greatest displacement as a function of time with a bubble

terminal \ elocit y of 0.6 cm sec in the last second of free-fall when the tem-

I
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perature gradient was about .' 0 C /cm. Since the expected value of cclocitY is 	 I

an order of magnitude greater than this, there is very little discernible differ-

ence between the velocities obtained from these curves, and it appears that

the hlarangeni flow phenomenon was no, observable using distilled water. In

addition, it should be noted that a single bubble was not generated in any of

these runs. 1larangoni flow was not observed in distilled water. This may

have been because of surfactants concentrated at the bubble surface or because

of some molecular phenomenon, perhaps caused by the polar nature of the

Hater molecule, that occurred at the bubble interface. Either of these factors

could eliminate or change the surface tension gradient.

For the other three test liquids, ethylene glycol, DC 200 silicone oil, and

ethanol, Marangoni flow was observed. Figure 7 is representative of the ex-

perimental data obtained for the three test liquids. In this figure, data arc• pre-

sented for eth} • lone glycol. Bubble displacement is plotted as a function of

free-fall time for four temperature gradients ranging from 1.0 0 to •1.00 C%cm.

For comparative purposes, results for an isothermal run are also shown. The

results show that the bubble displacement for the nunisothermal cases becomes

nearly linear with time, indicating that the bubble reached a terminal velocity.

The bubble displacement for the isothermal case becomes relatively flat, hav-

ing ;i residual velocity of less than 0.05 cm/sec over the lust eecond of free-

fall time. Bubble diameter for each of these test runs was approximately 0.8

cm . The bubble shape, after the oscillations damped out In 1 ass than 0.2 sec-

onds, was spherical. Sonic of the test data when multiple bubbles were formed

was used. Although the bubbles are following mutually perpendicular paths,

arguments supported by experimental data indicate the usefulness of the data

depending on the relative sizes of the bubbles and their separation distance,

as shown bY the author (ref. 10). Sonic of the more important multiple-bubble

data results are now breifly discussed.
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In this study, the principle interest was in observing; the classical-fluid

physics Marang;oni flow phenomenon for a single bubble in a zero-gravity envi-

ronment. The experimental bubble terminal velocity and bubble shape data

were to be compared with existing theory, and an extension to the theory devel-

oped as part of this dissertation. However, in the actual raze of materials

processing in space, multiple bubbles will likely be present. Consequently,
i

future investigations of the Marangoni bubble phenomenon should include

studies of multiple bubble interaction effects as well as a continuation of single

bubble experinientation. As determined from the experimental data, important

multiple bubble interaction factors include: the relative bubble sizes, whether

a babble is leading; or trailing another bubhle, bubble separation distance, and

relative bubble paths, that is, whether the paths are perpendicular, parallel,

or at sonic other angle. Some of the conclusions reached from the limited

amount of experimental data obtained Indicate that bubble interaction effects is

a ver y worthwhile area to pursue. For example, for two bubbles, it was de-

termined that the leading bubble wake does affect the temperature distribution

field around the trailing bubble, especially when the paths are perpendicular.

In this case, if the leading bubble is the larger one, its terminal velocity does

not appear to be affected, whereas the trailing bubble velocity is greatly affec-

ted and, in some cases, the trailing bubble comes to rest. On the other hand,

when the trailing bubble is the larger one, it rises faster, indicating the wake

effect of the leading bubble is minimal on the trailing bubble, and the bubbles

should coalesce. In the cases where the bubble paths were riot perpendicular,

there appeared to be little bubble interaction effects even when the y leading

bubble was larger than the trailing bubble. Of course, the bubble sizes as well

as bubble separation distance also affect the bubble terminal velocities.

In addition to the bubble-bubble interaction phenomenon, another interes-

ting phenomenon which was observed in practically all the isothermal zero-

f
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gravi,%-'esta was that, regardless of the test liquid used, the bubbles after 5.0

seconds of zero-gravity time still had some residual velocity. Longer zero-

gravity tlntes are required to determine how long it would take for the bubble

to approach zero velocity since the only force acting on the bub't ole interface

is the drag force. The conclusion reached from the experimental results is

that the residual velocity, after 5.0 seconds of free-fall time, is inversely

dependent on the viscosity of the liquid. For all teat liquids used, the bubble

velocity decay rate appears to be exponential.

Also, it was observed that the bubble size did not change during the 5.0

seconds of free-fall time, which indicates that there was no observable bubble

expansion during this time due to the heating of the bubble. To study the heat-

ing effect on bubble expansion would reouire much longer zero-gravity times

than can be obtained in a ground-based research facility and, therefore, this

would have to he conducted in a space environment.

Some representative data for the three test liquids are shown in Fig-

ure S. The linear temperature gradient for the silicone oil was on the order

of ?° C/cm, whereas for ethylene glycol and ethanol, It was on the order of

4 0 C/cm. the circles represent the relative bubble sizes, which for sili-

cone oil and ethylene glycol were on the order of O.N cm, while for !thanol

the size was approximately 0.6 cm. A teflon tip nozzle was used for the

ethanol as opposed to a stainless steel lip nozzle for the other two fluids.

Note from the figure the nearlynearly linear displacement as a fun( tion of time for

all three liquids, indicating; in each ease that the bubble reached terminal

vel(wity.

As an illustration of the role of the nozzle configuration in the formation

of a single bubble. the following; discussion is presented for ethylene glycol

as the test fluid. Initially, a nozzle height of 9 cm was chosen, but multiple

bubbles were always formed by a stainless steel nozzle. In addition, it was

•
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observed that the proximity of the top plate affected the bubble disr.mvement.

As a consequence of ha%ing these undesirable conditions, a nozzle height of 	 I
6 cm was chosen, which again resulted in multiple bubbles. A teflon tip was

placed over the stainless steel nozzle with the same diameter in an effort to

form a single bubble. This solution was partially successful in that a single

bubble was formed, but not until late into the drop. The late bubble forma-

tion was attributed to the relative difference in the contact angle between the

teflon and Ov stainless steel. A linal attempt to produce a single bubble was

made using a smaller diameter orifice. Decreasing the orifice inside diameter

from 0.066 to 0.0 .13 em and a height of 6 cm enabled three single bubble exper-

iments to be conducted.

'I'hc experimental data obtained in th,s study are correlated in terms of

h%, o dimensionless parameters, the Reynolc's number and the Marangoni num-

ber. The Revnolds number, a ratio of inertial to v ijeous forces, is given by

Mat'
fie -	 (a)

µl

and the Marangoni number is given by

Ata Jo sr "I.	
(1)

AT AZ 2
µl

where U - bubble terminal velocity. a bubble radius, µl	 liquid %isvosit'%.

,)1 - liquid density, Da. , ,%T : surface tension gradient, and AT/Az tempera-

ture gradient.

ANALYSIS

In developing the mathematical analysis for the problem, the following

assumptions are made.The problem is formulated as being steady state with

uniform streaming flow and a lirneur temperature gradient at infinite. Axial

synrmetr•v exists in spherical coordinates and the bubble is allowed to deviate
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slightly from spherical. The two media, gas and liquid, are assumed to be

immiscible, and the liquid is Newtonian. The force of gravity is neglected

`	 and the thermophysical properties of the two media are constant, that is, den-
s

city, specific heat, thermal conductivity, and viscosity, even though the temper-

ature is ..trying. The one quantity allowed to vary is the surface tension v,

which, for most liquids, depends linearly on temperature. Mathematically, the

surface tension variation can be expressed as

v= Q0 + oa AT
dT

where (T is a reference surface tension at temperature To and the surface

tension gradient, da/dT, is a constant value.

The governing equations for this problem are the Navier-Stokes equations,

the energy equations and the boundary conditions.. Boundary conditions are

applied at the bubble interface to express (a) the impenetrability (no flow) con-

dition of the normal velocity; (h) the continuity of the tangential velocities;

(c) the continuity of normal stress; (d) the continuity of tangential stress, in-

cluding that due to the therma l. variation in surface tension; (e) the continuity of

temperature and heat flux; and (f) the finiteness of the variables at the limits of

zero and infinity for the rac i al variable.

The next step in the analysis was to nondimensionalize these expressions,

using a minimum parametric representation. The three basic scale factors de-

termined from this method were the stream function, pressure, and velocity

given by

a_' dcr c11 a
o µ l dT dz

I'	 = dcr d 1 a,

0 dT dr.

(5)

(6)

(7)
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r	 " Or `	 8rr	 ^

1	 a	 aT^
sin 0

r " 	00 \

14

^	 [^ = a dv (IT.,
U0 µ 1 LIT dz

Substituting; the dimensionless ratios with the scale factors X40, 
P0, ho'

e	 and 1 00 into the governing equations and boundary conditions, the following

dimensionless equations result:

Governing Equations

Stream functions

141
E41 _ ' Ma	 l a_	 l a+ 'l cot 0	 1 - 2	 1 D-4'1

r- sin 0 

a 

V

ny 

ar D  a0	 a 	 r a0

D4^	 - Ala	 P2 
µ l 1 3*,, ? _ 

'14.)
a+ ?col 0 (lity _ 2 a%p2

1.	 - Illy^2
'	 r' sin 0 '1 µ-' ^(	 F ► r	 D  (')0	 ar	 r a0

Energy Equations

1	 a%l `r l 1	 1	 ` *1 `^T1Pr Ala U-	 +
r sin 0 a0 Or	 r2 sill 	 ar a©

aT	

IT

	

1 a 

(r2

	 1 r	 1	 `^ (Sin 0	 1

	

r '' cr	 ar	
r2 sin 0 DOa0

(10)

h l ^'" Cp''	 1	 a^,, aT.,	 1	 a^,2 aT,>
Pr Ma j — =	 IL -	 +

K., 1 '1 C p l / \'	 r- sin 0 JO	 D 	 r 2 sin 0 ar	 10

.'Wd



15

BounclarY Conditions

Normal velocity conditions at the interface

i ► ^ 	 ilk
1 + l^'	 1	 0

(11)

i)v'.>
+ It'	 0

i)0	 c)r

Tangential velocitY condition at the interface

It -' D0	 i)r	 It ' 00	 8r

Normal stress condition at the interface

	

da1 l 	 1 
	

l	 P2 /	 '	 (1411	 1	 ()ya'•^

	t sin i+ ^^)
	

It sin B `)^	 µl K' ; sin 0 `^	 It sin 0 
aril

I	 _	 It	 i3	 1	 1 	 ► 1 cot 0 `)y l	 1	 2^1+ P	 --	 _
1 sin 0 8r 

r? 
Or	 It:1 sin 0	 ()0	 It  sin 0 002

_ µ 'Vi	 K	 ^+ I 1	 `^`^' ' + 1 cot 0 	 -	 I	 021I'	 lt^

	

µ i sin 0 8r'1 2 i)r	 it :t sin 0 00	
11 3 sin 0 30	 It

(1:1)

V 11 2 1 It'

s	 --



1G

Tangential Stress condition at lhc interface

-

_ 2 If _ 1 cot 0 ai l ^	 1	 d2 *1 _	 1	 ail

R2 sin 0 ar	 R2 sin 0 ar a0 R' I sin 0 a0

µ2 1 cot 0 2	 1	 ., 1	 *2 Rc}	 ,, - +	 _

µ 1 \ R 2 sin 0 30	 R 	 sin 0 ara0 R`3 sin 0	 ae R

R al 1 ail 1	 cot a alpl 1	 a''^1_
sin 0 ar', r2 ar

_	 +
R ; sin 0	 a0	 R' 3 sin 0	 a02

2
+ 42	 R	 a j 1 a*2 Y 1 cot 0	 2 _	 1	 a ^`2

	µ l sin 0 ar^r 'l ar	 R'3 sin 0 a0	 R`' sin 0 a8 2

aT + aT R,
+ (P2 - P1) R' + a0 ar

(14) `^H(
1Z

vo -
 AT !t' - 0 

R ^' 	 R

VR y. + R 2

where we have used the fact that av = _ aQ
i

aT	 aTI

Temperature continuity at the interface

T1 = T2	 (15)

Heat flux continuity at the interface

OT

Or	 IZ '^ 00K 1	ar	 It	 ^)fJ	
(16)

li
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Condition at finiteness as radius approaches zero

40 ' finite	 (17)

Condition at uniform flow as radius approaches infinity

411 - 1 U r 2 sing 0	 (l:t)
2

BoUndedneSs conditions oil

T.^ -- finite as Irl -- -, , o	 (1 `I)

The dimensionless groupings appearing in the above equations are:

P.,	 P.,	 K .>	 Ch.,
Ma, Pr, —, =, -_,	 . (To

/)l 
Al K 	 C P 

The y are defined as:

•)
•1 dur ^	 dlx

IIa - Plf I—	 which is called the blarangoni number, Pr is the Prandtl
(IT d 

µ l i

PP ') P ') Kg 
c
 p•)

number, —, —, —,	 ` are the dimensionless ratios of density, viscosity,
PI µl K 	

C.p
1

thermal conductivity and specific heat, and, finally,

cro^^l,i
cr
o

µl

All of the above dimensionless groupings are calculable, based on known fluid

thermophysical properties, a temperature gradient, and a characteristic length.

It is noteworthy to mention that once the fluids are chosen, there are only two

control parameters remaining, namely the temperature gradient, dT x , dz, and

the characteristic length, usually the bubble radius, both of which appear as part

of the Alarangoni number. 'I'll( , general ecµiations governing the motion of a
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deformable bubble, including the boundary conditions in a nonisothermal liquid,

have now been derived in dimensionless form. The next step in the analysis is

to obtain analytical solutions.

Parameter Perturbation Theory

Parameter perturbation theory was used to solve the governing equations

together with the appropriate boundary conditions. In this theory we seek a so- 	 I

lution to the boundary value problem in terms of a control parameter, that is,

the dependent variables are expanded in terms of this control parameter. Basic-

ically, what is done to determine approximate solutions to differential equations,

whether they be governing equations or boundary conditions, is to assume ex-

pansions, substitute them into the equations, and then solve the equations. An

important class of such asymptotic sequences is represented as a collection of

integer powers of the perturbation parameter, in this case, the Marangoni num-

ber. The general expression for a variable f(r, Ma) is given by

00

f(r, Ma) 
=T 

an (r)Man	(20)

n=0

as the Ma approaches zero, where an (r) is an expansion variable. This is a

straightforward expansion of the Poincare' type and is used in this analysis.

Care must be taken to insure that the expansion is uniformly valid. As a re-

sult of making these substitutions, sets of equations for the zeroth-, first-, and

second-order equations for both the governing equations and the boundary condi-

tions are obtained. Solutions for these sets of equations are obtained. Young,

et al. (ref. ;i) obtained the zeroth-order solution, and Bratukhin (ref. 9) pre-

sented the first-order approximation. Second-order solutions were obtained in

reference 10 for the stream functions, temperature, and pressure distributions

in the inner and outer media, and expressions for the bubble terminal velocity

and the bubble deformation. In dimensionless form, the bubble deformation and
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the terminal velocity (in terms of Reynolds number) are

R = 1 _-1 I	 15 + _.L Pr) 
I 3

f
cos 2 0 - 1) mat

o ,128 144 2 /;

	

1 2071 % 15 + 7 Pil 	 9 + 9 Pr _ Pr2
cro 260 010^l'l8	 144	 /J	 13, 312 53, 248 1.248

	

X ( 5 cos' ; 0 - :3 cos 0 
Ma i 	(21)

and

'1Ia F 1	 15	 7	 9	 3	 147	 2	 :3	 (22)
Re = =-- + 	 -- + — Pr -	 + — Pr -	 Pr Ma

2 I OO '`,128 144 	1.280 ;320	 8,640

In this case the bubble radius is a function of the Prandtl number and the dimen-

sionless parameter a  for both the first- and second-order approximations.

On the other hand, the terminal velocity is affected by the zeroth- and the

second-order approximations, that is, there is no contribution to the terminal

velocity resulting from the first-order approximation. Here too, the second-

order effect is a function of the Prandtl number and the parameter oo.

Surface tension variation must be included in this analysis. It is important

to note that the Navier-Stokes equations and the energy equations are thereby

coupled through the normal and shear stress boundary conditions which contain

surface tension terms, and the surface tension is a function of the liquid tem-

perature.

It was shown from the anal ysis that no nonuniformitics result from the sub-

stitution of lower-order solutions into the governing equations and boundary con-

ditions to obtain higher-order solutions. 'Thus, the dependent variables can be
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expanded in a straightforward manner in terms of integer powers of the

Marangoni number. Generally, the nonuniformity condition which arises in

isothermal bubble motion In normal gravity results because the uniform veloc-

ity condition as I rl approaches infinity cannot be satisfied in the first ap-

proximation. This is commonly referred to as Whitehead's paradox. In the

present study, this did not occur in the first- and second-order approxima-

tions. However, based on the results of the second-order approximation, it

is suggested by the author (ref. 10) that higher-order approximations, third

and fourth order, may result in the development of a nonuniformity condition,

that is, the boundary condition of uniform velocity at infinity will not be satis-

fied. This conclusion is based on the presence of the Skokeslet term, which

is the r term, in the second-order approximation of the stream function.

This condition on the straightforward expansion may not appear until the

fourth-order approximation, which should contain the next approximation to

the bubble terminal velocity. At some higher order, the boundary condition

at infinity cannot be satisfied. At that point another solution technique would

have to be used, such as a matched asymptotic expansion, integral, or num-

erical method.

COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS

Experimental and theoretical results for ethylene glycol and silicone oil

are plotted in Figure 9. For the experimental data, the Marangoni number is

plotted against the Reynolds number for single bubbles. Theoretical results

are plotted for both the zeroth-order and the higher-order solutions. The

zeroth-order solution (creeping flow). given by the first term in equation (22),

is shown as the solid line. As was determined earlier, the higher-order so-

lution, which includes the second-order approximation given by the second

term in equation (22), has a very limited range of applicability, even for the

limiting case where the Prandtl number approaches zero and the dimensionless
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parameter o approaches infinity. The dashed line (theoretical result) shown

in Figure 9 illustrates this case graphicallys it deviates from the experimental

results very sharply for Reynolds numbers greater than 1.5. What Is, how-

ever, most noteworthy from this figure in comparing experimental and theo-

•	 retical results, is that th:, experimental data generally match the zeroth-order

solution, even for the relatively high Marangoni numbers. In other words, for

A'[arangoni numbers greater than 0. 1, the theory is not expected to be appli-

cable, but it apparently is. From the first-order approximation, it is predic-

ted that, independent of the Prandtl number, a standing eddy should begin to

r	 form behind a bubble when the Marangoni number is approximately equal to

16/3. As the standing eddy begins to develop, it should result in changing the

surface tension gradient over the rearward portion of the bubble interface. If

this occurs, the experimental results should begin to deviate from the theo-

retical results at Marangoni numbers greater than 16/3. Comparing this ana-

lytical result with the experimental data in Figure 9, the data show that there

is \ery little deviation from the zeroth-order solution up to Marangoni numbers

of about eight. Substitution of typical values for Prandtl number and o for

these test liquids Into the expression for first- and second-order bubble de-

formation predicts that the bubble should change shape for intermediate values

of Marangoni numbers. However, in every test, the bubble shape, after the

initial oscillations damped out, remained spherical. This suggests that the

equation for bubble deformation .s valid for liquids having Prandtl numbers on

the order of one. The number of data points is rather limited and before any

definitive conclusions can be drawn from the comparison of the experimental

and theoretical results, additional data points are needed. In particular, if

comparisons are to be made at very low Marangoni numbers using relatively

high viscosity test liquids, much longer zero-gravity times than the 5.2 sec-

onds obtained in the drop tower are required. In fact, it would also be

ii
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desirable to have longer zero-gravity times over which to take data for the

higher Marangoni numbers.

A compilation of all of the experimental data, including the multiple-

bubble as well as the single-bubble data, is presented in Figure 10 for the

three test liquids in which Alarangoni flow was observed. Data points for mul-

tiple bubbles are included on this figure since arguments were made earlier to

validate their usefulness. For the multiple-bubble data points, the subscripts

L and T are used, where the subscript L indicates a leading bubble and the

subscript T indicates a trailing bubble. For comparison, the zeroth-order

approximation is shown as the solid line in the figure. The dashed line through

the data points indicates that at the higher Marangoni numbers, the experimental

data does deviate from the theory. One possible explanation for the deviation is

that perhaps a standing; eddy is being formed behind the bubble, as predicted

from the first-order solution mentioned previously. As the standing; eddy

grows, the surface tension gradient is affected more and more, thus causing

the bubble terminal velocity to decrease, which correspondingly reduces the

Reynolds number. As was determined earlier, the bubble shape does not affect

the bubble terminal velocity. The bubble remains spherical, in contradiction

to the theory. The data shown in this figure prove the existence of the

Marangoni flow phenomenon, and shmnld serve as a basis for a continuing re-

search eft'ort in this area, both experimentally and analytically.

CONCLUSIONS AND RIXOAIAIFNDATIONS

The principle conclusion of this research is that the Marangoni bubble mo-

tion flow phenomenon does occur and can be a driving flow mechanism in a

zero-gravity environment. For the first time, it has been shown experimentally

that local surface tension variations at the bubble interface caused by a tempera-

ture gradient in the liquid cause the bubble to migrate from the cold to the hot

region and thus the flow phenomenon is real. This flow phenomenon was ob-

a
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served in three out of the lour test liquidn used. The range of lie)nolds num-

bers was from about 0.25 to 90, with corresponding Marangont nt,mbers
i

ranging from about 0.50 to 600. This flow phenomenon was not observed in

distilled water.

Comparison of the experimental with the theoretical results were made on

the basis of bubble terminal velocity. Experimental data could be correlated

in terms of two parameters, namely the Reynolds number and the Marangoni

number. In the zeroth-order approxi nately solution, the Reynolds number

was proportional to the Marangoni number, and it was proved analytically

that the bubble must remain spherical. Although the theory in this case would

be expected to be valid only for Marangoni numbers much less than one, the

theory was In good agreement with experimental data for Marangoni numbers

up to about eight, at which point the data begins to deviate from theory. Ex- 	 j

perimental data also corroborated the analytical result that the bubble remains

spherical. Not only wab this the case for small Marangoni numbers, but for

Marangoni numbers approaching 600 as well, which contradicts higher-order

theory.

A dimensional analysis was performed on the governing equations which

include the Navier-Stokes equations and the energy equations together with the

appropriate bounc.ary conditions for the inner and outer media. The following

dimensionless ratios and groupings evolved: viscosity, density, thermal con-

ductivity, and specific heat ratios of the inner and outer media, a ► ,u the dimen-

sionless parameters, the Aarangoni number and the Prandtl number, expressed

in terms of the outer medium fluid properties. Two other dimensionless group-

ings are the uniform velocity of the liquid at infinity and a grouping expressed as

I	 =l-,

f
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(ra00 	 o '1	 Once the inner and outer media are c.hoser,, here are only two

µl
control parameterF r r emaining, namely, the temperature gradient and the

characteristic length, which in this case is the bubble radius. Both of these

parameters appear in the Marangoni number. For this reason, it was conclu-

ded that the control parameter that should be used in parameter perturbation

theory was the Marangoni number. In other words, all the dependent variables

are expanded in terms of the Marangoni number.

In the first-order approximation, the bubble deformation depended not only

on the Marangoni number, but also on the Prandtl number and the dimension-

less parameter o. Bubble deformation, however, was not experimentally ob-

served, and this disagreement is due to the theory only being valid for the lim-

iting case of Prandtl numbers less than one and values of the dimensionlet;s

parameter ao approaching infinity. The bubble terminal velocity Nvas the sunic

as in the zeroth-order approximation.

From the first-nrder approximation, independent of the Prandtl number,

it was also found th.:: a btanding eddy should begin to form behind a bubble

when the Marangoni number is approximately equal to 16/3. ;'uR the eddy de-

velops, i`. should result in changing the surface tension gradi^ni over the rear-

ward portion of the bubble. If the eddy does occur, the expt-rimental data

should begin to deviate from the theoretical results at a Marangoru number

somewhat greater than 16/3. The data indeed begins to dcvia ►._ from theory

in the Marangoni range of 6 to 10, which is consistent with tb-oij , .

From the second-order approximate solution, it was dvieriolneu that there

was a second-order effect on both the bubble shape and its terminal velocity.

The solutions for predicting second-order affects on bubble shape and bubble

terminal velocity are valid if the Prandtl number is on the order of one and
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the diiiiensionles parameter cr0 it lar^!e. Unfortunately the data obtained

were for liquid.s having Prandtl numlivi •n much greater than one, and, therefore,

the theory cannot be directly c•ompa ► r•cd with the data. It is, however, worth

mentioning that one area where the sc• cand-order approximations for bubble 	 i

terminal velocity, or Reynolds number, and bubb,-! +4eiormation may have

some applic a tion it for liquid mctrls. In the case of liquid metals, the Prandtl

numbers are much ► c,s than one. Marangoni bubble motion experiments would

have to be performed in a space environment, such as in Spacelab, where long

zero-gravity times are available.

The experimental data obtained in the present study prove the existence of

the Atarangoni flow phenomenon for bubble motion, and should serve ae a basis

for a continuing research. The following are areas where continuing research

efforts could profitably be directed;

1. It would be desirable to obtain data points for several test liquids In or-

tier to evaluate the effect of Prandtl number and the dimensionless parameter,

ao , on the bubble terminal velocity and shape, as suggeste d from higher-order

approximate solutions. Although the experiment does not agree with the higher-

order approximations, qualitatively, the bubble terminal velocity and bubble

shape may depend on a functional relationship of these two dimensionless pa-

rameters. In other words, different curves of Reynolds ; -umber versus

Marangoni -lumber may be obtained as c0 and Prandtl number are varied.

2. It %ould also be desirable to obtain c'.ata for a given Alarangoni number

by varying the two control %ariables, namely, the temperature gradient and the

bubble radius, to see if the bubble terminal velocity, or correspondingly, the

Reynolds number is affected. For example, as the bubble radius is decreased

below 1 centimeter, the temperature gradient must he increased in proportion

to the radius squared in order to keep the Afarangoni number a constant. Of
t	 course, this means that much higher temperature}	 g 	 gradients would be required
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than those obtained as part of this experiment, and this would require much

longer heating times.

;t. Additional data should be obtained at very low Marangoni numbers (the

creeping flow regime), so that theory can be comp.ir:,' with experimental data.

This could be accomplished by using relatively low viscoaity fluids, such as

silicone oil, and would require much longer zero-gravity times than the 5.2

seconds obtained in the drop tower. It would also be desirable to have longer

zero-gravity times at the higher Marangoni numbers because of uncertainties

about whether the bubble formation and acparation processes disturb the tem-

perature field.

4. Data should be obtained for bubble expanclon resulting from heating by

the liguic,. Much.longer zero-gravity times than those obtabied in the drop

tower are required. In all the nonisothermal experiments conducted in the

drop tower, there was no discernible change in bubble size.

.5. To extend the perturbation analysis to higher-order approximations

does not appear to be profitable at this time until low Prandtl number data are

obtained. Perhaps better higher-order approximations could be achieved

using parameter perturbation theory to match the intermediate Marangoni

number experimental data by expanding the dependent variables about a con-

trol or expansion parameter other than the Marangoni number, for example,

the Prandtl number times the Marangoni numix-r.

6. Another logical step in extending the analysis is to solve the governing

equations, together with the boundary conditions presented in this paper, nu-

merically. If this is achieved, the final step would be to allow the thermo-

physical properties to be temperature dependent.
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SYMBOLS

a spherical bubble radius

an (r, 0) expansion variable

C 
specific heat

D scalar differential operator

f function

g gravitational acceleration

H mean radius of curvature

h thermal conductivity

K thermal conductivity

Ma Marangoni number

n integer

Pr Prandtl number

R deformed bubble radius

Re Reynolds number

r radius in spherical coordinates

T temperature

dT. /dz temperature gradient at infinity

U bubble terminal velocity

z polar axis

0 polar angle in spherical coordinates

µ viscosity
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p density

Q reference surface tension
0

cr0 dimensionless group

do/dT surface tension gradient

stream function

Subscripts-

1,2 outer and inner media

o scale factor

Superse ript:

(	 )' derivative

2h
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TABLE 1. - THERMOPHYSICAL PROPERTIES OF FLUIDS AND GAS

(properties are valid between 20^ and 25a C)

Distilled Eh lene Ethanol Silicone oil Nitrogen
w4tor.. ; glycol DC-200,

Density, gm/cc ^%;14.0 1.11 0.78 4.94 0.00125

Viscosity, poise 0.009 0.138 0.011 0.103 0.000178

Thermal can- 0.00143 0.000627 0.00040 0.00038 0.000056

ductivity,- -
-- -	 -	 -- - ---	 ---	 - - -	 -

cal /sec	 em °C

Surface tension, 73.0 46.9 22.3 20.1 --------

dynes/cm	
--- -- ---	 _ - _-	 -,

Surface tension

-

-0.16

--	 -

-0.077

----	 ---
- --0.084-

----

 -0.07

- --

--------

temperature
coefficient,
dynes/cm,  oC

Prandtl number 7 126 15 137 0.8

~1&4.L- PAM Is
OF POnP 10A L"Y

^i



1

e

i

MEZZANINE

CLEAN
ROOM

'^ 1
CONTROL ROOM'

DECELERATOR CART
7
A

VACUUM
PUMPS

+	 —6.1-METER-DIAM
ETER STEEL VACUUM

"	 CHA MB ER

L -------CONCRETE-
LINED SHAFT

f

- BOTTOM OF SHAFT

ACCELERATOR'
	

155 METERS BELOW
GROUND LINE

CD-8992

Figure 1. - NASA zero-gravity facility.



LIGHT

EXPANSION CHAMBER	 TEMPERATURE
DIS PLAY

HEATER-\^	 THERMOCOUPLE
PROBES

SCALE

t

COOLING BATH

COMPRESSED
GAS -----

CAMERA
---CONTAINER

LINER
r

r ORIFICE

I
'—VACUUM JACKET

Figure z - Schematic of experimental apparatus.

Figure 3. - Zero-gravity experimental apparatus.

r



10

N	 p
N	 p

i

3
0
a^

0
U n d+
^° a C

m

¢ n
E v,

^ ^ c
o S
° C
J f^ i

U L'n a,
~ 3

LL

a3awnN 31dn0jowa3Hl

L__1	 I
W	 `0	 Q

WO '1H913H ANdl

Q T N ^

w:) '1N3w3oV1dSIO 3189n8

.o

E

^ t
IA
_N

C
A

^ U C
N

fr1 ^ 

r0

W ^

m ^.
N

1

L

27
v+ —
LA-

r



z

ac

Q ^ ^
N Z
W a

g a
1

W

N	
`:a E
9-4U n

m

^a

O	 1.^

. m

0v}
Jo J
z ^
L}
Q

o ^^

_o Z'
J
HW

N 010 	
O	 ^^ Irri

^	
N	

C'V 	
N	 00	

Q

W^
'1-N W DV dSI0 318900

z

J
Q

W

F-

N
Z

Z

lw M	 N .r
W7 

IN3WIJVldSIO 3188f18

10
^oE
L r.+

^	 61 C
t ^

U N ^
N	 ti

W p

C ^
/n 1- o

LA-

J ^

Q Ip

n L-

E
^ v
LL r

LL
O



irr

^ ^
V1

•	 Q

C

{^7 (W'^OO1

` 7

W W
cm O

N
WW 

W

^^ ^ aiaU r., vii Z
N c"'

00 N Vf >3. $
n `\O D Ng

N

I I `` z ' FI
` C ^
d ^^

o,E,Q

N Ci

83eWnN IN09NVaVW

.o

O
r

o c

o s^
^

LA

N W
Z^^	

^'
v

C
Ar

I
a
"I

I	 ^q LA-

10. N ^^

`0 ad

L ^
7 .QN	

^' O
Q

W -1 'IMMOVidsla nsens



1000

ZEROTH-ORDER SOLUTION—\` pl
400

200 ^L

100

60

40

20

16
TEST LIQUID

4 q 	 ETHANOL
O	 ETHYLENE GLYCOL

2 O	 SILICONE OIL

1
1 10	 20	 4060 100

REYNOLDS NUMBER
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