<table>
<thead>
<tr>
<th>Resource Title</th>
<th>Resource Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Sensing of Earth Resources</td>
<td>(NASA SP-7036)</td>
</tr>
<tr>
<td>Earth Resources</td>
<td>(NASA SP-7041(01))</td>
</tr>
<tr>
<td>Earth Resources</td>
<td>(NASA SP-7041(02))</td>
</tr>
<tr>
<td>Earth Resources</td>
<td>(NASA SP-7041(03))</td>
</tr>
<tr>
<td>Earth Resources</td>
<td>(NASA SP-7041(04))</td>
</tr>
<tr>
<td>Earth Resources</td>
<td>(NASA SP-7041(05))</td>
</tr>
<tr>
<td>Earth Resources</td>
<td>(NASA SP-7041(06))</td>
</tr>
<tr>
<td>Earth Resources</td>
<td>(NASA SP-7041(07))</td>
</tr>
<tr>
<td>Earth Resources</td>
<td>(NASA SP-7041(08))</td>
</tr>
<tr>
<td>Earth Resources</td>
<td>(NASA SP-7041(09))</td>
</tr>
<tr>
<td>Earth Resources</td>
<td>(NASA SP-7041(10))</td>
</tr>
<tr>
<td>Earth Resources</td>
<td>(NASA SP-7041(11))</td>
</tr>
<tr>
<td>Earth Resources</td>
<td>(NASA SP-7041(12))</td>
</tr>
<tr>
<td>Earth Resources</td>
<td>(NASA SP-7041(13))</td>
</tr>
<tr>
<td>Earth Resources</td>
<td>(NASA SP-7041(14))</td>
</tr>
<tr>
<td>Earth Resources</td>
<td>(NASA SP-7041(15))</td>
</tr>
<tr>
<td>Earth Resources</td>
<td>(NASA SP-7041(16))</td>
</tr>
<tr>
<td>Earth Resources</td>
<td>(NASA SP-7041(17))</td>
</tr>
<tr>
<td>Earth Resources</td>
<td>(NASA SP-7041(18))</td>
</tr>
<tr>
<td>Earth Resources</td>
<td>(NASA SP-7041(19))</td>
</tr>
<tr>
<td>Earth Resources</td>
<td>(NASA SP-7041(20))</td>
</tr>
<tr>
<td>Earth Resources</td>
<td>(NASA SP-7041(21))</td>
</tr>
<tr>
<td>Earth Resources</td>
<td>(NASA SP-7041(22))</td>
</tr>
</tbody>
</table>

This bibliography was prepared by the NASA Scientific and Technical Information Facility operated for the National Aeronautics and Space Administration by Informatics Information Systems Company.
EARTH RESOURCES

A Continuing Bibliography
With Indexes
Issue 23

A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced between July 1, 1979 and September 30, 1979

- Scientific and Technical Aerospace Reports (STAR)
- International Aerospace Abstracts (IAA).
This Supplement is available from the National Technical Information Service (NTIS), Springfield, Virginia 22161, at the price code E05 ($9.00 domestic; $18.00 foreign).
INTRODUCTION

The technical literature described in this continuing bibliography may be helpful to researchers in numerous disciplines such as agriculture and forestry, geography and cartography, geology and mining, oceanography and fishing, environmental control, and many others. Until recently it was impossible for anyone to examine more than a minute fraction of the earth's surface continuously. Now vast areas can be observed synoptically, and changes noted in both the earth's lands and waters, by sensing instrumentation on orbiting spacecraft or on aircraft.

This literature survey lists 226 reports, articles, and other documents announced between July 1 and September 30, 1979 in Scientific and Technical Aerospace Reports (STAR), and International Aerospace Abstracts (IAA).

The coverage includes documents related to the identification and evaluation by means of sensors in spacecraft and aircraft of vegetation, minerals, and other natural resources, and the techniques and potentialities of surveying and keeping up-to-date inventories of such riches. It encompasses studies of such natural phenomena as earthquakes, volcanoes, ocean currents, and magnetic fields; and such cultural phenomena as cities, transportation networks, and irrigation systems. Descriptions of the components and use of remote sensing and geophysical instrumentation, their subsystems, observational procedures, signature and analyses and interpretive techniques for gathering data are also included. All reports generated under NASA's Earth Resources Survey Program for the time period covered in this bibliography will also be included. The bibliography does not contain citations to documents dealing mainly with satellites or satellite equipment used in navigation or communication systems, nor with instrumentation not used aboard aerospace vehicles.

The selected items are grouped in nine categories. These are listed in the Table of Contents with notes regarding the scope of each category. These categories were especially chosen for this publication, and differ from those found in STAR and IAA.

Each entry consists of a standard bibliographic citation accompanied by an abstract. The citations and abstracts are reproduced exactly as they appeared originally in STAR, or IAA, including the original accession numbers from the respective announcement journals. This procedure, which saves time and money, accounts for the variation in citation appearance.

Under each of the nine categories, the entries are presented in one of two groups that appear in the following order:

IAA entries identified by accession number series A79-10,000 in ascending accession number order;

STAR entries identified by accession number series N79-10,000 in ascending accession number order.

After the abstract section, there are five indexes:

subject, personal author, corporate source, contract number and report/accession number.
AVAILABILITY OF CITED PUBLICATIONS

IAA ENTRIES (A79-10000 Series)

All publications abstracted in this Section are available from the Technical Information Service, American Institute of Aeronautics and Astronautics, Inc. (AIAA), as follows: Paper copies of accessions are available at $6.00 per document up to a maximum of 20 pages. The charge for each additional page is $0.25. Microfiche (1) of documents announced in /AA are available at the rate of $2.50 per microfiche on demand, and at the rate of $1.10 per microfiche for standing orders for all /AA microfiche. The price for the /AA microfiche by category is available at the rate of $1.25 per microfiche plus a $1.00 service charge per category per issue. Microfiche of all the current AIAA Meeting Papers are available on a standing order basis at the rate of $1.35 per microfiche.

Minimum air-mail postage to foreign countries is $1.00 and all foreign orders are shipped on payment of pro-forma invoices.

All inquiries and requests should be addressed to AIAA Technical Information Service. Please refer to the accession number when requesting publications.

STAR ENTRIES (N79-10000 Series)

One or more sources from which a document announced in STAR is available to the public is ordinarily given on the last line of the citation. The most commonly indicated sources and their acronyms or abbreviations are listed below. If the publication is available from a source other than those listed, the publisher and his address will be displayed on the availability line or in combination with the corporate source line.

Avail: NTIS. Sold by the National Technical Information Service. Prices for hard copy (HC) and microfiche (MF) are indicated by a price code followed by the letters HC or MF in the STAR citation. Current values for the price codes are given in the tables on page vii.

Documents on microfiche are designated by a pound sign (#) following the accession number. The pound sign is used without regard to the source or quality of the microfiche.

Initially distributed microfiche under the NTIS SRIM (Selected Research in Microfiche) is available at greatly reduced unit prices. For this service and for information concerning subscription to NASA printed reports, consult the NTIS Subscription Section, Springfield, Va. 22161.

NOTE ON ORDERING DOCUMENTS: When ordering NASA publications (those followed by the * symbol), use the N accession number. NASA patent applications (only the specifications are offered) should be ordered by the U.S-Patent-AppI-SN number. Non-NASA publications (no asterisk) should be ordered by the AD, PB, or other report number shown on the last line of the citation, not by the N accession number. It is also advisable to cite the title and other bibliographic identification.

Avail: SOD (or GPO). Sold by the Superintendent of Documents, U.S. Government Printing Office, in hard copy. The current price and order number are given following the availability line. (NTIS will fill microfiche requests, at the standard $3.00 price, for those documents identified by a # symbol.)

(1) A microfiche is a transparent sheet of film, 105 by 148 mm in size, containing as many as 60 to 98 pages of information reduced to micro images (not to exceed 26:1 reduction).
Avail: NASA Public Document Rooms. Documents so indicated may be examined at or purchased from the National Aeronautics and Space Administration, Public Documents Room (Room 126), 600 Independence Ave., S.W., Washington, D.C. 20546, or public document rooms located at each of the NASA research centers, the NASA Space Technology Laboratories, and the NASA Pasadena Office at the Jet Propulsion Laboratory.

Avail: DOE Depository Libraries. Organizations in U.S. cities and abroad that maintain collections of Department of Energy reports, usually in microfiche form, are listed in Energy Research Abstracts. Services available from the DOE and its depositories are described in a booklet, DOE Technical Information Center - Its Functions and Services (TID-4660), which may be obtained without charge from the DOE Technical Information Center.

Avail: Univ. Microfilms. Documents so indicated are dissertations selected from Dissertation Abstracts and are sold by University Microfilms as xerographic copy (HC) and microfilm. All requests should cite the author and the Order Number as they appear in the citation.

Avail: USGS. Originals of many reports from the U.S. Geological Survey, which may contain color illustrations, or otherwise may not have the quality of illustrations preserved in the microfiche or facsimile reproduction, may be examined by the public at the libraries of the USGS field offices whose addresses are listed in this introduction. The libraries may be queried concerning the availability of specific documents and the possible utilization of local copying services, such as color reproduction.

Avail: HMSO. Publications of Her Majesty's Stationery Office are sold in the U.S. by Pendragon House, Inc. (PHI), Redwood City, California. The U.S. price (including a service and mailing charge) is given, or a conversion table may be obtained from PHI.

Avail: BLL (formerly NLL): British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England. Photocopies available from this organization at the price shown. (If none is given, inquiry should be addressed to the BLL.)

Avail: Fachinformationszentrum, Karlsruhe. Sold by the Fachinformationszentrum Energie, Physik, Mathematik GMBH, Eggenstein Leopoldshafen, Federal Republic of Germany, at the price shown in deutschmarks (DM).

Avail: Issuing Activity, or Corporate Author, or no indication of availability. Inquiries as to the availability of these documents should be addressed to the organization shown in the citation as the corporate author of the document.

Other availabilities: If the publication is available from a source other than the above, the publisher and his address will be displayed entirely on the availability line or in combination with the corporate author line.

SUBSCRIPTION AVAILABILITY

This publication is available on subscription from the National Technical Information Service (NTIS). The annual subscription rate for the quarterly supplements is $30.00 domestic; $60.00 foreign. All questions relating to the subscription should be referred to NTIS, Attn: Subscriptions, 5285 Port Royal Road, Springfield, Virginia 22161.
ADDRESSES OF ORGANIZATIONS

American Institute of Aeronautics and Astronautics
Technical Information Service
555 West 57th Street, 12th Floor
New York, New York 10019

British Library Lending Division,
Boston Spa, Wetherby, Yorkshire, England

Commissioner of Patents and Trademarks
U.S. Patent and Trademark Office
Washington, D.C. 20231

Department of Energy
Technical Information Center
P.O. Box 62
Oak Ridge, Tennessee 37830

ESA-Information Retrieval Service
ESRIN
Via Galileo Galilei
00044 Frascati (Rome) Italy

Her Majesty's Stationery Office
P. O. Box 569, S. E. 1
London, England

NASA Scientific and Technical Information Facility
P.O. Box 8757
B. W. I. Airport, Maryland 21240

National Aeronautics and Space Administration
Scientific and Technical Information Branch (NST-41)
Washington, D.C. 20546

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161

Pendragon House, Inc.
899 Broadway Avenue
Redwood City, California 94063

Superintendent of Documents
U.S. Government Printing Office
Washington, D.C. 20402

University Microfilms
A Xerox Company
300 North Zeeb Road
Ann Arbor, Michigan 48106

University Microfilms, Ltd.
Tylers Green
London, England

U.S. Geological Survey
1033 General Services Administration Building
Washington, D.C. 20242

U.S. Geological Survey
601 E. Cedar Avenue
Flagstaff, Arizona 86002

U.S. Geological Survey
345 Middlefield Road
Menlo Park, California 94025

U.S. Geological Survey
Bldg. 25, Denver Federal Center
Denver, Colorado 80225

Fachinformationszentrum Energie, Physik, Mathematik GMBH
7514 Eggenstein Leopoldshafen
Federal Republic of Germany
NTIS PRICE SCHEDULES

Schedule A

STANDARD PAPER COPY PRICE SCHEDULE

(Effective October 1, 1971)

<table>
<thead>
<tr>
<th>Code</th>
<th>Page Range</th>
<th>North American Price</th>
<th>Foreign Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AO1</td>
<td>Microfiche</td>
<td>$3.00</td>
<td>$4.50</td>
</tr>
<tr>
<td>AO2</td>
<td>001-025</td>
<td>4.00</td>
<td>8.00</td>
</tr>
<tr>
<td>AO3</td>
<td>026-050</td>
<td>4.50</td>
<td>9.00</td>
</tr>
<tr>
<td>AO4</td>
<td>051-075</td>
<td>5.25</td>
<td>10.50</td>
</tr>
<tr>
<td>AO5</td>
<td>076-100</td>
<td>6.00</td>
<td>12.00</td>
</tr>
<tr>
<td>AO6</td>
<td>101-125</td>
<td>6.50</td>
<td>13.00</td>
</tr>
<tr>
<td>AO7</td>
<td>126-150</td>
<td>7.25</td>
<td>14.50</td>
</tr>
<tr>
<td>AO8</td>
<td>151-175</td>
<td>8.00</td>
<td>16.00</td>
</tr>
<tr>
<td>AO9</td>
<td>176-200</td>
<td>9.00</td>
<td>18.00</td>
</tr>
<tr>
<td>A10</td>
<td>201-225</td>
<td>9.25</td>
<td>18.50</td>
</tr>
<tr>
<td>A11</td>
<td>226-250</td>
<td>9.50</td>
<td>19.00</td>
</tr>
<tr>
<td>A12</td>
<td>251-275</td>
<td>10.75</td>
<td>21.50</td>
</tr>
<tr>
<td>A13</td>
<td>278-300</td>
<td>11.00</td>
<td>22.00</td>
</tr>
<tr>
<td>A14</td>
<td>301-325</td>
<td>11.75</td>
<td>23.50</td>
</tr>
<tr>
<td>A15</td>
<td>326-350</td>
<td>12.00</td>
<td>24.00</td>
</tr>
<tr>
<td>A16</td>
<td>351-375</td>
<td>12.50</td>
<td>25.00</td>
</tr>
<tr>
<td>A17</td>
<td>376-400</td>
<td>13.00</td>
<td>26.00</td>
</tr>
<tr>
<td>A18</td>
<td>401-425</td>
<td>13.25</td>
<td>26.50</td>
</tr>
<tr>
<td>A19</td>
<td>426-450</td>
<td>14.00</td>
<td>28.00</td>
</tr>
<tr>
<td>A20</td>
<td>451-475</td>
<td>14.50</td>
<td>29.00</td>
</tr>
<tr>
<td>A21</td>
<td>476-500</td>
<td>15.00</td>
<td>30.00</td>
</tr>
<tr>
<td>A22</td>
<td>501-525</td>
<td>15.25</td>
<td>30.50</td>
</tr>
<tr>
<td>A23</td>
<td>526-550</td>
<td>15.50</td>
<td>31.00</td>
</tr>
<tr>
<td>A24</td>
<td>551-575</td>
<td>16.00</td>
<td>32.50</td>
</tr>
<tr>
<td>A25</td>
<td>576-600</td>
<td>16.50</td>
<td>33.00</td>
</tr>
<tr>
<td>A99</td>
<td>601-up</td>
<td>1/</td>
<td>2/</td>
</tr>
</tbody>
</table>

1/ Add $2.50 for each additional 100 page increment from 601 pages up.
2/ Add $5.00 for each additional 100 page increment from 601 pages up.

Schedule E

EXCEPTION PRICE SCHEDULE

Paper Copy & Microfiche

<table>
<thead>
<tr>
<th>Code</th>
<th>North American Price</th>
<th>Foreign Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>E01</td>
<td>$3.25</td>
<td>$6.50</td>
</tr>
<tr>
<td>E02</td>
<td>4.75</td>
<td>9.50</td>
</tr>
<tr>
<td>E03</td>
<td>6.25</td>
<td>12.50</td>
</tr>
<tr>
<td>E04</td>
<td>7.50</td>
<td>15.00</td>
</tr>
<tr>
<td>E05</td>
<td>9.00</td>
<td>18.00</td>
</tr>
<tr>
<td>E06</td>
<td>10.50</td>
<td>21.00</td>
</tr>
<tr>
<td>E07</td>
<td>12.50</td>
<td>25.00</td>
</tr>
<tr>
<td>E08</td>
<td>15.00</td>
<td>30.00</td>
</tr>
<tr>
<td>E09</td>
<td>17.50</td>
<td>35.00</td>
</tr>
<tr>
<td>E10</td>
<td>20.00</td>
<td>40.00</td>
</tr>
<tr>
<td>E11</td>
<td>22.50</td>
<td>45.00</td>
</tr>
<tr>
<td>E12</td>
<td>25.00</td>
<td>50.00</td>
</tr>
<tr>
<td>E13</td>
<td>28.00</td>
<td>56.00</td>
</tr>
<tr>
<td>E14</td>
<td>31.00</td>
<td>62.00</td>
</tr>
<tr>
<td>E15</td>
<td>34.00</td>
<td>68.00</td>
</tr>
<tr>
<td>E16</td>
<td>37.00</td>
<td>74.00</td>
</tr>
<tr>
<td>E17</td>
<td>40.00</td>
<td>80.00</td>
</tr>
<tr>
<td>E18</td>
<td>45.00</td>
<td>90.00</td>
</tr>
<tr>
<td>E19</td>
<td>50.00</td>
<td>100.00</td>
</tr>
<tr>
<td>E20</td>
<td>60.00</td>
<td>120.00</td>
</tr>
<tr>
<td>E99</td>
<td>Write for quote</td>
<td></td>
</tr>
<tr>
<td>N01</td>
<td>28.00</td>
<td>40.00</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

Subject Categories

Abstracts in this Bibliography are grouped under the following categories:

<table>
<thead>
<tr>
<th>Category</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 AGRICULTURE AND FORESTRY</td>
<td>107</td>
</tr>
<tr>
<td>Includes crop forecasts, crop signature analysis, soil identification,</td>
<td></td>
</tr>
<tr>
<td>disease detection, harvest estimates, range resources, timber inventory,</td>
<td></td>
</tr>
<tr>
<td>forest fire detection, and wildlife migration patterns.</td>
<td></td>
</tr>
<tr>
<td>02 ENVIRONMENTAL CHANGES AND CULTURAL RESOURCES</td>
<td>115</td>
</tr>
<tr>
<td>Includes land use analysis, urban and metropolitan studies, environmental</td>
<td></td>
</tr>
<tr>
<td>impact, air and water pollution, geographic information systems, and</td>
<td></td>
</tr>
<tr>
<td>geographic analysis.</td>
<td></td>
</tr>
<tr>
<td>03 GEODESY AND CARTOGRAPHY</td>
<td>119</td>
</tr>
<tr>
<td>Includes mapping and topography.</td>
<td></td>
</tr>
<tr>
<td>04 GEOLOGY AND MINERAL RESOURCES</td>
<td>121</td>
</tr>
<tr>
<td>Includes mineral deposits, petroleum deposits, spectral properties of</td>
<td></td>
</tr>
<tr>
<td>rocks, geological exploration, and lithology.</td>
<td></td>
</tr>
<tr>
<td>05 OCEANOGRAPHY AND MARINE RESOURCES</td>
<td>123</td>
</tr>
<tr>
<td>Includes sea-surface temperature, ocean bottom surveying imagery, drift</td>
<td></td>
</tr>
<tr>
<td>rates, sea ice and icebergs, sea state, fish location.</td>
<td></td>
</tr>
<tr>
<td>06 HYDROLOGY AND WATER MANAGEMENT</td>
<td>127</td>
</tr>
<tr>
<td>Includes snow cover and water runoff in rivers and glaciers, saline</td>
<td></td>
</tr>
<tr>
<td>intrusion, drainage analysis, geomorphology of river basins, land uses,</td>
<td></td>
</tr>
<tr>
<td>and estuarine studies.</td>
<td></td>
</tr>
<tr>
<td>07 DATA PROCESSING AND DISTRIBUTION SYSTEMS</td>
<td>131</td>
</tr>
<tr>
<td>Includes film processing, computer technology, satellite and aircraft</td>
<td></td>
</tr>
<tr>
<td>hardware, and imagery.</td>
<td></td>
</tr>
<tr>
<td>08 INSTRUMENTATION AND SENSORS</td>
<td>135</td>
</tr>
<tr>
<td>Includes data acquisition and camera systems and remote sensors.</td>
<td></td>
</tr>
<tr>
<td>09 GENERAL</td>
<td>139</td>
</tr>
<tr>
<td>Includes economic analysis.</td>
<td></td>
</tr>
</tbody>
</table>

Indexes

- SUBJECT INDEX: A-1
- PERSONAL AUTHOR INDEX: B-1
- CORPORATE SOURCE INDEX: C-1
- CONTRACT NUMBER INDEX: D-1
- REPORT/ACCESSION NUMBER INDEX: E-1
TYPICAL CITATION AND ABSTRACT FROM STAR

TYPICAL CITATION AND ABSTRACT FROM IAA
AGRICULTURE AND FORESTRY

Include crop forecasts, crop signature analysis, soil identification, disease detection, harvest estimates, range resources, timber inventory, forest fire detection, and wildlife migration patterns.

The general characteristics of the radar echo from natural land surfaces are discussed, and theoretical and experimental evidence on radar signatures is reviewed. Emphasis is on vegetation and bare soil. Radar signature studies provide the basis for the application of active microwave remote sensing using the intensity of the radar echo and facilitate the selection of optimum sensor parameters for a particular application. P.T.H.

This paper gives a brief report on some of the experience gained using satellite (Landsat, NOAA) as well as aircraft MSS-data. Projects have been carried out in various application fields like forestry, vegetation and land use. The aim of the projects have been both to introduce to the application community the MSS imagery data as well as the digital computer technique for handling, processing and analyzing such data. In a longer perspective, the aim has also been to investigate possible future operational applications of MSS-data. Forest inventorying management seems to be one promising field for more large scale and operational application of MSS-data. (Author)

A79-33045 Bidirectional reflection of crops and the soil contribution. V. R. Rao (Indian Space Research Organization, Bangalore, India). E. J. Brach (Department of Agriculture, Engineering and Statistical Research Institute, Ottawa, Canada), and A. R. Mack (Department of Agriculture, Land Resources Research Institute, Ottawa, Canada). Remote Sensing of Environment, vol. 8, May 1979, p. 115-125. 10 refs.

Spectra of cereals, grasses, and corn were measured repeatedly from preflowering to early maturity. The bidirectional and angular aspects were more pronounced for a standing crop such as cereals (oats) than for a clipped sod. The contribution of the soil to the total radiances and the amount of the total radiances were reduced by a greater percentage of ground cover. The effect of angular scattering on radiances decreased with maturity. (Author)

The relationships between various linear combinations of red and photographic infrared radiances and vegetation parameters are investigated. In situ spectrometers are used to measure the relationships between linear combinations of red and IR radiances, their ratios and square roots, and biomass, leaf water content and chlorophyll content of a grass canopy in June, September and October. Regression analysis shows red-IR combinations to be more significant than green-red combinations. The IR/red ratio, the square root of the IR/red ratio, the vegetation index (IR-red difference divided by their sum) and the transformed vegetation index (the square root of the vegetation index + 0.5) are found to be sensitive to the amount of photosynthetically active vegetation. The accumulation of dead vegetation over the year is found to have a linearizing effect on the various vegetation measures. A.L.W.

Forest classification of two steeply contoured regions of northern Quebec, each about 15,000 sq km in area, was undertaken on the basis of digital processed Landsat data and 254 ground-truth plots. Hardwood, mixed, and two or three types of softwood stands could be distinguished with unsupervised digital classification. For softwood stands, age and density, as well as the exposure and degree of the slope, played an important role in determining classifications. It proved impossible to discriminate between regenerated and mature hardwood stands. The severest limit on the use of Landsat data for the forest classifications was found to be the rarity of cloud-free imagery for a given date and area. J.M.B.

A79-36488 A remote sensing rangeland classification for the Lac-du-Bois grasslands, Kamloops, British Columbia. E. K. Watson, P. A. Murtha (British Columbia, University, Vancouver, Canada), and A. L. van Ryswyk (Agriculture Canada, Kamloops, British Columbia, Canada). In: Canadian Symposium on Remote

Automatic classification of an oak-pine and southeastern pine ecosystem in South Carolina was undertaken on the basis of Landsat data. The ecosystem is characterized by small clumps of hardwood, softwood and grassland averaging 1200 ft in width; the scattered classes create many transition and mixed areas. The automatic classification study showed that early spring Landsat data provided the best feature differentiation for softwood, hardwood, grassland and water categories. An accuracy of 70% + or - 5.7% at the 90% confidence level was obtained for this type of feature differentiation. Multi-date data yielded only a two percent increase in classification accuracy over the single-date analysis.

J.M.B.

A79-36495 # An improved image enhancement technique and its application to forest fire management. P. H. Kouritz (Department of Fisheries and the Environment, Forest Fire Research Institute, Ottawa, Canada) and A. J. Scott (Computing Devices of Canada Ltd., Bells Corners, Canada). In: Canadian Symposium on Remote Sensing, 5th, Victoria, British Columbia, Canada, August 28-31, 1978, Proceedings. Ottawa, Canadian Aeronautics and Space Institute, 1979, p. 72-78.

An image enhancement technique based on the Karhunen-Loeve (principal component) transform is described. The transform, employed to reduce the number of features required to carry a specified amount of information, provides a rotation of the axes of the image space so as to align them along the axes of a hyperellipsoid defined by the signature of a training area. Selected classes can be enhanced by use of a given training area to define the Karhunen-Loeve transform. The image enhancement technique discussed in this paper has been applied to the production of large-scale color maps (based on Landsat imagery) for forest fire management.

J.M.B.

The Universal Soil Loss Equation is a frequently used methodology for estimating soil erosion potential. The Universal Soil Loss Equation requires a variety of types of geographic information (e.g. topographic slope, soil erodibility, land use, crop type, and soil conservation practice) in order to function. This information is traditionally gathered from topographic maps, soil surveys, field surveys, and interviews with farmers. Remote sensing data sources and interpretation techniques provide an alternative method for collecting information regarding land use, crop type, and soil conservation practice. Airphoto interpretation techniques and medium altitude, multi-date color and color infrared positive transparencies (70mm) were utilized in this study to determine their effectiveness for gathering the desired land use/land cover data. Successful results were obtained within the test site, a 6160 hectare watershed in Dake County, Wisconsin. (Author)

A software system developed to correct for image quality degradation due to reflected sunlight enhancement in the antisolar direction (hot spots) in high altitude aerial three-color false color infrared photography is outlined. The correction program can utilize a filtering technique, which is found to produce the best uniform intensity results, or curve fitting to atmospheric Rayleigh scattering, which permits detailed understanding of ground surface effects. Classification trials of images corrected in both manners and uncorrected data of several crop types were found to be successful only when uncorrected data was used as the basis of classification. The correction programs have been subsequently modified to account for nonlinearities in the camera, film and digitalizer. A.L.W.

A thermal infrared system has been developed for Canadian forestry services in order to allow the precise mapping of a large forest fire in the regions often obscured from visual observation by smoke or darkness. The airborne system consists of a dual channel IR line scanner used in conjunction with a signal clipper device in order to prevent signal saturation and inversion problems. Real time data is processed on board and an image of the fire map can be air dropped to the fire boss within two minutes after the overflight. From the imagery generated over fires in 1978, it is found that the infrared fire mapping system produces useful information about the fire edge, fire intensity, spot fires and situational relationships of the fire, achieving its best results over active fire areas and spot fires where little solar heating had taken place during the previous 12 hours. A.L.W.

The efficiency and feasibility of a pyramidal structure have been extensively tested on a typical Landsat image of a forested area of Vancouver Island. The results of several initial experiments indicate that, compared to a baseline of a traditional supervised maximum-likelihood classifier, the cost of maintaining the pyramid is balanced by a vast reduction in the number of pixel classifications. The spatial homogeneity or readability of the segmented image, as measured by the number of regions, is improved by a factor of three, while an improvement up to 6% in classification accuracy is obtained over the point by point classification. It is concluded that the pyramidal classifier can quickly classify a scene, providing a very clean and readable output with a correctness comparable or markedly better than that of the point by point classifier. Also, in the correctness/readability/efficiency tradeoff, structure parameter can be changed to obtain a fast rough glance at the scene, efficiently classify the image to meet production requirements better than a point by point classifier, or use the pyramid as a fast segmentation component of a more intelligent image understanding system.

A79-36524

Ottawa, Canadian Aeronautics and Space Institute, 1979, p. 373-381. 9 refs.

The use of four-channel SAR imagery to distinguish tree species on a forested site was investigated. Imagery was obtained from radar operating at X-band (3.2 cm wavelength) and L-band (23 cm wavelength) with two polarizations in each band. The imagery was processed and interpreted using visual and digital techniques, and results were compared with extensive ground-truthing information. Relative radar backscatter values for different tree species were determined. It was concluded that multi-channel SAR data can be utilized to distinguish between deciduous trees and long- and short-needle conifers; however, discrimination between different species within these classes appeared risky.

A79-36528

Reduction of the uneven luminosity associated with high altitude wide angle aerial colour photographs. T. Kasvand, C. Merritt (National Research Council, Ottawa, Canada), and A. R. Mack (Agriculture Canada, Ottawa, Canada).

Ottawa, Canadian Aeronautics and Space Institute, 1979, p. 399-407. 6 refs.

The luminosity in high altitude superwide angle aerial colour photographs is highly uneven, which prevents automatic identification of crops and hinders visual interpretation. This paper describes the procedures, measurements and models needed to reduce the uneven luminosity.

A79-36529

Use of panchromatic and colour infrared air photographs to produce a vegetation map for Canadian Forces Base, Shilo, Manitoba. G. D. Kerr (Canadian Armed Forces, Saint Bruno, Quebec, Canada), R. C. Rounds, and J. E. Welted (Brandon University, Brandon, Manitoba, Canada).

Ottawa, Canadian Aeronautics and Space Institute, 1979, p. 408-414. 6 refs.

A79-36530

Documenting a 10-year change in land use and wetland habitat from digitized aerial photographs. G. D. Adams and G. C. Gentle (Canadian Wildlife Service, Prairie Migratory Bird Research Centre, Saskatoon, Canada).

Ottawa, Canadian Aeronautics and Space Institute, 1979, p. 415-426. 23 refs.

A79-36531

Ottawa, Canadian Aeronautics and Space Institute, 1979, p. 427-440. 7 refs.

A79-36532

Three tests of agricultural remote sensing for crop inventory in eastern Canada - Results, problems and prospects. R. A. Ryerson (Department of Energy, Mines and Resources, Canada Centre for Remote Sensing, Ottawa, Canada), P. Mosher (New Brunswick Department of Agriculture, Plant Industry Branch, Fredericton, Canada), V. R. Wallen (Agriculture Canada, Ottawa, Canada), and N. E. Stewart (Prince Edward Island Department of Agriculture and Forestry, Charlottetown, Canada).

Ottawa, Canadian Aeronautics and Space Institute, 1979, p. 441-453. 13 refs.

Landsat digital data and several types of airborne remote sensing imagery have been tested for determining white bean area in Ontario, potato area in New Brunswick, and potato and cropland distribution in Prince Edward Island. White bean area was determined with 85-91% accuracy using 1:104,000 colour IR photography and 91-96% accuracy using Landsat digital data. Potato area was 94% accurate using 1:112,000 true colour imagery and 85% accurate (for the province) using digital Landsat data. Discussed are the important factors of ground-based expertise in the crop being studied, test site selection, field data collection and its subsequent organization. Simple methods for handling overlap of spectral signatures, and boundary pixels, accuracy assessment, signature extension, and determining geographic positions on output maps are also detailed. (Author)

A79-36533

The thermal inertia concept and soil moisture (Le concept d'inertie thermique et l'humidité des sols). F. Bonn, M. Bernier, R. Brochu, J. Laforest, J. Lévesque, and C. Prévost (Sherbrooke, Université, Sherbrooke, Quebec, Canada).

Ottawa, Canadian Aeronautics and Space Institute, 1979, p. 454-459. 17 refs. In French. Research supported by the National Research Council of Canada and Ministère de l'Education du Québec.

Up to now no reliable and accurate method of mapping soil moisture has been developed. The thermal inertia concept is an approach which uses the thermal properties of soil water in relation to soil texture, by means of sequential thermography. The following problems are faced when establishing a soil moisture map from remote sensing data: the corrections to be done on the thermograms due to vegetation; the combining of day and night images; the integration of the albedo in making the thermal inertia map; and the combining of thermal inertia and texture to obtain soil moisture. The examples shown are from Southern Quebec, and are used as a base to evaluate the potential of HCM images. (Author)

A79-36534

Remote sensing of surface temperature for soil moisture, evapotranspiration and yield estimation. J. L. Hatfield...
The sensor to the surface temperature and the atmospheric effects.

Results are presented for an experimental investigation to determine the relationship between radar backscatter coefficient (sigma) and soil moisture for vegetation-covered soil. These results extend a previous report which showed the experimental relationship between sigma and soil moisture for bare soil. It is shown that the highest correlation between sigma and soil moisture is 0.92 for the combined response of four crop types measured at 4.25 GHz, 10 deg incidence angle, and HH polarization. Radar look direction, relative to the crop row direction, is shown to have an insignificant effect on soil-moisture estimation if the radar frequency is higher than 4 GHz. The dependence on soil type can be minimized by expressing soil moisture in units of percent of field capacity. The possibility of using a single radar for measuring soil moisture for both bare and vegetated fields is demonstrated with a linear estimation algorithm having an experimental correlation coefficient of 0.8.

A79-36686 *

Results are presented for an experimental investigation to determine the relationship between radar backscatter coefficient (sigma) and soil moisture for vegetation-covered soil. These results extend a previous report which showed the experimental relationship between sigma and soil moisture for bare soil. It is shown that the highest correlation between sigma and soil moisture is 0.92 for the combined response of four crop types measured at 4.25 GHz, 10 deg incidence angle, and HH polarization. Radar look direction, relative to the crop row direction, is shown to have an insignificant effect on soil-moisture estimation if the radar frequency is higher than 4 GHz. The dependence on soil type can be minimized by expressing soil moisture in units of percent of field capacity. The possibility of using a single radar for measuring soil moisture for both bare and vegetated fields is demonstrated with a linear estimation algorithm having an experimental correlation coefficient of 0.8.

A79-38373 *

The paper discusses an airborne calibration technique for a thermal IR scanner, along with the experimental test program. The technique involves the development of a model relating the signal at the sensor to the surface temperature and the atmospheric effects contributing to the signal at the sensor. It is shown how the radiant energy detected by the sensor at aircraft altitudes of about 600 m is not only a function of temperature but also is functionally dependent on atmospheric and background terms. The calibration technique for temperature measurement of cooling water discharged from powerplants is successfully tested. Future efforts in this field are recommended to be directed at techniques designed to generate thermal maps with appropriate corrections at angles away from the vertical.

S.D.

A79-36640 *

Aims, history and schedule of the Large Area Crop Inventory Experiment (LACIE) conducted by NASA, USDA and NOAA from 1974-1977 are described. The LACIE experiment designed to research, develop, apply and evaluate a technology to monitor wheat production in important regions throughout the world (U.S., Canada, USSR, Brasil) utilized quantitative multispectral data collected by Landsat in concert with current weather data and historical information. The experiment successfully exploited computer data and mathematical models to extract timely crop information. A follow-on activities for the early 1980's is planned focusing especially on the early warning of changes affecting production and quality of renewable resources and commodity production forecast.

V.T.

Review of the Landsat program and a few examples illustrating the cover mapping technology, especially the portion associated with computer processing, are presented. In the land cover examples, the Great Lakes maps (1973), the land use map of the Washington, D.C. urban area (1978), and the demonstration land cover map of the Puget Sound Region, are described. In the example in forestry it is noted that due to management aspects the information is required
A statistical analysis was made on ground soils to define the general relationship and ranges of values of the field moisture relative to both the variance and coefficient of variation for a given test site and depth increment. The results of the variability study show that: (1) most of the variation in mean field moisture content is inherent and can either be controlled or reduced; (2) neither a single value of the standard deviation nor coefficient of variation uniquely define the variability over the complete range of mean field moisture contents examined; and (3) using an upper bound standard deviation parameter clearly defines the maximum range of anticipated moisture variability. 87 percent of all large field moisture content standard deviations were less than 3 percent while about 96 percent of all the computed values had an upper bound of sigma = 4 percent for these intensively sampled fields. The limit of accuracy curves of mean soil moisture measurements for large field sites relative to the required number of samples were determined. Author

A79-24410^4 Purdue Univ., Lafayette, Ind. Lab. for Applications of Remote Sensing

STRAITIFICATION AND SAMPLE SELECTION FOR MULTICROP EXPERIMENTS
D. A. Landgrebe, Principal Investigator, M. M. Hixson, B. J. Davis, and M. E. Bauer Nov. 1978 53 p EREP (Contract NAS9-15466)

The author has identified the following significant results. A stratification was performed and sample selections were selected for an initial investigation of multicrop problems in order to support development and evaluation of procedures for using LANDSAT and other technologies for the classification of corn and soybeans, to identify factors likely to affect classification performance, and to evaluate problems encountered and techniques which are applicable to the crop estimation problem in foreign countries. Two types of samples, low density and high density, supporting these requirements were selected as research data set for an initial evaluation of technical issues. Looking at the geographic location of the strata, the system appears to be logical and the several segments seem to represent different conditions. This result is supportive not only of the variables and the methodology employed in the stratification, but also of the validity of the data sets employed.

NATIONWIDE FORESTRY APPLICATIONS PROGRAM. TEN-ECOSYSTEM STUDY (TES) SITE 8, GRAYS HARBOR COUNTY, WASHINGTON Final Report
J. C. Prill, Principal Investigator Mar. 1979 95 p refs Sponsored in part by US Forest Service. Original contains color imagery. Original photography may be purchased from the EROS Data Center, Sioux Falls, S. D. 57198 EREP (Contract NAS9-15800)
The author has identified the following significant results. Level 2 forest features (softwood, hardwood, clearcut, and cut) can be classified with an overall accuracy of 71.6 percent, or minus 6.7 percent at the 90 percent confidence level for the particular data and conditions existing at the time of the study. Signatures derived from training fields taken from only 10 percent of the site are not sufficient to adequately classify the site. The level 3 softwood age group classification appears reasonable, although no statistical evaluation was performed.

N79-24413
National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, Tex. **LARGE AREA CROP INVENTORY EXPERIMENT (LACIE). AN OVERVIEW OF THE LARGE AREA CROP INVENTORY EXPERIMENT AND THE OUTLOOK FOR A SATELLITE CROP INVENTORY**

The author has identified the following significant results. The most important LACIE finding was that the technology worked very well in estimating wheat production in important geographic locations. Based on working through the many successes and shortcomings of LACIE, it can be stated with confidence that: (1) the current technology can successfully monitor what production in regions having similar characteristics to those of the U.S.S.R. wheat areas and the U.S. hard red winter wheat areas; (2) with additional applied research, significant improvements in capabilities to monitor wheat in these and other important production regions can be expected in the near future; (3) the remote sensing and weather effects modeling technology approach used by LACIE is generally applicable to other major crops and crop-producing regions of the world; and (4) with suitable effort, this technology can now advance rapidly and could be widespread use in the late 1980's.

N79-24414
National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, Tex. **THE LARGE AREA CROP INVENTORY EXPERIMENT (LACIE). METHODOLOGY FOR AREA, YIELD AND PRODUCTION ESTIMATION, RESULTS AND PERSPECTIVE**

N79-24415

N79-24416

The author has identified the following significant results. An outgrowth of research and development activities in support of LACIE was a multicrop area estimation procedure, Procedure M. This procedure was a flexible, modular system that could be operated within the LACIE framework. Its distinctive features were refined preprocessing (including spatially varying correction for atmospheric haze), definition of field like spatial features for labeling, spectral stratification, and unbiased selection of samples to label and crop area estimation without conventional maximum likelihood classification.

N79-25447

The author has identified the following significant results. Findings led to the development of a theory of radiometric discrimination employing the mathematical framework of the theory of discrimination between scintillating radar targets. The theory indicated that the functions which drive accuracy of discrimination are the contrast ratio between targets, and the number of samples, or pixels, observed. Theoretical results led to three primary consequences, as regards the data system: (1) agricultural targets must be imaged at correctly chosen times, when the relative evolution of the crop's development is such as to maximize their contrast; (2) under these favorable conditions, the number of observed pixels can be significantly reduced with respect to wall-to-wall measurements; and (3) remotely sensed radiometric data must be suitably mixed with other auxiliary data, derived from external sources.

N79-25450

The author has identified the following significant results. A major advantage of this scheme is that it needs minimal human intervention. The entire scheme, with the exception of the choice of dates, can be computerized and the results obtained in minutes. The decision to limit the number of acquisitions processed to four was made to facilitate operation on the particular computer being used. Some earlier runs on another computer system were based on as many as seven biophase-1 acquisitions.

N79-25457

The author has identified the following significant results. One of the main advantages, both cost-wise and time-wise, of the natural resource inventory system involved the use of...
LANDSAT-acquired digital data for the land cover information component, thereby eliminating the need to digitize such dynamic information from a map or aerial photo base. It was thought that the utility and the cost of information as derived from LANDSAT data for the various applications justified the operational use of data generated by LANDSAT.

SWATH WIDTH STUDY. A SIMULATION ASSESSMENT OF COSTS AND BENEFITS OF A SENSOR SYSTEM FOR AGRICULTURAL APPLICATION Final Report
Apr. 1979 59 p refs (Contract NAS9-32491)
(NASA-CR-161232; Rept-79HV001) Avail: NTIS HC A04/MF A01 CSCL 02C

Satellites provide an excellent platform from which to observe crops on the scale and frequency required to provide accurate crop production estimates on a worldwide basis. Multispectral imaging sensors aboard these platforms are capable of providing data from which to derive acreage and production estimates. The issue of sensor swath width was examined. The quantitative trade-off necessary to resolve the combined issue of sensor swath width, number of platforms, and their orbits was generated and are included. The simulations were analyzed and an assessment of system trade-offs of swath width versus number of satellites was made for achieving Global Crop Production Forecasting. Author

SUMMARY OF NASA AIRCRAFT (NC-130) DATA COLLECTED FOR THE AGRICULTURAL SOIL MOISTURE EXPERIMENT (ASME) DURING 1978
F. R. Brumbaugh, Principal Investigator Mar. 1979 31 p refs (Contract NAS9-15800)
(E79-10215; NASA-CR-160163; LEC-12892; JSC-14815) Avail: NTIS HC A03/MF A01 CSCL 08M

The author has identified the following significant results. The LACIE performance predictor (LPP) was used to replicate LACIE phase 2 procedures reasonably well. Results for phase 2 error components. Results indicated that the LPP simulated the LACIE phase 2 procedures reasonably well. The significance of the various number of radiometric quantizing levels required for satellite monitoring of vegetation resources was evaluated by using the tested automatic data processing technology, softwood and grassland signatures can be extended. Fall was found to be the best season for mapping this ecosystem. The author has identified the following significant results.

A SIMULATION STUDY OF LARGE AREA CROP INVENTORY EXPERIMENT (LACIE) TECHNOLOGY
L. Ziegler, Principal Investigator and J. Potter May 1979 31 p ref. Sponsored by NASA, NOAA, and USDA EREP (Contract NAS9-15800)
(E79-10216; NASA-CR-160182; JSC-14547; LEC-12180) Avail: NTIS HC A03/MF A01 CSCL 02C

The author has identified the following significant results. The LACIE performance predictor (LPP) was used to replicate LACIE phase 2 for a 15 year period, using accuracy assessment results for phase 2 error components. Results indicated that the LPP simulated the LACIE phase 2 procedures reasonably well. The LACIE performance predictor (LPP) was used to replicate LACIE phase 2 for a 15 year period, using accuracy assessment results for phase 2 error components. Results indicated that the LPP simulated the LACIE phase 2 procedures reasonably well.

N79-26444*# National Aeronautics and Space Administration.

A BRIEFING OF PLENARY PRESENTATIONS: THE LACIE SYMPOSIUM

01 AGRICULTURE AND FORESTRY

TEN-ECOSYSTEM STUDY (TES) SITE 9, WASHINGTON COUNTY, MISSOURI Final Report
W. H. Eichert, Principal Investigator Mar. 1979 84 p refs EREP (Contract NAS9-15800)
(E79-10218; NASA-CR-160165; LEC-13000; JSC-14657) Avail: NTIS HC A05/MF A01 CSCL 02F

The author has identified the following significant results. The LACIE performance predictor (LPP) simulated the LACIE phase 2 procedures reasonably well. Results for phase 2 error components. Results indicated that the LPP simulated the LACIE phase 2 procedures reasonably well.

LARGE AREA CROP INVENTORY EXPERIMENT (LACIE). SIGNATURE EXTENSION IN REMOTE SENSING
C. B. Chinni, Principal Investigator Apr. 1979 24 p refs Sponsored by NASA, NOAA, and USDA EREP (Contract NAS9-15800)
(E79-10219; NASA-CR-160186; JSC-14825; LEC-13189) Avail: NTIS HC A02/MF A01 CSCL 12A

The author has identified the following significant results. The LACIE performance predictor (LPP) simulated the LACIE phase 2 procedures reasonably well. Results for phase 2 error components. Results indicated that the LPP simulated the LACIE phase 2 procedures reasonably well.

N79-27637*# National Aeronautics and Space Administration.

A BRIEFING OF PLENARY PRESENTATIONS: THE LACIE SYMPOSIUM

113
dicot leaf. Simulated spectral reflectances, corresponding to different leaf water contents or equivalent water thicknesses, were analyzed to quantify reflectance differences between different equivalent water thicknesses. Simulation results coupled with consideration of atmospheric transmission properties and the incident solar spectral irradiance at the earth's surface resulted in the conclusion that the approximately 1.55 - 1.75 microns region was the best suited wavelength interval for satellite-platform remote sensing of plant canopy water status in the 0.7 - 2.5 microns region of the spectrum.

THE TERGRA MODEL: A MATHEMATICAL MODEL FOR THE SIMULATION OF THE DAILY BEHAVIOR OF CROP SURFACE TEMPERATURE AND ACTUAL EVAPOTRANSPIRATION

G. J. R. Soer Nov. 1977 53 p refs (Rept-1014) Avail: NTIS HC A04/MF A01

The TERGRA model was developed as an aid for the interpretation of IRL images of cropped surfaces, with particular emphasis on grasslands. It is based on the transport equations for one-dimensional vertical heat and moisture flow in the soil-plant-atmosphere continuum. Boundary conditions are the temperature and soil moisture pressure at a reference level in the soil, the energy balance equation of the crop surface, and the temperature and water vapor pressure at a reference level in the atmosphere. Some relations between model parameters are introduced in the model. A numerical algorithm to solve the transport equation completes the model. Model test results show good agreement with actual measurements done at the Losser study area.

Author (ESA)
ENVIRONMENTAL CHANGES AND CULTURAL RESOURCES

Includes land use analysis, urban and metropolitan studies, environmental impact, air and water pollution, geographic information systems, and geographic analysis.

The papers report on advances in instrumental techniques and analytical methods of atmospheric, ocean, and land monitoring of pollution and resources. Topics studied include signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence, infrared laser automated field instrumentation for monitoring the atmosphere, holographic real time seeing through moving scattering media, scattering of electromagnetic waves from the ocean, correction of airborne IR-scanner data, digital analysis of multi-channel radar data, and laser-induced fluorescence techniques for hydro- sphere sounding.

The paper discusses some general principles of optimum detection, identification, and evaluation of an object or chemical agent by remote sensing methods. The basic concept is that, knowing the geometrical shape of the target of interest and its molecular surface structure, an illumination function can be structured (matched filter concept) which gives optimum system sensitivity (minimum receiver bandwidth) to the object of interest. The matched illumination concept can be used to obtain data on the chemical surface composition of an object, gas emitted from an object, chemical composition of the atmosphere, and the distribution of various algae populations in water. Another concept is the determination of target distribution in space by spatial correlation measurements of field strength.

Land-use or land-cover mapping is currently very popular. Land-use maps provide an information source for sound land resource management decisions. If aerial photographs are to provide data for land-use/land-cover mapping, they must be suited for the job, must be interpreted in a professional manner, and the map product must be usable. A routine set of techniques should be developed. The key for a successful project is trained and trainable photo interpreters, organized procedures, written category descriptions, and an accuracy determination. Several illustrations of category definitions and pictorial elements for category recognition are presented.

In the present paper, it is shown that Landsat digital data are well suited for synoptic land use/cover mapping, but are poorly suited for ecological land classification on a Canadian Shield landscape characterized by heavy logging, windthrow, and forest fire. Automatically produced Image-100 maps of a 1200 sq km area near Kenora, Ontario, provide a satisfactory description of cover types in this physiographically complex region, but not the detailed data that are present on traditional forest cover maps or ecological land maps.

Landsat digital data interpretation for a 500 sq km Manitoba region, using the Image 100 system is shown to be effective for detailed 1:50,000 scale land use monitoring. It is believed that automated monitoring using satellite data of some land use classifications such as wooded cover, agricultural land and open water, where accuracy reaches up to 95%, will form an important component in a national land use monitoring program. Other classes of land use and specific areas will require auxiliary data and other interpretation approaches.

Supervised and unsupervised analyses of Landsat digital data were employed in mapping a 1,175 sq km wetland area of the Peace-Athabasca Delta region of northern Alberta. A combination of supervised and migrating means unsupervised classifications provided a record of eight major habitat types. An unsupervised four-dimensional histogram algorithm yielded a record of five habitat types. The results of the classifications were in good agreement with photointerpretation techniques on 1:100,000 scale color infrared photographs, and with available habitat maps of the area. In particular, the Landsat digital data provided effective classifications of hydrologic-vegetation units sensitive to environmental change.

J.M.B.

Albedo and surface roughness values derived from remote sensing data have been adopted for prognostic air quality models that involve surface energy exchanges. Maps of surface cover characteristics based on interpretation of 1:120,000 color and color infrared imagery were used in deriving the albedo and roughness values. The air quality model, which was applied to an industrial development on the north shore of Lake Erie, provided a simulation of mesoscale flow directed inland from the industrial zone. It is concluded that remote sensing data with a sufficient degree of accuracy have potential for updating the energy balance parameters in air quality forecasts. J.M.B.

Several applications of supplementary aerial photography (SAP) in planning and management of national parks are discussed. Color infrared SAP at a large contact scale (1:3,000) can be effectively used to detect manifestations of environmental stress (disease, erosion, changes in the water table and in insect population levels) in the forest canopy. Satisfactory estimates of the rate and direction of change in the littoral zone can be made if appropriate ground control targets are selected. If used repetitively, SAP can provide a useful monitoring technique to identify changes in user patterns. C.K.D.

The application of multispectral photography and thermal IR line scanner imagery to data collection procedure for highway environmental impact studies is evaluated. A brief description is given of the data acquisition procedures and sensors used. It is shown that the key to realizing the full potential of multispectral photography and thermal IR line scanner imagery lies in developing spectral and thermal signatures for relevant parameters in an environmental impact study. Once these signatures are developed and verified, multispectral photography and thermal IR imagery are likely to become operational tools. S.D.

A79-40255 // Experience with the application of multispectral remote photography to geographic studies and thematic mapping (Opyt primeneniia mnogozonal’noi kosmicheskoj s’emki v geografi.

Because aerial photographs and satellite images are not capable to meet each of the conditions required for obtaining a synthetic picture of a landscape, balloon photography was used in France to obtain 1:400,000 black-and-white-spectral-filter photographs. A programmed processing technique which yields (magnetic- and perforated-tape) information for landscape classification purposes is described. V.P.

The characteristics of the side-looking airborne radar are reviewed, along with the factors which affect the quality of SLAR images. Methods of interpreting SLAR images are outlined. V.P.

The present paper deals with such issues as the factors affecting the recording of information by detectors, the utilization of data recorded with a multiband system, and the characteristics of multiband data acquisition. Particular attention is given to the application of computers to multiband data analysis. V.P.

The physical aspects of spectrophotometry are discussed, and a spectrophotometric technique suitable for use both in the laboratory and for remote sensing is outlined. The design and principle of an airborne remote sensing spectrophotometer are examined, along with the instrument's optical system. V.P.

A79-22586* Ohio Dept. of Economic and Community Development, Columbus. DEVELOPMENT OF A MULTI-DISCIPLINARY ERTS USER PROGRAM IN THE STATE OF OHIO. VOLUME 1: EXECUTIVE SUMMARY Final Report Paul E. Baidridge, Charles Weber, Gary Schaaf (Ohio Dept. of Natural Resources), Carl Wilhelm (ERPA), G. E. Wurelic (Battelle Columbus Labs.), J. G. Stepan (Battelle Columbus Labs.), T. F. Ebbert (Battelle Columbus Labs.), H. E. Shattuck (Battelle Columbus Labs.), J. McKeon (Ben Dix Aerospace Systems Div.), and N. Schmidt, Principal Investigators (Bendix Aerospace Systems Div.) 5 Feb. 1977 430 p. refs. Original contains color imagery. Original photography may be purchased from the EROS Data Center, Sioux Falls, S. D. 57198 ERTS (Contract NAS2-2399).
The author has identified the following significant results. A current uniform land inventory was derived, in part, from LANDSAT data. The State has the ability to convert processed land information from LANDSAT to Ohio Capability Analysis Program (OCAP). The OCAP is a computer information and mapping system comprised of various programs used to digitally store, analyze, and display land capability information. More accurate processing of LANDSAT data could lead to reasonably accurate, useful land allocations models. It was feasible to use LANDSAT data to investigate minerals, pollution, land use, and resource inventory.

The urban community is neither an undefined and undifferentiated grouping, nor a casual reunion of buildings and people. From the standpoint of residential differentiation, a city presents areas which, with the consideration of their occupation, have acquired the character, culture and the qualities imposed by their inhabitants. An attempt was made to define a methodology which will allow a concise and objective identification of such groups. The technique is used is that of visual interpretation of low altitude images, obtained by remote sensing devices on panchromatic films. The cities of Sao dos Campos (1973 and 1977) and Cachoeira Paulista (1975) were used as test areas.
03

GEODESY AND CARTOGRAPHY

Includes mapping and topography.

The paper discusses some of the main satellite techniques being used to measure the motion of the earth’s poles. The methods of determining the polar coordinates from satellite observations can be divided into kinematic and dynamic methods. The kinematic methods depend on investigating the periodic perturbations of orbital elements and the topocentric radius of satellites, while the dynamic methods analyze changes of the harmonic coefficients of the geopotential as a function of time. The basic relations used in satellite Doppler observations for polar coordinate determination, laser ranging to satellites for polar motion determination, and lunar laser ranging for determining certain earth rotation parameters are reviewed.

P.T.H.

The application of thermal inertia mapping, using satellite and airborne thermal infrared data together with broadband visible imagery, to soil moisture and geological mapping is examined. Results of a simulation of the effects of soil moisture, clay/sand content and porosity on the thermal properties of soils are presented. Thermal inertia is found to display a strong dependence on soil moisture and porosity, and a slight dependence on soil type, indicating the possibility of soil moisture mapping with limited interpretation of soil type and porosity. Mapping of soils in semi-arid environments for mineralogical content is not directly possible using thermal inertia mapping techniques; however it should be possible to detect soil changes based upon porosity and residual soil moisture content, which are functions of the mineralogical composition.

A.L.W.

Remote sensing technology provides a number of benefits to cartography, including the capability of obtaining data in a very short time in a true spatial context, increased potential for repeated observations, and the possibility of determining the characteristics of near-global systems. Applications of remote sensing data to analyses of agronomy, settlement characteristics, hydrology and geomorphology are discussed.

J.M.B.

Cartographic information processing systems for remote sensing imagery are discussed, with emphasis on future developments in the cartography-remote sensing field. The combination of digital Landsat data or digitized aerial photography with digital cartographic base data may be a chief means of producing thematic maps in the future. Creating automated procedures capable of generalizing nominal-scale environmental data for depiction on small-scale thematic maps represents one of the most difficult problems for cartographers working with remote sensing data.

J.M.B.

The classification of remote sensing data according to the environmental processes which produced the radiative signature is among the chief tasks of the cartographer adapting remote sensing imagery to mapping. The cost and flexibility of manual and automated classification techniques are considered. Developing maps which do not contain excessive detail may be a means of controlling costs for some users.

J.M.B.

The use of shade prints of Landsat imagery to develop urban land-use classifications is discussed. The shade prints, available in the form of easily copied overprint printouts, have been applied to land-use mapping of the Washington and Shanghai, D.C. Techniques for separating atmospheric effects from cartographically significant information are considered.

J.M.B.

The paper discusses a few examples of imagery taken aboard the Soyuz and the Salut spacecraft. A photograph of a forest fire taken from Salut-6 is shown. Some comments on the importance of this work for dynamic cartography are made.

P.T.H.

A portable position fixing unit which uses the Transit satellite system has been developed. The portable survey unit can compute three-dimensional positions on site, control its power consumption to conserve battery resources, and periodically test itself. An accuracy of within five meters rms is typical in the point positioning mode; an accuracy better than one meter rms may be obtained in the translocation mode. Setting up and operating the portable survey unit requires no particular electronic skills and can be learned in a few hours. Modular design simplifies field maintenance of the unit.

J.M.B.

Ottawa, Canadian Aeronautics and Space Institute, 1979, p. 271-283. 6 refs.

The digital image correction system under development at the Canadian Center for Remote Sensing for the correction of radiometric and geometric errors in Landsat MSS imagery is described. The system accepts and produces data on computer compatible tapes and consists of a PDP 11/70 minicomputer with a reprogrammable hardware corrector. The corrector performs detector equalization by means of individual lookup tables, and geometric repositioning and scene illumination compensation by means of piecewise linear functions. The image produced is corrected by 0.5 deg latitude and 1 deg longitude with a 50 meter square pixel. Accuracy is better than 0.5 pixel and about five images can be processed in a day. The system can also be reprogrammed to process imagery acquired from other platforms or to offer other remote sensing products in a digital form.

A.L.W.

Remote sensing - How far and how fine. S. A. Hempenius (International Institute for Aerial Survey and Earth Sciences, Enschede, Netherlands). (International Association of Engineering Geology, Congress, 3rd, Madrid, Spain, Sept. 1978.) IFG Journal, no. 1, 1979, p. 127-133. The present paper concerns essentially some aspects of the acquisition and processing of data on objects and patterns on the earth surface from rapidly moving platforms. Methods of monitoring processes on the earth’s surface from such platforms are discussed. V.P.

The advantages and limitations of Spacelab as a platform for earth observations, specifically teledetection and spatial geodesy, are discussed. The types of missions in geodesy and teledetection envisioned for Spacelab are examined. Four typical experiments in these disciplines are described, including a photogrammetric chamber and microwave experiment to be flown with the first Spacelab payload, a SLALOM geodesy experiment in planning, and a proposed experiment in high-precision localization. C.K.D.

A flexible algorithm has been developed to meet the changing requirements for generating terrain data from digital stereo sensor records. The algorithm includes an image matching procedure in which parallax components are determined by automatically correlating conjugate image features. The algorithm is adaptive and can handle various types of sensor and natural terrain conditions. Reliability monitoring of the output terrain data is performed on the basis of the in-process analysis of local image areas. The reliability measure dictates various strategies that the algorithm can apply in image areas where automatic correlation is difficult. The algorithm was implemented on a distributive network of parallel digital processors. In this system, production speed is attained because of the inherent parallelism of the modular processors. Flexibility is maintained because the processors are microprogrammable. In this way, new sensor imaging characteristics and new algorithm strategies can be incorporated without disturbing the fundamental software and hardware structure of the system. Production times for compiling a representative stereo model on this parallel configuration far exceed the capability of general-purpose computers. GRA

Army Engineer Topographic Labs., Fort Belvoir, Va.

NEAR SURFACE BATHYMETRY SYSTEM Gunther Schwarz Nov. 1978 35 p. refs. (AD-A064532; ETL-0163) Avail: NTIS HC A03/MF A01 CSCL 08/10

This report describes the Near Surface Bathymetry System built under contract for Defense Mapping Agency - Hydrographic Center. Tests were performed to determine the characteristics and adherence to the specifications set forth in the Purchase Description. This report contains the results of these tests. Author (GRA)

National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, Md.

Magnetic data are presented for mantle derived rocks: peridotites from St. Pauls rocks, dunite xenoliths from the kaulupulehau flow in Hawaii, as well as peridotite, dunite, and eclogite xenoliths from Roberts Victor, Dutroitspan, Kilbourne Hole, and San Carlos diatremes. The rocks are paramagnetic or very weakly ferromagnetic at room temperature. Saturation magnetization values range from 0.013 emu/gm to less than 0.001 emu/gm. A review of pertinent literature dealing with analysis of the minerals in mantle xenoliths provides evidence that metals and primary Fe304 are absent, and that complex CR. Mg. Al, and Fe spinels dominate the oxide mineralogy. All of the available evidence supports the magnetic results, indicating that the seismic MOHO is a magnetic boundary. G.Y.

For purposes of geological interpretation, techniques are developed to directly compute the geoid anomaly over models of density within the Earth. Ideal bodies such as line segments, vertical sheets, and rectangles are first used to calculate the geoid anomaly. Realistic bodies are modeled with formulas for two dimensional polygons and three dimensional polyhedra. Using Fourier transform methods the two dimensional geoid is seen to be a filtered version of the gravity field, in which the long wavelength components are magnified and the short wavelength components diminished. Dissert. Abstr.
Includes mineral deposits, petroleum deposits, spectral properties of rocks, geological exploration, and lithology.

Enhanced Landsat imagery has been utilized for distinguishing rock types in a 21,500 sq km area of Iran. Ground-truth investigations and previously obtained 1:20,000 scale aerial photography provided complementary data for the lithological mapping program. Three rock formations were analyzed: a cliff-forming cobble-size conglomerate, a slope-forming boulder-sized conglomerate, and alluvial regions. Density slicing enhancement proved to be an effective means for discriminating between the conglomerate types.

J.M.B.

The usefulness of satellite remote sensor imagery in the mapping of major geologic structures, boundaries of geologic units and lithologies, and geomorphic provinces in the Washington, D.C. area, westward to the Appalachian Plateau, was investigated. The remote sensor imagery data base consisted of Landsat satellite data and high altitude infrared aerial photography. Both laboratory and field work was utilized in the geologic analysis of the imagery. The imagery was processed primarily by photo-optical techniques and analyzed by conventional interpretation methods. A series of geological and geobotanical overlays were prepared to show the interpreted results. The results showed that conventional published geologic maps of regions can be effectively supplemented by interpreted satellite and aircraft imagery overlays. A special geologic contribution is the additional structural information derived from the imagery which may be useful in the search for new mineral targets in the Appalachians.

(Author)

Extensive comparisons have been made between a simple nondimensionalized Lorentz spectral reflectance model and measurements of the single and multiple infrared spectral reflectance features of several minerals and water. The comparisons demonstrate that the Lorentz model can adequately represent the spectral reflectance properties of minerals and water. Increased use of a multiple reflectance treatment for merged features could improve the reflectance modeling. Filter spectrometers for remote sensing applications may be developed on the basis of normal incidence spectral reflectance shapes determined in this study.

J.M.B.

A79-40258 # Geological observations over Israel and vicinity from Landsat and Skylab imagery. A. Ginzburg, A. Flexer, and J. Ovidios. (Tel Aviv University, Tel Aviv, Israel). Fotointerpretacija w Geografii, vol. 2 (12), 1977, p. 101-104.

Basically, an engineering geological map should contain information on the distribution of soil units and their physical and mechanical properties; the hydrogeological and geomorphological conditions; and such geodynamic phenomena as erosion, deposition, mass movement, karst, and active faulting. In the present paper, the principles are reviewed of the remote sensing techniques commonly used by engineering geologists and surveyors involved in the application rather than the acquisition of such imagery.

V.P.

The present paper deals with two geomorphological studies carried out in 1976. The first concerns the geotechnical mapping of the rapidly developing city of Guayana, situated at the confluence of the Orinoco and Caroni rivers. The second study concerns the prospecting of bauxite and aluminum laterites in the region of Guayana. Stereotriplets (with geological interpretations) obtained in these studies are given and discussed.

V.P.

N79-26437 Iowa Univ., Iowa City. REGIONAL GEOLOGIC ANALYSIS OF THE BLACK HILLS OF SOUTH DAKOTA AND WYOMING FROM REMOTE SENSING DATA Ph.D. Thesis Kuo-Liang Pan 1978 308 p Avail. Univ. Microfilms Order No. 7913354 Photographgeological interpretation of 1:250,000 scale LANDSAT-1 of the Black Hills using conventional technique has revealed that meaningful geologic information can be obtained for large areas of dense forest cover. Landform classes, drainage systems and vegetation cover permit the delineation of four major and twenty-one smaller geomorphic subdivisions of the Black Hills. The topography revealed on the imagery by differential solar illumination is the most interpretable surface phenomenon leading to the identification of lithology and geomorphic, and structural features. The accuracy of image interpretation from high altitude aerial photography at approximately 1:120,000 scale accompanied by field checking is comparable to the accuracy of 1:50,000 scale ground mapping.
A geological and geophysical site survey was made of the area around the National Radio Astronomy Observatory (NRAO) to determine whether there are at present local tectonic movements that could introduce significant errors to Very Long Baseline Interferometry (VLBI) geodetic measurements. The site survey consisted of a literature search, photogeologic mapping with Landsat and Skylab photographs, a field reconnaissance, and installation of a seismometer at the NRAO. It is concluded that local tectonic movement will not contribute significantly to VLBI errors. It is recommended that similar site surveys be made of all locations used for VLBI or laser ranging.
05

OCEANOGRAPHY AND MARINE RESOURCES

Includes sea-surface temperature, ocean bottom surveying imagery, drift rates, sea ice and icebergs, sea state, fish location.

Data from X-band side-looking airborne radar (SLAR), sea truth measurements made from an offshore platform, and radar backscatter determinations performed with a wavetank have provided the basis for a sea monitoring program undertaken by the Netherlands. The monitoring program is aimed at developing an operational system for oil spill detection, as well as an aid for ship traffic control.

A digital calibrated SLAR system which will permit quantitative comparisons between ground and airborne measurements is scheduled to be in operation in 1979.

J.M.B.

The paper discusses some applications of civil marine radars for sensing air-sea interactions. These radars are nearly all pulse sets with rotating antennas having a fan beam some 20 deg in elevation with the nose set to the horizon and azimuth resolutions from three-quarters to 2 or perhaps 3 deg. Operational aspects of these radars in airborne applications are discussed. Coastal radars, with apertures up to 8 m, offer greater advantages, and some recent studies on their use at low grazing angles are mentioned. The dependence of the returns on winds is illustrated.

P.T.H.

A side-looking airborne radar (SLAR) intended for ocean surveillance with special emphasis on oil slick mapping is briefly characterized. Operational curves are presented, e.g., average sea clutter power at different aircraft altitudes, average sea clutter as a function of vertical antenna lobewidth, average sea clutter return as function of antenna depression, and average sea clutter return at different wind speeds. The radar is basically an ordinary pulse radar with a long antenna that provides the necessary angular resolution.

First flight testing results have shown that a small aircraft is stable enough to operate the SLAR without aircraft motion compensation, and that one can obtain a radar map with even intensity over a sufficiently large interval of range values.

P.T.H.

Ocean wave data can be obtained from such active microwave probe techniques as monostatic HF and VHF, bistatic HF, HF synthetic aperture radar, altimeters, satellite and airborne synthetic aperture radar, carrier wave or pulsed dual-frequency radars, and coastal surveillance radar. Approaches to texture analysis of ocean wave imagery are discussed, with attention given to transform techniques or spatial frequency analysis, and the analysis of second-order gray level statistics. In addition, recommendations are made for further work on the modulation of short gravity waves by longer waves as a function of wind speed and wave direction, and the derivation of transfer functions for the ocean response of dual-frequency radars.

J.M.B.

Methods of determining wave heights from the shape of the radar return pulse in GEOS 3 radar altimeter data are discussed. Wave heights are analyzed using the standard deviation of the pulse leading edge slope, which is influenced by wave height. A Gaussian fitting technique can be used to derive wave heights from average pulse shapes, and the observed scatter in values derived from low rate data can be reduced by the techniques of fitting the pulse shape to the error function before differentiation, weighting the sample values by the reciprocal of the observed variance in the data from each gate, and correcting for bias and timing errors. When using high rate data, corrections can be made for the effects of timing jitter and range servo error on the average pulse shape. A comparison of corrected satellite data with sea truth in the northeast Pacific Ocean indicates that the analysis is capable of determining wave heights to within 0.5 m.

A.L.W.

Landsat radiance data were used to test mathematical models relating diffuse reflectance to aquatic suspended solids concentration. Digital CCT data for Landsat passes over the Bay of Fundy, Nova Scotia were analyzed on a General Electric Co. Image 100 multispectral analysis system. Three data sets were studied separately and together in all combinations with and without solar angle correction. Statistical analysis and chromaticity analysis show that a nonlinear relationship between Landsat radiance and suspended solids concentration is better at curve-fitting than a linear relationship. In particular, the quasi-single-scattering diffuse reflectance model developed by Gordon and coworkers is corroborated. The Gordon model applied to 33 points of MSS 5 data combined from three dates produced r = 0.98.

(Author)

Sea-ice conditions have been monitored by satellites since the early 1960s; in this paper, the 11-year drift track of a large tabular iceberg is discussed. The iceberg originated from the Trolltunga ice tongue in Antarctica and was first registered on satellite imagery in 1962; in the early 1960s, it drifted as an iceberg the size of Manhattan Island.

Side-looking radar images of Arctic sea ice were obtained as part of the Arctic Ice Dynamics Joint Experiment. Repetitive coverages of a test site in the Arctic were used to measure sea ice drift, employing single images and blocks of overlapping radar image strips; the images were used in conjunction with data from the aircraft inertial navigation and altimeter. Also, independently measured, accurate positions of a number of ground control points were available. Initial tests of the method were carried out with repeated coverages of a land area on the Alaska coast (Prudhoe). Absolute accuracies achieved were essentially limited by the accuracy of the inertial navigation data. Errors of drift measurements were found to be about + or - 2.5 km. Relative accuracy is higher; its limits are set by the radar image geometry and the definition of identical features in sequential images. The drift of adjacent ice features with respect to one another could be determined with errors of less than + or - 0.2 km.

A79-34267 * Ice elevation map of Queen Maud Land, Antarctica, from balloon altimetry. N. Levanon (Tel Aviv University, Tel Aviv, Israel) and C. R. Bentley (Wisconsin, University, Madison, Wis.), *Nature,* vol. 278, Apr. 26, 1979, p. 842-844. 11 refs. Research supported by the U.S.-Israel Binational Science Foundation, NASA, and NSF.

NOAA very high resolution radiometer and Landsat multispectral scanning images were employed in studying the deformation and movement of ice in Baffin Bay from 1975 to 1977. Daily areal variations of ice deformation and drift were monitored in the NOAA data; the higher resolution Landsat data yielded information on floe size and frequency distribution. Variations in the southward velocities of pack ice and ice floes were noted, and areal variations in sea ice movements were found. Short-term logistical planning as well as planning for long-term offshore operations may benefit from the Baffin Bay ice survey.

Surface verification data and Landsat imagery were employed in developing an iceberg monitoring system for the Baffin Bay-Labrador Sea area. Conclusive iceberg identification can not be made with Landsat imagery alone, but requires in addition aircraft reports and ship- or shore-based radar measurements. Time differences between Landsat overpasses and surface assessments of icebergs, as well as errors in satellite position and radiance associated with quick-look imagery, are among the difficulties in Landsat detection of icebergs. A relationship between the Landsat detectability of an iceberg and its size and shape is under investigation.

To evaluate the use of microwave systems for monitoring oil pollution in the ice environment, the microwave scattering and emission characteristics of sea ice, oil on water, and the ocean were investigated. Microwave systems have yet to be tested for oil pollution surveillance in the ice environment, so that only qualitative assessments can be made on the microwave emission and scattering by considering the electrical and physical properties of oil, ice and water. The observations of oil spills in ice-infested waters, detection of oil in ice environment, microwave techniques for detecting oil in temperate oceans, oil absorbed in ice, under ice, and between layers of ice are discussed. It is concluded that microwave systems will be more useful when oil is in or on top of the ice layers, that information on interaction of sea ice parameters such as brine volume, surface roughness and porosity which affect scattering and emission is lacking, and that microwave system parameters such as frequency, resolution, angle and polarization have yet to be established.

Synthetic aperture radar (SAR) data of sea ice were collected over Hopedale, Labrador during February and March, 1977. The four channel X- and L-band SAR system belonging to the Environmental Research Institute of Michigan (ERIM) was utilized by the Centre for Cold Ocean Resources Engineering to undertake Project SAR ‘77. A variety of first-year ice types were imaged. The radar imagery corresponded to antenna depression angles of 30 and 13 deg with all possible linear polarization combinations (HH, VV, HV, and VH). The results of imagery interpretation indicate that some ice types can be identified on both X- and L-band imagery, with X-band providing better contrast in most cases. Both HH and HV polarizations seem equally suitable for ice imaging, with cross-polarized imagery providing the most contrast in some cases. The presented results may be important in determining which channel combinations are required for mapping sea ice with radar.

A79-36535 # Application of Landat data in the study of oceanographical environment. H. Ochiai (Toba Merchant Marine College, Toba, Mie, Japan), K. Takeda (National Institute of Resources, Science and Technology Agency, Tokyo, Japan), and K. Tsuchiya (National Space Development Agency of Japan, Tokyo, Japan).

Arctic sea ice data from the 1953-1977 period were digitized onto a set of 300 monthly grids covering the polar cap, each grid containing 1648 ice concentration points at a spacing of 1 degree latitude. The digitized data are used to evaluate the normal seasonal cycle of ice extent, the 25-year extremes for winter and summer, and the longitudinal dependence of the variance and trend of ice extent. Interannual variations of ice extent exceeding 5 degree latitude are found at most longitudes. The time series of total Arctic ice extent shows a statistically significant positive trend and correlates negatively with recent high-latitude temperature fluctuations. Empirical orthogonal functions of longitude are used to identify the major spatial and temporal scales of ice fluctuations with the 25-year period.

B.J.

The present paper deals with a chromaticity measuring program devised to support marine-optical 'ground-truth' studies within the framework of an airborne remote sensing program. The chromaticity measuring program (which can be used also for remote sensing on land) consists of measuring chromaticity coordinates of the scattered (or transmitted) light in water samples and comparing them with chromaticity coordinates calculated from scanner spectra.

V.P.

An automated method for measuring the color coordinates of the totally transmitted, as well as the scattered, light in seawater samples in a flowmeter apparatus, is described. The correlations of these parameters with content of suspended matter, chlorophyll, as well as yellow substance, are given. Furthermore, the applicability of the scattered light color coordinates measurements as remote sensing ground truth is discussed. Moreover, they permit the calculation of the turbidity (ASTM-Turbidity).

(Producer)

The retrieval of information related to ocean circulation from GEOS 3 radar altimeter data is discussed. The altimeter data bank is examined, along with parameters of the quasi-steady component of very long wavelength for which gravity-field components are known to be better than 1 part in 100 million. Measurements of time variations in the Southern Ocean were analyzed, and the Southern Ocean topography (SST) that maintains the Gulf Stream is considered. The results demonstrate the potential of the satellite altimeter as a tool for studying the dynamics of the surface layer of the oceans. F.G.M.

A review of the U.S. Coast Guard’s operation, has led to the selection of eight airship participation programs that, compared to the current operating platforms of ships and aircraft, were found to be cost effective, 50 potential airship missions, for the eight programs, were described and 253 mission profiles were compiled, including ice patrol, surveillance and inshore undersea warfare. Special attention was given to the point design analysis of these programs and the annual requirements for capable airships, as a function of flight duration. Emphasis was placed on statistical data and calculations of crew size and mission duration. 120,000 hours of operations of less than 40 hours were analyzed and it was concluded that 50 maritime patrol ships, at a cost of $10 million, could be utilized. The hourly cost of operating an airship was found to lie between $700 and $1200, depending on the mission requirements and flight duration.

C.F.W.

The use of an oceanographic airship to collect data of temperature discontinuities at sea surfaces, extending through the upper ocean, is proposed. A scenario of an oceanographic experiment is outlined, implementing an airship equipped with a complete satellite receiving system, expendable bathythermographs, salinity probes, sound velocimeters, plus a collection of remote sensors. Several photographs, mostly taken from orbiting satellites, are attached depicting ocean swells, large internal waves, eddies, whip wakes and sea surface slicks.

C.F.W.
Determine the dominant wavelength of ocean waves.

L. S. demonstrates the potential of a satellite radar altimeter to handle range noise. Analysis of skewness in the GEOS return waveform (3) using a look-up table to correct for the expected value of observed standard deviation on the altitude measurement to the mean sea level before averaging; (2) using the tracking loop jitter in computing the wave height are considered. Techniques of varying complexity to remove the effect of the tracking loop jitter, and the sea surface height distribution; and (4) the antenna pattern as a function of the range to mean sea level. Several approaches were combined with published tidal ranges and salinities to develop a mathematical model that predicted shrimp production for nine geographic units of the Louisiana coast, as indicated by the long term average commercial shrimp yield.

The characteristics of western boundary currents are better known than those along the eastern edges of oceans. In the 1970s, however, close attention has been given to eastern boundary currents. The variability of the El Nino phenomenon off Peru, and coastal upwelling off Oregon, Peru/Chile, and Northwest Africa, have been studied by multi-national teams. Since 1975, U.S. Navy personnel and scientists sponsored by the Office of Naval Research have examined satellite imagery of the waters off California and Western Europe as a first step in real-time satellite oceanography. From these studies, we know now that eastern boundary currents have identifiable fronts (such as the Huelva front) and eddies (like the Socal eddy chain) that vary seasonally and inter-annually in intensity and scale. The fronts have lengths of tens of kilometres and depths of hundreds of metres; the eddies have diameters of 50 to 200 km and depths greater than 500 m. Both the eddies and fronts have surface temperature gradients of 1.5°C to 5°C. Deeper, the temperature gradients tend to be sharper than those at the surface. The data are useful therefore in solving tactical ASW problems.

The data are useful therefore in solving tactical ASW problems.
HYDROLOGY AND WATER MANAGEMENT

Includes snow cover and water runoff in rivers and glaciers, saline intrusion, drainage analysis, geomorphology of river basins, land uses, and estuarine studies.

Physical fundamentals and constraints of passive microwave remote sensing are discussed. Application areas are indicated, the rationale for multi-wavelength operation of passive microwave sensors is reviewed and the state of the art in radiometer systems is summarized. Examples of applications and of basic research in meteorology and hydrology are given and a future utilization in atmospheric science is indicated. (Author)

The trophic status of a number of inland lakes in Wisconsin has been assessed. The feasibility of using both photographic and digital representations of Landsat imagery was investigated during the lake classification project. The result of the investigation has been a semi-automatic data acquisition and handling system which, in conjunction with an analytical categorization scheme, can be used to classify all the significant lakes in the state. (Author)

Imagery of the University of Guelph test strip snow covered area, obtained from the four channel ERIM (Environmental Research Institute of Michigan) synthetic aperture radar (SAR) system, was evaluated for soil survey and field type identification purposes. The imagery was compared with ground truth data, and it was observed that for all but the X-HH channel it was the soil-vegetation surface reflecting the incident radar waves. The X-HH channel exhibited a lack of tonal variation, indicating attenuation by an icy surface, high water content or ice layers within the snow pack. A more comprehensive ground truth program is needed at the time of the radar flight to relate earth surface variables to radar system parameters and the resulting image. Multi-temporal and multi-channel radar imagery, in combination with the use of ancillary data, have the potential to discriminate crops and soils for agricultural purposes. V.T.

Photographic flights from 305 meters altitude were made throughout the day of May 17, 1977, over seven water data stations in the James River. The flights resulted in wide-angle, broadband, spectral radiance film exposure data between the wavelengths of 500 to 900 nanometers for sun elevation angles ranging from 37 to 64 deg a variable atmospheric haze conditions. It is shown from densitometer data that: (1) the dominant observed color from James River waters is determined by the optical properties of the total suspended solid load, (2) variability in observed color is produced by a changing solar elevation angle, and (3) the rate at which observed color changes is influenced by both solar elevation angle and atmospheric conditions. (Author)

An attempt is made to describe the historical development of a 42-km long sector of the Odra valley on the basis of aerial photographs. Analysis of the formations in this valley made it possible to identify a number of old river beds and a system of associated alluvial deposits and depressions, indicative of the formation of meanders. It proved possible to distinguish among the individual generations of meanders, and to identify some sectors in which the river reverted to some previous river bed. V.P.

N79-22688* Purdue Univ., Lafayette, Ind. Lab for Applications of Remote Sensing.
APPLICATION OF REMOTE SENSING TECHNOLOGY TO THE SOLUTION OF PROBLEMS IN THE MANAGEMENT OF RESOURCES IN INDIANA Semiannual Report, 1 Jun. - 30 Nov. 1978
R. A. Weismiller and R. P. Mroczynski, Principal Investigators
30 Nov. 1978 76 p ERTS
(Grant NGL-15-005-186)
(E79-10188; NASA-CR-158448; SDSU-RSI-79-06) Avail: NTIS HC A02/MF A01 CSCL 08H

The author has identified the following significant results.
Twenty-eight quarter sections were mapped, representing a total area of 4480 acres or approximately 1.25% of the county. Soil series could be predicted. Each soil spectral class represented one predominant drainage class with minor inclusions of other drainage classes. The same is true with conventional field mapping.

TROPHIC CLASSIFICATION OF SELECTED COLORADO LAKES
Richard J. Blackwell and Dale H. P. Boland (EPA) Jan. 1979
210 p refs Sponsored by NASA and EPA Original contains color illustrations
(Contract NAS7-100)
(NASA-CR-158500; EPA-600/4-79-0057; JPL-PUB-78-100) Avail: NTIS HC A10/MF A01 CSCL 05A
Multispectral scanner data, acquired over several Colorado lakes using LANDSAT-1 and aircraft, were used in conjunction with contact-sensed water quality data to determine the feasibility of assessing lacustrine trophic levels. A trophic state index was developed using contact-sensed data for several trophic indicators. Relationships between the digitally processed multispectral scanner data, several trophic indicators, and the trophic index were examined using a supervised multispectral classification technique and regression techniques. Statistically significant correlations exist between spectral bands, several of the trophic indicators and the trophic state index. Color-coded photomaps were generated which depict the spectral aspects of trophic state.

N79-22603# California Univ., Davis. Water Resources Center.
REMOTE SENSING OF PERCHED WATER TABLES, A PILOT STUDY
(PB-291753/2; UCAL-WRC-W-512; Contrib-175; W79-03040; OWRT-B-181-CAL(1)) Avail: NTIS HC A05/MF A01 CSCL 08H
Remote sensing techniques within the spectral region 0.4 micrometer to 23 cm of the electromagnetic spectrum are considered. Imagery from the visible and reflective infrared (aerial camera and LANDSAT scanner), thermal infrared (aircraft scanner), and microwave (both active L-band and passive 45 GHz micrad) region were analyzed. Significant temporal cycles were noted in the seasonal fluctuations of perched water tables as well as crop growth stages. Each of these phenomena plays important roles in establishing the utility of sensor systems to detect vegetative response to perched water tables. Results indicate that the thermal infrared region has unique detection capabilities because of differential subsurface heat flows associated with the presence of perched water tables.

N79-23478# National Aeronautics and Space Administration.
Goddard Space Flight Center, Greenbelt, Md.
Albert Rango Feb. 1979 35 p refs Submitted for publication
(NASA-TM-79713) Avail: NTIS HC A03/MF A01 CSCL 08L
Research work in the United States from 1975-1978 in the field of remote sensing of snow and ice is reviewed. Topics covered include snowcover mapping, snowmelt runoff forecasting, demonstration projects, snow water equivalent and free water content determination, glaciers, river and lake ice, and sea ice. A bibliography of 200 references is included.

FEASIBILITY OF REMOTE SENSING BENTHIC MICROALGAE Final Report
Richard G. Zingmark [1979] 36 p refs
(Grant NSG-1523)
(NASA-CR-158618) Avail: NTIS HC A03/MF A01 CSCL 08A
Results of data analyses from multispectral scanning data are presented. The data was collected in July 1977 for concentration of chlorophyll in benthic microalgae (mainly diatoms) on an estuary mudflat. G.Y.

N79-25448# Minnesota Univ., Minneapolis. Space Science Center.
A STUDY OF MINNESOTA LAND AND WATER RESOURCES USING REMOTE SENSING Progress Report, 1 Jan. - 31 Dec. 1978
William Shepherd, Principal Investigator 1 Jan. 1979 167 p refs Original contains color imagery. Original photography may be purchased from the EROS Data Center, Sioux Falls, S. D. 57198 ERTS
(Grant NGL-24-005-263)
(E79-10199; NASA-CR-158511) Avail: NTIS HC A08/MF A01 CSCL 08H

N79-25452# Purdue Univ., Lafayette, Ind. Lab. for Applications of Remote Sensing.
THE APPLICATION OF REMOTE SENSING TECHNOLOGY TO THE SOLUTION OF PROBLEMS IN THE MANAGEMENT OF RESOURCES IN INDIANA Semiannual Report, 1 Jun. - 30 Nov. 1978
R. A. Weismiller and R. P. Mroczynski, Principal Investigators
30 Nov. 1978 75 p refs ERTS
(Grant NGL-15-005-186)
(E79-10203; NASA-CR-158558; LARS-CR-042179) Avail: NTIS HC A04/MF A01 CSCL 05A
The author has identified the following significant results. Of the sampling techniques considered, a combination soil mapping and area sampling offered the most practical method for gathering soils data. Using the dot grid count, a relative percentage composition of soils can be calculated for each spectral class. From these percentages, a legend describing the dominant soils and inclusions can be developed. Interval drainage class
seemed to be correlated with magnitude. For every parent material area, the more poorly drained soils had a lower magnitude of reflectance. Soil spectral classes seemed to be predominantly one internal drainage class.

N79-25456# National Aeronautics and Space Administration. Earth Resources Lab., Slidell, La. A DEMONSTRATION OF WETLAND VEGETATION MAPPING IN FLORIDA FROM COMPUTER-PROCESSED SATELLITE AND AIRCRAFT MULTISPECTRAL SCANNER DATA M. Kristine Butera, Principal Investigator May 1978 57 p refs Original contains color imagery. Original photography may be purchased from the EROS Data Center, Sioux Falls, S. D. 57198 ERTS (E79-10209; NASA-TM-80415; Rept-168) Avail: NTIS HC A04/MF A01 CSCL 08B

- The author has identified the following significant results. Major vegetative classes identified by the remote sensing technique were cypress swamp, pine, wetland grasses, salt grass, mixed mangrove, black mangrove, and Brazilian pepper. Australian pine and melaleuca were not satisfactorily classified from LANDSAT. Aircraft scanners provided better resolution resulting in a classification of finer surface detail. An edge effect, created by the integration of diverse spectral responses within boundary elements of digital data, affected the wetlands classification. Accuracy classification for aircraft was 68% and for LANDSAT was 74%.

06 HYDROLOGY AND WATER MANAGEMENT

HYDROLOGIC PARAMETERS FROM LANDSAT IMAGERY FOR WILLIAMS FORK WATERSHED M.S. Thesis Jose Elvecio Pernia 1978 138 p refs Sponsored by Interior Dept. (PB-282083/3; W79-04073; OWRT-B-160-COLO(1)) Avail: NTIS HC A07/MF A01 CSCL 08H

Mapping the major cover types of the Williams Fork Watershed, extracting physiographic parameters of the basin, and temporal mapping of snowcover were the main objectives of the study. Physiographic parameters for the studied watershed, including watershed area, perimeter, basin shape, basin axial length, length of main stream, total stream length, drainage density, and drainage pattern, were derived from the LANDSAT MSS transparencies using visual interpretation. Temporal snowcover mapping the Williams Fork Watershed was performed, using a zoom transfer scope, on the LANDSAT transparencies, for USS band 5.

- A water quality monitoring system with on-line and real-time operation similar to the function in a spacecraft was investigated. A system with the capability to determine conformance to future high effluent quality standards and to increase the potential for reclamation and reuse of water was designed. Although all system capabilities were not verified in the initial field trial, fully automated operation over a sustained period with only routine manual adjustments was accomplished. Two major points were demonstrated: (1) the water monitor system has great potential in water monitoring and/or process control applications; and (2) the water monitor system represents a vast improvement over conventional (grab sample) water monitoring techniques.

S. E. S.
07
DATA PROCESSING AND DISTRIBUTION SYSTEMS
Includes film processing, computer technology, satellite and aircraft hardware, and imagery.

Applications of the interpretation of Landsat images are outlined. Advantages of Landsat images for geographical studies include their repetitive nature, small scale pattern and textural resolution and spectral coverage. Disadvantages are due to atmospheric and illumination conditions and problems of scale. Examples of the use of Landsat images to monitor floods, highway construction, urban development and land use patterns are presented. Interpretation problems associated with weather systems and the application of aerial photointerpretation techniques to Landsat data are also illustrated, noting that by correct scale selection and appropriate application of interpretation aids, some of the problems of data extraction from space imagery can be avoided.

A.L.W.

A real-time satellite data acquisition, analysis and display system is described which uses analog data transmitted by telephone line over the GOES network. Results are displayed on the system color video monitor as thermal images which originated from infrared surface radiation sensed by the Geostationary Operational Environmental Satellite (GOES).

(Author)

A statistical model is developed for using image context in maximum likelihood classification. Experimental results using both simulated and real multispectral remote sensing data demonstrate the utility of the model. Some practical problems associated with the use of the model are discussed.

(Author)

This paper is concerned with the alignment or registration of digital images. The paper will begin with a brief survey of current registration techniques. The problems of automatic registration will be discussed and previous techniques outlined. A new method for automatically selecting control points and registering two Landsat images will be presented. Lastly, a method for registering digital images with large scale differences will be given.

(Author)

 Ottawa, Canadian Aeronautics and Space Institute, 1979, p. 61-71.

A variety of techniques for unsupervised classification of multispectral scanning imagery has been applied to classify an area of 1001 pixels by 671 lines. The concept of self-generating trees, a standard method in artificial intelligence, is adopted for multidimensional histogram analysis to yield flexibility in the number of dimensions and a wide data range in each dimension. General normal distributions are constructed on the basis of local maxima or saddle points in the histogram. A purity filter permits study of homogeneous areas and detection of unexpected subcategories. Analysis of the merging of local maxima provides a simple linear test for category separability. The unsupervised classification methodology described here may be employed for forest inventories.

J.M.B.

 Ottawa, Canadian Aeronautics and Space Institute, 1979, p. 94-103. 13 refs. Contract No. NAS7-100.

An interactive supervised wetland classification was performed on Landsat digital data for three sites on the North Slope of Alaska. Color-coded classification maps identifying 10 wetland subcategories were produced. Field observations, topographic maps, and aerial photographs were employed as collateral data in classifying and verifying the Landsat information.

J.M.B.

Two test areas, representing a variety of avalanche hazards, were selected in the San Juan Mountains of Colorado. Midwinter Landsat digital data were analyzed using a clustering technique, and the results compared to 1:24,000 scale maps of avalanche hazards derived from air photo interpretation and field surveys. Confined avalanches were readily identified because of the high contrast between the snow covered avalanche track and the adjacent forested slopes. Unconfined avalanches could not be identified without supplementary topographic data. Spatial characteristics were of primary importance in delineating avalanche tracks. Spatial resolution was the limiting factor in avalanche detection. Landsat data should prove useful for rapid reconnaissance mapping of avalanche hazards, particularly in the absence of other data sources.

(Author)

 Ottawa, Canadian Aeronautics and Space Institute, 1979, p. 292-298.

The technique of precision image rectification using Ground Control Points (GCPs) with an attitude time series estimator is capable of providing Landsat imagery to an accuracy of 80 m rms. Class A planimetric map accuracy at a scale of 1:250,000 can therefore be achieved in photomap production from such imagery. This paper describes the production of such Landsat photomaps.

(Author)
from digital imagery obtained on standard computer compatible tapes. The first section describes the preparation stage, involving the selection of GCPs and determination of their coordinates for a particular Landsat scene. The MDA Image Analysis System is then used to determine the attitude time series for that scene and to produce a rectified image on 10 inch x 10 inch film. The resulting image film is then enlarged and photographically reproduced by conventional photolab techniques to give the final map product, as described in the next section.

A scattering model is proposed which appears to explain for the first time almost all features observed in the Doppler domain and image domain of Synthetic Aperture Radar (SAR) imagery of oceanic waves. The model, which is suitable for airborne and orbital radars, accounts for the coherence time of capillary centered scattering cells, and their coherently observable wave motions, including their vertical displacements. SAR wave imagery together with the results of detailed observations on the ERIM optical processor are presented to illustrate the pertinent effects. These results lead to the generic description of an optimum processor for wave contrast enhancement.

A scattering model is proposed which appears to explain for the first time almost all features observed in the Doppler domain and image domain of Synthetic Aperture Radar (SAR) imagery of oceanic waves. The model, which is suitable for airborne and orbital radars, accounts for the coherence time of capillary centered scattering cells, and their coherently observable wave motions, including their vertical displacements. SAR wave imagery together with the results of detailed observations on the ERIM optical processor are presented to illustrate the pertinent effects. These results lead to the generic description of an optimum processor for wave contrast enhancement.

A scattering model is proposed which appears to explain for the first time almost all features observed in the Doppler domain and image domain of Synthetic Aperture Radar (SAR) imagery of oceanic waves. The model, which is suitable for airborne and orbital radars, accounts for the coherence time of capillary centered scattering cells, and their coherently observable wave motions, including their vertical displacements. SAR wave imagery together with the results of detailed observations on the ERIM optical processor are presented to illustrate the pertinent effects. These results lead to the generic description of an optimum processor for wave contrast enhancement.

Digital techniques for azimuth look extraction, compression and registration of synthetic aperture radar (SAR) data as a function of slant range are presented. The phase properties of the Doppler histories are exploited to allow flexible look extraction in the frequency domain while maintaining automatic look registration in the output range. It is assumed that individual point reflector Doppler histories lie totally within a single range gate. Results obtained from a simulation with Seasat parameters are presented.

An overview of the basic techniques used to process Landsat images with a digital computer, and the VICAR image processing software developed at JPL and available to users through the NASA sponsored COSMIC computer program distribution center is presented. Examples of subjective processing performed to improve the information display for the human observer, such as contrast enhancement, pseudocolor display and band rationing, and of quantitative processing using mathematical models, such as classification based on multitemporal signatures of different areas within a given scene and geometric transformation of imagery into standard mapping projections are given. Examples are illustrated by Landsat scenes of the Andes mountains and Altyyn-Tagh fault zone in China before and after contrast enhancement and classification of land use in Portland, Oregon. The VICAR image processing software system which consists of a language translator that simplifies execution of image processing programs and provides a general purpose format so that imagery from a variety of sources can be processed by the same basic set of general applications programs is described.

Candidate architectures for time division multiple access (TDMA) satellite communication systems wherein signal processing operations would be performed by satellite-borne subsystems are considered. These architectures require symbol-synchronous up-links to be established and maintained. Also, each up-link signal would be detected differentially - either at one or more terrestrial terminals after being relayed or by a satellite-bounce detector. These concepts provide a basis for implementing practical TDMA systems wherein one or more of the following operations would be performed within the satellites: adaptive spatial processing, spectrum collapsing and bandpass filtering, signal detection, message switching, forward error correction coding, remodulation, spectrum spreading of the downlink signal, antenna beam switching, and resource management. Selected combinations of these operations are delineated and their relative advantages and limitations are addressed. Prototype demand-assigned TDMA modems and an experimental satellite simulator, which are considered to have established that the concepts considered are both practical and effective, are also described briefly.

Satellite digital data from Landsat and NOAA satellites is often marred by striping or streaking errors due to variations in the response of the radiometric sensors. In this paper, we discuss the equalization of the digital data as a preprocessing step, prior to image enhancement or automatic classification. The methods described make use of statistics of the data itself to generate nonlinear or linear memory-less equalization algorithms. These algorithms, by contrast to multidimensional filtering, do not result in a loss of spatial resolution. Examples of applications to Landsat and NOAA-3 thermal infrared data are given and illustrated.

Satellite digital data from Landsat and NOAA satellites is often marred by striping or streaking errors due to variations in the response of the radiometric sensors. In this paper, we discuss the equalization of the digital data as a preprocessing step, prior to image enhancement or automatic classification. The methods described make use of statistics of the data itself to generate nonlinear or linear memory-less equalization algorithms. These algorithms, by contrast to multidimensional filtering, do not result in a loss of spatial resolution. Examples of applications to Landsat and NOAA-3 thermal infrared data are given and illustrated.
minicomputer, although time-consuming, and lead to geometric corrections of Landsat and NOAA images to within one pixel rms.

A.L.W.

Special-purpose hardware for image processing usually involves high-speed arithmetic operators. Here a processor is described whose central element is a fast combinational network in the form of a binary tree. It is programmable by computer analysis of image data or by adaptation. To achieve high efficiency, the processor is pipelined and shares the memory of its host computer. Its use for fast classification of LANDSAT imagery is described. (Author)

REBUS (Routine for Executing Biological Unit Simulation) is a use oriented computer program package written in FORTRAN 4 for simulation of the dynamic behavior for ecosystems. It was designed to allow the ecologist without previous experience in process simulation to analyze complex ecosystems. Dynamic simulation is the creation of a mathematical model which describes the time varying behavior of a physical system to be studied. This model ecosystem can conveniently be observed under any desired conditions. With a model that adequately represents the real system, long-term effects can be successfully predicted which could not practically be tested by experiment. Data preparation, REBUS operation, block functions, and unit routines are reviewed. A second version, REBUS 2 was implemented for use in conjunction with optimization and design activities and is discussed. G.Y.

Natural resource and earth science reports that list computer programs and/or their documentation are cited. These software applications pertain to topics such as mining, hydrology, soil and rock properties, earthquake modeling, forestry, remote sensing, cartography, geophysics, coastal zone management, and geothermal systems. The directory contains complete bibliographic data for each report as well as a subject and a corporate author index. GRA

(Author) NTIS/PS-79/0206/7; NTIS/PS-78/0070; NTIS/PS-77/0081; NTIS/PS-76/0055; NTIS/PS-75/105 Avail: NTIS HC $28.00/MF $28.00 CSCL 14B

New or improved remote sensing techniques are given. Topic areas covered include pattern recognition, spectrum analysis, image enhancement, photointerpretation, multispectral photography, and mapping. GRA

Each measurement of the system composed of the Earth's surface and the atmosphere taken by the radiometer on board a near polar orbiting satellite is a unique event. In order to extract as much information as possible from the measurements they must be rendered physically and geographically comparable; this means standardizing the data. Meteorological research, is interested in the space and time variation over the course of hours and days, of the meteorologically significant structures they reveal, and this with the aim of connecting them with other meteorological parameters. An operational method was developed for this standardization, offering rectification of the satellite data into a polar stereographic projection, almost in real time. All programs are run on a DEC PDP 11/45 minicomputer.

The author has identified the following significant results. In order to choose a design which will be optimal for the largest class of remote sensing problems, a method was developed which attempted to represent the spectral response function from a scene as accurately as possible. The performance of the overall recognition system was studied relative to the accuracy of the spectral representation. The spectral representation was only one of a set of five interrelated parameter categories which also included the spatial representation parameter, the signal to noise ratio, ancillary data, and information classes. The spectral response functions observed from a stratum were modeled as a stochastic process with a Gaussian probability measure. The criterion for spectral representation was defined by the minimum expected mean-square error.

A79-25459# National Aeronautics and Space Administration. Earth Resources Lab., Slidell, La.

A PROCEDURE FOR EXTRACTION OF DISPARATE DATA FROM MAPS INTO COMPUTERIZED DATA BASES Bobby G. Junkin, Principal Investigator Apr. 1978 53 p refs Original contains color illustrations ERTS (E79-10210; NASA-TM-80414; Rept-167) Avail: NTIS HC A04/MF A01 CSCL 05B

A79-25460# National Aeronautics and Space Administration, Washington, D. C.
MATHEMATIC MODELING OF THE EARTH’S SURFACE AND THE PROCESS OF REMOTE SENSING

It is shown that real data from remote sensing of the Earth from outer space are not best suited to the search for Optimal procedures with which to process such data. To work out the procedures, it was proposed that data synthesized with the help of mathematical modeling be used. A criterion for simularity to reality was formulated. The basic principles for constructing methods for modeling the data from remote sensing are recommended. A concrete method is formulated for modeling a complete cycle of radiation transformations in remote sensing. A computer program is described which realizes the proposed method. Some results from calculations are presented which show that the method satisfies the requirements imposed on it.

G.Y.

NG7-27626 Ain Shams Univ., Cairo (Egypt).

EGYPT AS SEEN BY LANDSAT
Farouk El-Baz [1979] 160 p Partly in ENGLISH; partly in ARABIC Prepared in cooperation with Smithsonian Institution, Washington, D. C. Original contains color illustrations Avail: Dar Al-Maaref, 1119 Corniche, El-Nil, Cairo, Egypt HC 11 Egyptian pounds

The land area and territorial waters of Egypt are presented. The LANDSAT images allow for the geology of the region to be studied. LANDSAT imagery has two advantages over other imagery: (1) the LANDSAT images provide complete coverage of Egypt at the same scale; and (2) because LANDSAT images are all taken vertically, they are suitable for planimetric mapping and direct horizontal distance measurements.

R.E.S.

NG7-27630 National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, Ala.

EVALUATION OF REGISTRATION, COMPRESSION AND CLASSIFICATION ALGORITHMS. VOLUME 1: RESULTS

The registration, compression, and classification algorithms were selected on the basis that such a group would include most of the different and commonly used approaches. The results of the investigation indicate clearcut, cost effective choices for registering, compressing, and classifying multispectral imagery.

R.E.S.

NG7-27631 National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, Ala.

EVALUATION OF REGISTRATION, COMPRESSION AND CLASSIFICATION ALGORITHMS. VOLUME 2: DOCUMENTATION

The IBM-360 FORTRAN listings of the algorithms used in the investigation are presented in this programmer’s user manual.

R.E.S.

NG7-27642 Instituto de Pesquisas Espaciais, Sao Paulo (Brazil).

CLASSIFICATION OF MULTISPECTRAL IMAGES OF NATURAL RESOURCES USING TABLE LOOK-UP AP-
A79-33372 Comparison of auroral ovals from all-sky camera studies and from satellite photographs. F. R. Bond (Department of Science, Antarctic Div., Melbourne, Australia) and S. I. Akasofu (Alaska, University, Fairbanks, Alaska). Planetary and Space Science, vol. 27, Apr. 1979, p. 541-549. 9 refs. NSF Grant No. ATM 77-26522.

The maritime proton magnetometer MPM-5 and its technical characteristics are described. The magnetometer has high sensitivity (0.1 nT) and quick response (up to one measurement per second) and also good noise protection. Tests of the magnetometer conducted at Lake Baikal have shown that it provides highly accurate measurements. The rms error for measurements in a quiet field was plus or minus 0.2-0.3 nT.

P.T.H.

Ottawa, Canadian Aeronautics and Space Institute, 1979, p. 251-254. 6 refs. Research supported by the Canadian Forestry Service.

Methods are described for radiometric determination of thermal emissivity of natural features in the field. Instrumentation used consisted of an AGA Thermovision System T-750 with a filter limiting the spectral response to between 4.8 - 6.5 micron and a PRT-10L radiometer with a spectral range of 6 - 20 micron. Preliminary results for each method are given. (Author)

The AQUASAND radiative transfer model for predicting the reflectance of beach sands in the .35 to 2.5 micrometer range, a modification of the Suits model for the directional reflectance of a vegetation canopy, (1972) is described. The reflectance of a beach is calculated from the coefficients of absorption and scattering and the forward scattering fraction for each mineral present, the average number of sand grains per given volume, void space, and the moisture depth profile. AQUASAND was used to generate reflectance curves for seven beaches of diverse mineralogy, grain size, and moisture content. Overall shape of the curves is in good agreement with spectra measured by the ERIM Cary 14 spectrophotometer.

C.K.D.

Ottawa, Canadian Aeronautics and Space Institute, 1979, p. 483-494.

An iceberg detection and identification system consisting of a moderate resolution Side Looking Airborne Radar (SLAR) interfaced with a Radar Image Processor (RIP) based on a ROLM 1664 computer with a 32K core memory updated to 64K is described. The system can be operated in high- or low-resolution sampling modes. Specifically designed algorithms are applied to digitized signal returns to provide automatic target detection and location, geometrically correct video image display and data recording. The real aperture Motorola AN/APS-94D SLAR operates in the X-band and is tunable between 9.10 and 9.40 GHz; its output power is 45 kW peak with a pulse repetition rate of 750 pulses per hour. Schematic diagrams of the system are provided, together with preliminary test data.

C.K.D.

A theoretical calibration function relating the electrical output of an airborne infrared scanner to the surface temperature of the scanned terrain is derived from radiometric principles. The function is applicable to scanners employing fast, photon-sensitive detectors, such as InSb and HgCdTe. Computed values of the function are used to plot a calibration curve for an idealized scanner of 8 to 14 micron bandwidth. A simple fourth-power law of the form AT to the fourth power + B can be fitted to the plotted curve with errors of less than 0.05 C over a 25 deg temperature range. The assumption of a T to the 4th power temperature dependence in thermal scanning at 8 to 14 microns is thereby justified on a theoretical basis. In addition, the temperature dependence of a fast infrared scanner is shown to be fundamentally different from that of a slow infrared radiometer of identical bandwidth. (Author)

The Seasat SARP system permits playback of SAR data for digital processing into ocean imagery. The system includes a high data rate recorder, SAR digital preprocessing, array processor, mass storage disk, and host computer. Data tapes are played back at reduced rates and the SAR digital preprocessing performs the functions of frame synchronization, decommutation of time and status data, presumption of adjacent azimuth returns and correction of gain as a function of range. The data are formatted into presummed range returns and are transferred to the array processor for buffering and subsequent storage on the mass disk.

B.J.

Terrain displays derived from digital data bases and generated on color TV monitors may replace the maps, photographs and sketches currently used to brief pilots. Computer-generated imagery can show terrain elevation, terrain relief shading from any direction, slope steepness and direction, hydrography, farmland, forests, buildings and symbology. Displays can be merged, specific themes can be selected from imagery, and a zoom view of any desired area can be
produced. In addition to perspective views from any position in the data base, simulated sensor images (radar, far-looking IR or TV) can be generated. Minimum scene update rates and minimum data bases for the terrain displays are discussed.

J.M.B.

A number of IR scanning sensors were studied as to their effectiveness in the determination of surface temperature distributions. The measurement accuracy was shown to meet the purposes of hydrographical studies. An accuracy of roughly plus or minus 0.2 K appears to be attainable under meteorological conditions characterized by low water vapor content and cloudless sky. IR remote sensing methods are particularly effective at a pronounced temporal and spatial variability of the water surface temperature. The small scale structures detected in such cases were not attainable by conventional methods.

V.P.

Preliminary analysis of radar altimeter data indicates that the instrument has met its specifications for measuring spacecraft height above the ocean surface (plus or minus 10 centimeters) and significant wave height (plus or minus 0.5 meter). There is ample evidence that the Seasat altimeter has met its specifications for measuring spacecraft height through three earth orbit missions (SkyLab, Geodynamics Experimental Ocean Satellite 3 and Seasat), has reached a level of precision that now makes possible its use for important quantitative oceanographic investigations and practical applications.

(Author)

Scanning multichannel microwave radiometer results obtained by the Gulf of Alaska Seasat Experiment Workshop are reported. The Seasat SMMR provided data from five channels operating at 6.6, 10.7, 18, 21, and 37 GHz at vertical and horizontal polarizations. Two preliminary algorithms were used to retrieve geophysical parameters from the data: the Wentz algorithm (Bierman et al., 1978) based on a theoretically derived function for computing brightness temperatures and the Wilheit algorithm, based on statistical relationships between brightness temperatures and the geophysical parameters obtained from an ensemble of realistic sea-surface temperature values, wind speeds, atmospheric temperature profiles, water vapor profiles and cloud models. In spite of the immaturity of the data-processing algorithms, results are encouraging. For open ocean, rain-free cells of high-quality surface truth wind determination display standard deviations of 3 m/sec about a bias of 1.5 m/sec. The sea-surface temperature exhibits a standard deviation of about 1.5 deg C about a bias of 3 to 5 deg C under a variety of meteorological conditions.

C.K.D.

A preliminary assessment has been made of the capability of the Seasat synthetic aperture radar to detect ocean waves. Comparison with surface and aircraft measurements from five passes of the satellite over the Gulf of Alaska indicates agreement to within about 15 percent in wavelength and about 25 deg in wave direction. These results apply to waves 100 to 250 meters in length, propagating in a direction predominantly across the satellite track, in sea states with significant wave height in a range of 2 to 3.5 meters.

(Author)

The visual and infrared radiometer (VIRR) system on Seasat is described, and results obtained in the use of the geophysical evaluation of digital data from this system are discussed. The main function of the radiometer system is to provide images of visual reflection and thermal infrared emission from ocean, coastal and atmospheric features to facilitate interpretation of other Seasat sensors; in addition, it is expected to provide some derived quantitative measurements of such factors as sea-surface temperature and cloud-top height. Some results are presented. The data sets were in agreement of plus or minus 1.7 deg K root-mean-square. The means of the two sets of temperatures were 293.9 deg K (VIRR) and 293.1 deg K (NOAA), and the standard deviations were 3.21 deg and 3.2 deg K, respectively.

C.K.D.

The airborne ALEX F (Aerosol Lidar Experiment; Flugzeug) experiment uses a Nd-YAG laser (operating at 10.6 microns) to measure aerosol concentrations in the atmosphere. The lidar is particularly well suited for studies of smog layers and the monitoring of particulate emissions from industrial stacks. The design and operation of the lidar is described and some sample results, obtained in Europe, are discussed.

B.J.

Consideration is given to the use of airborne or satellite-borne scatterometers to measure the radar cross sections of underlying surfaces. A procedure for developing an optimal scatterometer is proposed based on the matching of the energy characteristics of the device with the characteristics of the underlying surface and the flight characteristics (i.e., height and velocity).
now being used in the development of remote sensing methods for geophysical research and for practical purposes. (Author)

N79-22583

Oklahoma State Univ., Stillwater. Dept. of Agricultural Engineering

IMPROVED PRECISION IN AERIAL APPLICATION EQUIPMENT Quarterly Progress Report, 1 Jan. - 31 Mar. 1979 Lawrence O. Roth, Principal Investigator 31 Mar. 1979 3 p ERTS

(Grant NsG-6018)

(E79-10184; NASA-CR-158414) Avail: NTIS HC A02/MF A01 CSCL 02C

N79-22589

National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

A comparison is made between remote sensing data measured over water at altitudes ranging from 30 m to 15.2 km and data calculated for corresponding altitudes using surface measurements and an atmospheric radiative transfer model. Data were acquired on June 22, 1978 in Lake Erie, a cloudless, calm, near haze tree day. Suspended solids and chlorophyll concentrations were 0.59 + or - 0.02 mg/l and 2.42 + or - 0.03 micrograms/l respectively throughout the duration of the experiment. Remote sensor data were acquired by two multisperral scanners each having 10 bands between 410 nm and 1040 nm. Calculated and measured nadir radiances for altitudes of 152 m and 12.5 km agree to within 16% and 14% respectively. The variation in measured radiances with look angle was poorly simulated by the model. It was concluded that an accurate assessment of the source of error will require the inclusion in the analysis of the contributions made by the sea state and specular sky relectance. Author

N79-23313

National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

A real time VHF downlink communication system is described for transmitting side-looking airborne radar (SLAR) data directly from an aircraft to a portable ground/shipboard receiving station. Use of this receiving station aboard the U.S. Coast Guard icebreaker Mackinaw for generating real-time photographic quality radar images is discussed. The system was developed and demonstrated in conjunction with the U.S. Coast Guard and NOAA National Weather Service as part of the Project Icewarn all weather ice information system for the Great Lakes Winter Navigation Program. Author

N79-24419

Application of active and passive microwave remote sensing to the study of ocean pollution is discussed. Previous research efforts, both in the field and in the laboratory were surveyed to derive guidance for the design of a laboratory program of research. The essential issues include: choice of radar or radiometry as the observational technique; choice of laboratory or field as the research site; choice of operating frequency; tank sizes and material; techniques for wave generation and appropriate wavelength spectrum; methods for controlling and disposing of pollutants used in the research; and pollutants other than oil which could or should be studied. R.E.S.

N79-24420

Environmental Sensing Algorithm Development Co, Sunland, Calif.

EVALUATION AND ANALYSIS OF SEASAT-A SCANNING MULTICHANNEL MICROWAVE RADIOMETER (SMMR) ANTENNA PATTERN CORRECTION (APC) ALGORITHM Final Report J. L. Kittis and S. N. Kittis 25 May 1979 95 p refs Prepared for JPL (Contracts NAS7-100; JPL-955368) (NASA-CR-158674; JPL-9950-85) Avail: NTIS HC A05/MF A01 CSCL 20N

The brightness temperature data produced by the SMMR final Antenna Pattern Correction (APC) algorithm is discussed. The algorithm consisted of: (1) a direct comparison of the outputs of the final and interim APC algorithms; and (2) an analysis of a possible relationship between observed cross track gradients in the interim brightness temperatures and the asymmetry in the antenna temperature data. Results indicate a bias between the brightness temperature produced by the final and interim APC algorithm. S.E.S.

N79-25364

National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, Md.

A HYDROLOGICAL ANALYSIS OF EAST AUSTRALIAN FLOODS USING NIMBUS 5 ELECTRICALLY SCANNING MICROWAVE RADIOMETER DATA Lewis J. Allison, Thomas J. Schmugge, and Gavin Byrne (Commonwealth Scientific and Industrial Research Organization, Australia) Mar. 1979 48 p refs Submitted for publication (NASA-TM-79689) Avail: NTIS HC A03/MF A01 CSCL 08H

A chronology of a major Australian flood in 1974 is presented using Nimbus 5 Passive Microwave Data (ESMR) and other conventional and satellite supporting data. L.S.

N79-26756

Semcor, Inc., Moorestown, N. J.

ATLAS OF INFRARED IMAGERY OF THE SEA SURFACE
This report is a collection of 192 examples of thermal imagery recorded from aircraft over bodies of water. These infrared pictures show the surface expressions of eddies, convection cells, currents, and thermal fronts in addition to sea ice, wind streaks, whitecaps, and waves. Explanatory information, such as portions of National Ocean Survey charts corresponding to some of the imagery, is provided. The imagery presented was recorded during the period May 1959 to May 1972 by seven airborne passive infrared line scanners (the Reconofax Camera; AN/AAD-2; Reconofax IV, Mark II; AN/AAR-30; AN/AAR-32; AN/AAR-35; and Reconofax X111); brief descriptions of the equipment and a table of design and performance parameters are supplied. The imagery was recorded in the 3- to 5.5-micrometer and 8- to 14-micrometer spectral bands. Sensitivities of sets with the various detector types employed (Ge:Au, Ge:Cu, Ge:Hg, InSb, HgCdTe) ranged from 0.001 to 0.3 K; resolutions varied from 18.4 to 1.0 mrad.
and life quality. Geosynchronous-based monitoring and observation and ground-based equipment and systems. This paper describes some
The aim of the Post Landsat-D Advanced Concept Evaluation (PLACE) program was to identify the key technology requirements of earth resources satellite systems for the 1985-2000 period. The program involved four efforts: (1) examination of future needs in the earth resources area, (2) creation of a space systems technology model capable of satisfying these needs, (3) identification of key technology requirements posed by this model, and (4) development of a methodology (PRISM) to assist in the priority structuring of the resulting technologies.

Application of satellite remote sensing to wide range of areas requires the development or improvement of specialized spaceborne and ground-based equipment and systems. This paper describes some of the important areas for remote sensing and the opportunities that must be met in order to advance technology and capabilities for the exploitation of space to the year 2000.

By 1999 operational space systems will be implemented routinely on a worldwide scale in many areas vital to human survival and life quality. Geosynchronous-based monitoring and observation will be extensively used. The Shuttle era will bring in the capability to allow monitoring and identifying pollution sources which fail to stay within required limits. Remotely sensed data over land masses will provide needed facts on renewable and nonrenewable earth resources. New instrumental and techniques will have been developed to provide geologists with clues to the declining number of deposits of fuels and minerals. Also, practical methods for predicting earthquakes will have been elaborated by 1999. Communications will see implementation of many of the technological goals of 1978.

Applications of remote sensing to forest and agricultural inventories, wetland mapping, soil erosion assessments, sea ice studies and mineral deposit mapping are discussed. Attention is also given to classification algorithms and image enhancement techniques. Topics of the papers include a Landsat-based forest survey of South Carolina, two-dimensional digital filters for multispectral scanning imagery, real-time on-board signal extraction methods for statistical and noisy remote sensing data, thermal infrared mapping of forest fires, Landsat mapping of suspended sediments in a lake, air quality forecasts derived from remote sensing data, aerial photography for park management, remote determinations of soil moisture, and remote measurements of Great Lakes surface temperature.

A survey of principal investigators who received airborne remote sensing data during the 1975/76 to 1977/78 period was undertaken to assess the results of the Canada Centre for Remote Sensing (CCRS) Airborne Program. The purpose of the survey was to determine how the airborne data were used, what benefits resulted from their use, and what applications were developed to an operational level. This paper presents major results of the assessment, discusses the impact of the CCRS Airborne Program, and describes an approach towards improving the effectiveness of transferring remote sensing methods to operational use. (Author)

The paper introduces to users of remotely sensed data some of the legal aspects of these data and their uses. Evidentiary, environmental management, and enforcement applications are examined along with privacy and international-regulation considerations. The criteria governing the admissibility of remote sensing evidence are reliability of remote sensing techniques, proper conduct of the remote sensing process, authentication and proof of contents, and expert testimony. Neither the U.S. Constitution nor any of state constitutions explicitly guarantee a right of privacy. Remote sensing specialists should maintain an awareness of the dynamic conditions surrounding the legal aspects of their profession.

The Satellite for Earth Observation (SEO), the second Indian satellite launched by the USSR in February 1979, for studying cultivated land, forests, rivers, snow and wetland in coastal areas is described. Consideration is given to its design and to two slow-scan TV cameras and a passive microwave radiometer, forming the main payload of SEO. The satellite is a 26 faceted polyhedron with roughly 3500 Soviet supplied silicon N/P solar cells, generating about 40 watts average power, and an Ni-CD battery to store power. The TV cameras operate in the visible (0.54 to 0.66 microns) and the near IR (0.75 to 0.85 microns) bands. The three-horn Dice-type Satellite Microwave Radiometer (SAMIR) payload is a passive receiver for measuring microwave radiations in the 19.35 GHz range from the sea surface, and is manufactured by the Indian Research Organization (ISRO). ISRO has also produced a Data Collection/Relay Package - an unattended, battery-powered unit that can be placed in remote areas to collect and transmit meteorological data to a central receiver station via SEO.

The overall system study for the remote sensing satellite, an important element of the future ESA programs, is discussed. Mission objectives of a land application satellite system, directed toward the requirements of European users, include gathering statistical information for agriculture and forestry, water resources management, and development aid. Other applications covered are global ocean monitoring including air-sea interaction, circulation and polar ice surveys, and coastal ocean monitoring concerning fisheries, environmental monitoring, economic zone surveillance, and continental shelf operations. Payload applications for these objectives are also given. ESA system study objectives included: definition of a technically feasible overall system; definition of a development program; elaboration of proposals for a supporting research and technology program; and identification of necessary growth potential. M.E.P.

N79-22582* New Mexico Univ., Albuquerque. Technology Application Center.

Jan. 1979 308 p Sponsored by NASA
(NASA-CR-157961; TAC-RS-78-004) Avail: NTIS HC A14 for foreign requestors only. Domestic orders, Univ. of New Mexico, Tech. Application Center, Albuquerque. CSL 05B

A bibliography is presented concerning remote sensing techniques. Abstracts of recent periodicals are included along with author, and keyword indexes. M.M.M.

N79-25117# Committee on Science and Technology (U. S. House).

The remote sensing technology of NASA's earth monitoring programs is discussed as well as its transfer of activities to the commercial market place. M.M.M.

ARTIFICIAL EARTH SATELLITE DESIGNED AND FABRICATED BY THE JOHNS HOPKINS UNIVERSITY APPLIED PHYSICS LABORATORY, REVISED Status Report, 1959 1978

The satellites designed and fabricated by the Applied Physics Laboratory of The Johns Hopkins University since the inception of the space program at APL in 1957 are described. The descriptions, including artist's concepts and other illustrations, are arranged in chronological order according to primary mission category. Satellite categories include navigation satellites (Transit, TRIAD, TIP, TRANSAT, etc.), geodetic research satellites (ANNA, GEOS, LIDOS, etc.), orbital environment and dynamics research satellites (TRAAC, 5E-series, DODGE), ionospheric research satellites (Beacon and Direct Measurement Explorers, P76-S), and astronomical exploration satellites (Small Astronomy Satellites). Appendices include a functional description of the Navy Navigation Satellite System and several bibliographies. This report is updated from time to time with the issuance of new and revised materials, and is one of a series that includes APL/JHU SDO-3100, "Navy Navigation Satellite System User Equipment Handbook" and APL/JHU SDO-4100, "Instrumentation Developed by APL/JHU for Non-APL Spacecraft." Author (GRA

N79-26448*# Mississippi State Univ., Mississippi State.

APPLICATION OF REMOTE SENSING TO STATE AND REGIONAL PROBLEMS Semiannual Progress Report, 1 Nov. 1978 - 30 Apr. 1979

W. Frank Miller, Principal Investigator; Dale A. Quattrochi, Bradley D. Carter, Gary K. Higgs, Jimmy L. Solomon, and Charles L. Wax 1 May 1979 101 p refs Original contains color imagery. Original photography may be purchased from the EROS Data Center, Sioux Falls, S. D. 57198 ERTS
(Grant NGL-25-001-054) (E79-10196; NASA-CR-158510; SAPR-11) Avail: NTIS HC A06/MF A01 CSL 05A

The author has identified the following significant results. The Lowndes County data base is essentially complete with 18 primary variables and 16 proximity variables encoded into the geo-information system. The single purpose, decision tree classifier is now operational. Signatures for the thematic extraction of strip maps from LANDSAT Digital data were obtained by employing both supervised and unsupervised procedures. Dry, blowing sand areas of beach were also identified from the LANDSAT data. The primary procedure was the analysis of analog data on the I2S signal slicer.

N79-25451# Michigan State Univ., East Lansing.

Myles Boylan, Principal Investigator 9 Mar. 1979 74 p refs ERTS
(Grant NGL-23-004-083) (E79-10202; NASA-CR-158557) Avail: NTIS HC A04/MF A01 CSL 05A

Austrian remote sensing applications include basic research and system development, agriculture, forestry, water management, regional planning, environment protection, and geology. The existing and future programs of aeromagnetic measurements are given as well as the sources of aerial and satellite data procurement.

J.A.M.

N79-26447*# Oregon State Univ., Corvallis.

Environmental Remote Sensing Applications Lab.

Gary L. Benson and Barry J. Schumpp, Principal Investigators 31 Mar. 1979 79 p refs ERTS
(Contract NGL-38-002-053) (E79-10220; NASA-CR-158687) Avail: NTIS HC A05/MF A01 CSL 05B

N79-26449# Aspen Corp., Germantown, Md.

LAND AND NATURAL RESOURCES MANAGEMENT: AN ANALYSIS OF SELECTED FEDERAL POLICIES PROGRAMS, AND PLANNING MECHANISMS. REPORT TO THE PRESIDENT'S INTERAGENCY TASK FORCE ON ENVIRONMENTAL DATA AND MONITORING PROGRAMS Final Report

(Contract E09AC001) (PB-292500/6) Avail: NTIS HC A09/MF A01 CSL 13B

The report to the President's Interagency Task Force on Environmental Data and Monitoring Programs identifies major...
federal land and natural resource policies and analyzes representative policy conflicts. It identifies approximately 25 agencies and more than 70 laws that influence land and natural resources policy.

GRA

N79-26456# Environmental Research Inst. of Michigan, Ann Arbor. Applications Div.
AID'S REMOTE SENSING GRANT PROGRAM Final Report
Thomas W. Wagner and Donald S. Lowe Aug. 1978 119 p refs
(Contract AID/TA-C-1148)
(PB-292872/9; ERIM-111800-1-F) Avail: NTIS HC A06/MF A01 CSCL 02C

The results of a program to transfer remote sensing technology to ten developing countries are presented. The program included:
(1) awarding financial grants to investigators in developing countries; (2) providing technical assistance to those investigators; and (3) carrying out several special studies at AID's request. The ten countries that had grant projects selected on the basis of competitive proposals were Bangladesh, Bolivia, Chile, Lesotho, Pakistan, Peru, Philippines, Sri Lanka, Thailand, and Zaire.

GRA

N79-26469# Canada Centre for Remote Sensing, Ottawa (Ontario).
CCRS AIRBORNE PROGRAM ASSESSMENT. VOLUME 1: ANALYSIS
(PB-293161/6; RR-78-3-Vol-1) Avail: NTIS HC A03/MF A01 CSCL 08F

A five-month survey of the users of airborne remote sensing data produced by the Airborne Operations of the Canada Center for Remote Sensing was undertaken. The purpose of the survey was to determine how the airborne data were used, what benefits accrued from their use, and what applications were developed to an operational level. Volume I contains an analysis of the findings. Particular attention was given to categories of users, project characteristics, and to demonstrated applications. Rudimentary statistical analyses were carried out to determine type of use, principal sensor, and benefit attributes of the airborne projects. Recommendations aimed at improving the effectiveness of the airborne data utilization were made.

GRA

N79-26470# Canada Centre for Remote Sensing, Ottawa (Ontario).
CCRS AIRBORNE PROGRAM ASSESSMENT. VOLUME 2: USER REPORTS
(PB-293162/4; RR-78-3-Vol-2) Avail: NTIS HC A09/MF A01 CSCL 08F

Results of a survey to determine how remote sensing data were used, what benefits accrued from their use, and what applications were developed to an operational level are presented.

GRA

N79-27061# Council for Scientific and Industrial Research, Pretoria (South Africa).
CSIR ANNUAL REPORT, 1978
1979 76 p
(AR-34) Avail: NTIS HC A05/MF A01

Activities directed toward the identification of key technologies required for the social, economic, and industrial development of the Republic of South Africa are reported. Particular emphasis is given to the establishment of data bases for the chemical industry, programs for the conservation of energy and the protection of the environment and the nation's resources, and the computer-aided compilation of a textile dictionary in English and Afrikaans. Topics covered include the reduction of data from Meteosat, LANDSAT, and Nimbus-6 satellites for resource management and weather forecasting; the preparation of retrospective bibliographies and other literature searching activities; the development of integrated circuits; mechanical stress investigations for the lumber industry; the herbicidal control of water hyacinths; packaging for the sorghum beer and food processing industries toxic hazards; and environmental monitoring.

A.R.H.
A directory of computer software applications: Natural resources and earth sciences

Digital processing of the NOAA weather satellite sounding-radiometer (SSR) data received at the FIFE-Meteorological Institute. Part 4: Geographical rectification and presentation in a stereographic map projection

Program library for handling and processing of remotely sensed multispectral data

Remote sensing of surface temperature for soil moisture, evapotranspiration, and yield estimation

Three tests of agricultural remote sensing for crop inventory in eastern Canada - Results, problems and potential

Digital techniques for processing Landsat imagery

Satellite oceanography for monitoring oceanographical environment

Terrain displays for mission briefing - on color TV monitor from digital data bases

Digital microwave radiation studies of continental covers

Terrain displays for mission briefing - on color TV monitor from digital data bases

Use of panchromatic and color infrared aerial photography to produce a vegetation map for Canadian Forces Base, Shilo, Manitoba

Satellite oceanography of eastern boundary currents and its implications to ASW

A simulation study of Large Area Crop Inventory Experiment (LACE) technology

Remote sensing of perched water tables, a pilot study

Large Area Crop Inventory Experiment (LACE). An early estimate of small grains acreage -- Indiana, Kansas, Idaho, Texas, and Washington

Remote sensing of surface temperature for soil moisture, evapotranspiration, and yield estimation

A simulation study of Large Area Crop Inventory Experiment (LACE). A summary of three years' experience with a satellite crop inventory - -- Great Plains Corridor (North America). Canada, U.S.S.R. Brazil, China, India, and Australia

Satellite oceanography of eastern boundary currents and its implications to ASW

Overview of the Large Area Crop Inventory Experiment and the outlook for a satellite crop inventory - -- Great Plains Corridor (North America). Canada, U.S.S.R., Brazil, China, India, and Australia

Remote sensing of perched water tables, a pilot study

Remote sensing of surface temperature for soil moisture, evapotranspiration, and yield estimation

A simulation study of Large Area Crop Inventory Experiment (LACE). A summary of three years' experience with a satellite crop inventory - -- Great Plains Corridor (North America). Canada, U.S.S.R., Brazil, China, India, and Australia

A simulation study of Large Area Crop Inventory Experiment (LACE). A summary of three years' experience with a satellite crop inventory - -- Great Plains Corridor (North America). Canada, U.S.S.R., Brazil, China, India, and Australia

A simulation study of Large Area Crop Inventory Experiment (LACE). A summary of three years' experience with a satellite crop inventory - -- Great Plains Corridor (North America). Canada, U.S.S.R., Brazil, China, India, and Australia
GREAT PLAINS CORRIDOR (NORTH AMERICA)

A-6

GREAT PLAINS CORRIDOR (NORTH AMERICA)

A-6

Competitive analysis of the ARIES system to ground vegetation mapping for forestry

[108 A79-36498]

Hydrolog parameters from LANDSAT imagery for Williams Fork Watershed

[107 A79-25467]

Egypt as seen by LANDSAT

[104 A79-27628]

ICE FLOES

Use of LANDSAT imagery for mapping deformation and movement of Baffin Bay ice

[104 A79-36509]

ICE FORMATION

A study of Minnesota land and water resources using remote sensing

[104 A79-25448]

ICE MAPPING

Mapping of sea ice SAR data recorded over Hopedale, Labrador during Project SAR 77

[104 A79-36525]

VHF downlink communication system for SLAR data

[103 A79-25331]

Remote sea ice and snow ice: A review of the research in the United States 1975 - 1978

[102 A79-25478]

ICE REPORTING

Eleven year chronicle of one of the world's most gigantic icebergs

[102 A79-33369]

Mapping of sea ice and its movement during its drift on aircraft synthetic aperture radar images

[102 A79-34267]

[103 A79-36486]

Use of LANDSAT imagery for mapping deformation and movement of Baffin Bay ice

[103 A79-36509]

Landsat for the study of icebergs in the Baffin Bay-Labrador Sea area

[103 A79-36509]

Radar image processing of real aperture SLAR data for the detection and identification of iceberg and ship targets

[103 A79-25448]

Iceberg basic year

Eleven year chronicle of one of the world's most gigantic icebergs

[103 A79-33369]

Landsat for the study of icebergs in the Baffin Bay-Labrador Sea area

[103 A79-36510]

Radar image processing of real aperture SLAR data for the detection and identification of iceberg and ship targets

[103 A79-36537]

ICEBERGS

Landsat for the study of icebergs in the Baffin Bay-Labrador Sea area

[103 A79-36510]

Iceberg basic year

Landsat for the study of icebergs in the Baffin Bay-Labrador Sea area

[103 A79-36510]

ICEHYBRID

Iceberg basic year

Landsat for the study of icebergs in the Baffin Bay-Labrador Sea area

[103 A79-36510]

Radar image processing of real aperture SLAR data for the detection and identification of iceberg and ship targets

[103 A79-36537]

IDAHO

Large Area Crop Inventory Experiment (LACE). An early estimate of small grains acreage

[103 A79-25448]

I-6

Infrared radiometry in the German Flotte

[103 A79-39984]

Infrared radiometry in the German Flotte

[103 A79-39984]
INFRARED PHOTOGRAPHY

- Remote sensing of crop water stress
- Remote sensing for environmental monitoring
- Remote sensing for drought monitoring
- Remote sensing for soil moisture estimation

LARGE AREA CROP INVENTORY EXPERIMENT

- LANDSAT satellites
 - LANDSAT SATELLITES
 - Rock type discrimination using enhanced Landsat imagery
 - Landsat data in the planning and management of national parks

- LANDSAT SATELLITES
 - Remote sensing of crop water stress
 - Remote sensing for environmental monitoring
 - Remote sensing for drought monitoring
 - Remote sensing for soil moisture estimation

INFRARED SPECTRA

- Radiometric determination of thermal emissivity in situ
- Remote sensing of crop water stress
- Remote sensing for environmental monitoring
- Remote sensing for drought monitoring
- Remote sensing for soil moisture estimation
The natural text of the document is as follows:

SPECTRUM ANALYSIS
Instrumentation and data processing used in Earth Resources Technology Satellites (ERTS), volume 2. A bibliography of recent (1976-1978) Earth Resources Technology Satellites (ERTS) research activities.

[NTIS/P-57/79/0208/7]

[NTIS/P-57/79/0208/7]

STATISTICAL ANALYSIS
An analytic approach to the use of statistical context in remote sensing data analysis

[NTIS/P-57/79/0208/7]

[NTIS/P-57/79/0208/7]

STATISTICAL DISTRIBUTIONS
Large Area Crop Inventory Experiment (LACIE). Signature extension in remote sensing

[NTIS/P-57/79/0208/7]

[NTIS/P-57/79/0208/7]

STORMS (METEOROLOGY)
A meteorological data collection --- Goes environmental data acquisition system

[NTIS/P-57/79/0208/7]

[NTIS/P-57/79/0208/7]

ENERGY SOURCES
Analysis of surface moisture variations within large field sites

[NTIS/P-57/79/0208/7]

[NTIS/P-57/79/0208/7]

THERMAL POLLUTION
Temperature measurement of cooling water discharged from power plants

[NTIS/P-57/79/0208/7]

[NTIS/P-57/79/0208/7]

THERMAL EMISSI0N
Radiometric determination of thermal emissivity from high-resolution imagery

[NTIS/P-57/79/0208/7]

[NTIS/P-57/79/0208/7]

THERMAL MITIGATION
The thermal inertia concept and soil moisture

[NTIS/P-57/79/0208/7]

[NTIS/P-57/79/0208/7]

TIMBER IDENTIFICATION
Forest type mapping from satellite images six years after Landsat forest classification

[NTIS/P-57/79/0208/7]

[NTIS/P-57/79/0208/7]

TIMBER VIGOR
Experiences from applying aircraft and satellite MSS-data to earth resources inventory problems in Sweden

[NTIS/P-57/79/0208/7]

[NTIS/P-57/79/0208/7]

SYNCHRONOUS SATELLITES
Replacing the space vacation

[NTIS/P-57/79/0208/7]

[NTIS/P-57/79/0208/7]

SYNCHRONOUS SATELLITE RADAR
Mapping of sea ice and measurement of drift using aircraft synthetic aperture radar imagery

[NTIS/P-57/79/0208/7]

[NTIS/P-57/79/0208/7]

THERMAL MAPPING
The thermal inertia concept and soil moisture

[NTIS/P-57/79/0208/7]

[NTIS/P-57/79/0208/7]

THERMAL POLLUTION
Temperature measurement of cooling water discharged from power plants

[NTIS/P-57/79/0208/7]

[NTIS/P-57/79/0208/7]

THREE-DIMENSIONAL DATA
Analysis of Coast Guard missions for a maritime patrol system

[NTIS/P-57/79/0208/7]

[NTIS/P-57/79/0208/7]

TIMBER VIGOR
Experiences from applying aircraft and satellite MSS-data to earth resources inventory problems in Sweden

[NTIS/P-57/79/0208/7]

[NTIS/P-57/79/0208/7]
TIME DIVISION MULTIPLE ACCESS

TIME-DIVISION MULTIPLE ACCESS
Uplink symbol-synchronous TDMA SATCOM system architectures
p0132 A79-40584

TIME SERIES ANALYSIS
An analysis of Arctic sea ice fluctuations, 1953-77
p0125 A79-38380

TOBACCO
Global crop production forecasting systems analysis
p0112 N79-25447

TOPOGRAPHY
Satellite observations of the influence of bottom topography on the seaward deflection of the Gulf Stream off Charleston, South Carolina
p0125 A79-38376
A photointerpretation technique for mapping heights of objects on the earth’s surface and conducting viewing analyses for landscape planning purposes
p0120 A79-40282

TREES (PLANTS)
Nationwide forestry applications program
Ten-Ecosystem Study (TESI) site 8, Grays Harbor County, Washington
p0111 N79-24411

TREES (MATHEMATICS)
Unsupervised classification in the ARIES image analysis system
p0131 A79-36494

TRANSIT SATELLITES
Architecture of a three-beam ice-engineer ---- for large area studies
p0133 A79-35472

TRENDS
Land use/land-cover mapping from aerial photographs in the United States 1975 - 1978
p0115 N79-35500

TRUCKS
Land-use/land-cover mapping using digital Landsat data
p0115 A79-35503
Mapping resolution at 1:1 million from Landsat imagery
p0109 N79-35631
Experience with the application of multispectral space photography to geographic studies and thematic mapping
p0116 N79-40255

EVALUATING WATER
An application of the ARIES system to ground vegetation
p0116 A79-36496

VEGETATION
Remote sensing as a tool for estimating soil erosion potential
p0115 N79-35500

VEGETATION GROWTH
Use of panochromatic and color infrared aerial photographs to produce a vegetation map for Canadian Forces Base, Shilo, Manitoba
p0109 N79-35629
Microwave backscatter dependence on surface roughness, soil moisture, and soil texture
p0110 A79-36686

VENEZUELA
Geomorphic applications using aerial photographs
Two case studies in Venezuela
p0120 N79-36544

VERIFICATION
Remote sensing program
p0110 A79-35895

VHSS
Remote sensing of snow and ice: A review of the research in the United States 1975 - 1978
p0112 N79-23478

VINEYARDS
Remote sensing program
p0129 N79-26440

VIRGINIA
Landuse/land-cover mapping from aerial photographs in the United States 1975 - 1978
p0110 A79-35895

WELFARE
Sampling and measuring consumption of water resources
p0127 N79-25452

WATER RESOURCES
A demonstration of wetland vegetation mapping in Florida from computer-processed satellite and aircraft multispectral scanner data
p0129 N79-22548

WATER SHEDS
Remote sensing of snow and ice: A review of the research in the United States 1975 - 1978
p0112 N79-23478

WATER TABLES
Remote sensing program
p0110 A79-35895

WATER TEMPERATURE
Infrared remote sensing in the German Bight
p0136 A79-39984

WATER RESOURCES
An analysis of Arctic sea ice fluctuations, 1953-77
p0125 A79-38380

WATER RESOURCES MANAGEMENT
Monitoring the earth’s resources from space - Can you really identify crops by satellite
p0110 A79-40280

WATER RESOURCES MANAGEMENT
Remote sensing, a tool for extended spatial analysis
p0110 A79-40280

WASHINGTON
Monitoring the earth’s resources from space - Can you really identify crops by satellite
p0110 A79-40280

WASHINGTON
Remote sensing of snow and ice: A review of the research in the United States 1975 - 1978
p0112 N79-23478
subject index
CSIR annual report, 1978 — research and development activities in the Republic of South Africa
[AR-34] p0141 N79-27061
WEST VIRGINIA
Tectonic motion site survey of the National Radio Astronomy Observatory, Green Bank, West Virginia
WETLANDS
Canadian Symposium on Remote Sensing, 5th, Victoria, British Columbia, Canada, August 26-31, 1978, Proceedings
p0139 A79-36486
Wetland classification on the Alaskan North Slope
p0131 A79-36498
Wetland mapping and environmental monitoring using digital Landsat data
p0115 A79-36503
Application of remote sensing technology to the solution of problems in the management of resources in Indiana
[E79-10189] p0128 N79-22588
REBUS: A computer routine for predictive simulation of wetland ecosystems
[PB-291587/4] p0133 N79-23480
A study of Minnesota land and water resources using remote sensing
[E78-10199] p0128 N79-25448
The application of remote sensing technology to the solution of problems in the management of resources in Indiana
[E79-10203] p0128 N79-25452
Multidisciplinary research on the application of remote sensing to water resources problems
[E79-10204] p0125 N79-25453
Quantitative assessment of emergent biomass and species composition in tidal wetlands using remote sensing -- Delaware
[E79-10205] p0129 N79-25454
Assessment of tidal wetland habitat and productivity -- Delaware
[E79-10206] p0129 N79-25455
A demonstration of wetland vegetation mapping in Florida from computer-processed satellite and aircraft multispectral scanner data
[E79-10209] p0129 N79-25458
WHEAT
Remote sensing of surface temperature for soil moisture, evapotranspiration and yield estimation
p0109 A79-36534
The Large Area Crop Inventory Experiment (LACIE) -- A summary of three years' experience
p0110 A79-36540
Monitoring the earth's resources from space -- Can you really identify crops by satellite
p0110 A79-40280
Large Area Crop Inventory Experiment (LACIE). An overview of the Large Area Crop Inventory Experiment and the outlook for a satellite crop inventory -- Great Plains Corridor (North America), Canada, U.S.S.R., Brazil, China, India, and Australia
[E79-10193] p0112 N79-24413
The Large Area Crop Inventory Experiment (LACIE). Methodology for area, yield and production estimation, results and perspective -- United States of America, Canada, Brasil, Argentina, U.S.S.R., China, India, and Australia
[E79-10194] p0112 N79-24414
Research in remote sensing of agriculture, earth resources and man's environment -- Arizona
[E79-10195] p0112 N79-24415
Large Area Crop Inventory Experiment (LACIE). Development of procedure M for multicrop inventory, with tests of a spring-wheat configuration
[E79-10197] p0112 N79-24416
Global crop production forecasting data system analysis
[E79-10198] p0112 N79-25447
Briefing Materials for Plenary Presentations: The LACIE Symposium
[E79-10217] p0113 N79-26444
Large Area Crop Inventory Experiment (LACIE). An early estimate of small grains acreage -- Indiana, Kansas, Idaho, Texas, and Washington
[E79-10212] p0113 N79-27629
WILDLIFE
Mapping vegetation at 1:1 million from Landsat imagery
p0109 A79-36531
Nationwide forestry applications program.
Ten-Ecosystem Study (TES) site B, Grays Harbor County, Washington
[E79-10191] p0111 N79-24411
Application of remote sensing to state and regional problems
[E79-10196] p0140 N79-25446
Use of remote sensing for land use policy formulation -- Michigan
[E79-10202] p0140 N79-25451
Natural resources inventory system ASV project
[E79-10208] p0112 N79-25457
WIND VELOCITY
A model for the microwave emissivity of the ocean's surface as a function of wind speed
WINTER
Large Area Crop Inventory Experiment (LACIE). An early estimate of small grains acreage -- Indiana, Kansas, Idaho, Texas, and Washington
[E79-10121] p0113 N79-27629
WISCONSIN
Landsat analysis of lake quality
p0127 A79-35498
Remotes sensing as a tool for estimating soil erosion potential
p0108 A79-36500
Cropping management using color and color infrared aerial photographs
p0110 A79-38373
Stratification and sample selection for multicrop experiments -- Arkansas, Kentucky, Michigan, Missouri, Mississippi, Ohio, Wisconsin, Illinois, Indiana, Minnesota, Iowa, Louisiana, Nebraska, South Dakota, and North Dakota
[E79-10190] p0111 N79-24410
WYOMING
Regional geologic analysis of the Black Hills of South Dakota and Wyoming from remote sensing data
p0121 N79-26437
Y
YIELD
Shoreline as a controlling factor in commercial shrimp production
[E79-10185] p0126 N79-22584
The Large Area Crop Inventory Experiment (LACIE). Methodology for area, yield and production estimation, results and perspective -- United States of America, Canada, Brazil, Argentina, U.S.S.R., China, India, and Australia
[E79-10194] p0112 N79-24414
Global crop production forecasting data system analysis
[E79-10198] p0112 N79-25447
Remote sensing program
[E79-10211] p0129 N79-26440
Briefing Materials for Plenary Presentations: The LACIE Symposium
[E79-10217] p0113 N79-26444
Z
ZAIRE
AID's remote sensing grant program
[PB-292872/9] p0141 N79-26456

PERSONAL AUTHOR INDEX

Earth Resources/A Continuing Bibliography (Issue 23)

OCTOBER 1979

Typical Personal Author Index Listing

HOLMES, O. A.
Optimum thermal infrared bands for mapping general rock type and temperature from space
[NOAA-C-301482]
p0036 N79-11449

BENNETT, J. R.
Digital techniques for the multi-looking of SAR data with application to Seasat-A
p0130 A79-36593

BENSON, G. L.
Seventh year projects and activities of the Environmental Remote Sensing Applications Laboratory (ERSAL)
[NASA-C-10220]
p0140 N79-26447

BENTLEY, C. R.
A real-time satellite data acquisition, analysis and display system - A practical application of the GOES network
p0131 A79-34409

BERGER, M.
The thermal inertia concept and soil moisture
p0109 A79-36533

BERNSTEIN, R. L.
Seasat scanning multichannel microwave radiometer - Results of the Gulf of Alaska workshop
p0136 A79-40238

BILIOUS, R.
Remote sensing techniques in the cartography of soils - Remarks concerning the preparation of a 1:50,000 map of soils in the Versailles plain
p0120 A79-40254

BILL, R. E., JR.
A real-time satellite data acquisition, analysis and display system - A practical application of the GOES network
p0131 A79-34409

BILLANT, A.
Campaign NEMBUS F: Results of offshore operations, February 1976 - November 1977
p0126 A79-27623

BLACKWELL, R. J.
Areal classification of selected Colorado lakes
[NASA-CR-158500]
p0128 A79-22591

BLANCHARD, B. J.
Analysis of surface moisture variations within large field areas
[NASA-TM-80264]
p0111 N79-23479

BOEGLI, U. P.
Landform geologic reconnaissance of the Washington, D.C. area westward to the Appalachians
p0121 A79-35497

BOGDAN, R.
Assessing the influence of tree hedgerows on the heat budget at soil level by means of airborne thermography - Preview of Explorer HCMCC capabilities
p0108 A79-35008

BOLAND, D. H. P.
Areal classification of selected Colorado lakes
[NASA-CR-158500]
p0128 A79-22591

BOND, F. R.
Comparison of aerial salvos from all-sky camera studies and from satellite photographs
p0135 A79-33372

BONN, F.
The thermal inertia concept and soil moisture
p0109 A79-36533

BORN, G. C.
Areal calibration - Initial results
p0136 A79-40238

BOWMAN, A.
Remote sensing of perched water tables, a pilot study [PB-29175/2]
p0128 N79-22603

BOYLAN, M.
Use of remote sensing for land use policy formulation [E79-10202]
p0140 N79-25451

BRAICH, E. J.
Bidirectional reflection of crops and the soil contribution
p0107 A79-33045

BRADLEY, G. A.
Microwave backscatterer dependence on surface roughness, soil moisture, and soil texture II - Vegetation-covered soil
p0110 A79-36868

BRAUN, K. N.
Areal classification of the ARES system to ground vegetation mapping for forestry
p0108 A79-36496

BRATZKE, W.
Areal photographic water color variations from the James River
p0127 A79-37291

BRISCO, R.
Evaluation of high resolution side looking airborne radar on the University of Georgia test strip
p0127 A79-36520

BROCHU, R.
The thermal inertia concept and soil moisture
p0109 A79-36533

BROWN, W. E.
Seasat synthetic aperture radar - Ocean wave detection capabilities
p0136 A79-40239

BRUMBAUGH, F. R.
Summary of NASA aircraft (NC-130) data collected for the Agricultural Soil Moisture Experiment (ASME) during 1978
[E79-10215]
p0113 N79-26442

B-1

Listings in this index are arranged alphabetically by personal author. The title of each index provides the user with a brief description of the subject matter. The report number helps to indicate the type of document listed (e.g., NASA report, translation, NASA contractor report). The page and accession numbers are located beneath and to the right of the title, e.g., p0026 N79-11449. Under any one author's name the accession numbers are arranged in sequence with the AIAA accession numbers appearing first.
PERSONAL AUTHOR INDEX

OUBEY, G. J.
Model studies of the reflectance properties of minerals and water
[p0121 A79-36541]
PAN, K. L.
Regional geologic analysis of the Black Hills of South Dakota and Wyoming from remote sensing data
[p0121 A79-26437]
PANTON, D. J.
Digital cartographic study and benchmarking
[AD-A046800] p0120 N79-22594
PANASHEV, S. E.
Detection and monitoring of oil pollution in the ice environment through microwave techniques
[p0121 A79-36521] Preliminary investigation of sea ice SAR data recorded over Hope Dale, Labrador during Project SAR 77
[p0123 A79-36525]
PARKE, M. E.
Satellite soil moisture calibration - initial results
[p0136 A79-40236]
PARKER, F. E.
BRUS: A computer routine for predictive simulation of wetland ecosystems
[PB-292083/3] p0129 N79-25473
PARR, H.
Ocean waves
[p0133 N79-23480]
PARISH, J. E.
The effectiveness of multi-date, multi-spectral remote sensing imagery for monitoring coal mining operations and reclamation efforts in Alberta
[p0121 A79-36505]
PEDROSA, R. H. L.
Classification of multispectral images of natural resources using a test look-up approach and clustering
[INP-1437-J01/006] p0136 N79-27642
PERALTA, J. E.
Hydrologic parameters from LANDSAT imagery for Wyoming flood watersheds
[PB-292083/3] p0129 N79-25473
PETERSON, J.
Evaluation of registration, compression and classification algorithms. Volume 1: Results
PHILIPSON, W. R.
Remote sensing program
[ET0-10121] p0129 N79-26440
PIHULVEE, A.
An application of the ARIES system to ground vegetation mapping for forestry
[p0108 A79-36496]
PINTER, P. J.
Remote sensing of surface temperature for soil moisture, evapotranspiration and yield estimation
[p0119 A79-36534]
POTTER, J.
A simulation study of Large Area Crop Inventory Evaluation (LANDSAT) technology
[ET0-10121] p0113 N79-26443
PRATT, D. A.
The thermal inertia approach to mapping of soil moisture and geology
[p0119 A79-33047]
PREVOST, C.
The thermal inertia concept and soil moisture
[p0109 A79-36533]
PRILL, J. C.
National forestry applications program. Ten-Ecosystem Study (TES) site 8, Grays Harbor County, Washington
[ET0-10191] p0111 N79-24411
PROITZ, R.
Evaluation of high resolution side looking airborne radar on the University of Geelsh test strip
[p0127 A79-36520]
QUATTROCHI, D. A.
Application of remote sensing to state and regional problems
[ET0-10198] p0140 N79-25446
RACHEVSKY, O. A.
The potential role of airships for oceanography
[AIAA 79-1574] p0125 A79-24231 Satellite oceanography of eastern boundary currents and its implications to ASW
[AD-A087259] p0126 N79-26754
STEWARD, N. E.
The potential role of airships for oceanography
[AIAA 79-1574] p0125 A79-24231 Satellite oceanography of eastern boundary currents and its implications to ASW
[AD-A087259] p0126 N79-26754
STIERHINK, G. C.
An improved image enhancement technique and its application to forest fire management
[p0108 A79-36495] p0110 A79-38372
SCHRUFF, B. J.
Seventh year projects and activities of the Environmental Remote Sensing Applications Laboratory of the NASA Lewis Research Center
[E79-10202] p0140 N79-26447
SCHWARTZ, G.
Sea surface bathymetry system
[AD-A064532] p0120 N79-22595
SCHEURER, J.
An improved image enhancement technique and its application to forest fire management
[p0108 A79-36495]
SCHMIDT, N.
Landsat geologic reconnaissance of the Washington, D.C. area westward to the Appalachians
[p0121 A79-35497]
SCHANDA, E.
Microwave radiometry applications to remote sensing
[p0127 A79-36520]
SCHERDT, R. J.
VHF downlink communication system for SLAR data
SCHMIDT, N.
Development of a multi-disciplinary ERTS user program in the state of Ohio. Volume 1: Executive summary
[ET0-10197] p0116 N79-22586
SCHMITT, J. W., III
Water quality monitoring of Lake Mead - A practical look at the difficulties encountered in the application of remotely sensed data to analysis of temporal change
[p0127 A79-36506]
SHUHMAN, R. A.
The Tenga model: A mathematical model for the simulation of the daily behavior of crop surface temperature and actual evapotranspiration
[HEPT-1014] p0114 N79-27645
SIEGFRIED, W.
Color landmass of interior and coastal Alaska
[SIEF-1986] p0111 N79-22595
SOLDOMIO, L. L.
Application of remote sensing to state and regional problems
[ET0-10196] p0140 N79-25446
STEPHAN, J. G.
Development of a multi-disciplinary ERTS user program in the state of Ohio. Volume 1: Executive summary
[ET0-10196] p0116 N79-22586
STERRESON, R. E.
A real-time satellite data acquisition, analysis and display system - A practical application of the U.S. network
[AD-A064800] p0131 A79-34409
SWAIN, P. H.
An approach to the use of statistical context in remote sensing data analysis
[p0131 A79-36490]
SWIFT, C. T.
Satellite scanning multichannel microwave radiometer - Results of the Gulf of Alaska workshops
[p0136 A79-40238]
典型公司索引

地球资源/持续文献（第23期）

OCTOBER 1979

Corporate Source Index

典型公司索引

Index Listing

CORPORATE SOURCE

FLORIDA UNIV., GAINESVILLE.
P0031 N79 15357

TITLE

REPORT NUMBER

PAGE NUMBER

ACCESSION NUMBER

The title of the document is used to provide a brief description of the subject matter. The page number and the accession number are included in each entry to assist the user in locating the abstract section. If applicable, a report number is also included as an aid in identifying the document.

A

AIN SHAMS UNIV., CAIRO (EGYPT).
P0134 N79-27626

APPLIED PHYSICS LAB., JOHNS HOPKINS UNIV., BALTIMORE, MD.
P0126 N79-40239

LAUREL, MD.

Seasat synthetic aperture radar - Ocean wave detection capabilities.
P0136 A79-40239

ARTIFICIAL EARTH SATELLITE DESIGNED AND FABRICATED BY THE
JOHNS HOPKINS UNIVERSITY APPLIED PHYSICS LABORATORY.

REVISED

ADO-06299

P0140 N79-25124

ARMY COASTAL ENGINEERING RESEARCH CENTER, FORT BELVOIR, VA.
P0136 N79-40239

ARMY ENGINEER TOPOGRAPHIC LABS., FORT BELVOIR, VA.

Seasat synthetic aperture radar - Ocean wave detection capabilities.
P0136 A79-40239

ASEP CORP., GERMANTOWN, MD.

LAND AND NATURAL RESOURCES MANAGEMENT: AN ANALYSIS OF SELECTED FEDERAL POLICIES, PROGRAMS, AND PLANNING MECHANISMS. REPORT TO THE PRESIDENT'S INTERAGENCY TASK FORCE ON ENVIRONMENTAL DATA AND MONITORING PROGRAMS.
P0140 N79-22649

AUSTRIAN SOLAR AND SPACE AGENCY, VIENNA.

REMOTE SENSING IN PROJECTS. SURVEY OF EXISTING AND PLANNED PROJECTS.

ASSA-IA-7

P0140 N79-25466

B

BATTUE COLUMBUS LABS., OHIO.

APPLICATIONS OF A HIGH-ALTITUDE POWERED PLATFORM.

HAPPY

AAIA 79-1603

P0111 A79-42397

BRITISH LIBRARY LENDING DIV., BOSTON SPA (ENGLAND).

DIGITAL PROCESSING OF THE NOAA WEATHER SATELLITE SCANNING-RADAR IRI DATA RECEIVED AT THE FS METEOROLOGICAL INSTITUTE. PART 4: GEOGRAPHICAL RECTIFICATION AND PRESENTATION IN A STEERED MAP PROJECTION.

BLL-TRANS 13-622 (9022)

P0133 N79-25442

C

CALIFORNIA UNIV., DAVIS.

RADIOMETRIC CORRECTION AND EQUALIZATION OF SATELLITE DIGITAL DATA.
P0132 A79-41127

REMOTE SENSING OF PERCHED WATER TABLES, A PLOT STUDY.
P0128 N79-22603

CANADA CENTRE FOR REMOTE SENSING, OTTAWA (ONTARIO).

LANDSAT TEST OF DIFFUSE REFLECTANCE MODELS FOR AQUATIC SEDIMENT SLOTTED STRIPS.
P0123 A79-33048

CCRS AIRBORNE PROGRAM ASSESSMENT. VOLUME 1: ANALYSIS.
P0141 N79-27649

CCRS AIRBORNE PROGRAM ASSESSMENT. VOLUME 2: USER REPORTS.
P0141 N79-26470

CENTRE OCEANOLOGIQUE DE BRETAGNE, BREST (FRANCE).

CNEXOC/RDM-15

P0126 N79-23623

COAST GUARD, WASHINGTON, D.C.

RADAR IMAGE PROCESSING OF REAL APERTURE SLAR DATA FOR THE DETECTION AND IDENTIFICATION OF ICING AND SHIP TARGETS.
P0135 A79-36537

COLORADO STATE UNIV., FORT COLLINS.

HYDROLOGIC PARAMETERS FROM LANDSAT IMAGERY FOR WILLIAMS FORK WATERSHED.
P0129 N79-25473

COLORADO UNIV., BOULDER.

THE APPLICATION OF LANDSAT DATA TO MAPPING VOLCANOLOGICAL HAZARDS.
P0131 A79-36507

COLUMBIA UNIV., NEW YORK.

SHAPE OF THE OCEAN SURFACE AND IMPLICATIONS FOR THE EARTH's INTERIOR.
P0120 N79-27804

COMMITTEE ON SCIENCE AND TECHNOLOGY (U.S. HOUSE).

NASA SPACE AND TERRESTRIAL APPLICATIONS, USER DEVELOPMENT ACTIVITIES.

GPO 32-438

P0140 N79-25117

COMPUTER SCIENCE CORPS., SILVER SPRING, MD.

POTENTIAL APPLICATIONS OF A HIGH-ALTITUDE POWERED PLATFORM IN THE OCEAN/COASTAL ZONE COMMUNITY.
P0129 A79-42396

CONTROL DATA CORP., MINNEAPOLIS, MINN.

DIGITAL CARTOGRAPHIC STUDY AND BENCHMARK.
P0120 N79-22594

CORNHOLD UNIV., ITHACA, N. Y.

REMOTE SENSING PROGRAM.
P0129 N79-26440

COUNCIL FOR SCIENTIFIC AND INDUSTRIAL RESEARCH, PRETORIA (SOUTH AFRICA).

P0141 N79-27081

D

DELAWARE UNIV., NEWARK.

QUANTITATIVE ASSESSMENT OF EMERGING BIOMASS AND SPECIES COMPOSITION IN TIDAL WETLANDS USING REMOTE SENSING.
P0129 N79-25454

ASSESSMENT OF TIDAL WETLAND HABITAT AND PRODUCTIVITY.
P0129 N79-25455

DEPARTMENT OF AGRICULTURE, PHOENIX, ARIZ.

HCMM HEAT CAPACITY MAPPING MISSION.
P0129 A79-26441

DEUTSCHE FORSCHUNGS- UND VERBÜCHSCHATZUNG FÄLT LUFT- UND RAUMFAHR'T, ÖBERPFAPFENHOFEN (GERMANY).

OCEAN WAVES.
P0123 A79-32272

E

ECOSYSTEMS INTERNATIONAL, INC., GAMBRILLS, MD.

GLOBAL CROP PRODUCTION FORECASTING DATA SYSTEM.
P0116 A79-20198

EG AND WASHINGTON ANALYTICAL SERVICES.

REMOTE SENSING OF PERCHED WATER TABLES.
P0126 N79-26755

ENVIROMENTAL RESEARCH AND TECHNOLOGY.

INCOMPRESSIBLE FLOW.
P0129 N79-25473

INVESTIGATION OF THE APPLICATION OF HCMM THERMAL DATA TO TEMPERATURE DISTRIBUTIONS.
P0129 N79-25473

INSTITUTE FOR ENGINEERING AND TECHNOLOGY.

APPLICTION OF LANDSAT DATA TO MAPPING VOLCANOLOGICAL HAZARDS.
P0131 A79-36507

INSTITUTE OF REMOTE SENSING.

GLOBAL CROP PRODUCTION FORECASTING DATA SYSTEM.
P0116 A79-20198

JET PROPULSION LAB., CALIF. INST. OF TECH., PASADENA.

OCEAN WAVES.
P0123 A79-32272

WATER QUALITY MONITORING OF LAKE MEAD - A PRACTICAL LOOK AT THE DIFFICULTIES ENCOUNTERED IN THE APPLICATION OF REMOTELY SENSIBLE SENSORS TO OCEAN DATA ANALYSIS.
P0127 A79-26450

SEASAT ALTIMETER CALIBRATION - INITIAL RESULTS.
P0126 A79-40236

SEASAT SCANNING MULTICHANNEL MICROWAVE RADAR METEOROLOGY.
P0123 A79-32272

INFRA-

RAPID GEOLOCIC STUDY OF THE BLACK HILLS OF SOUTH DAKOTA AND WEST VIRGINIA FROM REMOTE SENSING DATA.
P0121 N79-26437

I

IMPERIAL COLL OF SCIENCE AND TECHNOLOGY, LONDON (ENGLAND).

OCEAN WAVES.
P0123 A79-32272

INSTITUT FÜR KULTURTECHNIK UND WÄSERNBHÜNDING, WAGENINGEN (NETHERLANDS).

THE TERRIGA MODEL: A MATHEMATICAL MODEL FOR THE SIMULATION OF THE DAILY BEHAVIOR OF CROP SURFACE TEMPERATURE AND ACTUAL EVAPOTRANSPIRATION.
P0114 N79-27645

INSTITUTO DE PESQUISAS ESPACIAIS, SAO PAULO (BRAZIL).

DETERMINATION OF HOMOGENEOUS ZONES BY REMOTE SENSORS.
P0117 N79-27641

CLASSIFICATION OF MULTISPECTRAL IMAGES OF NATURAL RESOURCES USING A TABLE LOOK-UP APPROACH AND CLUSTERING.
P0124 A79-36498

GEOSAT OBSERVE, RESTON, VA.

WETLAND CLASSIFICATION ON THE ALASKAN NORTH SLOPE.
P0121 N79-26458

OSWEGO UNIY., OREGON.

REGIONAL GEOLOGIC STUDY OF THE BLACK HILLS OF SOUTH DAKOTA AND WEST VIRGINIA FROM REMOTE SENSING DATA.
P0121 N79-26437

J

JET PROPULSION LAB., CALIF. INST. OF TECH., PASADENA.

OCEAN WAVES.
P0123 A79-32272

WATER QUALITY MONITORING OF LAKE MEAD - A PRACTICAL LOOK AT THE DIFFICULTIES ENCOUNTERED IN THE APPLICATION OF REMOTELY SENSIBLE SENSORS TO OCEAN DATA ANALYSIS.
P0127 A79-26450

SEASAT ALTIMETER CALIBRATION - INITIAL RESULTS.
P0126 A79-40236

SEASAT SCANNING MULTICHANNEL MICROWAVE RADAR METEOROLOGY.
P0123 A79-32272

C-1
CORPORATE SOURCE INDEX

SMITHSONIAN INSTITUTION, WASHINGTON, D.C.
Egypt as seen by LANDSAT. p0134 N79-27268

SOUTH CAROLINA UNIV., COLUMBIA.
Feasibility of remote sensing benthic microalgae

SOUTH DAKOTA STATE UNIV., BROOKINGS.
HCM energy budget as a model input for assessing
regions of high potential groundwater pollution
[E79-10188B] p0127 N79-22507

STANFORD UNIV., CALIF.
HCM: Soil moisture in relation to geologic structure
and lithology, northern California
[E79-10192] p0121 N79-24412

TEL-AVIV UNIV. (ISRAEL)
Ice elevation map of Queen Maud Land, Antarctica, from
balloon altimetry p0124 A79-34287

TEXAS A&M UNIV., COLLEGE STATION.
Evaluation of LANDSAT MSS data for classifying and
characterizing natural vegetation on a regional basis
p0111 N79-24407

TEXAS UNIV., AUSTIN.
Seasat altimeter calibration - Initial results
p0136 A79-40236

VIRGINIA INST.-OF MARINE SCIENCE, GLOUCESTER
POINT.
Landsat test of diffuse reflectance models for aquatic
suspended solids measurement p0123 A79-33048

WASHINGTON UNIV., SEATTLE.
Seasat scanning multichannel microwave radiometer-
Results of the Gulf of Alaska workshop
p0136 A79-40238

WENTZ (FRANK J.) AND ASSOCIATES, SAN
FRANCISCO, CALIF.
Seasat scanning multichannel microwave radiometer-
Results of the Gulf of Alaska workshop
p0136 A79-40238

Design study for future satellite microwave
scatterometers, part 3

WISCONSIN DEPT. OF NATURAL RESOURCES,
MADISON.
Landsat analysis of lake quality p0127 A79-35498

WISCONSIN UNIV., MADISON.
Ice elevation map of Queen Maud Land, Antarctica, from
balloon altimetry p0124 A79-34287

Landsat analysis of lake quality p0127 A79-35498

Remote sensing as a tool for estimating soil erosion
potential p0108 A79-36500

Cropping management using color and color infrared
aerial photographs p0110 A79-36573

WISCONSIN UNIV., MADISON.
Multidisciplinary research on the application of remote
sensing to water resources problems
[E79-10204] p0129 N79-25453

WISCONSIN UNIV., MADISON.

C-3
CONTRACT NUMBER INDEX

October 1979

Typical Contract Number Index Listing

<table>
<thead>
<tr>
<th>Contract Number</th>
<th>Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AID/TA-C-1148</td>
<td>p0141 N79-28456</td>
</tr>
<tr>
<td>DAAG53-75-C-0195</td>
<td>p0120 N79-22594</td>
</tr>
<tr>
<td>DE-TOX.77-9020/1</td>
<td>p0116 N79-36505</td>
</tr>
<tr>
<td>DEMR-IS077-00172</td>
<td>p0132 N79-36539</td>
</tr>
<tr>
<td>DOD-MDA-903-77-G-1</td>
<td>p0131 A79-36490</td>
</tr>
<tr>
<td>DSS-OSQ-76-00068</td>
<td>p0108 A79-36496</td>
</tr>
<tr>
<td>DSS-OSQ-76-00083</td>
<td>p0121 A79-36541</td>
</tr>
<tr>
<td>DSS-075S-01525-7-0231</td>
<td>p0108 A79-36511</td>
</tr>
<tr>
<td>DSS-075S-01525-0188</td>
<td>p0127 A79-36520</td>
</tr>
<tr>
<td>EPA-G-005139-01</td>
<td>p0110 A79-38373</td>
</tr>
<tr>
<td>EPA-G-005139-01</td>
<td>p0108 A79-36500</td>
</tr>
<tr>
<td>EDA-0001</td>
<td>p0140 N79-26446</td>
</tr>
<tr>
<td>F19628-78-C-0001</td>
<td>p0137 N79-24419</td>
</tr>
<tr>
<td>F30002-75-C-0061</td>
<td>p0132 A79-40584</td>
</tr>
<tr>
<td>JPL-955387</td>
<td>p0137 N79-24420</td>
</tr>
<tr>
<td>NASA TASK 19</td>
<td>p0111 A79-42397</td>
</tr>
<tr>
<td>NASA-2800</td>
<td>p0111 A79-42397</td>
</tr>
<tr>
<td>NASA-3198</td>
<td>p0133 N79-25460</td>
</tr>
<tr>
<td>NASA-51-15288</td>
<td>p0137 N79-25364</td>
</tr>
<tr>
<td>NASA-52-2399</td>
<td>p0116 N79-22586</td>
</tr>
<tr>
<td>NASA-9580</td>
<td>p0139 N79-34759</td>
</tr>
<tr>
<td>NASS-24206</td>
<td>p0127 N79-22587</td>
</tr>
<tr>
<td>NASS-24479</td>
<td>p0121 N79-24442</td>
</tr>
<tr>
<td>NASS-100</td>
<td>p0131 A79-36498</td>
</tr>
<tr>
<td>NASS-174</td>
<td>p0127 N79-23506</td>
</tr>
<tr>
<td>NASS-24036</td>
<td>p0136 A79-40236</td>
</tr>
<tr>
<td>NASS-24045</td>
<td>p0136 A79-40236</td>
</tr>
<tr>
<td>NASS-24049</td>
<td>p0136 A79-40236</td>
</tr>
<tr>
<td>NASS-24051</td>
<td>p0132 A79-40497</td>
</tr>
<tr>
<td>NASS-24057</td>
<td>p0128 N79-22591</td>
</tr>
<tr>
<td>NASS-24068</td>
<td>p0111 N79-22592</td>
</tr>
<tr>
<td>NASS-24245</td>
<td>p0137 N79-24420</td>
</tr>
<tr>
<td>NASS-32408</td>
<td>p0112 N79-25447</td>
</tr>
<tr>
<td>NASS-32491</td>
<td>p0113 N79-25461</td>
</tr>
<tr>
<td>NASS-41052</td>
<td>p0110 A79-36686</td>
</tr>
<tr>
<td>NASS-14566</td>
<td>p0111 N79-24410</td>
</tr>
<tr>
<td>NASS-15476</td>
<td>p0112 N79-24445</td>
</tr>
<tr>
<td>NASS-15800</td>
<td>p0133 N79-25449</td>
</tr>
<tr>
<td>NASS-24416</td>
<td>p0112 N79-24446</td>
</tr>
<tr>
<td>NASS-24476</td>
<td>p0111 N79-24411</td>
</tr>
<tr>
<td>NASS-24476</td>
<td>p0113 N79-26442</td>
</tr>
<tr>
<td>NASS-24544</td>
<td>p0113 N79-26444</td>
</tr>
<tr>
<td>NASS-24544</td>
<td>p0113 N79-26444</td>
</tr>
<tr>
<td>NASS-8920</td>
<td>p0131 A79-34409</td>
</tr>
<tr>
<td>NGL-09-003-404</td>
<td>p0132 A79-41127</td>
</tr>
<tr>
<td>NGL-09-003-200</td>
<td>p0131 A79-36507</td>
</tr>
<tr>
<td>NGL-15-005-185</td>
<td>p0128 N79-22588</td>
</tr>
<tr>
<td>NGL-23-004-083</td>
<td>p0128 N79-22545</td>
</tr>
<tr>
<td>NGL-23-005-283</td>
<td>p0128 N79-25448</td>
</tr>
<tr>
<td>NGL-32-001-054</td>
<td>p0128 N79-26440</td>
</tr>
<tr>
<td>NGL-32-001-171</td>
<td>p0128 N79-26440</td>
</tr>
<tr>
<td>NGL-38-002-053</td>
<td>p0140 N79-26447</td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphanumeri- cally by contract number. Under each contract number, the accession numbers denoting documents that have been produced as a result of research done under that contract are arranged in ascending order with the AIAA accession numbers appearing first. The accession number denotes the number by which the citation is identified in the abstract section. Preceding the accession number is the page number on which the citation may be found.
REPORT/ACCESSION NUMBER INDEX

Earth Resources/A Continuing Bibliography (Issue 23)

OCTOBER 1979

Typical Report/Accession Number Index Listing

<table>
<thead>
<tr>
<th>REPORT NUMBER</th>
<th>PAGE NUMBER</th>
<th>ACCESSION NUMBER</th>
<th>E/T/DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS 78-181</td>
<td>p0139</td>
<td>79-3486*</td>
<td></td>
</tr>
<tr>
<td>AD-A064532</td>
<td>p0120</td>
<td>N79-22595 #</td>
<td></td>
</tr>
<tr>
<td>AD-A064800</td>
<td>p0120</td>
<td>N79-22594 #</td>
<td></td>
</tr>
<tr>
<td>AD-A066299</td>
<td>p0140</td>
<td>N79-25124 #</td>
<td></td>
</tr>
<tr>
<td>AD-A067259</td>
<td>p0126</td>
<td>N79-26754 #</td>
<td></td>
</tr>
<tr>
<td>AD-A067731</td>
<td>p0137</td>
<td>N79-26755 #</td>
<td></td>
</tr>
<tr>
<td>AD-A068001</td>
<td>p0140</td>
<td>N79-25124 #</td>
<td></td>
</tr>
<tr>
<td>AIAA 78-0901</td>
<td>p0139</td>
<td>79-34712#</td>
<td></td>
</tr>
<tr>
<td>AIAA 77-0977</td>
<td>p0125</td>
<td>79-25289 #</td>
<td></td>
</tr>
<tr>
<td>AIAA 76-1571</td>
<td>p0125</td>
<td>79-26300 #</td>
<td></td>
</tr>
<tr>
<td>AIAA 79-1602</td>
<td>p0126</td>
<td>79-26446 #</td>
<td></td>
</tr>
<tr>
<td>AIAA 79-1503</td>
<td>p0111</td>
<td>79-26450 #</td>
<td></td>
</tr>
<tr>
<td>APL/JHU/SDG-1600-REV</td>
<td>p0140</td>
<td>N79-25124</td>
<td></td>
</tr>
<tr>
<td>AR-34</td>
<td>p0141</td>
<td>79-27061 #</td>
<td></td>
</tr>
<tr>
<td>ASSA-FA-7</td>
<td>p0140</td>
<td>79-25466 #</td>
<td></td>
</tr>
<tr>
<td>BELL-TRANS-1365(1972-546)</td>
<td>p0135</td>
<td>N79-25442</td>
<td></td>
</tr>
<tr>
<td>CDC-7003-76-R6</td>
<td>p0120</td>
<td>N79-22594</td>
<td></td>
</tr>
<tr>
<td>CNEOD-ROM-15</td>
<td>p0126</td>
<td>N79-26303 #</td>
<td></td>
</tr>
<tr>
<td>CONTRIB-175</td>
<td>p0128</td>
<td>N79-26303 #</td>
<td></td>
</tr>
<tr>
<td>E-003</td>
<td>p0137</td>
<td>79-25289 #</td>
<td></td>
</tr>
<tr>
<td>E-025</td>
<td>p0137</td>
<td>79-23313*</td>
<td></td>
</tr>
<tr>
<td>ECO-1979-3</td>
<td>p0112</td>
<td>N79-25447 #</td>
<td></td>
</tr>
<tr>
<td>EG/TR-D370-0001</td>
<td>p0126</td>
<td>N79-26755</td>
<td></td>
</tr>
<tr>
<td>EPA-650-4/79-0005</td>
<td>p0128</td>
<td>N79-22591 #</td>
<td></td>
</tr>
<tr>
<td>ERIN-111800-1-F</td>
<td>p0141</td>
<td>N79-26456</td>
<td></td>
</tr>
<tr>
<td>ERIM-122400-16-F</td>
<td>p0112</td>
<td>N79-24416 #</td>
<td></td>
</tr>
<tr>
<td>ETL-0163</td>
<td>p0120</td>
<td>N79-22595 #</td>
<td></td>
</tr>
<tr>
<td>ETV-10518</td>
<td>p0137</td>
<td>N79-22583 #</td>
<td></td>
</tr>
<tr>
<td>ETV-10815</td>
<td>p0112</td>
<td>N79-24418*</td>
<td></td>
</tr>
<tr>
<td>ETV-10186</td>
<td>p0112</td>
<td>N79-22588 #</td>
<td></td>
</tr>
<tr>
<td>ETV-10187</td>
<td>p0112</td>
<td>N79-22588 #</td>
<td></td>
</tr>
<tr>
<td>ETV-10188</td>
<td>p0112</td>
<td>N79-22588 #</td>
<td></td>
</tr>
<tr>
<td>ETV-10189</td>
<td>p0112</td>
<td>N79-22588 #</td>
<td></td>
</tr>
<tr>
<td>ETV-10190</td>
<td>p0111</td>
<td>N79-24410 #</td>
<td></td>
</tr>
<tr>
<td>ETV-10191</td>
<td>p0112</td>
<td>N79-24411 #</td>
<td></td>
</tr>
<tr>
<td>ETV-10192</td>
<td>p0112</td>
<td>N79-24413 #</td>
<td></td>
</tr>
<tr>
<td>ETV-10193</td>
<td>p0112</td>
<td>N79-24415 #</td>
<td></td>
</tr>
<tr>
<td>ETV-10194</td>
<td>p0112</td>
<td>N79-24415 #</td>
<td></td>
</tr>
<tr>
<td>ETV-10195</td>
<td>p0112</td>
<td>N79-24415 #</td>
<td></td>
</tr>
<tr>
<td>ETV-10196</td>
<td>p0112</td>
<td>N79-24415 #</td>
<td></td>
</tr>
<tr>
<td>ETV-10197</td>
<td>p0112</td>
<td>N79-24415 #</td>
<td></td>
</tr>
</tbody>
</table>

Typical Report/Accession Number Index
This bibliography lists 226 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1979 and September 30, 1979. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.
PUBLIC COLLECTIONS OF NASA DOCUMENTS

DOMESTIC

NASA distributes its technical documents and bibliographic tools to ten special libraries located in the organizations listed below. Each library is prepared to furnish the public such services as reference assistance, interlibrary loans, photocopy service, and assistance in obtaining copies of NASA documents for retention.

CALIFORNIA
University of California, Berkeley

COLORADO
University of Colorado, Boulder

DISTRICT OF COLUMBIA
Library of Congress

GEORGIA
Georgia Institute of Technology, Atlanta

ILLINOIS
The John Crerar Library, Chicago

MASSACHUSETTS
Massachusetts Institute of Technology, Cambridge

MISSOURI
Linda Hall Library, Kansas City

NEW YORK
Columbia University, New York

PENNSYLVANIA
Carnegie Library of Pittsburgh

WASHINGTON
University of Washington, Seattle

NASA publications (those indicated by an "*" following the accession number) are also received by the following public and free libraries:

CALIFORNIA
Los Angeles Public Library
San Diego Public Library

COLORADO
Denver Public Library

CONNECTICUT
Hartford Public Library

MARYLAND
Enoch Pratt Free Library, Baltimore

MASSACHUSETTS
Boston Public Library

MICHIGAN
Detroit Public Library

MINNESOTA
Minneapolis Public Library

MISSOURI
Kansas City Public Library
St. Louis Public Library

NEW JERSEY
Trenton Public Library

NEW YORK
Brooklyn Public Library
Buffalo and Erie County Public Library
Rochester Public Library
New York Public Library

OHIO
Akron Public Library
Cincinnati Public Library
Cleveland Public Library
Dayton Public Library
Toledo Public Library

OKLAHOMA
Oklahoma County Libraries, Oklahoma City

TENNESSEE
Memphis Public Library

TEXAS
Dallas Public Library
Fort Worth Public Library

WASHINGTON
Seattle Public Library

WISCONSIN
Milwaukee Public Library

An extensive collection of NASA and NASA-sponsored documents and aerospace publications available to the public for reference purposes is maintained by the American Institute of Aeronautics and Astronautics, Technical Information Service, 750 Third Avenue, New York, New York, 10017.

EUROPEAN

An extensive collection of NASA and NASA-sponsored publications is maintained by the British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England. By virtue of arrangements other than with NASA, the British Library Lending Division also has available many of the non-NASA publications cited in STAR. European requesters may purchase facsimile copy or microfiche of NASA and NASA-sponsored documents, those identified by both the symbols "#" and "*", from: ESRO/ELDO Space Documentation Service, European Space Research Organization, 114, av. Charles de Gaulle, 92-Neuilly-sur-Seine, France.
NASA CONTINUING BIBLIOGRAPHY SERIES

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TITLE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA SP–7011</td>
<td>AEROSPACE MEDICINE AND BIOLOGY</td>
<td>Monthly</td>
</tr>
<tr>
<td></td>
<td>Aviation medicine, space medicine, and space biology</td>
<td></td>
</tr>
<tr>
<td>NASA SP–7037</td>
<td>AERONAUTICAL ENGINEERING</td>
<td>Monthly</td>
</tr>
<tr>
<td></td>
<td>Engineering, design, and operation of aircraft and aircraft components</td>
<td></td>
</tr>
<tr>
<td>NASA SP–7039</td>
<td>NASA PATENT ABSTRACTS BIBLIOGRAPHY</td>
<td>Semiannually</td>
</tr>
<tr>
<td></td>
<td>NASA patents and applications for patent</td>
<td></td>
</tr>
<tr>
<td>NASA SP–7041</td>
<td>EARTH RESOURCES</td>
<td>Quarterly</td>
</tr>
<tr>
<td></td>
<td>Remote sensing of earth resources by aircraft and spacecraft</td>
<td></td>
</tr>
<tr>
<td>NASA SP–7043</td>
<td>ENERGY</td>
<td>Quarterly</td>
</tr>
<tr>
<td></td>
<td>Energy sources, solar energy, energy conversion, transport, and storage</td>
<td></td>
</tr>
<tr>
<td>NASA SP–7500</td>
<td>MANAGEMENT</td>
<td>Annually</td>
</tr>
<tr>
<td></td>
<td>Program, contract, and personnel management, and management techniques</td>
<td></td>
</tr>
</tbody>
</table>

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546