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ABSTRACT

Modern high accuracy measurements of the non-rigid earth are to

be referred to four-dimensional, i.e., time- and space-dependent,

reference frames. Geodynamic phenomena derived from these measure-

ments are to be desr-ibed in a terrestrial reference frame in which both

space- and time-like variations can be monitored. Existing conven-

tional terrestrial reference frames (e.g. CIO, BIH) are no longer suit-

able for such purposes.

The ultimate goal of this study is the establishment of a

reference frame, moving with the earth in some average sense, in which

the geometric and dynamic behavior of the earth can be monitored, and

whose motion with respect to inertial space can also be determined.

The study is conducted in three parts. In the first part prob-

lems related to reference directions are investigated, the second part

deals with the reference origins and the third part with problems

related to scale.

The approach is based on the fact that reference directions at

an observation point on the earth surface are defined by fundamental

{
vectors (gravity, earth rotation, etc.), both space and time variant.

These reference directions are interrelated by angular parameters, also

derived from the fundamental vectors. The interrelationships between

these space- and time-variant angular parameters are illustrated in
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hierarchic structures or towers, which make the derivations of the

various relationships convenient. In order to determine the above

parameters from observations using least squares techniques, model

towers of triads are also presented to allow the formation of linear

observation equations. Although the model towers are also space and

time variant, their variations are described by adopted parameters

representing our current knowledge of the earth.

After the translational and rotational degrees of freedom

(origin and orientation) have been discussed, the notion of a length,

scale degrees of freedom are introduced and studied under spacelike/

timelike variations.

According to the notion of scale parallelism, originated by

H. Weyl, scale factors with respect to a unit length are given.

Three-dimensional geodesy is constructed from the set of three base

vectors (gravity, earth-rotation and the ecliptic normal vector).

Space and time variations are given with respect to a polar and singular

value decomposition or in terms of changes in translation, rotation,

deformation (shear, dilatation or angular and scale distortions).
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Introduction

In order to take full advantage of high quality geodetic obser-

vational systems, such as lunar and satellite laser ranging and radio

interferometry to quasars, an appropriate terrestrial reference frame

is needed in which geodynamic phenomena can be detected and monitored.

The importance of the definition, determination and subsequent mainte-

nance of such a terrestrial reference frame has been recognized by

many, although, so far, no satisfactory and comprehensive proposals for

its realization have been put forward [Kolaczek and Weiffenbach, 1975;

IAU, in press].

The ultimate goal of this study is the establishment of such a

reference frame, moving with the earth in some average sense, and whose

motion with respect to inertial space can also be determined.

In attempting a solution to the problem, a "zero base" approach

is taken. Being fully aware of the large body of accumulated knowledge

in the relevant disciplines of geodesy, astronomy and geophysics, we

conduct a step-by-step analysis of known concepts and relationships with

the purpose of establishing an unbiased and systematic foundation. In

many cases all we do is redefine and reformulate familiar concepts and

quantities as necessary. The earth and its environment are considered

in their full complexity. Only at a much later stage do we intend to

make approximations and only after a quantitative analysis of their

effects. This paper which deals with the directional aspects of the

3
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problem will be followed by subsequent ones which will treat the prob-

lems of reference origins and scale, and also the question of how the

reference frame can be established and maintained in practice.

1. Fundamental Natural Vectors

Natural vectors are defined as such by their property of being

dependent only on some natural phenomena and consequently independent

of any artifacts such as coordinate systems, reference models, etc.

Consider a point P on the surface of the earth and another point Q which

serves as a target being observed at some epoch T from the point P. For

the epoch T we define a number of natural vectors at the point P, desig-

nated as the fundamental vectors.

Q - the Observational Vector. The light ray which travels from

Q to P (or vice versa) is generally a space curve due to the refraction

by the atmosphere. What we actually observe is the direction of the

tangent to that space curve at the point P. This tangent line is

defined as the observational fundamental vector and is denoted by Q.

-I' - the Local Vertical Vector. The gravity vector at the

point P is denoted by P. Its magnitude is the value of gravity at P.

We define the second fundamental vector - I', opposite in direction to T,

to be referred to as the local vertical vector.

S2 - the Rotation Vector. Rotation is change of orientation of

a body or mass element with respect to some inertial system. It can be

found )y studying the space-like change of the velocity vector of mass

4



points with respect to inertial space. For example, if the space-like

change is zero, that is, constant velocity at all points, there is no

rotation, but only a translation. Let V be the velocity vector with

respect to inertial space, then	 rot V is by definition the rotation

vector, also called the vorcicity vector. Its magnitude is the instan-

taneous rotation velocity.

The definition separates reasonably rotation and deformation

since the earth is not rigid. rot V just contains the antisymmetric

part of the tensor grad V, whereas the symmetric part describes defor-

mation. The earth rotation vector changes with respect to time due to

precession, nutation and polar motion and with respect to space due to

the deformability.

X - the Ecliptic Normal. The ecliptic is the osculating plane of

the space curve which the earth-moon barycenter is moving along. It is

referred to a heliocentric system with inertial orientation. The vector

X is the binormal vector of this curve. An approximation is the normal

vector of the plane being spanned by the heliocenter (considered as

fixed) and the earth-moon barycenter.

Basic Angular Parameters

Project the four fundamental vectors Q, _T9 SZ, and X onto a

unit sphere centered at point P (Fig. 1). At any instant the four

points are related by five basic angular parameters as follows:

r
B altitude (observable)

A azimuth (astronomically observable)

(D latitude (astronomically observable)

5



H hour angle of vernal equinox

E obliquity of the eclitic

-1	 1r	 ^\

A

7 -
2+H

r 
2 8

Q	 E

X

Fig. 1

The vernal equine- 'r is defined by T - Sk x X. The five angular para-

meters depend on the positions of the four fundamental vectors. As the

vectors were defined in general to be space and time variant, it fol-

lows that the basic angular parameters are also space and time variant.

2. Reference Modei

Analysis of a natufal phenomenon is usually conducted through

the introduction of an approximation, a so-called reference model.

Using current knowledge of the phenomenon, a relatively simple model

may be defined so that a reasonably good prediction of the phenomenon

can be made for given space and time coordinates. In this section we

define a reference model for the earth, the fundamental vectors, and the

r
basic angular parameters defined in Section 1.

Reference Model of the Earth. The model earth is defined dynam-

ically (from the points of view of its gravity field and rotation) as a

6



rotationally symmetric level ellipsoid with major semiaxis a and eccen-

tricity F.. The ellipsoid rctates versus inertial space with uniform

velocity w about an axis which is slightly inclined to its minor

(figure) axis in accord:ince with a specified polar motion model. The

mass of the ellipsoid m is equal to the mass of the earth, and the

parameters a, e, and w are selected so that the normal (model) gravity

potential on its surface is constant and is eauat to the gravity poten-

tial on its surface is constant and is equal to the gravity potential

on the geoid. The normal gravity potential at a given point, external

to the ellipsoid, can be calculated from Gm, a, e, w, and the coordi-

nates of the point where G is the Newtonian gravitational constant

[:ieiskanen and Moritz, 1967, pp. 64-671.

The orientation of the rotational axis versus inertial space

for a given epoch is calculated by the currently adopted models and

parameters of general precession and astronomic nutation.

Geometrically, the model earth has a rigid irregular surface:

the telluroid at a specified fundamental epoch [ibid., pp. 291-204]. Thus

distances and angles between model surface points are assumed to be time

invariant.

The Fundamental Model Vectors. We define the fundamental. vec-

tors of the model in a similar manner as for the natural case:

q the observational vector is the straight line from the observing

point P to the target point Q as affected by aberration and

parallax

7



-Y the local vertical vector is opposite in direction to the vertical

gradient of the normal gravity field at P

w the model rotational vector at point P

x the vector normal to the mean ecliptic plane

The model fundamental vectors at a given epoch are related throu-ii ra.;,uel

angular parameters similar to the natural ones as follows:

S model altitude

a model azimuth

model latitude

h model hour angle of the vernal equinox

E obliquity of the mean ecliptic

At a given epoch we can project on the unit sphere the natural

and the model fundamental vectors as sht^*n in Fig. 2. The four dif-

ferences 8q, 8y, 8w, 8x are called disturbance vectors. The disturb-

ances in the basic angular parameters are

6s=s-^
Sa = A -a

dh =H -h

8E _E—E

The mathematical relationships between the disturbance vectors and the

disturbances in the angular parameters are given in Section 7.

8
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8X` X
Fig. 2

3. Space-- and Time-Like Variations of the nundamental Vectors

The fundamental vectors defined for the natural case and for the

reference model vary in space and in time. The space-like variation of

V is the difference between V + dV at a second point P + dP, in the

neighborhood of P, and V at the same epoch. We can express the

space-like variation of V as its partial derivative versus the space

variable: aV/as.

In a way similar to the space-like variation, we define the

time-like variation of V at point P and epoch T as its partial deriva-

tive versus the time variable: aV/aT. The interpretation of the

time-like variation is complicated by the necessity of defining the

inertial frame as the common reference for the two states of the vector,

i.e., V (T) and V AT + dT) . To simplify our treatment of variations, the

fundamental vectors are placee in a hierarchy beginning with Q throu4;h

9



X, up to i which is considered as any inertial vector. Thus, in

order to obtain the ,absolute derivative of a fundamental vector V, 2_
v
W

we have to differentiate both the coordinateb of V and the base vectors

defined by the fundamental vector on the next higher stage. Therefore

we have to connect these base vectors with the inertial frame by means

of time-variable rotation matrices. These systems of base vectors and

rotation matrices will be introduced in detail in the next chapte,.

In Table 1 we have listed certain phenomena causing the variations and

disturbances of the four fundamental vectors. A point to be kept in

Table 1

Sources of Variations of the Fundamental Vectors

Funda- Space-Lilco Variations Time-Like Variations
mental
Vector Model Disturbances Model Disturbs.	 .`8

parallax,
aberration refraction relative motion

of target
perturbations in
motion of target

positional
difference

deflections of
the vertical constant spin

rate, model
polar motion

correction to polar
motion, spin rate
variations, tides,
mass redistributionslocal

lunt-solar correction to luni-
ro tations

precession solar preces-.pion
+ nutation + nutation

Planetary
precession

correction to plane-
tary Precession,
ecliptic wobble

10



mind is that certain phenomena associated with space-like variations of

a vector are not necessarily time invariant and vice versa, as, for

example, refraction or deflections of the vertical.

4. Natural and Model Triads

The fundamental vectors defined in the preceding sections can

Le used to define orthonormal vector bases, or triads. According to the

vectors used there will be natural and model triads.

Observational Triad - E1. The three axes of the triad E1 at

the point P and epoch T are defined by the vectors Q and -f as

E13 = norm Q

E12 = norm [Q x (-f)l

E11 a gl3 x gl2

Local Horizon Triad - E2. The axes of E2 are defined by the

vectors -f and S2 as follows:

E2 3 = norm -f

E2 2 = norm [S2 x (-f) ]

E21 = E23 x 122

Equatorial Triad - E3. The axes of E3 are defined by the vec-

tors S2 and X as follows:

E33 = norm S2

E31 = norm (Q x X)

E32 E33 x 931

11



Ecliptic Triad - E4. The axes of E4 are defined by the vectors

X and i. At this stage we introduce the inertial triad a which is a

space- and time-invariant orthonormal vector base. Its specific orien-

tation is not important at the moment and will be left undefined. Vec-

tor i is garallel to axis e3 of the inertial triad e. The definition of

E4 is as follows:

E43 - norm X

E41 - norm (i X X)

a2 E4 3 x E41

Note that axis 1 of E4 does not necessarily point towards the vernal

equinox as is the case with the ecliptic system used in astronomy.

The triads of the reference model are defined similarly, the

only difference being the substitution of the model fundamental vectors

q, -y, w, x for the natural ones. The model triads are denoted by

lower case letters el, e2, etc.).

The above definitions result in left-handed systems in El and

E2, and in angular parameters (altitude, azimuth, etc.) in accordance

with geodetic conventions (see [Mueller, 1969, pp. 32-42]). The triads,

based on the same fundamental vectors, could also be defined more

systematically (i.e., all right-handed), but in that case the angular

parameters would not comply with presently accepted conventions.

Transformation Between the Triads. We derive the orthogonal

(rotational) transformations between the sequence of triads by intro-

ducing three additional angular patameters, t V V 2, 
q)3 

(see Fig. 3),

which together with the basic angular parameters a, s, ^, h, and E

12
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serve as parameters in the transformations. The sequence of transfor-

mations is as follows:

e4 - R1 (^ 2 ) R3 (-1 3 ) e

e3 = R1 (-E ) R3 (V l ) e4

e2 - P1R2 (7r/2-^) R3(h)e3

el - R2 (7r/2 - S) R3 (a) e2

where Ri (p)	 is a conventional rotational matrix around the j axis by

an angle u Q = 1, 2, 3) [Mueller, 1969, pp. 43- 44),

	

Pk	 is a permutation matrix of the axis k (k = 1, 2, 3)

eil

	

ei	 stands for the triad ei2
—.3
ei

7f

a ^+' e, 
( IC
	 Ae3

2	 I	 2

	

ql'2 '	 e
2 /^^ ^^ I
e I 	x 	 2	 7r

	

^	 q	 e4	 2 +^a
I

Fig. 3

The transformations are orthogonal so the inverse relations can

be obtained in general by reversing the order of the rotational matrices

and also the sign of the rotational angle. The transformations between

the sequence of the natural triads Ei (i = 1, 2, 3, 4) and e (the

13
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inertial triad) are the same, except that instead of the model angles

one must use the natural parameters A, B, (D, H, E and also

Ti t T2 , 
T3 (the latter group for the transformation between the inertial

triad and E4).

S. Variations of a Triad

Since the triads are defined by the fundamental vectors, it is

obvious that their directional variations will involve a rotation of the

triad. Such variations are possible in three dimensions: 1) in space,

2) in time, 3) by the transition from the natural to the model funda-

mental vectors or vice versa.

Instead of analyzing separately the effects of these variations

and disturbances, we shall study in a general way the influence of the

variation of the fundamental vectors on the triads defined by them. It

should be relatively easy, once the general formulae are available, to

specify the kind of variation and the specific triad to which it

applies. The same holds true for the disturbances.

Let Z and-5 be two fundamental vectors (Z the "lower" and D the

"upper" one). The triad of which	 norm D) is the 3-vector is

called E' _ [E1 ^, E2 ^, E3- ] T . The triad of which norm Z is the

3-vector is called E being defined as

E = norm Z

E2 = norm (D x Z)

E1* - E2* x ^3*

The representation of D in both systems is:`

D = 
[D1 • , D2 • ^ D3 • ] E.

with the coordinates D1. = D2- = 0, D3- = IDI, and, since the relation

14
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between E' and E is

E	 R2 (H/2 - It) R3 (A) E'

D	
[D
l* , D2* , D3* ] E

where [D1* , D2* , D3*
1 T	

R2 (IT/2-(P) R3 (A) [ D1. , D2., D3-]T

_ [-1D1 cos (P, 0, 1151 sin I)]

or	 D= -151 cos (P El* + 151 sir. (p E3* .

The fundamental vector Z is in the E -system:

1* )* 3* 3*
Z	 [Z , Z`	 Z ] E

with the coordinates Z 
1* 

= Z 
2* 

= 0, Z 
3*

= fZ`,

or	 Z = IZ, E3*

The variations of D and Z are

dD - [dDl. , dD2. , dD3- ] E'

= [dDl 	dD *, dD3 ] E

with dDl*	 cos A sin 4) dDl I. + sin A sin cD dD 2 - - cos (D dD3

dD2* _ - sin A dDl ^ + cos A dD2

dD3*J Lcos A cos (D dD2 - + sin A cos 0 dD2 - + sin 4) dD3

dZ = [dZl* , dZ2* , dZ3* ] E

Now let us construct the new base vectors E + dE after a small varia-

tion of the fundamental vectors D and Z =>D  + dD and Z + dZ.

a

d
i

1

15



E3* + dE3* = norm (Z + dZ)

= norm Q dZl* , dZ2* , z3* + dZ3*] E }

1*	 2*[ d- Z W d^3* , 1] E

E2* + dE2* = norm [(D + dD) x (Z + dZ)]

= norm { [dD2* (Z3* + dZ3*) - (D 3* + dD3*) dZ2* ] El* +

+[(D3*+dD3 *) dZ1* - (D1*+dD1*)(Z3*+dZ3*)]E2* +

+ [(D1*+dDl*)dZ2* - dD2*dZl* ] E3*}

dD2* D3*dZ 2*	 dZ2* --*
[ _ D1* + D1*Z3* , 1 ,- Z3*] E

El* + dE"' _ (E2* + dE2* ) x (E3* + dE3*)

dD2* D3*dZ2*	 dZl*

D	 D Z	 Z

Collecting the new base vectors in one column matrix, we obtain

E1* + dEl*

E2* + dE2* _ E + dE _ (I + Q) E

E3* + dE3*

a

^j

where the antisymmetric matrix

dD2* *dZ2*D3 dZl
*

0
_

'* 1* 3* 3*
D^ D	 Z Z

dD2*	 D3*dZ2* dZ2
*

S2 = -	 + 0 -
*Z3*D1* D1

Z3*

dZ1* dZ2* 0
z 3* z3*

16



is the Cartan matrix S2 [Grafarend, 1977, pp.139-160]. Expressing the

elements of the D-vector in terms of the E'-frame we get

1•
dD

s i n A s e c
(D

l*dZ
0 -;Cr_

-

IZI
1

2. 2* i
- cosAsec iD + tan i--

dlD
-sinAsec 1D

D dZ 2*
0

IZI
+ cos Asec i- tan dZ —

1*
dZ

ry*

dZ" 0
fZi

Now apply the general expressions derived above to any of the geodetic

triads. For example, by identification of D with SZ and Z with -I', of

dD with polar motion and dZ with a change of the vertical direction, we

find the influence of polar motion and of a change of the vertical onto

the orientation of the horizontal system. A and fi are then longitude

dDl
.
	dD2^

and latitude, _ - - x and 	 the components of polar motion,

I D I	 IDI
1*	 2*

dZ = k and dZ = k the angles of vertical change in north-south and

IZI	 1	 IZI	
2

east-west directions respectively. In order to get the horizontal sys-

tem north-oriented, some signs have to be changed. Thus we finally

obtain

17



dE2 1 R (-sin A sec 4^ x - cos A sec 4) y + tan 4) k2 ) E2 2 + k, E23

dE2 2 = (sin A sec (P x + cos A sec (P y - tan 4) k 2 ) E2 1 + k2 E23

dE2 3 a -k1E2 1 - k2 E2`

There are many similar applications of the general formula, for

instance the influence of a change of the vertical and a motion of the

target on the observational triad, or the dependence of the equat. ._

system on planetary precession, luni-solar precession and nutation.

While in the first two examples the motion is relative to an earth-fixed

observer, it is described relative to an inertial system in the latter

one. The general formula is valid for both cases.

We can interpret the Cartan matrix as a rotation matrix of

*
three differential Cardan angles about the three E -axes, the first

2*	 1*	 1•

angle being - dZ , the second dZ and the third sin A sec 4) dD -

IZI	 I7I	 ID)

2 •	 '*

	

-cos A sec ^ dD + tan 4)
dZ"	 Later on we shall call them Ti in the

IDI	 IZI
first level (observational triad), Vi in the second level (horizontal

triad), ^i in the third level (equatorial triad) and ui in the fourth

level (ecliptic triad), i = 1,2,3.

6. The Commutative Diagram of Triads

To obtain a better insight into the interrelations between the

various triads, we will construct three -dimensional structures to be

referred to as the E(e) Towers or the Commutative Diagram of Triads

(see rig. 4). Each point in the diagram represents a certain triad

18



EI(2, 2)	 EI(1,2)

observational
	 A, 6

level

H2O

local
horizon
level

\1, E
equatorial
level

ecliptic
level ....._^	 ^^	

E4 (1,1)	 ^I

^

..

inertial triad a	 ^/' t^^e..tr. .. .. -..m•..
space axis

Fig. 4
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according to the label attached to it. The straight lines between the

points represent orthogonal (rotational) transformations between the

respective triads. The overall organization of the diagram is as fol-

lows:

E-tower	 tower of the natural triads (solid lines)

e-tower	 tower of the model triads (dashed lines)

revels	 1, 2, 3, 4 - according to the type of triads,

i.e., observational, horizontal, etc.

space-like	 the lines parallel to the space axis represent
variations

space-Like variations of the triads

time-like	 the lines parallel to the time axis represent
variations

time-like variations of the triads

disturbances the diagonal (dotted) lines which run on level i

between an Ei triad and the corresponding ei

triad. These are the only connections between

the E-tower and the a-tower and represent the

disturbances explained in Section 2.

The diagram thus represents all triads, their space- and

tir:: 'A.ke variations, and model disturbances at a single point P. In

order to identify space- and time-like variations, we introduce two

indices Q , k) which follow the symbol Ei or ei of the triad. Both j

and k can be 1 or 2, where index j = 1 stands for triads at P and j = 2

at P + dP. In a similar manner k = 1 stands for triads at epoch T

while k = 2 at T + dT. Thus the index (1, 1) indicates the situation at

P at epoch T, (2, 1) is after a space-like, (1, 2) after a time-like

3
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variation; (2, 2) represents the situation when both space- and

time-like variations affected the trial (1, 1).

Interleve?. Transformations. In Section 4 we derived the inter-

level transformations along a typical sequence Ei(3, k), i - 1,2,3,4.

Fig. 4 shows the pairs of parameters involved in a transformation

between two adjacent triads along a column of the tower: A, B; H, ^D;

etc. As these interlevel parameters are space and time variant, it is

obvious that they carry j and k indices matching the column of triads.

We have identified the various parameters and the respective triad

columns of the tower stru^ture where they apply in Table 2. For com-

pactness of representation, denote by a the vector of model angular

parameters as follows:

CrT = [a , S, h , 00	 19 ^2 , X31

Following the notation introduced in Section 3, we denote space varia-

tions by DO/DS, time variations by 8a/8T, disturbances (natural minus

model) by 86, space variations of disturbances by 8(6a)/8S, and time

variations of disturbances by 3(8ct)/8T.
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Table 2

Interlevel Transformations

us Transformation Parameters Tower Coluz=

C;j Cr at (1.1)

as Cr + a s ds at (2.1)

a3
Q+aT dT

at (1.2)

as a +as	 aTd3 +	 dT at (2,2;

an 8a + a Ei (191)

as ba + a +
as + Omni Ei (291)

as	 a s

a, 6a + a	 + IN + irldT
Ei (192)

..as 6c + a + a—°^ + a SQL ag +
INT+ rldT Ei (2.2)

as	 as  

Inlevel Transformations. We have defined in Section 5 the dif-

ferential inlevel transformation vectors. In Fig. 5 we can see a total

of 12 such vectors for level one. As the changes in the space and time

variables dS and dT are differential and the diagram is commutative,

there are seven independent conditions to be fulfilled:

T6 = T1	
T10 = -T

2 + T
3 
+ 

T5

T7 T2	 T11 
-T6 + T10 + T8

T8 
a 

T4
	 T12	 T7 + T11 + T9

T9 T5

22



i

ff^_
I'

'--- TQ

E l (1,2)E1(2,2)

f
T9

EI(2,1)

_l606
•

T i ••'••	 -- 	 •^q

(^,2) r r	 e 10,2)

T `	 1T	 ^	 •
r7 

i	 1 ^^	 ^°	 I1	 1	 •

r12 
••• el (2,1)	 •	 _	 • "

•	 •	 E
• •	 r"" T4

	 •

space axis	
—J

Fig. 5

and tht-refor y onl y f Ise Independent t tt vvetoI'm I v f t . These represent

(ltO tollowinK vitriat10us itt the trldds of Ic*vel one:

^sl
spare- Ilke

1. tlnte-1lke

T, l dtahirh:t tic es

^T 4 spew- I I ke

hate-I Ike

variations of model trinds

vrtrIitt ions of tutturaI triads

The vaI- Iotis InIovel transformation paramt , tei's 0, v, etr.) oral he

nxpreKSed as fctnrtlons of the relevant spare- and time-lIke varlat tons

of the fundamental vvetors as :shown III Section 5.
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7. Variations in the Basic Angular Parameters as a Function
of Variations in the Fundamental Vectors

We are faced with a large number of transformation parameters

required to relate the various triads in the towers, we L--ve already

taken a step towards reducing their number in the inlevel transforma-

tions. We will complete the reduction process by expressing the varia-

tions of the basic angular parameters (interlevel transformations) as a

function of variations of the fundamental vectors and show that the

transformation between any two triads in the towers is de;-ndent on the

variations of the four fundamental vectors only.

Following ideas in (Crafarend, 1977, pp. 207-212), in Fig. 6

we have four triads which together form a closed loop of a commutative

diagram. This loop is used as a typical example, and therefore the

subscripts of T and v (which are T 3 , v3 , i.e., disturbances) are not

indicated. From previous sections we have

e2(1,1) = RE (a,R) el(1,1)

I:1(1,1)	 R C (T) el(1,1)

E2(l,i) = RC (v) e2(l,l)

E2(l,l) - RE (a + da, ^ + ") El(1,1)

where RE ((x	 = R3 (-a) R2 ({3 - n/2), Eulerian rotation matrix

RC (T)	 - R3 (T 3) R2 (T2 ) Rl (T 1) and

RC (v)	 - R3 (v3) R2 (v2 ) R i (v 1 ), Cardanian rotation matrices

Thus

PC(v) c2(1,1) - RE (a + da, 0 + 66) El(1,1), or

RC (V) N(a,R) - RE (a + da, 0 + 6^) C(T)
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V --w-

7 W.

t

e2 (1, 1)

f
a,,3

E2(1,1)

T

a+8a,
0+8.8

eI(I,I) EI(1,1)

Fig. 6

From here we can arrive, by patient algebra, at the following; expres-

Kions:

,I`	 -cos1^	 0	 s' 1111 _	 0	 0	 -1
T +	 ^+

['Ski	 0	 -1	 0	 -SIIla	 cos(	 0

Treating in a similar way the other loops of the columns

we get

Sh	 -cosh	 0	 -sine	 0	 o	 -1

u+
c^^+	 0	 1	 0	 -S11111   	 cosh	 0

tS^^1	
0	 -sins"	 cost'	 0	 0	 -1

^St'	 -1	 0	 0	 cosq)	 511140	 0

Substitute into T, \ 1 , %, It their equivalents, perform the multiplica-

tions, and rcarrang;e. The results are summarized in T11111,e 3. Tile

matrix presented is actually the matrix of partial derivativrs of the

hasic angular parameters vs. variations of the fundamental vvetors. It

should be obvious that the matrix would not change if we cousidcrcd

c;pacc-lilts variations or time-Like variations itlstcad of the

25
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disturbances in the derivation as long as Fig. 4 is a commutative dia-

gram. Table 3 represents the situation in the model. For the natural

parameters, the relationships are, of course, identical.
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Appendix A

Differentials of a Compound Rotation Matrix

Preliminaries

Analytical expression for the differentials of an orthogonal

matrix R which represents a sequence of elementary rotations is the

subject of this Appendix. Rotation matrices Ri (e) are used in ortho-

gonal coordinate transformations as shown in [Mueller,1969, p. 431

where 6 is the angle of rotation and i is the axis about which the

rotation is performed.

The differentiation of a rotation matrix Ri (e) with respect to

the angle 0 is obtained by pre- or post-multiplying the R i (e) matrix by

a skew symmetric Li matrix

8Ri(e)
8e - LiRi(e) - RiMLi

The Li matrix is defined as the i layer of the skew-symmetric eijk sys-

tem as shown in [Lucas, 1963]. The rotation and Lucas' matrices are

1 0 0 cose 0 -sinG7 cose sine 0

R1 (0) - 0 cose sine R2 (6) - 0 1 0 R3(e) -	 -sine cos0 0

0 -sine cose sine 0 lose 0 0 1

	

0	 0	 0	 0 0 -1	 0	 1	 0

	

L1 = 0	 0	 1	 L2 =	 0 0	 0	 L3 = -1	 0	 0

	

0	 -1	 0	 1 0	 0	 0	 0
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A rotation matrix R1 (6) or a product of two or more rotation mat-

rices are orthogonal 3 x3 matrices with the following two properties:

(i) The determinant is equal to one.

(ii) The inverse is equal to the transpose.

The above properties of a 3x 3 orthogonal matrix A can be utilized for

deriving the elements of the ad ,joint matrix of A. As is well known the

ad ,joint of a nonsingular matrix (the transposed matrix of its cofac-

tors) divided by its determinant is equivalent to its inverse

ad A = A-1
A

According to the properties of A as stated above, i.e.,

JAI - 1 and	 A7 1 = AT

one has

adj. A = AT

or explicitly

(a22a33-a32a 23 ) -(a12a 33-a13a32 )(a12a23-a22a13 ) all a21 a31

adj A u -(a21a33-a31a23 ) (a11a33-a31a13 xa11a23-a12a13 ) a12 a22 a32

(a21a32 a22a 31 ) -(a11a32-a12a31 )(a11a22-a3.2a21 ) a13 a23 a33

Use the above result in deriving an expression for the matrix product S

S - ABA 

where A is a 3x 3 orthogonal matrix and B is a skew symmetric matrix

29
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9

	

all a12 a13	
0	 b3 -b2

	

A = a
21 a22 a23	

B	 -b3 0	 bl

	

a31 a32 a33	 b2 -b1 0

q

Perform the multiplication, regroup to obtain 	
i

(a12a23-a22a13)b1

0
	

+ (a21a13 a23a11)b2

+ (a22a11-a21a12)b3
S =	 0

skew-symmetric,

(a33a12-a32a13)bI

+ (a31a13 a33a11)b2

+ (a32a11-a31a12)b3

(a33a22-a32a23)bI

+ (a31a23-a33a21)b2

+ (a32a21 a31a22)b3

0

Using the property of the adjoint of an orthogonal matrix (A),

0 (a31b1+a32b 2+a33b3 ) - (a,)lbl+a22b2+a23b3)

S	 0
(allb1+a12b2+a13b3

skew-symmetric	 0

Differentials of a Sequence of Rotations

The compound rotation matrix R which represents a sequence of ele-

mentary rotations Ri (61 ) is defined as their product
J

R = Ri (En) ... Ri (6 2)Ri (01)
n	 2	 1

Derive an expression for the partial derivative of R with respect to

one of the angles 0 i where j = 1,2,...,n and in a form which is con-

venient for programming on a computer.
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i

Partition R into three parts

R - ARi (6i)B

where A, R  (6i ) and B are orthogonal.

aR = A Ri (e )LiB

L 
i 
B can be represented as BQ i where Q i is a skew symmetric matrix with

elements which are a function of B.

Qi = BTLiB

ITsing the expression for S as developed earlier for each of the three

cases i - 1,2,3 one gets

	

0	
b13 -b12	

0	
b23 -b22	 0	 b33 -b32

	

Q1 = -b13	 0	
b11 Q2 = -b 23	 0	 b21 Q3 = -b33
	 0	 b31

b12 -b11
	 0-	 b22 -b 

21	
0	 b32 -b31	 0

The resulting partial derivative of R is thus

aR
86 

= A Ri 
(0^ )BQi = RQi

	

i	 3

The variation of the R matrix as a function of variations of the

6j angles is obtained now easily from the above results

6R - 86 66n + ... a@ 66 + ... a9 661
n

	

	 1

n
SR - R • ZQi 6e	 R - 0

J=1 3
31
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i

where Qi is a function of the i row of the product of the j -1 ele-

mentary rotation matrices to the right of Ri (Ai).

Differentials of Cardanian and Eulerian Rotation Matrices

There are two special types of compound rotation matrices which

have been used extensively in deriving the various relationships in the

E-tower:

Cardanian rotation matrix

RC(a•R.Y) = R3(y)R2(s)R1(a)

and

Eulerian rotation matrix

RE (a,$,y) = R3(y)R2(Tr/2-s)R3(a)

Using notation and formulae developed in the preceding section one

obtains for a Cardanian matrix,

cosscosy cosasiny + sinasinscosy sinasiny - cosasinscosy

RCM -cosssiny cosacosy - sinasinssiny sinacos 'Y + cosasinssiny

sin $	 - sinacosP 	cosacoss

DR	 DR	 DR

a = RCLi ; 
'W = R3 (Y)R2 (0)L2R1 (a) ; ByC = L 3 

R C

0	 0 0 0	 sina	 -cosa 0	 cosacoss sinacoss

Qa = 0	 0 1 Q
0 

= sina	 0	 0

[Cosa

QY = -cosacoss 	0 sins

0	 -1 0 0	 0 -sinacoss -sins 0

6RC = RC • 
[Qa6a 

+ Qsds + Qy6y] = 
RCnC
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0 sina80 + cosacoso6y -cosa80 + sinacosHy

sac =	 0	 8a + sinO6Y

skew symmetric	 0

The elements of the S2c matrix are differentially small, thus

RC + 8x0 - RC - (I441C)

- RO(a,R,Y)RO(60t+sin$6y,cosa6 B—sinacosOdy,sina6$+cosacos^8y)

The derivation of a variational equation for the Eu]erian matrix is as

follows:

cosacosysinR - sinariny sinacos'YsinO + cosasiny -coOcosy

RE - -cosasinysinQ - sinacosy -sinasinYsin^ + Cosacosy cos$siny

cosacoso	 sinacosS	 sinO

DR 
 a REL3 a^ s R3 (Y)R2 (1'/2-O)L2R3 (a) , a, ^ .11

0 1 0	 0	 0 cosy	0	 sink	 -sinacoO

Qa - -1 0 0 Q^ -	 0	 0 sina QY - -sink	 0	 cosacosR

0 0 0	 -Cosa -sina 0	 sinacos$ -cosacos$ 	 0

IRE - RE - [Qa'a + Q060 + 'Y8Y ] - RE - QE

0 8a + sinUy coscO - sinacosUy

0E =	 0	 sinaU + cosacosUY

skew symmetric
	

0
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RE + IRE - RE (14Y

RE(a,O,Y)-RC(sinaSO+cosacoeO6y,-cosad$+sinacos$6y,Ba+sin$6y)

Note the similarities between the S2c and f2E matrices:

C
12	 E23	 C23	 E12	 c13	 z13
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E1(1,1)

Appendix B

Differential Relationships Between Model and _Natural
Triads, Vectors and Angular Parameters

Derivation of the differential relationships between model and

natural quantities as presented in their final form in the main text are

the subject of this Appendix. The results obtained in the last section

of Appendix A are used extensively. For the sake of completeness, cer-

tain formulae given in the main text are repeated.

Levels 1 and 2

e1(1,1)

	

a,R
	

1, a+da, S+d^

	

e2(1,1)
	 v	

E2 (1,1)

Fig. B.1

The disturbances (6cx,bs) of model azimuth and altitude respectively as

well as the components of the two rotation vectors T T W (Tl T 2 T3],

vT = (vl v2 v3 1 are regarded as differentially small angles so that the

Cardanian rotation matrices Rc (T) and Rc (v) tan be written as follows:

	

1	 T3 -T2	 1	 v3 _VD
I

Rc (T) _ -T 3 	1	 T1	 Rc(v) = -v3	 1	 V11
T2 -T1 1	 v

2 -vl 1

35
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From the commutative diagram in Fig. B-1,

E2(1,1) - R 3 1 - (a+6a)IR2[($+6$) - Tr/2JEl(1,1)

El(1,1) - Rc (T) el(l,l)

E2(l,l) - RC (V) e2(1,1)

e2(1,1) - R3(-a)/R3($ -7r/2) el(l,l) - R12 el(l,l)

sinscosa -sins cosscosa

where R12	 sin$sina	 Cosa cosssina

-cos$	 0	 sins

Using the formula for variation in R12 as derived in Appendix A,

E2(1,1) - R12(I4Q12)E1(1,1)

where

0 0 -1	 0 -sin$ 0	 0	 -sin$6a -6$

SI12 = 0 0 0 6$ + sins	 0 cos$ 6a - sin$6a	 0	 cos$6a

1 0 0	 0 -cos$ 0	 6$ -cos$aa 0

From the four equations above and substituting the expressions for 6R12'

R(V) =R12	
c

(I4_P 
)R(T)

c	
R12

1	 T3 - sins6a	 -T2 -SO

12 -T3 + sin$6a	 1	 T1 + cos$da Rig

T2 + 6$	 -T1- coss6a	 1

R12 is an orthogonal matrix and so the development for S in Appendix A

can be applied:
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1	 v3 -v2	 -coss(Tl+COSsda) -sinssina(Tl+cossda)-cosa(T2+ds)

1
+sins(T3-sinsda) -cos0sina(T3-sins6a)

-v3 1	 V1 =	 1	 sinscosa(T1+cossda)-sina(T2+ds)

+cosscosa(T3 sinsda)

v2 -vl 1	 skew symmetric	 1

from which it follows after regrouping:

v1	 0 -sinssinscosa -sina cosscosa	 T1
da

v2	 0 Cosa	 + sinssina cosy cosssina • T2
da

3,	 71
	 0	 -Coss	 0	 sins j L_T 3

The last expression in a compact notation is

da
v = Al2	 + R 12

db

Notting that A
il • A

I2 = I and also R12 being orthogonal, the last

expression premultiplied by Ail and Rig respectively yields:

`
da	 T	 TJ = Al2 v - Al2R12TL ds

da

12
T = R12 v RAl2 160 1

or explicitly

da	 0	 0	 --1	
vi-

-coss 0 sins	
T1

_ Lsinav2+	
T2

 Cosa 0	 0	 1 0
v3	T3
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e2(l,l)

h,^
IV

e3(1,1)

h ^ dh,O + 60

E3(1,1)

E2(1,1)

Fig. B-2

CT1	 -CO4 0	 s Wcosa sinssina

^aj
	

-cosh	 v1

T2 =
	 0	 -1	 +	 -sina	 Cosa	 0	 v2

L	 s
T3	sinO 0	 cos(icosa cosssina sing	 v3

Levels 2 and 3

The same approach is followed in the derivation of differential

expressions for levels 2-3 using the commutative diagram in Fig. B-2.

The disturbances dh, 6^ of the respective model hour angle of vernal

equinox and latitude are regarded as differentially small angles as

are the components of CT . 
[c1 C2 t31. The derivations are given with-

out further comments.

E3(1,1)	 P1R3 (h+dh)R2 (7r/2-^-6^)E2(1,1) = R23(I+Q23)E2(1,1)

E2(1,1)	 Rc (v) e2(1,1)

E3(l,1) = RC (^) e3(1,1)

e3(l,1) = P1R3 (h)R2 (7r/2-0) e2(l,l) = R23e2(1,1)

where P1 is the permutation matrix for the reversal of the first axis

[see Mueller, 1969, p. 431,
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- sinocos h

R23	 - sinosin h

cosO

-sin h cosocos h

cos h cososin h

0	 sino

and

0	 0	 1 0	 sino	 0 0 sin¢bh 60

Q23
0	 0	 0 6^ + -sink	 0	 cos¢ dh = -sino8h 0 coso6h

-1	 0	 0 0	 -cosO	 0 - 60 -cosoft 0

From the set of four equations above

0 v3 + sin^8h	 -v2 + w

Rc () = I + R23	 0	 vl + cosOh R23

skew symmetric	 0

Due to the permutation matrix P1 the determinant of the R23

matrix is -1. Accordingly Adj. R23 = -R23.

Skipping a few obvious steps the following is obtained:

	

1	 0 -sin h	 sinocos h	 sin h -cosocos h V 
dh

	

^2	 0 cos h	 ] + si#sin h -cos h -cososin h v2
a^

	

^3	
L -1	 0	 -cosh	 0	 -sino	 v3

dh
A23	

6^ - R
23 v

39
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e3(1,1) E3 (1,1)

Premultiplying as in levels 1 and 2 and regrouping

Sh	 0	 0	 -1 ^1
	

-cosO 0 -sin¢	
vl

J	 L ..	 ^2 +	 ^2
l
J

[]

Sc^	 sin h cos h 0	 0	 1	 0

3	 v3

v1 	-Cosa 0 
Sh	

sinocos h sinosin h -cosh-Cl-

v2 -	 0	 1 
16^+	

sin h	 -cos h	 0	 • C2

Lv3	 -sin¢ 0
	 -coOcos h -cososin h -sink	 -E3

Levels 3 and 4

As in the upper levels the disturbances Sal and Se are differen-

tially small angles as are the components of the p rotation vector.

The derivations are presented without comments.

where

^,E

	

	
^yl + 6^1 , e + SE

v

e4(1,1)
	

E4 (1,1)

Fig. B-3

E4(1,1)	 R3 (-t^l- S^^1 ) R1 (e+Se)E3(1,1) - R34(I4Q34)E3(1,1)

E4(1,1)	 Rc (p) e4(1,1)

E3(l,l) - Rc (C) e3(l,l)

e4(1,1) - R3(-^1)Rl(e) e3(1,1) - R34 e3(l,l)

40
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costa l -Sit#Icose -sin*,sine

R34 - si*l 	cos^lcose	 cosVlsine

	0 	 -sine	 cose

and

0 0 0	 0 -cose -sine	 0	 -cosedtpl -sined^l

	

5234 = 0 0 1 6c + cose 0	 0 dt	 cose6t 1 0	 de

0 -1 0	 sine 0	 0	 sineat 1 -8e	 0

From the set of four equations above,

F
0 3-cose t 1 -Ysincft1

Rc (u ) - I + R34	 0	 E1 + Se R34

skew symmetric	 0

The resulting three matrix equations are:

Ill-	 0 cost l 
ate	

cose l -sint^lcose -sink,sine ^1

u2 =	 0 sins l [ 11
 + sint^l	cost^lcose	 cost^lsinE 	2

8e

L113-
	

-1	 0	 0	 -sine	 cose	 ^3

atU

	

u=A34	 1 +R34
se J

ail	
0	 0	 -1	

ul	
0 -sine cose	

^1

' u2 +	 C2
l

I
	 Jd£	 co	 sin	 0	 -1	 0	 0sal	 ^1

u3	 ^3
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^1
0	 1	 cos^l	 sins l	 0	 ula^

^2
sine	 0 

1 11 
+	 -sin*lcose cos^lcose	 -sine	 112

aE
I

&3
-cose	 0	 -sintlsine cos^lsine	 cose	 u3

Combination and Summary of Differential Relationships

In this section the formulae derived in the first three sections

of Appendix B are combined with the results presented earlier.

For compactness adopt the following notation:

6a 	 [6h]	 [&^i]

6 n =	 ]; 6k=	 ; 6X =
as	 a^	 ae

	[6q,	 a(—Y)	 aw	 ax
6q =a (-Y) _ 	 l^3 aw = 1 &x	 1

J	 JC a	 ax 
l

aw	 ^	 Jq	 1 6(-Y)22 	2	 2

where q, -Y, w, x are the model fundamental vectors.

The matrix Di stands for the partial derivative of vector i with respect

to vector J. Earlier we have derived the following differential expres-

sions:

6n = Dn •
V

Ni + Dn • T
T V - DV •n an + DV • T

T
T = DT •n an + DT • V

V

6k - D	 • + Dv • v - Dk • 6k + Dv• 	 V v = Dk • 6k + D	 • r;

6X= DX • u+DX • C
C

u = Du • 6X +ru • = DE • 6X +DC • V
u X X u

and the following:
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u= Du 6x
x

{

T = D  dq + DTYd(—Y)

V =	 D^Y6(—Y) + DW 8w

Dt aw+DX ax

Substituting the second into the first group of equations

dri = DTDT6q + (DTDTY+DTD 
)6 

(-Y) + AV dw

dk =	 DkD'Yd(-Y) + (DVDW+Dk-Dw)dw + DkDX dx

dX =	 DXD9 6w + (D^DX+DUDX)dx

Multiplication of the Dj matrices followed by rearrangement of terms

results finally in Table 3 in the text.
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Appendix C

Applications of the Differential Relationships

Here examples of the application of some of the relationships

presented in Table 3 are given. The examples have been selected from

two important areas of analysis, i.e., space-like and time-like

variations of the fundamental vectors and their effect on variations of

the basic angular parameters.

Space-like variations. Fig. C-1 is the disturbance column of the

E-tower over the first three levels. The disturbances, i.e.,

the differences between the natural and the model basic angular para-

meters (a, S, h, 0) and fundamental vectors (q, -Y, a ►), are dif-

ferentially small angles. The pairs of orthogonal components of dq,

6(-y) and 6w have the following interpretations (see Table 1):

6ql	refraction in altitude

6q2	refraction in azimuth

6(-y) 1 meridional component of the deflection of the vertical

6(-y) 2 prime vertical component of the deflection of the vertical

dwi	nonparallelity of the rotation axis in (ecliptic) longitude

66'2	
nonparallelity of the rotation axis in obliquity

From the first two rows of Table 3,
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da	 0 secs dql
l 

sinatans tang- cosatans 6(-Y)1

d 	 0	 J	 cos	 sia	 1-1	 dq2	 a	 na	 16(-Y)2

sin h seco -cos h sect

116W2

dwl

L	 0	 0 

Thus the above equation relates possible errors (corrections)'in refrac-

tion, deflection of the vertical, and parallelity of the model (ellip-

soidal) rotation axis versus natural rotation axis to those in azimuth

and altitude. Assuming dq to be zero and with a slightly different

notation, we have the generalized Laplace conditions as shown in

[Grafarend and Richter, 1977].

The above set could also be utilized directly as linearized obser-

vational equations where da, ds are the respective (observed minus

model) azimuth and altitude and dq, d(-Y) and dw are the unknowns.

Time-like variations. Fig. C-2 shows the time-like variational

column of the F-tower at the second, third, and fourth levels. In this

case we are considering natural angular parameters (H, @, T1 E) and

their values dT later, denoted by H', V, V, and E'. In accordance

with Table 2, the expressions for the time-like variations of, e.g.,

the parameter H, are

H'=H+aH6T

= h + dh + aT dT + '(6h) dT

Subtract the corresponding model quantities and rearrange to obtain
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el(1,1)

a,$

E2(1,1)

h,¢

e3(1,1)

El(1,1)

Ia+601,0+6a
J

E2(1,1)

Ih+6h,0+60

E3(1,1)

Fig. C-1

E2(1,1)

H,f	 I

v	 _

E3(1,1)

TI , E

E4(1,1)
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Fig. C-2

E2(1,2)

i

E3(1,2)

r	
fi- , E.

E4(1,2)
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W - H) - (h' - h) _ 1(1h) 6T = dh
aT

Similar notation is adopted for 0, -Y , w, and x. Now apply the third

and fourth rows of Table 3 and write the following expressions:

dhl	 0 sect d(-Y)	 cote + tanosin h -tanocos h 8w

L 1	 1[ 6- W1 	 0	 d( Y)Z	 cosh	 Binh	 2

+ r-cosececost ,

L	 0

where

-cosecesin^ 8xl

1][
	

J0	 dx2

8h	 variation in the disturbance (natural minus model) of the

hour angle of vernal equinox

variation in the disturbance of the latitude

d(-Y) effect of local (plate) motions plus differences (natural

minus model) in polar motion and spin rate

dw	 difference (natural minus model) in luni-solar precession

and nutation

dx	 difference in planetary precession

The above equation thus relates errors (corrections) in earth rotation

(precession, nutation, polar motion, spin rate) to those in latitude

and hour angle (longitude + Greenwich sidereal time). It could also be

utilized as linearized observational equations where dh, ;^ are the

observables and d(--y), dw, and 6x are the unknowns.
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1. Introduction

The fundamental vectors at a point on earth, their reference

model, and the commutative tower of triads--the E tower--were intro-

duced and studied in [Grafarend et al., 1979] as a first step in our

investigation for reference frames in geodesy and geodynamics. Time

was defined as the fourth independent coordinate, and an attempt was

made to distinguish between natural--observable--quantities and their

models corresponding to present day knowledge. The concepts presented

there (vectors, triads, parameters, transformations, variations, etc.)

were only directional. Distances, coordinates, linear velocities, scale

and deformations were not considered. Consequently, no metric data of

any kind could be analyzed with the help of the E-tower alone.

In the following, we introduce the tower of origins (P-tower)

which complements the directional E-tower in defining concepts, identi-

fying parameters, and analyzing interrelationships and variations of

positions and distances between points in space and time. The approach

follows closely the one employed in [Grafarend et al., 1979]. The

distances, coordinates, linear velocities of the various points,

regarded as natural (real) quantities are paralleled by a set of models

of the same in a one-to-one correspondence. As in the E-tower we are

interested in the difference between the real and the model quantities

to be represented subsequently as functions of a selected set of param-

eters. The two towers are closely related in sharing certain concepts
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and parameters and, in fact, it would have been impossible to present

the P-tower without repeated reference to the E-tower.

The tower of origins (P-tower) presented and studied in the fol-

lowing chapters should not be regarded as a problem-solution-procedure

type of report. It is rather an attempt to provide a method of analy-

sis, to lay down foundations, to create a consistent and logical

language and nomenclature for a subsequent study and solution of speci-

fic problems. Many of the results in terms of concepts, relationships

and variations may seem trivial and not necessarily new. But this is

exactly the purpose of this report, i.e., to redefine, reorganize and

systematize certain aspects of our present knowledge and understanding

of the geometry, kinematics and dynamics of the earth without resorting

to too many basic assumptions and hypotheses. We have tried to identify

and clarify parameters and phenomena which apply to directions (E-tower)

as well as to positions and distances (P-tower) between points in space

and time. The creation of this common basis is essential for our

future treatment of specific problems where we should be able to use as

necessary a combination of concepts and formulae derived and associatea

with either of the two towers.

The ultimate goal of our studies of reference frames for geodesy

and geodynamics is the establishment of a conventional terrestrial

coordinate system (CTCS) through the combined analysis of a selected set

of high quality observations (laser ranging, radio interferometry. etc.).

The CTCS should represent in some average but nonetheless well-defined

manner the space-time behavior of the earth vs. inertial space. Dynamic

or geometric variations of the earth in space and time would be referred
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to the inertial frame of reference through the CTCS. The P-tower pre-

sented in this report is ancther step toward the achievement of the

above goal.
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2. The Tower of Orixins

The relative positions and motions of points in space and time

which are characterized as the origins of various reference frames for

geodesy and geodynamics are presented and studied in a diagrammatic

structure to be referred to as the tower of origins or the P-Cower.

The overall appearance, organization, and notation of the

P-tower (see Fig. 1) are similar to those of the E-tower. The points

in the diagram symbolize certain physically . lingful points at a

given epoch. Capital Pi denote natural-real origins, while their models

are denoted by pi. The integer i signifies the level of the origin and

assumes the values of 1, 2, 3, or 4, for the topocenter, bodycenter,

barycenters, respectively.

On a given level the points are organized along two axes: the

space axis and the time axis. The integers within the parentheses

(j, k) are the space and time indices of the point to be interpreted

as follows:

j - 1 point related to the observer

3 = 2 point related to the target

k - 1 epoch T

k - 2 "next" epoch T + dT where dT is a differentially small

time interval.

One should note the different interpretation given here to the 3 index

as compared to the corresponding 3 index in the E-tower: In the

P-tower Pi(1, k) and Pi(2, k) are two distinctly different (not adja-

cent) points, which, in general, have different velocities in space.

The level of a point depends on its nature and on its .:unction which is
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associated in general with the measurement of distances, directions or

gravity.

Topocentric (observational)level P1

A point is considered at the topocentric level if it serves

either as an observing point or as a target. Stars and quasars are not

considered as target points since their three-dimensional coordinates

are not known with equal precision. The principal point of a telescope,

an EDM instrument, or of a radiotelescope are a few examples of

observing points. The principal point of an artificial satellite's

transponder or laser retro-reflector are a few examples of target

points.

Bodyc-ntric level P2

The center of mass of a body serves as origin on the bodycentric

level. A body is defined here as a conglomerate of mass points which

are connected to each other fairly rigidly so that variations in rela-

tive positions between the mass points (deformations) are small as com-

pared to the overall size of the body. The earth and the moon are

typical examples of such bodies and their respective centers of mass

are points of the P2 level. We see that a P2 point has a definite

physical meaning although it cannot be directly reached by observations.

A point of the P1 level is normally located on the surface of a body

and as such is associated with a certain P2 point which is the same

body's mass center. Exception to this rule is a close satellite of a

planet (the earth or the moon) which is defined as a Pl point while its

P2 point is the maso r pnter of the planet.
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Barycentric levels P3, P4

A point is considered at the barycentric level if it is at the

center of vns of a set of bodies. The selection of the set is more or

less arbitrary a»d thus identity of the P3 point depends on the composi-

tion of the set (its elements). There may be several barycentric levels

according to some hierarchy. A good example for a P3 barycentric level

(I) origin is the earth-moon barycenter. As the earth and the moon are

a subset of the solar system set (the sun and the planets) we can define

a P4 origin at the barycenter of the solar system (barycentric level

(II)). It should be obvious that one could continue with P5 at the

barycenter of our galaxy, etc.

Inertial level p

The inertial origin p is defined as a point which is fixed or

moving with uniform velocity in inertial space (see Goldstein, 19651.

The positions and motions of all the points in the P-tower are referred

to this p point in accordance with the laws of Newtonian mechanics.

The points in the diagram are marked either as full (black)

circles or as hollow (white) circles depending on whether they repre-

sent a natural point or its model. Thus, in Fig. 1 we can distinguish

between the natural P-tower (the black points) and the model p-tower

(the hollow circles).

The lines between two points in the double tower represent vec-

tors in inertial space. The interpretation of these vectors depends on

the axis to which the vectors are parallel and also on the nature of

the points being connected by it.
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We will examine first vectors at the topocentric (observational)

level. For example, let Pl(1, 1) be an observing point on the earth

surface and P1(2, 1) represent a target on the lunar surface. As the k

index (in the parentheses) is 1 for both points, the epoch T at which

both points are defined is the same.

The vector Pl(1, 1) P1(2, 1) (see Fig. 2) represents the natural

geometric distance and direction between the two points. Analogously

the vector Pl(l, 2) P1(2, 2) represents the natural distance and direc-

tion between the same two points only at a "later" epoch T + dT.

The vector which connects the positions of the same point at two

different epochs (T and T + dT) is defined as the linear velocity vec-

tor of that point vs. inertial space. For example,

P1(l, 1) P1(1, 2) velocity of P1(1, 1) at T

P1(2, 1) P1(2, 2) velocity of P1(2, 1) at T

The interpretation of the vecto::s connecting the points pl(1, 1),

pl(2, 1), pl(1, 2), pl(2, 2) is the same as above but for the model.

The differences between the instantaneous positions of the natural

points and their models are represented by the following vectors (see

Fig. 2):

pl(1, 1) P1(1, 1) = Tpl-( 1, 1)
	

positional disturbance vector at

epoch T for point P1(1, 1)

pl(2, 1) P1(2, 1) = 6pl(2, 1)
	

positional disturbance vector at

epoch T for point P1(2, 1)
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2)	 I 1 1 2
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(2, 1)	 dpi(1,1)'^.

P1(1,1)

space axis

Fig. 2	 The topocentric level.

pl(1, 2) P1(l, 2) = 8pl(1, 2)	 positional disturbance vector

at epoch T + dT for point P1(1,2)

pl(2, 2) P1(2, 2) = 8pl(2, 2)	 positional disturbance vector at

epoch T + dT for point P1(2, 2)

The vectors between the inertial point p and any of the natural

or model points in the P-tower symbolize their position vectors in an

inertial frame of reference with origin at p. By virtue of the above

definition the P-tower is a commutative diagram of the vectors in

inertial space, i.e., the sum of the vectors forming a closed loop is

identically zero. Using the commutative property at the topocentric

level (see Fig. 2) we derive the following relationships:
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Pl(1,2)P1(2,2) - P1(1,1)Pl(2,1) - P1 2,1 P1(2,2) - P1(1,1)P1(1,2)

P1(1,1)Pl(1,2) - pl(1,1)pl(1,2) - 6pl(1,2) - 6pl(1,1)

An important property of a vector commutative diagram is that the vector

relationships are independent of the coordinate system chosen to repre-

sent those vectors. The components of the various vectors may change

from one coordinate system to another; however, their magnitude as well

as their relative orientation remains invariant.

We will examine next a vertical wall of the P-tower (see Fig. 3).

The k indices of all the points being 2 means that the wall represents

a situation at epoch T + dT. In Fig. 3 we have used a shortened nota-

tion for the vectors along the vertical lines as follows:

Pl(1,2) = P2(1,2) P1(1,2)

P2(1,2) = P3(1,2) P2(1,2)

etc.

The interpretation of these vectors follows from the identity of the

end points:

P1(1,2)	 is geocentric (mass center) position vector of the

observer at T + dT

P2(1,2)	 is earth-moon barycentric position vector of the

geocenter at T + dT

etc.

The vectors pl(1,2) and p2(1,2) are analogous to the above but for the

model.

The vectors which connect the model points with the corresponding

natural points are defined as positional disturbances. For example,

r
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P4(1,2)

P

Fig. 3 A column layer of the P-tower

dpl(1,2)
	

is the positional disturbance of the observer at T+ dT

6p2(1,2)
	

is the positional disturbance of the geocenter at T + dT

etc.

The diagram in Fig. 3 being part of the P-tower is also commutative.

Using the commutative property, we can write, for example,
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Pl(1,2) - pl(1,2) - 6pl(1,2) - 6p2(1,2)

[PI(1,2)+P2(1,2)1 - [pl(l,2)+p2(1,2)) -6pl(1,2) -6p3(1,2)

etc.

We will complete the examination of the structure and signi.ti-

cance of the P tower by studying the interrelations between points on

one of the time-variation walls as shown in Fig. 4. The meaning of the

vectors connecting points along a column has been discussed above. The

two vectors P1(1,1) and P2(1,1) connecting the geocentric position

vectors P1(1,1) and P1(1,2) are the respective linear velocity vectors

vs. inertial space of the P1(1,1) and P2(1,1) points at epoch T. Using

the property of commutativity, we can write the following:

P1(1,2) - Pl(l,l) - P1(l,l) - P2(l,l)

P2(1,2) - P2(1,1) - P2(1,1) - P3(1,1)

etc.

The expressions on the right-hand side represent the relative linear

velocities of the observer vs. the geocenter and of the geocenter vs.

the earth-moon barycenter, respectively. An interesting corollary is

the following inequality:

TPi0 1 1) # P1(1,1) .

Summarizing our discussion of the P-tower structure and the

interpretation of the various points and vectors in it, we see that it

can serve as a convenient means for representing and studying the whole

range of positional and velocity information related to points in the

natural world as well as in its model.
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P4(1,1)
	 P4(1,1	

P4(1,2)

Fig. 4 A vertical "time" wall of the P-tower

It should be kept in mind that certain vectors in the P-tower can

be null vectors due to the two end points being coincident. For

example, if P1(1,1) and P1(2,1) are both points on the earth surface,

the points P2(1,1) and P2(2,1) represent the same point, i.e., the geo-

center, and therefore the vector P2(1,1) P2(2,1) is a null vector. For

this case, we can easily deduce the following identities:

P2(1,1) = P2(2,1)

p2(l,l) F p2(2,1)

6p2(1,1) = 6p2(2,1)

etc.

f
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3. Barycentric and Bodycentric Levels

In Chapter 3 the nature and interrelationships of origins at the

barycentric and bodycentric levels are studied. Tt)e major objective is

to identify the positional disturbances and their time-like variations

at these levels with inadequacies in current theories and respective

constants. In particular we study the problem of possible dependence

of second- and third-level disturbances on the rotation of the earth

and its mass distribution.

In Fig. 5 we have reproduced part of Level 3 of the P-tower

relating it directly to the p point. Bypassing Level 4 in the above

figure is the equivalent to the assumption that the solar system bary-

center P4 and its model p4 are coincident and are taken as the inertial

point. The vectors P3(l,l), P3(1,2) and their difference 
aT 

P3 (or,

equivalently, in this case P3) represent the motion of the earth-moon

barycenter P3 with respect to the barycenter of the solar system. As

the p3(l,l), p3(1,2), and p3 represent the model of the sane, computable

with current theory, it should be obvious that inadequacies in that

theory will be represented by the respective disturbances. Accordingly,

6p3(1,1), 6p3(1,2) and their difference eT 6p3 are all non-zero vectors.

Little as we know at present about the 6p3 vector and its time-

like variation TT 	 we can at least state the following: The theory

of motion of P3 about the barycenter of the solar system is a function

of the combined gasses of the earth and the moon, the masses of the sun

and the other planets in addition to constants of integration (or zero

epoch state vectors). Accordingly, phenomena such as (i) the motion of

the mas3 centers of the earth and the moon vs. their barycenter P3,
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p3(1,2)	 dp3(1,2)	 P30,2)*0 .... ......._........... ^. .............._.......r 

T3	 /	 P3(1,2)

3
3 1 1	 /	 f 

i	 f'p3(1,2)	 P3(1,1)

T30,1)
/	 P3(1,1)

P

P3	 earth-moon system ► barycenter

p3 mcdel earth-moon system barycenter

P	 inertial point (identified with the solar system barycenter)

Fig. 5 The ')arycentric level

(ii) the mass distribution within the earth or the moon vs. their

respective mass centers, (iii) the rotational. motion in space of the

earth or the moon, are not parts of the disturbances in the motion of

the earth-moon barycenter. Another way of stating the above would be

that ;measurements within the earth-moon system would not be sensitive to

the 6p3 disturbance or to its time-like variations.

In Pig. 6 we have added Level 2 to the previous case. P2 repre-

sents the earth-moon b,,Arycentric position vector of the geocenter (or

selenocenter) P2. Using the commutative property of the loop formed by

I	 the four natural points, we can derive an expression for the vector

P2(1,1)P2(1,2) denoted in the diagram as P2

P2 = P3 + P2(1,2) - P2(l,l)
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Fig. 6 The bodycentric and bazycentric levels

but at Level 3 we had

P3 = T P3

and so it follows

P2 = 8P3 + 3P2
8T	 2T

Using the loop at Level 2 and the above results, we can write

dP2 (1 , 2 ) - dp2 (I.,1) = 8P2 + 8P3 -2
8T	 8T	 aT	 8T

TT 62= 3T (P2 - P2 ) +
8T (P3-p3)

8T (8p2 - SP3 ) - 8T (P2 - p3)
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(P2 - p2) and its time derivative 
y- 

(P2 - p2) represent the difference

between the real and the model motions of the geocenter about the

earth-moon barycenter. We denote by c the ratio between the masses of

the earth and the moon

M
ceMe-81.

m

and identify

P2(1,1)	 as the position vector of the geocenter with respect to

the earth moon barycenter P3 and

P2(2,1)	 as the position vector of the selenocenter with respect

to the same origin P3.

From the definition of the barycenter of a two-body system we have the

following (see Fig. 1):

(i) P2(1,1), P2(2,1) and P2(1,1)P2(2,1) are collinear

(ii) IP2(1,1)1 + (P2(2,1)1 _ IP2(1,1)P2(2,1)1

(iii) (P2(2,1)1 / (P2(1,1)1 - c.

The above equations demonstrate the simple relationship between

P2(1,1) and the lunar theory which in principle gives the components of

P2(1,1)P2(2,1) and its time derivatives.

p2 and 
aT 

p2 can be computed from the current dynamic theory of

earth-moon system (essentially the lunar theory), while (P2 - p2) and

its time derivatives represent corrections to that theory.

From the above we can draw two conclusions which complement each

other:

(a) The positional disturbance of the geocenter 6TI and its time

derivatives a 8p2 consist of two components which represent

{
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corrections to the theories of motion of the barycenter of the

earth-moon system and that of the geocenter (selenocenter) with

respect to the barycenter of the solar system and to each other

respectively.

(b) 42 and DT 6p2 do not depend on the rotation of the earth (or the

moon) or on variations in its mass distribution.

Summarizing this chapter and extending its conclusions to Spl we

can state:

(a) Unaccounted perturbations in the theory of motion of the

earth-moon barycenter with respect to the solar system barycenter

dominate the Sp3 disturbances and their time derivatives.

(b) Unaccounted perturbations in the lunar theory dominate the

dp2 - 60 disturbances and their time derivatives.

(c) The Level 1 disturbances 6p2 or actually (6p2 - 6p2) and their

time derivatives are dominated by the rotation of the earth (or

the moon) and by mass redistributions.

It is important to realize that according to (b) above Sp2 does

not have a diurnal notion and it is independent of inadequacies in the

adopted gravity model of the earth (or the moon).
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4. The Topocen!:ric Observer-Target Level

In this chapter we study problems which are related to the P1

bodycentric position vector and its time-like variations. Our discus-

lions are limited to Level 1 origins which are located on the surface

of the earth (or the moon).

For a point on the earth (moon) surface there are three issues

of fundamental importance which have to be carefully studied in order

to understand the nature and significance of Level 1 positional dis-

turbances and their time-like variations:

(1)	 The rotational motion of P1 with respect to an inertial frame

of reference centered at P2.

(ii) The relationship between Pl, aT P1 and the variable gravitational

potential field of the earth (or the moon).

(iii) The explicit definition (and real7zation) of pl--the model topo-

centric origin.

The proper order of introducing and studying the above three

topics is not arbitrary as they are interdependent. Accordingly we

begin with (i) proceed through (ii) and finally end up with (iii).

4.1. The Rotational Vector S, Its Model and Disturbances

The time-like variations of the geocentric position vectors and

their disturbances are strongly dependent on the rotational motion of

the earth (moon) vs. its mass center. We will devote this sub-chapter

to shazpening the concepts associated with the rotation vector S2 for

the earth and the rotational motion of P1 around it.

The rotational vector S describes by its direction and magnitude

the rotational motion of a point on the earth surface P1 vs. the
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geocenter P2 and with respect to inertial space. The time-like

variation in position (linear velocity) of Pl with respect to P2 is

obtained by the well-known vector equation

aT Pl - Q x P1

which is rigorous for a rigid body. The motion of P1 on the non-rigid

earth vs. the geocenter P2 can be partitioned into two parts as fol-

lows:

l 
—Pl -S2xPl+a P1 P1

8T	 ,Pl1

where the first term represents variation in the direction of P1 vs.

inertial space and the second term is the variation in its magnitude.

We will discuss in a subsequent sub-chapter the second term and its

association with variations in the gravitational potential at P1. In

the present sub-chapter we will be concerned only with the first term

which is equivalent in form with the rigid rotation of P1 about the

mass center P2 (see Fig. 7). The absolute rotational motion of P1

with respect to a non-rotating, inertial triad, represented in Fig. 7,

by the inertial vector i, is quite complicated but can be partitioned

into a sequence of simpler relative motions. For that purpose we

define a sequence of rotational vectors - axes between i and P1 ranked

in the folloc;•ing order:

i, S S, S
'E' 3"

where a higher rank is associated with the nearness to i (Fig. 0. Pe

three rotational vectors are defined as follows:
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Sts - is the spin vector. Its orientation vs. i is defined by the

general (planetary + lunisolar) precession and by the forced terms

of nutation. It does not contain terms of diurnal or higher fre-

quencies. Its magnitude is changing in time with unpredictable

variations to be determined by means of observations.

0E - is the Eulerian vector which rotates around 0 S with a nearly

diurnal frequency and with a small angular amplitude 0p^/^StS)

where aStp M 0E - Sts . Both frequency and amplitude of QSt p are

unpredictable and can be determined only through observations.

The CO
P
 vector in magnitude and in orientation represents the

polar motion phenomenon. The PE axis and its motion vs. i repre-

sents the complete solution of the differenti..: equations of

rotational motion of the earth.

Note: We should point out that both St s and S1  are space invariant,

i.e., they are the same in orientation and in magnitude for any

point P1. Thus 0E can be regarded as the instantaneous global

rotational axis of the earth.

SZ - is the instantaneous rotational vector at Pl. It has a nearly

diurnal rotational motion around Sts and its angular distance from

S2  is extremely small of the order of 10 '6 seconds of arc. The

AQX vector represents local motions of Pl.

In spite of the fact that St or approximately Q E are the true

instantaneous axes of rotation of P1, it has been demonstrated by

Atkinson [1975] and also by Leick [1978] that the axis that can be

detected directly by observations is the St s axis, while the 0E and the

SZ axes are unobservable. Intuitively, the above statement could be
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explained by the fact that both SSE and SZ have a nearly diurnal rota-

tional motion around 1S Just like Pl. An observer at P1 cannot detect

on a short time basis (one day or less) the motion of P1 vs. of and Q.

Only on a much longer time basis, i.e., days for SZE and years for Q can

one detect the accumulated effect of the small perturbations to— and

too on the orientation of P1 vs. 0S and through it vs. i.

To recapitulate, we can state that the time-like variations of

P1 are defined by the following vector equation which is identical to

the one written at the very beginning of this chapter.

8T P1 - ( os + to+ to) x P1 + 8 I PZ I	
P1

p	
IP1I

The above equation means, for example, that the angle between P1 and

QS , the instantaneous geocentric colatitude, varies in time due to the

combination of polar motion and local motions. In the second part of

this sub-chapter we will define the model of the rotational vector S2.

The dynamical model of the earth is defined as in [Grafarend et al.,

19791 as a rotational level ellipsoid rotating with a constant spin rate.

The orientation of its spin axis w  with respect to an inertial frame

is given by general precession and forced terms of nutation as pre-

sently adopted. With respect to the axis of figure z (minor axis of the

ellipsoid) the spin axis describes a cone with an amplitude 0."15 and a

period of 1.1828 years. The sense of the model polar motion, thus

defined, is counterclockwise as seen from the north. The two constants

(0715, 1.1828 years) correspond to the average amplitude and period of

polar motion between 1970 and 1976 [Markowitz, 1976].
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The total rotational motion of the model geocentric position vec-

tor P1 is given by the following equation

aT P1 - (WS + QWP) x P1 - w x pl

where L1ip is the model polar motion vector. Its magnitude is

n
1 0 1

  - 1?18280. p5
 - 3.863085 10-6 rad/year,

it is normal to W., coplanar with 
WS 

and z (axis of figure of the ellip-

soid) and points in a direction such that WS is between dw p and z (see

Fig. 9). Aw rotates around ws with an angular velocity slightly
P

higher than 1W 
S 1

1w 1 + 2,	
2306.4797 rad/year

	

S	 1.1828

The angle between the Chandlerian axis w and the spin axis WS is

	

P '=_	 0.'000346-3
1W 

S1 74
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Because of polar motion in the model the instantaneous colatitude

and the hour angle of the vernal equinox h of the position vector Ti

vary in time (see Fig. 10). These variations can be computed as fol-

lows:

; - -JAU I • sin (h - hp)

h	 ^wS I - 1&w cos (h - hp)	 cot Q

As the model of the earth is rigid the coordinates of pl in the x,y,z

geocentric reference frame, fixed to the ellipsoid with z as the minor

axis, are also invariant. After one polar motion cycle, i.e., 1.1828

years, the a and h coordinates of pl will be back at their initial

values.

i
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In order to illustrate the feasibility of this type of parametri-

zation of polar motion we evaluated the effect of the model polar motion

on the geocentric equatorial coordinates of five stations. Over a

period of 440 sidereal days which is slightly longer than the period of 	 +,
i

model polar motion (1.1828 years), we numerically integrated the time

rates of the o'i and h i coordinates assuming spin and polar motion to be

the only causes of their variation. The constants used were as fol-

lows:

w  - 2301.1676 rad/year spin rate of the earth

hp - 2306.4797 rad/year spin rate of the polar motion vector.

Awp - 3.863085 • 10-6 rad/year polar motion magnitude

The initial coordinates of the five stations are given in the

following table:

Table 1. Initial Equatorial Coordinates

Station	 h

1	 10°	 50°

2	 82° 50°

3	 154° 50°

4	 226° 50°

5	 298°	 50°

The initial value of h was set at 180 0 . Table 2 shows the time-like
p

variations of the h, 6 coordinates of the five stations in arc seconds

compute3 at 20 sidereal day intervals over a period of 440 days.

76



-,r

r

The values in the table are computed by subtracting from the numerically

L
,

	

	 integrated hi , a  as affected by polar motion the equivalent h i , cti

values without polar motion.

In Fig. 11 we have plotted in addition to the varying a, h coordi-

nates of the five stations also the varying position of a reference pole

vs. the spin axis and the vernal equinox. The reference pole is defined

in a way similar to that of the CIO pole, i.e., the angular distances to

the five stations are invariant.

We summarize this sub-chapter by writing up the equations for the

disturbance vector in w, i.e., the difference between the real and the

model instantaneous rotation vectors (at P1 and pl respectively) as

follows:

aw = - w = (SZS-WS ) + (AP P-a.)p ) + A2k = 8wS + 
6W  

+ 6W

where

6W - is the disturbance in the spin vector of the earth, its first

and second components being due to inadequacies of current theory

and constants of precession and nutation and its third component

reprt enting spin rate variations.

67wp - is One polar motion disturbance vector; it is normal to ws and

represents the di f ference between real and model polar motions.

6W P, = AQ - is the local component (space variant) of the dw vector

and is associated with local motions of P1.

We repeat that dwS and 
6w  

are global in nature, i.e., they are space

invariant while 6w  IF different, in general, for different points.

77



4' OD fq1! %0	 V-4 N N 0 r- M, o' U-% , --4 (n , %0 40 	 U) N -4
U1	 C) .d 	 .4 C4 t4 tv C4 V4 C-4	 0 O: 0 C), 0 0, 0 0 0

O'o 	 0	 o C' 0 o 0 0 , 0 0

%t	 0 N M (n N 0 ca 	 t-;	 v-4, Y-4

	

U1
0 P4 v-4 r-4 C'-j N (V N N t%j 9-4	 94• a	 0 0O	 • •	 • 4; (;	 •, •	 •	 •	 • •	 • •	 •

O. o o o o 0 0	 C?

LAi 	 CJ N in 0- t	 •-4. %t M, U1N	 111 0

a 0 Cil a	 0	 Ci

LU m 	 0, •-4; N	 0 w, in	 Men N --4
o v4,; w4 v4 -I N, eq N (v «4 •4 4-4 , O 0j 0 0! o	 0

C^ 0 0 0 o a' 0 0;
tv

N1 .0 0	

(,j U.J	

cc, co	 v-4 %D Ml CO mot, r-i r-4; N w" ! -4
0 V-4 •.4 r-► %-q N; N N N N N N; -4	 0 ol 0

0
C;

C,	 C), o al

u	 M, Ln	 Pjl P4 U) , CO Ni (A 1- 1 co m! r.- SD I m c' 0 CM : V-4
O 0! 0 O 1̂ 9 C o Oi 0 o '; 0 ..4 , -q t-4: V-4 V-4 04 9.4 r-4 r-+; 0 0; 0

0. 0	 0 c; !	 0011 ce o. 0 OI O O 0
I	 ►"r	 1^	 I	 1.	 t	 1	 1	 1	 ^	 ^ 	 ^	 ^	 1

Qt 0 v4 N MI N 0 fl- *47! r4 UM	 CS) U)	 %0 -t v-4 fll- M v-4
"4 V-1	 •-1 1-4 0-4 14 V-4

LU 	 (; I	 C;

rt M 'o 0^ (ni ^o 0 (V	 in cro %t CY ol in N Go	 4-q	 C l 0
0 0 Q r4 0-4 cvi ej N : C^ Ĉ i -4 N	 -4 V-4 o o o o al o
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Fig. 11

VERNAL EQUINOX
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4.2 Gravity and the Position Vector

The relationships between the geocentric position vector P1 and

its time-like variations on the one hand and the potential of gravity

and its derivatives at Pl on the other are studied in this sub-chapter.

The time-like variations in P1 were partitioned (see 4.1) into

directional and magnitudinal components as follows:

aT P1 - 0 x Pl + T Pl	 Pl

We will study first the various causes for variations in the potential

W at Pl and theiv relationship to variations in the magnitude of the

geocentric position vector.

The gravity potential of the earth at Pl (which is a point on the

earth surface) is evaluated by the following well-known formula (see

Fig. 12) :

W-GV^dv+2 (S2xP1) CxP1)

where dv is an element of volume,

p,X are the density of dv and its distance from P1 respectively,

G is the gravitational constant.

The integration is extended over V which includes in our case the solid

earth, the oceans and the atmosphere. W thus obtained would be the

measured value of W from which the potential. of extraterrestrial masses,

the tidal potential has been subtracted. Considering the total mass

within V to be invariant

r
	

I pdv - const - m

V
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Fig. 12

oraT - 0

we can differentiate W with respect to time to obtain the time-like

variations in W

aW - 
G I .aap 0 1 — 

ak 0 P dv + (BW
DT	 V dT R TT x2)	 aT)Q

where ( —T)o denotes variations in rotational potential.

The first term in the integral is not associated with any changes in

the relative distances between P1 and other material points including

possible target points Pl(2,K) or other observing points P1(l,K). In

other words, time-like variation in gravitational potential due to

density redistribution within the earth are not accompanied by time-like

variations in relative position. However, the position of the mass

gl

i

	

7_1
	 _	 __ . _
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center P2 does change (mass center shift) within the surface S and con-

sequently the geocentric vector P1 also changes. The variations in the

position vector P1 due to mass center shift are space invariant, i.e.,

they are the same for all the points on the earth.

The second term in-LW 	 explicitly associated with variations in

relative distances between P1 and the totality of mass points which con-

stitute the earth. The phenomenon which dominates this term is the

local differential motion of Pl. One out of several causes for local

motions is the elastic response of the earth to variations in the tidal

potential.

By definition, the "horizontal" component of motion of P1 is nor-

mal to Jr (the direction of the local vertical) and produces zero vari-

ation in the potential. Thus, the only component of. aT
l 
which is

related to aT is the vertical component, i.e.,
1	 l8T ^ 
	
aT^ P1 a aT ^P1`

where -t is the unit vector along the local vertical (see Fig. 13) and

i:he approximation is permissible due to the small angle between P1 and

_I.

The time-like variations in magnitude of the geocentric position

vector Ti are related to variations in the potential W by a modifica-

tion of the well-known formula [Heiskanen and Moritz, 1967] which

relates potential and height differences:

8T	 g 0 8T ^P1)
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a
aT 1

T ^Pl^

Z

P2

Fig. 13

from which it follows directly

a-1,aw
TT 	 aT

In the second part of this sub-chapter we study the relationship

between the local gravity vector -t at P1 and the geocentric position

vector P1, their models and the corresponding disturbances.

Fig. 14 shows a schematic spatial diagram of the geocentric posi-

tion vector Pl; the -I' local vertical vector and their respective models

pl and -y. The disturbances 6p2 and Spl as well as S(-Y) are also shown.

z is the axis of figure of the reference ellipsoid. we derive first an

expression for the angle between -y and T1.
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p2	 8p2

Fig. 14

I'S

A right-handed Cartesian coordinate system x, y, z is defined

(see Fig. 15) which has its origin at p2 and which is fixed to the

reference ellipsoid. The ellipsoid, or equivalently, the x,y,z system,

rotates vs. inertial space around the spin axis w which is inclined by
S

0."15 vs. z. The point pl is defined in the x,y,z system by its three

Cartesian coordinates pl(x,y,z) or by the three geocentric spherical.

coordinates p, a', X which are the geocentric radial distance, colati-

tude and longitude respectively. Since the model is assLmed to be

rigid	 he three coordinates are constant.
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We will use also ellipsoidal coordinates of pl in the x,y,z

coordinate system, namely u, s, X which are convenient in that the

gravity (normal) potential U of the model ellipsoid and its derivatives

can be represented in closed formulae.

For the computation of U and the components of its gradient Y we

will assume that the component w of w  along z is equal in magnitude

to lws l. The difference between w and 1wS l divided by w is negligible

- of the order of 10 -12 . The value of the normal potential U at the

point pl is computed as a function of the four parameters of the level

ellipsoid a, e, m, w and the components of the position vector Ti.

According to [Heiskanen and Moritz, 1967] and utilizing ellipsoidal

coordinates u, 0, a, the following exrrassions hold:

I
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u
rp- 

e2 
+^.2

e2p2cos 26' + (p2 ' 4 2
e2^ 2

S	 arc sin	
cos a^'

U

the inverse relationship being

P	 u2 + a2e2cos2^

d' arc tan 1 + \ ue cot 
7

Longitude is the same in spherical or ellipsoidal coordinates. The

potential at pl(u,S,X) is computed by the following formula (see ibid.)

where the effect of the small equatorial (x-y plane) component of w 

has been neglected:

U(u,$) = Gm arc tan ae 	 w2a2 -g- (sin2o- 1) + 1 w2 (u2+a2e2)cos23	ae	 u 2	 qo	 3 2

where
2

g 2 C 1+ 3 2 2 ) are tan ae- -
 
- 3 ae J

L	 a e

	

2	 ^ Z
qo = 2 [(l  + 3 (l 2e ) ) arc tan 	 e - 3 lee

	

e	 ^l - e2

The vector along the gradient of U at pl is Y the normal gravity vector.

Its comp*nents along the ellipsoidal coordinates are:

8U _	 -Gm	 2	 2 1 w2a2	 2 1} 3u	 ae
8u	 2 2 2 + w u cos (i + 2 qo ( sin ^ - 3 ! 2 2 arc tan u

(u +ae )	 ae

3u2 + 2a2e2

- ae(u2 + a2e2)
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as = w2sins Coss jag qo - (u2 + a2e2)]

au o
ax =

In order to obtain the components of 'y in the x,y,z system we need the

Jacobian of transformation from u, S, X into x,y,z coordinates.

The independence of a from A implies that the three vectors z, pl and 'y

are coplanar. Accordingly, instead of transforming from u, s, X into

x,y,z, we transform from u, $ into r, z where r, z, a are the cylindri-

cal coordinates of pl and r s x2 -
+2
 y is the distance from the z axis.

The transformation equations are simple

r = NO + a2e2 Coss

z = u sins

The components of y in the r,z system would be computed then in a row

vector form

E.LU 2.U-] = r au au] . J
ar az 1. au as

where

8( s	 u2 
+ 

a2e	 u Coss 4u7+ a 
2 
e 2 sins

J a r = u2 + a 
2 
e 2 sin s	

u Coss
\z/	 - sins2 + 2e2

u	 a

The angle b-atween 'y and the z axis is thus given by

au

CY = arc tan 
ax
ou
az
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P2 r

while the corresponding angle of the Ti vector is (see Fig. 16):

2	 2
a t - arc tan z - are tan u ua 

2 
cots

^Y

z

Fig. 16

We point out that ^ the complement of 
Y 

is different from the conven-

tional geodetic latitude which is computed for a point on the ellip-

soidal surface. We shall see in a subsequent sub-chapter that the

model of P1 is not on the ellipsoid. The angle between _: and Ti is

thus

Y - at

and for mid latitudes and a few kilometers height above the ellipsoid

it is of the order of 101.
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We will derive now an approximate expression for the angle between

P1 and the -1' vector as a function of AC', the positional [6p2, Spl]

and the angular [S(-Y)) disturbances. The angle between P1 and pl

denoted by Q is evaluated from the dot product:

-Pl • pl	 COSA

IF-11 Ip1^

From Fig. 14 we have

P1 - pl + (S—pl - 6p2)

COSH - pl • pl + (Qpl - Gp2) • pl

I	 I 1711

= 1 +) + (Spl - Sp2) -L -

I i- 	I p1 I

We expand COSH (A is a small angle) and regroup

C
^--pl I

- + ( 6 - 6p2 ) . - 1 
JP1	 P1	 pII

If (Spl - 6p2) is collinear with pl, d will be zero. 0 will be

maximum for Ipl1 - IP1I from which we derive finally (see Fig. 17)

Q< d 1- 6p-2

Ip1I

If we define Ti and p2 so that the magnitude of the difference

(Spl - Sp2)is of the order of a few kilometers, A will be a small angle

of the order of tens of seconds of arc.

Considering now that (-I'), (-Y), Ti and Ti are not necessarily

coplanar we can see according to Fig. 18 :bat the angle between Pl

and -I' can be approximated by pa' the error being smaller than the sum
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Fig. 17	 Fig. 18

[A + d(-Y)]. The difference between the real A£' and its model AQ',

i.e., the disturbance in Aar' depends on the deflections of the vertical

d(-Y) and on the positional disturbance difference (8p1 - 8p2).

4.3. Time-Like Variations in Level 1 Positional Disturbances

In Chapter 3 of this report we studied the general nature of the

second- and third-level positional disturbances and their variations with

time. In the case of Level 1 positional disturbances and their

time-like variations we will be more specific. In this sub-chapter we

derive the differential equations of Level 1 positional disturbances in

terms of disturbances of the rotational vector St and also in terus of

variations in the magnitude of the geocentric vector P1. Assume that
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a

P1

P1I

the real geocenter P2 and its model p2 are coincident, i.e., the second

level positional disturbance 6p2 is identically a zero vector.

Later we will relax this condition and will show the resulting

implications. The time-like variations of the geocentric vector Ti-,

aPlaT or P1 was partitioned above !see 4.1, 4.2) into a variation in

direction and a variation in magnitude (see Fig. 19). For completeness

we rederive the expression for Pl in a slightly different farm:

	

BT = ;TP1
	 IP11 J ° 8T 

P1	
I P1 1 + 

Pl	
aTIPll

	

I P1 1	 J	 IP1)	 IPll

3T P1
	 P11 = S2 x P1= (w x sw) x (pl + 8p1) _

IP11
iu x pT+ w x 8pT+ 8w x p1  + 8w x 8pf

Pi

I

P2

Fig. 19
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The time-like variation of the Ti vector by definition consists

of a directional component only as the magnitude of pl is invariant

(The model of the earth is assumed to be rigid.)

aTwplpl- x 

where w is the sum of the diurnal rotational (spin) vector w  and Awp

the model polar motion rotation vector.

The expression for the Level 1 positional disturbance simplified

by the assumption Sp2 - 0 is

Spl - P1 - pl

The time-like variation of Spl is obtained by differentiation as

f ollows

aT Spl - aT P1 - aT T,

We substitute expressions derived above, neglect two terms of the second

order (Awp x Spl), (Sw x Spl), and obtain

aT Spi = P1	 dT IPlI + Sw x pl + ws x dpl
I P1 I

Rearranging and substituting for P1 its equivalent we obtain the final

form of aT Spl

T Spl = ws x Spl + Sw x pi + 3T Ipl + Sp1I (pl + Spl)
I pl + Sp1

This is a set of three first-order differential equations of the posi-

tional disturbance Spl with Sw as an independent parameter. It demon-

strates the relationship between the Level 1 positional disturbances and

those of the rotational vector. If the positional disturbance Spl at

some initial epoch is known, we can integrate numerically the differen-

tial equations of Spl using rotational vector disturbances and
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variations in the r ,agnitude of P1 (or equivalently variations in the

potential W), whisk have been determined from observations.

We will show now that the above equation holds also for the case

where dp2 is not zero. Using a portion of the P tower as in Fig. 20 we

can use the commutative property to derive the following (Level 4 is

excluded without loss of generality):

., dp3 = bp3(1,2) - 8p3(l,l) = aT3 - T

8T 
6p2 = 6p2(1,2) - 6p2(l,l) 	

IT 
8p3 + a^2 - 82

IT

TT 	 = 6pf(1,2) - 6pr(1,1) 
aT 

OPT + S2 x P1
8 aT1 	 P1

i Pl

-Wxpl a
T

6pT+Wx VE-+ WxTi- -Wxp1

+ aI r. 11	 Pl
dT	 I 1I

Neglecting second-order terms, substituting W s for W and

regrouping we have:

^(dpl - dp2) = Ws x (dpl - 8n2) + dw x pl +—^ - • I I pl	 p1+ (8	 cip2) I1711

The resulting vector differential equation of the geocentric positional

disturbance (Cpl - 02) is similar to the one obtained earlier for

8p2 = 0.

In the second part of this sub-chapter we will develop a specific

model of the Level 1 origins for the earth. The models of all the P1

points of the earth constitute thus the geometrical model of the earth

F:,rface.	 rotational level ellipsoid discussed earlier in this

report is the dynamical model of the earth. By making the distinction
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6p2(1,1)	 I

I
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p3(1,1) .......... P3 1,1

6p3 (1, l) j"
J1 p3(1,2)
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1

+ 2L2 x 1DT	 3T	 p
8P: + aP2 +^ Pl + 8P1
cT VT	 x	 T

P

Fig. 20
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between geometrical and dynamical models of the earth we actually define pl

as a point which is rot located on the surface of the ellipsoid. As we shall

see, pl is locate.0 on the telluroid as defined by Hirvonen [1960] and as

described also in [Heiskane-n and Y ritz, 1967].

The selection of the telluroid as the geometrical model of the

earth is essential for establishing a clear and unambiguous relationship

between the potential of model (normal) gravity at pl and its deriva-

tives on the one hand and the geocentric tuodel position vector pl and

model gravity vector Y at pl on the other.

In the P tower we have denoted a point on the earth surface as

either Pl (l,k) or P1(2,k) where indices 1 or 2 indicate an observing

station or a target at the epoch T  (k - 1,2). In the following dis-

cussions we will drop the indices for convenience, as it will become

clear that the particular values of the two indices within brackets are

irrelevant. The fundamental vectors, discussed in [Grafarend et al., 1979],

-r, 2 are specifically referred to the P1 point, where in particular

is the direction of gravity at P1 and S2 is parallel to the axis around

which the geocentric vector P1 rotates with respect to inertial space

(see sub-chapter 4.1).

We denoted the model of P1 as pl and denoted the vector dif-

ference p1P1 as 8pl the positional disturbance of pl. Just as for P1

above, the models of the fundamental vectors -Y, w refer to the p1

point. In particular the y vector is defined as the direction of model

(normal) gravity at pl and ^ is parallel to the axis around which the

model geocentric vector P1 = p2pl rotates in inertial space. In order
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p2 = P2

Fig. 21

P:

to focus on pl, P1 and 61 alone we will make the assumption that p2

and P2 coincide, i.e., 62 - 0 (see Fig. 21).

In principle dpl cannot be and remain a zero vector due to the

essential difference in the rotational motion of the two vectors pl and

P1. St and w are different in direction and in magnitude; Iplf is con-

stant by definition (rigidity) while ,P11 varies in time due to various

causes like tides, mass redistributions, regional uplifts, etc.

We will define now the relationship between P1 and pl (see

Fig. 22) through the concepts c' the height anomaly ^ and the telluroid
i

as described in [Heiskanen and Moa .Ltz, 1967 ] . In addition to the basic

angular parameters (5 , H which define the orientation of -t versus SZ

we introduce the gravity potential W at P1 or actually the potential
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P1(d'^

\ pl

b p2

Fig. 22

difference Woo - W between the geoid and P1. The parameters of the

reference ellipsoid (a, e, w, m) are chosen so that the model (normal)

potential on its surface U 0 is equal to Woo . In Fig. 22 the quant'

ties ^P, H and W define the position of P1 in space and the direction

of -Yr ther:. Apply to Jr the disturbance S(-Y) with an opposite sign

'	 to obtain (except for a small correction b y") the -Y vector.

Beginning from P1 we measure the height anomaly C along the -Y

vector and obtain the pl point, i.e., the model of the P1 point. The

positional disturbance vector Spl thus is defined in magnitude by C and
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by -Y in direction. The point; pl so defined is on the telluroid.

According to the definitions of C and the telluroid the normal gravity

potential at pl is equal to the natural potential W at P1 or equiva-

lently the respective potential differences versus the ellipsoid and

the geoid are equal

U 0 - Upl Woo - Wpl

Now apply to SZ the disturbance 8w with opposite sign and obtain the

direction of w in space. Using a rigorous transformation from -Y to

pl (see 4.2) obtain the direction of pl in space.

The magnitude of pl is obtained from U at pl, the a angle between

pl and z (a' after being corrected for model polar motion) and the para-

meters of the ellipsoid. Thus, we arrive finally at the p2 point, the

mass center of the ellipsoid.

We can summarize in concept the above relationships as follows:

(i) Three quantities (x, y, z) or (^, a, U), are needed to define

the Ti and -y vectors.

(ii) Two disturbances (8(-Y) and ^) are needed to transform from pl

and -Y into P1 and -I'. The two disturbances are represented by

three numbers: two for 8(-Yj, the deflections of the vertical,

and one for ^, the height anomaly which is close in value to the

undulations of the geoid.

The disturbances 6(-Y) and ^ as defined above correspond to the

quantities which would be evaluated through well -knows: techniques of

physical geodesy [Heiskanen and Moritz, 19671.

There are two basic difficulties involved in the above definition

of the pcsitional disturbance 61:
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(i) The gravity potential W at P1 varies in time and correspondingly

the model potential U at pl which is equal to W should vary also.

This,however, would require a non-rigid telluroid which contra-

diets our definition of a rigid model of the earth.

(ii) SZ and w are different in magnitude and in direction. As the

above vectors represent the rotational velocity vectors of P1

and pl respectively, it is obvious that the two points will not

remain aligned along the -Y vector, except at an initial epoch.

A possible solution which allows us to retain some of the obvious

advantages of the telluroid as the geometrical model of the earth with-

out sacrificing the rigidity principle is as follows:

The geometrical model of the earth is assumed to be rigid. It is

defined as the telluroid at a specified zero epoch. From the zero epoch

and on the positional disturbances vary according to the differential

equation derived in the first part of this sub-chapter.

4.4 Time-Like Variations of the Distance
Between Two Earth Surface Points

In this sub-chapter we study variations in the distance between

points at the topocentric level in order to identify the global and

local parameters which can be recovered. Consider the distance between

two points on the earth surface, i.e., Pl(1,1) and P1(2,1), the

observing and the target points at the topocentric level of the P tower

(see Fig. 23). As both points are defined on the earth surface their

body-centric reference point P2 is the same (the geocenter) for both and

so the vectors P2(1,1)P2(2,1), P2(1,2)P2(2,2), etc. are all null vec-

tors.
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Pl(2,2)
C(2)

6pl(2,2)

pl(2,2)

Fl-(2,2) ^^ ^	 pl(1,2)

1 2 2	 ^ 
6Pl(1,2)

pl(2,1)

	

P1(2,1	 _	 '^- I c(1)	 /	 Pl(1,2)

6P..1(2,1)

SP2(^^2)l	 .
C(1)16p(1,1)

_	 p2(2,2)%	 X1,11
Sp2P1(2,1)	 ^	 "^	 4	 ..pl(2'1	 .,2.

1
/	 pl(1,1)	 p2(1,2)

-- 2 s1) „^$p2^	 •p2(2,1)	

'	 / P1(1,1)

	P2(2,1)	 p2(1,1)`;,

6p2 (1,1)'•.,

P2(1,1)

Fig. 23

We will simplify the notation in this sub-chapter and adopt

the following:

C = Pl(2 , 1) - P1(1,1)

c	 pl(2,1) - pl(1,1)

6c - 6p1(2,1) - 6p1(1,1)

1(1,2)

P1(1,2)

P2(1,2)
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where C, c, Sc are the respective observer-target vector, its

model and its disturbance, From the commutative properties of the

P tower (topocentric level) we can easily derive the following (see

Fig. 23):

C= c+dc

The rates of change of 'i.:. Qbn-c vectors are reflected in the dif-

ferences C(2) - C(1), c(2) - c(1) 67c(2) - 8c(1) and can be obtained

by formal differentiation vs. the time variably:

C a c+dc

By C we will denote the rate of change of the magnitude (length) of the

vector C. From sub-chapter 4.1 we have

DT pl=wxpl

which when applied to the difference pl(2,1) - pl(1,1), and remembering

that w is space invariant, results in:

C - w x c

Rote that c = 0, i.e., the distance between any two model points is

invariant according to the assumption of rigidity.

The disturbance in the rotation vector dw is presented in two compo-

nents as follows (see sub-chapter 4.1):

ding = dc^s + rW	 global component

6W21
	 local component.

r

From sub-chapter 4.3 we have

aT (dpl - dp2) = w x (dpi - 6T22) + Sw x Pi + 
aT 

P1 • -_-
pl
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which when applied to the difference 8pl(2,1) - 8p1(1,1) results in:

8c = W x 8c + 8W
9
 x C + [6—W x TI (2,1) - 6—W x TI (1,

p (	 ) _	 P	 ,1>	+[(P1(2,1)l	 1 2 1	 8T Ipl(1,1)I	 1 1

IPl ( 2 , 1 )I	 IP1(l.l)I

6—c W x 6—c +  8W
9
 x C+ (8L + 8M)

ilith the above the rate of change of I C I, i.e " C is

C a C • C a (c + ac) • (c+ Sc)
C	 C

= C [W x c - c+ W X c • 8C + W x 8c C+ W x 8c • 8c

+ 8Wg x C • C + (8L + 611) • C]

The first, fourth and fifth terms in the square brackets are zero

due to the fact that two of the three vectors in the mixed vector pro-

duct are the same. The second and the third terms cancel being of the

same magnitude and opposite sign. Thus finally, we have the following:

C -	 (8L + 8M) -	 • (8L + 8M)
c

Explicitly written the result is

a	 ip ( 2 1 1) il(l,1)
aT IP1(2,1) - P1(1,1)I = _ 

(pl(2,1) -T1(1,1) I

• ['—W 
U  

x pl(2,1)- 6—W x

 
(2aTIPl(2,1) 

I	

El'1) - 
aT IPI(1 ' 1) I • 

P1(lLl)

IP1( 2 , 1 )I	 IPl(l^l))

From inspection of the above equation we can state the following:

(a) The rate of change of the distance between two earth surface

points is independent of global phenomena.
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I
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Fig. 24

(b) The vector sum (6L + Sri) represents the difference in local

horizontal and vertical motions (the relative motion) between

the two points.

In the last part of this sub-chapter we will study the effect of

a shift of the geocenter (due to mass redistributions) on the distance

between two surface points.

Denote the shift of P2 vs. P1(1,1) and P1(2,1) by T and decompose

it into three vector components Al , A2 , 
A3 along the directions of

P1(l,l), P1(2,1) and P1(2,1) x P1(1,1) respectively (see Fig. 24).
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The component A 3 is normal to the plane defined by Fl(1j) and

RUMM and also to the vector C. Accordingly its contribution to the

sum(&L + 8M) is also normal to C and so the dot product is zero:

C (dL + SM)A 	 0
3

The effect of Al on the sum (8L + 87m) can be represented by the equiva-

lent parallel shifts of P1(1,1) and P1(2,1) in the opposite direction.

The magnitudes of SL and dM due to Al are as follows (Al = 1A11):

1 67L I = Al sing - 0

PT 	 Al

a
T IPl(2,1)j	 Al cos

IBMI 4A 1 2 - Al2
 
Cos 2^ = Al sin g

The magnitudes of 8L and dM being the same and by inspection of Fig. 23

we get finally

8L+6M= 0

A similar proof can be derived for A2.

Thus we see that although the shift of the geocenter, A causes

local variations in the orientation and the magnitude of P1 vectors, it

has no effect on the distance between P1 (surface) points.
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INVESTIGATIONS ON THE HIERARCHY OF REFERENCE FRAMES

IN GEODESY AND GEODYNAMICS

PART III: SCALE SYSTEMS: THE S•-TOWER

by

Erik W. Grafarend
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The third hierarchic structure in Euclid space:

the toner of geodetic scaZe systems

0. Introduction

While the hierarchic structures which rule orientation

and origin (rotational and translatiorwl degrees of freedom)

have been presented with respect to space-time geodesy in

E. Grafarend (1978 a, b) and E. Grafarend, I. Mueller, H. Papo

and B. Richter (1979), the third hierarchic structure will be

introduced here, namely scaZe. AiLy vector space is furnished

with the topological notion of	 length, here the lengths

of geodetic reference vectors like the length of the gravity

vector, of the rotation vector, of the ecliptic normal, etc.

Beside directional paraZZelism scaZe parwa ZZelism is needed, a

notion introduced by H. Woy1 (1952 p. 121-138).

Spacelike and timelike changes of fundamental geodetic Zength

with respect to a fixed Zength or scale unit (unit length, unit

time and others) will be studied, extending first results of

refraction studies in E. Grafarend (1976) where Weyl-geometry

was used. The variations will be finally applied to the three

base vector system (I', 0, Y) which establishes three-dimensional

geodesy. As a special technique polar and singular value decompo-

sition are used in order to separate angular and dilatational

distortions. The results can be embedded into the general theory

of deformations introduced by C. Boucher (1978).

,tea
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I. The local structure of the scales stem

From the differential point of vies two derivations of the

basic scale structure in Euclid space are given. The relation

to IVeyl geometry is emphasized.

Here, let us introduce v(x,y,z,t), afour-dimensional orv

space-time vector field which is a function of space-time

coordinates x l=x, x2=y, 3=7	 4= x4=t in Euclid space. The vector

is represented twofold, firstly with respect to an orthonormal

triad (e1,e.),e3) such that its coordinates are (0,0,v) where

v is the length of the vector, secondly, with re y l:.^ct to an

orthonormal triad (e 1 .I) ,e2 •• e 3 0) which is fix,d in space-time

or in?)ariant, with respect to a trrn:slation in space-time. The

base vectors are related by a rotation, eo -> e = Re 
o

, where R

is a threedimensional rotation matrix. Space - and/or timelike

variations are studied by differentiation:

	

e 1	 el°
i(1) N = (0,0,v)	 e2	 = (0,0,svo ) R	 ego

	

N3	 X30

e	 de
1(2) dv = (0,0,dv)	 e2	 + (O,O,v)	 del	 =N

N3	 v3

e l o	 el,
d{(O,O,svo)} R	 e2o	 + (O,O,s o) d{R 	 e2 o }

	

N3°	 e30

v1°	 e1°	 do
	(0,0,ds o + s dvo)} R	 C	 + (0,0,svo ) {dR	 ,e2o + R de,

N3°	 e3°	 d3

}
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'1110 length of the vector v has beell expressed by the
product of a	 uld a t'. 1,2dan "Ita 1"'I 'ath v

U
For exairlple, a length of 10 m is the product of the scale

factor s = 10 Auld the fEnldam mital length von = 1 rr. In addition

to the trmulslatlonal inval'iallce of the

0 we wi 11 assumE' that the fLaid mlental length v0

is invariant with respect to trallslation,too. 'lltus heside

the postulate of directional parallelism 
g
dl	 _ ^1 we have the

	

:^.•2^.	 +^ : ;, ,2^e' t',rt ',2..+e'.l:='t7 LIV
U 

_ 0. 111esc postulates lead
to a vaI'iation of the Vector field V given by

e l	 1 de 
.^

1 ( 3) dx' = (0,0,dv)	 e	 (090)x')	 Ido	 =

i (O,O,Llst •o ) 1 R	 e	 + (o,0,sVo ) id11	 0"._
e`,

0	 rr
I (O,O,d.,;.	 x'1	 e	 + (0 9 0,x') Lll1R- 1

Le

or

1(-1)	 dv	 -1v

1(5) d0 = LIM-1 0

Note that R is all orthogonal matrix, X111 = +1, or R-1 = 11'.

A verbal formulation of the fwidalont,11 result is this: The

length of a vector V is Changed urlder diivctlonal turd scale

parallelism proportional to the change of scale factor Auld

the length itse lf, but inverse proportional to the scale

filctor. '1110 O1'le11t,16011 
O1_ 

the 1'e1e1ellCe SVStelll , is c11i1.11ged

tinder directional and scale parallelism proportional to the

111

-	
^.._.^
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e 
jo

e10

change of directional parameters within thr, rotation
matrix R and the base vectors e, itself, but inverse pro-

portional to the rotation matrix.

Fig. i illustrates the degrees of freedom of type trw-L,;-

lation, rotation, scale or origin, orientation, :gale.

1'arallcl tr.utsrott of directions
10 1, . ero, c..)' nd length unit

!30

e to

point	 point

P(x Y z t)	 p(x+dx,y+dy,z+dz,t)
or

p(x,y,z.t+dt)
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_ m.,, raw _...

1.2

Another derivation of the fundamental differential equations

1(4), 1(5) originates directly from the group of transform-

ations. According to Fig. 2 let us denote by v(xo,yo,zo,to)

a vector at a space-time point x,y,z,t. Both vectors coincide

if we change orientation and scale by

1(6) v(x,y,z,t) = s R v(xo ,yo ,zo ,to ),.	 ,

1(7) dy, = dv e + v de, = (ds s -1 + dR
3	 ^3

or

dv = ds s
-1 v

do = dRR 1 e

Fig. 3 illustrates the different postulates of parallel

transport of directions and scale.

Fe,7. 2: Degrees of freedom of type translation,
rotation, scale

point	
point

pNOIYo,zo IP	 p(x'Y,zj)
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translation

J: Directions and scale under translational
invariance: dto = 0, dv

0 
n 0

j
translation>	 I

Va Vp

scale at parallel
poi nt tran sported

p l xo,Yo• zo, to ) scale at
point

p(x,y,z,t)
e.g. e. g
1m 1 m

	

(210,120,!30)1
	

410,120330)1

	

directions at
	

parallel
point
	

transported

	

p ( x o,Yo,zo, to 1
	

directions at
point

p(x,y,z,t)

1.3

The classical treatment of length variation in differential

geometry is based on the quadratic form v2 = IIVII2 of the

vector v. dv2 and dv are obviously related by

1(8) dv2 = 2v dv

1(9) dv = 2v dv2

l

114



leading to

1(10)	 d (Rv 112 = IIy, 112 d In s = II Y II ` ans dxl.
"	 ax

2 The global structure of scale systems

From the integral point of view a derivation of the basic

scale structure in Euclid space is given. The invariance of

observables under the group of transformations is emphasized.

2.1

Mere let tLs introduce two vectors v,(x
o ,yo' zo , to) and

V,(x,y,z,t) at space-time points xo ,yo' zo ,to and x,y,z,t,

respectively, which are parallel under a translation. Both

vectors coincide if we change orientation and Scale by

2(1) v(x,)',z,t) = s R v( o,yo,zo,to)

2 ( 2 ) 6 s v(x , y , Z , t ) = V (xo
+dx , y0+6y ,.-O+6z , t0 ) - V,( 0 0,Z0,t0)

2 ( 3 ) 6 ty(x , y , Z , t ) = V(xO ,yO ,ZO ,tO +dt) 	- V( '^D,yO,ZO,tO)

6 
s 
V is called spaeelike variation, 6 

t 
v, tirwlike variation.

Let us introduce the rotation parameters by

2(4) k = RE ( A , O , 0) = R3 (^) R2 (? -^) R3 (A)

2(5) R,(A+BA,(D+6O,0) = RE(A,,D,0)

1	 +SA	 +cos Ado

-SA	 1	 +sin Ado+ J_2

-cos Ad O	 -sin A60	 1 I

where `•', indicates terns of second order.
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2(6) 6v - 6s s -1 v + RE (A, ,P,O) 6A RE(A,(P,O) V

where the antisymnetric matrix -A can be represented by

+cos A611
+sin A6 

(P0

0	 +6A

2(?) 6A =	 -6A	 0
-cos A64^	 -sin A6(D

2(8) s2 = Rp(A,4^,O) 6A RE(A,,P,O)

1

n	 +6A sin iD
6A sin 4,	 0
6(D	 +6A cos

2(9) 6V = 6s s-1V

2(10) 6e = Qe

+6(p
-6A cos 

^P]
0

2.2

We will prove next that positional angles and lengths ratios

are invariant with respect to the underlying similarity

transformation

2(11) v ->TV = s R v + t

<T(y2 -y 1 ), T(v3-v 1 )>	 2 (v,-yl)'R'R(v^-N
2(12)	

1)

= 2	 -
{^T(v2- ,,)IlII T (v3

-V1 ) II	 s 01 2-V 1 ' IIv3-v 1 U

<v2
-v11 

y3
-v1>

,' v2 -v t , ;;Iv 3-vt !^ q.e.d1.
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l.i)	
1(ti'2-41) I - s 

,^(y.T ,—Y' R'R (v,-v) -	 it ^2 -^'1 ^1	
c .e.d.W(	

(v, —vll	 s (v y—v 1 )' R I R (v3-vI)	
11 

v3-v	
1

'
, ig. -i is an illustration of the invariance of positional

angles and lengths ratios in a space-time triangle. Related

comnnrtative diagrams for translation, rotation and scale are

given in 

3. I'Amlipl es

Threedimensional geodesy will he based on thrice bao c vo, °tore ,

namely [r, sZ, 7J ' , located at the topocentre and referring to

the vector fields of gravity, rotation and eliptic normal. The

base vectors are neither orthogonal nor normalized. The gravity

vector determines the local vertical. The rotation field is

constructed from the inertial velocity vector v of the topocentre

by vorticity S2 = rot v changing in space and time due to plate

rotations and the dynamics of the planetary system. The eliptic

normal is defined by the hinormal vector of the curve of the mass

centre of the earth in inertial space. The base vectors will be

referred to a base vector system at initial epoch zero and space

point zero, in detail by

3(1)	 r	 ro Fa

Q	 = RU	 Sao	 = VR	 Q u
V	 N	 /1/

o	 YO

which corresponds to a systematic set-up of type

3(2) N = RU vo = VRvo.
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V2 .M

,vi 3

Xi

v 3 .N

O^
$	 s	 s+

^4̂O

e (x,y, z, t)	 v(x,y, Z ' t) P(x,Y,z,t)

6s

Fig. 4: Space-time triangle

vO	 PO

e(x,y,z, t+6t)
or

e ( x+6x, y+6y, z+60)t)

v (x, y, z, t+6 t)

or

v (x+6x,y+6 y, z+6 z, t)

p(x,y,z,t +6t)
or

p(x+6x,y+6y,z+6z, t)

Fig. 5: Commutative diagrams for degrees of
freedom of type rotation, scale and
translation

its
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It includes the polur decomposition (Cauchy decomposition)

where R is a rotation matrix (1111 _ + 1), U and V are right

a pzd left atretoh matrices being swnnetric. The matrices are

related by

3(3) V = RUR'" RJR - U.

A sin vil,zr value	 of the stretch matrices is

3 (4) V = 
Rv XI*Rv

3(S) U = RiIO'RU

where

3(o) V" = diag (v l , 	 3)

3(") U* = diag (u l , u„ u;)

and v i , vL , v
3
 and u l , u„ tz^ are eigen values.

3(8) N = IU2uU*Ru
v 	

= R v V *RVRvo

leads to variations of tvpe spacelike and/or timelike

3 (9) dv^ = (dRU + RdU)vo = (dVR + VdR)v
o =

	

(dRR' + RdU U-1 R 	 = (dVV
-1
 + Vd.RR'V-1)v

ti

or

3(10) dv = {dRR' + R(dR I1*RU + RuU*dRu + RudiJ*R')It11IJ*-1RuR }v

_ { (dRvV*RV + RVV*dRV + R,v.dOV) RvV 
*-1 RV + VOR 1 

V }.v
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3(11) dU - dRuU*PR + RuU$d% + RudU*%

3(121 ) dV - dRVV*PR + RVV*N + RvdN

303) drys - dR R' v+ (RdRuU*RU + RRuUwdRu') Ru diag (u , , ,u	 ) R' Ry,
12 3

+ RRu diag(dul, du,, dui) diag (U ,u` , U )RuR'v,
1	 3

3(14) dN = {dRv d.iag(v l , v2 , v3)Rv + Rv diag (v l , v2 , v3)dR,, IR`.

diag (v , v , v )RVy	 + RV di ag (dv l , dv „ dv3)
1	 2	 3	 "

diag (1 , 1 , i, )R'v + VdRR'V-1 v
v 1 ^ , , ^, 3 vN	 ^V

The tensors

3(15) C = U`, B = V2

will he calledright and left deformation matrices (Cauchy-Green

matrices) which can be represented by

3(16) C = RUU*2Ru = Rtl diag (u l 	 u2 , u3 ) R IRu

2	 2
3(17) B = RVV *`Rv = RV diag (v I., v2 ' V3 )Rv

What i4 the sense of aZZ these strange computations?

At first we have rotated the three base victors by a proper

rotation matrix R. Secondly we have stretched the three base

vectors by the matrices U and V, respectively. The singular

value decomposition allows the separation of angular and scale

distortion. By the matrices R  and RV , respectively, we have
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rotated the matrices U and V, respectively, into their

principal directions. Along the principal dir.:otions there

is only a change in scale of the three base vectors

s2, gj'. Thus we have found a decomposition into shear

and dilatation, the off- and diagonal elements of the

pie, ormation matrices if we use this terminology. In general,

the space-time change of geodetic base vectors can therefore

he understood as a change in origin (translation), orientation

(rotation) and scale. Fixed or translational invariant is al-

ways the- base vector system lto' ^o' 101• In geodetic applicat-

tions, the nint> elements which describe the space-time change

of a triplet of base vectors is parameterized in a slightly

different way: The base vector 0 of rotation is projected onto

the plane rectangular to the base vector F; the direction isN
called south. Orthogonal to south within this plane we direct

east, equivalently by the vector product Q ^ F; the normalized

triad as the final product is called the hori.sontaZ one. By a

similar process applied to and we arrive at the equatonfaZ

triad. Angular parameters which connect these triads are always

of type longitude and latitude. Totally there are six angles which

connect the system of base vectors Lr, 0, T1 ', which span the
N 'V

geodetic three-dimensional Euclid space locally, and the one

, 520 , YJ . In addition, there is a space-time change of lengths1y o 

IIF1,l1 nq, IJ YJ J parameterized by three scale factors referring to
a fixed length system I1N o11 , I1 Q J , ^ To
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