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WATER BALANCE ERROR ANALYSIS

INTRODUCTION

The water balance is an indirect measurement determined by the algebraic

sum of terms in the water balance equation. It is subject to the errors In the

directly measured components.

Experimental errors may be classified into several convenient categories

(Beers, 19571): a) determinate vs. Indeterminate errors, and b) random vs.

systematic errors. Errors which may be evaluated by some logical procedure,

either theoretical or experimental, are called determinate, while others are

called indeterminate. Random errors are errors resulting from the effects of

uncontrolled variables such as fluctuating conditions, noise, small disturbances,

observer error, etc. They are sometimes called experimental, accidental or

sampling errors. Random error is said to be shown when repeated measure-

ments of the same quantity give rise to differing values scattered In some distri-

bution about a mean value. Thus, "biological variability" and lack of perfect

instrument reproducibility are most often random errors. In theory, these types

of errors may be dim±nished without limit by replication of sampling, although

redesign of experimental protocol and improved instrumentation are often more

logical alternatives to accomplish the same end. Random errors are determ+a•---

ate because they may be evaluated by statistical analysis. Statistical treatment

of data reveals information regarding random errors only.

Systematic errors are constant errors which affect all measurements of

a particular quantity by the same amount. They may be due to calibration errors,

personal methods of observation, neglect of small residual terms in metabolic

balances, etc. Systematic errors may be determinate or indeterminate. If

determinate, they are evaluated by auxiliary experiments such as calibration

of instruments against standards, and if indeterminate, they may be inferred

only indirectly by comparison with other measurements of the same quantity.

They cannot be treated statistically except to find the random errors associated

t
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with calibration. Systematic errors cannot be diminished by repetition and if

Indeterminate, almost always set a lir.,tit beyond which repetition is valueless.

Systematic errors exist in the typical cater balance study, but these have been

accounted for and have been discussed in a previous report (Leonard, 1977).

In this study we are interested In the source of random errors associated

with estimations of the Skylab water balance. In principle the mean water

balance for all nine men over the entire course of the mission (preflight, inflight,

postflight) is associated with a variance which is indicative of the difference

between a single observation and the true mean value for a large population. This

sampling error Includes differences in observations di i to: day-to-day variation

for any one individual, subject-to-subject variation, variation between flight phases

(I, e. , zero-g vs. 1-g), variation between flights, and a variation associated with

instrument errors. These components of variance (except for instrument error)

can be evaluated quite readily by an analysis of variance (ANOVA) although it is

not the purpose of this study to do this, Rather, we are interested in an analysis

of the ultimate precision (I. e. , total sampling error) and sources of imprecision

in the water balance technique as it is used in Skylab. Thus, our aim is to

investigate whether or not it is possible to reduce the errors in the water balance

in future experiments by such techniques as reducing measurement or instrument

error, make additional measurements that were omitted :n Skylab or change

experimental design or protocol.

The three major objectives of this study may be listed as follows: a) to

determine the total variance and ultimate precision of the water balance tech-

nique that was obtained in this study and that might be expected from future

studies, b) to determine the sources of error in the water balance technique

by examining sampling and instrument Terrors of all terms in the water balance

equation, and c) to identify any questionable data collected from any of the crew-

members by examining the consistency of the errors among all subjects.
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METHODS OF COMPUTATION

The purpose of this section is to present the mathematical expressions

used in the calculations of various quantities shown in the remainder of the report.

Propagation of Errors

The error in the water balance can be expressed as the sum of errors of

each term in the balance equation. The water balance equation used in this study

is given by:

Daily Water Balance	 ATBW = ABWgt - Food Solids + Urine Solids
+ Fecal Solids + IML + CF	 (1)

where Urine Solids = Urine Volume x (Sp Gr - 1)

IML = net insensible metabolic loss from metabolism
of foodstuff (carbohydrate, fat and protein) with
digestive efficiency, EFF

(H20 + CO2 - 02 ) metabolism

= EFF ( 1.009 • CHO + L 007• FAT + 0. 563 • PRO)

CF = correction factor that includes unmeasured losses
due to dry skin losses plus IML of body tissue
metabolism.

For simplicity, let the terms of this equation be represented by the following

notation where there is a one-to-one correspondence between Equations (1) and

(2)

X (ATBW) = X 1 - X 2 + X 3 + X 4 + X 5 + X 6 	 (2)

The bar over each term designates that they represent the mean daily value of

that quantity for the time interval under consideration. The mean value is found

from the set of continuous daily measurements for a single crewman.
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The variance of X( ATBW) can be determined from either of two separate

calculations:

	

a)	 from the N set of calculated values of X I(A TBW), I. e. ,

IN	 _
S2 ( AT BW^	 (XI (ATBW) - X(ATBW)) 2 /(N - 1)	 (3)

1
and b) from the "propagation of errors" (Beers, 1957); i, e. , the algebraic

sum of the variances (S I ) and covariances (SIj ) of the six terms in Equation (2):

S (ATBW) _ ^alSi + 2^ }^ aiajSij

	

2	 6	 26, 6	
(4)

The quantities a i , aj are the coefficients (- 1 or +1) of each term on the right

side of Equation (2).

Both of these methods will result in similar estimates of v (ATBW), the

first equation being the traditional approach. However, Method (b) has the

virtue of allowing the relative contribution of each term to the total variance

to be determined.

Expanding Equation {4) and letting S6 = O we get:

S2 (ATBW) = Si + S2+ S3 +S 2 +S 5

+2(-S12+S13+S14+S15-S23-S24-S25

+S34 +S35 +S45)	 (5)

This term, a correction factor, has been assumed to be constant for each
subject and, therefore, by definition, has no error. In fact, however, this
term does have a day-to-day variance which Is indeterminate. To the degree
that the computed value of CF is in error, there will be an indeterminate
systematic error in the mean water balance. The method presented here is
designed to study sources of random error only, not systematic error. See
the companion study "Skylab Water Balance Analysis" (Leonard, 1977) for
a further discussion of the errors involved in CF.
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where the variances are given by a form of Equation (3) and the covarlances are

given by:

N	 __

S =	 (XIYI - N	 AN - 1)	 (s)
t

The covartances can also be computed from the correlation coefficients, p ,

between two terms, as follows:

SXy = p XySXsy	 (7)

If each term in Equation (2) is statistically independent of each other the

correlation coefficients will be zero and the covarlances will vanish.

Cumulative- Water Balance and Precision

The water balance and the standard error of the water balance have been

included in this report as a function of time of flight. In those cases we can

define the "updated" mean cumulative water balance through day N as:

N
L X(AT-BW)

4BW	
i iN	 (8)
N 

and the "updated" cumulative standard error of the mean on day N as:

SE  (ATBW) - s , TBW	 (g)

where S (ATBW) is the standard deviation given by Equation (3). The confi-

dence intervals (95%) for the water balance for any day can be determined by:

ATBWN ± 2 BEN	 (10)

If these intervals are based on the entire number of days in the balance series

and if the larger perturbations at the beginning and end of the series are omitted,
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they may perhaps be regarded as the minimal feasible uncertainties and a

measure of balance precision (Hegsted, 1975).

Pooled Variance

The best estimate of o(X) (the variance of X) is taken to be the pooled

variance determined from all crewmen as follows:
k

I (N, - 1) Si (X)
S- (x) =

	

	 (11)N - k

where Si is the variance of x for the ith crewman determined from N i daily

measurements, N is the total number of daily measurements for all crewmen

and k is the number of subjects. The equation was also used to average the

standard errors in the tables of this report.
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RESULTS AND DISCUSSION

In each subsection of this portion of the report, the error analysis for one

crewman will be presented first. The results and conclusions will then be exten-

ded to include the entire crew of nine subjects.

Precision of Water Balance

In the example to follow only the data for an extended inflight , portion of a

single crewman is treated. Thus, we shall be interested in examining the errors

associated with daily variation in water balance rather than variation 'ietween

subjects, between flights, or between flight phases. The subject was not chosen

at random, but represents the individual whose total body water was most con-

stant (i. e. , water balance closest to zero) over the longest period of time. This

approach was chosen in an attempt to estimate the best precision obtainable for

measuring water balance indirectly under the most ideal condition during the

Skylab series.

In Figure 1, this crewman's (SL4/CDR) water balance and integrated water

balance (Le. , total body water change) are shown. The variability of the water

balance is often greatest at the beginning and end of the flight. Thus, we have

chosen to analyze this data by omitting the first two days and last four days of

the inflight period, the so called "edge effects" (Hegsted, 1975).

In Figure 2, the updated cumulative mean daily water balanc3 and cumula-

tive standard error are plotted using Equations (8) and (9). These graphs show .

an initial period of oscillation for the first 2 weeks inflight and then show a smooth-

ing effect in which the values decrease to an apparent asymptote. (The asymptote

is zero for the water balance and 33 ml for the standard error: if the flight were

carried out indefinitely the true asymptote of SE  would theoretically approach

zero). The qualitative appearance of these curves suggests that comparatively

little new information is added by the second half of the balance period. Unfor-

tunately, the first two weeks of the period are the least stable. This may have

Implications for future Shuttle experiments which are expected to last less than
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two weeks. These results are similar to those obtained by Hegstad (1975) for

mineral balance data. He also demonstrated that the characteristic shape of

these curves are due in part to the averaging process assuming the quantities

accumuldated are sufficiently gaussian.

Corresponding plots of the other crewmen are similar in appearance, but

are not presented. However, their final asymptotic values are given in Table I.

The two cases illustrated are with and without edge effects removed. It can be

seen that on the average similar standard errors are obtained for both cases.

However, removal of edge effects does change the direction of the mean daily

water balance from a net loss to a small net gain. This indicates that after the

initial loss of body water (occurring primarily during the first two days of flight),

the body does not lose more water, but tends to gain fluid slowly. However,

there is no apparent bias toward fluid retention in cases where edge effects have

been removed; four crewmen have negative balances while five have positive

balances. This is in accord with the intuition that the body may require long

periods of time to ready a steady-state after an initial disturbance, but that having

done so will remain reasonably in equilibrium. Some of the crew appear to have

approached a steady-state (zero balance) much faster than others.

The removal of these "edge effects" has previously been suggested by
Hegsted in his analyses of SMEAT metabolic balance data. It turns
out, however, that having performed the analysis with and without edge
effects included, the removal of the edge effects do not always lead to
improvements in precision. This is apparent when we realize pre-
cision (as measured by inverse of standard error) increases with
additional number of observations, but decreases as the dispersion of
these additional observations increases from the mean value.
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The 95% confidence intervals for the case where edge effects have been

removed are -125<ATBW «153 on th•i average and all the intervals computed

for each individual overlap. This fact, together with the lack of bias toward

net retention has been used by Hegsted as evidence lending credence to the find-

ings of the balance technique.

The cumulative standard error of the net balance of a quantity has been

used as a measure of the precision of the technique (Hegated, 1975; Lentner,

1975). Under the most ideal conditions, the best precision for a single crewman

has been shown as ± 33 ml/day (SE after 78 days for SL4/CDR). The 95% con-

fidence intervals for this subject is, therefore, ± 66 ml/day. This particular

subject had a daily total body water turnover of approximately 2600 ml (as

indicated roughly by mean water intake). Thus, the relative spread of water

balance error with regard to turnover can be given as 66/2600 x 100% - 1 2. 5%,

which is a reasonably accurate precision for balance techniques.

The precision of the water balances for each of the crewmen during pre-

flight and inflight periods are given in Table II for the cane where edge effects

are included. Two values for SE  are given for each subject for each flight

period. The first is the cumulative standard error at the end of the first 14

days, which roughly corresponds to the expected orbit time of Shuttle. The

second is the standard error for the entire preflight or inflight period. While

the precision decreases for the shorter interval, as expected, it is still reason-

ably close to the longer term precision.

The best estimate of the variance of the mean water balance can be

obtained by pooling the variances (See Equation 10) for each of the nine crewmen

during the entire preflight and inflight periods. These values, shown in the last

row of Table A-I, result in 02 (ATBW) = 390)2 and represent over 750 separate

man-days of measuring water balance from the indirect balance technique. This

value (as well as those shown In Tabs - II) can be used to provide confidence inter-

vals for determining water balance on future flights using the same experimedal

method. Thus, we might state that in 95% of any future water balance determinations
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the interval between ATBW ± 20/will include the true mean. In this case,

ATBW Is the sample mean, N is the number of observations and 7^ 390 ml.

I

1i

The minimal number of samples required to resolve a change in water balance of
2ATBW ml (at 95% level) can by found from, N (2o/ATBW) 	 For example,

10 preflight and 10 inflight samples are needed to resolve a change of 250 ml in

daily water balance.

Propagation of Error Analysis

The last section was concerned with the absolute errors in mean daily

changes of body water using the indirect balance method. The discussion to

follow will attempt to analyze the sources of these errors as they derive from

each component or term of the water balance equation. As before, the SL4/CDR

crewman 's data will be used for a detailed example.

Water balance is an indirect measurement and is subject to the propaga-

tion of random errors shown by Equations (4) and (5). These errors are listed

In terms of standard deviation, S.
1 , 

in Table III for each term In the water

balance. The sum of these errors (actually the square root of the sum of

squares) is shown at the bottom of the column as S = 302 ml. Covariances, as

shown in Equation (5) have been omitted from the calculation. If they had been

included they would change the standard deviation only slightly to S = 296 which

represents only a small covariance contribution. Therefore, we have elected

to exclude covariances from these- calculations of error propagation. ` The

error contribution of each term car. be  easily found by dividing the variance of

each term by the total variance as shown in Table III. Also shown are the 95`,,

confidence limits for each term. By far, the largest error is seen to be due

to those associated with measuring changes in body weight. In fact, almost all

the total error in net water balance can be ascribed to this single source (96.5`7 ).

Accounting for the covariance error contribution in each water balance term
would involve a form of factor analysis and determination of eigenvalues, a
calculation which is not justified here. We shall demonstrate that the co-
variances play a relatively small role in total error for all othcr crewmen
as well.
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The errors just discussed are total sampling errors which include the

randomness due to biological variability ( the errors present even if all meas-

urements could be made with perfect precision) as well as the random errors

associated with the technique of measurement or "instrument error" (the errors

present if a known calibration standard were repeatedly measured).

In general:

Total variance = biological variance + Lan-t •ument variance

We have attempted to estimate the instrument errors for each quantity in the

water balance equation. Details of the calculations are given in the appendix

and the results of that analysis are shown in Table III (E i) along with their rela-

tive error contribution and confidence limits. Note that since a measurement

of any quantity is independent of the measurement of any other quantity the total

instrument variance is exactly equal to the sum of the individual variances since

the covariances vanish. It is apparent that the largest source of instrumentation

error ^(70%) is due to the mass measuring device for determining changes in

daily body mass. Nevertheless, from the last column of Table III it is also

apparent that instrument error contributes only riinimally ( 1.6%) to they uncer-

tainty associated with the m ean values obser ved in this study. That is, biological

variability far exceeds instrument error, a conclusion which is quantitatively and

qualitatively similar to the one reached by Hegsted for mineral balances.

A portion of the variance of the term "food solids" and "insensible meta-

bolie. loss" (the latter is a direct function of the food components) is due to the

cyclical nature of the six day rotational diet that was used in Skylab. It is possible

to remove this contribution (see Hegsted ' s report), but the conclusions would not

be different because both of these terms only contribute several percent towards

total water balance variance.

Since instrument error contributes only a fraction to the total variance

little is to be gained by improvements in analytical accuracy. If improvements

in instrumentation are desired, however, the analysis suggests that emphasis be



12

placed soley oil 	 mass ill cats urement device. Total variance is high because

of mainly one factor. the variance in daily changes in bod y mass. This is basic-

ally due to biological factors and little is presently known how to control this

quantity. Whether more careful control of food and water intake within rigid

limits would assist to control body weight changes is not known. This may

warrant some attention.

One of itegsted's principal findings was that substantial reduction in

variance are not available for mineral balance studies. unfortunately, we reach

the same general conclusion with the exceptions noted below. He based his con-

clusions on the argument that the major source of er ror in balance methods is due

to unmeasured skin losses which "although it cannot be proven ... (must be) .. .

higher than the conventional estimates. " In Skylab this takes on additional signif-

icance where "the effects of the (zero-g) environment oil 	 losses are cona-

plet.ely unexplored. " He suggests the need for independent measures of total body

composition for 'such quantities as calcium, potassium, etc. We have shown that

correction of the balance technique with total body water measurements does

indeed lead to more ,acceptable and meaningful results, and that this in itself has

drasticall y reduced a major source of error (Leonard, 1977). However, while : eparate

corrections were determined for each subject, it was only possible to apply a

constant correction factor for each day of flit gat; the actual day-to-day variability

is not known and neither is the variability due to change in gravitational field.

Therefore, we concur with, and extend, llegsted's suggestion for future research:

that it be directed toward a) measurement of skin losses, and b) estimation of

total body composition by direct methods which should he used at frequent inter-

vals during balance pericxis oil 	 and during weightlessness,

Covarianees and Correlations

The conclusions reached in the previous section regarding the minimal

contribution of covarianc.es of one crewman can he extended to all crewmen.

Table IV illustrates the errors (expressed there as tic:) in each subject's water
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balance due to: a) all variances and covariances (column 1) and, b) variances

only as obtained from the propagation of errors (column 2). The percentage

difference between these two (in the last column) is an estimate of the covariance

contribution which on the average is only 10%. For reasons whic^ are not com-

pletely clear, the covariance contribution of all men on SU (Men #4, 5, and 6)

are much higher than the other crews. Also shown in Table IV are the errors

due to ABWgt which in all cases are similar to the errors due to ATBW indica-

ting that the total water balance error is almost entirely due to errors in meas-

uring body mass.

Although the covariances are of negligible importance to total error con-

tribution, they are useful insofar as they provide information about correlation

coefficients for water balance components as shown by Equation (7). Table V

shows the variance-covariance matrix and correlation coefficients for water

balance terms of subject SL4/CDR. It should be noted that covariances will

have low vaiues if either the correlation coefficient is low or if at least one of

the variances are very small. Both of these situations can explain the low

covariances seen in this study.

The most significant correlation is seen to be the one relating food solids

and insensible metabolic loss. This, of course, is expected from the fact that

IML is derived from dry food consumption. Other significant correlations exist

between ABWgt-Food Solids and ABWgt-Urine Solids. Neither of these is un-

expected since at a constant rate of metabolism the major changes in body weight

are due to solid and liquid changes in the diet. The low correlation between food

and fecal solids exists only as an artifact since there was not a bowel movement

on each day and the fecal values for these days are zero. There was no attempt

to correlate food intake or body weight with a delayed or lagged urine or fecal

output. The irregularity of the fecal output precludes obtaining meaningful

information from such an analysis.
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Table VI shows the corresponding correlation coefficients for the entire

crew of nine subjects expressed as a weighted mean value. The only significant

values that appear in this table that were not discussed above is the correlation

between food and urine solids. This value was unusually low for SL4/CDR com-

pared to most of the other crewmembers. The correlation coefficients for each

crewmember is given in Appendix Table A-II. From that table it may be seen

that the SU crewmembers had as many significant correlations between factors

as the other six crewmen combined. In particular the fecal-urine solids correla-

tions were higher in part because the second crew had more frequent bowel move-

ments. This helps to explain the previously observed high covariance contribu-

tion of these subjects shown in Table IV.

Correlation Using Water Balance as a Common Factor

Another type of correlation coefficient computed was that between the

daily water balance and each term of the water balance equation. (In the prev-

ious calculations, water balance was not used as a common factor). These

coefficients are shown in Table VII for subject SL4/CDR, in Table VIII as mean

coefficients for the entire crew and in Table A-III (Appendix) for each of the nine

crewmen. The results shown in Table VII suggest: a) that body weight changes

are nearly perfectly correlated with water balance, b) that the other factors have

lower, but still significant, correlations with water balance, and c) that

removal of edge effects enhances the significance of several factors. This latter

effect is to be expected since total body water changes dramatically the first two

days of flight regardless of food eaten or excreta produced.

The mean values of coefficients shown in Table VII show no remarkable

changes with regard to comparison of control with inflight phase. They are in

fair agreement with corresponding values obtained for the single crewman SL4/

CDR. These values represent a mean for the nine crewman and in some cases

there is a considerable dispersion among the subjects as shown in Table A-III.
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The boxes surrounding particular coefficients denote outlying values (greater

than or less than two times the mean value). Very low or very high coefficients

for particular subjects may mean true biological correlations deviant from the

norm or some consistent error in data collection. Each successive crew of three

subjects show increasing numbers of outlying values. However, there do not

appear to be consistent trends that suggest data collection errors.

General Types of Errors in the Balance Technique

Errors in the balance technique have been reviewed by Hegsted (1975, 1976),

and Forbes (1973). The major types of error they discuss include the following:

a) certain losses are not measured in the usaal balance study, especially nutri-

ients lost through the skin, b) there is a consistent bias in most balance studies

arising from an overestimation of intake (the subject may not eat all of the food

offered, but cannot consume more than offered) and an underestimation of output

(it is difficult or impossible to collect all excreta and difficult to collect more

excreta than are actually produced), and c) balance studies designed to identify

minimal dietary requirements are based on an assumption of achieving a true

steady-state metabolic balance which may take longer periods of time than

allowed in most studies. In addition, there is an additional source of error in

the water balance technique used here: d) the body is capable of generating

water by the catabolism of body tissue and this quantity cannot normally be meas-

ured accurately.

The errors due to (a) and (d) will tend to underestimate water balance

and those associated with (b) will make the balances falsely high. The errors

of (c) do not really apply to this study because there was no assumption of the

existence of a steady-state. Furthermore, long term changes in water intake,

if they were present at all, are reflected very rapidly by corresponding changes

in total body water composition.

Dermal losses and body tissue losses were accounted for in the present

study by correcting the balance with total body water direct measurements at
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various intervals throughout the long study period, thereby minimizing the errors

(a) and (d) . Ultimately, however, the precision of balance studies are limited

by the precision with which the Intake and output can be determined. Collecdon

of excreta and measurement of food and water Intake were carefully performed

and corrections were included for food not eaten at each meal. It was more the

responsibility of the crewmen than the principal investigators to perform the

actnat collection and reporting tasks. However, the crews were highly trained

and well motivated and it is not likely that consistent errors were introduced. It

is more likely that occasional lapses in reporting occurred due to rigid scheduling

of other tasks. This source of error would tend to be minimal when averaged

over the entire 900 man-days of observation.
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SUMMARY

Estimates of the precision of the net water balance have been obtained

for the entire preflight and inf light phases as well as for the first two weeks of

flight. After two weeks the confidence intervals are approximately ± 250 ml/day.

These intervals were shown to decrease rapidly after the first two weeks of flight.

The smallest 951/c confidence interval obtained for any one crewman was ± 66 ml/day

and ± 124 ml/day for the mean of all nine crewmen. The overall "best" Skylab

estimate of water balance variance was found to be	 02 = (390) 2 m12,

These values can be used as guidelines in making inferences about design 	 and

analysis of Shuttle experiments.

Quantitative estimates of both total sampling errors and instrumentation

errors were obtained. It was shown that measurement error is minimal in com-

parison to biological variability and little can be gained from improvement in

analytical accuracy. In addition, a propagation of error analysis demonstrated

that total water balance error could be accounted for almost entirely by the errors

associated with body mass changes. Errors due to interaction between terms in

the water balance equation (covariances) represented less than 10% of the total

error. A correlation analysis between terms in the water balance equation did

not produce any notable or unexpected results.

Overall.this analysis provided evidence that daily measurements of body

water changes obtained from the indirect balance technique are reasonable,

precise, and reliable. The method is not biased toward net retention or loss

as has been shown in balances previously reported because a correction factor

(representing unmeasured skin and tissue losses) was employed based on direct

total body water measurements. It is suggested that improvements in the

present water balance mehtod should be directed toward obtaining better esti-

mates of the correction factor and its errors. This can be accomplished by

direct measurements of skin losses, body tissue changes and more frequent

measurements of total body water.
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TABLE I

Comparison of Inflight Standard Errors in ATBW and

GBWgt for All Skylab Crewmen

Edre E * Ede Effects Removed

MAN
N ATBW BE N

22

ATBW _	 ^ L

- 3.1	 1.071 28	 -14.5	 86

2 28 - 6.4 90 22 -61.0	 107

3 28 -74.7 78 22 -49.8	 95

4 59 -23.1 43 53 19.5	 39

5 59 + 2.1 47 53 52.2	 41

6 59 -56.7 68 53 31.3	 51

7 84 - 9.2 34 78 0.3	 33

8 84 - 7.35 46 78 - 4.1	 48

9 84 -19.0 36 78 7.12	 35

Means -23 .2 62 +12.7	 69

*	 All inflight days included, N= 84

** lot 2 inflight days and last 4 inflight days removed, N = 78



Mean
SD

125 ml 62 ml
±82	 ±52

106 ml 82 ml
±81	 ±66

22

TABLE U

Precision of Water Balance During

Preflight and Inflight Periods

PREFLIGHT INFLIGHT

Total Days Cumulative SE k Total Days Cumulative SE
MAN in Period in Period

N
T

k=14 days* k=NT NT k=14 days k=NT

1 30 113	 67 28 149 86

2 30 93	 64 28 137 90

3 30 67	 58 28 98 78

4 20 10'•	 32 59 123 43

5 20 127	 116 59 126 47

6 20 156	 121 59 1.57 68

7 26 89	 68 84 104 34

8 26 118	 78 84 58 46

9 26 54	 56 84 141 36

SE  = standard error for let 14 days of period
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TABLE IV

Estimates of Covariance Contribution to Total Variance

(Comparison of Standard Errors of Water Balance With
Propagation of Standard Error Terms)

Man
ATBW

SE*
Propagation of SE of
Water Balance Terms**

iM' gt.
SE

Covariance
Contribution	 ***

1 86 89 88 7%

2 90 93 92 7%

3 78 80 78 5%

4 43 47 45 19%

5 47 51 48 18%

6 68 73 69 15%

7 34 35 34 6%

8 46 47 46 4%

9 36 39 38 177;

Mean 62 65 63 10%

* Includes covariance contribution
SF 2 = SD2 ( ATBW)/N	 N= total inflight days

** Does not include covariance contribution
SE - 6E2 (ABWgt) + SE2 (Food) + SLI(Urine) + SE2(Feces) + SE2(IML)

*** _ (Column 1) 2 — (Column 2 2 x 100
(Column 1)

I
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TABLE V

Error Matrices for Inflight Water Balance

of SL-4/CDR **

A)	 uorretarlon coeuictents

Food Urine Fecal	 Metabolic
OBWgt Solids Solids Solids	 Loss

ABWgt 1.00

Food Solids 0. 32* 1.00

Urine Solids -0, 37* 0.05 1.00

Fecal Solids 0.10 0.12 -0.09 1.00

Metabolic 0. 29* 0. 99* 0.09 0.12	 1.00
Loss

B)	 Variance - Covariance Matrix ***

Food Urine Fecal	 Metabolic
OBWgt. Solids Solids Solids	 Loss

ABWgt, 87.95

Food Solids 3.58 1.41

Urine Solids -0.94 0.02 0.07

Fecal Solids 0.63 0.10 -0.02 0,49

Metabolic 3.05 1.31 0.03 0.09	 1.25
Loss

*	 p < 0, 05

** Edge effects removed, N= 78

*** Each element has been divided by 103



Mean Correlation Coefficients for Terms in Inflight Water Balance

for Entire Skylab Crew (n=9) +

Food Urine Fecal	 Metabolic
ABWgt Solids Solids Solids	 Loss

OBWgt 1.00

Food Solids 0.20* 1.00

.Urine Solids -0. 15* 0.29* 1.00

Fecal Solids -0. 16* 0.03 0.07 1.00

Metabolic 0.19* 0.99* 0.29* 0.03	 1.00
Loss

+ Weighted average accounting for unequal inflight days for each subject; total
number of inflight man-days = 513

* p < 0. 05, based on Ninf = 513 days
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TABLE VII

Correlation Coefficients Between ATBW and

Each Term Inflight Water Balance for SL-4/CDR*

Edge Effects Edge Effects
Variables Removed Included

ATBW — ABWgt 1.00* 1.00

ATBW — Food Solids 0, 32* .16

ATBW — IML 0.30* .15

ATBW — Urine Solids 0.34* - .26

ATBW — Fecal Solids 0.17 .21*

* P <. 05, N = 78 column (1)

N = 84 column (2)
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TABLE VIII

Skylab Mean Correlation Coefficients (n=9) Between ATBW

and Each Term in Water Balance Equation

for Preflight and Inflight Phases**

Variable	 Preflight	 Inflight

ATBW —	 BWgt.	 0. 997*	 0. 997*

ATBW — Food Solids	 0. 239*	 0. 192*

ATBW — IML	 0. 241*	 0. 180*

ATBW — Urine Solids	 -0. 234*	 -0. 133*

OTBW — Fecal Solids	 -0. 146*	 -0.097

* p<.05  based on N pre = 228 days, N inf = 51 s days

** Weighted average accounting for unequal number of days in each
flight phasE and without removing edge effects
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APPENDIX I

ESTIMATES OF INSTRUMENT AND MEASUREMENT ERRORS

Instrument errors have not, unfortunately, been established precisely and

are not available from any single source. They have been estimated in this study

from several documents (Hegsted, 1975; Arnold, 1972; Thornton, 1974), from

discussions with principal investigators and from reasonable estimates if no other

information was available.

Body Weight Chanizes

The best available information regarding errors associated with the body

mass measuring device was found in the Skylab Life Sciences Symposium.

Thornton states the "repeatability of body mass measurements was ± 0.1 pounds,

and absolute accuracy was.... probably nearer + 1/4 pounds." In the water

balance equation, the term iABWgt refers to a change in weight between consecu-

tive morning weighings. Thus, the measure of error we are interested in is

repeatability (or reproducibility), assuming the absolute accuracy were constant.

In this case, as well as others to follow, we shall assume that reproducibility

implies a statement such as 1195% of the measurements of all samples were within

± 2 a of the true mean. " Thus, if repeatability of the mass measurement was

± 0. 1 pound or ± 45 gms = 2 a (BVl7gt), then a (BWgt) = 22.5 gm. For a change in

weight between day 1 and day 2:

ABWgt = BWgt2 - BWgt1
and

a2(ABWgt) = a2 (BWgt2 ) + o (BWgt1)

= 22.52	+ 22.52

or	 o (A BWgt) _ 1 32 gm

Food Solids

From Hegsted's analysis of errors we learn that food weight was measured

within 1 2 to ± 2. 5%. Increasing this estimate slightly to account for food that
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was not removed from the container or entirely ingested (some of these errors

have already been included in verified food data) we obtain 2 a = ± 3% = ± 20 gms

(based on an average daily dry food value of 630 gt;. x .03 = 20) or

a (food solids) _ ± 10 gms.

Urine Solids

Urine solids are obtained from the product "urine volume • (specific

gravity - 1). " The errors for a product of two independent random variables,

(Z = X • Y), can be taken as (Beers, 1957):

02 ( Z ) 
= X2 a2 (y) + j2 

a2(X)

or in the case at hand:

a 2 (urine solids) _ (urine volume) 2 a 2 (sg) + (sg -1)2 a 2 (urine volume)

Mean Skylab inflight values for urine volume and specific gravity of urine are

1630 ml and 1. 022, respectively. We will use Hegsted's estimate of a(urine

volume) = 3 ml and assume that specific gravity can be measured quite precisely

at 0. 5% or 2 a (sg) = 0. 005 x 1. 022 = 0.005 or a (sg) = 0. 0025. Substituting

these into the above equation results in a (urine solids) _ ± 5 gm.

Fecal Solids

We shall accept Hegsted's estimate of the standard deviation of fecal solid

measurement as 1 0. 4  gm and increase it to allow for incomplete collection, so

that a (fecal eolids) _ ± 1 gm.

Insensible Metabolic Loss

Net insensible metabolic losses (IML) were obtained from the expression:

IML = EFF ( A 1 • Diet Protein + A2 • Dirt Fat + A 3 • Diet Carbohydrates). A i are

stoichiometric constrants whose errors are not known to us, but are based on

precise estimates of the water, CO2 , 02 and urinary nitrogen produced or
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consumed during metabolism. We shall assume no errors in these quantities.

The term EFF represents the calculation (food solids - fecal solids)/food solids.

The mean ± pooled standard deviation for EFF for all subjects was approximately

0. 954 ± 0. 04 and we shall assume that half of the total error is due to measure-

ment error, so that a(EFF) = 0.02. If each of the dietary constituents can be

measured with the same accuracy as the total food weight (I. e., within ± 3% or

a = 1.5%) than using average inflight values for dietary protein, fat and carbo-

hydrates as 111 gm, 83 gm, and 412 gm,respectively, we calculate that

a (protein) = 1.7 gm, a (fat) = 1.3 gm, and a (carbohydrates) = 6.2 gm. An

expression for the variance in insensible metabolic losses can be taken from com-

bining the formulations for total errors of products and sums of independent ran-

dom variables (Beers, 1957):

0 2	 2	 2 2(IML) = EFF 
2 

a(X) + X a(EFF)

where X = diet carbohydrate + diet fat + 0.563 diet protein

and	 02(X) = a 2 (diet carbohydrate) + a 2 (diet fat) + 0. 5632 0 2 (diet protein)

Substituting the above values into these equations results in:

X = 557 gm, a(X) = 6.4 gm and a(IML) _ ± 13 gm.

Correction Factor

As previously discussed, it is not possible to determine the random errors

associated with the day-to-day variation of the correction factor. However, it

may be possible to estimate lower limits of its measurement error. The value

of CF is based heavily on differences in two consecutive measurements of total

body water which are usually considered to be no more accurate than t 5 %. Using

a typical value of 40 liters for TBW we can calculati., using the above procedure

for body weight, that the standard deviation associated with a difference in two

measurements of TBW is about 1400 gm. The standard error of the mean for

r
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nine subjects would then be a m (ATBW) = 1400/= 470 gm. However, this

represents measurements over an interval of up to 28 days in the shortest flight

and 84 days in the longest flight. Thus, a daily estimate of error of ATBW may

be found by dividing by this interval which gives a I(ATBW) = 17 gm to 50 gm for

each crewman and am(ATBW) = 6 to 17 gm for 'he entire crew. The actual

standard error of the mean for the inflight correction factor for all nine crewmen

has been shown to be about 12 gm which gives credence to these calculations.

Other Errors Due to Insensible Metabolic Loss

Some mention should be made regarding the indirect calculation of IML

based on food consumption. In the typical water balance where a correction

factor is not used, the use of this equation is justified only when there is no net

tissue storage or loss, that is, all of the energy required by the body is derived

from food metabolism. If all foods are metabolized and more energy is still

required, the body may draw on its own tissue stores in which case values for

IML will be too low. On the other hand, if all foods are not metabolized and

are not excreted they will be stored by the body and values for IML will be

falsely high.

The use of the correction factor was incorporated into the present water

balance to account for, in part, the failure to compute IML precisely correct

each day. However, the correction factor was applied as a constant value for

each day of the mission which undoubtedly leads to some errors. These errors

tend to be reduced and are not accumulative due to certain self-regulatory

features of the water balance equation.

First, in computing daily water balances, it is assumed that all of the

food consumed is converted to water, carbon dioxide and urinary nitrogen on that

same day. This is not strictly true and would be inappropriate if the total length

of the experiment were only several days. However, over extended periods of

time, this type of error will be self-compensating. Thus, if all the food con-

sumed in a 24-hour period take parts of two days to be fully metabolized, the
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IML for the first day will be too high and will be equally low on the second day.

The average over this two-day period wi'.1 be essentially correct.

Secondly, the expression for IML shows that the total error in IML due to

body tissue catabolism is less than the weight of the tissue lost. For example,

it has been estimated that the average daily loss of body fat and protein during

Skylab flights were roughly 20-40 gm/day. Assume the higher figure and equal

proportions of fat and protein loss; i, e. , 20 gm prot .c^in and 20 gm fat loss. The

coefficients pertaining to protein and fat in the IML equation are A l = 0.563 and

A2 = 1.0 respectively, which lead to an underestimation of IML (food + tissue) of

0. 563 x 20 gm + 21.0 x 20 = 31 gm which is about 80% of the total assumed loss.

This, in turn, will lead to underestimations of water balance by this amount.

This is not a very serious error when considering the large losses of 700 ml/day

during the first two days of flight or similar gains upon recovery. However, it

does become more serious during the extended portion of the flight when the crew

appear on the average to be in water balance. The correction factor that was

applied ensures that these errors due to underestimation of IML do riot accumu-

late.
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TABLE A-II

Correlation Coefficients for Covariance Terms

In Inflight Water Balance for Each

Skylab Crewman

SUBJECT

Correlation
Variables 1 2 3 4 5 6 7 8 9

ABWgt. -Food .01 -.03 .24 .22* .44* .34* . 16 • .02 .23*

ABWgt.-Urine -.18 -.21 -.21 -.43* .13 .00 -.28* -.18* -.07

ABWgt. - Fece -.33* -.20 .17 -.59* -.19 -.17 .14 -.03 -.30*

ABWgt. - IML -. 01 -.02 .27 .21* .45* .34* . 15 .04 .20*

Food-Urine .35* .26 .54* .16 .42* .55* .0113 .03 .47*

Food-Feces .13 .03 -.25 .04 .10 .19 .04 0.0 -.05

Food-IML 1.0* 1.0* 1.0* 1.0* 1.0* 1.0* .99* 1.0* .99*

Urine-Feces -.07 .13 -.31 .26* .27* .34* -.10 .05 -.04

Urine-IML .30 .24 .53* .15 .40* .53* . 12 .03 .48*

Feces-IML .17 .01 -.26 .04 .10 .18 .04 .01 -.07

No. days 28 28 28 59 59 59 84 84 84

* p<.05
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TABLE A-III

Correlation Coefficients Between ATBW and

Each Term in Preflight and Inflight

Water Balance for Skylab Crew **

Flight Food Insensible Urine Fecal
1U& 	 Phase ABWxt Solids Met. Lose , Solids_ Solids N(days)

1 Pre 1. 00 * 0.16 0.14 ( -0.02) -0.28 30
Inf 1.00* (0.02) (0.00) -0.17 (-0.29) 28

2 Pre 1.00* 0.15 0.18 -0.27 -0.19 30
Inf 1.00* (-0.03) (-0.02) -0.19 -0.15 28

3 Pre 0.99* 0.20 0.17 0.19 -0.22 30
Inf 1.00* 0.23 0.25 -0.21 (	 0.20) 28

4 Pre 1.00* 0.16 0.15 (-0.78') -0.08 20
Inf 1. 00* 0.22 * 0.21 ( -0.4245 (-0.54') 59

5 Pre 1.00* 0.47* 0.46* (-0.57*) (-0.42*) 20
Inf 1.00* ( 0.43) (0.44*) 0.15 -0.13 59

6 Pre 1.00* 0.43* 0.44* -0.40* (-0.03) 20
Inf 1.00* 0.32* 0.32* ( 0.00) -0.14 59

7 Pre 1. 00* 0.22 0.27 -0.21 ( 0. 41*) 26
Inf 1.00* 0.16 0.15 (-0.26 *) ( 0.21*) 84

8 Pre 1.00* (-0.05) (-0.06) -0.18 (-0.39*) 26
Inf 1. 00* ( 0.02) (0.04) -0.15 ( 0.031) 84

9 Pre 0. 99* ( 0. 53*) (0. 53*) -0.19 -0.09 26
Inf 1. 00* 0.24* 0.21 (-0.04) (-0.22) 84

Mean	 Pre 1.00* 0.24* 0.24* -0.23* -0.15* 228
Inf 1.00* 0.19* 0.18* -0.13* -0.10 513

* p <.05

** Edge Effects Included

(	 ) Denotes 1/2 P` < PZ 2  . F
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