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PREFACE

This book is intended for those students, 'engineers, scientists, and applied
mathematicians who find it necessary to formulate models of diverse phenomena.
To facilitate the formulation of such models, some aspects of the tensor calculus will
be introduced. However, no knowledge of tensors is assumed. The chief aim of this
calculus is the investigation of relations that remain valid in going from one
coordinate system to another. The invariance of tensor quantities with respect to
coordinate transformations can be used to advantage in formulating mathematical
models. As a consequence of the geometrical simplification inherent in the tensor
method, the formulation of problems in curvilinear coordinate systems can be
reduced to series of routine operations involving only summation and differentia-
tion. When conventional methods are used, the form which the equations of
mathematical physics assumes depends on the coordinate system used to describe
the problem being studied. This dependence, which is due to the practice of
expressing vectors in terms of their physical components, can be removed by the
simple expedient.of expressing all vectors in terms of their tensor components.

For the benefit of those who have access to digital computers equipped with
formula manipulation compilers, the convenience of computerized formulations will
be demonstrated. No programming experience is necessary, and the few program-
ming steps required will be explained as they occur.

The first chapter is concerned with those aspects of the tensor calculus that are
considered necessary for an understanding of later chapters. It is assumed that the
reader has a knowledge of elementary vector analysis and matrix operations. In
writing this part, I was influenced by the work of I. S. Sokolnikoff (ref. 1) and A. P.
Wills (ref. 2). The definition of a tensor of rank r associated with a point of an N
dimensional space, as an r linear form in the base vectors associated with the point,
is due to Wills. I feel that this approach to tensor calculus will have a greater appeal
to applied mathematicians than the conventional method of defining tensors in
terms of their transformation laws.
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JAMES C. HOWARD

The reader may encounter unfamiliar entities such as covariant and contravariant
vectors and tensors, and unfamiliar operations such as covariant differentiation. It
will be seen, however, that the only operations involved in applying these concepts
to practical problems are summation, in accordance with the summation convention,
and differentiation. In using tensor methods to formulate mathematical models,
considerable insight is obtained and the striking similarity of all formulations of
physical systems becomes apparent. This is due to the fact that all such formulations
evolve from a fundamental metric which is simply an expression for the square of
the distance between two adjacent points on a surface. Hence, in addition to its
utility, the method advocated has a definite educational value. As I. S. Sokolnikoff
has noted, the best evidence of the remarkable effectiveness of the tensor apparatus
in the study of nature is the fact that it is possible to include, between the covers of
a small volume, a large amount of material that is of interest to mathematicians,
physicists, and engineers.

The major part of the book is devoted to applications using the theory given in
the first chapter. The applications are chosen to demonstrate the feasibility of
combining tensor methods and computer capability to formulate problems of
interest to students, engineers, and theoretical physicists. Chapter 2 is devoted to
aeronautical applications that culminate in the formulation of a mathematical model
of an aeronautical system. In using chapter 2, only first- and second-order transfor-
mations are required; the necessary theory is contained in the first 11 sections of
chapter 1. In chapter 3, the equations of motion of a particle are formulated in
tensor form. These formulations require an understanding of the Christoffel sym-
bols (ref. 3) of the first and second kinds and the concept of covariant differentia-
tion. The corresponding theory is contained in sections 1.11 and 1.12 of chapter 1.
The methods described in chapter 4 can be used to formulate mathematical models
involving fluid dynamics. An understanding of this chapter also requires a knowledge
of the Christoffel symbols and covariant differentiation as described in sections 1.11
and 1.12 of chapter 1. The tensor theory contained in sections 1.13 through 1.18 of
chapter 1, is required to formulate the cosmological models described in chapter 5.
The final chapter describes how. the symbol manipulation language MACSYMA
(ref. 4) may be used to assist in the formulation of mathematical models.

The techniques described in this book represent an attempt to simplify the
formulation of mathematical models by reducing the modeling process to a series of
routine operations, which can be performed either manually or by computer. This
attempt is part of a continuing effort in support of simulation experimentation in
the Simulation Sciences Division.

IV
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1.1

1.1 SUMMATION CONVENTION

Many of the advantages inherent in the tensor method derive from the simplifying
nature of the tensor notation, in general, and the summation convention in particu-
lar. This convention, which lends itself to the design of computational algorithms, is
well suited to computer applications. For example, consider the following set of
equations:

y l =a1 1x1 +d i 2 x 2 +a1 3x3

y3 = a 3 i x
l + a32x2 + a33x3

These equations can be written very compactly as follows:

/=3

7V7' /=1 '2 '3

A further simplification is possible by adopting the summation convention (ref 5).
This convention permits the removal of the summation sign on condition that the
occurrence of two like indices in a given expression denotes summation on the
appropriate indices. Hence, since / occurs twice in the expression on the right-hand
side of equation (1.1.1), this equation can be written simply as

i - * ~ (U'2)
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The advantages of the summation convention are more evident if one considers
matrix multiplication. For example, the product of two matrices A and B, requires
that the elements of the A matrix be combined with the elements of the B matrix
according to well-established rules. Because these rules have to be memorized and
may be forgotten if not frequently employed, utilization of the summation conven-
tion acts as a spur to the memory and suggests the order of multiplication if this has
been forgotten. A simple example will illustrate this point. Consider the product of
two matrices A and B, where each is a three by three matrix. In this case

and

Therefore

(1.1.3)

(1.1.4)

A = fl2l <*22 "23

where

ub i i + f l i 2 & 2 1 +a 1 3 6 3 l "i , 6 j 2 +012*22 + 013*32 «1 1 & 1 3 + a\ 2^3 2 + " 1 3*3 3\

E = | a2 ,6 , , + a 2 2 & 2 1 +a2 363 , ^ 2 1 6 , 2 + a 2 2 6 2 2 +023*32 "2 1*1 3 + a 2 26 2 3 + a 2 3 f r

a3 , i>, 2 + a 3 2 & 2 2 + "33*32 °3 1*1 3 + "32*23 +<*33&
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If the summation convention is employed, there is no need to write out the
matrices in this manner in order to obtain the product. In terms of this convention,
the elements of the product matrix E are given by

eiraikbkj (1-1.5)

Since the index k occurs twice in the expression on the right-hand side of equa-
tion (1.1.5), this expression must be summed on k, for all admissible values of k.
Hence, for the three by three matrices being considered

eij=ailblj+ai2b2j+ai3b3} (M'6)

and by permitting i and / to assume the values

i = l,2,3

7 = 1,2,3

the fully expanded form of AB is obtained. Likewise, if any element of the product
is required, it can be obtained by assigning specific values to i and /. A more
complicated example involving the product of three matrices will show that the
summation convention is a convenient shorthand, a compact and well-adapted code
for expressing complicated relationships. Again, let the matrices A and B be as given
in equations (1.1.3) and (1.1.4), respectively, and let

(1.1.7)

then the product

,, a, 2 a!3\ /&i i bl2
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can be replaced by the more compact equation

ABC = aihbhkckrD (1-1-8)

where the appearance of the repeated subscripts h and k implies that the summation
convention is to be observed. For example, the yth element of the matrix D can be
obtained by summing first on k and then on h or vice versa, that is

i
dij=aihbhicij+aihbh2c2j+aihbh3c3j

If the expression is now summed on h, the ijth element of the required product
matrix assumes the following form

dij = aiibi i c i j + a i2b2i c i j + ai3b3icif

+ ah bl 2C2J + ai2b2 2C2J + °i3 b3 2C2J

+ ailb!3C3J + ai2b23C3J + ai3b33C3J

Although the cases considered so far have demonstrated the convenience of the
summation convention, later applications will be dictated by necessity.

1.2 TENSORS

Physical entities that can be adequately characterized by the specification of their
magnitudes are referred to as scalar quantities. Examples of scalar quantities are:
temperature, volume, mass, and energy. Other quantities, however, such as forces
and velocities, need for their complete specification not only magnitude but also a
direction in space. Such quantities are termed vectors (ref 6). Although a single
quantity is not sufficient to completely specify them, vectors should be considered
as single entities. Treating vectors in this manner greatly facilitates the processing of
vector algebra and the derivation of formulas.

Although a scalar quantity has magnitude only, and a vector or tensor of rank one
has both magnitude and direction, tensors of rank greater than one belong to a class
of entities that depends on more than one vector. The chief aim of tensor calculus is
the investigation of relations that remain valid in all coordinate systems. The
condition of invariance with respect to coordinate transformations leads to the
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transformation laws that the tensor components must obey. Most books on tensor
calculus define tensors in terms of these transformation laws. However, for present
purposes, it is more satisfactory to define a tensor in terms of a linear form in the
base vectors. When this is done, a vector or a tensor of rank one is defined as

A = A f L i = Aiai (1.2.1)

where Aj and A1 are the covariant' and contravariant tensor components, respec-
tively, and a1 and 5.- are the corresponding base vectors which are, in general,
functions of the coordinates. The meaning of these components will be explained
presently. It should be remembered that the covariant and contravariant forms of
the vector A in equation (1.2.1) must be expanded in accordance with the summa-
tion convention, since the indices "z" and "/" occur twice, that is,

A = A t a * + A2a2 + A3a3 = A l a l + A2a2 + A3a3

A point to be observed here and in all subsequent equations, is that each step is so
formulated that it is amenable to mechanization.

Since the concepts of covariance and contra variance are not encountered in the
study of elementary vector analysis, the meaning of these terms and the need for
them in the present context will be explained. At the outset, it should be empha-
sized that the covariance or contravariance of vector or tensor components is not an
intrinsic property of the entity under consideration. The distinction is due to the
way in which the entity is related to its environment, the coordinate system to
which it is referred (ref. 1). The two sets of quantities A ̂  and A1 represent the same
vector A referred to two different base systems. The vectors a1 and a^ that constitute
the systems of base vectors, to which the covariant and contravariant components
are referred, are said to be reciprocal systems of vectors. When reciprocal bases are
subsequently defined, it will be seen that the system of unit base vectors specifying
an orthogonal Cartesian reference frame is its own reciprocal. Hence, the distinction
between covariant and contravariant vector components vanishes in this case. This
explains why there is no preoccupation with these representations in the study of
elementary vector analysis. However, when problems are formulated in curvilinear
systems of coordinates, it is frequently useful in specifying vector and tensor
components to employ a given base system and its reciprocal.
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As one might expect, the base vectors a1, a2, a3 are called the reciprocal system
to 5j, a2, a 3 when the following relations are satisfied:

a1 • a, —'a i • a2 =a3 • a3 = 1

These relations will be satisfied if the reciprocal system to al, 52 > «3 is defined as
follows:

_, _ 52 x a3

-2 _

-3 _

It will be remembered that [aia2a3] is the familiar scalar triple product of
elementary vector analysis (ref. 2). It is simply the scalar product of two vectors,
one of which is itself the vector product of two vectors, that is,

=5| • (a2 x a 3 )

The scalar triple product has the important cyclical property

al ' (52 x 33) =32 • (53 x 5i). = a3 • (5i x 32)

The proof of this relation follows from the fact that each of these expressions
represents the volume of the parallelepiped whose edges are «i , 52 , 53 .

In terms of these relations and definitions, it is seen that

a1 • a1 = a2 • a2 = a3 • 53 = 1

The symmetry of these relations shows that if a1 , a1 , a3 is the reciprocal system
to al , a2 , a3 then a, , 52 > «3 is the reciprocal system to a1 , a1 , a3 , that is,

8
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a2 x a3

a3 x a1

F^i ^2—^5T[a1 x a2 x a3]

and

3j • a1 = 52 • a2 =a3 • a3 = 1

As previously indicated, the conventional system of unit vectors /,/, k that is used
to specify an orthogonal Cartesian system of coordinates is seen to be its own
reciprocal.

Let f1, jl, kl be the reciprocal system to / , / , k; then, because the scalar triple
product [if k] of three orthogonal unit vectors is clearly equal to unity

=
/ I ̂  r.^-l[ijk]

- ' x 7' == k

It should be evident now that there is nothing mysterious or obscure about the
concepts of co variance and contravariance. These are simply convenient terms for
describing vector and tensor components which are referred to a given base system,
on the one hand, and to the reciprocal of the given system on the other.

The vector A may also be expressed in terms of its physical components as
follows:

(1.2.2)

where utfa is the physical component and aa is a set of unit base vectors.
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Since the index a occurs twice in the expression on the right-hand side of
equation (1.2.2), the summation convention must be observed, that is

The transformation from physical to tensor components, and vice versa will be
considered in a later section.

Before proceeding to more general tensor forms, it should be remarked that the
term "tensor" was used by Einstein in connection with the sets of quantities
transforming in accordance with the covariant and contravariant laws. The formula-
tion of covariant and contravariant laws, as well as an outline of the essential
features of the algebra and calculus of covariant and contravariant tensors, is due to
G. Ricci (ref. 1). Because of the usefulness of covariant and contravariant laws of
transformation in applications to geometry and physics, the term tensor is generally
used in the sense contemplated' by Einstein. In the present context, however, a
tensor of rank "r" associated with a point P of an "«" dimensional space is defined
as an r-linear form in the base vectors associated with the point whose coefficients
are, in general, functions of the coordinates of the point, and which is invariant with
respect to coordinate transformations. When the condition of invariance with
respect to coordinate transformations is imposed on an r-linear form, the transfor-
mation law for the tensor components is obtained. These components will be seen to
transform in accordance with the covariant and contravariant laws and to satisfy the
definition of a tensor in the sense in which it was used by Einstein. -

In terms of this definition, a tensor of rank two may assume the following
alternative forms:

Aifafy (1.2.3)

Afifi (1.2.4)

Atjafaf (1.2.5)

Form (1.2.3) represents a doubly contravariant tensor or dyadic. Form (1.2.4) is a
mixed tensor or dyadic, having one index of covariance and one index of centra-
variance. Form (1.2.5) is a doubly covariant tensor or dyadic.

More generally, a tensor of rank r associated with a point in N dimensional space
is an r-linear form in the base vectors associated with the point, and is invariant with

10
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respect to the choice of coordinate system. In terms of this definition, a trilinear
form having a ̂ -coordinate representation

and an ^-coordinate representation

will represent a tensor of rank three if

tfkbffk

1.3 PHYSICAL EXAMPLES

1.3.1 The Stress Tensor

Because the name tensor originated in the study of tensions or stresses, it is
appropriate to use the stress tensor (ref. 7) to illustrate the physical meaning of a
tensor of rank two.

In the study of elasticity, certain quantities are introduced that are more complex
than vectors. The stresses or tensions in the interior of a deformed body are defined
by a collection of six numbers which behave like the six components of a new
quantity. It was W. Voigt, the crystal physicist, who first named these new quanti-
ties, tensors. The word clearly recalls their origin, since the first one identified was
the system of tensions of a deformed solid. In this connection it should be remarked
that an elastic stress is defined as the intensity of force acting at any point in a
deformed body, that is, the force per unit area.

Consider, for example, a uniform bar having the dimensions shown in sketch (a),
and acted on by an axial force of "F" pounds.

11
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Sketch (a)

The stress across any cross section normal to the force vector is the force per unit
area, that is;

-4 lb/in.2

a'b

When an elastic body is subjected to a stressing agent, it is deformed. The extent
of the deformation determines what is called the strain. In the case of the uniform
bar subjected to an axial force, the strain is defined as the relative elongation, or the
change in length per unit length.

Hooke's law states that strain is proportional to stress within the elastic limit (see
sketch (b)).

STRESS

STRAIN

Sketch (b)

12
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According to Hooke's law (ref. 8)

stress _ p
strain

where E is Young's modulus of elasticity for the material. Knowing the stress and
Young's modulus for a material, it is easy to compute the strain, which is simply

stress

The elongation or the extension of the bar is given by the product of the strain
and the length of the bar, that is

elongation = strain (length of the bar)

= (stress/.E)c

Similarly, volumetric strain is defined as the change in volume per unit volume.
For example, consider a volume of elastic material bounded by the closed surface
shown in sketch (c).

Sketch (c)

When this volume is subjected to a normal stress, it will assume the form shown
by the dotted line. If the distance between the stressed and unstressed surfaces be
denoted by the vector s, the change in volume due to the stress will be given by the
following integral

change of volume = I I s • d~L

13
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where c?2 is an element of area of the closed surface. For reasons that will become
apparent as we proceed, it is expedient to convert this surface integral to a volume
integral. This can be achieved by the use of Gauss' divergence theorem (ref. 9),
which states that for any vector point function A, which together with its derivative
in any direction, is uniform, finite, and continuous

JT'-F div A dr

where dr is an element of volume, and div A is the divergence function.
If the vector A be expressed in component form as follows:

«\ +* *

• A = X i + Yj + Zk

where X, Y, Z are the Cartesian components of A, and /,/, k are a triad of mutually
orthogonal unit vectors, div A assumes the form

j. -T dX . bY , dZdiv A = — + — + —
bx dy dz

x,y ,z being the Cartesian coordinates of an arbitrary point in the material.
Applying this theorem to the expression for the change of volume gives

•S_ _
s • d'E - I I I div s drJJ

Therefore,

change of volume = I I I div s dr

If we consider an infinitesimal volume dr of the material, then the change in this
element of volume is

div s dr

and the volumetric strain, which is the change in volume per unit volume, is given by
the ratio

div s dr ,. -= div s
dr

14
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Assume that s has Cartesian components «, v, w, that is

J-ui + vf + wk

then the volumetric strain (volume dilation) is

3 w . 3 v . 3 w . .
ev = T- + — + — = <?*. + e v +v 3jc by 3z x ^

The quantities ez denote relative changes in length (elongations) of an
elementary volume in three coordinate directions caused by the normal stresses.

In discussing the stress across a given surface, we are obviously dealing with a
situation that depends on two vectors as indicated in sketch (d); that is, the effect of
a force on a surface depends not only on the force, but also on the size and
orientation of the surface (ref. 10).

Sketch (d)

One vector F represents the force vector acting on the surface; the other vector h,
'being the normal to the surface, uniquely characterizes the surface. Hence, the stress
acting on the surface depends on the two vectors F and ft. In accordance with our
definition of a tensor of rank "r" as an "r" linear form in the base vectors, the stress
may be tentatively classified as a tensor of rank two. It should be remarked,
however, that to qualify as a tensor the components must also transform in
accordance with the covariant and contravariant laws to be defined.

After this brief discussion of the physical meaning of stress, the stress tensor will
be derived.

15



1.3 JAMES C HOWARD

Consider the element of volume enclosed by the infinitesimal tetrahedron shown
in figure 1.3.1

Figure 1.3.1.— Force and surface vectors in a Cartesian reference frame.

where n is a unit vector whose direction is normal to the element of area ds of a
surface S passing through the point P of an elastic medium, and F is the resultant
force. If the elastic medium is in a state of equilibrium, the resultant of all the forces
acting on the element must vanish, and the resultant moment of these forces about
any point must vanish also.

An examination of figure 1.3.1 again suggests that the tensor character of stress
derives from the fact that it depends on the two vectors « and F rather than on a
single vector. For the sake of clarity and simplicity, the stress tensor will be derived
relative to a Cartesian system of axes. Relative to this system, Fmay be expressed in
terms of its components as follows:

F = F%i + Fyj + (1.3.1)

The quantities F%, Fy,F^ can be resolved into components perpendicular to each
face and components parallel to each face. The components perpendicular to each
face produce normal or direct stresses, and the components parallel to each face
produce shearing stresses. Likewise, the area can be resolved into components
relative to the three Cartesian axes (see sketch (e)).

16
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Sketch (e)

If OZ perpendicular to ABC in the direction of the unit vector n is the vector that
represents the size and orientation of the area ABC - ds, than the x component of
OL, that is, / • ds, represents in magnitude and direction the projection of ds on the
yz plane. Similarly, the y and z components of ds are the projections of ds on OAC
and OAB, respectively. These components are / • ds and k • ds. Hence, the compo-
nents of F may be rewritten in the following form:

FX = fXX
 dsx + fxy dsy + fxz dsz ^'^

FY=fy xdsx+fy ydsy+fy zdsz (1.3.3)

FZ = fzx dsx + fzy dsy + /zz dsz (l -3'4>

and

dsx.= i - d s ~ (1.3.5)

d sy= j -d s ^ (1.3.6)

dsz =k • ds (1.3.7)

The double subscript notation should be noted. The first subscript infxx,fXy> an^
fxz refers to the fact that these stresses all emanate from the component F%,
whereas the second subscript designates the projected area on which the stress acts.
Thus,fxy means the stress is due to Fj acting on the element of area dsy.

17
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When the components of area, equations (1.3.5) through (1.3.7), are substituted
equations (1.3.2) through (1.3.4), the components of the elastic force assume thein

folio wing form:

FX = <fxx* + fxyi + fxz® ' ds

Fy = (fyxi + fyyl + fyzk) -ds

Substitution of these values in equation (1.3.1) yields the required form

F = (fxxU+fxyti + fxzik + fyxii+fyyji+fyzjk + fzxki + fzykj + fzzkk) • ds

But ds = n ds and the resultant stress across ds at the point P is defined by /, where

/ - — - * • « (1.3.8)

and <I> is the stress tensor which is defined as follows:

1* + fyxfl
(1.3.9)

By using the condition that the resultant of the moments about any point of all the
forces acting on the infinitesimal tetrahedron vanish, it can be shown that the stress
tensor must be symmetric, that is

f — fJxy Jyx

Jyz ~*zy

Although it is beyond the scope of the present illustration, it can be shown that
the stress tensor, equation (1.3.9), is a tensor of rank two. That is, in addition to
being a two linear form in the base vectors, it transforms in accordance with its

18
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variance. As indicated elsewhere, the distinction between covariance and contra-
variance vanishes in orthogonal Cartesian coordinate systems, and in these coordi-
nate systems it may be treated either as a covariant or a contravariant tensor. It will
be shown that if a contravariant formulation is adopted, the components of the
stress tensor in the "y" coordinate system will be related to its components in the
"x" coordinate system as follows:

Similarly, if the stresses are treated as components of a covariant tensor, the
components of stress in the "y" coordinate system will be shown to be related to
the components in the "x" coordinate system by the following covariant
transformation :

by1 by'

In these equations the indices /,/, a, |3 are used, for convenience, instead of x, y, z.
Each index can assume the values 1, 2, 3. The choice of variance will depend on
whether "y" is known as a function of "x," or "x" is known as a function of "y." If
y = y(x) is the form available, then the contravariant transformation would be the
obvious choice, but if x =x(y) is known, the covariant transformation would be
simpler. If both y = y(x) and x = x(y) are known, it is immaterial which transforma-
tion is used.

Consider, for example, the contravariant transformation. The transformation
equations are obtained by summing on the dummy indices a and )3 as follows:

¥r ^r/'3(*)

19
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By assigning all possible values to the superscripts "/" and "/," the nine transforma-
tion equations are obtained. If the shear stress component /23(y) is required, then

Likewise, the covariant form would appear as follows:

f ( . 9.x1 ,. , , _, 9^;' dx2
 f . , . 9x' ,-

/23O) = rr-j T-J /I 1 (^) + r-J Z-J /I 2(*) + ^T ^T /Iby2 9y3 9^2 9j^3 9^2 3

f , , , 9A:2 9.x2 , , -. ,
rr rT -^2 i (*) + 7-5- T-g /22(^) + r-j z-j9^2 9^3- 9^2 9>>3 9^2 9y3

9x3 9*1 ,. , -. , dx3 dx2 , , , . 9x3 9.x3

where

Although these operations can be performed by human operators, it will be seen
in subsequent sections that they can be executed with speed and efficiency by using
a computational algorithm and a digital computer that exploits the advantages of the
summation convention.

It is seen that a tensor of rank two as exemplified by the stress tensor, equa-
tion (1.3.9), has nine components in three-dimensional space, and that the covariant
and contravariant transformations give rise to nine terms on the right-hand side. In
two-dimensional space, the stress tensor would have four components and four

20
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transformation equations would be required, each having four terms on the right-
hand side. In general, a tensor of rank two has n2 components in "«" dimensional
space, and a tensor of rank "r" has«r components in "«" dimensional space.

1.3.2 Inertia Tensor

Another example of a tensor of rank two is the inertia tensor. Let "m" be the
mass of a particle of ajx>dy at the point/1, and let "r" be,the position vector of the
particle relative to the fixed point 0 (see fig. 1.3.2).

Figure 1.3.2.— Mass distribution relative to a.

The moment of inertia of the body about an axis through the point 0 parallel to
the unit vector a is given by the following sum:

Af7 = I md2

where "d" is the perpendicular distance of the point P from the axis a and

d2 = (r x a)2 = (f x a) • (r x a)

Therefore

The expression on the right-hand side of this equation may be treated as a triple
scalar product and expanded accordingly,

21
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M! = £ m\r ' [ax (f x a)]}

MI = 2m{r • [r- (a - F)a]}

M f = 2 m [ r 2 - (a • r)2 ]

This equation may be rewritten in the following form:

Mf = d- [Zm(r2I- rr)] • a

where 7 is the idemfactor or the identical dyadic. The idemfactor has the property
that the scalar product of /and any vector F is always equal to r; that is, if

I • f = f ' I — f

for all values of f, then 7 is an idemfactor. In particular

is an idemfactor, since

r • I — (xi + yj + zk) • (ii + jj + kk) = (xi + yj + zk) = f

and

7 • f = (ii + jj + kk) • (xi + yj + zk) — (ix + jy + kz) — F

In terms of this notation the moment of inertia assumes the form

Mj = a ' 4> • a

where $ is the inertia tensor or, as it is sometimes called, the inertia dyadic, that is,

- rr)

As in the case of the stress tensor, it is seen that the inertia tensor assumes the form
of a dyadic, or a two linear form in the vector F. This justifies its classification as a

22
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tensor of rank two since, in addition, it transforms in accordance with the covariant
and contravariant laws to be defined in a subsequent section.

The inertia tensor occurs in the study of rotational motion. For example, consider
the case of a rigid body rotating about the fixed point 0, and let co be the angular
velocity of the body at any instant. If the angular momentum of the body be
denoted by H

but

V = cJxr

Therefore

H = £ mf x (c3 x f)

or

H = 2 m [r 2 oJ - (7 • co)

This equation may be rewritten as follows:

or

ff — o5 ' $ = 4> • co

where 4> is the inertia dyadic.
Similarly, if the kinetic energy of rotation of the body be denoted by T

or

=2m(cox/ : )

2T = 2 w(cj x f) • (oJ x f)
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Again, the expression on the right-hand side of this equation can be treated as a
triple scalar product. Hence

[ rx(oJxr ) ] J

or

which may be rewritten as follows:

27 = Zo • [2m(r2/-/r)] • co

or

27"= to • $ • cJ

where <5 is the inertia tensor again.
The components of the inertia tensor may be obtained by expanding 4> as

follows:

= 2 m[(x2 + y2 + z2 )(if+ jf

or

+ z2 )/ + 2

- 2 mxyij - 2 mxzik - 2 myxji - 2 myzjk'- 2 mzxki - 2 mzykj]

The following definitions are required:

; /zz = 2

= 2 mxz ; Iyz =Izy = I, myz
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In terms of these definitions, the inertia tensor assumes the more familiar form

It is interesting to note that

/ ' • < ! > • / — A * / • cb • j — A p ]f * d> • If — J1 V ' 7XJC ' / * / 1yy ' /C M» 1C YZZ

I • A • j r~r — A " / • d) • i' "^T — / * I * (ft • fr" ~ — J
I *±f J lyi; > I **? l\, 2Y7 ' /Mr A, •* V7

•̂  J' •/+ ** V*

The inertia tensor, like the stress tensor, is seen to have nine components. As
previously indicated, this is characteristic of a tensor of rank two in three-
dimensional space. Hence, the same law that was used to transform the components
of the stress tensor can be used in this case also. The transformation of the inertia
tensor will be considered in more detail in a later section.

1.4 TRANSFORMATION LAWS

1.4.1 Vector Components

To facilitate the computer processing of vectors and dyadics, all such entities
should be expressed in terms of their tensor components and a corresponding set of
base vectors, rather than in terms of their physical components and a set of unit base
vectors. When referred to a general curvilinear coordinate system, a vector A may be
expressed in the following alternative forms:

A=A id i=A jdi (1.4.1)

As previously indicated, when a certain index occurs twice it means that the
expression is to be summed with respect to that index for all admissible values of the
index, that is

i- -^ i- (L4-2)

i=i
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Af (1-4.3)
7-1

where A1, A: are the tensor components of the vector A, and a^ (3 are the
corresponding systems of base vectors. In accordance with established convention,
coritravariant components will be denoted by superscripts and covariant components
by subscripts. It is necessary to keep in mind the distinction between contravariance
and covariance because if general coordinate transformations are contemplated, the
transformation law for the components of a contravariant vector denoted by
superscripts differs from that for a covariant vector denoted by subscripts. It must
be emphasized, however, that the covariance or contravariance of tensor compo-
nents is not an intrinsic property of the entity under consideration. The distinction
is due to the way in which the entity is related to its environment, or the coordinate
system, to which it is referred. For a transformation from a coordinate system x to a
coordinate system y given by

y =yi(x1,x2,x3) - (1.4.4)

the transformation law for the components of a contravariant vector A1 will be
derived in the following section and will be shown to have the following form:

-ff'GO = — A\x) (1.4.5)
dx1

where Al(x) are the contravariant components in the x coordinate system and BJ(y)
are the components when referred to the y coordinate system. For the same
transformation of coordinates, other vectors, such as the gradient of a scalar point
function, obey a different transformation law. These are the covariant vectors
denoted by subscripts. Assuming that the coordinate transformation is reversible and
one-to-one, the appropriate transformation law for these vector components is

where A fa) are the covariant components in the x coordinate frame and B,-(y) are
the covariant components when referred to the y coordinate frame. As the following
argument shows, the distinction between these two transformation laws vanishes
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when the transformation is orthogonal Cartesian. Let xl be the components of a
position vector r when referred to the jc coordinate system which is orthogonal
Cartesian. Likewise, let yl be components of the same vector when referred to
another orthogonal Cartesian system. In this case, the transformation of coordinates
is given by

yv=OLj lxi (1.4.7)

where the oti1- are constants. The position vector f is invariant with respect to
coordinate transformations. Hence, the square of the vector is also invariant.
Therefore,

and

o-y'afc1'= 8j/ _ (1.4.8)

where 5^ is the Kronecker delta, that is

1 for / = k

0 for i + k

Equation (1.4.8) is the orthogonality condition which may be used to solve equa-
tion (1.4.7) forxA If both sides of equation (1.4.7) are multiplied by at,1

and

Therefore

xi = 0 iy i (1.4.9)
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From equation (1.4.7) it is seen that

and from equation (1.4.9)

It follows from equations (1.4.10) and (1.4.11) that

77 = 77 d-4.12)
dx' by1

At this point, it is instructive to give an example of a covariant vector or a
covariant tensor of rank one. Consider the components of a gradient vector and let 0
be a uniform, continuous scalar point function. Let the gradient of this function
with respect to the x^ coordinate in the ^-reference frame be denoted by

30

Likewise, let the gradient of this function with respect to the yl coordinate in the
^-coordinate reference frame be denoted by

30

These gradients are related as foJlows:

_30_= j)0_

dy* 3x/

Moreover, let



MATHEMATICAL MODELING OF DIVERSE PHENOMENON 1.5

and let

then

£/O) = — A,(x)•*. i 'dy

This is seen to satisfy the mathematical definition of a covariant vector given in
equation (1.4.6).

1.5 BASE VECTORS

The transformation laws and, hence, the covariant and contravariant character of
the base vectors and their reciprocals may be obtained as follows: Let the differen-
tial of a position vector be denoted by dr. Then if dj(x) are the base vectors in the x
coordinate system, and 6.-O) are the base vectors in the y coordinate system, the
differential dr may be expressed in the following alternative forms:

dr = ai(x)dxl = bj(y)dyl = b}-(y) ^—. dxl (1.5.1)

Therefore

at(x) = -¥-; bj(y) (1.5.2)

Likewise

and

- , , rtx1 _ , ,
'/U) (1.5.3)
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It is seen from equations (1.5.2) and (1.5.3) that the base vectors 5^ and b,- obey the
covariant transformation law; consequently, the use of subscripts is justified.

1.5.1 Reciprocal Base Vectors

To each system of base vectors flj there exists a reciprocal system of vectors a)
with the following property

5j • a) = 8jJ =al • (ij (1.5.4)

where 8J is the Kronecker delta; that is

.1 for / = i

1 0 for /=£ /

Scalar multiplication of each side of equation (1.5.2) by b^(y) gives, on using (1.5.4)

(1.5.5)
dxl

Similarly, from equations (1.5.3) and (1 .5.4) it is seen that

;w*a l W-6 / (y) = ̂ _ (L5>6)

' dyJ

Equation (1 .5.1), referred to the reciprocal system of base vectors, assumes the form

(1.5.7)

Therefore

dxi (1.5.8)

*,-*]***by'
and
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Therefore

From equations (1.5.7) and (1.5.8)

Therefore

b'(y) (1.5.10)

Likewise, from equations (1.5.7) and (1.5.9)

•«'(*) (1.5.11)
8.x'

From equations (1.5.10) and (1.5.11), it is seen that the reciprocal base vectors obey
the contravariant law of transformation; therefore, the superscript notation is
justified.

1.6 VECTOR TRANSFORMATIONS

Equations (1.5.10) and (1.5.11) may be used to obtain the transformation law for
a vector A, where

A=A i a i =A j a i (1.6.1)

If "A = Al(x)5f(x) when the vector A is referred to the x coordinate system, and if
A = Bl(y)b:(y) when referred to the y coordinate system, the invariance of A
requires that

(1.6.2)
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From equations (1.5.2) and (1.6.2), the appropriate transformation law is obtained
as follows:

Equation (1.6.3) is the contravariant transformation law for the components of the
vector A. When A is referred to the x coordinate system with base vectors a.-(x),
which obey the covariant transformation law, the components A^(x) obey the
contravariant transformation law; hence, the use of superscripts is justified. If A is
referred to the reciprocal base system a1, then from equation (1.6.1):

A =

On a transformation of coordinates from the x coordinate system to the y coordi-
nate system, in variance of A requires that

A-(x)al(x) = B:(y)b1(y) (1.6.4)

From equations (1.5.10) and (1.6.4), the appropriate transformation law is obtained
as follows:

d.6.5)

It is seen that when a vector A is referred to a coordinate system with reciprocal
base vectors, which obey the contravariant law, the corresponding components of A
obey the covariant law, and the use of subscripts is therefore justified.

1.7 RAISING AND LOWERING OF INDICES

1.7.1 Lowering Indices

The vector A may be expressed in the alternative forms given in equation (1.6.1).
Scalar multiplication of each side of equation (1 .6. 1) by a.- gives

(ar a^A* = A^ol • aj) (1.7.1)
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By substitution from equation (1.5.4) in equation (1.7.1) the following result is
obtained:

SijA^Aj (1.7.2)

where

Again by substitution for As from equation (1.7.2) in equation (1.6.1)

(1.7.3)

Equation (1.7.2) gives the transformation from the contravariant components to the
covariant components of a vector. The corresponding transformation of base vectors
is given by equation (1.7.3). These operations are usually referred to as lowering the
index (ref. 1).

1.7.2 Raising Indices

Scalar multiplication of each side of equation ( 1 .6. 1 ) by a1 gives

Al(at - a1) = Aj(ai • a1) ( 1 .7.4)

Substitution from equation (1.5.4) in equation (1.7.4) gives

A l=^Aj (1.7.5)

where

When this expression for A* is substituted in the left-hand side of equation (1.6.1)
the following result is obtained
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Therefore

di=^ai (1.7.6)

Equation (1.7.5) enables the contravariant components of a vector to be expressed
in terms of its covariant components. Equation (1.7.6) gives the corresponding
transformation of base vectors. These operations are usually referred to as raising the
index.

1.8 BIVECTOR TRANSFORMATIONS

A second-order tensor is characterized by having two indices. Both indices can be
superscripts, in which case the tensor is doubly contravariant. Tensors of this kind
are sometimes referred to as the contravariant components of a bivector. When both
indices are subscripts, the tensors are doubly covariant, or the components of a
covariant bivector. It sometimes happens that one of the indices is a superscript and
the other one a subscript. Entities of this kind are called mixed tensors or the
components of a mixed bivector.

1.8.1 Contravariant Bivectors

As in the case of vectors or first-order tensors, bivectors are entities whose
properties are independent of the reference frames used to describe them. Equa-
tions (1.6.2) and (1.6.4) are mathematical expressions of this statement, insofar as it
applies to vectors. As might be expected, the invariance of a bivector, in going from
a coordinate system x with base vectors fl.-(x) to a coordinate system y with base
vectors bfiy), involves the equality of two dyadics. The coefficients of the individual
dyads in these dyadics are the components of the bivectors. If in the x coordinate
system with base vectors a.- the bivector is given by

and if in the y coordinate system with base vectors bj this bivector assumes the form

invariance requires that
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Bii(y)Bl<y)Efy) = A^x^x^ffx) (1 .8.1)

By substitution from equation (1 .5.2) in equation (1.8.1),

Bl'(y)bAy)bfy) = AaP(x) &- bt(y) & I Ay) ( \ .8.2)7 a*a bx$ '

Therefore, by equating coefficients of like dyads in equation (1.8.2), the required
transformation law is obtained as follows:

This is -the transformation law for the components of a contravariant bivector.

1.8.2 Covariant Bivectors

Since covariant bivectors are characterized by two subscripts, it follows that -the
formulation of the dyadics will be in terms of the reciprocal base vectors. That is, if
A^x) are the components of the covariant bivector in the x coordinate system, and
Bij(y) are the corresponding components in the y coordinate system, invariance of
the bivectors requires that

- ( 1 -8.4)

Substitution from equation (1.5.10) in equation-( 1.8.4) gives

Therefore

D , ,BtAy) =

Equation (1.8.6) is the transformation law for the components of a covariant
bivector.
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1.8.3 Mixed Bivectors

A mixed bivector has one index of covariance and one index of contravariance. In
this case, the bivectors consist of base vectors and reciprocal base vectors. The
invariance requirements may be stated as follows:

( 1 .8.7)

Substitution from equations (1.5.2) and (1.5.10) in equation (1.8.7) gives

Therefore

-' _»/ -• A .0f^ (188)

The components of mixed bivectors transform according to equation (1.8.8).

1.9 PHYSICAL COMPONENTS

The transformation from covariant to contravariant components and vice versa
was discussed in preceding sections. This section is concerned with the transforma-
tion from covariant and contravariant components to physical components and vice
versa.

It frequently happens that an analysis can be performed and the results obtained,
without reference to physical components. However, sometimes a quantity, such as
a force, is known only in terms of its physical components. In this case, the
transformation from physical components to tensor components must be deter-
mined. The appropriate transformations may be obtained as follows:

5i '5j=8ij

Therefore
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Let

where c^- is a scalar magnitude and a^ is a unit vector. With this notation

a,- =

Therefore

that is
(1.9.1),

where the parentheses imply suspension of the summation convention. Hence, if Aj
are the contravariant tensor components of a vector A, and if <dl are the correspond-
ing physical components, then

Therefore

Likewise, let

(1.9.2)

and let

#=f?&

where J3Z is a scalar magnitude and a* is a unit reciprocal base vector. Therefore

(1.9.3)
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Hence, if Aj are the covariant components of a vector A, and if jdj are the
corresponding physical components

Therefore

Moreover, if the coordinate system is orthogonal, the physical components can be
expressed in the following alternative forms:

A: (1 .9.4)

Equation {1.7.2) may be used to show that «^- = «j/' in orthogonal coordinate
systems. From equations (1.9.4) -and (1.7.2):

that is

of, =

That ..ĵ j- =^^z in nonorthogonal coordinate systems may be seen as follows:

Therefore, in this case

The fact that J&1 ^ <d: in nonorthogonal coordinate systems is a consequence of the
relation
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1.10 TENSOR COMPONENTS

It should be noted that a vector, or a tensor of rank one, has three components in
three dimensional space. For the case / = 1 ,2,3 and/ = 1 ,2,3, equation (1.6.3) repre-
sents three equations in which the right-hand members each have three terms:

p3 _
9x' 9x2 9x3

Although a vector, or a tensor of rank one, has n components in n dimensional
space, with each transformation equation having n terms on the right-hand side, a
tensor of rank two has «2 components, with each transformation equation contain-
ing n2 terms on the right-hand member. For example, for the case /= l,/ = 2,
equation (1 .8.3) assumes the following form:

n i 2 _ a/ ay2 ,n ,a/ W An , ^. 9zl ,413
* ~ dx1 to1 a^1 ax2 ^ ax1 ax3 ^

a/ a>^ 21 ay_ a>^ ,22 + a/_
9X1 9x2 9x2 -3x2 9x3

, a/ az! ,31 ,azi az! ,32 + a/ 9z!
9x3 9x» 9x3 9x2 -9x3 9x3

It will be noted that a and )3 have each taken on their three possible values which
resulted in nine terms on the right, whereas i = 1 and / = 2 have been retained
throughout. Now since i and / may each have the three values 1, 2, 3, there will be
nine such equations, each containing nine terms on the right. In relativistic mechan-
ics there are four dimensions to be considered. In this case, equation (1.8.3) will
represent 16 equations, each containing 16 terms on the right-hand side. Likewise, a
contravariant tensor of rank three is defined by the following equation
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(1.10.1)

The number of equations represented by (1.10.1) and the number of terms on the
right-hand side of each transformation equation depends on the dimensionality of
the space. In n dimensional space, (1.10.1) will have «3 components, with each
transformation equation consisting of n3 terms on the right-hand side. More specifi-
cally, there will be 8 components in two-dimensional space, 27 components in
three-dimensional space, and 64 components in four-dimensional space. And, in
general, if the components of a mixed tensor in the A'-coordinate system are denoted
by

01 & , . . . , ft.

A (jc)
o, a2 , . . . , «

its components in the 7-coordinate system will be

B. . . (y)

where

3x 3/1 9/2

1.11 ALGEBRA OF TENSORS

The following results are stated without proof. For a rigorous derivation of these
results, the reader is referred to standard texts on the subject.

THEOREM I. The sum or difference of two tensors which have the same number
of covariant indices and the same number of contravariant indices is a tensor of the
same type and rank as the given tensors.

For example, take a vector having components Al(x) when referred to the
^-coordinate system and let Bl(x) be another such vector referred to the same
reference frame. Since Al(x) and Bl(x) are contravariant tensors of rank one, they

40



MATHEMATICAL MODELING OF DIVERSE PHENOMENON 1.11

obey the corresponding transformation law. The components of these vectors when
referred to the 7-coordinate system are

^ j (1.11.2)

Therefore

Al(y) + Bl(y) = ̂  [A*(x) + Bj(x)} (1.11.3)

or^ .

where

and

d(x) = Al(x) + B'\x) (1.11.5)

It is to be noted that (1.11.3) may be obtained by adding (1.11.1) and ( 1 . 1 1 .2) as if
each of these represented a single equation containing only a single term on the
right, rather than a set of equations each containing several terms on the right. Thus
the notation takes care that the corresponding components shall be added correctly.

THEROEM II. The set of quantities consisting of the product of each component
of a tensor having p indices of contravariance and q indices of covariance, by each
component of a tensor having r components of contravariance and s components of
covariance, defines a tensor called the outer product. The product tensor is contra-
variant of rank p + rand covariant rank q + s.
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Again, as in the case of addition and subtraction of tensor components, the tensor
notation automatically assures that the outer product of

and

can be written immediately as

te" 3*0

where

Ci'(y)=Ai(y)BJ(y) (1.11.9)

and

C°^(x) = Aa(x)B^(x) (1.11.10)

By writing out the equations in full for the two-dimensional case, the reader can
easily verify that this is a valid procedure. In the two-dimensional case

(1.11.12)
OX' OX'

Therefore
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where

Hence

(1.11.14)

3x2

Summing equation (1.1 1 .8) on a and

d.11.15)

which, in view of equation (1.11.14), does represent completely the product of the
two given equations.

Moreover, it is possible to multiply'a covariant tensor by a contravariant one, thus
obtaining a mixed tensor as follows. The outer product of

(1.11.16)
\JS*

and

3x0
Bj(y) = —Aff.X) (1.11.17)

dy'

is

(1.11.18)
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Thus, the outer product of a contravariant tensor of rank one with a covariant
tensor of rank one is a mixed tensor of rank two. The product tensor has one index
of contravariance and one index of covariance. More generally, the outer product of

and

dx

is

dyk

Ae8W • (1.11.20)

dy dx dym

Hence, if any two tensors of ranks p and q are multiplied together to form their
outer product, the result is a tensor of rank p + q. Moreover, if the tensor of rank p
is a mixed tensor with pl indices of contravariance and p2 indices of covariance, and
if the tensor of rank q has qr, indices of contravariance and q2 indices of covariance,
then their outer product will be a mixed tensor having p, +ql indices of contra-
variance and PI + q2 indices of covariance.

Although the tensor calculus makes it easy to perform these operations, it should
be emphasized that the operations represent complicated processes. Equa-
tion (1.11.19) is the transformation law for a mixed tensor of rank three and
represents a whole set of equations. As previously indicated, the number of equa-
tions depends on the dimensionality of the space being considered. There will be
8 equations for two-dimensional space, 27 equations for three-dimensional space,
and 64 equations for four-dimensional space. Each of these equations will have a
corresponding number of terms on the right-hand side. And equation (1.1 1.20) is
the transformation law for a mixed tensor of rank two. It also represents a set of
equations that depends on the dimensionality of the space being considered, namely,
4 for two-dimensional space, 9 for three-dimensional space, and 16 for four-
dimensional space — all with a corresponding number of terms on the right-hand side
of each equation. The outer product of these two equations gives rise to the set of
equations (1.1 1.21). This equation is the mathematical definition of a tensor of rank
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five, having three indices of contravariance and two indices of covariance. The set
resulting from this outer product contains 32 equations for two-dimensional space;
243 for three-dimensional space, 1024 for four-dimensional space, and so on. And,
of course, each equation will have a correspondingly large number of terms on the
right-hand side (ref. 11).

In addition to the outer product of two tensors, which gives rise to a tensor of
rank higher than the rank of the individual tensors, another kind of tensor product
which gives rise to a tensor of lower rank than the individual tensors is defined by
the following theorem (ref. 12):

THEOREM III. // in a mixed tensor, contravariant rank p and covariant rank q, a
contravariant index and a covariant index are equated, and the resulting tensor
summed with respect to that index, the resulting set of p + q - 2 sums is a mixed
tensor, contravariant of rank (p - 1), and covariant of rank (q - 1).

Consider the mixed tensor

(1.11.22)

If the indices / and k are made equal, this tensor becomes

flay

but

(1.11.24)

where 6a
T is the Kronecker delta, that is

1 for T — a.

0 for T =£ a

Therefore

(L1L25)
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= /l° Of ) (1.11.26)

By the summation convention, the left-hand side is to be summed on i, and the
right-hand side summed on a. To clarify this operation assume that the space
involved is two-dimensional. When equation (1.1 1.26) is written out explicitly, the
following result is obtained:

This equation may be rewritten as follows:

where

and

Hence, by making one upper and one lower index equal, a tensor of rank three has
been reduced to a tensor of rank one. The operation of equating one contravariant
index to one covariant index is known as contraction. If it is possible to apply the
operation of contraction to the outer product of two tensors, the result is a tensor
called the inner product. It should be noted that when, as a result of contraction of
one or more pairs of indices, there remain no free indices, the resulting quantity is a
scalar.
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\ •
At this point some readers may wish to skip the remaining tensor theory and

proceed directly to section 2.1 of aeronautical applications, which only requires a
knowledge of rank two tensor transformations. Having seen the utility of the more
elementary tensor operations and the ease with which the summation convention
can be utilized with a simple computational algorithm, the reader will wish to return
to a study of the remaining theory which deals with the Christoffel symbols and
their role in obtaining derivatives. Once the Christoffel symbols are understood and
expressions for vector derivatives obtained, the way .is clear to proceed with the
formulation of models of diverse phenomena. It will be seen, however, that all
formulations, from the simplest to the most complex, require operations involving
only summation and differentiation. The simplicity of these operations is adequately
demonstrated in sections 2.1 through 2.9 of the chapter on aeronautical
applications.

1.12 VECTOR DERIVATIVES AND THE CHRISTOFFEL SYMBOLS

The scalar product of any two base vectors 5j and a.- may be defined as follows:

5,^=^.5-.=^. (1.12.1)

Likewise, the scalar product of the reciprocal base vectors a1 and a) may be defined
as

tf . a/ = a/ • a* = gU (1.12.2)

The symmetry of gy and $ follows from the nature of the scalar product. Certain
combinations of the partial derivatives of these scalar products with respect to the
system coordinates are useful in obtaining the derivatives of a vector or formulating
the equations of mathematical physics in a general curvilinear coordinate system.
The definitions that follow are ascribed to Christoffel and are called Christoffel
symbols. There are two of these symbols, the first of which is defined as

(1.12.3)
dxl 3jcV

The Christoffel symbol of the second kind is
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ft}-*"'«•" (1.12.4)

J.I 2.1 Derivatives of a Contravariant Vector

The utility of the Christoffel symbols is immediately apparent when an attempt is
made to find the partial derivatives of a base vector, or its reciprocal, with respect to
any system coordinate. Any vector A may be expressed in the forms given in
equation (1.2.1). Furthermore, since the base vectors are, in general, functions of
the coordinates, it follows that the derivative of A with respect to any coordinate
can involve the Christoffel symbols. From equation (1.2.1), the partial derivative of
the contravariant form of the vector A with respect to the coordinate xk is given by

dx

- , A
a. + A — (1.12.5)

K K

Since ai

-2L=-L.<T f+S r-L (1.12.6)

Likewise,

dgjfc 35,- _ _ 30£
-J- =-L

i'
ak + a j '— i (1.12.7)

3x dx ox

and

dg.-ir 3fl; Bat
—'- - —- • ak + at • —* (1.12.8)
3x^ 3 :̂̂

Since

a. = -5L (1.12.9)

it follows that
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From equations (1.1 2.6) through (1.12.10)

da,
(1.12.11)

Therefore, if equation (1.5.4) is used, the rate of change of the base vector a.- with
respect to x.- assumes the form

3a.-
—i=[ij,k]5lc (1.12.12)

Equation (1.12.12) gives the required rate of change of the base vector a- with
respect to a system coordinate, in terms of the Christoffel symbol of the first kind
and the reciprocal base vectors. A more convenient form is obtained if both sides of
equation (1.12. 12) are multiplied scalarly by the reciprocal base vector a to yield

(1.12.13)

From equation ( 1 . 1 2.2), it is seen that

ak ' a1

Therefore

• a1 - (ij,k]gkl (1.12.14)

In terms of the defining formula (1.12.4), equation (1.12.14) may be rewritten as
follows:

9fly / (I \
~ ^ ' a l = ..
fa' w;

(1M2.15)
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Therefore

aa~<' - (' L-
~ ' (L12-16)

By substitution of equation (1.12.16) in equation (1.12.5) the partial derivative of a
vector A with respect to the system coordinate xk is

(1.12.17)
'

The indices i and / in the second term on the right side of equation (1.12.17) are
dummy indices, and may therefore be replaced by any other convenient indices,
except k. To have a common base vector a^, equation (1.12.17) may be rewritten as
follows

dx \dx /

Furthermore, since

bA dxk ^dA
dxk dt dt

and

fak dt dt

the intrinsic derivative, or the total derivative with respect to the parameter, t, of the
contravariant form of the vector /4, may be obtained from equation (1.12.18) in the
following form:

<!* = (**!. + { ' I At d-̂ } a, - A\ *£ St (1 •1

dt \dt \ jk) dt l 'k dt l
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where A j^ is the covariant derivative of the contravariant vector A1 with respect to
x .

The notation A1: suggests that the covariant derivative of a contravariant vector is
not a simple covariant or contravariant vector. As the notation implies, A1.- is a
mixed tensor, with one index of contravariance and one index of covariance. If a
single-valued, reversible functional transformation of the form given in equa-
tion (1.4.4) is assumed, the transformation law for this type of entity is

(1.12.20)

where A^x) are the components in the x coordinate system and Bfc(y) are the
corresponding components in the y coordinate system.

- In an orthogonal Cartesian reference frame

gij=5i • a; = 8J = ai - a' =g?l (1.12.21)

Therefore, since all these scalar products are constants, it follows that the Christoffel
symbols vanish. In this case, the covariant derivative of a contravariant vector
reduces to the sum of the partial derivatives of its physical components along a set
of fixed axes

Likewise, the intrinsic derivative of a vector reduces to the ordinary time rates of
change of the physical components along a set of fixed axes.

For a general space of three dimensions, equation (1.12.19) assumes the form
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n dt i 2 d t s at

121J dt \22\ dt 123J dt f

\
(1.12.23)

\ 2 d t l 3

(2l^! + (2

122 * (23 dt

f 3 = A l < ii dt n dt i3

2l dt 12 dt 23>] dt

d.12.24)

131) dt (32) dt 133 J dt I

The intrinsic derivative of a contravariant vector in a space of three dimensions
contains 27 Christoffel symbols. However, because of the symmetry of the Christof-
fel symbols

1 1 1 I I IIM_I*I
(1.12.26)

and the number of independent Christoffel symbols reduces to 18.
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1.12.2 Derivatives of a Covariant Vector

The second alternative from equation (1.4.1) may be used to express the vector A
in terms of its covariant tensor components and reciprocal base vectors, that is

A = A i & (1.12.27)

In this case, the partial derivative of the vector A with respect to x is given by

^^Laf+At"^ (1.12.28)
dx dx

From equation (1.5.4)

bxk

Therefore

dxk

dxk

da-
'aj = -a l '—L- (1.12.29)

Substituting equation (1.12.16) in equation (1.12.29) gives

3x*

Therefore

(1.12.30)

Substituting equation (1.12.30) in equation (J.I2.28) gives the partial derivative of
the vector A with respect to x in the following form:
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The indices I and / in the second term on the right side of equation (1.12.31) are
dummy indices, and may therefore be replaced by any other indices, except k. In
terms of the base vectors a1, equation (1.12.31) may be rewritten as follows

(Li2-32)

where As ^ defines the co variant derivative of the covanant vector At with respect to
if '

XK.

It may be noted that the covariant derivative of a covariant vector is not a vector.
As the notation implies, Aj ,- is a doubly covariant tensor, that is, a tensor with two
indices of covariance. If a single-valued, reversible functional transformation of the
form given in equation (1.4.4) is again assumed, the transformation law for entities
of this kind is

where A^ofx) are the components in the x coordinate system, and -ff,y(y) are the
corresponding .components in the y coordinate system. It may be mentioned in
passing that moment of inertia, which is a second-order tensor, has a transformation
law of this form.

It appears, therefore, that the operation of covariant differentiation of a vector or
tensor increases the covariance by one index; that is, the xl covariant derivative of
the contravariant vector A1 is Al

it which is a mixed tensor, with one index of
/ 'contravariance and one index of covariance. The x' covariant derivative of the

covariant vector A: is A,- ,-. This is a doubly covariant tensor or a tensor with two
* , * 3/ _

indices of covariance. The intrinsic derivative of the covariant form of the vector A
is obtained from equation (1.12.32) in the following form:

dA ldAi

For a general space of three dimensions, equation ( 1 .1 2.33) assumes the form

54



MATHEMATICAL MODELING OF DIVERSE PHENOMENON 1.12

where

1 \ l l l j dt \ \ 2 \ dt |l3J dt

(1-12-35)

d-12.36)

(1.12.37)

As in the case of the intrinsic derivative of the contravariant vector, the intrinsic
derivative of the covariant form of the vector A is seen to contain 27 Christoffel
symbols. However, because of the symmetry implied by equation (1.12.26), the
number of independent Christoffel symbols is again reduced to 18.
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1.13 SPECIAL COORDINATE SYSTEMS

The large number of terms appearing in equations (1.12.19) and (1.12.33) is due
to the generality of these equations which are applicable to any space of three
dimensions. Fortunately, for the three-dimensional spaces most commonly used,
both of these equations reduce to a more manageable form.

For example, if base vectors of unit length are denoted by az- or a1, then in a
cylindrical polar coordinate system (fig. 1.13.1):

X3

Figure 1.13.1.- Cylindrical coordinates.

al =

(1.13.1)

and

-1 Ia1 - -^

a3 =

22a* * rr

*

,33 =- 1

(1.13.2)
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As a consequence of equations (1.13.1) and (1.13.2) there are only two indepen-
dent, nonzero Christoffel symbols in a cylindrical polar coordinate system. These are

( ' !=-*• '\12\

12 2l *'

(1.13.3)

Hence, a contravariant vector referred to this coordinate system has a time rate of
change as follows:

fls\ m fJ A 1*1 f$y \ I t$ A I " I / /i^c /^TC \ I ft A

~dF = \dT+A \22)^rr"1+[^r + {i2)\4 ~dT+A ~dT)\^ + ~dT^
(1.13.4)

Likewise, the time rate of change of a covariant vector referred to this coordinate
system is given by

(1.13.5)

In spherical polar coordinates (fig. 1.13.2):

^3

Figure 1.13.2.—Polar coordinates.
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and

a, =a

a2 = x1a2

a3 = x1 sinx2a3

— i ~ ta1 =a l

#33 = (xj sinx2)2

(1.13.6)

a2 ^ fl2a 1 a
X1

-3 1

c 2 2 - l
" f 1 \2 (1.13.7)

1x1 sinx* (x1 sinx2)2 ,

In this case there are six independent, nonzero Christoffel symbols. These are

-sin x2 cosx2I,'.!-- I,',l~*
I'J-12 21 113) |31| x1

i
cot x2

l23j 132)

(1.13.8)

When the Christoffel symbols are substituted in equation (1.12.19), the time rate of
change of a contravariant vector referred to a spherical coordinate system assumes
the following form (ref. 13):

dA .
dt ' \dt 22 dt 133] dt

dt 12 dt dt 33 dt

+ 13 dt «3 (1.13.9)
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The corresponding rate of change of a covariant vector is obtained by substitution
from equation (1.13.8) in equation (1.12.33). In this case,

.£.(«•-„, I2 I*!.,,, I' }*!),
dt \dt 2 |12J dt 3 U3J dt )

4 2 . I 1 \dx 2 .12 \d x i
"• I ~rr" -"i i->^.f^r ^*2 i«, i ~rr -"j

dA

(1.13.10)

1.13.1 Alternative Derivation of the Christoffel Symbols

In equations (1.12.3) and (1.12.4), the Christoffel symbols have been defined in
terms of the scalar product of two of the base vectors. These symbols can also be
derived from the equations of coordinate transformation by the following method,
which is suitable for some applications.

In a rectangular Cartesian coordinate reference frame, with coordinates denoted
by y1, an element of arc of length ds may be expressed in the following form:

ds = aa dya = a^ dy$

Therefore

ds2 - aa - ap dya dy$ - 6pa dytt dy$ - dya dya

Consider a curvilinear coordinate system with coordinates denoted by xl, arid
assume that the x and y coordinates are related by a set of transformation equations
as follows

y i=y i(x l,x*,x*) (1.13.11)

The element of arc ds in the x coordinate system assumes the form

ds = 5f dxl = 5 •
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Therefore

ds2 = (at dx*) • (aj dx') = gfj dxl dx' = dya dya

4/*<fy*=*£
ax1'

and

_ dya dya

(1.13.12)

If the transformation equation (1.13.11) is reversible and one-to-one, then

x* = x*(yl ,y* y3) (1.13.13)

By substitution from equation (1.13.12) in equation (1.12.3), the Christoffel
symbol of the first kind assumes the following form:

... ., a2va 3va

-j, (1.13.14)

Likewise, substituting equation (1.13.12) in equation (1.12.4) gives for the Christof-
fel symbol of the second kind

\ ik \~ TTTk 71* (1.13.15)\'Kt dx'dx* dya

1.14 THE DEFERENTIAL OPERATOR, V

As they stand, equations (1.12.18) and (1.12.32) do not appear to satisfy the
definition of a tensor given by equations (1.8.2) and (1.8.4), since they are not
bilinear in the base vectors. In order to remove this inconsistency, it is necessary to
define covariant differentiation in terms of the differential operator V. This operator
is defined as follows
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V = 5' — (1.14.1)
by'

The proof that this operator is a differential invariant is straightforward.
The transformation law for a contravariant base vector is

= ^- a'(x) (1.14.2)
ax1'

Moreover

fi'Tiif (U4'3)

Therefore

57 = a' < _
3x' ay 9*0

(1.14.4)

where 6f-P is the Kronecker delta-. Hence

(L14<5)

As has been noted previously, the operation of covariant differentiation increases
the covariance by one index. This can be seen more clearly if covariant differentia-
tion is defined in terms of the differential operator V. Consider a scalar point
function 0, which is a tensor of rank zero. When this function is operated upon with
the differential operator V, a covariant vector of rank one is obtained as follows:
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where

30
- (1.14.7)

This is a covariant tensor of rank one. Hence, operation upon the scalar point
function 0 with the differential operator V has resulted in a covariant tensor of rank
one.

Next consider the result of operating upon the vector A, which is a tensor of rank
one, with the operator V. In this case the vector A can assume the following
alternative forms:

A=A i a i =A / ai (1.14.8)

The result of operating upon the contravariant form gives

VI = a/— 04^0 (1.14.9)

(1.14.10)

Substitution from equation (1.12.16) in equation (1.14.10) gives

and since a and i are dummy indices, this equation can be rewritten as

Vl = Vte/ + W A/1 (1-14.11)

Hence

ax/
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This form shows that V/4 in a mixed tensor of rank two, which justifies the
following notation

VA=A i jak i (1.14.13)

where

A = M ! + J / L a (1.14.14)

defines the covariant derivative of A1 with respect to xA Likewise, the result of
operating upon the covariant form of the vector A gives

(1.14.15)

f1
\

,/9A- , d5i\
ji+A .^] (1.14.16)

Substitution from equation (1.12.30) in equation (1.14.16) gives

Again, interchanging the dummy indices to obtain a common vector coefficient

Therefore

~ = A i jd'a i (1.14.18)
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where

dA; (a}
(1.14.19)

defines the covariant derivative ofA^ with respect to x^.
Hence, operation upon

A = Aft
I

with V has again increased the covariance by one index.

1.15 THE RIEMANN-CHRISTOFFEL TENSOR AND THE RICCI TENSOR

The tensor known as the Riemann-Christoffel tensor, plays a basic role in many
investigations of differential geometry, dynamics of rigid and deformable bodies,
electrodynamics, and relativity. Those who are not interested in such applications
may omit this section.

Since the covariant derivative of a tensor is a tensor, it can be differentiated
covariantly again. However, in all cases, covariant differentiation of a tensor gives
rise to a tensor having one more unit of covariant character than the given tensor.

If A = Aft1 is a covariant tensor of rank one, its covariant derivative with respect
to x1 can be obtained from equation (1.14.17) where it is shown that

or

where

defines the covariant derivative of the covariant tensor component Af with respect
to x1.
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Consider next the tensor of rank two

The result of operating upon this tensor with the differential operator V is a new
tensor of rank.three as follows:

7\A -' -'\
-M gtsi + Af j^tf + 'At J^}

k J k l'r k

(1.15.1)

Moreover, it has been shown that

foe*

Substitution of these values in equation (1.15.1) yields the following:

VM,./»W*gi> ^-XyjJrt'-XyjJ^) (,.,5.2)

By interchanging the dummy indices to obtain a common factor, the following
result is obtained:

•^••feM^H
a'a1' (1.15.4)

* j j - -

where

_ / , / _ « x . a . (1.15.5)
I f /*~ " 'a '7
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is the covariant derivative of the tensor component Af ,-, and is seen to be a covariant
tensor of rank three.

By substitution of

in equation (1115.5),^- ,-^.is obtained in the following form:

'/ »i Jf \ «. 7* I 17 I ^ / I l i f t \ -. ra I T/V I •* / I ilf 11*. i l/v/ I ' P J
3xx \3x/ 1VJ / l^/Vaje I ' / (llc)\dxJ \aj> I

Therefore

It is interesting to examine the result of performing the operation of covariant
differentiation of A^, first with respect to k, and then with respect to /. This
operation gives

Therefore

A; /,; =

u Mx-r -r+r i j^fl ( i i 5 ? )I/* zaj A l ^ l a v ^ VJ lo*J P

6(5
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A sufficient condition for the equality of the mixed partial derivatives

Q and 9/(*,jQ (1.15.8)
dxdy dydx

.is that the function f(x.y) and its first two partial derivatives be continuous.
However, this condition alone is not sufficient to ensure the equality of mixed
covariant derivatives. This can be seen by subtracting equation (1.15.7) from equa-
tion (1.15.6) to obtain

(1.15.9)

" The dummy indices in this equation may be interchanged to permit factorization
as follows o

(1.15.10)

As previously indicated, covariant differentiation of a tensor produces a tensor, and
the sum or difference of two tensors is also a tensor. Hence

Aijk ~ Ai,kj

is a tensor. Moreover, this tensor is a covariant tensor of rank three. And since Aa is
an arbitrary covariant tensor of rank one, its coefficient, namely, the quantity in
square brackets, must also be a tensor. Indeed, this quantity must be a mixed tensor
of rank four, since on inner multiplication by Aa a covariant tensor of rank three is
obtained as follows:

where
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This is the Riemann Christoffel tensor. It may be expressed in determinant form
as foliows(ref. 14):

(1.15.13)ijk

Hence, if the order of covariant differentiation is to be immaterial this tensor must
vanish. Therefore, a necessary and sufficient condition for the validity of inversion
of the order of covariant differentiation is that (ref. 1)

R f f k ^ Q (1.15.14)

The number of components in this tensor of rank four depends on the dimension-
ality of the space. In a space of two dimensions the number of components will be
16; similarly, in a space of three dimensions it would have 81 components. In
relativistic studies where a four-'dimensional space time continuum is required, the
number of components would be 256, and so on.

The definition of the Christoffel symbol of the second kind is

(*)=**«[//,«]

where

If the Christoffel symbols appearing in the Riemann-Christoffel tensor are replaced
by these quantities, the result is an expression containing first and second partial
derivatives of the g^. Moreover, the gjj are themselves the coefficients in the
fundamental quadratic form

ds2 = (1.15.15)

where ds is the distance between two neighboring points with coordinates xl and
xl + dx1, and the g are functions of xl.
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1.16 THE RICCI TENSOR

The Ricci tensor, which will be required in a subsequent application, can be
obtained by contracting the Riemann-Christoffel tensor. And since the process of
contraction reduces the rank of the contracted tensor by two, the result will be a
tensor of rank two. In other words, by replacing A: by a in the Riemann-Christoffel
tensor, the Ricci tensor is obtained as follows:

R ="• ~ (1.16.1)

Since a appears twice in the terms on the right, it must be summed in accordance
with the summation convention. In a four-dimensional space, equation (1.16.1)
represents only 16 equations. Thus

/?,•,• = /?!. +7??. +Rl. +/??.V yi z/2 1/3 //4

Substitution of k - a in equation (1.15.12) gives

Therefore

/?„• =

3

ax / -

C)

d
3x«

C)
(1.16.3)

It can be shown that

Therefore, R can be rewritten in the following form:

(1-16.4)
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which, in view of the definition of the Christoffel symbols, represents an expression
containing first and second partial derivatives of the g^. From inspection of this
result it can be seen that R^ is symmetric. Hence, the number of distinct compo-
nents of Rij is (l/2)«(n + 1). In a four-dimensional manifold n = 4, and in this case
RH has 1 0 components. It may be noted that in space devoid of matter, the equation

Rtj = 0

is the relativistic analog of Laplace's equation

where 0 is a gravitational potential function in the Newtonian theory of gravitation.
This will be discussed in more detail in subsequent sections.

1.17 CURVATURE TENSOR

The -curvature tensor Ri is defined by

Therefore
/ r

3 a c - " " " (U7-2)

This may be rewritten as follows:

- 3 M a*ia M 3 /«) , a*/a /«! , |M r ^ -ii« l/'f ^ {/') - s? S;a 14 + u W I/'/ w*'"

It is easy to show that



MATHEMATICAL MODELING OF DIVERSE PHENOMENON 1.17

The Christoffel symbols of the first kind satisfy the following equations:

+ KM _ dg/A
dxJ 9x 7

Therefore

[ikj]
bx

as required. Substitution of this»result in equation (1.17.3) yields the following:

Rijkl=-~w,i}- — [jk,i]
av-K xv(dx

This tensor can be written in determinantal form as follows:

(L17.5)

Rijkl ~

dx t) G
(1.17.6) '

In order to determine the properties of the set of Riemann-Christoffel tensors
Rijkl the defined values of the Christoffel symbols are substituted in equa-
tion (1.17.5). When this is done, the following result is obtained:

%*
From this formula it follows that

Rijkl

Rijkl

(1.17.7)

(1.17.8)

(1.17.9)
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Rijkl = Rklij

and

Moreover, from the defining formula for /?!•£/, it is seen that this mixed tensor is
skew-symmetric with respect to the indices k and /. Therefore

1.18 EINSTEIN TENSOR

The following identity is due to Bianchi (ref. 15):

Rijkl,m + Rijlm, k + Rijmk,l = ° (1.18.1)

If (1.18.1) is multiplied by g1 g1 and the skew-symmetric properties of the
curvature tensor are used, one obtains

s g (Kijkl,m ijlm,k

or

It has been shown that the contracted form of the Riemann-Christoffel tensor
defines the Ricci tensor, that is

Rfia=-Ri) ' 0.18.3)

Hence

and therefore
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where

R=g'kR jk (1.18.5)

Since k and / are dummy indices, equation (1.18.4) may be rewritten in the
following form:

R ,m-2 R k
m ,k = ° d-18-6)

or in the alternative form

k - * k R = 0 (1-18.7)
/ ,k

where

The tensor

Rf-- t fR = Gf (1.18.9)

is the Einstein tensor, which plays an important role in the theory of relativity, and
will be required in chapter 5.
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2.1

2.1 TRANSFORMATIONS AND TRANSFORMATION LAWS

Many problems in -engineering and physics involve the formulation of complex
models of physical systems or processes, and the manipulation of sets of differential
equations. In this and later chapters it will be seen that the formulation of
mathematical models can be reduced to a series of routine operations, which can be
performed without reference to the physics of the problem. Moreover, it will be
demonstrated that the operations are purely mechanical and consist only of differen-
tiation and summation.

The feasibility of applying this technique to the problem of deriving the equations
of motion of a particle in any curvilinear coordinate system is demonstrated in
chapter 3. In chapter 4 it is shown that the same method may be used to derive the
Navier-Stokes equations of fluid motion and the corresponding continuity equation.

In order to reduce the equations of mathematical physics to a form which is
amenable to routine operations of this type, it is desirable that the form chosen be
invariant with respect to coordinate transformations. It has already been noted that
a tensor formulation meets this requirement. When conventional methods are
employed, the form which the equations assume depends on the coordinate system
used to describe the problem. This dependence, which is due to the practice of
expressing vectors in terms of their physical components, can be removed by the
simple expedient of expressing all vectors in terms of their tensor components.
These are related to the physical components by a simple transformation.

This chapter describes how the technique may be used to assist in the formulation
of mathematical models of aeronautical systems. These models, which are frequently
required for simulation and other purposes involve at least 12 equations: 3 force
equations; 3 moment equations; 3 Euler angle equations to determine the spatial
orientation of the body, and 3 equations to determine the location of the body in
inertial space. An important aspect of the formulation of mathematical models of
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aeronautical systems is the specification of the system of forces and moments. In
aeronautical situations the thrust and gravity forces can be formulated without diffi-
culty, but the aerodynamic forces and moments require more detailed consideration.
These are represented by the static forces and moments and the aerodynamic stabil-
ity derivatives. For reasons which will become apparent as we proceed, these forces,
moments, and derivatives have to be transformed from wind or wind-tunnel stability
axes to aircraft body axes before the formulation can proceed.

For the benefit of those who have access to a digital computer equipped with a
formula manipulation compiler, simple programs will be described which will facili-
tate the mechanization of these operations. This kind of computer operation is
usually referred to as symbolic mathematical computation or symbolic and algebraic
manipulation. The advantages of symbolic mathematical computation are most
evident in the formulation of models analogous to those described in chapter 5; that
is, the use of the method to derive cosmological models and associated trajectories.
The field equations that govern the trajectories of bodies in cosmological space
consist of 10 nonlinear partial differential equations for the 10 unknown potential
functions. Each of these equations has a large number of terms, with each term a
complicated mathematical expression. The formulation of these terms, and the
derivation of the equations of the geodesies that describe the trajectories of bodies
in the space defined by the postulated metric, require a substantial amount of
algebraic manipulation and symbolic differentiation. Because of the compact nature
of the tensor expressions, and the facility with which symbolic differentiation can
be exploited by a simple computational algorithm, computation time is reduced and
the errors to which human operators are prone can be avoided. Moreover, the
computerized method enables the researcher to examine a greater number of
possibilities and to explore cosmological situations that might otherwise be avoided
if the time and labor involved were excessive. This is not to say that noncosmologi-
cal models cannot be formulated with equal facility by a human operator. Bearing in
mind that the only operations involved are differentiation and summation, it may, in
fact, be more economical to formulate the majority of models manually.

2.2 AERONAUTICAL REFERENCE SYSTEMS

There are many coordinate systems in use in aeronautical research (ref. 1).
Aerodynamic data obtained from wind-tunnel experiments may be referred to wind
axes or to wind-tunnel stability axes. When the wind axes are used, the x-axis is
aligned with the relative wind at all times. The wind-tunnel stability axes are the
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system about which most wind-tunnel data are obtained. For this system, the x-axis
is in the same horizontal plane as the relative wind at all times. In addition to the
wind axes and the wind-tunnel stability axes, there are other systems of axes fixed in
the body and moving with the body. These are referred to as body axes. In
aerospace applications, a body axis system has the x-axis fixed along the longitudinal
center line of the body, the y-axis normal to the plane of symmetry, and the z-axis
in the plane of symmetry. It should also be noted that when an aircraft is in
horizontal flight, the z-axis points downward in the direction of the gravity vector,
the x-axis points forward, and they-axis points to the right (fig. 2.2.1).

VELOCITY ^^^^-RELATIVE WIND

HORIZON 1̂ ~~ HORIZON

1 2
v * GRAVITY

Figure 2.2.1.— Aeronautical reference systems.

The equations of motion of aerospace vehicles are formulated with respect to
body axes. The main advantage of these axes in motion calculations is that vehicle
moments and products of inertia about the axes are constants. When the body axes
are chosen so that the products of inertia vanish, they are known as principal axes. A
system of axes which is frequently used to study the stability of aircraft in the
presence of disturbing forces that produce small perturbations is the flight stability
axes. This is an orthogonal system fixed to the vehicle, the x-axis of which is aligned
with the relative wind vector, when the vehicle is in a steady-state condition, but
then rotates with the vehicle after a disturbance as the vehicle changes angle of
attack and sideslip.

Although the equations of motion of aerospace vehicles are referred to body axes,
the aerodynamic forces, moments, and stability derivatives are usually referred to
wind axes or to wind-tunnel stability axes. Hence, before the equations of motion
can be formulated with respect to body axes, the aerodynamic forces, moments, and
derivatives must be transformed from the wind or wind-tunnel stability axes to the
appropriate body axes (ref. 2).
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2.3 TRANSFORMATION LAW FOR STATIC FORCES AND MOMENTS

The static aerodynamic forces and moments transform like the components of a
contravariant vector; that is, if Xf denotes the aerodynamic force in the x frame of
reference and Yl denotes the corresponding transformed force in the y system of
coordinates, then

bxn
(2.3.1)

where

In this equation,

y = y(x)

' may denote either a force or a moment. For example

i
X1 may be either X or I

X2 may be either Y or m

X3 may be either Z or n

(2.3.2)

where X, Y, Z and /, m, n are aerodynamic forces and moments, respectively; that
is, each of these pairs obeys the same transformation law in going from the
x-coordinate frame to the ^-coordinate frame.

In aeronautical language, the aerodynamic forces acting on a body that is moving
through the atmosphere are defined in terms of the force coefficients as follows:

X = qSCx in the x direction

Y = qSCy in the y direction

Z - qSCz in the z direction

where q =l/2(pF2) is the dynamic pressure, when p and v are the density and
velocity, respectively; and S is a reference area.
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Likewise, the aerodynamic moments about the axes are defined in terms of the
moment coefficients as follows:

/ = qSbCf about the x axis

m = qScCm about the y axis

n = qSbCn about the z axis

where b denotes wing span and c denotes wing chord length.
The body axes are related to the wind-tunnel axes as shown in figure 2.3.1. To

bring a reference frame from the wind axes into coincidence with the body axes
involves a negative rotation (B) about the z axis followed by a positive rotation (A)
about the y axis.

xBODY

RELATIVE
WIND

RELATIVE
WIND

Figure 2.3.1. — Angle of attack A and angle of sideslip B.

Instead of using (xyz), let (y ly2y3) denote the body axes, and (x lx2x3) the
wind-tunnel axes. With this notation, the coordinate transformation is given by

cos A 0 -sin

sinA 0 cosil

'cosB -sin B 0\ /x1

sin B cos B 0

0 0

y1 — x1 cos A cosB-x2 cos A sinB-x3 sin A

y2 =xl s inB+x 2 cos B

y3 -x1 sin A cosB-x2 sin A sinB + x3 cos A

(2.3.3)
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Since this transformation is orthogonal, the inverse transformation is simply the
transpose of the preceding matrix, and can be written by inspection as follows:

(2.3.4)

x1 = y1 cos A cos B + y2 sin B + y3 sin A cos B

x2 = -y1 cos A sin B + y2 cos B- y3 sin A sin B

x3 —-y1 sin A + y3 cos A

Given the transformation (2.3.3), equation (2.3.1) may be expanded as follows:

r1 =Xl cos A cosB-X* cos A sin B - X3 sin A

r2 = X1 sin B + X2 cos B

Y3 = X1 sin A cos B - X* sin A sin B + X3 cos A

where

(2.3.5)

r2 = r
Y3 =Z'

x1 =x
x2 = Y
X3 =Z

Therefore,

X1 - X cos A cos B- Y cos A sin B - Z sin A

Y1 = X sin B + Y cos B

Z' = X sin A cos B - Y s i n A s i n B + Z cos A

(2.3.6)

In view "of the relationships indicated in equation (2.3.2), the static moment
coefficients obey the same transformation law. Hence

/' = / cos A cos B - m cos A sin B - n sin A

m = / sin B + m cos B

n —I sin A cos B - m sin A sin B + n cos A

(2.3.7)
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In these transformations the primed quantities refer to body axes components,
and unprimed quantities to the wind-tunnel axes components.

2.4 TRANSFORMATION LAW FOR THE STATIC-STABILITY DERIVATIVES

The static stability derivatives obey the same transformation law as the force and
moment coefficients. From equation (2.3.1)

Therefore,

YA' =
_L/V\
M Uv

However, in a static situation

-^— = constant
bxn

Therefore,

i _ a/' v n (2.4.1)

Likewise

A
dxr

Y i - y y n
* ~ ~ *

where •

Y A l = X A > l A
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Therefore,

and

Similarly

Likewise

XA = XA cos A cos B - YA cos A sin B - ZA sin A

YA' = XA sin B + YA cos B

ZA = XA sin A cos B - YA sin A sin 5 + ZA cos /4

/4* = IA cos ̂ 4 cos 5 - mA cos ̂ 4 sin B - n^ sin /I

mA = IA sin 5 + mA cos 5

«/ = I A sin A cos 5- wx sin^l sin B + H.A cos A

I ft — I ft cos A cos 5 - mg cos A sin 5 - rig sin

' = I ft sin 5 + m cos B

rift = I ft sin A cos 5 - mg sin >1 sin 5 + w^ cos A

D = A'o cos A cos 5 - FD cos A sin 5 - Z^ sin A

= XB sin B + YB cos

sin .<4 cos B - Yp sin,A sin B + Zn cos ^4

(2.4.3)

(2.4.4)

(2.4.5)

(2.4.6)

2.5 INVERSE TRANSFORMATION LAW FOR STATIC FORCES AND
MOMENTS

The equations in the preceding section transform the forces and moments and the
static stability derivatives from wind-tunnel axes to body axes. As already indicated,
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it is frequently necessary to convert these measured quantities from body axes to
wind-tunnel axes. In this case the inverse transformation is required.

A useful property of tensor transformations may be stated as follows: Let the
components of a mixed tensor in the A:-coordinate system be denoted by

fJ i > • • • > is
/ , , . . . , i r

and its components in the y system by

y/ 1 > - • •

Then from the law of transformation of mixed tensors

. y / i , . . . , f c = 3/l ^_3x^ to* Y g i , . . . . f e

' ' • • • • • ' r a^'"'^ a/1" V' a » - - - > a r ( *

On the other hand, the components

x P i , . . - , & s
<^i , - • • - , a / -

of the same tensor in the x frame of reference are given by the formula

It should be noted that (2.5.2) is obtained from (2.5.1) by treating the partial
derivatives in (2.5.1) as though they were fractions and products appearing in simple
algebraic expressions. Hence, by using this very useful property of tensor equations,
the inverse transformation can be obtained from equation (2.3J) as follows:

xn = 3^ y/- (2.5.3)
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On using the equations (2.3.4), the transformation (2.5.3) assumes the following
form for the forces

X1 =X = X' cos A cos B + y sin B + Z' sin A cos B

X* = Y = -X' cos A sin B + V cos B - Z' sin A sin 5

X3 = Z = -X1 sin A + Z' cos A

(2.5.4)

Similarly, by using the relationships given in (2.3.2), the inverse transformation
for the moment coefficients is

X1 = I = /' cos A cos B + m' sin B + ri sin A cos B

X2 = m = -/' cos >1 sin B + m' cos 5 - n sin v4 sin 5

X3 - n = -/' sin A + n' cos >1

Likewise, the static stability derivatives are

X1 = X A = XA cos .4 cos B + YA sin B + Z^' sin ,4 cos.

= YA = -XA' cos >1 sin B + YA cos B - ZA sin ̂  sin B

(2.5.5)

and

= ZA = -XA sin A + Z/ cos

X1 = 1A =1A cos ,4 cos B + w' sin B + «' sin ̂ 4 cos B

(2.5.6)

X2 = mA = -1A ' cos A sin B 4- w^ ' cos B - nA ' sin A sin

A"3 = nA = ~1A sin A + nA cos ^

(2.5.7)

The static stability derivatives with respect to the angle B have exactly the same
form. These are

X1 =X B = XB' cos A cos B + YB' sin B + ZB' sin A cos B

X* =YB = -XB cos A sinfi + YB cos B - Z^' sin A sin B

X3 = ZB = -XB sin ,4 + Z5' cos A

(2.5.8)
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and
X1 = lp = I ft cos A cos B + nift sin B + rig sin A cos B

= -Ift cos A sin B + nig cos B - «g' sin A sin B

X3 — rig — -Ift sin A + no' cos A

(2.5.9)

Although a computer would not be necessary to formulate the simple relation-
ships described so far, a computer program will be described in the next section to
prepare potential computer users for more complicated formulations.

2.6 TRANSFORMATION BY COMPUTER

For the benefit of those who are not familiar with computers or computer
programming, it should be emphasized that a computer program is simply a list of
instructions that a computer can accept and execute. There are a variety of
computer languages that can be used to express the user's wishes in a form that is
acceptable to a given computer. When it is required to use a computer to solve a
particular problem, a program must be written in one of the languages that the
computer will accept, instructing the computer what to do. When the instructions
are written in the prescribed form, they are transferred to punched cards, before
being presented to the computer, or typed at a terminal which is connected to the
computer. If the instructions are coded correctly, the problem solution will be
printed out on paper tape, or presented in some other form specified by the user.

A simple program that can be used to transform the static force and moment
coefficients and the corresponding derivatives from wind-tunnel axes to body axes
will be described. The program uses the coordinate transformation equations (2.3.3)
as input to permit expansion of equation (2.3.1).

If a coefficient or derivative in wind-tunnel axes be denoted by C(I), and the
corresponding transformed coefficients be denoted by TC(f), where / = 1,2,3, then a
suitable program will consist of only a few instructions.

Just as a human operator cannot expand equation (2.3.1) unless he knows the
special form y = y(x) given by equation (2.3.3), the computer must likewise be told
what this relationship is. Therefore, the first statement in the program gives the
computer this information. However, the information cannot be given in the form in
which it is written in equation (2.3.3); it must be presented in a modified form that
the computer will accept. If the information is not in the precise language that is
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acceptable to the computer, it will be rejected. In the case of a FORMAC program
(ref. 3), the computer will accept the following input statement, where asterisks
denote'multiplication.

, LET(Y(1 )=X(1 ) *COS(A) *COS(B) -X (2 ) *COS(A) *S IN(B) -X (3 ) *S IN(A) ) ;

LET(Y(2)=X(1) *S IN(B)+X(2) *COS(B) ) ;

LET(Y(3)=X(1) *SIN(A)*COS(B) -X(2) *S IN(A)*SIN(B)+X(3) *COS(A) ) ;

In order to make certain that the transformation equations have been coded
correctly, it is advisable to instruct the computer to print out the transformation
equations before printing out the problem solution, that is, the expanded form of
equation (2.3.1). In this way the user can make certain that equation (2.3.1) has
been coded without error. With this objective in mind, the next program statement
or instruction to the computer is

P R I N T _ O U T ( Y ( 1 ) ; Y ( 2 ) ; Y ( 3 ) ) ;

It should be noted that these program statements must always be reproduced
exactly. Semicolons cannot be replaced by commas. The position of semicolons
must be strictly adhered to. If a program statement ends with a semicolon, it cannot
be replaced by a period. Likewise, the number and positions of parentheses is
invariable. Computers are usually quite inflexible in their insistence on precisely
worded statements.

Having received the transformation equations and printed them out, the computer
will behave in a very human fashion and stop working if it is not told what to do
next. So the next program statement is an instruction to expand equation (2.3.1) in
a manner that exploits the advantages of the summation convention. In this
connection, it is perhaps worth repeating that the summation convention, which is a
characteristic property of all tensor expressions, will be used repeatedly in the
examples that follow.

An instruction to a computer to perform a series of operations in a repetitive
manner takes the form of a "DO" statement; and the group of instructions involved
in carrying out the repetitions constitute what programmers call a "DO" loop. The
"DO" statement prescribes the range of the operation. For example,, in expanding
equation (2.3.1), the indices "/" and "n" each assume the values 1,2,3 in turn, and
two "DO" statements appear in the program as follows:
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DO 1=1 TO 3 BY 1;

DO N=I TO 3 BY 1;
The following statement is for initializing the program

1 LET(TC(I )=0) ;

A key statement, which is the target of the "DO" statements, instructs the
computer how to expand equation (2.3.1). It is a statement that will appear
frequently in subsequent applications; its implementation permits the computer to
differentiate mathematical expressions symbolically. When expressed in computer
language, equation (2.3.1) assumes the following form:

) = ( D E R I V ( Y ( I ) , X ( N ) ) : ) * ( C ( M } ) ) ;

This statement is accompanied by the following supplementary statement which
tells the computer to add the results of each step in the operation prior to
incrementing the indices.

L E T ( T C ( I ) = T C ( I ) + T C C ( I ) ) ;

When the index "N" reaches the value 3, the computer is instructed to terminate
that phase of the operation by the following statement:

E N D ;

It is then told to print out the result by the statement,

PRINT_OUT(TC(I));

It then proceeds to increment the index "I" until all three equations have been
formulated. At this point the computer encounters the final statement in the
program. It is

END;

The reader may wonder why two "END" statements are necessary. The first
"END" statement encountered terminates what programmers call the inner loop:
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this part of the program manages the formulation of individual equations, and
terminates the operation when the index "N" equals 3. The second "END" state-
ment terminates the program when the index "I" equals 3, that is, when all
equations have been formulated. When this occurs, the problem solution is printed
out. The following list of input equations and formulated transformation equations
are reproduced from the actual computer printout:

Y ( l ) = COS (B) COS(A) X ( l ) - COS (A) SIN (B) X (2 ) - SIN (A) X ( 3 )

Y ( 2 ) = SIN (B) X ( l ) + COS (B) X ( 2 )

Y(3 ) = COS (B) SIN (A) X ( l ) - SIN (B) SIN (A) X (2 ) + COS (A) X.(3)

TC(1) = COS (B) COS (A) C( l ) - COS (A) SIN (B) C(2) - SIN (A) C(3)

TC(2) = SIN (B) C( l ) + COS (B) C(2 )

TC(3) = COS (B) SIN(A) C( l ) - SIN (B) SIN (A) C ( 2 ) + COS (A) C(3)

On substitution of the appropriate symbols in these output expressions, equa-
tions (2.3.6) and (2.3.7) and (2.4.3) through (2.4.6) are reproduced. For example, if
the transformation equations for the static force coefficients are required, the
following symbol substitutions should be made

T C ( 1 ) = X1 ; C ( l ) = X

T C ( 2 ) = Y' ; C ( 2 ) = Y

TC(3) = Z1 ; C(3) = Z

The appropriate symbol substitutions for the moment transformations are

TC(1) = Z' ; C( l ) = I

TC(2) = m1 ; C(2) = m

TC(3) = n1 ; C (3 ) = n
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Static stability derivatives with respect to "A" are reproduced when the output
symbols are assigned as follows:

TC(1) = £A ; C ( l ) = ZA

TC(2) = mA ; C (2 ) = mA

TC(3) = nA ; C(3) = nft

and similarly for the static stability derivatives with respect to "B."
The same program can be used to carry out the inverse transformations, provided

the coordinate transformation equations (2.3.4) are used instead of equa-
tions (2.3.3), and the transformed coefficients TC(f) obtained from equation (2.5.3)
instead of equation (2.3.1). o

When inverse transformations are required, the input statement and the statement
controlling differentiation are modified to correspond to equations (2.3.4)
and (2.5.3), respectively.

In this case, the input equations are

LET(X(1 )=Y(1 ) *COS(A) *COS(B)+Y(2 ) *S IN(B)+Y(3 ) *S IN(A)COS(B) ) ;
j

LET(X(2)=-Y(1) *COS(A)*S IN(B)+Y(2) *COS(B) -Y(3) *S IN(A)*S IN(B) ) ;

LET(X (3 )= -Y (1 ) *S IN (A )+Y(3 ) *COS(A) ) ;

and the inverse transformation equation is

LET(TCC(M)=(DERIV(X(M) ,Y( I ) ) ) * (C(M) ) ) ;

When these modified statements are substituted in the preceding program, the
following output is obtained:

X( l ) = COS(B) COS(A) Y ( l ) + SIN(B) Y ( 2 ) + COS(B) SIN(A) Y(3)

X ( 2 ) = -COS(A) SIN(B) Y ( l ) + COS(B) Y ( 2 ) - SIN(B) SIM(A) Y ( 3 )

X (3 ) = -SIN(A) Y ( l ) + COS(A) Y ( 3 )
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TC(1) = COS(B) COS(A) C( l ) + SIN(B) C(2) + COS(B) SIN(A) C(3)

TC(2) = -COS(A) SIN(B) C ( l ) + COS(B) C(2) - SIN(B) SIN(A) C(3)

TC(3) = -SIN(A) C( l ) + COS(A) C(3)

In these output expressions, a coefficient or stability derivative in the body axis
system is denoted by C(M), and the corresponding transformed coefficient in
wind-tunnel axes is denoted by TC(M), where M - 1.2.3. For example, the symbol
substitutions for the force coefficients are

TC(1) = X ; C( l ) = X'

TC(2) = Y ; C(2.) = Y1

TC(3) = Z ; C(3) = Z'

Likewise, the symbol substitutions for the moment coefficients are

TC(1) = Z- ; C( l ) = V

TC(2) = m ; C (2 ) = m1

TC(3) - n ; C (3 ) = n1

Static stability derivatives with respect to A and B are obtained in a similar
fashion. When interpreted in this manner, the program output gives the inverse
transformations for static force and moment coefficients and the static stability
derivatives by reproducing equations (2.5.4) through (2.5.9).

2.7 TRANSFORMATION LAW FOR AERODYNAMIC STABILITY
DERIVATIVES

A necessary preliminary to the formulation of mathematical models of aeronauti-
cal systems is the transformation of aerodynamic stability derivatives from wind or
wind-tunnel stability axes to body axes. It will be seen that the aerodynamic
stability derivatives transform like the components of a mixed tensor, having one
index of covariance and one index of contravariance (ref. 4). Moreover, due to the
equivalence of covariant and contravariant transformations in orthogonal Cartesian
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systems of coordinates, it will be seen that the transformations can be treated as
doubly covariant or doubly contravariant if this simplifies the formulation.

The aerodynamic stability derivatives measure the rates of change of aerodynamic
forces and moments with respect to motion vector components. In keeping with the
usual practice in aerodynamic formulations, motion vector components will refer
specifically to components of the linear velocity vector, components of the angular
velocity vector, and components of the corresponding linear and angular accelera-
tion vectors. The transformation law for these derivatives may be obtained as
follows: let Yl be a force or moment in the y system of axes, and let Ul(y) be a
motion vector component in this system of axes. Similarly, let X® be a force or
moment in the x system of axes, and let ift(x) be a motion vector component in this
system of axes. Then the stability derivatives with respect to motion components, as
measured in the y system of axes, are related to the corresponding derivatives in the
x system of axes by the following equation:

(2.7.1)

It should be noted that force, moment, and motion components obey the same
transformation law as the system coordinates, that is

Hence

y' = ̂ ! X" (2.7.2)

(2.7.3)

Therefore, from equations (2.5.2) and (2.7.3)

<**? ulfy)
dyi °° (2-7.4)
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Substitution from (2.7.2) and (2.7.4) in (2.7.1) gives

^ (2.7.5)

Equation (2.7.5) may be rewritten as follows: Let

and let

Therefore

V.' = -£>! ^ *a (2.7.6)
> - \ . . fy

where the superscript denotes the component of the aerodynamic force or moment,
and the subscript denotes the motion vector component with respect to which the
derivative is obtained.

Equation (2.7.6) shows that the aerodynamic stability derivatives transform like
the components of a mixed tensor, having one index of contravariance and one
index of covariance. Being a tensor of rank two, equation (2.7.6) represents nine
equations, with each equation having, in general, nine terms.

Note that once the tensor law (2.7.6) is established, the specialized form of the
transformation equations can be obtained without further reference to the physics
of the problem. Moreover, the derivations involved are purely mechanical operations
and can be performed by anyone who can differentiate.

Since a and |3 can each assume the values 1,2,3, we have, by summing first on a

Y - y i + y 2 ,'• -"- " a*3
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Summing next on 0 yields the following nine terms:

Y i — dyl ^xl
 v i , by1 dx2

 v l , by1 bx3
 v li; : A i -t- : A2 -t- 7 A3

bx1 by] bx1 by1 bx1 byl

+ AY + —
2bx2 by' dx2

^*yL*xL x * + ?y!_w x j + *yL& Xj3 (2 7 7)
dx3 by' dx3 by' dx3 byi

Note that while the indices i and/ retain the same values throughout, a and |3 each
assume the values 1,2,3 in turn. Since i,j = 1,2,3, there are nine tensor com-
ponents. These are

Y i - >' x Y a , v , _ y x „
-1 1 -A a , 1 2 -- - A

V i - y x v a, . v 2 - x v a."3 -- - Ag , /i -- - An
by3 P

2 _
2

3 _ Y a . v 3 _
--

v 3 _ ,,
1 2 -- - A

and

3 _
3

ca dy3

Moreover, for o:,(3 = 1,2,3, it has been shown that each of these transformation
equations has, in general, nine terms. Hence, there are, in general, a total of 81 terms
to be formulated, using the transformation equations (2.3.3) and (2.3.4). The coeffi-...
cient of each wind axes component consists of the product of two partial
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differential coefficients. From equation (2.3.3) the partial differential coefficients of
y with respect to x are

-^— - cos A cos B ;
ax1

= -sin A
9x3

-^— = cos B ;
9x2

-¥— = sin v4 cos B ;

= cos ,4

ax2

ax1

— -cos A sin

3v3

^— -= -sin /I sin B

(2.7.8)

3x3

From equations (2.3.4), the partial differential coefficients of x with respect to.y
are

3x ^ 3x ^= cos A cos 5 ; = sin B
a^1 a>;2

ax 3x2
= sin A cos 5 ; = -cos A sin

= cos B

= -sin

= cos >1

3x2 • A • D= -sin A sin B (2.7.9)
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In terms of these partial differential coefficients, each tensor component Y;' can
be formulated in accordance with the transformation law (2. 7. 6). From equa-
tions (2.7.7) through (2.7.9), the individual components are

y i =<!>L!. d*1 x l +3^1 — X l +^i — * '
3X1 d^1 3x' by1 bxl 3/

+ dy1 dx' ^2 + 3zi <*£! ;r 2 + dyj. dx3
 x 2

3x2 ay ' a*2 by1 3x2 3/

jf « +^' <**! x? + ̂ 1 — A- 3

ax3 a^1 ' ax3 dy1 2 ax3 by1

,1 = (cos2 >1 cos2 B)Xil - (cos2 yl cos B sin

- (sin ̂  cos A cos 5)AV - (cos2 A cos 5 sin

+ (cos2 A sin2 5)Jf 2
2 + (sin A cos /I sin B)X3

2

- (sin ̂  cos A cos tf)*,3 + (sin A cos 4 sin B)X2
3 + (sin2

1 ax1
 Y i a^1 ax2

 Y j , a^1 ax3 „ l
•"• 1 ' - - -^2 ~ — : — - -^ 3

1 dy2 dx1 by2 dx1 by2

^ t x 2 + V 9*! x 2
3x2 a_y2 3x2 by2 3x2 a>>2

by1 3x! Y 3 by1 bx2 Y 3 , dyl dx3
 v 3

.A | ~r A 2 i ~ ' ~ -A 3

3x3 3j2 3x3 by2 bx3 by2

j1 = (cos A cos 5 sin 5)*,1 + (cos A cos2 5)^ - (cos A sin2

- (cos A sin 5 cos 5)^r2
2 - (sin A sin 5)2f,3 - (sin /I cos
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700

Y i _ y i , y i , dyl bx3
 Y l1 3 -- .A j T - - A. 2 "r - - yY 3

3x' 9y3 dx1 by3 dx1 by3

& 3* 2 9/ 3* * 3/ 3*
3y3

3x3 3j3 3;c3 by3 3x3 by
3

3

j = (sin ^1 cos A cos2 5)AT1
1 - (sin A cos /I cos B sin

+ (cos2 A cos 5)Z3
J - (sin A cos ̂ 4 sin £ cos B)XV

 2

+ (sin A cos ,4 sin2 5)JT2
2 - (cos2 A sin S)^2 - (sin2 A cos

+ (sin2 A sin 5),Y2
3 - (sin A cosA)X3

3

9z! ̂ - X l + dy2 — Arl +^ — ^ J

ax1 3J1 3X1 dy1 dx1 by1

2
by1 2

by2 bx1 y 3 i 3.y2 3x2 v 3 , by
2 bx3 Y 3-' ' s\. i i" j\. 2 f ~ • • j\. ̂

bx3 by1 bx3 by1 bx3 by1

F,2 = (cos A cos B sin 5)*i' - (cos A sin2 fl)^1 - (sin A sin fl)AV

+ (cos A cos2 5)*,2 - (cos A cos 5 sin fl)Jf2
2 - (sin A cos
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y 2 _ 3y2 ax1 , a>,2 3x2 , 9^2 3x3 „ !
••2 -* 1 ~r - - A 2 T - - A 3

3*1 by2 ax1 a.y2

2

3x3 3^2 3x3 3^2 3x3 3j;2

K2
2 = (sin2 B)Xi} + (sin B cos B)X2

l + (sin B cos B)Xf + (cos2

Y 2 _ dy2 dxl ! a7
2 a*2 , a;/2 ajc3 !

' 3 A\ ~r - - ^2 """ - - -*3
ax1 a^3 ax1 a^3

a +

ax2 a>>3 ax2 a^
2

ax3 a^3 ax3 a^3 ax3

(sin A sin B cos 5)*,1 - (sin A sin2 5)^2' + (sin B cos

+ (sin A cos2 fi)^2 - (sin A sin 5 cos B)X2
2 + (cos y4 cos B)X3

2

ax1
 Y , a^3 ax2

 y , ay3 ax3
 y ,~~ -A i i - - A 2 ' - - -A 3

a*1 ay ax1 ay ax1 dyl

dy3 dxl
 Y 2 3/3 3x2

 v 2 , 3>^3 3
i - - yl j T - - A2 T -

3jc2 dy1 3x2 3;;1 3x2 a

3x3 3J1 3x3
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Yi3 = (sin A cos A cos2 B)X^ - (sin ,4 cos A sin 5 cos B)X2
1

- (sin2 ^4 cos B)X3
l - (sin A cos A sin 5 cos 5)AV

+ (sin A sin2 5 cos A)X2
2 + (sin2 ,4 sin B)X3

2 + (cos2 ,4 cos

- (cos2 /I sin B)X2
3 - (sin ,4 cos A)X3

3

r 3 _ y i ,r 2 AJ t -
ax1 a^2

. a*3

Y2
3 - (sin ̂  sin B cos 5)^^ + (sin A cos2 5)*2' - (sin A sin2

- (sin A sin 5 cos 5)^r2
2 + (cos A sin 5)^,3 + (cos A cos

3 _ , , Y ,
-- ^. 1 T - A-2 f - ^3

a^3 ax1 a^3

3 3
~r - - A i T - - A 2 "T - - A 3
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73
3 = (sin2 A cos2 B)X^ - (sin2 A sin 5 costf)^1 + (sin ,4 cos .4 cos B)X3

l

- (sin2 A sin B cos B)X^ + (sin2 A sin2 B)X2
2 - (sin ,4 cos A sin

+ (sin A cos /I cos B)X^ - (sin .4 cos A sin B)X2
3 + (cos2

When interpreted in terms of conventional aeronautical symbolism, each of these
tensor components represents eight aerodynamic derivatives: four velocity deriva-
tives and four acceleration derivatives. Hence, the transformation law given by
equation (2.7.6) represents a total of 72 transformation equations for the velocity
and acceleration derivatives. The tensor components representing the velocity deriva-
tives may be interpreted as follows:

y I __ y y 1 i y 2 Y V m m V 3 7 7 M n
Al ~~ AW Ap> W p ! ~ W p' U' p l ~~ W ̂ p* nU' p

Y 1 — V V 1 ] v 1 — Y Y yy> m K 3 — 7 7 n n
•"•i v' a' V q 2 v o' v' a 2 V q' v a

-*3 = -"•w, X.f, lw, If. X$ — YW, Jp! Wl\yt mf -%3 — £w> Zf, fl-ty) fly

The derivatives with respect to the acceleration components are obtained by
replacing the velocity component subscripts with the acceleration component sub-
scripts. Meaning may be assigned to the Yf components in the same way with the
understanding that these represent the transformed derivatives. For example

y 1 — y> y' j> /'1\ -*U,A.P, lw IP

Y,2 = Y'w Y'p, m'w m'p

y 3 _ 7' 7' „' „'
M ~^w^p' U' p

2.8 COMPUTER TRANSFORMATIONS OF AERODYNAMIC STABILITY
DERIVATIVES

2.8.1 Direct Transformations

A program to expand equation (2.7.6) requires that both the direct (2.3.3) and
reverse (2.3.4) coordinate transformation equations be used as input. When both
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coordinate transformation equations are used as input, it is expedient to redefine the
functional relationship

x=x(y) (2.8.1)

as follows:

w =w(z) (2.8.2)

where w takes the place of x and z takes the place, of y.
The static force and moment coefficients and their derivatives could be specified

with one index, but the aerodynamic stability derivatives require, for their complete
specification, two hi dices. Hence, an aerodynamic stability derivative in wind-tunnel
axes will be denoted by C(/,/), and the corresponding transformed derivative by
TC(I,f). The first index in the derivative symbol denotes the force or moment
component being considered, and the second one specifies the motion vector
component with respect to which the derivative is obtained.

Apart from a few auxiliary statements and DO loops, which are conventional
programming steps, the key program statement for the present application, as in the
preceding one, is the statement that causes the computer to differentiate symboli-
cally. The present application requires that equation (2.7.6) be programmed to
facilitate the derivation of the transformation equations for the aerodynamic stabil-
ity derivatives. Apart from the fact that the program for the transformation of the
static aerodynamic coefficients required only two DO loops, and the present
application requires four such loops, the programs are very similar. After substitu-
tion of the functional relationship, equation (2.8.2), for equation (2.8.1), the state-
ment controlling differentiation takes the form

LET(TCC( I ,J )=(DERIV(Y( I ) ,X(M)) ) * (DERIV(W(N) ,Z(J ) ) ) * (C(M,N) ) ) ;

The entire program and the corresponding output follow.

L E T ( Y ( 1 ) = X ( 1 ) * C O S ( A ) * C O S ( B ) - X ( 2 ) * C O S ( A ) * S I N ( B ) - X ( 3 ) * S I N ( A ) ) ;

LET(Y(2)=X(1)*SIN(B)+X(2)*COS(B)) ;

LET(Y(3)=X(1)*SIN(A)*COS(B)-X(2)*SIN(A)*SIN(B)+X(3)*COS(A)) ;

PRINT_OUT(Y(1);Y(2);Y(3)) ;
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PUT SKIP(5) ;

LET(W(1)=Z(1) *COS(A)*COS(B)+Z(2) *S IN(B)+Z(3) *S IN(A)*COS(B) ) ;

LET(W(2)=-Z(1)*COS(A)*SIN(B)+Z(2)*COS(B) -Z(3)*SIN(A)*SIN(B) ) ;

LET(W(3)=-Z(1)*SIN(A)+Z(3)*COS(A) ) ;

DO 1=1 TO 3 BY 1;

DO J=l TO 3 BY 1;

LET(I="I");

LET(J="J");

LET(TC(I,J)=0);

DO M=l TO 3 BY 1;

DO N=l TO 3 BY 1 ;

LET(M="M");

LET(N="N");

LET (TCC( I , J )= (DERIV (Y ( I ) ,X (M) ) ) * (DERIV (W(N) ,Z ( J ) ) ) * (C (M ,N ) ) ) ;

LET(TC(I,J)=TC(I,J)+TCC(I,J));

END;

END;

PRINT_OUT(TC(I,J)) ;

PUT SKIP(5) ;

END;

END;
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This program may be said to consist of the single statement

L E T ( T C C ( I , J ) = ( D E R I V ( Y ( I ) , X ( M ) ) ) * ( D E R I V ( W ( N ) , Z ( J ) ) ) * ( C ( M , N ) ) ) ;

which enables the computer to differentiate symbolically. With one exception, the
remaining statements are conventional programming steps that instruct the com-
puter how to manage each stage of the differentiation process and carry out the
necessary summations. The exception referred to above is the group of statements:
LET(I = "I"); etc. These statements are required to facilitate operations involving
both numer ica l processing and symbolic manipulation. The statement:
PUT SKIP(5); is for editing purposes and instructs the printer to skip five lines
between each batch of output.

Activation of the preceding program resulted in the following output:

Y( l ) = COS(B) COS(A) X ( l ) - COS(A) SIN(B) X (2 ) - SIN(A) X (3 )

Y ( 2 ) = SIN(B) X ( l ) + COS(B) X ( 2 )

Y ( 3 ) = COS(B) SIN(A) X ( l ) ' - SIN(B) SIN(A) X ( 2 ) + COS(A) X ( 3 )

1) = -COS(B)COS 2 (A )S IN (B )C(1 ,2 ) -COS(B)COS(A)S IN(A )C(1 ,3 )

-COS(B)COS 2 (A )S IN(B)C(2 ,1 )+COS 2 (A )S IN 2 (B )C(2 ,2 )

+COS(A)SIN(B)SIN(A)C(2,3) -COS(B)COS(A)SIN(A)C(3,1)

+COS(A)SIN(B)SIN(A)C(3,2)+SIN 2 (A)C(3 ,3)

+COS 2 (B)COS 2 (A)C(1,1)

TC(1,2) = COS 2 (B)COS(A)C(1,2) -COS(A)SIN 2 (B)C(2J)

-COS(B)COS(A)SIN(B)C(2 ,2) -SIN(B)SIN(A)C(3 ,1)

-COS' (B)SIN(A)C(3,2)+COS(B)COS(A)SIN(B)C(1,1)
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TC(1 ,3) - -COS(B)COS(A)S IN(B)S IN(A)C(1 ,2 )+COS(B)COS 2 (A )C(1 ,3 )

-COS(B)COS(A)SIN(B)SIN(A)C(2J)+COS(A)SIN 2 (B)SIN(A)C(2,2)

-COS 2 (A)SIN(B)C(2 ,3 ) -COS(B)SIN 2 (A)C(3 ,1 )

+SIN(B)SIN 2 (A)C(3,2) -COS(A)SIN(A)C(3,3)

+COS 2 (B)COS(A)SIN(A)C(1,1)

TC(2,1) = -COS(A)SIN 2 (B)C(1,2)-SIN(B)SIN(A)C(1,3)

+COS 2 (B)COS(A)C(2 ,1 ) -COS(B)COS(A)SIN(B)C(2 ,2 )

-COS(B)SIN(A)C(2 ,3)+COS(B)eOS(A)SIN(B)C( l , l )

TC(2,2) = COS(B)SIN(B)Cn,2)+COS(B)SIN(B)C(2, l )+COS2 (B)C(2,2)

TC(2,3) = -SIN 2 (B)SIN(A)C(1,2)+COS(A)SIN(B)C(1,3)

+COS 2 (B)SIN(A)C(2,1) -COS(B)SIN(B)SIN(A)C(2,2)

+COS(B)COS(A)C(2 ,3)+COS(B)SIN(B)SIN(A)C(1 ,1 )

TC(3 ,1 ) = -COS(B )COS(A)S IN (B )S IN (A )C(1 ,2 ) -COS(B )S IN 2 (A )C (1 ,3 )

-COS(B)COS(A)S IN(B)S IN(A)C(2 ,1 )+COS(A)S IN 2 (B )S IN(A)C(2 ,2 )

+SIN(B)SIN 2 (A)C(2,3)+COS(B)COS 2 (A)C(3,1)

-COS 2 (A )S IN(B)C(3 ,2 ) -COS(A)S IN(A)C(3 ,3 )

+COS 2 (B )COS(A)SIN(A)C(1 ,1 )

TC(3,2) = COS 2 (B )S IN(A)C(1 ,2 ) -S IN 2 (B )S IN(A)C(2 ,1 )

-COS(B)SIN(B)SIN(A)C(2 ,2)+COS(A)SIN(B)C(3 ,1)

COS(B)COS(A)C(3,2)+COS(B)SIN(B)SIN(A)C(1 ,1 )+
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TC(3,3) = -COS(B)SIN,(B)SIN2 (A)C(1,2)+COS(B)COS(A)SIN(A)C(1,3)

-COS(B)SIN(B)SIN 2 (A)C(2,1)+SIN 2 (B)SIN 2 (A)C(2,2)

-COS(A)S IN(B)S IN(A)C(2 ,3 )+COS(B)COS(A)S IN(A)C(3 ,1 )

-COS(A)S IN(B)S IN(A)C(3 ,2 )+COS 2 (A )C(3 ,3 )

+COS 2 (B)SIN 2 (A)C(1,1)

Readers are reminded that, in computer notation, an aerodynamic stability
derivative in wind-tunnel axes is denoted by C(/,/) and the corresponding trans-
formed derivative by TC(I,f).

The manual derivation of the preceding section uses the notation X; to denote
the aerodynamic stability derivative in wind-tunnel axes and Y:1 to denote the
transformed derivative. These two methods are seen to produce identical results.

In this particular case, manual derivation proved to be the quicker method.
Although the actual computing time was quite small, less than 1 min, the program-
ming and debugging time exceeded the time required to formulate the equations
manually. It should be pointed out, however, that this disadvantage is due to the
batch processing mode that FORMAC users are required to use. Those who have
access to a computer system with an interactive mode language, such as that
described in the final chapter, would find that the computerized formulation is
quicker.

The preceding output gives the computerized version of the transformation
equations for the velocity and acceleration derivatives. For example, when the
transformed derivative given by TC(l,\) is transcribed from the computer output
and interpreted in accordance with the definitions assigned to the identifying indices
for angular velocity derivatives, it represents the following equation:

Xp'= [Xp cos2 B-(Xq + Yp)sin BcosB + Yq sin2 B] cos2 A

+ Zr sin2 A - [(Xr 4 Z )cos B - (Yf + Z )sin B] sin A cos A

It is instructive to dwell on this rather complicated equation for a moment and
examine its meaning and the meanings of the individual terms and coefficients. This
equation gives the value of the derivatives in body coordinates (primed quantities) in
terms of the corresponding derivatives measured in the wind tunnel (the unprimed
quantities).

108



MATHEMATICAL MODELING OF DIVERSE PHENOMENON 2.8

It will be recalled that the aerodynamic forces acting on a body which is moving
through the atmosphere are defined in terms of the force coefficients Cx, Cy, and
Cz. The magnitude of the force in the x direction being

qSCx=-pV*SCx = X

When the x direction is in the direction of the velocity vector, which is the
direction of motion of the body, aeronautical engineers usually refer to these forces
as drag forces and define a drag coefficient as follows:

In terms of this coefficient the aerodynamic drag force is

If we think of X as a measure of the drag force, the symbol C(l ,1) corresponds to
Xp and is a measure of the rate of change of the drag force with respect to p, the
angular velocity of the body about the x-axis, or as it is called, the rolling angular
velocity. Likewise, the symbol C(l,2) corresponds to X- and is a measure of the rate
of change of the drag force with respect to the pitching velocity q. Similarly, the
symbol C(l,3) corresponds to Xr and is a measure of the rate of change of the drag
force with respect to the yawing velocity r.

As in the case of the static forces and moments, the transformation of the
aerodynamic stability derivatives from wind axes to body axes involves the angles A
and B (see sketch (0). The angle A is the angle of attack, which is the angle between
the component of the wind vector in the plane of symmetry and the longitudinal
axis of the aircraft. The angle B, on the other hand, is the angle of sideslip, which is
the angle between the wind vector and the plane of symmetry.

The remaining transformation equations for the drag force derivatives with
respect to the angular velocity components follow the same pattern. These are
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VELOCITY
—^

HORIZON
RELATIVE

WIND

RELATIVE WIND

•HORIZON

Sketch (f)

Xq' = [Xq cos2 B - Yp sin2 B + (Xp - Yq)sin B cos B] cos A

- (Z cos B + Zp sin 5)sin A

Xr' = (Xr cos B - Yr sin 5)cos2 A - (Zp cos 5 - Zq sin 5)sin2 y4

+ [Xp cos2 B + Yq sin2 5 - (^ + yp)sin BcosB- Zf\ sin /4 cos ,4

In the computed transformation equations the symbols C(2,l), C(2,2), and C(2,3)
correspond, respectively, to 7.,, Y , and 7,.. The quantity Y is a measure of the side
force acting on the aircraft, and trie derivatives Yp, Yq, Yf determine the rates of
change of this force with respect to the rolling, pitching, and yawing velocities of the
vehicle. The computed transformations are

- [ Yp cos2 B - Xq sin2 B + (Xp - Yq)sin BcosB] cos A

- ( Yr cos B + Xr sin 5)sin A
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Yq = Yq cos2 B + Xp sin2 B + (Xq + 7p)sin B cos B

Yr' = (Yf cos B + *,. sin 5)cos ^

+ [ 7p cos2 B - Xq sin2 5 + (Xp - F_)sin B cos B] sin 4

Instead of the quantity Z which determines the lift force acting on an aircraft,
aeronautical engineers use a lift coefficient which is defined by the relation

In terms of this notation, the derivatives Zp,Zg, Zf determine the rates of change of
the lift force with respect to the rolling, pitching, and yawing velocities of the
aircraft. In the computed transformation equations, the following substitutions are
required: the symbols C(3,l), C(3,2), and C(3,3) correspond, respectively, to Zp,
Zq, and Zr When these substitutions are made in the computer printout, the trans-
formation equations assume the following form:

Z' = (Z cos B - Z sin £)cos2 A - (Xf cos B - Yf sin £)sin2 A

+ [Xp cos2 B + Yq sin2 B - (Xq + 7p)sin B cos B - Zf] sin A cos A

Zq = (Zq cos B + Zp sin 5)cos A

+ [Xq cos2 B - Yp sin2 B + (Xp - Yq)sin B cos B] sin A

Z/ = Zr cos2 A + [Xp cos2 B + Yq sin2 B-(Xq + Yp)sin B cos B] sin2 A

+ [(Xr + Zp)cos B - (Yr + Zq)sm B] sin A cos A

The same computer output gives the transformation equations for the moment
derivatives also. As already indicated, the first index in the symbol C(I,f) or TC(I,J)
denotes the force or moment component being considered, and the second one
specifies the motion vector component with respect to which the derivative is
obtained. Hence, if the first index is used to denote moment components instead of
force components, the moment derivatives are obtained. For example, the symbol
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C(l,l), which was previously used to denote the force derivativeXp, may also be
used to denote the moment derivative /„, where the quantity / is a measure of the
aerodynamic rolling moment. Likewise, C( 1,2), which was previously used to denote
XQ, may now be used to denote /-, the rolling moment derivative with respect to the
pitching velocity. Finally, C(l,3), which has been used to denote ^r gives the
derivative lr, that is, the rolling moment derivative with respect to the yawing
velocity. These are

/ ' = [/ cos2 B - (/„ + m~)sin B cos B + m- sin2 B] cos2 A + nf sin2 A

+ [-(If + np)cos B + (mr + « )sin B] sin A cos A

I ' = [/_ cos2 B - nip sin2 B + (/„ - ma)sin B cos B] cos A

- (na cos B + np sin 5)sin A

If = (/,. cos B - mr sin j?)cos2 A - (np cos B - «_ sin 5)sin2 A

4- [/„ cos2 B + m.q sin2 B - (/„ + mp)sin B cos B - nf] sin A cos A

Again, the symbol C(2,l), which was previously used to denote the force deriva-
tive ¥„, may also be used to denote the moment derivative mp, where the quantity
m is a measure of the aerodynamic pitching moment. Moreover, the symbol C(2,2),
which was used to represent the force derivative l^.is used in the present context to
represent the pitching moment derivative with respect to the pitching velocity, that
is, m«, and the symbol C(2,3) gives the pitching moment derivative with respect to
the yawing velocity, that is, mr The transformation equations for the aerodynamic
pitching moment derivatives with respect to the angular velocity components are

m' = [in* cos2 B - /„ sin2 B + (/„ - w«)sin B cos B] cos A

- (mr cos B + lf sin B)sin A

m' = in- cos2 B + lp sin2 B + (I„ + mp)sin B cos B
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mr' = (mr cos B + lf sin 5)cos A

+ [mp cos2 B - Ig sin2 B + (I '- wOsin B cos B] sin A

The remaining moment derivatives are np, the yawing moment derivative with
respect to the rolling velocity; «„, the yawing moment derivative with respect to the
pitching velocity; and nr, the yawing moment derivative with respect to the yawing
velocity. The symbols C(3,l), C(3,2), and C(3,3) correspond respectively to n^n^
and nr. The transformation equations for the aerodynamic yawing moment deriva-
tives with respect to the angular velocity components are

n' = (n „ cos B - ng sin 5)cos2 A - (lf cos B - mr sin 5)sin2 A

+ [lp cos2 B + mQ sin2 B - (!„ + mp)sin B cos B - nf] sin A cos A

n' = (« cos B + nn sin 5)cos A
T H r

+ [/„ cos2 B - nip sin2 B + (/„ - m~)sin B cos B] sin ^4

nf' = nf cos2 ^4 + [I cos2 5 + m^ sin2 B -(!„ + mp)sin B cos 5] sin2 A

+ [(lr + «p)cos B - (mr + AOsin B] sin >1 cos A

It is hoped that the reader will be sufficiently impressed with the compactness of
the tensor notation and the simplicity of the computer programs for symbolic
manipulation, that he will be encouraged to write some programs of his own. If he
does, he will discover that there are many formulations that are amenable to the
technique of symbolic manipulation.

The information contained in the tensor transformation equation (2.7.6) and its
expanded form as given by the computer output, illustrates again the advantages of
the tensor method and the facility with which the summation convention can be
exploited by a simple computational algorithm.

Another set of derivatives which plays an important role in the study of the
response of an aircraft to aerodynamic forces is the set of aerodynamic stability
derivatives with respect to the linear velocity components u,v,w. These derivatives
are obtained in the same manner as the aerodynamic stability derivatives with
respect to the angular velocity components. Referring again to the computerized

113



2.8 JAMES C. HOWARD

version of equation (2.7.6), it will be recalled that the first index of the symbol
C(I,J) denotes the force or moment component being considered, while the second
index specifies the motion vector component with respect to which the derivative is
obtained. In the preceding formulation, all derivatives were obtained with respect to
the angular velocity components, but the present application requires that all
derivatives be obtained with respect to the linear velocity components. In order to
convert from computer output to conventional aeronautical symbolism, the follow-
ing substitutions are required: In the present context, the symbol C(l,l) denotes Xu

where Xu is a measure of the rate of change of the aerodynamic drag force with
respect to the velocity component along the x reference axis (see sketch (g)).

Sketch (g)

The rate of change of the drag force with respect to the velocity component along
the y reference axis, that is, the lateral velocity, is Xv, which in the present context
will be denoted by the symbol C(l,2). The symbol C(l,3) corresponds toXw, which
is the rate of change of the drag force with respect to the velocity component along
the z-axis of the aircraft.

The transformation equations for these three components are

V = B ~ in B cos B + Yv si A + Z w sin2 A

+ [~(XW + ZM)cos B + (Yw + Zv)sin B] sin A cos A

Xv' = [Xv cos2 B - Yu sin2 B + (Xu - 7v)sin B cos B] cos A

- (Zv cos B + Zu sin 5)sin A
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Xw' = (Xw cos B - Yw sin fl)cos2 A - (Zu cos B - Zv sin 5)sin2 A

+ [Xu cos2 B +TV sin2 B - (Xv + 7M)sin B cos B - Zw] sin A cos A

The symbol C(2,l) denotes YU, which determines the rate of change of the side
force with respect to the u component of velocity. Likewise, C(2,2) denotes YV,
which determines the rate of change of the side force with respect to the v
component of velocity; and C(2,3) represents YW, the rate of change of the side
force with respect to the w component of velocity.

These three components transform as follows:

Yu' = [ Yu cos2 B - Xv sin2 B + (Xu - Kv)sin B cos B] cos A

- (Yw cos B + Xw sin 5)sin A

Yv' = Yv cos2 B + Xu sin2 B + (XV+ Yu)sin B cos B

Yw = (Y
wcosB + Xw sin B)cos A

+ [ Yu cos2 B - Xv sin2 B + (Xu - Yv)sin B cos B] sin A

Proceeding in the same manner, the symbols C(3,l), C(3,2), and C(3,3) corre-
spond, respectively, to ZM, Zy, and Zw, the rates of change of the aerodynamic lift
force with respect to the velocity components u,v,w.

In this case the transformation equations are

Zu' = (Zu cos B - Zv sin 5)cos2 A - (Xw cos B - YW sin 5)sin2 A

+ [Xu cos2 B + Yv sin2 B - (Xv + Yu)sin BcosB- Zw] sin A cos A

Zv' = (Zv cos B + Zu sin 5)cos A

+ [Xv cos2 B - Yu sin2 B + (Xu - Yv)sin B cos B] sin A

Zw' = Zw cos2 A + [XU cos2 B + Yv sin2 B - (Xv + Yu)sin B cos B] sin2 A

+ l(Xw + Zu)cos B - (Yw + Zv)sin B] sin A cos A
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The influence of the linear velocity components on the aerodynamic moments is
determined by a set of stability derivatives analogous to the preceding force
derivatives. Again, we can avail ourselves of the expanded form of equation (2.7.6)
as given by the computer output. In the present application, the first index of the
symbol C(I,f) refers to the aerodynamic moment being considered, while the second
one specifies the linear velocity component with respect to which the derivative is
obtained; that is, C(l ,1) corresponds to lu, which is the rate of change of the rolling
moment with respect to the u component of velocity.

The rate of change of the rolling moment with respect to the v component of
velocity is lv and is given in the present context by the symbol C(l,2). The symbol
C(l,3) denotes lw, the rate of change of the rolling moment with respect to the w
component of velocity. The transformation equations for these three components
are

lu = Uu cos2 B ~ (lv + w«)sin B cos B + m
v

 si"2

+ nw sin2 A + [-(/w + «u)cos B + (mw + «v)sin B] sin A cos A

lv' = [lv cos2 B - mu sin2 B + (lu - mv)sin B cos B] cos A

- (nv cos B + nu sin 5)sin A

lw' = (lw cos B - mv sin /? )cos2 A - (nu cos B - nv sin B)sin2 A

+ [lu cos2 B + mv sin2 B - (lv + wM)sin B cos B - nw] sin A cos A

It is seen that the amount of information contained in equation (2.7.6) and its
expanded form as given by the computer output is quite large. At each step in the
formulation a reinterpretation of the significance of the indices in the symbol C(I,f)
yields additional transformations. For example, if we wish to transform the pitching
moment derivatives from wind-tunnel axes to body axes, the symbols C(2,J) and
TC(2,f) would be used. In this case, the symbol C(2,l) would correspond to mu,
where mu is the rate of change of the pitching moment with respect to the u
component of velocity. The symbol C(2,2) can be replaced by mv, the pitching
moment derivative with respect to the v component of velocity, and mw can be
substituted for the symbol C(2,3) in the computed transformation equations. The
transformation equations for the pitching moment derivatives are
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mu ~ I mu cos2 B ~ lv sin2 B + Vu ~ wv)sm B cos B1 cos A

- (mw cos 5 + lw sin Z?)sin v4

/«„' = mv cos2 £ + lu sin2 5 + (/v + mu)sinB cos fl

ww' = (mw cos B + lw sin 5)cos A

+ [mu cos2 5 - /„ sin2 B + (lu - mv)sin B cos B] sin A

The yawing moment derivatives with respect to the linear velocity components
complete the list of aerodynamic stability derivatives required to study the response
of an aircraft to aerodynamic forces of this type. In this case, the symbols C(3,J)
and TC(3\f) are required. The symbol C(3,l) represents «M, which determines the
rate of change of the yawing moment with respect to the u component of velocity.
The symbol C(3,2) can be replaced by «v, the rate of change of the yawing moment
with respect to the v component of velocity. Lastly, «w can be substituted for
C(3,3) in the computed transformation equations, and the yawing moment deriva-
tives transform as follows:

nu = (nu cos B ~ nv sm ^)cos2 A - (lw cos B - mw sin 5)sin2 A

+ [lu cos2 B + mv sin2 B - (lv + mu)sin B cos B - nw] sin A cos A

nv ~ ("v cos & + nu sm

. t.v cos2 B - mu sin2 B + (lu - mv)sm B cos B] sin A

nw ~ nw cos2 A + Uu cos2 B + mv sin2 B - (/„ + mM)sin B cos B] sin2 A

+ l(7w + nu)cos B - (mw + nv)sin B]sinA cos A

The aerodynamic stability derivatives with respect to the components of linear
and angular acceleration follow exactly the same pattern. These are obtained by a
reinterpretation of the second index in the derivative symbol. Although the first
index of the derivative symbol C(I,J) still denotes the force or moment component
being considered, the second index now specifies the linear or angular acceleration
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component with respect to which the derivative is obtained. When substitutions are
made in accordance with these interpretations, the computer output yields an
additional 36 equations for the acceleration derivatives. Hence, the compact tensor
equation (2.7.6) and the corresponding computer output represent a total of
72 transformation equations for the aerodynamic stability derivatives.

2.5.2 Aerodynamic Stability -Derivatives as Second Order Contravariant Tensors
/

As indicated in section 1.4, it is possible to avoid the use of the inverse
transformation x = x(y), if the coordinate transformations are orthogonal Cartesian.
Equation ( 1 .4. 1 2) shows that for orthogonal Cartesian transformations

(2.8.3)
dy1

Substitution of this relationship in equation (2.7.6) gives

;
dx* ZxV

where the first superscript again denotes the component of the aerodynamic force or
moment, and the second superscript denotes the motion vector component with
respect to which the derivatives are obtained. The form of equation (2.8.4) shows
that it is only necessary to use the direct coordinate transformation y =y(x).

In case some readers are not quite convinced by the arguments of section 1 .4, the
computer program will be modified to process equation (2.8.4) for comparison with
the result of processing equation (2.7.6):

The modified program (which only requires the direct coordinate transformation
equations as input) and the resulting output are as follows:

LET(Y(1)=X(1)*COS(A)*COS(B)-X(2)*COS(A)*SIN(B)-X(3)*SIN(A)) ;

LET(Y(2)=X(1) *S IN(B)+X(2) *COS(B) ) ;

LET(Y(3)=X(1)* .SIN(A)*COS(B)-X(2)*SIN(A)*SIN(B)+X(3)*COS(A)) ;

PRINT O U T ( Y ( 1 ) ; Y ( 2 ) ; Y ( 3 ) ) ;
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PUT SKIP(5);

DO 1=1 TO 3 BY 1;

DO 0=1 TO 3 BY 1;
' x-

LET(I="I");

LET(J="J");

LET(TC(I,J)=0);

DO M=l TO. 3 BY 1;

DO N=l TO 3 BY 1;

LET(M="M");

LET(N="N");

L E T ( T C C ( I , J ) = ( D E R I V ( Y ( I ) , X ( M ) ) ) * ( D E R I V ( Y ( J ) , X ( N ) ) ) * ( C ( M , N ) ) ) ;

L E T ( T C ( I , J ) = T C ( I , J ) + T C C ( I , J ) ) ;

END;

END;

PRINT_OUT(TC(I,J));

PUT SKIP(5) ;

END; '

END;

Y ( l ) = COS(B)COS(A)X(1 ) -COS(A)S IN(B)X(2 ) -S IN(A)X(3 )

Y ( 2 ) = S I N ( B ) X ( 1 ) + C O S ( B ) X ( 2 )

Y ( 3 ) '= C O S ( B ) S I N ( A ) X ( 1 ) - S I N ( B ) S I N ( A ) X ( 2 ) + C O S ( A ) X ( 3 )
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TC(1,T) -= -COS(B)COS 2 (A )S IN(B)C(1 ,2 ) -COS(B)COS(A)SIN(A)C(1 ,3 )

-COS(B)COS2(A)SIN(B)C(2,1)+COS2(A)SIN2(B)C(2,2)

+COS(A)SIN(B)S IN(A)C(2 ,3 ) -COS(B)COS(A)SIN(A)C(3 ,1 )

+COS(A)SIN(B)SIN(A)C(3,2)+SIN 2 (A)C(3,3)

+COS 2 (B)COS 2 (A)C(1 ,1 )

TC(1,2) = COS 2 (B )COS(A)C(1 ,2 ) -COS(A)S IN 2 (B )C(2 ,1 )

-COS(B)COS(A)SIN(B)C(2 ,2) -SIN(B)SIN(A)C(3 ,1)

-COS(B)SIN(A)C(3 ,2)+COS(B)COS(A)SIN(B)C(1 ,1)

TC(1,3) = -COS(B)COS(A)S IN(B)S IN(A)C(1 ,2 )+COS(B)COS 2 (A )C(1 ,3 )

-COS(B)COS(A)SIN(B)SIN(A)C(2 ,1 )+COS(A)SIN 2 (B)SIN(A)C(2 ,2 )

-COS 2 (A )S IN(B)C(2 ,3 ) -COS(B)SIN 2 (A )C(3 ,1 )

+SIN(B)SIN2(A)C(3,2)-COS(A)SIN(A)C(3,3)

+COS 2 (B)COS(A)SIN(A)C(1 ,1)

TC(2 ,1) = -COS(A)SIN 2 (B)C(1 ,2) -S IN(B)SIN(A)C(1 ,3)

+COS 2 (B )COS(A)C(2 ,1 ) -COS(B)COS(A)S IN(B)C(2 ,2 )

-COS(B)S IN(A)C(2 ,3 )+COS(B)COS(A)S IN(B)C(1 ,1 )

TC(2 ,2 ) - COS(B)S IN(B)C(1 ,2 )+COS(B)S IN(B)C(2J )

+COS 2 (B)C(2,2)+SIN 2 (B)C(1,1)

TC(2,3) = -S IN 2 (B)SIN(A)C(1 ,2)+COS(A)SIN(B)C(1 ,3)

+COS 2 (B )S IN(A)C(2 ,1 ) -COS(B)S IN(B)S IN(A)C(2 ,2 )

+COS(B)COS(A)C(2 ,3 )+COS(B)S IN(B)S IN(A)C(1 ,1 )
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TC(3,1) = -COS(B)COS(A)SIN(B)SIN(A)C(1,2)-COS(B)SIN2(A)C(1,3)

-COS(B)COS(A)SIN(B)SIN(A)C(2J)+COS(A)SIN 2 (B)SIN(A)C(2,2)

+SIN(B)SIN2 (A)C(2,3)+COS(B)COS2 (A)C(3,1)

-COS 2 (A)SIN(B)C(3,2)-COS(A)SIN(A)C(3,3)

+COS 2 (B)COS(A)SIN(A)C(1,1)

TC(3,2) = COS 2 (B)SIN(A)CO,2)-SIN 2 (B)SIN(A)C(2,1)

-COS(B)SIN(B)SIN(A)C(2,2)+COS(A)SIN(B)C(3,1)

+COS(B)COS(A)C(3,2)+COS(B)SIN(B)SIN(A)C(1,1)

TC(3,3) = -COS(B)SIN(B)SIN 2 (A)C(1,2)+COS(B)COS(A)SIN(A)C(1,3) '

-COS(B)SIN(B)SIN2 (A)C(2,1)+SIN2 (B)SIN2 (A)C(2,2)

-COS(A)SIN(B)SIN(A)C(2,3)+COS(B)COS(A)SIN(A)C(3,1)

-COS(A)SIN(B)SIN(A)C(3,2)+COS2 (A)C(3,3)

+COS2(B)SIN2(A)C(1,1)

Hence, for a given coordinate transformation y=y(x), which is orthogonal
Cartesian, the second-order contravariant transformation gives the same result as the
mixed tensor transformation. By using this property of orthogonal Cartesian trans-
formation, the need for the reverse transformation x = x(y) is eliminated.

2.8.3 Inverse Transformations

Equations (2.7.6) and (2.8.4) give the direct transformation of aerodynamic
stability derivatives from wind-tunnel axes to body axes. It has been demonstrated
that these two transformation laws give identical results if coordinate transforma-
tions are confined to orthogonal Cartesian systems.

Use of the simpler form (2.8.4) avoids the need for the reverse coordinate
transformation x = x(y). Hence, if
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equation (2.5.2) permits the inverse transformation to be written in the form

v (2.8.6)
dy*

Substitution from equation (2.8.3) in equation (2.8.6) gives

dx"

//

When rewritten in cpvariant form, to conform to the notation already established
for covariant and contravariant tensors, this equation becomes

or

X.. = ̂  *£-
dxl dxl

Y =
 vs "Jr~ Y (2.8.8)

•A fvft _ /'/

(2-8-9)

As a consequence of equation (2.8.3) the distinction between contravariant and
covariant tensors disappears when coordinate transformations are confined to
orthogonal Cartesian systems.

2.8.4 Inverse Computer Transformations

A computer program to process equation (2.8.9) requires only the direct coor-
dinate transformation y = y(x) as input.

The symbol C(I,J) will again be used to denote an aerodynamic stability derivative
in computer notation. However, in this case C(I,J) will denote a body axis compo-
nent and TC(I,J) will refer to a component relative to wind-tunnel axes.

When /,/ are permitted to assume the values 1,2,3, the computer program and
the corresponding output assume the following form:
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LET(Y(1 ) = X(V)*COS(.A)*COS(B)-X(2)*COS(A)*SIN(B)-X(3)SIN(A)) ;

LET(Y(2)=X(1)*SIN(B)+X(-2)*COS(B));

LET(Y(3) = X(1)*SIN(A)*COS(B)-X(2)*SIN(A) ' *SIN(B)+X(3)*COS(A)) ;

PRINT_OUT(Y(1 ) ,Y (2 ) ;Y (3 ) ) ;

PUT SKIP(5) ;

DO 1=1 TO 3 BY 1;

LET(I="I");

DO J=l TO 3 BY 1;

LET(J="J") ;

LET(TC(I ,J)=0);

DO M=l TO 3 BY 1;

LET(M="M");

DO N=l TO 3 BY 1;

LET(N="N");

LET(TCC(I ,J) = ( .DERIV (Y (M) ,X ( I ) ) ) * (DERIV (Y (N) ,X (J ) ) ) * (C (M,N) ) ) ;

LET(TCCI,J)=TC(I ,J)+TCC(I ,J) ) ;

END;

END;

PRINT_OUT(TC(I,J));

PUT SKIP(5) ;

END;

END;
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= COS(B)COS(A)X(1) -COS(A)SIN(B)X(2) -S IN(A)X(3)

Y(2) = SIN(B)X(1)+COS(B)X(2)

Y(3) = COS(B)SIN(A)X(1) -S IN(B)SIN(A)X(2)+COS(A)X(3)

TC(1,1) -= COS(B)COS(A)SIN(B)C(1,2)+COS 2 (B)COS(A)SIN(A)(C(1,3)

+COS(B)COS(A)SIN(B)C(2,1)+SIN2(B)C(2,2)

+COS(B)SIN(B)SIN(A)C(2,3)+COS2(B)COS(A)SIN(A)C(3,1)

+COS(B)SIN(B)SIN(A)C(3,2)+COS2(B)SIN2(A)C(3,3)

+COS2(B)COS2(A)C(1,1)

TC(1,2) = COS 2 (B)COS(A)C(1,2) -COS(B)COS(A)SIN(B)SIN(A)C(1,3)

-COS(A)SIN2(B)C(2,1 )+COS(B)SIN(B)C(2,2)

-SIN2 (B)SIN(A)C(2,3)-COS(B)COS(A)SIN(B)SIN(A)C(3,1)

+COS2(B)SIN(A)C(3,2)-COS(B)SIN(B)SIN2(A)C(3,3)

-COS(B)COS2 (A)SIN(B)C(1,1)

TC(1,3) = COS(B)COS2 (A)C(1,3)-SIN(B)SIN(A)C(2,1)

+COS(A)SIN(B)C(2,3)-COS(B)SIN2 (A)C(3,1)

+COS(B)COS(A)SIN(A)C(3,3)-COS(B)COS(A)SIN(A)C(1 ,1 )

TC(2,1) = -COS(A)SIN 2 (B)C(1,2) -COS(B)COS(A)SIN(B)SIN(A)C(1,3)

+COS2 (B)COS(A)C(2,1 )+COS(B)SIN(B)C(2,2)

+COS 2 (B)SIN(A)C(2,3)-COS(B)COS(A)SIN(B)SIN(A)C(3,1)

-SIN2(B)SIN(A)C(3,2)-COS(B)SIN(B)SIN2(A)C(3,3)

-COS(B)COS2(A)SIN(B)C(1,1)
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TC(2,2) - -COS(B)COS(A)S IN(B)C(1 ,2 )+COS(A)S IN 2 (B )S IN(A)C(1 ,3 )

-COS(B)COS(A)SIN(B)C(2,1)+COS 2 (B)C(2,2)

-COS(B)SIN(B)SIN(A)C(2 ,3 )+COS(A)SIN 2 (B)SIN(A)C(3 ,1 )

-COS(B)SIN(B)SIN(A)C(3,2)+SIN2(B)SIN2(A)C(3,3)

+COS2(A)SIN2(B)C(1,1)

TC(2,3) = -COS 2 (A )S IN(B)C(1 ,3 ) -COS(B)S IN(A)C(2 ,1 )

+COS(B)COS(A)C(2 ,3 )+SIN(B)S IN 2 (A )C(3 ,1 )

-COS(A)SIN(B)SIN(A)C(3 ,3 )+COS(A)SIN(B)SIN(A)C(1 ,1 )

TC(3,1) = -SIN(B)SIN(A)C( ' l ,2) -COS(B)SIN2 (A)C( l ,3)

+COS(B)COS 2 (A)C(3 ,1 )+COS(A)SIN(B)C(3 ,2 )

+COS(B)COS(A)SIN(A)C(3 ,3 ) -COS(B)COS(A)SIN(A)C ' (1 ,1 )

TC(3,2) = -COS(B)SIN(A)C(1,2)+SIN(B)SIN2(.A)C(1,3)

-COS 2 (A )S IN(B)C(3 ,1 )+COS(B)COS(A)C(3 ,2 )

-COS(A)S IN(B)S IN(A)C(3 ,3 )+COS(A)S IN(B)S IN(A)C(1 ,1 )

TC(3,3) = -COS(A)SIN(A)C(1,3) -COS(A)SIN(A)C(3,1)

+COS 2 (A)C(3,3)+SIN 2 (A)C(1,1)

Interpretation of these results requires that the body axes derivatives C(I,J) be
treated as primed quantities and wind-tunnel derivatives TC(I,J) as unprimed quan-
tities. As indicated previously, the first index denotes the component of the
aerodynamic force or moment, and the second index the component of the motion
vector with respect to which the derivative is obtained.

When interpreted in terms of conventional aeronautical symbolism, the inverse
aerodynamic derivatives with respect to p, q, r are
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Xp = [Xp cos2 A +-Zr' sin2 A + (Xr' + Zp')sin A cos A} cos2 B

+ Yq sin2 B + [(Xq + Yp')cosA + (Y, + Zg')sin A] sin B cos B

Xq = (Xq' cos A + Zq sin ̂ )cos2 B-(Yp ' cos A + Yf' sin A)sin2 B

- [Xp' cos2 A + Zr' sin2 A + (AT/ + Zp')sin 4 cos X - Y '] sin 5 cos B

Xr = (Xr' cos2 A - Zp' sin2 ^ - (Xp' - Z/)sin A cos A ] cos 5

+ (F/ cos ̂  - X ' sin ̂ )sin B

Yp = (Yp cos A + Yr' sin yl)cos2 B - (Xq cos A + Zq sin v4)sin2 B

- [Xp cos2 A + Zr' sin2 A + (AT/ + Z^sin A cos v4 - Y '] sin 5 cos B

Yq = Yq cos2 B + [Xp cos2 X + Zr' sin2 A + (A'/ + Z ')sin v4 cos A ] sin2 5

- [(Xq + Yp')cos A + ( Y f ' + Z^')sin A ] sin 5 cos B

Yr = ( Yr' cos A - Yp' sin A )cos 5

+ [-AT/ cos2 A + Zp sin2 A + (Xp' - Z/)sin A cos ,4 ] sin B

Zp = [Zp cos2 A - Xr' sin2 ,4 - (Xp' - Zr')sin A cos A } cos 5

+ (Zq' cos ̂  - Xq' sin yl)sin 5

Z? = (Zq cos ̂  - Xq sin y4)cos 5

+ [-Zp cos2 ^1 + AT/ sin2 A + (ATp' - Z/)sin A cos ̂  ] sin B

Zr = Zr' cos2 A + Xp sin2 A - (AT/ 4- Zp')sin A cos y4

/p = [lp cos2 /4 + «/ sin2 A +(lr' + np')sinA cos A] cos2 5

+ mfl sin2 B + [(/ ' + mp')cos A + (mr' + « ')sin A ] sin 5 cos B
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/„ = (/ ' cos A + n' sin A)cos2 B - (mJ cos A + mr' sin >l)sin2 B

- [lp cos2 A + nf' sin2 A + (// + H ')sin A cos A - m'] sin B cos B

lf — [lr' cos2 A - n' sin2 A - (/„' - nr')sin A cos A ] cos B

+ (mr' cos A - nip sin ,4)sin B

p = (mp cos A + «v' sin v4)cos2 B-(l ' cos 4 + « ' sin v4)sin2 B

- [I' cos2 A + nr' sin2 ,4 + (// + « ')sin A cos A - m'] sin 5 cos 5

= m' cos2 5 4- [/ ' cos2^ + nf' sin2 ^ + (/r' + « ')sin v4 cos A ] sin2 5

-[(/ ' + mp')cos yl + (m/ + « ')sin A ] sin B cos 5.

r = (mr' cos ^4 - mJ sin A)cos B

+ [-// cos2 ̂  + n' sin2 ^4 + (/ ' - «r')sin A cos A ] sin 5

p = f"p' cos2 ^ ~ V s'n2 ^ ~ Cp' ~ "/)sin -^ cos -4-1 cos 5

+ (n' cos ^4 - / ' sin yl)sin B

nq ~ (nq cos ̂  ~

+ [ -n ' cos2 A + lr' sin2 A + (lp- nr')sm A cos A ] sin 5

nr — nf' cos2 /I + lp' sin2 yl - (lr' + n ' ) s in A cos A

The inverse aerodynamic stability derivatives with respect to u, v, w are

Xu = [Xu' cos2 A + Zw' sin2 A + (Xw' + ZM')sin A cos ̂  ] cos2 B

+ Yv' sin2 B + [(Xv' + Yu')cos A + (Yw' + Zv')sin A ] sin B cos 5
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Xv = (Xv' cos A + Zv' sin ,4)cos2 B - (Yu' cos A + YW' sin ,4)sin2 B

- [Xu' cos2 A + Zw' sin2 A + (Xw' + Zu')sin A cos A- Yv' ] sin B cos B

Xw = [Xw' cos2 A - Zu' sin2 A - (Xu' - Zw')sin A cos ,4 ] cos B

+ (7^' cos ,4 - Yu' sin y4)sin 5

Yu = (Yu' cos ,4 + Yw' sin 4)cos2 5 - (Xv' cos A + Zv' sin A)sin2 B

- [Xu' cos2 A + Zw' sin2 A + (Xw' + Zu')sin A cos A- Yv'] sin B cos B

Yv = Yv' cos2 B + (Xu' cos2 A + Zw' sin2 A + (Xw' + ZM')sin A cos A ] sin2 5

YW = (Yw' cos yl - YU' sin /4)cos 5

+ l-Xw' cos2 A + Zu' sin2 A + (Xu' - Zw')sin A cos A]sin B

Zu = [Zu' cos2 A - Xw' sin2 A - (Xu' - Zw')sin A cos A ] cos B

+ (Zy' cos ̂ 4 - A^' sin ̂ )sin B

Zv — (Zv' cos A - Xv' sin v4)cos B

+ [~ZU' cos2 A + Xw' sin ,4 + (Xu' - Zw')sin A cos A ] sin 5

Zw = Zw' cos2 ^ + Xu' sin2 ^ - (Xw' + Zw')sin /4 cos A

lu = [lu' cos2 A + nw' sin2 ^4 + (lw' + «u')sin ̂  cos A} cos2 5

+ mv' sin2 5 + [(/v' + mu')cos A + (mw' + «v')sin A ] sin B cos 5

/v = (lv' cos >4 + nv' sin /4)cos2 5 - (mu' cos A + mw' sin ̂ 4)sin2 B

+ [/M' cos2 A + n ' sin2 A + (lw' + «u')sin A cos >1 - mv' ] sin 5 cos B
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lw - Uw' cos2 A - nu' sin2 A - (lu' - «w')sin A cos A ] cos B

+ (mw' cos A - mu' sin ,4)sin B

mu = (mu' cos A + mw' sin >l)cos2 B - (lv' cos A + nv' sin ̂ )sin2 B

- [lu' cos2 A + nw' sin2 A + (lw' + nu ')sin A cos A - mv '] sin B cos B

mv — mv' cos2 B + [lu' cos2 A + nw' sin2 A + (lw' + «u')sin A cos A ] sin2 B

- [(lv' + mM')cos A + (mw' + «v')sin A ] sin B cos B

mw - (mw' cos A - mu' sin ,4)cos B

+ [-/w' cos2 ,4 + nu' sin2 ^4 + (lu' - «w')sin A cos A ] sin 5

"w - [nu' cos2 yl - lw' sin2 ^4 - (/M' - «w')sin A cos ,4 ] cos B

+ (nv' cos A - lv' sin ,4)sin B

nv = (nv' cos A - lv' sin A)cos B

+ [~nu' cos2 A + lw' sin2 ,4 + (/M' - «w')sin ,4 cos A ] sin 5

= nw cos ^ + IH sin ^ ~ ^w + "w)sin ̂  cos

2.9 TRANSFORMATION OF MOMENTS AND PRODUCTS OF INERTIA

The inertia tensor was discussed briefly in section 1 .3. It was shown there that the
inertia properties of a rigid-body were defined by the dyadic 4>, where

(2.9.1)

In equation (2.9.1) the coefficients of the dyads are the moments and products of
inertia, and /,/, k are a triad of mutually orthogonal unit vectors. This equation can-
be written in compact tensor notation as follows:
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'$=Iafi
a$ (2.9.2)

where

a1 =?

a2 =;

a3 =k

and

=7ZZ

Due to the equivalence of covariant and contravariant transformations in orthog-
onal Cartesian coordinate systems, equation (2.9.2) can be written in the alternative
form

(2.9.3)

where

and

The invariance of $ with respect to a coordinate transformation from the x
coordinate system, to the y coordinate system, requires that

(2.9 .4)
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where

^

bj O) unit vectors in the y-coordinate system •

aa(x) unit vectors in the x -coordinate system

/•»

Forming the scalar product of each side of equation (2.9.4) with bi(y) gives

.(y) - 2000 j (2.9.5)

It is shown in section 1.5, equation (1.5.5), that

(2.9.6)

Substitution from (2.9.6) in (2.9.5) gives

(2-9.7)

Forming the scalar product of this equation with b^(y) yields

Using equation (1.5.5) again gives the transformation in the following form:

(2-9<8)

This is the transformation law for the components of a contravariant tensor of
rank two (see eq. (1.8.3)). Equation (2.9.8) may be rewritten to conform to estab-
lished terminology
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Equation (2.9.8) is in complete agreement with equation (2.8.4). Therefore, the
program used to process equation (2.8.4) can be used with equal facility to process
equation (2.9.8) or (2.9.9). Hence, if a moment or product of inertia in wind-tunnel
axes be denoted by C(I,J), and the corresponding transformed inertia component be
denoted by TC(I,f), where /,/= 1,2,3, the output will be the transformed inertia
components. There is one precaution to be observed, however. In interpreting the
output, it should be noted that

' C(\,2-)=-IXY ; C(l,3)=-Ixz

C(2,l)=-IYX ; C(2,2)=/yy ; C(2,3)=-/yz

; C(3,2) = -/ ; C(3,3) = /

Since these transformations are frequently used in aeronautical studies, they will
be reproduced here for the convenience of readers.

2.9.1 Direct Transformations

When expressed in terms of conventional mathematical symbolism, the trans-
formed inertia components assume the following form:

cos2 B "*~ ^ s'n ^ cos ^ + * s*n2 ^)cos A + ^ sm2

+ (21 xz cos B ~ ̂ IYZ s'n -^)sm A cos A

cos2 B + f sin2 B ~ ̂  sin B cos

cos2 ^ + ^ cos2 B + I s^n2 ^ + ^ s'n & cos

(21 xz cos & ~ ̂ YZ s'n ^)sm ^ cos ^

B ~ sin2 B) - (I XX ~ ̂ yy)sin ^ cos 5] cos A

cos B + 1 sm
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cos B ~ IYZ sn 5)cos A - Vxz cos B ~ IYZ sin

cos2 B ~*~ J si"2 & "*" ^ s*n & cos ^ ~ ̂ ^ s m ̂  cos ^
cos ̂  +

- sin2 5) - ~ n cos

2.9.2 Inverse Transformation

The inverse transformation for inertia components is obtained by solving equa-
tion (2.9.8)

(2.9.10)
dyl

Substitution from equation (2.8.3) in (2.9.10) gives

(2.9.H)

Since /,/,|3,a are dummy indices, equation (2.9.1 1) may be rewritten as

fiJ\x) = 3^3^ 7^) (2.9.12)
'

or

ax' ax/

In order to be consistent with the notation previously established, the inertia
components should be expressed in covariant form. Therefore

^ = ¥ ^ 7 ) (2-9.14)
dxl
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This equation is in complete agreement with equation (2.8.9); therefore the
program used to process that equation can be used to transform the inertia
components from body axes to wind-tunnel axes. The results are given in sec-
tion 2.8, and expressed in the following conventional mathematical notation:

Ixx = (I'xx cos2 A + I'zz sin2 A - 21 xz sin A cos 4)cos2 B + 7yy sin2 B

cos ^ + I s'n ̂ )sm B cos B

~ ^XZ sm ^ cos /4)sin2 B

cos A + I'YZ s'n ^)sm B cos B

I 22 = f'zz cos2 A + I'xx sin2 A + II xz s^n ̂  cos A

cos ^ + * sm ̂ )cos B - (I cos

sm cos ^ ~ /yy)sin 5 cos B

cos ^ 1 cos ^

y^ cos A - I'XY sin /l)sin B

cos A ~ I'xY sin ^)cos B + t/^^sin2 A - cos2 A)

cos ^ 1 sm

2.10 THE FORMULATION OF MATHEMATICAL MODELS OF AIRCRAFT

The response of an aircraft to the aerodynamic, thrust, gravity, and inertia forces
acting on the vehicle in flight is determined by formulating a mathematical model of
the system, solving the equations of the model, and using the solution to drive a
simulator (ref. 5). If the mathematical model is a true representation of the aircraft
and its environment, the response of the simulator will indicate to the aircraft
engineer how the aircraft will behave in an actual flight environment.

The formulation of models of aeronautical systems for simulation and other
purposes involves at least 1 2 equations — 3 force equations, 3 moment equations,
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3 Euler angle equations to determine the spatial orientation of the body, and
3 equations to determine the location of the body in inertial space (ref. 1).
Moreover, if the spatial orientation is determined by the use of direction cosines
rather than Euler angles, the three Euler angle equations must be replaced by nine
direction cosine equations. In view of this complexity, the formulation should be
rendered amenable to mechanized procedures, routine manual derivations, or both.

An important aspect of the formulation of mathematical models of aeronautical
systems is the specification of the system of forces and moments. In aeronautical
applications, the thrust and gravity forces can be formulated without difficulty, but,
as already indicated, the aerodynamic forces and moments require more detailed
consideration. These are represented by the static forces and moments, the control
derivatives, and the aerodynamic stability derivatives. As demonstrated in previous
sections, these forces and moments have to be transformed from wind or wind-
tunnel stability axes to aircraft body axes before the formulation can proceed. The
equations of motion of aerospace vehicles are formulated with respect to body axes.
The main advantage of these axes in motion calculations is that vehicle moments and
products of inertia about the axes are constants. When the body axes are chosen so
that the products of inertia vanish, they are known as.principal axes. A system of
axes which is frequently used to study the stability of aircraft in the presence of
disturbing forces that produce small perturbations is the flight stability system. This
is an orthogonal system fixed to the vehicle, the yl axis of which is aligned with the
relative wind vector when the vehicle is in a steady-state condition, but then rotates
with the vehicle after a disturbance as the vehicle changes angle of attack and
sideslip. Some of these axes are shown in figure 2.10.1.

Figure 2.10.1.- Systems of reference axes, including body, principal, wind, flight stability,
and wind-tunnel stability.
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2.11 AERODYNAMIC FORCES

Two typical functional relations for the aerodynamic force and moment compo-
nents FA acting on an aircraft in flight are

and

FA = F A ( A J S , V , V j i f j , 6 ,6

The independent variables in the first equation consist of the components of
linear and angular velocity v l,p l\ the components of linear and angular acceleration
v1,^1', the control displacements 8C.; and the rate of change of these displacements
8C.. The corresponding variables in the second equation are the angle of attack A,
the angle of sideslip B, and their rates of change A and B; the linear velocity V of the
aircraft and its linear acceleration V\ the components of angular velocity pl and
angular acceleration p1', and the control displacements 8C. and their rates of change

«cf !
To be of practical value, much simplification of the above functional relations is

required. By assuming that the motion is limited to small perturbations, it is possible
to simplify the mathematics and still obtain solutions of practical value. For small
^perturbations, the resulting forces and moments are given by the linear portions of a
Taylor series expansion about the equilibrium state. These are

where

FAo equilibrium values of the aerodynamic forces and moments

corresponding aerodynamic stability derivatives with respect to the state
variables S7, measured at the equilibrium point

'o
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S*7" state variables

small perturbations in the state variables

Throughout this chapter the aerodynamic stability derivatives with respect to the
variables v', pl have been obtained. Although it has not been stated explicitly, only
the dimensional forms of the aerodynamic forces, moments, and derivatives have
been used. For many applications, the nondimensional forms of these parameters are
preferred. However, it is less complicated to carry out the many transformations
involved in the formulation of mathematical models if the dimensional forms are
used. Consequently, the dimensional forms of the forces, moments, and derivatives
will be used in this section, and only stability derivatives with respect to vl and pl

will be considered. The same procedure may, of course, be used to transform the
stability derivatives with respect to A, B, V, and pl.

It has been demonstrated in section 2.3, that aerodynamic forces and moments
which are measured in wind axes or wind-tunnel stability axes may be transformed
to body axes when the corresponding coordinate transformation equations are
known. The body axes coordinates yl are related to the wind axes xw

l by equations
of the form

yl = yl(xw
l,A,B) (2.11.1)

xw =x
w

l(y l>A,B) (2.11.2)

where A and B are the angles of attack and sideslip, respectively. Since the
transformation (2.11.1) represents a negative rotation B about the xw

3 axis, fol-
lowed by a positive rotation A about the resulting x2 axis, it may be expressed in
the following alternative forms

cos A 0 -sin A\ /cos B -sin B 0

0 1 0 || sin B cos B 0

sin A 0 cos A/ \ 0 0 1
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xw
l cos B cos A - xw

2 cos A sin B -

y2 =x

y l xw
3 sin A

sin B + xw
2 cos B (2.11.3)

y3 = xw
l sin A cos B - xw

2 sin A sin B + xw
3 cos A

The transformation (2.11.2) is obtained by solving equation (2.11.3) for xw
l.

/xwl\ /cos 5 sin B 0\ /cos A 0 sin>l\ /yl\

cos 5

0

1

0 cos

x* = y1 cos A cos 5 4- y2 sin 5 4- y3 sin /I cos B

w — -y' cos A sin 5 4- y2 cos B - y3 sin A sin B

3 —
w = -yJ sin A + y3 cos A

• (2.11.4)

Moreover, if a static force or moment in wind axes be denoted by C(<x), and the
corresponding transformed coefficient be denoted by TC(i), where i = 1,2,3, then
as indicated in equation (2.3.1)

0 - ̂ - C(a) (2.11.5)

These coefficients represent the aerodynamic forces and moments acting during a
state of equilibrium. If small perturbations about the equilibrium condition occur,
then, as previously indicated, the resulting forces and moments are given by the
linear portions of the Taylor series expansion
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where

If an aerodynamic stability derivative in wind axes be denoted by C(a,|3), and the
corresponding transformed derivative be denoted by TC(i,r), where /,r,O!,|3 = 1,2,3,
equation (2.7.6) gives

l „-,. . dy*-bxP r( ~
= TCO,T) = -*- -- C(a,0) ( 2 1 1 6 )

U 'bST bx<* byT

Hence, if Co(oi) be equilibrium values of the static force and moment coefficients in
wind axes, and small perturbations are assumed, the resulting aerodynamic forces
and moments F^1 in body axes are

where v7" and pr are perturbation components of the linear and angular velocity
vectors, respectively, and the subscripts Fand co denote differentiation with respect
to linear and angular velocity components, respectively.

The aircraft's control surfaces give rise to additional aerodynamic forces and
moments. These forces and moments are represented by control derivatives that
obey the same transformation law as the static forces and moments, that is

TCc(i) = ̂  Cc(a} (2.11.8)

where the subscript c denotes a control force or moment derivative. The correspond-
ing control forces fc

l are obtained by multiplying the control derivatives by the
appropriate control increments dc.. These are
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When combined, equations (2.1 1.7) and (2.1 1.9) yield the total aerodynamic forces
for the case considered.

FA* = - C0(«) + v-CF(a!/?) + E prc ^ +

dxa dxa dyr dxa dyT dxa l

(2.11.10)

It should be noted, however, that the aerodynamic stability derivatives, with
respect to components of the linear and angular acceleration vectors, have been
omitted in this formulation.

Equation (2. 1 1 .3) may be used to evaluate the partial differential coefficients in
equation (2.11.1 0). However, this operation may be simplified by taking advantage
of the following relationship, which is valid in all orthogonal Cartesian coordinate
systems.

Substitution of this result in equation (2.1 1 .10) yields

FAt = Co(«) + - R Serial + pTCtfaJS) + Cc(a)5c.
dxa dxa txt 3xa 3*0 . dxa l

(2.11.11)

Note that this modification eliminates the need for the transformation equa-
tion (2.11 .4). Only the direct transformation (2.11 .3) is now required.

This equation represents six equations: three force equations and three moment
equations. In the form given, the coefficients C(a), Cc(a), and C(a,/3) are subject to a
dual interpretation; that is, C(a) represents either a force or a moment and Cc(a)
represents either a control force derivative or a control moment derivative. More-
over, CjKa,j3) are aerodynamic stability derivatives of either force or moment
components with respect to linear motion vector components. Likewise, C^(a,j3) are
aerodynamic stability derivatives of either force or moment components with
respect to angular motion vector components. It is seen that use of the summation
convention permits a compact formulation of the aerodynamic forces and moments.
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The advantage of the notation used is evident when one considers that, in general,
the aerodynamic stability derivatives with respect to linear and angular velocity
components give rise to 324 terms. An additional 324 terms would be required, in
general, if the acceleration derivatives were included.

Although the form shown is amenable to symbolic mathematical computation, it
is more convenient from the point of view of manual formulation to avoid the dual
interpretation of the coefficients, and separate the force and moment equations.

For / = 1,2,3, the aerodynamic forces F^ are

i7 i — tyl f ( \ a. dyl dyr

where

/o(a) static forces

a,/3) stability derivatives of the aerodynamic forces with respect to linear veloc-
ity components

a,/3) stability derivatives of the aerodynamic forces with respect to angular
velocity components

/c(a) control force derivatives

The aerodynamic moments have exactly the same form. These are

= — ^ —

where

mQ static moments

mp7(a,j3) stability derivatives of the aerodynamic moments with respect to linear
velocity components
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m^(a.,P) stability derivatives of the aerodynamic moments with respect to angular
velocity components

mc(pi) control moment derivatives

2.12 THRUST FORCES

The same procedure may be employed to transform the components of the thrust
vectors to body axes. It is assumed that there are n thrust generating systems Tn.
Each thrust vector is referred to a thrust axes system, with origin at the point of
application of the thrust vector. The axes are chosen such that each thrust vector
coincides with the xn

l axis of the system. Moreover, each thrust vector is then
transformed to a coordinate system Yn

l which has the same origin as the thrust axes,
but is parallel to the body axes system. Finally, the components of thrust in the Yn

l

system of axes are transformed to the body axes system, which has its origin at the
center of gravity of the aircraft. Each thrust axis xn* is related to the system Yn

l by
transformation equations of the form

(2.12.1)

The index n denotes which thrust generating system is being considered, and the
subscript T denotes thrust, that is, djf1 and \jj y" determine the orientation of the
«th thrust vector.

As sketch (h) shows, the coordinates Yn
l are related to the thrust axes coordi-

nates xn
l by the transformation equations

Sketch (h)
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Yn =xn cose /cos 07^ '

Yn
2 =xn

1

= -*»

(2.12.2)

Hence, the components of the thrust vector Tn in the Yl system of axes are

T •1n ' Tin ,

These are also the components of thrust in the yl system of coordinates, which
has its origin at the center of gravity of the aircraft. The thrust components due to
all thrust generating systems are obtained from the equation

ay
(2.12.3)

The individual components are obtained by summing on n. For n = 4, these are

sy,1
ajV
Sx,1

+ +
ay^

3x4
J

Tl + —— T2 + —— T3 + —— T4

ay,2 ay,2

ay,3 ay,3 3y4
3

3x4
!

When the coefficients are evaluated from equation (2.12.2), we obtain

l = Tl COS tfy
1 COS l̂ y1 + T2 COS 6j? COS

+ T3 cosdT
3 cos \kT

3 + T4 cos 6T* cos
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FT
2 = Tl cos 9T

l sin i//r' + T2 cos 0r
2 sin

+ r2 cos 0T
3 sin i/<r

3 + r4 cos 6T
4 sin

Fr
3 - 71, sin 0r

J + T2 sin 0r
2 + T3 sin 0r

3 + r4 sin 0/

2.13 THRUST MOMENTS

The moments produced by all thrust generating systems Tn are Mj, where
i = 1,2,3, that is \

( ft Y k a y / \

^-^)
where yw' are the coordinates of the point of application of the «th thrust vector
and i,j,k are in cyclic order.

Assuming again that there are four thrust generating systems, and summing on n,
we obtain

.
MT

l = r, [yi '•* I <l'

By assigning appropriate values to the superscripts i,j,k, and remembering that
these have to be in cyclic order, we obtain the three thrust moments as follows

ay,3 , ay,2\ _ / sy2
3 ay2

2
2 y2

3 —
ax,1 ax,1

ay3
3 aiV\ / sn3 3n2

»2 y*3 — +3r4(>'42 y*
3X31 9X31 / V 3x4

! ax,,1
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ai-y ay2
3

M i= T
8*2' dx l

2

3y33 \ _ / , aiV , 3V

ar3
2 ay^ ay4

2

Substitution from equation (2.12.2) in these equations gives the moment compo-
nents in terms of the orientation of each thrust vector. These are

-[1^^ sin0/ +>>i 3 cosfl/ sin i// T
l )

+ T2(y2
2 sin 0r

2 +>'2
3 cos 0r

2 sin <//r
2)

sin 0 + y3 cos 5 sin

sin 0 + J4 cos 0 sin

cos

cos 6 cos i// +J2 sin

cos 1 / / - + y sin

cos 0 cos i^ +> sin
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[T^OV cosfly1 sin i//^1 -y^ cosfl^1 cos i//^1)

+ T2(y2
l cos 0y2 sin i//j-2 ->>

2
2 cos 0j2 cos i^y2

+ ^CVa1 cos fl^3 sin i/^3 - y3
2 cos 6 j? cos i^j3

+ 7*4 0V cos 0jr4 sin i / / 4 -y4
2 cos 04 cos

2.14 GRAVITY FORCES

Newton's law of gravitation states that every particle in the universe attracts every
other particle with a force which is directly proportional to the product of the two
masses and inversely proportional to the square of the distance between them, the
direction of the force being in the line joining the two points (ref. 6); that is, the
gravitational attraction of a particle of mass m^ toward a particle of mass m.- is

where X is the gravitational constant and r« is the distance between the particles.
Since the law applies only to particles, the attraction exerted by bodies of finite

size must be determined. However, because the potential is a scalar function and
force a vector function, it is frequently more convenient to obtain the potential of
the attracting mass first, and then determine the force associated with the given
potential by using the well-known relation

Let the potential function be defined by the integral

p -

and consider the potential of the spherical shell shown in sketch (i).
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Sketch (i)

and

dm = aa11 sin 0 dip d9

where a and / are the density and the thickness, respectively, and

p2 = a2 + r2 - 2ar cos 0

which is independent of 0. On differentiating with respect to p, bearing in mind.that
a and r are constant, it is found that

• j.p = ar sm 0 —
dp

Therefore

_ 2nata dp

and

dm aat , f J0 2irat<
— = — dp I dv —
P r J r

fr+a
,, \2wato I , \4-na2 to XM
V = I dp = = —

r I r r
•I r-a
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From this result it follows that if MS is the mass of a homogeneous shell and if the
attracted point P lies outside the shell at a distance r from its center, the force of
attraction of the shell on a unit mass at P is

XM.
F =VV = -—S

s r
2

and is directed toward the center of the sphere. The resulting attraction of any
number of such shells that are concentric is directed toward their common center,
and its intensity is simply the sum of the intensities for the individual shells. Hence,
if M is the mass of a sphere, its attraction upon an exterior point is

It is not necessary that all the shells have the same volume density. It is sufficient
that each shell separately shall be homogeneous. It is evident that a solid sphere
which is homogeneous, or homogeneous in concentric layers, attracts a unit mass
which is located at an exterior point, as though it were a particle of the same mass
located at the center of the sphere.

If the acceleration due to gravity at the surface of a sphere of radius/? isg, then
the gravitational force attracting a body of mass tn, located on the surface of the
sphere, is

and therefore

It follows that the gravitational force attracting a body of mass m, which is
located at a distance r>R from the surface of the sphere, is given by the equation

j-, XMm R2

F = — = -mg —
8 f? 2
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The corresponding potential function is

_ mgR

It should be noted that this equation fails to give an accurate description of the
influence of the Earth's gravitational field on bodies, such as satellites, in close Earth
orbit. Due to lack of homogeneity and sphericity, the Earth's gravitational potential
function consists of an infinite series of spherical harmonics. However, the assump-
tion of a homogeneous, spherical Earth is adequate for most aeronautical applica-
tions. Indeed, it is frequently assumed, as the ancients did, that the Earth is flat. By
assuming that the Earth is an indefinitely extended plane with a constant surface
density, it is found that the acceleration due to gravity is independent of the
distance from the Earth's surface. This can be seen as follows:

Consider a uniform circular disc of radius R (see sketch (j)), and surface density a,
then

Sketch (j)

dm = a2irr dr .

and

R

But
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Therefore

p dp = r dr

and so

r dr ,= dp
P

Hence

V — 27raX I dp = 2ira\(\/R^ + x2 - x)

The force of attraction of the disc on a unit mass on its axis is given by the equation

1\
/

As the radius R tends to infinity, the first term on the right-hand side of this
equation tends to zero, and the force of attraction on a unit mass assumes the form

dx

Hence, the acceleration due to the gravitational attraction of an Earth which is
assumed to be an indefinitely extended plane would be

g = 2iro\

and the gravitational force acting on a body of mass m would be

mg = 2iro\m = FS

which is independent 'of the distance from the surface.
The gravitational force vector acting on an aircraft in flight will be assumed to

have the value mg, where m is the mass of the aircraft and g is the acceleration
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vector. The magnitude of g is assumed constant, which is tantamount to the
assumption of a flat Earth.

The gravity vector is specified in an Earth-fixed system of axes, in which the
coordinates xj are related to the body axes coordinate y1 by equations of the form

y1 = y^Xgdgfigdg) (2-14-1)

where <//„, 6g, and <£„ are the Eulerian angles which relate the moving body axes to
the set of Earth-fixed axes in which the gravity vector is specified. In accordance
with aeronautical convention, these transformation equations represent the result of
a rotation !//„ about the y3 body axis, followed by rotations 6g and $„ about they2

and y3 axes, respectively. Hence, if it is assumed that the body axes and the
Earth-fixed axes are initially coincident, equation (2.14.1) may be expressed in the
following alternative forms

0 cos 00 sin 0D II 0 1 0

cos <t>gl \s\n 6g 0 cos

COS &„ COS !//„
6 6

-cos 0_ sin i//_
o 5

+sin 0g sin 8g cos i//g

cos sin

cos 0g cos \jjg

+sin <

sin sin -sin

sin

cos

sin

-sin 0g

sin (j>0 cos &0& &

+cos 0g sin 0g cos +cos <t>g sin 0g sin
cos0gcos0g/ \Xg\

(2.14.2)

Therefore
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yl =xg
l cos 0g cos \l/g + xg

2 cos 6g sin \frg - xg
3 sin 6g

y* = xg
l (sin <j)g sin Bg cos \]jg - cos <j)g sin <//f )

+ xg
2 (cos 0g cos i//g + sin (f>g sin 0^. sin \J/g + xg

3 sin 0g cos 0

y* =xg* (sin 0^ sin i//^ + cos 0^ sin 0^ cos ^)

+ x^ (cos 0g. sin dg sin i//g - sin 4>g cos i//^) + x^3 cos <j>g cos

(2. 1 4.3)

Using the notation already established, these equations assume the more compact
form

i *yl
y = -JL— x,v' (2.14.4)

where i,a= 1,2,3.
If a gravity force component in body axes be denoted by Fg

l and the gravity
vector is assumed to coincide with the jc_3 axis of the Earth-fixed system

(2.14.5)

Equations (2.14.3) may now be used to evaluate the individual terms of equa-
tion (2.14.5). These are

mg - -mg sin 6g

g

F0
7 = —— mg = mg sin 0a cos 0ff5 .. 3 5 53xg

3

Fg
3 = -¥— mg = mg cos 0 cos 0

V

(2.14.6)
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2.15 SUMMATION OF FORCES AND MOMENTS

The total force acting on the aircraft is the sum of the aerodynamic, thrust, and
gravity forces, that is

Fg (2.15.1)

Hence

(2.15.2)

Likewise, the total moment is the sum of the aerodynamic and thrust moments.
These are

M^Mj+Mj! (2.15.3)

where

«' = fe m0(«) + *£ ^VmjKatf-h &- ^pTmtfaJt)

(2.15.4)

and i,j, k are in cyclic order
The equations of motion can now be formulated by invoking the principle of

D'Alembert. This principle states that the external forces applied to a system must
be balanced by the inertial forces. Therefore, we have merely to add to the
aerodynamic, thrust, and gravity forces already obtained, the inertial forces -Ff.
Similarly, the inertial moments -Mf must be added to the aerodynamic and thrust
moments to complete the description of the force and moment system.
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When the inertial forces are added to the aerodynamic, thrust, and gravity forces
in equation (2.15.1), D'Alembert's principle (ref. 7) requires that

pi = FAl + FTl + Fg ~ Fl = ° (2. 1 5 .5)

This equation is usually written in the form

Fl = FAl + FTl + Fg (2. 1 5.6)

The forces Ff are equivalent to the rates of change of linear momentum. For bodies
of constant mass m, the components are

FI = m = m + p h - P (2.15.7)

where i, j, k are in cyclic order and where

— rates of change of velocity components with respect to inertial space
dt

— rates of change of velocity components with respect to a set of moving body
axes

vl linear velocity components

pi angular velocity components

When equations (2.15.2) and (2.15.7) are combined, we obtain for the force system

W7 I _ • )S r l~f " I | J n\.**-J ' _ " J \/ V-^SK/ ' _ A-' J /*V

^ /C(«)5C] + ̂  Tn + &L mg (2.15.8)
bxa l] dx^ 3* 3

where /,/, k are again in cyclic order.
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/

Likewise, when the inertia! moments -Mf are added to the aerodynamic and
thrust moments in equation (2.15.3), we have in accordance with D'Alembert's
principle

MA' + Mjf - Mf =0 (2. 1 5.9)

or in the more familiar form

M'j = MJ+M1i (2.15.10)

The moments Mf are equivalent to the rates of change of angular momentum.
For a body with constant inertial components, these are

(2.15.11)
at ot

where i,j,k are in cyclic order and where

ff components of angular momentum

dH'- rates of change of angular momentum components with respect to inertial
space

x

dH*- rates of change of angular momentum components with respect to a set of
moving body axes

Moreover

tf =/''% = 7/ap« (2.15.12)

where Ija are moments and products of inertia. Substitution of equation (2.15.12)
in equation (2.15.1 1) yields

(2-15-13)
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In accordance with the summation convention, each term on the right-hand side of
this equation must be summed on a.

The following definitions are required:

A 2 " ~ > ' V ; I l 3=--Iyiy3. / , ,= - / 2 3-^ -^ ' *23 ly^y3

These are the moments and products of inertia relative to the yl y2y3- body axes.
The above substitutions should only be made subsequent to the completion of
summation on a.

When equations (2.15.4) and (2.15.13) are combined, we obtain

prw

'

(2.15.14)

where a = 1,2,3 and /,/,£ are in cyclic order.
The solution of equations (2.15.8) and (2.15.14) yields the components vl of

linear velocity, and the components pl of angular velocity. These components may
be used to determine the geographical location of the aircraft and its spatial
orientation.

2.16 SPATIAL ORIENTATION IN TERMS OF EULER ANGLES

The values of the angular velocity components pl obtained by solving the
equations of motion (2.15.8) and (2.15.14) may be used to determine the Euler
angles i//, 6, and 0, which relate the moving body axes to an Earth-fixed system.
The equations relating the body angular rates pl to the Euler angle rates may be
obtained by considering sketch (k) and making the necessary transformations.
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—-i-—v2

Sketch (k)

Consider a set of Earth-fixed axes with origin at the center of a sphere, and a set
of moving axes having the same origin. The moving axes are subject to a rotation i//
about the y3 axes, followed by a rotation 6 about the y2 axis and a rotation 0 about
the y1 axis. The angular velocity components pl of the moving body axes may be
obtained as functions of i//, 0, and </> by constructing a set of axes on the surface of
the sphere, rather than at its center. This procedure produces a less cluttered
diagram and simplifies the transformations.

The required relationships are most easily obtained by considering the contribu-
tion of each Euler angle rate to the angular velocity vector.

For a rotation 0 about they3 axis, the angular velocity components are

For a rotation i// about the y3 axis, followed by a rotation 6 about the y2 axis, the
angular velocity components are

• • •

pl — - \fr sin 6 ; p2 = d ; p3 = i// cos 6

Finally, for a rotation i// about the y3 axis, followed by a rotation 6 about the y2

axis and a rotation 0 about the y1 axis, the angular velocity components are
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m •

pl - 0 - i// sin 6
• •

p2 = 0 cos 0 + i// cos 0 sin 0
• •

p3 = i|/ cos 0 cos 0 - 0 sin 0

In matrix notation, these equations assume the form

fp l\ A 0 -sin0

p2 I = I 0 cos 0 - cos 0 sin 0

?3/ \0 -sin 0 cos 0 cos 0,

and therefore

* • .

sin 0 tan 0 cos 0 tan 0'

cos 0

sin 0 sec 0 cos 0 sec Bt

or

0 = p1 + tan 0(p2 sin 0 + p3 cos 0)

•
0 = p2 cos 0 - p3 sin 0

•
i// = (p2 sin 0 4- p3 cos 0)sec 0

When the values of p1 obtained by solving equations (2.15.8) and (2.15.14) are
substituted in these equations, and the resulting equations.integrated, the spatial
orientation of the aircraft is determined.

The spatial orientation of the aircraft may also be obtained by considering the
direction cosines relating the moving body axes to a set of Earth-fixed axes.
Although the Euler angle equations are nonlinear, the direction cosine equations are
linear. These may be obtained as described below.
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2.17 SPATIAL ORIENTATION IN TERMS OF DIRECTION COSINES

Let an Earth-fixed reference system be determined by a triad of mutually orthog-
onal unit vectors /, /, K, and let the moving body axes coincide initially with the
unit vectors i, ], k. These two systems of axes, which are assumed to have a common
origin, are related by the matrix equation

where d,-,- are the direction cosines.y ~ ^ />
Since the magnitudes and the directions of/,/, and K are constant, it follows that

dt dt dt

As observed from an inertial reference frame, which is momentarily coincident
with the moving body frame, the rates of change of these vectors are

dl 3/ , - i ft '— = — + cox/ = 0
dt dt

dJ a7 , _ c _-r = T- + cox/ = 0

, - n— =— + uxK = 0
dt dt

where

— denotes the rate of change with respect to the moving body axes
dt

cox is the rate of change due to the rotation of the axes
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Therefore

IT

-rat
>v

(IT

at

and

Substitution of this value of cJ in the above equations yields the required differential
equations for the direction cosines. These are

=0

?11 -0

= 0

+P3^21 -^ '^23 ^0

i =0

=0

=0

These are the differential equations for the direction cosines that relate the
moving-body axes to the Earth-fixed axes. They may be written more compactly as
follows:
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dai + dakP1 ~ d(xjP = ° « = 1 , 2 , 3

where i,j,k are in cyclic order.
Now that the linear velocity components and the Euler angles are known, it is

possible to determine the geographical location of the aircraft in an Earth-fixed
reference frame. The procedure is described below.

2.18 COORDINATES OF THE AIRCRAFT IN AN EARTH-FIXED
REFERENCE FRAME

Equation (2.14.4) gives moving body axes components yl as functions of the
components xJ in an Earth-fixed reference system, that is

g

Since the superscripts / and a are dummy indices, this equation may be rewritten
as follows:

a _ oy i
... / 8

By solving this equation for the Earth-fixed coordinates xg
l, we have

v/ = ?Vva (2.18.1)Aa y
8 by01

Bearing in mind that

by l _ bx'

ax' a/
equation (2.14.3) may be used to obtain the partial differential coefficients required
to formulate equation (2.18.1), and to determine the Earth-fixed coordinates. These
are
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sin i|Oxg =yl cos 6g cos \}jg + >>2(sin 0 sin 0 cos \J/g - cos 0

+ >>3(sin 0~ sin >/>„ + cos 0^ sin 0 cos i/O (2.18.2)

x 2 = yl cos 0., sin >//_ + _y2(sin <f>g sin 0^ sin $„ + cos <A» cos <//„)

+ >>3(cos 0p sin 0_ sin >//„ - sin $„ cos !//„) (2.18.3)

x^3 = -y1 sin 0^ + y2 sin 0^ cos 6g + y3 cos 0g cos 6g (2.18.4)

Let the linear velocity components in an Earth-fixed reference system be denoted
XE*, then these components are related to the body axes components v1 by the

uation

. -_dxg i
XE=^V" ' (2.18-5)

by
equation

Evaluation of the differential coefficients from equations (2.18.2) through
(2.18.4) and substitution in equation (2.18.5) yields

•

Xgl — v1 cos 6g cos i//_ + v2(sin 0- sin 6g cos i//_ - cos 0~ sin !/*„)

+ v3 (sin 0., sin !//„ + cos <j>g sin 0., sin 0^ cos !//„)

•

^£2 = v1 cos 0_ sin i// + v2 (sin 0 sin dg sin i// + cos 4>g cos ̂ /_)

+ v3(cos 0_ sin &„ sin )//„ - sin 0_ cos <//„)

•

Xc3 = -v1 sin 60 + v2 sin 0_ cos 0_ + v3 cos 0a cos 0a
• c ' 5 6 5 6 5

Integration of these equations gives the Earth-fixed coordinates of the aircraft at
time t. These are

where XlgQ are the initial values of the coordinates in the Earth-fixed reference
system.
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This completes the formulation of the simplified mathematical model of the
aeronautical system considered, using linear aerodynamic theory. A more complete
description of the system would include such items as the control loops that are
interposed between the pilot's control levers and the various control surfaces. A
description of these loops would entail discussions of linear and nonlinear control
theory, and is beyond the scope of the present treatment.

It should be noted that the mathematical model has been formulated in such a
way that specialized forms can be obtained by expanding the force and moment
terms in accordance with the transformation laws established. Given the transforma-
tion laws and the system parameters, the model equations can be derived without
further reference to the physics of the problem. The only operations required are
differentiation and summation, and these can be performed either manually or by
computer as previously indicated.

To demonstrate the feasibility of formulating mathematical models of aeronauti-
cal systems by algebraic computation, a mathematical model of a general aircraft has
beeri formulated by computer in the final chapter. It will be seen that the interactive
capability of the computer system used enhances the utility of the method by
permitting the user to modify the formulation as he proceeds.
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J.I

3.1 FORMULATION OF CHRISTOFFEL SYMBOLS USING COORDINATE
TRANSFORMATION EQUATIONS

The importance of the Christoffel symbols (ref. 1) and their derivation in terms of
either, coordinate transformation equations or metric tensors was discussed in
section 1.12. For reasons that will become apparent as we proceed, the equations of
motion of a particle can be formulated in any curvilinear coordinate system once the
Christoffel symbols are known. It is perhaps appropriate at this stage to review again
the essential difference between the tensor method and the conventional approach,
and the reason why a tensor formulation is so attractive. Conventionally, a vector is
expressed in terms of its physical components and a corresponding set of unit base
vectors. The tensor components of a vector are not, in general, the same as the
physical components. Instead, they are components that obey transformation laws
corresponding to their variance. The transformation laws for covariant and contra-
variant vectors are given by equations (1.6.5) and (1.6.3), respectively. It may be
noted that when the base vectors define an orthogonal Cartesian reference frame,
the tensor components are the same as the physical components. As a consequence
of the geometrical simplification inherent in the tensor method, the operations
involved in obtaining derivatives and formulating the equations of mathematical
physics in curvilinear coordinate reference frames are routine operations involving
only summation and differentiation.

To illustrate the method of deriving the Christoffel symbols of the first kind from
the coordinate transformation equations, consider the functional form given by
equation (1.13.11) and the defining formula (1.13.14). The technique may be illus-
trated by using the transformation from an orthogonal Cartesian reference frame to
a curvilinear coordinate system in which xl are cylindrical polar coordinates. If the
curvilinear coordinate system is cylindrical polar, the Cartesian coordinates yl are
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related to the curvilinear coordinates by the following transformation equations
(fig. 3.1.1).

yl = x1 cosjc2

y2 = x1 sin x2

y3 =x3

Figure 3.1.1.— Cylindrical coordinates.

The inverse transformation is given by

1)2 +O2)2

x3 =

(3.1.1)

(3.1.2)

By substitution from equations (3.1.1) and (3.1.2) in equations (1.13.14)
and (1.13.15), the Christoffel symbols are obtained.

Equation (1.13.14) will be used to obtain the nonzero Christoffel symbols of the
first kind. With the exception of the dummy index, the superscripts appearing on
the right-hand side of equation (1.13.14) must correspond to those appearing on the
Christoffel symbol. For example
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a2/ 9V dy3

to2 dx2 bx^x2 dx2 dx^x2 dx2

-sinx2(-x1 sin x2) + cosx2^1 cos*2)

: jc'(sin2x2 + cos2 x2) = x1

Therefore

Likewise

[12,2] =[21,2] =x

1 By1' + b2y2 by2

dx1 dx2bx2 dx1

(x1 cosx2)cosjc2 - (x1 sin x2 )sin

jc1 (cos2 x2 + sin2 x2) = -x1

The procedure for determining the Christoffel symbols of the first kind for a
spherical polar coordinate system is the same as that used for a cylindrical polar
coordinate system. In this case, however, the terms of equation (1.13.14) have to be
obtained from a different set of coordinate transformation equations. The Cartesian
coordinates yl are related to the spherical polar coordinates x1 by the following
transformation equations (fig. 3.1.2):

y1 - x1 sin x2 cosx3

y2 — x1 sin jc2 sin ;c3

y3 = x1 cos*2

(3.1.3)
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Figure 3.1.2.— Spherical coordinates.

The inverse transformation is given by

1)2 +(y2)2 +0'3)2

3 == tan'1 '—

(3.1.4)

By substitution from equation (3.1.3) in equation (1.13.14), the Christoffel symbols
of the first kind are obtained. For the special case being considered, there are
6 nonzero symbols out of a total of 18. To illustrate, equation (1.13.14) will again
be used to obtain the nonzero Christoffel symbols of the first kind. By substitution
from equation (3.1,3) in the expanded form of equation (1.13.14), it is found that

[22,1] = _" y ^-ay ay 3

3x23x2 ax1 3x23x2 3^

ay by1 _,_ 3V a>

r1 3x23x2 3X1

;2 , 32^3 3y3

— _v- l

[33,2] -
3x33x3 3x2 3x2 3x33x3 3x2

sin x2 cosx2
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3x'3x2 3x2 3x!3x2 3x2 3xJ3x2 3x2

[13,3] -
ax'sx3 3x3 sx^x3 a*3 a*1 a*3 3x3

= [31,3] =xl sin2 jc2

[33,1] _ ay a/ + aV 3y2
 + av az!

3x33x3 ax1 ax3 ax3 ax1 ax3 ax3 ax1

= -x1 sin2 x2

[23,3] -
3x23x3 3x3 3x23x3 3x3 3x23x3 3x3

^(x1)2 sin x2 cos x2 = [32,3]

Equation (1.13.15) may be used to obtain-the nonzero Christoffel symbols of the
second kind. With the exception of the dummy index, the superscripts appearing on
the right side of the equation (1.13.15) must correspond to those appearing in the
Christoffel symbol. For example

\22j 3x23x2 bya

By substitution from equations (3.1.3) and (3.1.4) in equation (1.13.15), all the
Christoffel symbols are obtained. For the special case being considered there are
6 nonzero Christoffel symbols out of a total of 18. Of course, as indicated pre-
viously, the operation of obtaining Christoffel symbols from formula (1.13.15) and
the use of the transformation equations could be performed by a computer pro-
grammed for this kind of operation. To illustrate, equation (1.13.15) will again be
used to obtain the nonzero Christoffel symbols. By substitution from equa-
tions (3. 1 .3) and (3. 1 .4) in the expanded form of equation ( 1 . 1 3. 1 5) it is found that
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I 3V 3x2 , av a*2 , 9V a*2 - 2 2- ' ——— + — + — I = -sin x1 cos x2

bx3bx3 by1 bx3bx3 by2 bx3bx3 by3,li) - (
J 2 1 /_3jV_ bx^ + ay2 bx^ + b2y3 3xA = j 2 J = _!

I12' Vax^x2 3;/1 bx lbx2 by2 bx lbx2 by3) I21} xl

3 <^! + 9V 3̂ !\ = 1
by2 bx lbx3 by3/ IV 1 3 ) Va^a*3 ay1 bx^x3 by2 bx lbx3 by3/ 31) x1

f l\ -
I33)

3 ) ay

bx3bx3 by1 3x33x3 by2 3x33x3 by3/

\ ( * \
= cot x23xA (31

3,3/ \32jby1 3x29x3 by2 3x23x3 by-

These results are seen to agree with those obtained in equation (1.3.8).

3.2 METRIC TENSOR INPUTS

An alternative method of obtaining the Christoffel symbols is based on the use of
the metric tensors. These were defined in terms of the scalar products of the base
vectors and their reciprocals in equations (1.12.1) and (1.12.2), respectively. In
general, it is more convenient to obtain these tensors in terms of the coefficients
appearing in the fundamental quadratic form, equation (1.15.15), that is

ds2 =g i jdx i dxJ (3.2.1)

Substitution of the g.-.- in the formulas of definition

..... ,[if,k] — —I - + — '— - — '- 1 (-> 9(3'2'
\1
/ax' ax*

L =gtaUk#] (3-2.3)
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yields the required set of Christoffel symbols. Given the metric tensors, the only
operations required to formulate these symbols are partial differentiation, addition,
and multiplication. These are routine operations that can be performed manually or
executed with speed and efficiency on any computer equipped with a formula
manipulation compiler. No multiplications are required to obtain the Christoffel
symbols of the first kind. For example

[11,1] =^

Therefore

111.11 = 2

Since there is a repeated index in the definition of the Christoffel symbol of the
second kind, a summation is required on that index. In a space of three dimensions

I !k 1 = gi3

Therefore

w

+ *'M—jl+ — f -—I +8'J \-t+—-'—]| (3-2.4)
\dxK dxJ dx21 \dxK dx^ 3x3/J

The determination of the fundamental quadratic form, equation (3.2.1), is no
more difficult than finding the coordinate transformation equations (1.13.11)
and (1.13.13). Indeed, it is often much simpler. For example, consider again the case
of a problem being studied in a cylindrical polar coordinate system. In this system of
coordinates, the square of an element of arc is given by the following equation:

ds2 = (dx1)2 +(x l dx2)2 +(dx3)2 • (3.2.5)
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Therefore

(3.2.6)

where x1 is the radial distance, x2 is the angular displacement, and x3 is the axial
displacement. In this case the coordinate transformation equations assume the form

y1 = x1 cosx2

= x sinx

y3 =x3

(3.2.7)

Likewise, the square of an element of arc in a spherical coordinate system is given
by

v

ds2 = (dx1)2 + (x1 dx2)2 + (x1 sinx2 rfx3)2

where x2 is the polar angle and x3 is the longitude.

(3.2.8)

#33 = (x1 sinx2)2 ,

(3.2.9)

The corresponding coordinate transformation equations are given by
equation (3.1.3).

In these two cases, the determination of the metric tensors from the square of the
line element is no more difficult than finding the coordinate transformation equa-
tions. More importantly, if the functions £/,-(x) are such that the system of equa-
tions (1.13.12) has no solution, then no admissible transformation of coordinates
exists, which reduces equation (3.2.1) to the Pythagorean form. In this case, the
manifold is nonEuclidean and the use of coordinate transformation equations as
inputs will fail.
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The manual derivation of the Christoffel symbols of the first kind for a cylindrical
polar coordinate system would proceed as follows: Referring to equation (3.2.6), it
is seen that g2 2 is the only metric tensor component that is a function of a
coordinate, the coordinate x1. In view of this, it is clear that the only nonzero
Christoffel symbols of the first kind are those in which the indices assume the
following values:

[12,2] ;- [21,2] ; [22,1]

When evaluated, these yield

^ V t a 2 dx1 9x2/

In view of the symmetry of the metric tensors

and the definition of the Christoffel symbols of the first kind

It follows that

[ij,k] = [jijc]

and therefore

[21,2] =[12,2]

Or by direct evaluation
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The remaining symbol is

d#2i

Hence, the only nonzero Christoffel symbols of the first kind are

' [21,2] -[12,2] =*'

\

and

[22,1] =-x l

In this case it is much quicker to formulate the Christoffel symbols of the first
kind manually than by digital computer. Nevertheless, a computer program will be
written to mechanize the formulation and to prepare the reader for more complex
cases to follow. A computer program and the corresponding output would assume
the following form if the coordinate system were cylindrical polar.

LET(G(1,1)=1);

LET(G(2 ,2 )= (X(1 ) ) * *2 ) ;

LET(G(3,3H);

P R I N T _ O U T ( G ( 1 , 1 ) 6 ( 2 , 2 ) 6 (3 ,3 ) ) ;

PUT SKIP(5);

DO 1=1 TO 3 BY 1;

DO J=l TO 3 BY 1;

DO K=l TO 3 BY 1;

L E T ( I = " I " ) ;

LET(J="J");

LET(K="K") ;
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LET(D(I ,J ,K)=(1/2)*DERIV(G(I ,K) ,X(J) ) ) ;

LET(E(J ,K, I )=(1 /2)*DERIV(G(J ,K) ,X( I ) ) ) ;

LET(F( I ,J ,K)=(1 /2)*DERIV(G( I ,J ) ,X(K) ) ) ;

LET(C(I ,J ,K)=(D(I ,J ,K)+E(J,K, I ) -F( I ,J ,K))) ;

PRINT=OUT(C(I,J,K));

END;

END;'

END;

The output from this program follows:

6(1,1) = 1 C(2, l , l ) = 0 ,

G(2 ,2) - X ( l ) 2 C(2 , l ,2 ) = X ( l )

G(3,3) = 1 C(2 , l ,3 ) = 0

C(l,l, l) - 0 C(2 ,2 , l ) = - X ( l )

C( l , l ,2) = 0 C(2 ,2 ,2) = 0

C( l , l ,3) = 0 C(2 ,2 ,3 ) = 0

C( l ,2, l ) = 0 C(2,3 , l ) = 0

C( l ,2 ,2 ) = X ( l ) C(2 ,3 ,2) = 0

C( l ,2 ,3) = 0 C (2 ,3 ,3 ) = 0

C(l,3, l) = 0 C(3, l , l ) = 0

C( l ,3 ,2 ) = 0 C(3, l ,2) = 0

C( l ,3 ,3) = 0 C(3, l ,3) = 0
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C ( 3 , 2 , l ) = 0

C(3 ,2 ,2 ) = 0

C(3 ,2 ,3 ) = 0

C ( 3 , 3 , l ) = 0

C(3 ,3 ,2) = 0

C(3,3,3) = 0

Proceeding next to the formulation of the Christoffel symbols of the first kind for
a spherical polar coordinate system and noting from equation (3.2.9) that g^ j is a
constant, g2 2 a function of x1, and £333 function of x1 and x2, it follows that the
only nonzero Christoffel symbols are those with indices as follows:

[22,11 ; [21 ,2] ; [12,2]

[33,1] ; [31,3] ; [13,3]

[33,2] ; [32,3] ; [23,3]

Moreover, the general property already established for the Christoffel symbols

[i/Jc] = [jijc]

can be used to' reduce the number of independent Christoffel symbols from nine to
six. These are

[22,1]; [33,1]; [33,2]

[21,2] =[12,2]

[31,3] -[13,3]

[32,3] - [23,3]

Using again the defining formula, equation (3.2.2), we obtain
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[22,1]=I|—+ •
2 \ 3x2 3x2\3x2

.fal
xSx1

2
[21,2] =^ I_ + J^.-_1 = *'=[12,2]

2 \3x1 3x2 3x2/

[33,1] =i —+ —- — j = - x > sin2

2 \3x3 3x3 ax1

33 \
] = -X1 SI

:'/

1 /9#33 9g, 3 3^3! \
[31,3] =1( +—i

2 \ ax1 3x3 3x3 /

1 /9^32 9g32 9#33\
[33,2] = —I + 1 = -(x! )2sinx2 cosx2

2 \3x 3 3x3 3x2/

= x1 sin2x2= [13,3]

[32,3] = - + - =(x1)2sinx2 cosx2 = [23,3]
2 \ 3x2 3x3 3x3 /

An advantage of a computer formulation is that once a program is written it can
be used to derive the Christoffel symbols in any orthogonal curvilinear coordinate
system of interest, the only requirement being that the metric tensor inputs are
appropriate to the coordinate system being used. For example, when the same
program is used to formulate the Christoffel symbols of the first kind, in a spherical
polar coordinate system, we obtain

LET(6(1,1)=1);

LET(G(2,2)=X(1)**2) ;

LET(6(3 ,3)=(X(1)*SIN(X(2) ) ) * *2) ;

PRINT_OUT(G(1,1) ;G(2,2) ;G(3,3) ) ;

PUT SKIP(5) ;

DO 1=1 TO 3 BY 1;
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LET(I="I");

DO J=l TO 3 BY 1;

DO K=1 TO 3 BY 1;

LET(J="J");

LET(K="K") ;

LET(D(I,J,K) = 0 /2 ) *DERIV(G( I ,K) ,X(J ) ) ) ;

LET(E(J,K, I ) = 0 /2 ) *DERIV(G(J ,K) ,X( I ) ) ) ;

LET(F(I ,J,K) = 0 /2) *DERIV(G( I ,J ) ,X(K) ) ) ;

LET(C(I,J,KHD(I,J,K)+E(J,K,I)-F(I ,J,K)));

PRINT_OUT(C(I,J,K));

END;

END;

END;

The output from this program follows:

6(1,1) = 1

G(2,2) - X ( l ) 2

G(3,3) = SIN2 ( X ( 2 ) ) X ( l ) 2

C(l, l , l ) - 0

C( l , l ,2 ) - 0

C( l , l ,3) = 0

C(l ,2,1) = 0

180



MA THEMA TICAL MODELING OF DIVERSE PHENOMENON 3.2

C( l ,2 ,2) = X ( l )

C( l ,2 ,3) = 0

C(l ,3, l ) = 0

C( l ,3 ,2) = 0

C(l, 3, 3) = SIN2 ( X ( 2 ) ) X ( l )

l,l) - 0

C(2,l,3) = 0

C(2,2J) - -X( l )

C(2 ,2 ,2 ) = 0

C(2 ,2 ,3 ) - 0

C(2 ,3 , l ) = 0

C(2 ,3 ,2 ) = 0 o

C(2 ,3 ,3 ) = COS ( X ( 2 ) ) S IN(X(2 ) X ( l ) 2

C(3, l , l ) = 0

C(3 , l ,2 ) = 0

C(3,l,3) - SIN2 (x (2) ) X( l )

C(3,2 , l ) = 0

C(3 ,2 ,2 ) = 0

C(3,2,3) = COS ( X ( 2 ) ) S IN(X(2) ) X ( 1 ) 2

C ( 3 , 3 , l ) = -SIN 2
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C ( 3 , 3 , 2 ) = -COS ( X ( 2 ) ) S I N ( X ( 2 ) ) X ( l ) 2

- C(3 ,3 ,3) = 0

3.3 THE VELOCITY VECTOR

Three methods of obtaining the metric tensors have been indicated: one of these
uses the method of vector calculus; another uses the known differential coefficients
from the coordinate transformation equations; and the method described in the
preceding section uses the coefficients of the fundamental quadratic form. Since the
coordinate transformation method is more adaptable to digital logic than the vector
method, it can be used for all Euclidian applications. However, a formulation using
metric tensor coefficients can be used for Euclidian and nonEuclidian applications.

Given the Christoffel symbols, it is seen that there are two forms for the intrinsic
or absolute derivative of a vector. Equation (1.12.19) gives the intrinsic derivative in
terms of the contravariant components; and equation (1.13.33) gives the same in
terms of the co variant components. Either of these equations may be used. How-
ever, to avoid the necessity of transforming covariant components into contravariant
components, and vice versa, it is better to match the formula to the variance of the
vectors. In the course of the analysis, it will become evident what the variance of the
vectors is. For example, the variance of the differential elements can be determined
as follows: the differential elements dyl in the y coordinate system are related to the
elements dxl in the x coordinate system by the following equation:

(3.3.1)

By comparing this equation with equation (1.6.3), it is seen that the differential
elements are the components of a contravariant vector. Likewise, equation (3.3..1)
shows that the components of velocity in the y coordinate system are related to
those in the x coordinate system by the equation

dyi _dy ' dx>
dt j dt

That is,
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(3.3.2)

where V\y) are the velocity components in the y coordinate system, and U\x) are
the velocity components in the x coordinate system. Comparison of equation (3.3.2)
with equation (1.6.3) shows that the components of the velocity vector also obey
the contravariant transformation law. To obtain the velocity vector from equa-
tion (1.12.19), the position vector r is substituted for the vector A, that is

A=A i a i = f - , (3.3.3)

Hence, in a cylindrical polar coordinate system

A t = x l , A 2 = 0 , A 3 = x 3 (3.3.4)

By substitution of these values in equation (1.13.4), the velocity vector is obtained
as follows

When the appropriate value of the Christoffel symbol is substituted from equa-
tion (1.13.3), the tensor components of the velocity vector are given by

-J7 dx1 . , dx2 . , dx3 .
V = di + fl2 + a3

dt dt dt 3

that is,

F = ̂ 5, (3-3.5)
dt l

In order to reduce equation (3.3.5) to the conventional form, where the physical
components of velocity are associated with a set of unit base vectors, equa-
tion (1.9.1) may be used to express the base vectors in unitary form. In this form
the velocity V is given by
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If the coordinate jc1 is identified with the radial distance r, the coordinate x2 with
the polar angle 6, and the coordinate x3 with the axial displacement z, the equation
for the velocity in a cylindrical polar coordinate system assumes the familiar form

_ dr - , /al + [r
dt \

V = ^a, + [r — a2 + ̂  a3
dt) dt

where a l , a ^ , and 23 are a triad of mutually orthogonal unit vectors in the directions
of increasing /•, 6, and z, respectively.

In a spherical polar coordinate system, the vector A has the following
components:

A1 =x l , A2 =A3 = 0

When these values are substituted in equation (1.13.9), the velocity vector in this
coordinate system is given by

Again, by substitution of the CrTristoffel symbols from equation (1.13.8), the
velocity vector may be expressed in terms of its tensor components and a corre-
sponding set of base, vectors as follows:

TT dx1 - , dx2 - dx3 -V = a, + a, + a-i
dt l dt 2 dt 3

that is,

(3.3.8)
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From a comparison of equations (3.3.5) and (3.2.8), it is seen that when expressed
in terms of its tensor components, the velocity vector has the same form in both
coordinate systems. This is true, in general, since by definition

(3.3.9)
dt dxi dt

And substitution from equation (1.12.9) in equation (3.3.9) gives

T7 dx* -
V — - af

dt l

Of course, the physical components of velocity are different, as can be seen when
the base vectors are reduced to unitary form. By substitution from equation (1.13.6)
in equation (3.3.7), the velocity vector may be expressed in terms of its physical
components and a set of unit base vectors as follows:

When the coordinate xl is identified with the radial distance r, the coordinate x2

with the polar angle 0, and the coordinate x3 with the azimuth angle \j/, the
equation for V assumes the more familiar form

, (3.3.11)

where a\ , a2 , and a3 are a triad of mutually orthogonal unit vectors in the directions
of increasing r, 6, and i//, respectively.

3.4 THE ACCELERATION VECTOR

If the acceleration vector were required, the velocity vector V would be substi-
tuted for the vector .4 in the equation for the intrinsic derivative:

(3-4.1)
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Hence, in a general curvilinear coordinate system, the acceleration vector is given by

<?£ + f •'U/*£W (3.4.2)
dt \ jk\ dt I l

dV_
dt '

By substitution from equation (3.4.1) in equation (3.4.2), the acceleration vector
may be written in the following alternative form:

(3.4.3)

This equation gives the acceleration in any coordinate system, provided the Christof-
fel symbols are appropriate to the coordinate system chosen to describe the
problem.

In a three-dimensional cylindrical polar coordinate system, equation (3.4.2)
reduces to the form given by equation (1.13.4) when the vector Kis substituted for
the vector A. Likewise, in a three-dimensional spherical polar coordinate system,
equation (3.4.2) reduces to the form given by equation (1.13.9) when the vector V
is substituted for the vector ,4. If equation (1.13.9) is used to obtain the acceleration
vector, the tensor components of velocity, rather than the physical components,
must always be used. The tensor components of velocity are given by. equa-
tion (3.4.1). These are

M . .2 dx2 .3 dx3

A = ' A = ' A =- <3-4-4>

Substituting these values in equation (3.4.3) gives the acceleration in terms of
spherical polar coordinates

is <3A5)
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By substitution of the Christoffel symbols from equation (1.13.8) in equa-
tion (3.4.5), the acceleration vector may be expressed in terms of its tensor compo-
nents and associated base vectors as follows:

dV [d2xl , /dx2\2 , . 2 /dx3

— - - ~x - ~ xl smx2 I — -
dt

/dx2\2 , . 2 /dx3V~l-[ - 1 ~ xl smx2 I — -I a
\d t ) W J

The corresponding physical components of the acceleration vector are obtained
when the base vectors are expressed in terms of unit vectors in accordance with
equation (1.13.6). When appropriate substitutions are made, equation (3.4.6) gives

l Jdx*\ ,/.x1 I - J - x1 (siw \
4Z = dJL - X' | ̂ _, _ X' , sin x
dt

dt dt dt dt

3.5 EQUATIONS OF MOTION IN A GENERAL CURVILINEAR
COORDINATE SYSTEM

In using tensor methods to derive equations of motion, it is again important to
remember that the acceleration and force vectors must always be expressed in terms
o'f their tensor components rather than their physical components. Hence, the two
sides of every equation must balance with respect to their covariant or contravariant
properties before applying Newton's second law of motion. In this connection it is
worth noting that, although the acceleration vector is expressed in contravariant
form in equation (3.4.3), the force vector may appear in the form of a covariant
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vector. The force vector assumes the covariant form when it appears as the gradient
of a scalar point function. This occurs in the equations of motion of a space vehicle
which, in addition to the thrust force, is subject to gravitational forces. If the
gravitational forces are expressed in the form of the gradient of a gravitational
potential function, the force vector is

F = V0 + f ' (3.5.1)

where 0 is the gravitational potential function, which may include the influence of
oblateness and extraterrestrial gravitational forces, and T is the thrust vector.

The gradient of a scalar point function assumes the form

(3.5.2)

The use of the reciprocal base vector a1 in equation (3.5.2) is justified by the
following considerations: the components of the gradient of the gravitational poten-
tial function in the y coordinate system are related to those in the x coordinate
system by the following equation:

80 30 dxj

dy' dxJ dyf

or

= — ! F<x) (3-5.3)
'

where
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Therefore, the transformation of the components of the gradient vector from the x
coordinate system to the y coordinate system obeys the covariant transformation
law as defined in equation (1.4.6).

The equation of motion of a point mass which is subject to gravitational and
thrust forces is obtained by combining equations (3.4.3) and (3.5.1):

(3.5.4)

where M is the mass.
It is seen that the acceleration components represented by the left-hand side of

this equation are all contravariant. The thrust vector, on the other hand, is usually
given in terms of its physical components, and as already indicated in equa-
tion (3.5.3), the gravitational forces assume the form of covariant vectors. To have a
force system compatible with the accelerations, it is necessary to convert all the
force terms to the contravariant form. The potential gradient function may be
converted to contravariant form with the aid of equation (1.7.6). From equa-
tions (3.5.2) and (1 .7.6)

(3.5.5)

The thrust vector may be expressed in the following alternative forms:

T = r'fl,- = r'df

where T1 are the contravariant components of the thrust vector, and TI are the
corresponding physical components. The physical components of the thrust vector
are related to the contravariant components by equation (1.9.2)

Ti = T* (3.5.6)

By substitution from equations (3.5.5) and (3.5.6) in equation (3.5.4), the equation
of motion assumes the following form
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Ml i : dxf . ='
bxi

Therefore

dt* dxj (3.5.7)

When the expression for the gravitational forces is expanded in a general three-
dimensional coordinate system, equation (3.5.7) becomes

M \
/* dt dt

3

However, in a rectangular coordinate system

for

and

where the parentheses imply suspension of the summation convention.
Substituting these values in equation (3.5.8) gives for orthogonal systems

M fox*

U2 (3.5.9)

Equation (3.5.9) may be rewritten as follows:

ff2x i i i\ jvj ^vk
M

or in the alternative form
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/-a c im(3-5-10>
The derivation of equation (3.5.10) may, at first sight, seem to involve an

unnecessary degree of complexity. However, when it is realized that this equation is
valid in all orthogonal curvilinear coordinate systems, the effort expended will be
seen to be worthwhile. Although in using the conventional approach, the equations
have to be reformulated each time a new set of coordinates is considered, the tensor
equation requires no such modification. Hence, the expenditure of time and effort,
which has to be made repeatedly when the formulation is conventional, is avoided
when the tensor equation is used.

Equation (3.5.10) may be formulated in terms of either coordinate transforma-
tion equations or metric tensors. When a particular application suggests a formula-
tion in terms of coordinate transformation equations, the metric tensors and the
Christoffel symbols may be replaced by their equivalents from equations (1.13.12)
and (1.13.14), respectively.

When these substitutions are made, equation (3.5.10) assumes the following
modified form:

92 y<* a,,a\ jvj j^-k9V* 9/*W dxk 90 /

ax* 3*1' I dt dt bxl Vi3x0') ajc(0

(3.5.11)
As indicated previously, a repeated index implies summation withurespect to that
index. An exception to this rule occurs when repeated indices are enclosed in
parentheses. Parentheses around an index imply that the summation convention is to
be suspended for that index. This means that for each value of the index /,
equation (3.5.11) must be summed on a, j, and k. For example, when equa-
tion (3.5.11) is summed on a, it appears as follows:

') 3*0) &c('') foe*1') 3x

, d y 1 , 3 V d y 2 , 9 V> I ' • - I ~~ ' __^— ^—

3 by3 1 d*xf

0') 3x(OJ dt2

\y
]dt dt i

(3.5.12)
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The left side of this equation must also be summed on / and k. When each of these
indices is permitted to take the values 1,2,3, in turn, equation (3.5.12) assumes the
following form :

3.K2
 + 3V 3y3 dx]_ dx1

ax1' ax'Sx1 dxi ax1 ax1 3x dt dt

•0
•t

9V_ 3yi + _9V_ a.y2
 +

ax'

aV_ a/ a
3x23x' 3xz' Sx'Sx1 3xz' 3x23x' 3x f/ dt dt

24\3x23x2 dxl 3x23x2 3xz 3x23x2 3x ' / . dt

I 32y dy1 d2y2 by2 , d2y3 dy3 \ dx2 dx3

\3x23x3 3xz' 3x23x3 dx1 3x23x3 dx'/ dt dt

C -, ... - -2 , .. 2 -,_ 33 y oy ay oy ay
• • i § sit sit

3x33x' 3x ax33x j 3x 3x 3x 3x /

+1 d2y l a^1 , 3V 3^2 , 32j3 3j^3 \ dx3 dx2

\3x33x2 3xf 3x33x2 axj" 3x33x2 3x7 dt dt

\3x33x3 3x' 3x33x3 3xz' 3x33x3 3x7 dt dt
\JA, t/A \J*\ W^V \JJ\, \JS\r I

= -|- -. / — 4~ — — ~f — — 7*

(3.5.13)
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The form of this equation is well suited to routine non-numeric computer opera-
tions. The large number of terms appearing in equation (3.5.13) is due to the
generality of the equation, which is applicable to any space of three dimensions.
Hence, to obtain the equations of motion in any system of coordinates by using
transformation equation inputs, the only information required is the special form of
equation (1.4.4), relating that system of coordinates to the orthogonal Cartesian
coordinates^'.

3.6 COMPUTER DERIVATIONS OF EQUATIONS OF MOTION OF A
PARTICLE

Equation (3.5.11) can be mechanized to formulate the equations of motion of a
particle in any orthogonal curvilinear coordinate system requested by the user. The
key statement in the mechanization program utilizes the analytic differentiation
routine. This statement must be written according to the rules of analytic differen-
tiation specified in the user's manual. In the case of computers equipped with
formula manipulation compilers, the statement corresponding to equation (3.5.11)
would assume the following form (ref. 2):

M*( ( (DERIV(Y(A) ,X ( I ) ) ) * *2 ) *A ( I )

+ ( D E R I V ( Y ( A ) , X ( J ) , X ( K ) ) ) * ( D E R I V ( Y ( A ) , X ( I ) ) ) * V ( J ) * V ( K ) )

= D P H I ( I ) + S Q R T ( ( D E R I V ( Y ( A ) , X ( I ) ) ) * * 2 ) * T ( I ) (3.6.1)

where

T' (3.6.2)

^- (3.6.3)
at at

Y(F)=y i ; Y(A)=y« (3.6.4)

A simple program using equation (3.6.1) and supporting statements to formulate
the equation of motion of a particle will require as input, the coordinate transforma-
tion equations corresponding to the coordinate systems being considered; the
following are examples.
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\

3.6.1 Spherical Polar Coordinates

Consider a transformation of coordinates specifying the relation between the
spherical polar coordinates xl and the orthogonal Cartesian coordinates yl. In this
case, equation (1.4.4) becomes

Input =

yl = xl sinx2 cosx3

y"1 = xl sinx2 sin x3

= xl cos jc2

The corresponding output is

d2xl Jdx*\ ,/.-- x M— -I - x M s
dt> \dt ) V

smx
|_cfr2 \* / \ *'/J 3X1

2x' -- (x1)2 sinx2 cosx2

dt dt dt

M\(x l sinx2)2 ^ + 2x! sin2 x2 ̂  ^! + 2(x')2 sinx2 cosx2 ^ ^
I d(2 dt dt dt dt J

sinx2r3

Because of its generality, equation (3.5.13) is applicable in all coordinate systems.
Therefore, to obtain the equations of motion in any other coordinate system, all
that is required is to supply the computer with the appropriate coordinate transfor-
mation equations.

3. 6. 2 Cylindrical Polar Coordinates

As a further illustration of the procedure involved, consider the equations of
motion in a cylindrical polar system of coordinates. In this case, the coordinate
transformation equations are
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y1 = x1 cos*2

y2 = xl sinx2

When these coordinate transformation equations were used to evaluate the terms of
equation (3.5. 1 3), the following output was obtained.

ax2

3x2

3.6.3 frolate Spheroidal Coordinates

Another interesting system of orthogonal curvilinear coordinates is the prolate
spheroidal coordinates. Coordinate surfaces are obtained by rotating a family of
confocal ellipses and hyperbolas about their major axes. Rotating these conic
sections gives rise to a system of prolate spheroids and hyperboloids of two sheets. A
family of planes through the axis of rotation completes the system of orthogonal
surfaces. The curvilinear coordinate systems generated by the curves of intersection
of these surfaces are useful in certain quantum mechanical problems. The transfor-
mation equations relating this system of coordinates to the orthogonal Cartesian
system are as follows (ref. 3):

y1 ^as inhx 1 sinx2 cosx3

y2 =a sinhx1 sinx2 sinx3

y3 -a coshx1 cosx2

To obtain the equations of motion relative to a prolate spheroidal system of
coordinates, these transformation equations were substituted for equation (1.4.4) in
the computer program. The equations of motion were obtained as follows:
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M a 2 ( s m 2 x 2 + sinh2*1) — + 2a2sinx2 cosx2 -\a2(s
l dt2 dt dt

a2 sinhx1 coshx1 — — - a2 sinhx1 coshx1 — —
dt dt dt dt

- a2 sin2 x2 sinhx1 coshx1 T = a ysin
2 x2 + sinh2 xV +

vdt dt , ax,

L
a2(sin2x2 + sinh2 x1)^-^-- a2 sinx2 cosx2 ^- ?^-

rf,2 <// dt

2a2 sinhx1 coshx1 ^- ^ + a2 sinx2 cosx2 ^ ^
c?/ c?r rfr dt

- a2 sinx2 cosx2 sinh2 x1 ^- ^-\ = ak/sin2 x2 + sinh2 x1 r2 +-^

[
/

J2V3 ,jvl JV3
z2 sin2 x2 sinh2 x1 2JL- + 2a2 sin2 x2 sinhx1 coshx1 =i- ^~

dt3 dt dt

+ 2a2 sin x2 cos x2 sinh2 x1 — — = a sin x2 sinh x1 r3 + ^~
dt dt ] 3jc3

3.6.4 Oblate Spheroidal Coordinates

Confocal ellipses and hyperbolas rotated about their minor axes generate the
oblate spheroids and hyperboloids of one sheet. These surfaces, together with a
family of planes through the axis of rotation, constitute a family of orthogonal
surfaces. The curvilinear coordinate systems generated by the curves of intersection
of these surfaces are called oblate spheroidal coordinates. Oblate spheroids are
sometimes referred to as planetary ellipsoids, because the Earth and the planet
Jupiter are approximately of this form. The transformation equations relating this
system of coordinates to the orthogonal Cartesian system are as follows (ref. 3):
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y1 = a coshx1 sin*2 cosx3

y2 —a coshx1 sinx2 sinx3

y3 =a sinh x1 cosx2

These transformation equations again take the place of equation (1.4.4) in the
computer program. The equations of motion relative to a system of oblate spheroi-
dal coordinates were obtained in the following form:

E r v f~. Y

i2(sinh2 x1 + cos2x2)^- +fl2(sinhx1 coshx1)— —
'

1 fl~. I JY 1

dti ' dt dt

- 2a2 cosx2 sinx2 ^1 ^1 - a
2 sinhx1 coshx1 —

dt dt dt dt

- a2 coshx1 sinhx1 sin2 x2 — — =aU/sinh2x1 +cos2x2)T1

dt dt ] \v /

M|a2(sinh2 x1 +cos2 x2) + a2 sinx2 cosx2 — —
L

— —
dt2 dt dt

+ 2a2 sinhx1 coshx1 - - a2 sinx2 cosx2

dt dt dt dt

- a2 coshx1 sinx2 cosx2 -— ^- =a v/sinh2 x1 + cos2 x2 r2 +
dt dt ] v

9x2

3

dt
Mia2 cosh2 x1 sin2 x2 ^~ + 2a2 sinhx1 coshx1 sin2 x2 — —

V dt2 dt dt

+ 2a2 cosh2 x1 sinx2 cosx2— — j = a coshx1 sinx2T3+-^-
dt dt ) 8x3

The preceding technique for formulating equations of motion by symbolic mathe-
matical computation is based on the use of coordinate transformation equations.
However, in many cases it will be convenient to use the metric tensors, rather than
the coordinate transformation equations. When this procedure is adopted, the
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necessity for evaluating equation (1.13.12) is eliminated and equation (3.5.10) is
modified as follows:

7\O \ t 1 7 I / f)(F1 / il\ dx dx i 1 j >n

9g1:

3x'/ 3x2 A I dt dt

,dxl 9x2

dg3i
I

9x2

./ / dt dt 9x3

dt (9#3/

dx3 dt - dt

If this form is used to derive the equations of motion of a particle in cylindrical
polar or spherical polar coordinate systems, the inputs to the computer program
would be given by equations (3.2.6) and (3.2.9), respectively, rather than by equa-
tions (3.1.1) and (3.1.3).

Consider again the problem of formulating the equations of motion of a particle
in a cylindrical polar coordinate system. In this case the metric tensors are

=1

£ 3 3 = 1

The following simple program consisting of two separate DO loops may be used
to formulate the equations of motion of a particle in a cylindrical polar coordinate
system
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LET(G(1,1)=1);

LET(G(2,2)=X(1)**2);

LET(G(3,3)=1);

PRINT_OUT(G(1,1);G(2,2);G(3,3)) ;

PUT SKIP(5);

DO 1=1 TO 3 BY 1;

LET(I="I");

DO J=l TO 3 BY 1;

LET(J="J");

DO K=l TO 3 BY 1;

LET(K="K");

LET(D(I,J,K)=(1/2)*DERIV(G(I,K),X(J)));

LET(E(J ,K, I )=(1 /2)*DERIV(G(J,K) ,X( I ) ) ) ;

LET(F(I,J,K) = (1 /2)*DERI-V(G( I ,J ) ,X(K) ) ) ;

LET(C(I.J,K)=(D(I,J,K)+E(J,K,I)-F(I ,J,K)));

P R I N T _ O U T ( G ( I , J , K ) ) ;

END;

END;

END;

PUT SKIP(3);

DO 1=1 TO 3 BY 1;

LET(I="I");
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LET(ST(I)=0);
/

DO J=1 TO 3 BY 1 ;

LET(J="J");

DO K=l TO 3 BY 1;

LET(K="K");

LET(ST(I)=ST(I)+C(0,K,I)*V(J)*V(K));

LET(A(I)=((DPHI(I)+SQRT(6(I,1))*T(I))/M-ST(I))/G(I,1));

END;

END;

PRINT_OUT(A(I));

PUT SKIP(3) ;

END;

The output from this program is as follows:

6(1,1) = 1 C(l ,2,3) = 0

6(2,2) = X ( l ) 2 - C(l,3,l) = 0

• 6(3,3) = 1 C(l,3,2) = 0

C(l, 3, 3) = 0

C(l, 1,1) = 0 C(2,l, l) = 0

C(l, 1,2) = 0 C(2, l ,2) = X ( l )

C(l, 1,3) = 0 C(2,l,3) = 0

C(l, 2,1) = 0 C(2,2, l ) = -X ( l )

C(l, 2, 2) = X( l ) C(2,2,2) = 0
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C(2,2,3) = 0 C(3,2, l ) •= 0

C(2,3,l.) = 0 C(3 ,2 ,2 ) = 0

C(2,3,2) = 0 C(3,2,3) = 0

C(2,3,3) = 0 - . -C(3,3, l ) = 0

C(3, l , l ) = 0 C(3 ,3 ,2) = 0

C(3, l ,2) = 0 . C(3,3 ,3) - 0

C(3,l,3) = 0 .

= X ( l ) V (2 ) 2 + (DPHI(l)

A (2 ) = ( -2X(1) V ( l ) V ( 2 ) + (DPHI(2)

A (3 ) = (DPHI(3) + T (3 ) ) /M

In interpreting these output statements, it should be noted that

where [ijk] are the Christoffel symbols of the first kind, and

dt2

Y
V(D = =±_ ; M = Mass

dt

Also, T(f) is the rth component of the thrust vector.
In terms of conventional mathematical symbolism, these equations are

dt dt
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dt dt J a*2 'r2

The same program may be used to formulate the Christoffel symbols of the first
kind and the equations of motion of a particle in a spherical coordinate system,
provided the metric tensors from equation (3.2.9) are used as input.

With this change, the program and the output appear as follows:

LET(G(1,1)=1);

LET(G(2,2)=X(1)**2) ;

LET(G(3,3)=X(1)*SIN(X(2)))**2) ;

- PRINT_OUT(G(1,1);G(2,2);G(3,3));

PUT SKIP(5);

DO 1 = 1 TO 3 BY 1; ' f>

LET(I="I");

DO J=l TO 3 BY 1;

LET(J="J");

DO K=l TO 3 BY 1;

LET(K="K");

LET(D(I,J,K)=(1/2)*DERIV(G(I,K),X(J)));

LET(E(J-,K,I) = (1/2)*DERIV(G(J,K),X(I)));

LET(F(I,J,K)=(1/2)*DERIV(G(I,J),X(K)));

LET(C(I,J,K)=(D(I,J,K)+E(J,K,I)-F(I,J,K)));
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PRINT_OUT(C(I,J,K));

END;

. END;

END;

PUT SKIP(3);

DO 1=1 TO 3 BY 1;

LET(I="I");

LET(ST(I)=0); .

DO J=l TO 3 BY 1;

LET(J="J");

DO K=l TO 3 BY 1;

" LET(K="K");

LET(ST(I )=ST(I )+C(J,K, I ) *V(J)*V(K)) ;

L E T ( A ( I ) = ( ( D P H I ( I ) + S Q R T ( G ( I , I ) ) * T ( I ) ) / M - S T ( I ) ) / G ( I , I ) ) ;

END;

END;

PRINT_OUT(A(I));

PUT SKIP(3);

END;

6(1,1) = 1

6(2,2) = X ( l ) 2

6(3;3) = SIN2 ( x (2 ) ) X ( l ) 2
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C(l,l,l) = 0

C(l,l,2) = 0

CO,1,3) = 0

C(l,2,1} = 0

C(1,2,2) = X{1)

C(l,2,3) = 0

0(1,3,1) =0

0(1,3,2) = 0

0(1,3,3) = SIN2 (X(2)) X(l)

0(2,1,1) = 0

0(2,1,2) = X(l)

0(2,1,3) = 0

0(2,2,1) = -X(l)

C(2,2,2} = 0

C(2,2,3) = 0

0(2,3,1) = 0

0(2,3,2) = 0

0(2,3,3) = COS (X(2)) SIN (X(2)) X(1)2

0(3,1,1) = 0

0(3,1,2) ='0

0(3,1,3) = SIN2 (X(2)) X(l)

0(3,2,1) = 0
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C(3,2,2) = 0

C(3,2,3) = COS ( X ( 2 ) ) SIN ( X ( 2 ) ) X ( l ) 2

C(3,3, l) = -SIN2 ( X ( 2 ) ) X ( l )

C(3,3,2) = -COS ( X ( 2 ) ) SIN ( X ( 2 ) ) X ( l ) 2

C(3,3,3) = 0 ' .

V ( 2 ) 2 + SIN2 ( X ( 2 ) ) X ( l ) V (3 ) 2 + (DPHI(l)

A(2) = ( -2X(1) V(1 ) V (2 ) + COS ( X ( 2 ) ) SIN ( X ( 2 ) ) X ( l ) 2 V (3 ) 2

+ (DPHI(2) + X ( l ) T ( 2 ) ) / M ) / X ( 1 ) 2

A(3 ) = (-2 COS ( X ( 2 ) ) SIN ( X ( 2 ) ) X ( l ) 2 V (3 ) V ( 2 )

- 2 SIN2 ( X ( 2 ) ) X ( l ) V ( l ) V (3 ) + (DPHI(3)

+ SIN ( X ( 2 ) ) X ( l ) T(3))/M)/(SIN2 (X (2 ) ) X ( l ) 2 )

In conventional notation, these equations assume the more familiar form

M
dt* \dt

- xl Ism** — • - 0

... ^ v. , f

l sin*2)2 * + 2xl sin2

dti dt dt

+ ^s \ \") - 9 *) CtX ClX \2(x1)2 smjc2 cosjc2

dt dt
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The same procedure can be employed to obtain the equations of motion of a
particle in any other coordinate system provided the fundamental quadratic form is
known. For example, the technique has been used to derive the equations of motion
of a particle relative to a prolate spheroidal system of coordinates. In this form, the
equations are useful in certain quantum-mechanical problems.

3.7 OBSERVATIONS

It is seen that a digital computer can be used to facilitate the formulation of the
equations of motion of a particle in any curvilinear coordinate system of interest.
The simplification inherent in the tensor method is again evident. Equations (3.5.10)
and (3.5.11) are applicable in all three-dimensional systems of coordinates. With
these equations, the user has a"~choice of two methods: (1) a formulation based on
metric tensor inputs and (2) a formulation based on coordinate transformation
equation inputs. As in the case of aeronautical applications, it should be observed
that, in each case, the only operations involved are summation and symbolic
differentiation.

3.8 ILLUSTRATIVE EXAMPLES

The following illustrations and applications of the equations derived in preceding
sections are designed to provide readers with some physical insight and an oppor-
tunity to reexamine the equations when they are expressed in more familiar
symbology.

The use of indices, such as superscripts and subscripts, is advantageous from the
point of view of symbolic mathematical computation. However, some readers may
feel more comfortable with the equations when the following substitutions are made
(see sketch (1)):

xl = r

x2 =6

x3 = 0 J

polar coordinates
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x l =r

=6 cylindrical coordinates

Sketch (1)

Equations (3.5.10), and subsequent equations, give the components of accelera-
tion in any curvilinear coordinate system. In terms of the more familiar (r,0,0)
coordinates these components are

fr = (r- r62 -/-sin2 002)

/0 = 0*0* + 2r"0 - rj>2 sin 0 cos 0)

/ = (r"0 sin 0 + 2r0 sin 0 + 2r00 cos 0)
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3.8.1 Motion on the Surface of a Sphere

For the special case of motion on the surface of a sphere of radius a, these
equations take a simpler form.

The acceleration toward the center is

a(02 +sin2 002)

Acceleration along a meridian curve is

a(6- 02 sin 6 cos 9)

The acceleration perpendicular to a meridian plane is

a(0sin0 + 200 cos0)

3.8.2 Motion of a Particle on a Right Circular Cone (sketch (m))

For this kind of motion, we substitute 6 = /3, and obtain for the acceleration along
a generator OP

(r - r02 sin2 0)
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Along the inward normal PQ, the acceleration is

(/•02 sin |3 cos j3)

and the acceleration normal to a meridian plane is

(r0 sin j3 + 2/0 sin j3)

3.8.3 Motion of a Particle in a Central Force Field Varying Inversely as the Square
of the Radial Distance From the Center

3.8.3.1 Polar orbits. The equations of motion of a particle describing a polar
'orbit are obtained by substituting0 = a = constant, and by applying the appropriate
force function, that is

(r0 + 2r0) = 0

where n is the force per unit mass. The second of these equations may be rewritten
as follows:

r dt

Therefore

where h is the constant angular momentum of the particle. By substituting for 6 in
the first equation we obtain

A useful form of solution is obtained by making the substitution u = \ / r , which gives
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Hence

^ - = h u 2 * -
dt dd

de

and

Therefore

or

This well-known equation has a solution of the form

w = -4 4- D cos(0 - co) = —
h2 r

where D and cj are constants of integration.
This equation may be rewritten as

1,1 n/,2
2_ = 1 + — cos(6 - 5)
fV M

which is recognized as the polar equation of a conic with focus as origin. The
semilatus rectum is /, where
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In terms of this relationship the polar equation of the conic, when expanded, is
(see sketch (n))

- = 1 + A cos 6 + B sin 0

-2a-

SEMILATUS RECTUM

Sketch (n)

To determine the integration constants, it is noted that when

* = f , ' = >

Therefore, B = 0 and l/r = (1 + A cos 0).
The constant A is determined by noting that when

6 =0 , r = a(\ - e)

where a and e are the semimajor axis and the eccentricity, respectively. Substitution
of these values and use of the known relationship

l = a ( l - e 2 )

yields the value

A = e

and gives the equation of the orbit in the form
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- = 1 + e cos 6
r

which is the typical form of the equation of a conic.
3.8.3.2 Equatorial orbits. Equatorial orbits are obtained by letting 6 = ir/2, and

subjecting the particle to the same force function, that is,

r-

= 0

Solving these equations leads to a solution of the same form as the preceding case,
that is,

— = I '+ e cos 0
r

3.8.3.3 Kepler's second law. Let dA be the element of shaded area in sketch (o)
below.

Then

Sketch (o)

dA = -
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where p is the perpendicular distance to the tangent vector and dS is an element of
orbital arc. It follows that

dA 1 dS 1 .

From the second orbital equation r2d = r20 = h, which is the constant angular
momentum of the particle. Moreover, the angular momentum of the particle is also
equal to pV. Hence

• .

Therefore

dA

This is the mathematical expression of Kepler's second law (ref. 4), which states:
the radius drawn from the center of force to a planet describes equal areas in equal
times.

3.8.3.4 Kepler's third law. Kepler's third law follows immediately from this
result. If Pbe the planetary period, then

p =
h/2 h

but

or
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Therefore

n

and

This is Kepler's third law which states that the square of the periodic times of differ-
ent planets is proportional to the cubes of the semimajor axes of their orbits (ref. 5).

3.8.4 Motion on the Surface of a Cone

As an example of the use of cylindrical coordinates, consider the motion of a
heavy particle of mass m on the surface of a smooth, right circular cone, with axis
vertical and vertex downward (sketch (p)). By resolving along a generator, we
obtain

Sketch (p)

m(f- rO2 )sin a 4- *z* cos a = - mg cos a:
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and

z = r cot a

Therefore

'm^ • i Vcos2 a(r- /-02)sm a + - = -g cos a
sin a

or

•• " i ir - r6z sirr a = -g sin a cos a

As demonstrated in a previous example, this equation may be rewritten as

d2u . . , g sin a cos a— - 4- u sin a = - - - — - -
d62 h 2 u 2

This is the differential equation of the projection of the path on a horizontal plane.
Moreover, since

rdd — rdd and r = r sin a

then

dO = dd cosec a ; u — u cosec a

Making these substitutions in the equation of the projection of the path on a
horizontal plane yields

_ _ g sin2 a cos a

Hence, if the cone be developed into a plane, it is seen that the orbit of the path on
the surface will be the same as would be produced by a particle moving in a plane
under the action of a constant central force.
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4.1

4.1 FORMULATION OF THE NAVIER-STOKES EQUATIONS AND THE
CONTINUITY EQUATION

The Navier-Stokes equations form the basis of the whole science of fluid mechan-
ics (ref. 1 ). The technique described in preceding chapters can be used to facilitate
the derivation of these equations and the corresponding continuity equation. In fact,
any equation or system of equations that can be expressed in tensor form is
amenable to formulation by the methods described. Again, it will be seen that in
order to formulate the equations describing the flow over a given surface, it is only
necessary to know the metric tensors for that particular surface, since all essential
metric properties of the surface are completely determined by this tensor. The
metric tensors may be obtained from the fundamental quadratic form, which is an
expression for the square of the distance between two adjacent points on a surface,
or in terms of coordinate transformation equations. If a formulation in terms of
coordinate transformation equations is adopted, the methods described in sec-
tion 1.13 may be used. For reasons that will become apparent as we proceed, the
relationships expressed in equations (1.13.12), (1.13.14), and (1.13.15) are adequate
to our needs.

A form of the Navier-Stokes equations of motion of a compressible viscous fluid,
which is valid in all curvilinear coordinate systems, is (ref. 2)

l \ 3Z°1+ (') ^L ( a )3L ' + /_3_ M
' foe' I"'/ dxk W fa" \dxk la//
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In this equation, the summation convention is assumed. That is to say, if in any
term an index occurs twice, the term is to be summed with respect to that index for
all admissible values of the index.

If the body forces are assumed to be known, it is seen that the Navier-Stokes
equations involve five unknowns: Vl(xJ), (i = 1 ,2,3), p(x/), and p(x,t). To complete
the system, two more equations are added. One of these is the equation of state that
relates the pressure and the density. It may be written as follows:

p=p(p) (4.1.2)

The other equation expresses the principle of conservation of mass and assumes the
form (ref . 1 )

Furthermore, if the process is not isothermal it is necessary to make use of the
energy equation, which draws up a balance between mechanical and thermal energy
and furnishes a differential equation for the temperature distribution. However, to
simplify and clarify the exposition, the flow will be assumed to be incompressible
and viscous. Hence, this equation will not be included here. Moreover, equa-
tion (4.1.2) will not be required in this case, and equation (4.1.3) will assume the
simpler form (ref. 3)

\fak+ \akl / =° (4.1.4)

For orthogonal coordinate systems

g'' = 0 for /=£/ (4.1.5)

and

g<«)=J_ (4.1.6)
- g(ii)

where parentheses around a repeated index imply suspension of the summation
convention for that particular index. With these simplifications, equation (4.1.1)
may be rewritten as follows:
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(4.1.7)

where the kinematic viscosity v is defined by the equation

v = ± (4.1.8)
P

It is instructive to dwell on this rather complicated equation for a moment and
examine its meaning and the meaning of the individual terms and coefficients. This
is the equation of incompressible, viscous flow in which the density p and the
kinematic viscosity v are assumed to be constants. It represents the three equations
of motion obtained, by invoking the principle of conservation of momentum.
Likewise, the principle of conservation of mass yields equation (4.1.4). With known
body forces Fl, there are, therefore, four equations for the three unknown velocity
components V1 and the pressure p. Since the coefficients are metric tensors or
Christoffel symbols, which are functions of the metric tensors, the formulation of
these equations in any particular coordinate system depends only on the specifica-
tion of the metric tensors. For a formulation in terms of coordinate transformation
equations, the curvilinear coordinates xl are assumed to be related to an orthogonal
Cartesian triady l by the following coordinate transformation equations:

(4-1.9)
i= l , 2 ,3

This transformation is assumed to be reversible and one-to-one. Hence

x i=x i(y1y2y3) (4.1.10)

In terms of these functional"relationships, the metric tensors and the Christoffel
symbols are defined as follows:

-\ Q *\ OL9yu dyu

" ~ - (4.1.11)
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Before substituting these relationships in equation (4.1.7), the following simplifica-
tion will be helpful

Therefore

where
«

a _ 0 for a =£ /?

0 1 for a = /3

Hence

Ml / 32va 3va\
(4.1.13)

The expression on the right-hand side of equation (4.1.13) defines the Christoffel
symbol of the first kind in terms of coordinate transformation equations. The
Christoffel symbol of the first kind was defined in terms of metric tensors in
equation (1.12.3), that is

Substitution from equations (4.1.11) through (4.1.13) in equation (4.1.7) gives
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(4.L14)

Equation (4.1.14) represents three tensor equations of motion of an incompres-
sible viscous fluid relative to any orthogonal curvilinear coordinate system. Since the
derivation merely requires the determination of the partial differential coefficients
of y with respect to x, and of x with respect to y, the form of this equation is well
suited to routine nonnumeric computer operations. Moreover, the only inputs
required are the coordinate transformation equations that are given in equa-
tions (4. 1.9) and (4.1.10). The required inputs can be reduced further by elimina-
tion of the partial differential coefficients of x with respect to y from equa-
tion (4.1.14). This can be done by using the following relationship, which is valid in
all orthogonal coordinate systems:

a2/*
by"

By substitution from equation (4.1.15) in equation (4.1.14), a form of the
Navier-Stokes equation is obtained whose derivation in any coordinate system
depends only on equation (4.1.9). This is
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+ M Ml J_

(4.1.16)

4.2 THE PHYSICAL FORM OF THE NAVIER-STOKES EQUATIONS

Because equation (4.1.16) is a tensor equation, all the velocity and force compoy
nents occurring in this equation are tensor components. This form of the equation is
well suited to theoretical studies. However, in practical applications, it is the
physical components that are of interest (ref. 1). The tensor components of a vector,
or first-order tensor, are related to its physical co'mponents as follows (ref. 2):

K' =
M M
axW ax*1')

/*'

K^o a^)

(4.2.1)

(4-2.2)
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where V1 and v1 are the tensor and physical components, respectively, of the velocity
vector V; and Fl, f are the tensor and physical components, respectively, of the
force vector F. By substitution from equations (4.2.1) and (4.2.2) in equa-
tion (4.1.16), the physical form of the Navier-Stokes equations is obtained

a9x/ axf

,,«

ax1/ a
(4.2.3)
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Because the index i can assume the values 1, 2, or 3, equation (4.2.3) represents
three equations. If the forces/' are assumed given, there are only three equations for
the four variables vl and p. However, as indicated previously, another equation can
be obtained from the continuity condition. Satisfaction of this condition requires
that the physical components of V satisfy the equation

a
fk

v,k

\i,
= 0 (4.2.4)

The form of equations (4.2.3) and (4.2.4) is such that the only computer input
required is the transformation equation expressing the Cartesian coordinates yl as
functions of the curvilinear coordinates xl. The inverse transformation is no longer
required.

Although these equations are complicated, the only computer operations required
to formulate them are summation and symbolic differentiation. A program that
consists of a few statements for controlling symbolic differentiation, supported by a
simple computational algorithm for exploiting the summation convention, was
demonstrated in chapter 2." The methods employed there can be used with equal
facility to formulate equations (4.2.3) and (4.2.4). Moreover, once these equations
are programmed and made available in a program library, the researcher need only
specify the surface or boundary that determines the flow.

Those who do not have access to a digital computer will find that a manual
formulation has certain advantages. Indeed, even in those cases where a digital
computer is available, it is recommended that at least some of the formulations be
performed manually. By doing so, the user will be made aware of the inherent
simplicity of the method, which involves nothing more than repeated partial differ-
entiation. A point to be noted is that once the general formulation is available, the
specialized form can be obtained without further reference to the physics of the
problem. The nature of the problem is such that given a set of transformation
equations, the required model can be formulated by anyone who can differentiate.

To demonstrate again the inherent simplicity of the method, and the fact that the
formulation of complex models only requires a series of repeated differentiations,
one of the equations (4.1.16) will be evaluated in a cylindrical polar coordinate
frame of reference, where
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= xl cosx2

—x l sinx2

=x3

(4.2.5)

. The first factor in equation (4.1.1 6) is

It will be recalled that parentheses around an index implies suspension of the
summation convention for that index. Bearing this in mind we sum this factor on |3,
remembering to keep the i constant, that is

= a ]2 + [V
Wj [a*(/)J

ay3

And for / = 1

toe®

From equation (4.2.5), we have

ax1 = cos x ; • i ^= sin xl ; -^— = 0
ax1

Substitution of these values in equation (4.2.6) yields

ax1 3xJ

Therefore, for /' = 1, the first term of equation (4.1.16) is

3x7

(4.2.6)

(4.2.7)

(4.2.8)
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To this must be added

F2 + F3

3x2 3x3

and the first two terms are

\a/ ax1 3.x2 3x3/

The third term involves a summation on m, a, and/. Summing first on m gives

/3V" 3/*\ yaK/ = /_3V_ dzl + 3V 3^. + 9V S^^y
\3xa3x/ axVi=i \3xa3x/ 3*1 3jca3x/ 3x! 3xa3x^' Sx1/

From equations (4.2.5), it is seen that.y3 is independent of x1 . Hence, the last term
on the right-hand side of this equation vanishes, and we are left with

/3V" 3yAT/qF/ / 3V 3^'+ 3V t

\3xa3x>' 3xV \3xa3x/ 3x! 3xa3x/ Sx1

Summing next on a, and noting that terms involving a = 3 vanish, we obtain
•

/3V V +_3!zi_ 3y!\^F/+ /-§^i- fr' + 3^2 ^
VSx'Sx^' 3x' Sx'Sx/ 3x7 \3x23x/ 3x' 3x23x/
^

Summing next on /, we find that the coefficient of ( F1 )2 is zero since

3V _ 3V -

The coefficient of F1 F2 is also zero because

/

\

3V = ( - s i n x 2 c o s x 2 + C o s x 2 s i n x 2 ) - 0
3xa3x2 Sx1 3x'3x2 3x
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and the coefficient of V2 V1 is zero for the same reason. Hence, the only nonzero
coefficient is the coefficient of F2 V2 , which is

/^V_ V

\3x23jc2 3*1 3x23x2 3*1

and when expanded, the first three terms of equation (4.1.16) yield

(4.2.9)
8' Bx1 3x2 3jc3

Proceeding next to the right-hand side of equation (4.1.16), but still retaining the
value i = 1 , we find on using the value already obtained for

3.x1 3x*

in equation (4.2.7), that the body force and pressure gradient components are

^! - — (4.2.10)

The first viscosity term on the right-hand side of equation (4.1.16) is

1 ax1

Because the term

has already been evaluated and found to be equal to unity, the first viscous term
reduces to
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When expanded, these factors give rise to the following three terms:

/V ^/Y1 32K* +/V; dy^Y

\dxl dx1/ dx*dx l \dx2 dx2/ dx2dx2 \dx3

Because the index A: is a dummy index, it can be replaced by any other index. In
particular, it can be replaced by the index j3, that is

dA = /V a/
l dx1/ \dxl dx1

and the first viscosity component is

To evaluate the coefficient of the second term

dx2

it is necessary to refer again to equation (4.2.5), which gives

— — =(*1)2 (4.2. lOa)

Therefore, the second viscosity component is

Likewise, the coefficient of the last term is

'^- ^- =1 (4.2.lOb)
(dx3 dx3/
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and the last term is simply

3x33x3

Combining these three components yields the first viscosity term as follows:

[ 321/1 i 32^1 321/1 "I
-^— +— ^—+ a V (4.2.11)
Sx'ax1 (x1)2 3x23x2 3x3ax3J

The next viscosity term is .

When this expression is summed on /, we obtain

V9
+ -

9X1 dx1/ ^ax1 ax1 /ax1 \ax2 ax2/ \axaax2 ax1/ ax2

\3x3 3x3/

It has been shown that

Sx1 ax1 3x2 3x2

and

3x3 3x3

Therefore, equation (4.2.12) reduces to "

i /avm a^m\ 3 .̂+ /
1 )2 \axadx2 ax1 / ax2 \

_
ax1 / ax1 (x1 )2 \axadx2 ax1 / ax2 \3xaax3 ax1 / ax3
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The next step in the formulation is a summation on m which yields

dxadxl

+ _L_ ay V + ay M + ay ^3 a^
a*1 axaax2 ax1 ax^x1 ax1/ ax2

/_dV_ a/ + ay2 aj^ + a2^3 a^\ aH
yax^ax3 ax1 3xaax3 ax1 axaax3 axvax3J

Consider the coefficient of dV^dx1 in this expression, and sum on a.
For a = 1 , each term of this coefficient is zero since

aV _ aV2 ay __ Q

ax1 ax1 , ax1 ax1

For a = 2, we have

and

a V a y . 2 2- — -^— =-smxz cosx

. 2 2= sin x2 cos x2

3x23x1 ax1

Because y3 is independent of x1 and x2 , the last term is zero, that is

ax2axj ax1

Hence, for a = 2, the coefficient of dV^dx1 is zero.
For a = 3, all terms of this coefficient vanish because yl and>>2 are independent

of x3, and y3 is independent of x1. Therefore, the coefficient of dVa/dxl is zero for
all a.
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Proceeding next to the coefficient of 3Ka/3x2, and summing for a= 1, we note
that the sum of the terms vanishes. This is because the coefficient of dVa/dx l for
a = 2, which has been shown to be zero, is the same as the coefficient of dFa/3x2

f or a = 1.
For a = 2

3 V 9 / 1 2 2— =-x l cos2 jc2

3x2 3x2

and

3 V 3 y 2 1 - 2— -^— = -xl sin2

3x23x2 3x!

Because y3 is independent of x1 and x2, the last term of this coefficient vanishes,
and the coefficient of 3Fa/3x2 is

(-x1 cos2 x2 - x1 sin2 x2) =
1 2(x1)

Recalling that because yl and y2 are independent of x3 andy3 is independent of
x1 , the coefficient of 3Fa/3x2 is zero for a = 3. For the same reason, the coefficient
of dVa/dx3 is zero for all values of a. It follows that when the viscosity
term (4.2.1 2) is summed on a,j, k, and m, the result is simply

_ / 2 M 3J5\

Vx1 3x2/

Combining the results obtained so far, we have for i = 1

3x2 3x3 J

a2T/l a2 r/1 O ST/2
(4.2.13)

(x1)2 3x29x2 3x33x3 x1 3x2_
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The next viscous term to be formulated is

f
M|_

* a^\"ayT a^ '/a2?"1 a^Nar1

Wax/ ax°7axaaj,0') 3j,(/)

In spite of its forbidding appearance, this term can be formulated easily if one
uses the results of the previous work. A little practice with expressions of this type
will show that it is not alv/ays necessary to carry out all the summations specified
for the general case. By referring to the second viscous term considered (4.2.12), it
will be observed that in the subsequent summations, the only nonzero value of the
factor

3X1

occurred when the indices assumed the following values: a = 2;/ = 2.
When formulated in terms of the given transformation equations and summed on

m, this factor was shown to satisfy the equation

3x2 3*1

It follows that the only indices that need to be considered are a = 1 ; / = 2.
Moreover, it has been shown that for/ = 2

ax2 a*2

and

and this viscous term reduces to

, ,. n(-x1) = -=-
(x1)2 ax1 x1 ax1
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When we add this component to the previously.obtained results (4.2.13), we have

df ax1 ax2

= F1 - m- + i
ax1 I ax1 ax1 (x1)2 ax2 ax2 ax3 ax3 x1 ax2 x1 ax1

(4.2.14)

Although the remaining three terms look equally forbidding, all the factors except
one can be evaluated by inspection.

Consider first the term

[V
Lax^)) ax(/) ax v ax/' ax1 ax1

We have already determined that

ax1 ax1

and therefore

3

3x/

a/a/\
ax1 ax1/

Hence, this term vanishes for all values of the indices.
The next term to be considered is

_ (/') ax0>|

The factor

ax1
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has been shown to be zero unless the indices assume the values r = 2,j = 2, in which
case it satisfies the equation

3x23x2 3x' x1

With these indices, the other factors are

3x2

/

\k3x23x2 Sx1,

and this viscous term assumes the simpler form

r^Vv/*" ) \ 3x2,

The only nonzero value for this factor occurs when the index a = I. In this case

tfym 3/" ,

3x' 3x2 3x2

and this viscous component is simply

When this component is added to the previously obtained results (4.2.14), we have
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dx1 3x2 dx3

dx1 Lax1 ax1 (x1)2

x1 3x2 x1
*\ t/^V .A-

Again, by inspection we find that the last term

This term vanishes because the only nonzero value of the factor

occurs when / = 2, r = 1 , and for r = 1 , the factor

Hence, this component vanishes for all values of the indices, and equation (4.2.15) is
the complete equation for i= 1. The remaining two equations of (4.1.16) can be
formulated in the same manner.

Equation (4.2.15) is a tensor equation, thatis,.all the force and velocity compo-
nents are tensor components. A formulation in terms of physical components is
obtained by transforming all tensor components to physical components. From
equation (4.2.1)

V1 =
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By substitution from equation (4.2.7) in this equation, we obtain

V1 =vl (4.2.16)

Again, from equation (4.2.1), we have

V2 = -

y dx2 dx2

Substitution from equation (4.2.10a) in this equation gives

V* =v— (4.2.17)

The component V* is given by

W

and from equation (4.2.1 Ob)

Hence

V 3 = v 3 (4.2.18)

The force component F1 is subject to the transformation (4.2.2), that is

f '
F1 =

11
dx1
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Substituting again from equation (4.2.7), we find that

Fl =fl (4.2.19)

Substitution from equations (4.2.16) through (4.2.19) in equation (4.2.15) gives
the physical form of this equation as follows:

13V1

P \
3x! x1 3x2 3x3 x1

3x! L9*'9*1 (*')2 9*29*2 9*39*3

(4.2.20)
» 2(x1)2 3x2 x1 3x' (x1)

A formulation in terms of metric tensor inputs will be described next. Specifi-
cally, attention will be focused on the formulation of the Christoffel symbols. Once
the user knows how to derive these symbols, he can formulate the Navier-Stokes
equations and the corresponding continuity equation in any coordinate system of
interest.

4.3 FORMULATION OF THE CHRISTOFFEL SYMBOLS OF THE
SECOND KIND

From the formulas of definition, equations (1.12.3) and (1.12.4), the Christoffel
symbols are

dxk

i;i-
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Therefore

I*I = gkl Hi, 11 + gk2 [»7,2] + £*3 [if,3] (4.3.1)

In orthogonal coordinate systems / = k, and in this case

Therefore

j I = g11 ['Ml + *" li/,2] + g33 [i/,3] (4.3.2)

A simple program designed to formulate the Christoffel symbols of the first and
second kinds, by using the metric tensors as input, would assume the following form
if the coordinate system were cylindrical polar. Equations (3.2.6) give the metric
tensors for this particular coordinate system (ref. 4).

LET(G(1-,1) = D;

LET(G(2' ,2)=X(1)**2);

LET(6(3,3)=1);

PRINT_OUT(G(1,1);G(2,2);G(3,3)) ;

PUT SKIP(5);

LET(H(1,1)=1);

LET(H(1,2)=0);

LET(H(1,3)=0);

LET(H(2,1)=0);

LET(H(2,2)=1/G(2,2));

*
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LET.(H(2,3)=0);

LET(H(3,1)=0);

LET(H(3,2)=0);

LET(H(3,3)="l/6(3,3));

PRINT_OUT(H(1,1);H(2,2);H(3,3));

PUT SKIP(3);

DO 1=1 TO 3 BY 1;

LET(I="I");

DO J=l TO 3 BY 1;

LET(J="J");

DO K=l TO 3 BY 1;

L E T ( K = " K " ) ;

LET(D(I ,J ,K)=(1/2)*DERIV(G(I ,K) ,X(J)) ) ;

LET(E(J,K,I) = (1/2)*DERIV(G(J,K),X.( I))) ;

LET(F(I,J,K)=(1/2)*DERIV(G(I,J),X(K)));

LET(C(I ,J,K)=(D(I ,J,K)+E(J,K, I ) -F(I ,J,K))) ;

PRINT_OUT(C(I,J,K));

END;

END;

END;

PUT SKIP(3);
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DO 1=1 TO 3 BY 1;

LET('I = "I");

DO J=l TO 3 BY 1;

LET(J="J");

DO K=l TO 3 BY 1 ;

LET(K="K");

LET(T(I,J,K)=0);

DO N=l TO 3 BY 1;

LET(N="N");

LET(CI(I,J,K)=H(N,K)*C(I,J,N));

LET(T(I,J,K)=T(I,J,K)+CT(I,J,K));

END;

P R I N T _ O U T ( T ( I , J , K ) ) ;

E N D ;

' END;

E N D ;

The output from this program is as follows:

6(1,1) = 1 H(l,l) = 1

G(2,2) = X( l ) 2 H(2,2) = 1

G(3,3) = -1 H(3,3) = 1
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C(l,1,1) = 0 C(3,2,l) = 0

C(l,1,2) = 0 C(3,2,2) = 0

C(l,1,3) = 0 C(3,2,3) = 0

C(l,2,1) = 0 C(3,3,l) = 0

C( l ,2 ,2 ) .= X( l ) C(3,3,2) = 0

CO,2 ,3) = 0 C(3,3,3) = 0

C(l,3,l) = 0 T(l,1,1) = 0

C(l ,3,2} = 0 T(l,1,2) = 0 '

C(l,3,3) = 0 T(l,1,3) = 0

C(2,l,l) = 0 T(l,2,1) = 0

C(2,l ,2) = X( l ) TO,2,2) = 1/X(1)

C(2,1,3) = 0 TO,2,3) = 0 .

C(2,2, l ) = -X( l ) T(1,3,1) = 0

C(2 ,2 ,2 ) = 0 T(l,3,2) = 0

C(2,2,3) = 0 T(1,3,3) = 0

C(2,3,l) = 0 T(2,l,l) = 0

C(2,3,2) = 0 T(2,1,2) =

C(2,3,.3) = 0 T(2,l,3) = 0

C(3,l,l) = 0 T(2,2,l) = -

C(3,l,2) = 0 T(2,2,2) = 0

C(3,l,3) = 0 T(2,2,3) = 0
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T(2,3, l) =0 . T(3,2, l ) = 0

T(2,3,2) = 0 7(3,2,2) = 0

7(2,3,3) = 0 7(3,2,3) = 0

7(3,1,1) = 0 7(3,3,1) = 0

7(3,1,2) = 0 7(3,3,2) = 0

7(3,1,3) = 0 7(3,3,3) = 0

In this program and output, C(I,J,K) denotes a Christoffel symbol of the first
kind and T(I,J,K) is a Christoffel symbol of the second kind.

When formulated in this system of coordinates, the Navier-Stokes equations and
the continuity equation are in a form suitable for studying flow through pipes.
Moreover, in physiological applications, the equations may be used to study hemo-
dynamic problems involving flow through distensible arteries. The equations can be
formulated by specifying the metric tensors, deriving the Christoffel symbols of the
second kind and proceeding as indicated in equations (4.1.4) and (4.1.7). Mechaniza-
tion of these operations led to the following results:

6(1,1) = 1 7(1,1,1) = 0

G(2,2) = X ( l ) 2 7(1,1,2) = 0

6(3,3) = 1 7(1,1,3) = 0

7(1,2,1) = 0

H(l, l) = 1 7(1,2,2) = 1/X(1)

H(2,2) = 1/X(1)2 7(1,2,3) = 0

H(3,3) = 1 7(1,3,1) = 0

7(1,3,2) = 0

7(1,3,3) = 0
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T(2,l, l) = 0 T(3,l,1) = 0

•T(2 , l ,2 ) = 1/X(1) T(3,l,2) = 0

T(2,l ,3) = 0 T(3, l ,3) = 0

1(2,2,1)-= -X( l ) T(3,2, l ) = 0

T(2,2,2) ' = 0 ' T(3,2,2) = 0

T(2,2,3) = 0 T(3,2,3) = 0

T'(2,3,l) = 0 T(3,3, l) = 0

T(2,3,2) = 0 T(3,3,2) = 0

T(2,3,3) = 0 T(3,3,3) = 0

NU/X(1)2 + UO 1 2 . ( X ( 2 ) , X ( 2 ) ) NU/X(1)2

- 2U(2)(0 . ( X ( 2 ) ) NU/X(1)2 + U( l)(1) . ( X ( l ) ) NU/X(1)

+ IJ(1)(1 2) . ( X ( 3 ) , X ( 3 ) ) NU + U( l ) ( 1 2) . ( X ( l ) , X ( l ) ) NU

U(l) - U( l)(0 . ( X ( 2 ) ) U(2) /X(T)

U(3) - P(0 . (X (1 ) ) /PHO + U(2) 2 /X(1)

A(2) = F(2) - U(2) NU/X(1)2 + 2 U ( 1 ) 1 . ( X ( 2 ) ) NU/X(1)2

2) . ( x (2 ) , X ( 2 ) ) NU/X(1)2 + U(2 ) ( l )

NU/X(1) + U(2)( ! 2) . ( X ( 3 ) , X ( 3 ) ) NU + U(2)( ! 2)

X ( l ) ) NU - U(2) U(1 ) /X (1 ) - U(2) (0 . ,U(D) U(l)

- U(2) ( i ) • ( X ( 2 ) ) - U ( 2 ) / X ( 1 ) - U(2) ( ! ) • ( X ( 3 ) ) U(3) - pd

. ( X ( 2 ) ) / X ( 1 ) RHO
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A(3) = F(3) + U(3)(! 2) . ( X ( 2 ) , X ( 2 ) ) NU/X(1)2

NU/X(1) + U(3)(1 2) . (X(3) , X(3) ) NU + U(3)(! 2)

NU - U(3)( ! ) . ( X ( l ) ) U(l)

) - U(3) ( ! ) . ( X ( 3 ) ) U(3) -

. (X (3 ) ) /RHO

DRHO = -U(l) RHO/X(1) - U(2)(0 . ( X ( 2 ) ) RHO/X(1) -

)) RHO - U ( 3 ) ( x ) . ( X ( 3 ) ) RHO

Using the definitions on page 250, these equations are interpreted as follows:

bt

a*2 a*2

(4.3.3)

/3v2 , , 3v2 , v2 3v2 , v » v 2 , 3 3v2\
I - + v - + — - + - + V3 - I

\ bt bx1 x1 3x2 x4 3x3/

x1 3x2 dx ldx l x1 3X1 (x1)2 J*1)2 3x23x2

v2 1

3x3J

2 3v' + 32v2 (4.3.4)

(x1)2 9x2 3x3
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(4.3.5)
3x3 '

(4.3.6)
dx1 x1 x1 dx2 3x

As a further illustration of the procedure involved in using a computer to derive
the equations of fluid motion and the continuity equation, the automatic derivation
of these equations in a spherical polar coordinate system will be considered. When
transformed to this system of coordinates, the Navief-Stokes equations and the
continuity equation are in a suitable form for oceanographic studies involving tidal
motions on planetary surfaces. In physiological applications, these equations may be
used to study the hydrodynamics of ocular systems. As in the previous case, it is
only necessary to specify the metric tensors, derive the Christoffel symbols of the
second kind, and proceed as indicated in equations (4.1.4) and (4.1.7). Equa-
tion (3.2.9) gives the metric tensors for this coordinate system. Mechanization of
these operations led to the following results:

6(1,1) = 1 - T(l ,2,1) = 0

6(2,2) = X ( l ) 2 T(l.,2,2) =

6(3,3) = SIN2 ( X ( 2 ) ) X ( l ) 2 T( l ,2,3) = 0

H(l,l) = 1 T(l,3,1) = 0

H(2,2) ='1/X(1)2 T( l ,3,2) = 0

H(3,3) = 1 /SIN2(X(2) ) X ( l ) 2 T(l,3,3) =

TO,1,1) = 0 T(2,l, l) = 0

TO,1,2) = O' T(2,l,2) = 1/X(1)

TO,1,3) = 0 T(2,l,3) = 0
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T(2,2, l) = -X( l )

T(2,2,2) = 0

1(2,2,3) = 0

T(2,3,l) = 0

T(2,3,2) = 0 '

T(2,3,3) = C O S ( X ( 2 ) ) / S I N ( X ( 2 ) )

T(3,l,l) = 0

T(3,l,2) = 0

7(3,1,3) = 1/X(1)

T(3,2, l) = 0

.1(3,2,2) =0 ' •

T(3,2,3) = COS ( X ( 2 ) ) / S I N ( X ( 2 ) )

T(3,3, l) = -S IN 2 (X (2 ) )X (1 )

T(3,3,2) = - C O S ( X ( 2 ) ) S I N ( X ( 2 ) )

T(3,3,3) = 0

A ( l ) = F (1 ) -2U(1 )NU/X(1 ) 2 -2COS(X(2 ) )U(2 )NU/S IN(X(2 ) )X (1 ) 2

+ U ( 1 ) ( 1 2 ) . ( X ( 3 ) ) , X ( 3 ) ) N U / S I N 2 ( X ( 2 ) ) X ( 1 ) 2

+ U ( 1 ) ( 1 ) . ( X ( 2 ) ) C O S ( X ( 2 ) ) N U / S I N ( X ( 2 ) ) X ( 1 ) 2

- 2 U ( 3 ) ( 1 ) . ( X ( 3 ) ) N U / S I N ( X ( 2 ) ) X ( 1 ) 2

+ U ( 1 ) ( 1 2 ) . ( X ( 2 ) , X ( 2 ) ) N U / X ( 1 ) 2 - 2 U ( 2 ) ( 1 ) . ( X ( 2 ) ) N U / X ( 1 ) 2
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-U( l )d).(x(3))U(3)/SIN(X(2))X( l )

A(2) = F(2)-U(2)NU/X(1)2-COS2(X(2))U(2)NU/SIN2(X(2))X(1)2

-2U(3)(0.(X(3))COS(X(2))NU/SIN2(X(2))X(1)2

+U(2)(1 2).(X(3),X(3))NU/SIN2(X(2))X(1)2+U(2)(1)

.(X(2))COS(X(2))NU/SIN(X(2))X(l)2+2U(l)( i) .(X(2))NU/X(l)2

+U(2)(1 2) .(X(2),X(2))NU/X(1)2+2U(2)(1) .(X(1))NU/X(1)

-?(!).(X(2))/X(1)RHO+COS(X(2))U(3)2 /SIN(X(2))X(1)

A(3) = F(3)-U(3)NU/X(1)2-COS2(X(2))U(3)NU/SIN2(X(2))X(1)2

+2U(2)d).(X(3))COS(X(2))NU/SIN2 (X(2))X( l )2

+U(3)(1 2) . (X(3),X(3))NU/SIN2(X(2))X(1)2

+U(3)(1) . (X(2))COS(X(2))NU/SIN(X(2))X(1)2

+2U(l)d).(X(3))NU/SIN(X(2))X(l)2+U(3)(1 2)

-(X(2),X(2))NU/X(1)2+2U(3)(1 ) . (X(1))NU/X(1)+U(3)(1 2 )

(X(1))U(1)-COS(X(2))U(3)U(2)/SIN(X(2))X(1)-U(3)(1)

(X(2))U(2) /X( l ) -U(3)d) . (X(3))U(3) /SIN(X(2))X( l )

P^ 1 ) . (X(3)) /SIN(X(2))X(1)RHO
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DRHO = -2U(1 )RHO/X(1 ) -COS(X(2 ) )U(2 )RHO/S IN(X(2 ) )X (1 )

-U(3)(1 ) . (X(3))RHO/SIN(X(2))X(1)-U(2)(1 ) . (X(2))RHO/X(1)

Interpretation of the output requires that the following computer notation be
understood:

(/(/) physical components of the velocity vector

dx'dx"

RHO=p

dt

When expressed in terms of conventional mathematical symbolism these results
appear as follows (ref. 1):

250



MATHEMATICAL MODELING OF DIVERSE PHENOMENON 4.3

P\-ir+vl~+-—— +— JL-^-L-^LL
«-3' 3xl x1 3x2 x1 sinx2 3x3 x1 x1 J

Tav , 23*1 , i 3V , i
I ~\ 1 *\ 1 I -\ 1 /I \*> *\ 9 *\ 0 f 1 \r) O *5 *\ "^ *\ ^L3*1 3* x1 3x (x1 )<! Sx-'Sx'2 (x1)2 sm2 x2 Sx^Sx3

cotx2 S^1 2

(x1)2 dx2 (x1)2 9x2 (x1)2 sinx2 9x3 (x

vl 2 cot x2
 2~li;2

')2 (x1)2 J

x1 9x2 x1 sinx2 9x3 x1 x1 J

, 1 9 2f 2 , 1

9x2 IS*13*1 x1 3x2 (x1)2 9x23x2 (x1)2 sin2 x2 9x33x3

, cot*2 9^2 2 cot x2 9^3 _2
i -f-

(x1)2 9x2 (x1)2sinx2 9x3 . (x1)2 9x2 (x1)2 sin2 x2_

3X1 x1 9x2 x1 sinx2 9x3 x1 x1

x1 sinx2 3x3 Lax'Sx1 x1 3xJ (x1)2

cot x2 3^3 2

(x1)2 sin2x2 9x39x3 (x1)2 3*2 (x1)2 sinx2 3x3

2 cotx1 dv2 1 3]

(x1)2 sinx2 9x3 (x1)2 sin2 x2 J
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bx1 jc'3x2 jc1 sinx2 dx3 x1 x

With the exception of the section on particle dynamics, emphasis has been placed
on applications occurring in cylindrical and spherical coordinate systems. This
course of action has been adopted in the belief that the demonstration of principles
and techniques is more effective if it is conducted in a coordinate system with which
the reader is familiar. Once the technique has been thoroughly grasped, the reader
can proceed to less conventional coordinate systems, if he so desires. For example, a
problem of interest to physiologists is the study of fluid flow in the semicircular
canals of the inner ear. These canals are the basic transducers for a vestibulo-ocular
reflex which compensates the eyeball for the rotational movements of the body and
of the skull which are encountered in normal life. Each inner ear has three
semicircular canals in approximately mutually perpendicular planes, so that all three
degrees of freedom can be sensed. These canals are small-bore circuits containing
fluid which rotates relative to the skull when the skull rotates in space. The small
bore of the canals ensures laminar flow of the contained fluid. The equations
describing the motion of this fluid can be obtained in the manner described for the
two previous cases. The curvilinear coordinates best suited to the description of fluid
flow in the semicircular canals are toroidal coordinates.

A variety of other curvilinear coordinate systems is available for special situations.
For example, confocal ellipsoidal coordinates have proved useful in hydrodynamics
problems (ref. 5). Once a curvilinear coordinate system is chosen, the formulation
can proceed by the method of equations (4.2.3) and (4.2.4) which relies on coordi-
nate transformation equations, or by the method of equations (4.1.1) and (4.1.3)
which uses metric tensor inputs. As indicated in section 3.2, the determination of
the fundamental quadratic form is usually no more difficult and is frequently much
simpler than finding the coordinate transformation equations. More importantly, if
the functions g.-.-(x) are such that the system of equations (1.13.12) has no solution,
then no admissible transformation of coordinates exists which reduces equa-
tion (3.2.1) to-the Pythagorean form. In this case, the manifold is non-Euclidean and
"the use of coordinate transformation equations as input will fail. A non-Euclidean
model is described in section 5.1.
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5.1

5.1 NEWTONIAN AND RELATIVISTIC FIELD EQUATIONS AND
TRAJECTORY EQUATIONS

The advantages of symbolic mathematical computation are most evident in
problems analogous to those described in this chapter, that is, the formulation of
cosmological models and their associated trajectory equations. The field equations
that govern the trajectories of bodies in space have, in general, large numbers of
terms, with each term a complicated mathematical expression. The evaluation of
these terms and the derivation of the equations of the geodesies that describe the
trajectories of bodies in space require a substantial amount of algebraic manipulation
and symbolic differentiation. For the models considered, the required operations
were executed with speed and efficiency on an IBM360/67 computer. For example,
in the case of the nonhomogeneous Schwarzschild model, the computer" times
required to formulate the field and trajectory equations were 0.74 and 0.30 min,
respectively. By mechanization of the procedure in the manner described, computa-
tion time is saved, the possibility of error is reduced, and the scope of the inquiry
may be extended.

The present chapter indicates how symbolic mathematical computation can be
used to formulate a variety of cosmological models. As in previous applications., all
formulations evolve from a fundamental metric, and each model is determined by
the metric of the Riemannian space. The only inputs required are the coefficients of
the fundamental quadratic form. For illustrative purposes, only spherically symmet-
ric static models are considered. The determination of the geodesies that describe
the trajectories of bodies in space requires that the appropriate potential functions
be known. The relativistic analog of Poisson's equation, which in the Newtonian
theory connects a single gravitational potential function with the density of matter,
is a relation between the potential functions and the components of the energy
momentum tensor. In general, this relationship gives rise to 10 nonlinear partial
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differential equations. The solution of these equations then yields the potential
functions and must precede any attempt to obtain the corresponding trajectories.

Consider the equation of motion of a particle which is moving under the influence
of gravitational forces. When the equation is written in the notation of the tensor
calculus, it assumes the form (ref. 1)

k\
~ l
J

^^U = V0 < (5.1.1)
dt dt

where i,jjc = 1,2,3 and

Vf-JlsW-^ .(5.1.2)
dx' . dx'

In these equations the summation convention is again assumed. That is to say, if
in any term an index occurs twice, the term is to be summed with respect to that
index for all admissible values of the index.

In relativistic mechanics, equation (5.1.1) is replaced by the following trajectory
equation, which is the equation of a geodesic (ref. 2)

d*xl i i \ dxj_ dx^\ =

^ \lkj ds ds )
^-^-1 = 0 /,/, k =1,2,3,4 (5.1.3)
ds ds I

where the line element ds satisfies the equation of the fundamental quadratic form
(ref. 3)

ds2 =gijdxidxi (5.1.4)

The Newtonian theory of gravitation connects a single potential function 0 with
the density of matter. In this theory, the gravitational potential function is required
to satisfy Poisson's equation (ref. 4)

V20 = -4?rp (5.1.5)

At all points of space devoid of matter p = 0, and Poisson's equation reduces to
Laplace's equation (ref. 4)
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V20 = 0 (5.1.6)

The relativistic analog of Poisson's equation is the following tensor equation
(ref. 5)

Rtj - 1 Rgtj + hgij = -KTtj (5.1.7)

where

RJJ Ricci tensor (discussed in sec. 1.16 and defined in eqs. (1.16.2) and (1.16.3))

R Ricci scalar (defined in eq. (1.18.5))

gfi metric tensor

A constant, the so-called cosmological constant

K constant

By raising indices, the field equations can be written in the alternative form

/y-Is/* + S/A = -Kr/ (5.1.8)

Contraction of equation (5.1.8) yields

/ 2 - 4 A = icr (5.1.9)

In regions of space devoid of matter, all the components of the energy momen-
tum tensor are zero, and equation (5.1.9) simplifies accordingly. In this case

/ ? = 4 A (5.1.10)

When this result is substituted in equation (5.1.7), the field equations assume the
form

Rij=teij (5.1.11)

259



5.7 JAMES C HOWARD

Nevertheless, in empty space, the trajectories of bodies moving within the solar
system correspond with great precision to the simpler field equations (ref. 5)

/?,y = 0 (5.1.12)

Equation (5.1.12) is the relativistic analog of the Laplace equation. It represents
10 nonlinear partial differential equations for the 10 unknown functionsg^,-. Once a
set of functions satisfying equation (5.1.8) or (5.1.12) is found, the corresponding
trajectory equations can be formulated.

Before proceeding with the formulation of specific models, it is worthwhile to
examine the equations on which the models are based. The relevant field equations
are (5.1.7), (5.1.8), and (5.1.12). With the exception of the energy momentum
tensor, which is unspecified, the terms of these equations consist of the Ricci tensor
and the Ricci scalar. The Ricci scalar is the product of the Ricci tensor and the
corresponding metric tensor. For the convenience of readers, these tensors are
reproduced here. The equation for the Ricci tensor is (ref. 5)

[W W " WW + ax/ W " a*« WJ
The equation for the Ricci scalar is simply

It is seen that although the field equations are complicated, the individual terms
of the equations are simply products of the Christoffel symbols of the second kind
or derivatives of these symbols. Moreover, the Christoffel symbols are known when
the metric tensors are known, that is, when an expression for the square of the
distance between two adjacent points of the space can be formulated. The depen-
dence of the Christoffel symbols on the fundamental metric tensor can be seen from
the following equations:

H,k]

260



MATHEMATICAL MODELING OF DIVERSE PHENOMENON 5.2

It was demonstrated in preceding chapters that, given the fundamental metric
tensor, the Christoffel symbols can be formulated without difficulty. Hence, the
evolution from the fundamental metric tensor to complex cosmologjcal models is
easily accomplished.

5.2 MODELING CONSIDERATIONS

For the purpose of illustrating the modeling capability of symbolic mathematical
computation, a spherically symmetric static field is assumed. This assumption
implies that the metric tensors gjj are spherically symmetric and independent of the
time. Moreover, the metric tensors must be chosen in such a way that the line
element will reduce to the special relativity form for flat space time. These consider-
ations led to the adoption of the following set of metric tensors for anisotropic
space:

833 = ~(xl sinx2)2 2 (5.2.1)

where the implicit functions L(xl) and M(xl) can be adjusted to account for the
distortion of space in the presence of matter. The corresponding space-time interval
is

ds* = [- * )2 - sin*2 dx3)2

(5.2.2)

where

and

=cdt
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xl radial coordinate

jc2 polar angle coordinate

x3 azimuthal angle coordinate

And for convenience, the velocity of light is assumed to be 1 .
If the space is assumed to be isotropic, the metric tensors are modified as follows:

833 = - e * x 1 sin*2)2

(5.2.3)

The space-time interval in the isotropic case is

ds2 = (-zL(xl\(dx1)2 + (x1 dx2)2 + (x1 sin*2 dx3)2] + eM(-xl \dx*)2\

(5.2.4)

In order to demonstrate the feasibility of using symbolic mathematical computa-
tion to formulate different models of the universe, a computer program was written
that required only the postulated metric tensors as inputs.

The notation adopted in this and subsequent sections corresponds to the form of
the printed output. At the time of writing, the formulated mathematical expressions
could only be printed out in the form of capital letters, and the functions L(xl) and'
AfOc^are printed out as L'(x(l)) and M-(x(l)), respectively. Moreover, the ith deriva-
tive of the functions L(xl) and M(xl) with respect .to x'are printed out as ZA^'(x(l))
and Af^)'(x(l)), respectively. To fix the ideas, the reader is referred to section (5.8)
where the components of R(I,J) from Section (5.3) have been interpreted in terms
of .conventional mathematical symbolism in equations (5.8.2) through (5.8.5).

It should be noted that the field equations, which are denoted by E(I,J) in the
printed output, are related to the energy momentum tensors as indicated in equa-
tions (5.1.7) and (5.L8). However, in empty space where all the components of the
energy momentum tensor are zero, the field equations reduce to the simpler form
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which, as already noted, is the relativistic analog of Laplace's equation.
The comments appearing between each batch of computer output are pro-

grammed statements and occur without variation during each run. This accounts for
the stilted form of the language.

5.3 ANISOTROPIC MODEL

The field equations and the corresponding trajectory equations for this condition
can be obtained by using the tensors defined in equations (5.2.1). With these tensors
as inputs to a digital computer, which was programmed to formulate models of the
universe, the following output was obtained. (The computer program and related
documentation are available from Computer Software Management and Information
Center (COSMIC), Barrow Hall, University of Georgia, Athens, Georgia, 30601.)

The metric coefficients determine the gravitational model being studied. In order
that each run be identified with the correct inputs, the postulated metric coeffi-
cients are printed out before the main results. In the case under consideration, these
have the following values:

6(2,2) = -X( l ) 2

6(3,3) = -S IN 2 (X (2 ) )X(1 ) 2

6(4,4) = E
M ' ( X ( 1 ) )

The program uses the metric tensor inputs to evaluate the Christoffel symbols of
the first and -second kinds. In order to reduce the amount of output, the Christoffel
symbols of the first kind are not printed out. In terms of the system coordinates and
the unknown functions L and M, the Christoffel symbols of the second kind are

T(l,1,1) = 0 / 2 ) L ( 1 ) - ( X ( 1 ) ) - T(l,1,3) = 0

TO,1,2) = 0 T(l,1,4) = 0
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T(1, 2,1) = 0 T(2,2,3) = 0

T(l,2,2) = 1/X(1) T(2,2,4) = 0

T(l,2,3) = 0 T(2,3,l) = 0

T(l,2,4) = 0 T(2,3,2) - 0

T(l,3,l) = 0 TK2,3,3) = COS(X(2)) /SIN(X(2))

T{1, 3, 2) = 0 T(2,3,4) = 0

T(l,3,3) = 1/XO) T(2,4,l) =0

T(l, 3,4) = 0 T(2,4,2) = 0

T(l,4,l) = 0 T(2,4,3) = 0

T(l,4,2) = 0 T(2,4,4) = 0

T(l,4,3) = 0 T(3,1,l) = 0

T(l,4,4) = (1/2)M(1)-(X(1)) T(3,l,2) = 0

T(2,l,l) = 0 T(3,l,3) =

T(2,l,2) = 1/X(1) T(3,l,4) = 0

T(2,l,3) = 0 T(3,2,l) = 0

T(2,l,4) = 0 T(3,2,2) =0

T(2,2,l) = - E ' ' X ( 1 ) ' ' 3 ) = COS(X(2)) /SIN(X(2))

T(2,2,2) = 0 T(3'2'4) = °
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T(3.3,l) = -E- L - ( X ( 1 ) )SIN 2 (X(2) )X(1)

T(3,3,2) = -COS(X{2 ) )S IN(X(2 ) )

T(3,3,3) = 0

T{3,3,4) = 0

T(3,4,l) = 0

T{3,4,2) = 0

T(3,4,3) = 0

T(3,4,4) = 0

T(4,1,1) = 0

T.(4,l,2) = 0

1(4,1,3} = 0

T(4,l,4) =

T(4,2,l) = 0

T(4 ,2 ,2 ) = 0

T(4,2,3) = 0

T(4 ,2 ,4) = 0

T(4,3,1) = 0

T(4,3 ,2) = 0

T(4,3,3) = 0

T(4,3,4) = 0
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T(4,4,2) = 0 '

T(4,4,3) = 0

T ( 4 , 4 , 4 ) = 0

Once the Christoffel symbols of the second kind are known, the components of
the Ricci tensor can be derived. The individual components are

R(l. l) - -L (1)

R(l,2) *= 0

R0.3) - 0

R(l,4) * 0

R(2,l) * 0

R(2,2) - -

+

R(2,3) * 0

R(2,4) * 0

R(3,l) = 0

R(3,2) * 0

R(3,3) * -

+ E -L- (X(1))S I N2 ( X ( 2 ) )_S I N2 ( X ( 2 ) )

R(3,4) * 0
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R(4,l) = 0

R(4,2) = 0

R(4,3) = 0

G(I,J) and R(I,J) are both known at this stage of the program; therefore, the Ricci
scalar can be obtained. It is given by the following equation:

R = -

The preceding information is next used to obtain the field equations. The
individual equations are
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ET(1,2) = 0

ET{1,3) = 0

ET(1,4) = 0

ET(2,1) = 0

ET(2,2) = -

ET(2,3) = 0

ET(2,4) = 0

ET(3,1) = 0

ET(3,2) = 0

ET(3,3) = -(

ET(3,4) = 0

ET(4,1) = 0
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ET(4,2) = 0-

ET(4,3) = 0

ET(4,4) = E-L

The choice of an energy momentum tensor completes the specification of this
type of model. Solution of the resulting equations gives rise to the components of
the potential function. In the case under consideration, the solution yields the
unknown functions L(x l) and M(x l). In terms of the postulated metric tensor
inputs, the computer derives the equation of the trajectories as follows:

+ E -L - (X(1) ) S I N 2 ( X ( 2 ) ) X ( 1 ) V ( 3 ) 2

A(2 ) = - 2 V ( 2 ) V ( 1 ) / X ( 1 ) - C O S ( X ( 2 ) ) S I N ( X ( 2 ) ) V ( 3 ) 2

A(3 ) = - 2 V ( 3 ) V ( 1 ) / X ( 1 ) - 2 C O S ( X ( 2 ) ) V ( 3 ) V ( 2 ) / S I N ( X ( 2 ) )

A(4) = -M (1 )

5.4 ISOTROPIC MODEL

If the universe is isotropic, the line element will assume the form of equa-
tion (5.2.4). When the corresponding metric tensors (5.2.3) were used as inputs to
the computer program, the following output was obtained.

The metric coefficients determine the gravitational model being studied. In order
that each run be identified with the correct inputs, the postulated metric coeffi-
cients are printed out before the main results. In the case under consideration, these
have the following values:
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6(2,2) = -E L ' ( X ( 1 ) ) X(1) 2

6(3,3) = -E L ' ( X ( 1 ) ) SIN 2 (X(2) )X(1) 2

6(4.4) -E^1"

The program uses the metric tensor inputs to evaluate the Christoffel symbols of
the first and second kinds. In order to reduce the amount of output, the Christoffel
symbols of the first kind are not printed out. In terms of the system coordinates and
the unknown functions L and-M, the Christoffel symbols of the second kind are

T(l,l,l) = ( 1 / 2 ) L ( 1 ) - ( X ( 1 ) )

T(l ,1,2) = 0

T(l ,1,3) = 0

TO, 1,4) = 0

TO,2,1) = 0

T( l ,2 ,2) = 1/X(1)+(1/2)L ( 1 ) . (X(1))

T( l ,2 ,3) = 0

TO,2,4) = 0

T(l,3,1) = 0

TO,3,2) = 0

TO,3,3) = 1/XO)+(1/2)L ( 1 ) - ' (X(1))

T(l,3,4) = 0

- T(l,4,1) =. 0

TO,4,2) = 0

TO,4,3) = 0
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T(l,4,4) =

T(2,1, l) = 0

T(2, l ,2) = 1

7(2,1,3) = 0

T(2, l ,4) = 0

T(2,2, l ) = -

T(2 ,2 ,2) = 0

T(2,2,3) = 0

T ( 2 , 2 , 4 ) = 0

T(2,3, l ) = 0

T ( 2 , 3 , 2 ) = 0

T(2,3,3) = C O S ( X ( 2 ) ) / S I N ( X ( 2 ) )

T ( 2 , 3 , 4 ) = 0

T(2,4, l) = 0

T ( 2 , 4 , 2 ) = 0

T(2 ,4 ,3 ) = 0

T(2 ,4 ,4 ) = 0 .

T(3,l, l) = 0

T(3,l,2) = 0

7(3,1,3) = 1 /X (1 )+ (1 /2 )L ( 1 ) - (X (1 ) )

7(3,1,4) = 0

271



5.4 JAMES C HOWARD

T(3,2,l) = 0

T(3,2,2) = 0

7(3,2,3) = COS(X(2)) /SIN(X(2))

T(3,2,4) = 0

T(3,3,l) = -SIN 2 (X(2))X(1)-1/2L ( 1 ) - (X(1))SIN 2 (X(2))XO) 2

7(3,3,2) = -COS(X(2) )S IN(X(2) )

T(3,3,3) = 0

7(3,3,4) = 0

7(3,4,1) = 0

- 7(3,4,2) = 0

T(3,4,3) = 0

T(3,4,4) = 0
x

T(4,l,l) = 0

T(4,l,2) = 0

T(4,l,3) = 0

7(4,1,4) = 0 /2 )M ( 1 ) - (X (1 } }

7(4,2,1) = 0

7(4,2,2) = 0

7(4,2,3) = 0

7(4,2,4) = 0
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T(4,3,l) = 0

T(4,3,2) = 0

7(4,3,3) = 0

T(4,3,4) = 0

T(4,4,2) = 0

T(4,4,3) = 0

T(4,4,4) = 0

Once the Christoffel symbols of the second kind are known, the components of
the Ricci tensor can be derived. The individual components are

R(l ,2) = 0

R(l ,3) = 0

R(l,4). = 0

R(2, l ) = 0

R(2,2) =

R(2,3) = 0

R(2,4) = 0
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R(3,l) = 0

R(3,2) = 0

R(3,3) =

+ (1 /2 )L ( 2 ) - (X (1 ) )S IN 2 (X (2 ) )X (1 ) 2

R(3,4) = 0

R(4,1) = 0 .

R(4,2) = 0

R(4,3) = 0

G(I,f) and R(I,J) are both known at this stage of the program; therefore, the Ricci
scalar can be obtained. It is given by the following equation:

R = - 4 E- L ' ( X ( 1 ) ) L ( 1 ) . (X (1 ) ) /X (1 ) -2E ' L - ( X ( 1 ) ) M ( 1 ) . (X (1 ) ) /X (1 )

The preceding information is next used to obtain the field equations. The
individual equations are
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ET(1,2) = 0

ET(1,3) = 0

ET(1,4) = 0

ET(2,1) = 0

ET(2,2) =

ET(2,3) = 0

ET(2,4) = 0

ET(3,1) = 0

ET(3,2) = 0

ET(3,3) =

275



5.5 JAMES C. HOWARD

ET(3,4) = 0

ET(4,1) = 0

ET(4,2) = 0

ET(4,3) - 0

ET(4,4) = 2

The trajectory equations for the isotropic case are

+ S I N 2 ( X ( 2 ) ) X ( 1 ) V ( 3 ) 2 + ( 1 / 2 ) L ( 1 ) - ( X ( 1 ) ) S I N 2 ( X ( 2 ) ) X ( 1 ) 2 V ( 3 ) 2

A(2) = - 2 V ( 2 ) V ( 1 ) / X ( 1 ) - L ^ ^ ( X ( 1 ) ) V ( 2 ) V ( 1 ) + C O S ( X ( 2 ) ) S I N ( X ( 2 ) ) V ( 3 ) 2

A(3) = -

- 2 C O S ( X ( 2 ) ) V ( 3 ) V ( 2 ) / S I N ( X ( 2 ) )

A(4) = ' - M ( 1 ) . ( X ( l ) ) V ( 4 ) V ( l )

5.5 STATIC HOMOGENEOUS MODELS

In the case of a static homogeneous universe, it is evident that coordinates can be
chosen so that the line element will exhibit spherical symmetry around any desired
origin, since all parts of the universe are permanently alike. Hence, the line element
may be taken in the spherically symmetric static form of equation (5.2.2). In
obtaining this form of line element, local irregularities in the gravitational field,
which would occur in the immediate neighborhood of individual stars or stellar
systems, are neglected.
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For the system described, it can be shown that the components of the energy
momentum tensor are (ref. 5)

£7X1,D = £7X2,2) = £7(3,3) = %vpo

(5.5.1)

ET(I,J) = 0 for

where po and po are the pressure and density, respectively, as measured by an
observer who is at least momentarily at rest with respect to the spatial axes. The
solution of these, equations gives rise to the components of the potential function. In
the case of the field being considered, the solution yields the unknown functions

In order to satisfy the conditions of static homogeneity, it can be shown that the
implicit functions L(x l) and M(xl) are subject to the following constraints: If the
model is homogeneous, the pressure as measured by a local observer will be the same
everywhere. Again, owing to the assumed homogeneity of the model, the density
will be the same everywhere. Moreover, the line element must reduce to the special
relativity form, for flat space time, owing to the known validity of the special theory
in such regions. By imposing these conditions, it can be shown that there are only
three possibilities for a static homogeneous model (ref. 5)

M = 0 (5.5.2)

• L+M = 0 (5.5.3)

L=M = 0 -(5.5.4)

These conditions lead, respectively, to the Einstein, the De Sitter, and the special
relativity line elements. <

5.6 THE EINSTEIN MODEL UNIVERSE

Substitution from equation (5.5.2) in equation (5.2.2) yields the following metric
for a homogeneous model which is not isotropic

ds2 = [-e^*1 \dxlY - (xldx*)2 - (x1 sinx2 dx3)2 + (rfx4)2 ] (5.6.1)

277



5.6 ' JAMES C HOWARD

If the model were assumed to be homogeneous and isotropic, it would be
necessary to use equation (5.2.4) subject to the constraint equation (5.5.2).

Cosmological considerations led Einstein to consider a universe defined by the
metric (5.6.1). When the metric coefficients were supplied as input to the computer
program, the following output was obtained.

Again the metric coefficients determine the gravitational model being studied. In
order that each run be identified with the correct inputs, the postulated metric
coefficients are printed out before the main results. In the case under consideration,
these have the following values:

G(2,2) = -X( l )

6(3,3) = -SIN 2 (X(2))X(1) 2

6(4,4) = 1 .

The program uses the metric tensor inputs to evaluate the Christoffel symbols of
the first and second kinds. In order to reduce the amount of output, the Christoffel
symbols of the first kind are not printed out. In terms of the system coordinates and
the unknown functions L and M, the Christoffel symbols of the second kind are

1(1,1,1) = ( 1 / 2 ) L ( 1 ) - ( X ( 1 ) ) T(l,3,1) = 0

T(l,1,2) = 0 T( l ,3,2) = 0

TO, 1,3) = 0 T(l,3,3) = 1/X(1)

T(l,1,4) = 0 T(l ,3,4) = 0

T(l,2,1) = 0 T(l,4,1) = 0

T(l,2,2) = 1/X(1) TO,4,2) = 0

T(l,2,3) = 0 T(l,4,3) = 0

T(l,2,4) = 0 T(l,4,4) = 0
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T(2,1,1) = 0

T(2,l,2) =

1(2,1,3} = 0

T(2,l ,4) = 0

T{2,2,2) = 0

1(2,2,3) = 0

T{2,2,4) = 0

T(2,3,1) = 0

T(2,3,2) = 0

1(2,3,3) = C O S ( X ( 2 ) ) / S I N { X ( 2 ) )

T(2,3,4) = 0

T(2,4,1) = 0

T(2 ,4 ,2) = 0

T(2,4 ,3) = 0

T(2,4 ,4) = 0

T(3,1,1) = 0

T(3,l,2) = 0

T(3,1,3) =

T(3,l,4) = 0
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T(3,2,l) = 0

T(3,2,2) = 0

T(3,2,3) = COS(X (2 ) ) /S IN (X (2 ) )

7(3,2,4) = 0

7(3,3,1) = -E ' L ' ( X ( 1 ) ) SIN 2 (X(2) )X(1)

7(3,3,2) = - C O S ( X ( 2 ) ) S I N ( X ( 2 ) )

7(3,3,3) = 0

7(3,3,4) = 0

7(3,4,1) = 0

7(3 ,4 ,2) = 0

7(3,4,3) = 0

7(3,4,4) = 0

7(4,1,1) = 0

7(4,1,2) = 0

7(4,1,3) = 0

7(4,1,4) = 0

7(4,2,1) = 0

7(4 ,2 ,2 ) = 0

7(4,2,3) = 0

7(4,2 ,4) = 0 .
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T(4,3,1) = 0 •

T(4,3,2) = 0

T(4,3,3) = 0

T(4,3,4) = 0

T(4,4,l) = 0

T(4,4,2) = 0

T(4,4,3) = 0

T(4,4,4) =0 .

Once the Christoffel symbols of the second kind are known, the components of
the Ricci tensor can be derived. The individual components are

R(l,2) = 0

R(l,3) = 0

R(l,4) = 0

R(2,l) = 0

R(2,2) = -

R(2,3) = 0

R(2,4) = 0

R(3,l) = 0

R(3,2) = 0

R(3,3) = -
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R(3,4) = 0

R(4,l) = 0

R(4,2) = 0

R(4.,3) = 0

R(4,4) = 0

G(I,J) and R(I,J) ait both known at this stage of the program; therefore, the Ricci
scalar can be obtained.' It is given by the following equation:

R = -2E'L

The preceding information is next used to obtain the field equations. The
individual equations are

- ET(1,2) =0

ET(1,3) = 0

ET(1,4) ='0

ET(2,1) = 0

ET(2,2) = -(

ET(2,3) = 0

ET(2,4) = 0
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ET(3,1) = 0

ET(3,2) = O'

ET(3,3) = -(

ET(3,4) = 0

ET(4,1) = 0

ET(4,2) = 0

ET(4,3) = 0

ET(4,4) = E

The equations of the corresponding trajectories are

+ E -L - (X(1) ) X ( 1 ) V ( 2 ) 2

A(2) = - 2 V ( 2 ) V ( 1 ) / X ( 1 ) + C O S ( X ( 2 ) ) S I N ( X ( 2 ) ) V ( 3 ) 2

\

A(3) = - 2 V ( 1 ) V ( 3 ) / X ( 1 ) - 2 C O S ( X ( 2 ) ) V ( 2 ) V ( 3 ) / S I N ( X ( 2 ) )

A(4 ) = 0

5.7 THE De SITTER MODEL

As already indicated, the only other general relativistic model that is static and
homogeneous is the De Sitter universe. In the next section the Schwarzschild model
will be considered. It will be found to have the same form, although not the same
content, as the De Sitter model. Although the Schwarzschild universe is inhomoge-
neous, the implicit functions L(x l) and M(x l) that satisfy its field equations also
satisfy equation (5.5.3). In view of these considerations the De Sitter model will not
be formulated.
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5.8 A NONHOMOGENEOUS CASE

The Schwarzschild model represents a specially important application of relativity
theory, since it provides a treatment of the gravitational field surrounding the sun.
This problem was first studied by Schwarzschild in 1916, and the results obtained
were used to distinguish between the predictions of the Newtonian theory of
gravitation and the more exact predictions of relativity theory. Since the space
surrounding the sun is assumed to be devoid of matter, all the components of the
energy momentum tensor are zero. In this case, the field equations have been shown
to satisfy equation (5.1.12), that is

/?/y. = 0 (5.8.1)

Therefore, the components of the Ricci tensor obtained for the anisotropic model
and satisfying equation (5.8.1) yield the components of the potential function for
the field surrounding a single attracting mass, which is spherically symmetric.

In terms of conventional mathematical symbolism, the Schwarzschild field equa-
tions assume the following form:

o (582)

j

1 dM l/WVl-—i — i i —
l x1 dx1 4\dx1/ J

Rjj = Q for i

The corresponding trajectory equations are
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(5 g 6)

(5.8.8)

(5.8.9)

It is seen that

^ 3 3 = sin2 x2R2 2

and there are, therefore, only three equations in L and M. In this connection, it
should be noted that the 10 equations given by equation (5.1.8) or (5.1.12) are not
all independent since, theoretically at least, they would then determine completely
the metric tensor and would restrict the choice of reference system. Therefore, there
can be no more than six independent conditions between the components of R;.- to
permit a free choice of coordinate system in four-dimensional space.

The system of 10 nonlinear partial differential equations

for the 10 unknown functions g^ is very complicated. The general solution of this
system is not known. However, for the case considered in this section, it is possible
to obtain a closed-form solution. It can easily be deduced that'

L = - M
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and

Hence,

1

[1+(«/*')]

=-(xl sin*?)2

(5.8.10)

#44 = 1 + —
X1

If a = -2m, the metric (5.8.10) is consistent with the existence of one gravitating
mass m situated at the origin and surrounded by empty space.

If the metric tensor inputs (5.2.1) consisting of unknown functions of x1 are now
replaced by the known functions (5.8.10), and the program rerun, the trajectory
equations are obtained in the following form:

ds2 2(x1)2H

- x1 sin2 x2 II + — =0 (5.8.11)

(5.8.12)

\ ds ds ds ds

^ a ** dA = Q

cfe2 (x j)2[l +(a/x1)] ® * J

(5.8.13)
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5.9 CONCLUDING COMMENTS

Symbolic mathematical computation can facilitate the formulation of mathemati-
cal models. This has been demonstrated by using the method to formulate several
cosmological models and their associated trajectory equations. It has been shown
that such models can be derived with speed and efficiency on present generation
computers, provided they are equipped with formula manipulation compilers. For
example, in the case of the Einstein and De Sitter models, the computer times
required to formulate the field and the trajectory equations were 0.66 and 0.32'min,
respectively. For the nonhomogeneous Schwarzschild model, the corresponding
times were 0.74 and 0.30 min, respectively. In addition to saving time and eliminat-
ing the errors to which humans are prone, the method facilitates the study of a
greater variety of models.
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6.1 REDUCE AND MACSYMA

A variety of other languages is available for carrying out symbolic manipulations.
The choice of language depends on accessibility, personal preference, the type and
magnitude of the models to be formulated, and the computer facilities available to
the user. At the time of writing, the two most important contenders in the symbolic
manipulation field appeared to the author to be REDUCE and MACSYMA (ref. 1).
REDUCE is a language which was developed by Professor Anthony Hearn of the
University of Utah. It is designed for general algebraic computations of interest to
mathematicians, physicists, and engineers. In addition to the usual algebraic manipu:

lations, it has the capability of performing calculations of special interest to high
energy physicists.

REDUCE, in one form or another, has been available for over 10 years. Originally
it began as a system for solving special problems that arise in high energy physics,
where much tedious repetitive calculation is involved. However, it was quickly
recognized that the simplification processes being used were quite general, and in
1967 REDUCE was announced as a system for general purpose algebraic simplifica-
tion and released for distribution.

Although REDUCE can operate in a batch processing mode, it is intended
primarily for interactive calculations in a time-shared environment. Hence, it is
command-oriented rather than program-oriented, since the result of a given com-
mand may be required before proceeding to the next step. Since REDUCE is well
known to computer users and is available for use on most IBM360 or 370 series
computers, the DEC PDP-10 and the CDC 6400, 6500, 6600, and 7600 machines, it
will not be discussed further but, instead, the MACSYMA system, which is less well
known, will be examined.

At the time of writing, the MACSYMA system was available only at MIT through
the ADVANCED RESEARCH and PROJECT AGENCY (ARPA) network. Since
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MACSYMA appears to the author to be a very promising system, which is flexible
and continuously evolving to meet the needs of users, it will be demonstrated by
using it to reformulate some of the problems considered in previous chapters. It is a
large computer programming system which can be used to perform symbolic as well
as numerical mathematical computations. It was developed by the MATHLAB group
of project MAC's Automatic Programming Division specifically for interactive use,
and has capabilities for manipulating algebraic expressions involving numbers, varia-
bles, and functions. It can differentiate, integrate, take limits, solve systems of linear
or polynomial equations, factor polynomials, expand functions, plot curves, and
manipulate matrices. Since, however, the tensor operations contemplated here only
require differentiation and summation, attention will be confined to these two
operations.

6.2 USE OF MACSYMA TO TRANSFORM AERODYNAMIC STABILITY
DERIVATIVES

In chapter 2, section 2.7, it was deduced that the aerodynamic stability deriva-
tives transform like the components of a mixed tensor, having one index of
contra variance and one index of covariance. Moreover, due to the equivalence of
covariant and contravariant transformations in orthogonal Cartesian systems of
coordinates, the transformations can be treated as doubly covariant or doubly
contravariant, if this simplifies the formulation (see sec. 2.8.2). When the doubly
contravariant form is used, the transformation law assumes the following form
(ref. 2):

(6.2.D

where the first index denotes the component of the aerodynamic force or moment,
and the second index denotes the component of the motion vector with respect to
which the derivatives are obtained.

When y - y(x) is specified, equation (6.2.1) can be evaluated. Let it be assumed
that a transformation from wind axes to body axes is required (see sec. 2.2). In this
case the transformation equations are

yl = x1 cos A cos B - x2 cos A sin.fi - x3 sin A

y2 =x1 s inB+x 2 cos 5 } (6.2.2)

y3 = x1 sin A cos B- x2 sin A sin B + x3 cos A
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As noted previously, the angles A and B correspond to the angle of attack and the
angle of sideslip, respectively.

Implementation of the technique of symbolic mathematical computation requires
that equation (6.2.2) be used as input to a computer program to permit expansion
of equation (6.2.1). To illustrate the technique of using MACSYMA interactively, let
us carry out the steps involved in expanding equation (6.2.1).

When a user has established communication with the system, MACSYMA
responds by typing the label C(l), which means that the system is ready to accept
the first command from the user. The user than types a command or statement in
the MACSYMA input language. The first three input statements are the three
equations (6.2.2). The MACSYMA system requires that these be given in the
following modified form, where asterisks again denote multiplication:

(Cl) Y[1]:X[1]*COS(A)*COS(B)-X[2]*COS(A)*SIN(B)-X[3]*SIM(A)$

(C2) Y[2]:X[1]*SIN(B)+X[2]*COS(B)$

(C3)-Y[3]:X[1]*SIN(A)*COS(B)-X[2]*SIN(A)*SIN(B)+X[3]*COS(A)$

Note that the corresponding FORMAC input statements employed the conven-
tional equality sign and enclosed the identifying indices in parentheses, whereas
MACSYMA replaces the equal sign with a colon and encloses the indices in brackets.
Again, it will be seen that although the FORMAC indices retain the parentheses
when printed out, MACSYMA prints the output statements in conventional sub-
scripted form.

When the user has finished typing'the three transformation equations in the
MACSYMA input language, the system ^prompts the user by typing another com-
mand label. In this case MACSYMA types the label C(4). The same notation for the
aerodynamic parameters is used in this program as was used previously; that is,
C(I,J) denotes an aerodynamic stability derivative and TC(I,J) denotes a transformed
.derivative. The simplicity of the program is evident from the fact that only three
additional program steps are required: (1) an initializing command, (2) a DO loop,
and (3) a DISPLAY command which replaces the printout statement in the
FORMAC program.

The following program and the displayed output are taken from actual computer
printout: :
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(C4) TC[I,J]:=0$

(C5) FOR 1:1 THRU 3 DO FOR J:1 THRU 3 DO
FOR M:l THRU 3 DO FOR N:l THRU 3 DO
TC[I,J]:TC[I,J]+DIFF(Y[I],X[M])*DIFF(Y[J],X[N])*C[M,N]$

(C6) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO
DISPLAY(TC[I,J])$

TC, ,
1 , 1

- C3

C9 9 COS2(A) SIN2(B) - C9 , COS2(A) COS(B) SIN(B)
L , f. , £. , \

COS2(A) COS(B) SIN(B) + ^3 2
 COS(A) S I^(A) SIN(B)

COS(A) SIN(A) SIN(B) + C ] ] COS2(A) COS2(B)

COS(A) SIN(A) COS(B) - C ] 3 COS(A) SIN(A) COS(B)

TC

SIN2(A)

= " C COS(A) COS(B) SIN(B)
] 2 " 2

+ C] 1 COS(A) COS(B) SIN(B) - GS ] SIN(A) SIN(B)

2

TC

COS(A) C O S ( B ) - C3 -2 SIN(A) COS(B)

2SIN(A) S I N ( B )

COS(A) SIN(A) COS(B) SIN(B)

COS(A) SIN(A) COS(B) SIN(B) S I N ( A ) SIN(B)

3 .COS 2 (A) SIN(B) COS(A) SIN(A) C O S ( B )
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- C3 1 SIN
2(A) COS(B) + CT 3 COS

2(A) COS(B)

- C3 3 COS(A) SIN(A)

TC2 1 = - C1 2 COS(A) SIN2(B) - -C2 ^ COS (A) COS(B) SIN(B)

+ C1 1 COS(A) COS(B) SIN(B) - C] 3 SIN(A) SIN(B)

+ C2 1 COS(A) COS
2(B) - C2 3 SIN(A) COS(B)

TC2 2 = Cv -, SIN2(B) + C2$ 1 COS(B) SIN(B)

+ C1 2 COS(B)' SIN(B) + C2 2 COS
2(B)

TC2 3 = - C] 2 SIN(A) SIN
2(B) - C2 2

 SIN(A) COS(B) SIN(B)

+ C^ -, SIN(A) COS(B) SIN(B) + C] 3 COS(A) SIN(B)

+ C2j -, SIN(A) COS
2(B) + C2 3 COS(A) COS(B)

TC3 1 = C2 2 COS(A) SIN(A) SIN
2(B)

- C2j -, COS (A) SIN(A) COS(B) SIN(B)

- C1? 2 COS(A) SIN(A) COS(B) SIN(B) + C2j 3 SIN
2(A) SIN(B)

- C3j 2 COS
2(A) .SIN(B) + C1 ] COS(A) SIN(A) COS

2(B)

- C1 3 SIN
2(A) COS(B) + C3 1 COS

2(A) COS(B)

- C COS(A) SIN(A)
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TC,. o = - C9 , SIN(A) SIN2(B) - C9 9 SIN(A) COS(B) SIN(B)
« J ) ^ £ j I ' L- i C.

+ C] ] SIN(A) COS(B)'SIN(B) + GS ] COS(A) SIN(B)

+ C] 2 SIN(A) COS2(B) + C3 2 COS(A) COS(B)

TC3 3 = C2 2 SIN2(A) SIN2(B) - C2 ] SIN2(A) COS(B) SIN(B)

- C] 2 SIN2(A) COS(B) SIN(B) - GS 2 COS(A) SIN(A) SIN(B)

- C2 3 COS(A) SIN(A) SIN(B) + C-j ] SIN2(A) COS2(B)

+ C3 1 COS(A) SIN(A) COS(B) + C] 3 COS(A) SIN(A) COS(B)

+ C, . COS2(A)

6.3 PRINTOUT OF INPUT COMMANDS

If the user wishes to have any input command printed out, this can be accom-
plished by terminating each command with a semicolon (;) instead of a dollar sign
($). For example, when the. input commands to the preceding program for the
transformation of aerodynamic stability derivatives are terminated in this manner,
the results appear as follows:

(Cl) Y[1]:X[1]*COS(A)*COS(B)-X[2]*COS(A)*SIN(B)-X[3]*SIN(A);

(Dl) - X2 COS(A) SIN(B) + X-! COS(A) COS(B) - X3 SIN(A)

(C2) Y[2]:X[1]*SIN(B)+X[2]*COS(B);

(D2) X1 SIN(B) + X2 COS(B)

(C3) Y[3]:X[1]*SIN(A)*COS(B)-X[2]*SIN(A)*SIN(B)+X[3]*COS(A);

(D3) - X2 SIN(A) SIN(B) + X-, SIN(A) COS(B) + X3 COS(A)
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6.4 CENTRAL PROCESSING UNIT TIMES

MACSYMA makes it easy for the user to obtain the central processing unit (CPU)
time required to perform each operation. This is a convenient facility that enables
the programmer to keep track of costs.

By typing the command

SHOWTIME:TRUE$

the CPU time is printed out after each operation. When this command is used in the
preceding program, the time required for each operation is printed out as follows:

(Cl) SHOWTIME:TRUE$

time= 1 msec.

(C2) Y[1]:X[1]*COS(A)*COS(B)-X[2]*COS(A)*SIN(B)-X[3]*SIN(A)$

time=22 msec.

(C3) Y[2]:X[1]*SIN(B)+X[2]*COS(B)$

time= 8 msec.

(C4) Y[3]:X[1]*SIN(A)*COS(B)-X[2]*SIN(A)*SIN(B)+X[3]*COS(A)$

time= 17 msec.

(C5) TC[I,.J]:=0$

time= 2 msec.

(C6) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO
FOR M:l THRU 3 DO FOR N:l THRU 3 DO
TC[I,J]:TC[I,-J]+DIFF(Y[I],X[M])*DIFF(Y[J],X[N])*C[M,N]$

time=2247 msec.

(C7) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO DISPLAY(TC[I,J])$
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TC] 1 = C2 2 COS2(A) SIN2(B) - C2 ] COS2(A) COS(B) SIN(B)

- C, 9 COS2(A) COS(B) SIN(B) + C- , COS(A) SIN(A) SIN(B)
I , C. ~ 0 , C.

+ C9 , COS(A) SIN(A) SIN(B) + C, , COS2(A) COS2(B)
C. , J \ , \

- C3 1 COS(A) SIN(A) COS(B) - C] 3 COS(A) SIN(A) COS(B)

SIN2(A)

TC1 2 = - C2> 1 COS(A) SIN2(B) - C2 2 COS(A) COS(B) SIN(B)

+ C^ 1 COS(A) COS(B) SIN(B) - C3~ ] SIN(A) SIN(B)

+ C] 2 COS(A) COS2(B) - C3 2 SIN(A) COS(B)

TC1 3 = C2 2 COS(A) SIN(A) SIN2(B)

COS(A) SIN(A) COS(B) SIN(B)

- C] 2 COS(A) SIN(A) COS(B) SIN(B) + C^ 2 SIN2(A) SIN(B)

- C2 3 COS2(A) SIN(B) + C] ] COS(A) SIN(A) COS2(B)

- C SIN2(A) COS(B) + C COS2(A) COS(B)

COS(A) SIN(A)

SIN2(B) - C COS(A) COS(B)

+ C1 1 COS(A) COS(B) SIN(B) - C] 3 SIN(A) SIN(B)

+ C9 , COS(A) COS2(B) - C9 , SIN(A) COS(B)
t- 5 I *- > 0
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TC2 2 = C1 1 SIN2(B) + C2 1 COS(B) SIN(B) + C] 2 COS(B) SIN(B)

+ C2 2 COS2(B)

TC2 3 = - C] 2 SIN(A) SIN
2(B) - C? 2 SIN{A) COS(B) SIN(B)

+ C] ] SIN(A) COS(B) SIN(B) + GI 3 COS(A) SIN(B)

+ C2 1 SIN(A) COS
2(B) + C2 3 COS(A) COS(B)

TC3 T = C2 g COS(A) SIN(A) SIN2(B)

- C2 1 COS(A) SIN(A) COS(B) SIN(B)

- C-, 2 COS(A) SIN(A) COS(B) SIN(B) + C2 3 SIN
2{A) SIN(B)

- C, 9 COS
2(A) SIN(B) + C, , COS(A) SIN(A) COS2(B)

>5 J t- I 5 I

- C] 3 SIN
2(A) COS(B) + C3 1 COS

2(A) COS(B)

- C3 3 COS(A) SIN(A)

TC3 2 = - C2 1 SIN(A) SIN
2(B) - C2 2 SIN(A) COS(B) SIN(B)

+ C1 1 S^N(A) COS(B) SIN(B) + C3 1 COS(A} SIN(B)

+ C1 2 SIN(A) COS
2(B) + C3 2 COS(A) COS(B)
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TC 3 SIN2(A) SIN2(B) - S I N ( A ) COS(B) SIN(B)

COS(A) SIN(A) SIN(B)

SIN2(A) COS2(B)

- C^ 2 SIN(A) COS(B) SIN(B) - C

- C2j 3 COS(A) SIN(A) SIN(B) + C]

+ C3 1 COS(A) SIN(A) COS(B)" + C] 3 COS(A) SIN(A) COS(B)

+ C3 3 COS
2(A)

time= 34 msec.
N

It should be noted that all times are given in milliseconds.

6.5 FORMULATION OF CHRISTOFFEL'S SYMBOLS

The Christoffel symbols of the first and second kinds are related to the fundamen-
tal metric tensors as shown in equations (6.5.1) and (6.5.2), respectively (ref. 3).

'/ (6.5.2)

Given the metric tensors for the coordinate system being considered, it is a simple
matter to program the formulation of these symbols.

As in the previous example, only three program commands are required, that is,
an initializing command, a DO command, and a DISPLAY command.

Since the Christoffel symbols of the second kind are required in the formulation
of mathematical models, and will be used in later applications, a MACSYMA
program will be written to derive them.

The first step in this program, as in the corresponding FORMAC program, is to
input the metric tensors. In this application both the covariant and the contravariant
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form of the metric tensors are required. Since the applications being considered are
confined to orthogonal coordinate systems, it is possible to use the following
simplifications:

for

— for / = /
*//

that is

where a subscript in parentheses denotes suspension of the summation convention.
MACSYMA will accept the metric tensor inputs if the following substitutions are

made:

g" = H[I,I]

r 1=T(K,i,j]

The' following notation will be used by MACSYMA to display the formulated
Christoffel symbols:

I I
If T T ~ \ IA.,1,J lijl

The computer program and the formulated Christoffel symbols for a cylindrical
polar coordinate system assume the following form:

( C l ) SHOWTIME:TRUE$
time= 1 msec.
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(C2)
time= 3 msec.

(C3) G[2,2]:X[1]**2$
time= 4 msec.

(C4) G[3,3]:l$
time= 1 msec.

(C5) FOR I: 1 THRU 3 DO H[I,I]:1/G[I,!]$
time= 17 msec.

(C6) T[I,J,K]:=0$
time= 2 msec.

\

(C7) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO FOR K:l THRU 3 DO
T[I,J,K]:T[I,J,K]+H[I,I]*(DIFF(G[J,I],X[K])+DIFF(G[K,I],X[J])
-DIFF(G[J,K],X[I]))/2$
time= 794 msec.

(C8) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO
FOR K:l THRU 3 DO DISPLAY(T[I,J,K])$

T l , l , l = 0 Tl,3, 1 = °

T l , l , 2 = 0 ' Tl,3, 2-°

T l , l , 3 = 0 Tl,3, 3 = 0

Tl,2, 1 = 0 T 2 , 1 , 1 = °

T - Y T =1
1, 2, 2 Al . '2, 1, 2 Y

Xl
Tl 2 3 = °' ' T = n

'2, 1, 3 °
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T2, 2, 1 " "" T3, 1, 3 = °
Xl

T, ? , = 0
T =0 ^' ' '

2, 2, 2 U

T, ? 9 = 0
T = n o, £, £
F2, 2, 3 U

T-3 9 •? = °T0 , ,. = 0 3, 2, 3
<-» j> '

T^ , , = 0
T =n 3, 3, I
'2, 3, 2 U

T^ , ? = 0
T =n o, J, ^
'2, 3, 3 U

T - . o = 0
T, , , = 0 - 3, 3, 3

•J , I 5 I

T-3 i i = 0J> '» ^ trme= 104 msec.

The same program may be used to formulate the Christoffel symbols of the
second kind for a spherical polar coordinate system. The only difference is that the
metric tensor inputs must be changed to correctly describe an element of arc in this
system, that is

ds2 -(rfx1)2 +(

where x1 is the radial distance, x2 the polar angle, and x3 the azimuth. Therefore

G[ l , l ] = 1

G[2,2] =(*M2

G[3,3] =(je1 sinx2)2
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With these inputs, the program and the corresponding Christoffel symbols assume
the following form:

(Cl) SHOWTIME: TRUE$
time= 1 msec.

(C2)
time= 3 msec.

(C3) G[2,2]:X[1]**2$
time= 4 msec.

(C4) G[3,3]:(X[1]*SIN(X[2]))**2$
time= 9 msec.

(C5) FOR 1:1 THRU 3 DO H[I,I]:1/G[I,I]$
tirie= 20 msec.

(C6) T[I,J,K]:=0$
time= 2 msec.

(C7) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO FOR K:l THRU 3 DO
T[I,J,K]:T[I,J,K]+H[I,I]*(DIFF(G[J,I],X[K])+DIFF(G[K,I],X[J])

-DIFF(G[J,K],X[I]))/2$
time= 843 msec.

(C8) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO
FOR K:l THRU 3 DO DISPLAY(T[I ,J,K])$

Tl, 1, 1 = ° Tl, 2, 2 = " Xl

T l , l , 2 = 0 Tl,2, 3 = 0

T l , 1 . 3 = 0 Tl,3, 1 = 0

Tl,2, 1 = 0 . Tl,3, 2 = 0
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, 3, 3=- X l

T 2 , 1 . 1 - °

T2, 1, 2 =

T2. 1. 3'°

T - 1-
'2, 2, 1 " „

T2, 2, 2

T2, 2, 3

T2, 3; 1

T2, 3, 2

, , =. - COS(X9) SIN(X9)
. 5- J 9 J t t

/ 3 .1 .1 - "

T 3 , 1 . 2 - °

? 1 ^ =0 , 1 , 0 Y

T3, 2, J ' °

T 3 , 2 , 2 - °

cos(x2)
'o o o =

J' ^' J SIN(X2)
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T3, 3,

COS(X9 )
= _____ £_

-' 3' 2 S I N ( X 2 )

T 3 , 3 , 3 = 0

time= 104 msec.

A Christoffel symbol which occurs in cosmological studies is derived from metric
tensors that are exponential functions of the coordinates. The formulation of
Christoffel symbols of this type will be used to demonstrate the method employed
by MACSYMA to differentiate a function of a variable. In MACSYMA, functional
dependence can be declared by using a DEPENDENCIES function. For example,
since MACSYMA knows the chain rule for symbolic differentiation, the statement

D E P E N D E N C I E S ( F ( X , Y ) , X ( T ) , Y ( T ) ) ;

followed by

D I F F ( F . T ) ;

will yield

DF DY + DF DX
DY DT DX DT

Moreover, it will be seen that executing DEPENDENCIES(Y(X)) will cause the
differential of Y with respect to X to be displayed asDY/DX.

Apart from the use of the DEPENDENCIES function, the program required to
formulate Christoffel symbols of this type is the same as before, except that the
extent of each dimension is increased from 3 to 4. Hence, the range of the DO
command and the DISPLAY command must be increased to account" for this
change.
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Since the processing time increases with the complexity of the formulation, the
CPU time required for each step of the operation will again be requested by typing
the additional command

SHOWTIME:TRUE$

The DEPENDENCIES functions together with the components of the fundamen-
tal metric tensor and the initializing statement are

(Cl) SHOWTIME:TRUE$
time= 1 msec.

(C2) DEPENDENCIES(L(X[1]))$
time= 1 msec.

(C3) DEPENDENCIES(M(X[1]))$
time= 1 msec.

(C4) G[1,1]:-*E**L(X[1])$ /

time= 12 msec.

(C5) G[2,2]:-X[1]**2$
time= 4 msec.

(C6) 6[3,3]:-(X[l]*SIN(X[2]))**2$
time= 10 msec.

(C7) G[4,4]:%E**M(X[1])$
t.ime= 5 msec.

(C8) FOR 1:1 THRU 4 DO H[I,I]:1/G[I,I]$
time= 27 msec.

(C9) T[I,J,K]:=0$
time= 2 msec.

Note that the base of natural logarithms e is written as %E, hence the statement

%E**L(x[l])

is equivalent to
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and similarly

%E**M(x[l])

is equivalent to

The following program statements are the same as before, except that the range of
the DO command and the DISPLAY command has been increased to account for
the fact that the space is now four dimensional. With these inputs, the MACSYMA
program and the formulated Christoffel symbols are

(CIO) FOR 1:1 THRU 4 DO FOR J:l THRU 4 DO
FOR K:l THRU 4 DO T[I,J,K]:T[I,J,K]
+H[I,I]*(DIFF(G[J,I],X[K])+DIFF(G[K,I],X[J])-DIFF(G[J,K],X[I]))/2$

time= 2155 msec.

(Cll) FOR 1:1 THRU 4 DO FOR J:l THRU 4 DO
FOR K:l THRU 4 DO DISPLAY(T[I,J,K]);

T l , 2 , 1 = °
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, 2, 2 = " Xl %E

l, 2, 3 =

T l . 2 , 4 = 0

T l ,3 , 1 = °

Tl. 3, 2 = 0

- ,

, 3, 3 = - X1 %E SIN

T l , 3 , 4 = 0

T l ,4 , 1 = °

T l ,4 , 2 = 0

T l ,4 , 3 = °

M(X,) - L (X , )
%E ] ]

Tl, 4, 4

T2, l . 1 ' °

T2, 1, 2 = "
Xl

T 2, 1 , 3=°
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T 2 , ] . 4 = 0

T2, 2, 1 = 7
Xl

T2, 2, 2 = °

T2, 2, 3 = °

T2, 2, 4 - °

T2, 3, 1 = °

T2, 3,' 2 = °

T2, 3, 3 = - COS(X 2 ) S I N ( X 2 )

T2, 3, 4 = °

T2, 4, 1 = °

T2, 4, 2 = °

T2, 4, 3 = °
T2, 4, 4 : ° -
T 3 . L I ' 0

T 3 , 1 , 2=°
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O , I , -J y

1

T3, 1,4 = °

T3, 2, 1 = °

T3, 2, 2 = °

cos(x2)
' -3 9 -3 =

' ' SIN(X2)
/

T 3, 2 , 4 - °

3, 3, I V

1

cos(x2)
3' 3' 2 SIN(X2)

T3, 3, 3 = °

T3, 3, 4 = °

T3, 4, 1 = °

T3, 4, 2 = °

T3, 4, 3 = °
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T3, 4, 4 = °

T 4 , 1 , 1 = °

T 4 , 1 , 2 = 0

T4, 1 , 3= 0

A M(X )
dX] '

T4, 1, 4 = —--—-

T4, 2, 1 = °

T4, 2, 2 = °

T4, 2, 3 = °

T4, 2, 4 = °

T4, 3, 1 = °

T4, 3, 2 = °

T4, 3, 3 = °

T4, 3, 4 = °
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T4, 4,

T4, 4, 2

T4, 4, 3

T4, 4, 4

time=519 msec.

6.6 EQUATIONS OF MOTION OF A PARTICLE

A form of the equations of motion of a particle which is valid in all orthogonal
curvilinear coordinate systems is given in section 3.5, equation (3.5.9). For the
convenience of readers this equation is reproduced here (ref. 4)

Ik] dt dt I *(/7) 9x/ ^—

If the components dixljdt* be denoted by A [I] and the component

be denoted by ^? [/], then a program to formulate the equations of motion of a
particle in a given coordinate system would proceed as follows.

The first and most important step in the formulation of equation (6.6.1) is the
determination of the components of the Christoffel symbols, given the components
of the fundamental metric tensor. The facility with which MACSYMA can formulate
the Christoffel symbols was demonstrated in the preceding section, where the
notation / .- \

was used to display the formulated symbols.
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A program to formulate the equations of motion of a particle in a cylindrical
polar coordinate system would require, as input, the metric tensors for this system
of coordinates. These are

(Cl) G[l,l]:l$

(C2) G[2,2]:X[1]**2$

(C3) G[3,3]:l$

Since, for the cases being considered, the contravariant metric tensors are simply
the reciprocals of the corresponding covariant metric tensors, they can be formu-
lated as follows:

(C4) FOR 1:1 THRU 3 DO H[I,1]:1/G[I,!]$

As already indicated, the notation T[I,J,K] will be treated by MACSYMA as a
Christoffel symbol of the second kind. Hence, the initializing statement and the DO
command required to formulate these symbols, can be taken from any one of the
three preceding programs. These two programming steps assume the following form:

(C5) T[I,J,K]:=0$

(C6) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO FOR K:l THRU 3 DO
T[I,J,K]:T[I,J,K]+H[I,I]*(DIFF(G[J,I],X[K])+DIFF-(G[K,I],X[J])

-DIFF(G[J,K],X[I]))/2$

The equation for R[I] has already been defined, and it will be formulated by
instructing MACSYMA to execute the following DO command:

(C7) R[I]:=0$

(C8) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO FOR K:l THRU 3 DO
..R(I]:R(I]+T[I,J,K]*V[J]*V[K]$

The gravitational potential function denoted by 0 in equation (6.6.1) is a function
of the coordinates. To facilitate the printout of results it will be denoted by P in the
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present program. As in previous applications, functional dependence can be declared
by using the DEPENDENCIES function. The ith component of the gravitational
force is given by the partial differential coefficient of P with respect to x'. Denoting
by Fl the /th component of the thrust vector, and declaring the dependence of P on
xl, the programmed version of equation (6.6.1) and the formulated equations are
obtained as follows:

(C9) DEPENDENCIES(P(X[I]))$

(CIO) FOR 1:1 THRU 3 DO

(Cll) FOR 1:1 THRU 3 DO DISPLAY(A[I])$

d

dx, •' -1
 2

= --» + xiyi

--- P(-X,)
+

X2 Xl 2 V, V0
A = ._._] 1-5
i M X1

--- P(X,) + Fq

dX,
A0 = —f

M

* Exactly the same procedure may be used to formulate the equations of motion of
a particle in a spherical polar coordinate system. When the metric tensors which
characterize an element of arc in this coordinate system are used as input, the
MACSYMA program and the formulated equations assume the form
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(Cl)

(C2) G[2,2]:X[1]**2$

(C3) G[3,3]:(X[1]*SIN(X[2]))**2$

(C4) FOR 1:1 THRU 3 DO H[I,I]:1/G[I,I]$

(C5) T[I,J,K]:=0$

(C6) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO FOR K:l THRU 3 DO
T[I,J,K]:T[I,J,K]+H[I,I]*(DIFF(G[J,I],X[K])+DIFF(G[K,I],X[J])

-^IFF(G[J,K],X[I]))/2$

(C7) R[I]:=0$

(C8) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO FOR K:l THRU 3 DO
R[I]:R[I]+T[I,J,K]*V[J]*V[K]$

(C9) DEPENDENCIES(P(X[I]))$

(CIO) FOR 1:1 THRU 3 DO

(Cll) FOR 1:1 THRU. 3- DO DISPLAY(A[I])$

- - - P ( x )

Xl X] 2 2 Vl V2
A = ---- -I --------- + V, COS(X9) SIN(X9) ---- ----
i M J ^ Xl
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(J

dXo 3 F,
-t-

X2 SIN2(X9) Xl SIh

A - _ !__. _^
3J M

>

J ( X2 ) 2 V? V, COS(X9 )
t. O ^

SIN(X2)

2 V 1

Xl

V3

6.7 FORMULATING MODELS OF AERONAUTICAL SYSTEMS

The formulation of models of aeronautical systems for simulation and other
purposes involves at least 12 equations: 3 force equations; 3 moment equations;
3 Euler angle equations, or 9 direction cosine equations to determine the spatial
orientation of the body; and 3 equations to determine the location of the body in
inertial space. In view of this complexity, it is important to mechanize as much of
the formulation as possible. An important aspect of the formulation of models of
aeronautical systems is the specification of the system of forces and moments. In
aeronautical applications, the thrust and gravity forces can be formulated without
difficulty, but the aerodynamic forces and moments require more detailed consider-
ation. These are represented by the static forces and moments and the aerodynamic
stability derivatives. These forces and moments have to be transformed from wind or
wind-tunnel stability axes to body axes before the formulation can proceed.
Although the aerodynamic transformations and formulations are not complicated,
they are complex and unwieldy and are likely to contain errors when formulated
manually. In summary, formula manipulation as implemented by the MACSYMA
system can be used to facilitate the formulation of complex mathematical models
and reduce the errors to which human operators are prone. The interactive capabil-
ity, versatility, and simplicity of the system make it attractive to programmers and
nonprogrammers alike. In order to illustrate these aspects of the system, a mathe-
matical model of an aeronautical system has been formulated.

6.8 AERONAUTICAL REFERENCE SYSTEMS

There are many coordinate systems in use in aeronautical research. Aerodynamic
data obtained from wind-tunnel experiments may be referred to wind axes or to
wind-tunnel stability axes. When the wind axes are used, the Xl axis is aligned with
the relative wind at all times. Most wind-tunnel data are referred to the wind-tunnel
stability axes system. For this system, the Xl axis is in the same horizontal plane as
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the relative wind at all times. In addition to the wind axes and the wind-tunnel
stability axes, there are other systems of axes fixed in the body and moving with the
body. These are referred to as body axes. In aerospace applications, a body axis
system has the YI axis fixed along the longitudinal centerline of the body, the 72

axis normal to the plane of symmetry, and the Y3 axis in the plane of symmetry.
The equations of motion of aerospace vehicles are formulated with respect to body
axes. The main advantage of these axes in motion calculations is that vehicle
moments and products of inertia about the axes are constants. When the body axes
are chosen so that the products of inertia vanish, they are known as principal axes. A
system of axes, which is frequently used to study the stability of aircraft in the
presence of disturbing forces that produce small perturbations, is the flight stability
axes. This is an orthogonal system fixed to the vehicle, the Yl axis of which is
aligned with the relative wind vector when the vehicle is in a steady-state condition,
but then rotates with the vehicle after a disturbance as the vehicle changes angle of
attack and sideslip (ref. 5). Some of these axes are shown in figure 6.8.1.

Figure 6.8.1.— Systems of reference axes, including body, principal, wind, flight stability,
and wind-tunnel stability.

6.9 TRANSFORMATION EQUATIONS

As indicated in section 6.7 the first step in the formulation is the transformation
of relevant data. The elements of the matrices defining a transformation from wind
or wind-tunnel stability axes to body axes are functions of the angle of attack (A)
and the angle of sideslip (fi). Moreover, coordinates in wind-tunnel axes are denoted
by a column vector of coordinates Xj, and the body axes coordinates by a column
vector Yf. To bring a reference frame from the wind axes into coincidence with the
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body axes involves a negative rotation (B) about the 73 axis, followed by a positive
rotation (A) about the Y2 axis. These matrices may be entered and multiplied when
communication has been established and the system prints (Cl). When this occurs,
the user types ENTERMATRIX(m,n) which allows one to enter a matrix, element
by element, with MACSYMA requesting values for each of the (m,n) entries as
follows:

(Cl) ENTERMATRIX(3,3);

ROW 1 COLUMN 1 COS(A);

ROW 1 COLUMN 20;

ROW 1 COLUMN 3 -SIN(A);

ROW 2 COLUMN 1 0;

ROW 2 COLUMN 2 . 1 ;

ROW 2 COLUMN 3 0;

ROW 3 COLUMN 1 SIN(A);

ROW 3 COLUMN 2 0;

ROW 3 COLUMN 3 COS(A);

MATRIX-ENTERED

(Dl) ..

(C2) ENTERMATRIX(3,3);

ROW 1 COLUMN 1 COS(B);

ROW 1 COLUMN 2 -SIN(B);

[ COS(A) 0 - .SIN(A) ]

[ 0 1 0 ]
[ ' ]
[ SIN(A) 0 COS(A) ]
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ROW 1 COLUMN 3 0;

ROW 2 COLUMN 1 SIN(B);

ROW 2 COLUMN 2 COS(B);

ROW 2 COLUMN 3 0;

ROW 3 COLUMN 1 0;

ROW 3 COLUMN 2 0;

ROW 3 COLUMN 3 1;

MATRIX-ENTERED

(D2)

(C3) ENTERMATRIX(3,1);

ROW 1 COLUMN 1 X[l];

ROW 2 COLUMN 1 X[2];

ROW 3 COLUMN 1 X[3];

MATRIX-ENTERED

(D3)

[ COS(B)

[ SIN(B)

0

- SIN(B)

COS(B)

0

o ]
3 ]

0 ]
]

0 ]

1 ]

(C4)
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COS(A) COS(B) - X SIN(B)) - X SIN(A) \

(D4) X, SIN(B) + X9 COS(B)
] 2

i SIN(A) (X1 COS(B) - X2 SIN(B)) COS(A) ]

(C5) FOR 1:1 THRU 3 DO ROW[1 ]:FIRST(ROW('(D4) ,1))$

(C6) FOR 1:1 THRU 3 DO (Y[I] :ROW[I][1],DISPLAY(Y[I]));

Y] = COS(A) (X-, COS(B) - X2 SIN(B)) - X3 SIN(A)

(D6) Y2 = X1 SIN(B) + X2 COS(B)

(X COS(B) - X SIN(B)) + X COS(A)

In order to more fully app; eciate the results obtained so far, the reader should note
that MACSYMA requests the ith row and the/th column of the matrix being entered
by typing ROWICOLUMNJ. The user merely provides the corresponding element.
When all m X n elements have been entered, the system types MATRIX-ENTERED,
formulates the matrix and assigns an identifying number (DI). When the user types
the command (C4), that is, (D1).(D2).(D3), the three matrices are multiplied in the
order requested and the product matrix is displayed in (D4).

The two programming steps shown in (C5) and (C6) lead to the functional form
(D6), which represents the required transformation from wind axes Xj to body axes
YJ-

6.10 TRANSFORMATION LAW FOR STATIC FORCES

The static aerodynamic forces transform like ~the components of a contravariant
vector; that is, if Sp denotes a static aerodynamic force in the X frame of
reference, and SF^ denotes the corresponding transformed force in the Y reference
frame, then'(ref. 6)
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n

where Y = Y(X) is obtained from the displayed output (D6).
Given the transformation equations (D6), the transformed aerodynamic static

forces are obtained by expanding equation (6.10.1). The three programming steps
used in previous applications may again be employed to formulate the required
values. The simple program and the displayed results are

(C7) SF[I]:=0$

(C8) FOR 1:1 THRU 3 DO FOR M:l THRU 3 DO
SF[I]:SF[I]+DIFF(Y[I],X[M])*S[F[M]]$

(C9) FOR 1:1 THRU 3 DO DISPLAY(SF[I]);

SF, = - Sp 'COS(A) SIN(B) + Sc COS(A) COS(B) - Sc SIN(A)i i-2 h] h3

SF9 = Sp SIN(B) + S.- COS(B)
^ hl h2

SF- = - Sp SIN(A) SIN(B) + Sc SIN(A) COS(B) + Sc COS(A)
6 h2 Fl F3

(D9) DONE

6.11 TRANSFORMATION LAW FOR CONTROL FORCE DERIVATIVES

The control force derivatives obey the same transformation law as the static
forces; that is, if Dp £„ denotes the nth control force derivative with respect to
the Kth control surface as measured in the X reference frame, and TDjs~< denotes the
corresponding transformed derivative in the Y frame, then

dY'
TD i c =—D F c (6.11.1)

'' dX" "' k

where Y = Y(X) is again obtained from the displayed output (D6).
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*

As in the preceding section, the transformed control derivatives are obtained by
expanding the transformation law for derivatives given the transformation equations
(D6). The transformed derivatives are obtained by executing the following simple
program, which has exactly the same form as the program used to transform the
static forces in section 6.10. These are:

(CIO) TD[I,C]:=0$

(Cll) FOR 1:1 THRU 3 DO FOR M:l THRU 3 DO
TD[I,C]:TD[I,C]+DIFF(Y[I],X[M]j*D[F[M],C[K]]$

(C12) FOR 1:1 THRU 3 DO DISPLAY(TD[I ,C]);

TD, r = -Dr r COS(A)SIN(B) + DF r COS(A)COS(B) - DF r SIN(A)
I,L r2,LK ""T^K i-3,uK

TD9 r = Dp r SIN(B) + Dp r COS (B)
L. j U r -I , L. i> r p j L i>

TD, r = -DF r SIN(A)SIN(B) + DP r SIN(A)COS(B) + Dr r COS(A)J,o i-2,LK rrLK i-3,LK

(D12) DONE

The corresponding control forces are obtained by multiplying the control deriva-
tives by the appropriate control increments ACj^. The following two programming
steps are sufficient to ensure evaluation of the required forces. These are denoted by
CFj in the displayed output.

(C13) FOR 1:1 THRU 3 DO CF[I]:TD[I ,C]*DEL(C[K])$

(C14) FOR 1:1 THRU 3 DO DISPLAY(CF[I]) ;

CF, = (-Dp r COS.(A)SIN(B) + DF r COS(A)COS(B) - Dri r2,LK t-rLK h3, SIN(A))

DEL(CK)
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CF2 = (Dp c SIN(B) + DF c COS(B))DEL(CK )

CF3 = (-Dp c SIN(A)SIN(B) + Dp C ~S IN (A )COS(B ) + Dp c COS(A))

DEL(CK)

(D14) DONE

6.12 FORCES PRODUCED BY LINEAR VELOCITY PERTURBATIONS

The next step in the formulation involves the determination of the aerodynamic
forces produced when an aircraft is subjected to linear velocity perturbations At/,-.
Before these forces can be determined, the aerodynamic stability derivatives, with
respect to linear velocity components, must be transformed from wind or wind-
tunnel stability axes to aircraft axes. For a detailed discussion of the transformation
of these derivatives, the reader is referred to section 2.7. The program used for the
transformation in section 6.2 can be used in this case also. In this application, the
aerodynamic stability derivatives of the rth force with respect to the /th velocity
components are denoted by Dp.\j.. The .corresponding transformed derivatives are
denoted by TDp.jj.. When the program of section 6.2 is rewritten to accommodate
the notational changes required for this application, it assumes the form

(C15) TDU[I,J]:=0$

(C16) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO -
FOR M:l THRU 3 DO FOR N:l THRU 3 DO
TDU[I,J]:TDU[I,J]+DIFF(Y[I],X[M])*DIFF(Y[J],X[N])*D[F[M],U[N]]$

It only remains to multiply the transformed derivatives by the appropriate
velocity increments to obtain the required forces, which are denoted by FDU^. The
next three programming steps instruct MACSYMA to evaluate and display the forces
produced by linear velocity perturbations. These are
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(C17) FDU[I]:=0$

(CIS) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO
FDU[I]:FDU[I]+TDU[I,J]*DEL(U[J])$

(C19) FOR 1:1 THRU 3 DO DISPLAY(FDU[I]);

FDU1 = (Dp y COS(A)SIN(A)SIN2(B)

- Dp „ COS(A)SIN(A)COS(B)SIN(B)
h2'Ul

- Dp „ COS(A)SIN(A)COS(B)SIN(B) + DP ., SIN2(A)SIN(B)
F1'U2 3'U2

- Dp ,. COS2(A)SIN(B) + Dp .. COS(A)SIN(A)COS2(B)
h2'U3 hl'Ul

-Dp „ SIN2(A)COS(B) + Dp .. COS2(A)COS(B)

- Dp „ COS(A)SIN(A))DEL(U,)
h3'U3 J

+ (-Dp .. COS(A)SIN2(B) - Dp ,, COS(A)COS(B)SIN(B)
i-2,u1 i-2,u2

+ Dp ,, COS(A)COS(B)SIN(B) - DF ,. SIN(A)SIN(B)
i-1,u1 i-3,u]

+ Dp .. COS(A)COS2(B) - Dp .. SIN(A)COS(B))DEL(U,,)
i--|,U2 l-3,U2 t

+ (Dp „ COS2(A)SIN2(B) - Dp „ COS2(A)COS(B)SIN(B)
i"2,u2 2' 1 v

- Dp .. COS2(A)COS(B)SIN(B) + DP „ COS(A)SIN(A)SIN(B)
frU2 h3,u2
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)F ,, COS(A)SIN(A)SIN(B) + Dr ,, COS2(A)COS2(B)
h2'u3 hrul

- D F „ COS(A)SIN(A)COS(B) - DF „ COS(A)SIN(A)COS(B)
'U1 F1'U3

+ DF u SIN2(A))DEL(U1)

FDU0 = (-Dp ,, SIN(A)SIN2(B) - DF .. SIN(A)COS(B)SIN(B)
t i-ru2 h2 'u2

+ Dp .. SIN(A)COS(B)SIN(B) + DP ,, COS(A)SIN(B)
h'Ul hl'U3

+ Dp .. ' SIN(A)COS2(B) + Dp COS(A)COS(B))DEL(U,)
TO jU-i r« , Do 3

C. \ C. O -N.

+ (Dp ,, SIN2(B) + Dp ., COS(B)SIN(B) + Dr ,, COS(B)SIN(B)
hl'Ul h2'Ul h l 'U2

+ Dp ,, COS2(B))DEL(U9) + (-DF .. COS(A)SIN2 (B)
h2'U2 L ""l'U2

. - DF [J COS(A)COS(B)SIN(B) + Dp u COS(A)COS(B)SIN(B)

- D.- ,. SIN(A)SIN(B) + Dp ,, COS(A)COS 2 (B)FrU3 F2,U1

- Dp ,, SIN(A)COS(B))DEL(U,)
|~ n } U o Ic. o

= (Dp ,. SIN2(A)SIN2(B) - Dp ., SIN2 (A)COS(B)SIN(B)
*~2' 9 2 1

- „ SIN2(A)COS(B)SIN(B) - DP .. COS(A)SIN(A)SIN(B)
1'U2 _ h3'U2
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- Dp .. COS(A)SIN(A)SIN(B) + DF ., SIN2 (A)COS2 (B)
h2'U3 hl'Ul

+ Dp ,, COS(A)SIN(A)COS(B) + DF ,. COS(A)SIN(A)COS(B)

+ Dp COS2(A))DEL(Uq) + (-DF ,. SIN(A)SIN2(B)
h3'U3 J h2'ul

- Dp .. SIN(A)COS(B)SIN(B) + Dc ,, SIN(A)COS(B)SIN(B)
h2'U2 ' . hl'Ul

+ Dp ., COS(A)SIN(B) + Dp ,, S1N.(A)COS2(B)
h3'Ul I"1'U2

+ Dp .. COS(A)COS(B) )DEL(U ? )
r f\ * U o ^-

+ (Dp ,, COS(A)SIN(A)SIN2 (B)

- DF u COS(A)SIN(A)COS(B)SIN(B)

- D. ,, COS(A)SIN(A)COS(B)SIN(B) + Dc ., SIN2(A)SIN(B)
h l 'U2 h2'U3

P ,, COS2(A)SIN(B) + Dp ,, COS(A)SIN(A)COS 2 (B)
h3'U2 . hrUl

IP ,, SIN2(A)COS(B) + Dp .. COS 2 (A)COS(B)
h l 'U3 F3'U1

Dp n COS(A)SIN(A)) DEL(UJ
•"3' 3 '

6.13 FORCES PRODUCED BY ANGULAR VELOCITY PERTURBATIONS

The program used in section 6.-12 can, with suitable notational changes, be used
to formulate the forces produced by angular velocity perturbations. However,
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whereas in the preceding application the required forces were obtained by multiply-
ing the transformed aerodynamic stability derivatives by linear velocity increments,
in the present case the transformed derivatives must be multiplied by angular
velocity increments. In view of these similarities, the following program and dis-
played forces will be presented without further comment, except to point out that
the aerodynamic stability derivatives of the /th force with respect to the /th angular
velocity component are denoted by Dp-^p-. The corresponding transformed deriva-
tives are denoted by TDp.^p., and the resulting forces by FDPf.

(C20) TDP[I,J]:=0$

(C21) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO
FOR M:l THRU 3 DO FOR N:l THRU 3 DO
TDP[I,J]:TDP[I,J]+DIFF(Y[I],X[M])*DIFF(Y[J],X[N])*D[F[M],P[N]]$

(C22) FDP[I]:=0$

(C23) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO
FDP[I]:FDP[I]+TDP[I,J]*DEL(P[J])$

(C24) FOR 1:1 THRU 3 DO DISPLAY(FDP[I]);

FDP, = (Dp D COS(A)SIN(A)SIN2(B)
I 2 2

- DF p COS(A)SIN(A)COS(B)SIN(B)

- Dp p COS(A)SIN(A)COS(B)SIN(B) + DF ^ SIN2(A)SIN(B)

- Dp p COS2(A)SIN(B) + Dp p COS(A)SIN(A)COS2(B)

- Dp p SIN2(A)COS(B) + Dp p COS2(A)COS(B)

- Dp p COS(A)SIN(A))DEL(P.)
F3'P3 J
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+ (-Dp COS(A)SIN2(B) - DP „ COS(A)COS(B)SIN(B)
'2' I 2' 2

+ Dp COS(A)COS(B)SIN(B) - DF D SIN(A)SIN(B)
rl'pl r 3 > f l

+ Dp COS(A)COS2(B) - Dp D SIN(A)COS(B))DEL(P9)
hl'P2 h3'P2 . • ' *

+ (DF COS2(A)SIN2(B) - Dp p COS2(A)COS(B)SIN(B)
?' ? ?' l

- Dp COS2(A)COS(B)SIN(B) + DF p COS(A)SIN(A)SIN(B)
PTK2 ""3^2

+ DP COS(A)SIN(A)SIN(B) + Dc D COS2(A)COS2(B)
2'P3 hl'Pl

- DF COS(A)SIN(A)COS(B) - DF p COS(A)SIN(A)COS(B)
3'K1 *"TK3

+ DF SIN2(A))DEL(P1)
3'P3 '

FDP? = (-Dp p SIN(A)SIN2(B) - DF p SIN(A)COS(B)SIN(B)
1' 2 ? * 2

+ Dp SIN(A)COS(B)SIN(B) + DF p COS(A)SIN(B)
hl'Hl hl'H3

+ Dp SIN(A)COS2(B) + Dp „ COS(A)COS(B))DEL(PJi-2,K1 [-2,P3 6

+ Dp SIN2(B) + Dc n COS(B)SIN(B) + DF D COS(B)SIN(B)
hl'Pl F2'P1 hTP2

+ Dp COS2(B))DEL(P9) + (-Dp p COS(A)SIN2(B)
r o > '2 ^ 1 ' 2

- Dp COS(A)COS(B)SIN(B) + DP p COS(A)COS(B)SIN(B)r'r '"
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+ -Dp D COS(A)SIN(A)COS 2 (B) - D.- D SIN2 (A)COS(B)
hl'Pl h l 'P3

+ DC p COS 2 (A)COS(B) - DF p COS(A)SIN(A))DEL(P 1 )
h3'Hl F3'P3 '

6.14 FORCES PRODUCED BY LINEAR ACCELERATION PERTURBATIONS

The procedure used in the preceding two sections may, with equal facility, be
used to formulate the aerodynamic forces produced by linear acceleration perturba-
tions. However, in this case the required forces are obtained by multiplying the
transformed aerodynamic stability derivatives, with respect to acceleration compo-
nents, by linear acceleration increments. The aerodynamic stability derivatives of the
ith force component Ff with respect to the /th linear acceleration component A; are
denoted by Dp-^, and the transformed derivatives by TDp.^..1Y\& corresponding
force components in body axes are denoted by FDAj.

Due to the fact that lift responds in a transient -manner when, for example, the
angle of attack A or the linear velocity component U3 is suddenly changed, the
acceleration derivatives are very different from the velocity derivatives, which can be
determined on the basis of steady-state aerodynamics. This is a consequence of the
fact that the pressure distribution on a wing or tail surface does not adjust itself
instantaneously to its equilibrium value when the angle of attack or the velocity
components are suddenly changed. Hence, in order to get a sufficiently accurate
description of these derivatives during the indicial response phase, it may be
necessary to use function generation or look-up tables (ref. 7).

When the program of the preceding section has been modified to incorporate the
necessary notational changes, it assumes the following form:

(C25) TDA[I,J]:=0$

(C26) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO
FOR M:l THRU 3 DO FOR Nil THRU 3 DO
TDA[I,J]:TDA[I,J]+DIFF(Y[I],X[M])*DIFF(Y[J],X[N])*D[F[M],A[N]]$

(C27) FDA[I]:=0$

(C28) FOR 1:1 THRU 3 DO FOR 0:1 THRU 3 DO
FDA[I]:FDA[I]+TDA[I,J]*DEL(A[J])$

331



6.14 . JAMES C. HOWARD

(C29) FOR 1:1 THRU 3 DO DISPLAY(FDA[I])$

Execution of this program yields the aerodynamic forces produced by linear
acceleration perturbations. These are

FDAn = (DF „ COS(A)SIN(A)SIN2(B)
I rojtt

- DFh2

- D

- D

- D

GOS(A)SIN(A)COS(B)SIN(-B)
'A1

. COS(A)SIN(A)COS(B)SIN(B) + Dr . SIN2(A)SIN(B)
l> 2 3' 2

)c . COS2(A)SIN(B) + DP . COS(A)SIN(A)COS2(B)
h2'A3 ' hTAl

lc . SIN2(A)COS(B) + Dp . COS2(A)COS(B)
h3'Al T 3

- Dp . COS(A)SIN(A)DEL(AQ)
3'H3

+ (-Dp A COS(A)SIN2(B) - Dp . COS(A)COS(B)SIN(B)
lo jH-i r p> "2

+ Dp . COS(A)COS(B)SIN(B) - DF . SIN(A)SIN(B)
rl'Ml r3'rtl

+ Dp . COS(A)COS2(B) - Dp , SIN(A)COS(B))DEL(A9 )
1 * / ' O > * * O ^

+ (Dp' COS2(A)SIN2(B) - Dp » COS2(A)COS(B)SIN(B)
2 ' 2 2 1

- Dp . COS2(A)COS(B)SIN(B) + DF . COS(A)SIN(A)SIN(B)
rl'H2 3' 2

+ Dp , COS(A)SIN(A)SIN(B) + DF . COS2(A)COS2(B)
r2' 3 T 1
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- Dp . COS(A)SIN(A)COS(B) - DF . COS(A)SIN(A)COS(B)
3* 1 T 3

+ Dp A SIN2(A))DEL(A,)
3' 3

FDA0 = (-Dp . SIN(A)SIN2(B) - DF . SIN(A)COS(B)SIN(B)
t r i , HO r 2»"2

+ Dp . SIN(A)COS(B)SIN(B) + DP . 'COS(A)SIN(B)
F1,A1 t-rA3

+ Dp SIN(A)COS2(B) + Dp . COS(A)COS~(B))DEL(A,)
h2' 1 2'A3

+ (Dp . SIN2(B) + Dp . COS(B)SIN(B) + DF . COS(B)SIN(B)
r-j ,M-| r25"-] 1 '2

+ Dp . COS2(B))DEL(A9) + (-DF . COS(A)SIN2(B)
\~2^2 1 2

- Dp . COS(A)COS(B)SIN(B) + DF . COS(A)COS(B)SIN(B)
rps^o 1 1

- Dp SIN(A)SIN(B) + Dp '. COS(A)COS2(B)
rrM3 2' 1

- Dp . SIN(A)COS(B)DEL(A1 )
r2' 3

FDA, = (Dp . SIN2(A)SIN2(B) - DF . SIN2(A)COS(B)SIN(B)
O r ^ j H r t • r o 3 H-i

- Dp . SIN2(A)COS(B)SIN(B) - DF „ COS(A)SIN(A)SIN(B)i-pMg r3 ,M2

- Dp . COS(A)SIN(A)SIN(B) + DF . SIN2(A)COS2(B)
h2'A3 *r 1

+ Dp . COS(A)SIN(A)COS(B) + DF . COS(A)SIN(A)COS(B)
r3' 1 1' 3
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+ Dp . COS2(A))DEL(A.) + (-DF . SIN(A)SIN2(B)
r3'H3 J r2'Ml

- Dp . SIN(A)COS(B)SIN(B) + DF . SIN(A)COS(B)SIN(B)
r2'H2 hTMl

+ Dp . COS(A)SIN(B) + Dp . SIN(A)COS2(B)
r3'Hl rrH2

+ Dp . COS(A)COS(B))DEL(A? )
3 ' 2

+ (Dp . COS(A)SIN(A)SIN2(B)
r2'H2

- DF A COS(A)SIN(A)COS(B)SIN(B)

- Dp . COS(A)SIN(A)COS(B)SIN(B)
rl 'M2

+ Dp . SIN2(A)SIN(B) - Dp . COS2(A)SIN(B)
r2'M3 r3'H2

+ Dp . COS(A)SIN(A)COS2 (B) - DF . SIN2(A)COS(B)
rl'Ml hTM3

+ Dp . COS 2 (A)COS(B) - Dp . COS(A)SIN(A) )DEL(A 1 )
• 3' 1 3' 3

The components of the resultant aerodynamic force are

(C27) FOR 1:1 THRU 3 DO FA[I]:FDU[I]+FDP[I]+FDA[I]+CF[I]+SF[I]$

6.15 GRAVITY FORCES

The gravitational force vector acting on an aircraft has the value Mg, where M is
the mass of the aircraft and g is the gravitational acceleration vector. The magnitude
of g is assumed constant, which is tantamount to the assumption of a flat earth. The
gravity vector is specified in an earth-fixed reference frame; and it is required to find
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the components of this vector in aircraft body axes. In accordance with aeronautical
convention, a transformation from earth-fixed axes to aircraft body axes involves a
rotation R3 about the Y3 body axis, followed by a rotation R2 about the Y2 body
axis, and a rotation Rl about the Yl body axis. Hence, if it is assumed that the
body axes and the earth-fixed axes are initially coincident, the components of the
gravitational force FGj in body axes are given by an equation of the form

[FG] = [R l ] [Ri] [R 3 ] lMg]

where [FG] is a column vector of body axes components, [ R t ] , [R2 ], and [R3 ]
are rotation matrices, and [Mg] is a column vector of earth-fixed axes components.
These matrix operations can be performed by MACSYMA to yield the required
force components in body axes as follows:

(C31) ENTERMATRIX(3,3);

ROW 1 COLUMN 1 COS(R[3]);

ROW 1 COLUMN 2 SIN(R[3]);

ROW 1 COLUMN 30;

ROW 2 COLUMN 1 -SIN([3]);

ROW 2 COLUMN 2 COS(R[3]);

ROW 2 COLUMN 3 0;

ROW 3 COLUMN 1 0;

ROW 3 COLUMN 2 0;

. ROW 3 COLUMN 31;

MATRIX-ENTERED

(D31)

; cos(R3)

! -SIN(R3)

: o

SIN(RJ
O

COS(R3)

0

0 ]

0 ]

1 ]
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(C32) ENTERMATRIX(3,3);

ROW 1 COLUMN 1 COS(R[2]);

ROW 1 COLUMN 2 0;

ROW 1 COLUMN 3 -SIN(R[2]);

ROW 2 COLUMN 1 0;

ROW 2 COLUMN 2 1;

ROW 2 COLUMN 3 0;

ROW 3 COLUMN 1 SIN(R[Z]);

ROW 3 COLUMN 2 0;

ROW 3 COLUMN 3 COS(R[2]);

MATRIX-ENTERED

(D32)

(C33) ENTERMATRIX(3,3);

ROW 1 COLUMN 1 1;

ROW 1 COLUMN 2 0;

ROW 1 COLUMN 3 0;

ROW 2 COLUMN 1 0;

ROW 2 COLUMN 2 COS(R[1]);

COS(R2)

0

! SIN(R2)

0

1

0

-SIN(R2) ]

0 ]

COS(R2) ]
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ROW 2 COLUMN 3 SIN(R[1]);

ROW 3 COLUMN 10;

ROW 3 COLUMN 2 -SIN(R[1]);

ROW 3 COLUMN 3 COS(R[1]) ;

MATRIX-ENTERED

(D33)

(C34) ENTERMATRIX(3,1);

ROW 1 COLUMN 1 0;

ROW 2 COLUMN 1 0;

ROW 3 COLUMN 1 M*6;

MATRIX-ENTERED

(D34)

; i
\ 0

0

COS^)

-SIN^)

0 ]

SIN(R]) ]
0)5(1^) ]

].

]

6 M ]

o

The product of these four matrices gives the following column vector of gravita-
tional force components relative to aircraft body axes:
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(C35) (D33) . (D32) . (D31) . (D34) ;

-SIN(R9) G M ]

(D35) [ SINd^) COS(R2) G M ]

[ COS(R n ) COS(R0) G M ]
- .[ ] 2 ]'

These vector components may be expressed in conventional form by executing
the following two programming steps, which yield:

(C36) FOR 1:1 THRU 3 DO ROW[I] :FIRST(ROW((D35),1))$

(C37) FOR 1:1 THRU 3 DO (FG[I]:ROW[I][1],DISPLAY(FG[I]))$

FG1 = -SIN(R2) G M

FG2 = SIN(R1) COS(R2) G M

FG3 = COSd^) COS(R2) G M

where R; =*= (R° + 8/?^), Rf* are equilibrium values, and &Rj are angular
perturbations.

6.16 INERTIA FORCES

The formulation of the inertia forces involves the determination of the product of
an angular velocity matrix and a column vector of linear velocity components. This
product is the matrix equivalent of the familiar vector product oJ X V. By adding to
the components of this vector, the components of linear acceleration relative to
aircraft body axes, the components of inertial acceleration relative to these axes are
obtained. The required matrices may be entered and multiplied as follows:
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(C38) ENTERMATRIX(3,3);

ROW 1 COLUMN 1 0;

ROW 1 COLUMN 2 -P[3];

ROW 1 COLUMN 3 P[2];

ROW 2 COLUMN 1 P[3];

ROW 2 COLUMN 20;

ROW 2 COLUMN 3 -P[l];

ROW 3 COLUMN 1 -P[2];

ROW 3 COLUMN 2 P[l];

ROW 3 COLUMN 30;

MATRIX-ENTERED

(D38)

(C39) ENTERMATRIX(3,1);

ROW 1 COLUMN 1 U[l];

ROW 2 COLUMN 1 U[2];

ROW 3 COLUMN 1 U[3];

MATRIX- ENTERED

o -P3 P2

pi ° 5
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. (D39)

(C40) (D38).(D39);

(D40) Ul P3 - Pi U3

Pl U2 - Ul P2

(C41) FOR 1:1 THRU 3 DO ROW[I] :FIRST(ROW((D40), I ) )$

(C42) FOR 1:1 THRU 3 DO (C[I]:ROW[I][1],DISPLAY(C[I]))$

Cl = P2 U3 - U2 P3

c2 - u1 P3 - P] u3

C = P U - II PL3 Kl U2 Ul K

A statement of the fact that the ith component of the linear velocity vector is a
function of time, requires the use of the DEPENDENCIES function. The use of this
function permits the system to differentiate the components U^ with respect to
time. The remaining two programming statements request the system to add the
components, multiply the individual sums by the mass M of the vehicle, and display
the resulting inertial force components FRj as follows:

(C43) DEPENDENCIES(U(I,T))$

(C44) FOR 1:1 THRU 3 DO FR[I]:M*(C[I]+DIFF(U[I],T))$

(C45) FOR 1:1 THRU 3 DO DISPLAY(FR[I])$

340



MA THEMA TICAL MODELING OF DIVERSE PHENOMENON 6.17

FR1 = ~ Ul + P2 U3 - U2 P
3 ) M

)MFR2 = ^ U2 - Pl U3 + Ul P3

FR-, = Mo

6.17 RESULTANT FORCES

It only remains to request MACSYMA to combine the aerodynamic, gravitational,
and inertia forces that were-formulated in preceding sections and display the results.
The rth component of the resultant force will be denoted by FTj where T^ is the /th
component of thrust. The two programming steps and the formulated equations
follow.

(C46) FOR 1:1 THRU 3 DO FT[I]:FR[I]-FG[I]-FA[I]$

(C47) FOR 1:1 THRU 3 DO DISPLAY(FT[I])$

F^ = -(-Dp c COS(A)SIN(B) + DF >c COS(A)COS(B)

- Dp $IN(A))DEL(CJ - (Dp .. COS(A)SIN(A)SIN2 (B)
h3'LK * h2 )U2

- Dp ,. COS(A)SIN(A)COS(B)SIN(B)

D „ COS(A)SIN(A)COS(B)SIN(B) + DF „ SIN2(A)SIN(B)
ru2 3'U2

DF u COS2(A)SIN(B) + Dp u COS(A)SIN(A)COS2 (B)

DF u SIN2(A)COS(B) + Dp y COS2(A)COS(B)

Dp „ COS(A)SIN(A))DEL(U,) - (DF p COS(A)SIN(A)SIN2(B)
r3' 3 2* 2
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- Dp p COS(A)SIN(A)COS(B)SIN(B)
h2'K l

- Dp p COS(A)SIN(A)COS(B)SIN(B) + DF p SIN2(A)SIN(B)
hTK2 V 2.

- DF p COS2(A)SIN(B) + DF p COS(A)SIN(A)COS2 (B)

Dp p SIN2(A)COS(B) + Dp p COS 2 (A)COS(B)

Dp p COS(A)SIN(A) )DEL(Po) - (DP . COS(A)SIN(A)SIN2 (B)
h 3 ' ' 3 . 2'H2

: . COS(A)SIN(A)COS(B)SIN(B)

- . COS(A)SIN(A)COS(B)SIN(B) + DF . SIN2(A)SIN(B)
1 j M « r o jM«
I C. J L.

Dp . COS2(A)SIN(B) + Dp . COS(A)SIN(A)COS 2 (B)

- D

2' 3 T 1

2 2P f l S I N ( A ) C O S ( B ) + Dp f l C O S ( A ) C O S ( B )
h3'Al hTA3 -

Dp fl COS(A)SIN(A))DEL(A,.) - (-DF .. COS(A)SIN2(B)
r3' 3 2' 1

Dp ,. COS(A)COS(B)SIN(B) + Dr .. COS(A)COS(B)SIN(B)
rp>U2 1 '1

Dp ., SIN(A)SIN(B) + Dp ,, COS(A)COS2 (B)i-3,u1 hru2

Dp .. SIN(A)COS(B))DEL(U? ) - (-DF p COS(A)SIN2(B)
r3' 2 ^ h2' 1

Dp p COS(A)COS(B)SIN(B) + DF p COS(A)COS(B)SIN(B)
"
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SIN(A)SIN(B) - DF D COS(A)COS 2 (B)

2(B)- Dp p SIN(A)COS(B))DEL(PJ - (-DF . COS(A)SIN
0 9 ^ 0 o * n
O L- ^ I

- DF A COS(A)COS(B)SIN(B) - Dp ^ COS(A)COS(B)SIN(B)

- Dp . SIN(A)SIN(B) + Dp . COS(A)COS 2 (B)
h3' 1 T 2

- Dp . SIN(A)COS(B))DEL(A 9 ) - (DF „ COS2(A)SIN2(B)
1~ O 3 *»O ^ • ' O > U ( p

*J C. L- £•

- Dp „ COS2(A)COS(B)SIN(B) - DP „ COS2(A)COS(B)SIN(B)
i-2,u1 i-ru2

+ Dp .. COS(A)SIN(A)SIN(B) + DF ,, GOS(A)SIN(A)SIN(B)
h3'U2 h2'U3

+ Dp .. COS 2 (A)COS 2 (B) - Dp „ COS(A)SIN(A)COS(B)hruv 3'ui
- Dp u COS(A)SIN(A)COS(B) + Dp y SIN2(A))DEL(U ])

- (Dp p COS2(A)SIN2(B) - Dp p COS 2 (A)COS(B)SIN(B)
?' ? /' 1

- Dp p COS 2 (A)COS(B)SIN(B) + Dp p COS(A)SIN(A)SIN(B)

+ DF p COS(A)SIN(A)SIN(B) + Dp p COS2 (A)COS2 (B)

- Dp p COS(A)SIN(A)COS(B) - Dp p COS(A)SIN(A)COS(B)

+ Dp p SIN2(A)-)DEL(PJ - (Dp . COS2(A)SIN2(B)
r3' 3 ' 2' 2

343



6.17 JAMES C. HOWARD

- Dp COS2(A)COS(B)SIN(B) - DF COS2(A)COS(B)SIN(B)
r ^ 9 f *~ i 1 * 0

+ DF A COS(A)SIN(A)SIN(B) + Dp A COS(A)SIN(A)SIN(B)

+ Dp . COS2(A)COS2(B) - Dp . COS(A)SIN(A)COS(B)
hl'Ml - r3'rtl

- Dp . COS(A)SIN(A)COS(B) + Dr . SIN2(A))DEL(A1)
1 * ^ r -3 $ HO II o o o

+ SIN(Rp)GM + (-- U, + P?U^ - UpP,)M
dT ' J ^ J

+ Sp COS(A)SIN(B) - Sp COS(A)COS(B) + SF SIN(A)
h2 1 3

FT, = -(Dp r SIN(B) + D.- r COS(B))DEL(C.)
<C- '""I'^'l/ r ^ j L i / l\

I l\ c i\

- (-Dp „ SIN(A)SIN2(B) - Dp .. SIN(A)COS(B)SIN(B)
hTu2 r2'u2

+ Dp ., SIN(A)COS(B)SIN(B) + DP „ COS(A)SIN(B)
hl'ul hl'U3

+ Dp ,. SIN(A)COS2(B) + Dp ,. COS(A)COS(B))DEL(U.)
h2'Ul h2'U3 J

- (-Dp p SIN(A)SIN2(B) - Dp p SIN(A)COS(B)SIN(B)
hl' 2 h2> K2

+ DF p SIN(A)COS(B)SIN(B) + DF p" COS(A)SIN(B)

+ Dp „ SIN(A)COS2(B) + Dp D COS(A')COS(B))DEL(P.)
h2'K1 2'K3 J

- (-Dp . SIN(A)SIN2(B) - Dp . SIN(A)COS(B)SIN(B)
l - i 5»^rt l ~ O j M r t
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+ Dp . S I N ( A ) C O S ( B ) S I N ( B ) + DF . C O S ( A ) S I N ( B )hi'Ai hrH3

+ Dp . SIN(A)COS2(B) + Dp . COS(A)COS(B))DEL(Aj
r 2 >"i '2' "3 '

- (Dp .. SIN2(B) + Dp .. COS(B)SIN(B) + DF .. COS(B)SIN(B)
r -I ,U-| r 2 »U-i r-j ,^2

+ Dp ,, COS2(B))DEL(U9) - (DF „ SIN2(B) + DF D COS(B)SIN(B)
l o j U o L- r- i , r - j 2' 1

+ Dp p COS(B)SIN(B) + Dp p COS2 (B))DEL(P9 ) - (DF . SIN2(B)
r - i j rp r 2*' 2 1 ' 1

+ Dp . COSfB)SIN(B) + Dp . COS(B)S.IN(B)
f ' 1 1 '9

+ DF . COS2 (B))DEL(A9 ) - (-DF ,, COS(A)SIN2(B)
r2»"p ^ r-i 5Up

- Dp „ COS(A)COS(B)SIN(B) + Dp „ COS(A)COS(B)SIN(B)
h2'U2 ' hl'Ul

- Dp „ SIN(A)SIN(B) + Dp „ COS(A)COS 2 (
hru3 h2'Ul

,, SIN(A)COS(B))DEL(U 1 ) - (-DF D C O S ( A ) S I N ( B )
' 3 ' hl' 2

- Dp p. COS(A)COS(B)SIN(B) + DP p COS(A)COS(B)SIN(B)
i-2,r2 i-r^-

- Dp p SIN(A)SIN(B) + Dp p COS(A)COS2 (B)
h l '^3 h2'^l

- Dp p SIN(A)COS(B))DEL(P 1 ) - (-DF . COS(A)SIN2(B)
?' ^ 1 ' 9

- Dp . COS(A)COS(B)SIN(B) + DF . COS(A)COS(B)SIN(B)
i 2>™2 1 ' 1

- Dp . SIN(A)SIN(B) + Dp . COS(A)COS 2 (B)f - , M h , A
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F A SIN(A)COS(B))DEL(A1 ) - SIN(R] )COS(R2)GM
C. O

d_ u _ p M + u p )M _ s siN(B) - Sp COS(B)
dT ^ ' J ' 6 h1 2

FT, = -(-Dp p SIN(A)SIN(B) + DP r SIN(A)COS(B)
•j r / j»Li» 'i» **i/ "

L . N I N

+ DF c COS(A))DEL(CK) - (Dp y SIN2(A)SIN2(B)

- DF u SIN2(A)COS(B)SIN(B) - Dp y SIN2(A)COS(B)SIN(B)

- DF .. COS(A)SIN(A)SIN(B) - DF ,. COS(A)SIN(A)SIN(B)
3'U2 2'U3

.+ Dp ,. SIN2(A)COS2(B) + Dp .. COS(A)SIN(A)COS(B)
h ],U1 h3,U1

+ Dp .. COS(A)SIN(A)COS(B) + DP „ COS2(A))DEL(U,)i-ru3 1-3,U3 6

- (Dp p SIN2(A)SIN2(B) - Dp p SIN2(A)COS(B)SIN(B)
h2'K2 r2'K l

- DF p SIN2(A)COS(B)SIN(B) - Dp p COS(A)SIN(A)SIN(B)

- Dp p COS(A)SIN(A)SIN(B) + Dp p SIN2(A)COS2(B)

+ Dp p COS(A)SIN(A)COS(B) + DP „ COS(A)SIN(A)COS2 (B)
1-3,P1 h1,P1

- DF p SIN2(A)COS(B) + Dp p COS2(A)COS(B)

- Dp p COS(A)SIN(A))DEL(P 1 ) - (DF . COS(A)SIN(A)SIN2(B)1-3,KS I i-2,M2
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- DF A COS(A)SIN(A)COS(B)SIN(B)

- DF A COS(A)SIN(A)COS(B)SIN(B) + Dp ft SIN2(A)SIN(B)

- Dp . COS2(A)SIN(B) + Dp . COS(A)SIN(A)COS2 (B)
3' 2 r i

- DF « SIN2(A)COS(B) + Dp . COS2(A)COS(B)
TH3 3' 1

- Dp COS(A)SIN(A))DEL(A1) + M(-UnP9 + -- U,
r3'H3 ' ' ^ dT J

+ P-,U?) - COS(R1 )COS(R9 )GM + SP SIN(A)SIN(B)i i I i f-2

- Sp SIN(A)COS(B) - SF COS(A)
1 3

+ Dp p SIN(A) COS2(B) + Dp p COS(A) COS(B) ) DEL(P?)
""T 2 3' 2

- (-Dp . SIN(A) SIN2(B) - Dp . SIN(A) COS(B) SIN(B)
' O > *^1 I" Q 3 r»Q

+ Dp A SIN(A) COS(B) SIN(B) + Dp A COS(A) SIN(B)

+ Dp . SIN(A) COS2(B) + Dp . COS(A) COS(B)) DEL(A?)
r-ijMip T o j M o - ^

\ L. o L.

- (Dp „ COS(A) SIN(A) SIN2(B) - Dr ., COS(A) SIN(A) COS(B) SIN(B)
h2'U2 h2'U1

- DP . COS(A) SIN(A) COS(B) SIN(B) + DP „ SIN2(A) SIN(B)
hTu2 2' 3

- D. .. COS2(A) SIN(B) + Dp ,. COS(A) SIN(A) COS2(B)
h3'U2 h'0!

- Dc ., SIN2(A) COS(B) + Dp „ COS2(A) COS(B)

347



6.77 JAMES C. HOWARD

- Dp .. COS(A) SIN(A)) DEL(U,) - (Dc D COS(A) SIN(A) SIN2(B)
h3' 3 ' 2' 2

- DF p COS(A) SIN(A) COS(B) SIN(B)

- DF p COS(A) SIN(A) COS(B) SIN(B)

+ Dp p SIN2(A) SIN(B) - Dp COS2(A) SIN(B)
""2' 3 *yv2

+ Dp p COS(A)SIN(A)COS(B)
t" l ' t3

+ Dp p COS2(A))DEL(P.) - (Dp . SIN2(A)SIN2(B)
h3'K3 2'A2

IP . SIN2(A)COS(B)SIN(B) - DP . SIN2(A)COS(B)SIN(B)
h2'Al I'rt2

IP . COS(A)SIN(A)SIN(B) - DF . COS(A)S-IN(.A)SIN(B)
h3'A2 2'H3

+ Dp A SIN2(A)COS2(B) + Dp A COS(A)SIN(A)COS(B)

+ Dp . COS(A)SIN(A)COS(B) + DF . COS2(A))DEL(A?)
^1^3 3' 3

- (-Dp ,, SIN(A)SIN2(B) - Dp ,. SIN(A)COS(B)SIN(B) '
h2'Ul 2'U2

+ D.- ,. SIN(A)COS(B)SIN(B) + Dc .. COS(A)SIN(B)
FTU1 h3'Ul

+ Dp „ SIN(A)COS2(B) + Dp .. COS(A)COS(B))DEL(U9)
hl'U2 h3'U2 *

- (-Dp p SIN(A)SIN2(B) - Dp p SIN(A)COS(B)SIN(B)
'"2' 1 2 ' K 2

+ Dp p SIN(A)COS(B)SIN(B) + DF D COS(A)SIN(B)

- D

- D
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6.18 SPECIAL FORMS OF THE EQUATIONS OF MOTION

In aeronautical studies involving small perturbations about the equilibrium or trim
condition, the investigator sometimes wants to know how the vehicle will respond if
the motion is restricted in some way. For example,- he might wish to determine
vehicle response in the absence of sideslip (ref. 8). MACSYMA is well equipped to
implement assumptions of this type. By using a substitution command, MACSYMA
goes through the equations, makes the required substitutions, and displays the
modified results. For the case of zero sideslip the program requests MACSYMA to
make the substitutions: SIN(B) = 0 and COS(B) - 1 in each force equation. The
required substitution and display commands and the modified equations assume the
following form:

(C48) FOR 1:1 THRU 3 DO FT[I]:SUBST([SIN(B)=0,COS(B)=1],FT[I])$

(C49) FOR 1:1 THRU 3 DO DISPLAY(FT[I])$

FT] = -(DF c cos(A) - DF c SIN(A))DEL(CK) - (-DF u siN2(A)

- Dp .. COS(A)SIN(A) + Dp .. COS(A)SIN(A)r3,u3 |-1,U1

+ Dp „ COS2(A))DEL(U.) - (-Dp D SIN2(A) - DP p COS(A)SIN(A)
ri,u3 6 h3I^-j i-3,K3

+ Dp p COS(A)SIN(A) + Dp D COS2(A))DEL(P.J - (-DF . SIN2(A)
^" 1 » ' I 1 * Q ^'1I I I O O I

- Dp . COS(A)SIN(A) + Dp . COS(A)SIN(A)
r3' 3 T 1

+ Dp . COS2(A))DEL(AQ) - (Dr ,, COS(A) - DF ,. SIN(A))DEL(U9)
hl'rt3 * hl'U2 h3'u2 <•

- (Dp p COS(A) - Dp D SIN(A))DEL(P9). - (DF . COS(A)
l"l'P2 3'K2 T 2
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- Dp , SIN(A))DEL(A9) - (DP „ SIN2(A) - DP n COS(A)SIN(A)
h3'A2 " * *3 t [*3 l"3'ul

- DF y COS(A)SIN(A) + DF u COS2(A))DEL(U1) - (Dp p SIN2(A)

- Dp p COS(A)SIN(A) - Dp D COS(A)SIN(A)

+ Dp p COS2(A))DEL(P1} - (Dp . SIN2(A) - DF .
rVKl ' h3'M3 h3'M1

COS(A)SIN(A)

2- Dp . COS(A)SIN(A) + Dp . COS*{A))DEL(A,) + SIN(R9)GM
rTH3 "Vn ' <•

H
+ (-- U, + P5U, - U,P,)M + Sc SIN(A) - Sc COS(A)

dT ' d 6 L J F3 hl

FT9 = -Dp r DEL(C,,} - (Dp „ SIN(A) + DF „ COS(A)}DEL(U,)
L. V o 9 vi/ N ' O J ^ " T ' ' O * *** O

C N t. I £ O

- (Dp p SIN(A) + Dp p COS(A))DEL(P,) - (DF . SIN(A)
r2' 1 2' 3 2' 1

+ Dp . COS(A))DEL(A,) - DP „ DEL(U9) - DP D DEL(P9)
i r t j M o *^ 9s x * 0.̂ O t C, £- C.

—Dp . DEL(A7) - (Dp „ COS(A) - DF „ SIN(A))DEL(U,}
9*9 O*^l ' O * ^ ^ - '
c t. C. \ L. %5

- (Dp D COS(A) - Dp p SIN(A)) DEL(P,) - (DF . COS(A)
• * o » r - f ' O * * ' o» '» ' }

- Dp . SIN(A))DEL(A,) - SIN(R,)COS(R?)GM
O >** *3 *
C «3

dT
t?

o - P,U, + U,P
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FT, = - ( D p r S I N ( A ) + Dp r COS(A) )DEL(CJ
O 1 * 1 ^ ^ * K

- (Dp „ SIN2(A) + Dp .. COS(A)SIN(A) + DP „ COS(A)SIN(A)
F1'U1 F3'U1 l'U3

+ Dp ,. COS2(A))DEL(U,) - (DF p SIN2(A) + Dp p COS(A)SIN(A)
F3'U3 - hTHl 3'H1

+ Dp p COS(A)SIN(A) + Dp D COS2(A))DEL(P,) - (DF . SIN2(A)
h'H3 h3'H3 J T 1

+ Dp . COS(A)SIN(A) + Dp . COS(A)SIN(A)
•"3' 1 T 3 -

+ Dp n COS2(A))DEL(A,.)°- (Dp „ SIN(A) + Dc „ COS(A))DEL(U9)
ro jMo o r-i jUrt To jUr t ^

o

- (Dp p SIN(A) + DF p COS(A))DEL(P2) - (DF „ SIN(A)
1' 2 3' 2 1' 2

+ Dp . COS(A))DEL(A9 ) - (-Dc .. SIN2(A) - DF .. COS(A)SIN(A)i-3,H2 t. i-1,u3 r3,u3

+ Dp n COS(A)SIN(A) + Dp „ COS2 (A))DEL(U1 )
1 1 3 1 "

- (-Dp p SIN2(A) - Dp p COS(A)SIN(A) + DF. D COS(A)SIN(A)
•"1^3 h3'H3 TK1

+ DF p COS2(A))DEL(P,) - (-Dp . SIN2(A)r3s i r 3

- Dp . COS(A)SIN(A) + Dp . COS(A)SIN(A)
-

+ DF A COS2 (A))DEL(A1 ) + M(-U ]P2 + -- U3 +

- COS(R,)COS(R9)GM - Sr SIN(A) - Sc COS(A)•
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In addition to the zero sideslip condition, the investigator might wish to deter-
mine vehicle response when the angle of attack A is limited to small values. For this
condition the program would request MACSYMA to make the substitution
SIN(A)=A. Moreover, if the angle of attack were sufficiently small, the program
would request MACSYMA to make the additional substitution COS(A)=1 .

In this case, the required substitutions and display commands give rise to the
following modified equations:

(C50) FOR 1:1 THRU 3 DO FT[I]:SUBST([SIN(A)=A,COS(A)=1 ],FT[I])$

(C51) FOR 1:1 THRU 3 DO DISPLAY(FT[I])$

2 A
3' 3

FT, = -(Dp f - DF r A)DEL(CK) - (-Dp „ ^ - Dp ,
1 VLK ^3'LK * h3'Ul r3'U:

+ DF u A + DF u )DEL(U3) - (-Dp p A2 - Dp p A + Dp p A

+ Dp p )DEL(P,) - (-Dp A A2 - Dp A A + Dp A A
r l ' r3 3' 1 3' 3 T 1

+ DF fl )DEL(A,) - (Dp ,, - Dp „ A)DEL(U2) - (Dp p
rl'"o ° 1 * 9 x * 9 1 ' 9

10 \ C. ^ L. \ L-

- Dp p A)DEL(P?) - (Dp . - Dp . A)DEL(A?) - (DF „ A2

' " 3 > " o 12 3 ' 2 3 ' i

-Dp „ A - Dp .. A + Dp „ )DEL(U1) - (DR p A2 - Dp p A
h3'Ul T 3 l'ul 3' 3 3' 1

-Dp p A + Dp p )DEL(P-,) - (Dp - A2 - DP . A - DF . A
r l '^3 T 1 3'tt3 3'H1 rl'H3

+ DP . )DEL(AJ + SIN(R9)GM + (-- U, + P9U- - U9PjM + SF A - ScPI,MI i ^ dj l ^ J t J h3 hl
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= -D r DEL(CK) - (D F A + D F , , )DEL(U,) - ( D A
jLix i \ 2 ' 1 23 2 ' 1

H- DF p )DEL(P3) - (DF . A + DF . )DEL(A3) - Dp .. DEL(U2)
rp»r - j J rp,H-i ro jHo -J i p jUn £

- Dp p DEL(P?) - Dp . DEL(A?) - (DF „ - DF „ A)DEL(U,)
To, Tp f- T Q j H p t- ?' 1 ?' 1

- (Dp p - Dp p A)DEL(P ] ) - (DF . - DF . A)DEL(A,)
rp,r-| r p j T T i rp,n-i rn,n-^ i

- SIN(R1)COS(R2)GM + (-- U2 - P ]U3 + U ]P3 )M - Sp

FT- = -(Dp r A + Dp r )DEL(CJ - (DF ,, A2 + Dp .. A
3 FrCK h3,LK K I-1,U1 h3,U1

+ Dp „ A + Dp „ )DEL(UJ - (Dp p A2 + DR p A + Dp p AFru3 F3'U3 3 Fvpi h3'Hi hrp: 3

+ D, D )DEL(P.) - (Dp fl A2 + Dp fl A + Dp „ A

A

2A
3

+ Dp )DEL(AJ - (Dp ,. A + Dp )DEL(U?) - (D
F3,A3 3 PrU2 l-3, U2 f. Yr

+ DF p )DEL(P2) - (Dp . A + Dp . )DEL(A2) - (-Dr ..
T o s r / j c. r-i jnp TO, HO t. 1

- Dp A + Dp A + D )DEL(U,) - (-DF p A2 - Dp A
h3'U3 hl'Ul 3'U1 ' TP3 3'K3

+ D A + DF - )DEL(P ) - (-Dp A2 - D A + D A
T 1 3s 1 T 3 3' 3 1' 1

+ Dp fl )DEL(A1) + M(-U,P9 + -- U-, + P,U?) - COS(Rn )COS(R?)GMt-3,A1 i I f. dj 6 i ^ i

- Sp A - SF
hl h3
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Examination of these equations reveals the existence of terms such as A1 . If it is
assumed that second-order terms in A are negligible, a program statement instructing
MACSYMA to make the substitution A2 = 0 would simplify the equations as
follows:

(C52) FOR 1:1 THRU 3 DO FT[I]:SUBST([A**2=0],FT[I])$

(C53) FOR 1:1 THRU 3 DO DISPLAY(FT[I])$

FT, = -(Dp „ - Dp r A)DEL(CK) - (-Dp ,, A + DF .. A
1 FrCK F3,CK K r3,U3 h ],U1

+ DF .. )DEL(U.) - (-Dp p A + DF p A + DR p )DEL(P.3)
h l 'U3 6 h3'P3 1' 1 V 3 J

- (-Dp A A + Dp fl A + Dp A )DEL(AJ - (Dr ,,
h3'A3 hl'Al hl'H3 J TU2

- DF A)DEL(U?) - (Dp p - DF p A)DEL(P2) - (D, .
r^,Uo L \ -i,r £ 3* 2 1' 2

- DF A)DEL(A?) - (-Dp ,, A ' DF U A + DF U )DEL(Ul)h3'A2 ^ 3'U1 T 3 rl'ul '

- (-Dp p A - Dp p A + DF p )DEL(P,) - (-DF . A - DR „ A
h3' 1 T 3 T 1 3' 1 1' 3

+ Dp n )DEL(Ar) + SIN(R9)GM + (-- U, + P?U^ - U?P,)M+SF A - SP
1 »"1 ' dT 3 . •* 1

FT2 = -

Dp PODEL(PJ - (Dp . A + Dp „ )DEL(A3) - Dp „ DEL(U2)
' p j r o -J ?' 1 rp9 f 'O J ' 9> U9

p DEL(P9) - Dp -fl DEL(A?) - (Dp „ - Dp „
' 2 2' 2 2' 1 2'
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- (Dp -p - DF p A)DEL(P,) - (Dp • . - DF „ A)DEL(A,)
2' 1 2 ' 3 21 2 ' 3

- SIN(R1)COS(R2)GM + (--

FT3 = -(Dp c A + Dp f )DEL(CK) - (DF „ ,A + DF „ A + DF ,, )
J i-rLK

 h3'LK * h3'Ul l'U3 h3'U3

"DEKU.J - (Dp p A + Dp p A + Dp p )DEL(P~) - (DF . A
o r3,r1 r.j,r3 rg,^ o f3'R-\

+ DF A A + DF A )°EL(A3) - (°F II A + DF II
1 ' 3 3 3 1 ' 2 3 2

- (DF p A + Dp p )DEL(P?) - (Dp . A + DF . )DEL(A?)
^ J ' p 3 ' ? I ' ? rO'"O ^

- (-D .. A + D A + D JDEKU,') - (-D A + D- - -

+ DF p )DEL(P1) - (-Dp . A + Dp . A + DF -.
3' 1 3s 3 T 1 3' 1

+ M(-U1P9 + -- U, + P,U9) - COS(RT)COS(R 9 )GM - Sc A - Sc
1 ^ dT 6 ' ^ ' ^ Fl F3

Additional simplifications are possible if it is assumed that angular velocity
perturbations are negligible. This assumption can be implemented by again using the
substitution command, which yields the following greatly simplified equations:

(C54) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO
FT[I]:SUBST([DEL(P[J])=0],FT[I])$

(C56) FOR 1:1 THRU 3 DO DISPLAY(FT[I])$
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FT, = -(DF r - DF r A)DEL(CK) - (-DF „ A + DF ,. A
1 F1'CK F3'CK 3'U3 , hl'Ul

+ DF )DEL(U ) - (-Dp . A + DF „ A + D . )DEL(A,)
r-,,Uo -J 3' 3 1' 1 1' 3

- (DF „ - DF .. A)DEL(U2) - (DF „ - Dp"A A)DEL(A2)
r-i,U« TO, Up C r-i,Hp r^jMo £

- (-DF „ A - Dp ,. A + Dp .. )DEL(U1) - (-DF . A - DR . A
h3'Ul hl'U3 hl'Ul ' 3'fll l'A3

' )DEL(A ]) + SIN(R2)GM + (^ U-, + P2U3 - U2P3)M+SF A -SF
l

FT2 = - °F ,C DEL(CK^ - ( D F i U
 A

- DF2,u3 A)DEL (UI) - (Dp^^ - D^ A)DEL(AI)

- SIN(R1)COS(R2)GM + (--
dT

FT, = -(DF f A + Dp f )DEL(CK) - (Dp .. A + DF .. A + DF ,, )
J h l 'LK h3'LK ^ 3'U1 hl 'U3 h3'U3

DEL(U3) - (D A + Dp „ A + Dp fl )DEL(Aj - (DF „ A
o rojM-i r -I 3 n^ r ^ j rA^ o 1 * 9 '

+ DF )DEL(U2) - (DF . A + Dp . )DEL(A2) - (-DF ,. A
r3,u2 f- 1 ' ? 3' 2 r ^ jUo

+ Dp A + Dp ,. )DEL(U1) - (-Dp . A + Dp . A
hTUl h3'Ul ' 3'A3 hl'Al
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- COS(R, )COS(R 9 )GM - Sc A - Sc
I i. hl h3

Finally, it may be of interest to consider the effect of omitting the linear
acceleration terms. By comparing the response of the system with and without
acceleration perturbations, the influence of these perturbations can be determined.
Again, a simple substitution command is all that is required to implement the
assumption that DEL(Aj)=0. Execution of this command yields the modified equa-
tions as follows:

(C57) FOR 1:1 THRU 3 DO FOR 0:1 THRU 3 DO •
FT[I]:SUBST([DEL(A[J])=0],FT[I])$

(C58) FOR 1:1 THRU 3 DO DISPLAY(FT[I])$

FT, = -(DF r - DF f A)DEL(CK ) - (-DR ,, A + DR .. A1 FrCK F3,CK K F3,U3 F ],U1

+ DF ,, )DEL(U,) - (Dp „ - Dp .. A)DEL(U?) - (-DF „
h l»U3 6 h l 'U2 h3'U2 ^ h3'Ul

A + Dr ,. )DEL(UJ + SIN(R9)GM + (-- U, + P0U, - U,P,)M
1' 1 dT

A - S

FT2 = -

- (Dc „ - Dr „ A)DEL(U,) - SIN(R n )COS(R 9 )GM
2 1 2 ' 3

+ ( 3 T U 2 - P1U3 + U1P3)M - %
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= -(DF c A + DF c )DEL(CK) - (DF u A + DF A + Dc ,, )

DEL(U,) - (Dp . A + DF „ )DEL(U?) - (-Dp „ A + Dp A
6 h l 'U2 3'U2 ^ h3'U3 T 1

- COS(R, )COS(R9)GM - SI i A -

6.19 THRUST FORCES

It should be noted that the thrust forces 7^- appearing on the left-hand side of
these equations are the resultant of a number of thrust generating systems, each
contributing a thrust vector Tn. Each thrust vector is referred to a thrust axes
system Xn

l with origin at the point of application of the thrust vector. The axes are
chosen such that each thrust vector coincides with the Xn

l axis of the system.
Moreover, each thrust vector is then transformed to a coordinate system Yn

l which
has the same origin as the thrust axes, but is parallel to the body axes system.
Finally, the components of thrust in the Yn

l system of axes are transformed to the
body axes system, which has its origin at the center of gravity of the aircraft. Each
thrust axis Xn

l is related to the Yn
l system by the following transformation

equations (see sketch):

Yn
l =Xn

l

Y n
2 =X n

l

) cos(Pn)

sin(/y (6.19.1)
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Hence, the components of the thrust vector Tn in the Yn
l system of coordinates are

—- Tn ; —5- Tn ; — Tn • (6.19.2)

These are also the components of thrust in the yl system of coordinates, which
has its origin at the center of gravity of the aircraft. The thrust components due to
all thrust generating systems are obtained by summing the right-hand side of the
following equation

fr*l ** rr*
n (6.19.3)

The expanded form of equation (6.19.3), when summed over n will yield the
resultant thrust components. When the number of thrust generating systems is
known, the components T1 can be formulated and displayed by using equa-
tion (6.19.3), and executing the.following two commands, which yield the compo-
nents contributed by the «th thrust generating system. These are

(Cl) Y[1,N]:X[1,N]*COS(K[N])*COS(P[N])$

(C2) Y[2,N]:X[1,N]*COS(K[N])*SIN(P[N])$

(C3) Y[3,N]:-X[1,N]*SIN(K[N])$

(C4) FOR I THRU 3 DO T[I]:DIFF(Y[I,N],X[1,N],1)*T[N]$

(C5) FOR 1:1 THRU 3 DO DISPLAY (T[I])$

T1 = TN COS(KN) COS(PN)

T2 = TN COS(KN) SIN(PN)

T3 = -\
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6.20 DETERMINATION OF THE GEOGRAPHICAL LOCATION
OF AIRCRAFT

In order to determine the geographical location of an aircraft relative to some
initial location, it is necessary to transform the components of the aircraft's velocity
vector from aircraft body axes to a system of Earth-fixed axes. The transformed
components can then be integrated to find the location of the aircraft as a function
of time. The product of the three rotation matrices (D33), (D32), and (D31), which
were used to transform the gravity vector from an Earth-fixed axes system to
aircraft body axes, may be transposed and used to transform the aircraft velocity
components to an Earth-fixed system. If the column vector (D39) of aircraft
velocity components is premultiplied by the transposed matrix, the velocity compo-
nents relative to the Earth-fixed system are obtained as follows:

(C56) TRANSPOSE( (D33) . (D32). (D31 ) ) . (D39) ;

(D56) MATRIX([U3(SIN(R1)SIN(R3) + COS(R ] )SIN(R2)COS(R3) )

+ U2 (SIN(R1 )SIN(R2 )COS(R3 ) - COS(R ] )SIN(R3) ) +

[U2(SIN(R1)SIN(R2)SIN(R3) + COS(R ] )COS(R3) )

+ U3(COS(R.,)SIN(R2)SIN(R3) - SIN(R ] )COS(R3 ) ) +

[-U1SIN(R2) + U2SIN(R1)COS(R2) + U3COS(R ] )COS(R 2 ) ] )

If the components Xf relative to the Earth-fixed system be denoted by
execution of the following programming steps will ensure that the required velocity
components are displayed in conventional form.

(C57) FOR 1:1 THRU 3 DO ROW[I ] :F IRST(ROW((D56) , I ) )$

(C58) FOR 1:1 THRU 3 DO (DX[I] :ROW[I] [1 ] ,DISPLAY(DX[I]) ) ;

DX1 = U3(SIN(R1)SIN(R3) + COS(R1 )SIN(R2)COS(R3) )

+ U2(SIN(R1)SIN(P.2)COS(R3) - COS(R ] )SIN(R3)) +
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DX2 = U2(SIN(R1)SIN(R2)SIN(-R3) + COS(R ] )COS(R 3 ) )

+ U 3 (COS(R 1 )SIN(R 2 )SIN(R 3 ) - SIN(R1 )COS(R 3 ) ) + l^COSCR^SIN^)

DX3 = -U ]SIN(R2) + U2SIN(R1 )COS(R2 ) + UgCOS^ )COS(R2)

Integration of these velocity components will yield the required coordinates of
the aircraft relative to a set of Earth-fixed reference axes. These are

XEI = 40 •

where XI
EQ are the initial values of the coordinates in the Earth-fixed reference

frame.

6.21 TRANSFORMATION LAW FOR STATIC MOMENTS

The static aerodynamic moments obey the same transformation law as the static
aerodynamic forces; that is, if SM denotes a static moment in the X frame of
reference, and SMf denotes the corresponding transformed moment in the Y refer-
ence frame, then

(6.21.1)

where Y = Y(X) is obtained from the displayed output (D6) and reentered here to
facilitate the formulation of the moment equations. Given the transformation
equations (D6), the transformed aerodynamic static moments are obtained by
expanding equation (6.21.1). The three programming steps used to transform the
static forces may again be employed to transform the static moments. The simple
program and the displayed results are

(Cl) Y[1] :X[1]*COS(A)*COS(B)-X[2]*COS(A)*SIN(B)-X[3]*SIN(A)$

_ ( C 2 ) Y[2] :X[1]*SIN(B)+X[2]*COS(B)$
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(C3) Y[3] :X[1]*SIN(A)*COS(B)-X[2]*SIN(A)*SIN(B)+X[3]*COS(A)$

(C4) SM[I]:=0$

(C5) FOR 1:1 THRU 3 DO FOR N:l THRU 3 DO
SM[I]:SM[I]+DIFF(Y[I],X[N])*S[M[N]]$

(C6) FOR 1:1 THRU 3 DO DISPLAY (SM[I])$.

SM, = -SM COS(A)SIN(B) + SM COS(A)COS(B) - SM SIN(A)
I M2 M1 M3

SM9 = SM SIN(B) + SM COS(B)
<• M! M2

SM- = -SM SIN(A)SIN(B) + SM SIN(A)COS(B) + SM COS(A)
j . n2 iij n3

6.22 TRANSFORMATION LAW FOR CONTROL MOMENT DERIVATIVES

The control moment derivatives obey the same transformation law as the static
moments; that is, if DMn,Cif denotes the nth control moment derivative with
respect to the Kth control surface as measured in the X reference frame, and TDj ci,\^
denotes the corresponding transformed derivative in the Y frame, then

TDIC = —DM C, (6.22A)' av-w n' k

where Y = Y(X) is again obtained from the displayed output (D6).
As in the preceding section, the transformed control derivatives are obtained by

expanding the transformation law (6.22.1) given the transformation equations (D6).
The transformed derivatives are obtained by executing the following simple pro-
gram, which has exactly the same form as the program used to transform the static
moments in section 6.21. These are
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(C7) TD[I,C]:=0$

(C8) FOR 1:1 THRU 3 DO FOR Nil THRU 3 DO
TD[I,C]:TD[I,C]+DIFF(Y[I],X[N])*D[M[N],C[K]]$

(C9) FOR 1:1 THRU 3 DO DISPLAY(TD[I,C])$

TD, f = -DM r COS(A)SIN(B) + DM r COS(A)COS(B) - DM f SIN(A)
I,L "2> K "r K 3' K

TD? f = DM r SIN(B) + D COS(B)
L. , I, rU >^>if 2 K

TD? p = -D SIN(A)SIN(B) + DM SIN(A)COS(B) + DM COS(A)
J'L M2'LK T K M3'LK

The corresponding control moments are obtained by multiplying the control
derivatives by the appropriate control increments DEL(Cfc). The following two
programming steps are 'sufficient to formulate the required moments. These are
denoted by CM^ in the displayed output.

(CIO) FOR 1:1 THRU 3 DO CM[I]:TD[I,C]*DEL(C[K])$

(C-ll) FOR 1:1 THRU 3 DO DISPLAY(CM[I])$

CM1 = (-DM c COS(A)SIN(B) + DM ^ COS(A)COS(B)

- DM r SIN(A))DEL(CJ
M3'LK ' - R

CMQ = (DM r SIN(B) + DM r COS(B))DEL(C I / )i MrCK M2,CK K

- CM, = (-DM r SIN(A)SIN(B) + DM r SIN(A)COS(B)

D COS(A))DEL(C,)
"3 >"!/ "0 l\
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6.23 MOMENTS PRODUCED BY LINEAR VELOCITY PERTURBATIONS

The next step in the formulation involves the determination of the aerodynamic
moments produced when an aircraft is subjected to linear velocity perturbations
DEL(Uj). Before these moments can be determined, the aerodynamic stability
derivatives with respect to linear velocity components must be transformed from
wind or wind-tunnel stability axes to body axes. For a detailed discussion of the
transformation of these derivatives, the reader is referred to section 6.2. The pro-
gram used for that transformation can be used in this case also. In this application,
the aerodynamic stability derivative of the /th moment with respect to the /th
velocity component will be denoted by Dj\^. jj.. The corresponding transformed
derivatives are denoted by TDj^j. y.. When the program of section 6.2 is rewritten to
accommodate the notational changes required for this application, it assumes the
following form:

(C12) TDU[I,J]:=0$

(C13) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO
FOR R:l THRU 3 DO FOR N:l THRU 3 DO
TDU[I,J]:TDU[I,J]+DIFF(Y[I],X[R])*DIFF(Y[J],X[N])*DIM[R],U[N]]$

It only remains to multiply the transformed derivatives by the appropriate
velocity increments to obtain the required moments, which are denoted by MDU^.
The next three programming steps instruct MACSYMA to evaluate and display the
moments produced by linear velocity perturbations. These are

(C14) MDU[I]:=0$

(CIS) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO
MDU[I]:MDU[I]+TDU[I,J]*DEL(U[J])$

(C16) FOR 1:1 THRU 3 DO DISPLAY(MDU[I])$

MDUn = CDM ,, COS(A)SIN(A)SIN2(B)
I M2,U2

/

- DM .. COS(A)SIN(A)COS(B)SIN(B)
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.. COS(A)SIN(A)COS(B)SIN(B) + DM ., SIN2(A)SIN(B)
- i jUp I "32

2
M „ C O S ( A ) S I N ( B ) + DM ., COS(A)S IN(A)COS(B)
M2'U3 "VU1

M „ SIN2(A)COS(B) + DM „ COS2(A)COS(B)
M3' 1 T 3

- DM .. COS(A)SIN(A))DEL(U,) + (-DM „ COS(A)SIN2(B)
M3,U3 3 M2,U1

- DM ,. COS(A)COS(B)SIN(B) + DM „ COS(A)COS(B)SIN(B)
2' 2 "T 1

- DM .. SIN(A)SIN(B) + DM .. COS(A)COS2(B)
3s 1 1' 2

- DM u SIN(A)COS(B))DEL(U2 ) + (DM y COS2(A)SIN2(B)

- DM ... COS2 (A)COS(B)SIN(B) - DM J COS2(A)COS(B)SIN(B)
2' 1 1' 2

+ DM [J COS(A)SIN(A)SIN(B) + DM y COS(A)SIN(A)SIN(B)

+ DM .. COS2 (A)COS2 (B) - DM .. COS(A)SIN(A)COS(B)

M „ COS(A)SIN(A)COS(B) + DM „ SIN2(A))DEL(U,)
M1'U3 . M3'U3 '

t - (-DM u SIN(A)SIN2(B) - DM u SIN(A)COS(B)SIN(B)

+ DM .. SIN(A)COS(B)SIN(B) + DM ,, COS(A)SIN(B)
MI,UI nru3

+ DM .. SIN(A)COS2(B) + DM .. COS(A)COS(B) )DEL(UQ)
rlpjUi Mp,(Jo -J
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+ (DM y SIN2(B) + DM u COS(B)SIN(B) + DM ^ COS(B)SIN(B)
1' 1 2' 1 1' 2

+ DM ,r COS2 (B))DEL(U9 ) + (-DM „ COS(A)SIN2 (B)
M2,U2 Z MrU2

- - DM „ COS(A)COS(B)SIN(B) + DM „ COS(A)COS(B)SIN(B)
2 * 2 1 1

- DM u SIN(A)SIN(B) + DM y COS(A)COS 2 (B)

- DM u S IN(A)COS(B))DEL(U 1 )

MDU, = (DM .. SIN2(A)SIN2(B) - DM „ SIN2 (A)COS(B)SIN(B)
J M2'U2 *VU1

- DM .. SIN2 (A)COS(B)SIN(B) - DM COS(A)SIN(A)SIN(B)
MI ,U2 i '3'U2

- DM .. COS(A)SIN(A)SIN(B) + DM .. SIN2 (A)COS2 (B) -
n2'U3 • V 1

+ DM ,, COS(A)SIN(A)COS(B) + DM ,, COS(A)S IN(A)COS(B)
M3'U1 M1'U3

IM COS2(A))DEL(UJ + (-DM SIN(A)SIN2(B)
M3'U3 J 2'U1

IM „ SIN(A)COS(B)SIN(B) + DM S IN(A)COS(B)SIN(B)
M2'U2 ' nl'Ul

IM „ COS(A)SIN(B) + DM ,, SIN(A)COS2 (B)
M3,U1 MrU2

)M ,. COS(A)COS(B))DEL(Up) + (DM „ COS(A)SIN(A)SIN 2 (B)
I 'o 5^0 ^ I 'o 5 Urt
• O C- t- £-

)M u COS(A)SIN(A)COS(B)SIN(B)

+ D

- D

+ D

+ D

- D
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- DM ,, C O S ( A ) S I N ( A ) C O S ( B ) S I N ( B ) + DM ,, S I N 2 ( A ) S I N ( B )
Jvl-i 5 UQ I lo 9 U o

,, COS 2 (A)SIN(B) + -D M |, COS(A)SIN(A)COS2(B")
'U2 rui

- D

- DM ,, SIN2 (A)COS(B) + DM .. COS 2 (A)COS(B)
M1'U3 M3'U1

- DM COS(A)SIN(A) )DEL(U 1 )
3' 3

6.24 MOMENTS PRODUCED BY ANGULAR VELOCITY PERTURBATIONS

The program used in section 6.23 can, with suitable notational changes, be used to
formulate the moments produced by angular velocity perturbations. However,
whereas in the preceding application the required moments were obtained by
multiplying the transformed aerodynamic stability derivatives by linear velocity
increments, in the present case the transformed derivatives must be multiplied by
angular velocity increments. In view of these similarities, the following program and
displayed moments will be presented without further comment, except to point out
that the aerodynamic stability derivatives of the /th moment with respect to the /th
angular velocity component are denoted by Dj^.j).. The corresponding transformed
derivatives are denoted by TDj^.jp., and the resulting moments by MDPj.

(C17) TDP[I,J]:=0$ ,

(CIS) FOR 1:1 THRU 3 DO FOR J:l THRU-3 DO
FOR R:l THRU 3 DO FOR N:l THRU 3 DO
TDP[I,J]:TDP[I,J]+DIFF(Y[I],X[R])*DIFF(Y[J],X[N])*D[M[R],P[N]$

(C19) MDP[I]:=0$

(C21) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO
MDP[I]:MDP[I]+TDP[I,J]*DEL(P[J])$

(C22) FOR 1:1 THRU 3 DO DISPLAY(MDP[I])$
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MDP, = (DM D COS(A)SIN(A)SIN2(B)
I r\2'>"2

- DM D COS(A)SIN(A)COS(B)SIN(B)
M2'P1

- DM D COS(A)SIN(A)COS(B)SIN(B) + DM p SIN2(A)SIN(B)
'V 2 3' 2

" - DM D COS2(A)SIN(B) + DM D COS(A)SIN(A)COS2(B)
M2'P3 M1'H1

- DM D SIN2(A)COS(B) + DM p COS2(A)COS(B)
M3'K1 MT 3

- DM ^p COS(A)SIN(A))DEL(P3) + (-DM jR COS(A)SIN2(B)
O O L. \

- DM D COS(A)COS(B)SIN(B) + DM D COS(A)COS(B)SIN(B)
2*2 1 ' 1

- DM D SIN(A)SIN(B) + DM D COS(A)COS2(B)
W3'P1 1' 2

- DM D SIN(A)COS(B))DEL(P9) + (DM D COS2(A)SIN2(B)
™o> '2 2' ?

- DM D COS2(A)COS(B)SIN(B) - DM D COS2(A)COS(B)SIN(B)
HO' "l '] > 2

+ DM D COS(A)SIN(A)SIN(B) + DM „ COS(A)SIN(A)SIN(B)
M3'P2 M2'H3

+ DM D COS2(A)COS2(B) - DM „ COS(A)SIN(A)COS(B)MI,KI M3,K ]

- DM D COS(A)SIN(A)COS(B) + DM D SIN2(A))DEL(P,)
M1'H3 3' 3 '
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MDP? - (-DM p S I N ( A ) S I N 2 ( B ) - DM p S I N ( A ) C O S ( B ) S I N ( B )
(. lvl-| , r p ™p> ' p

+ DM p SIN(A)COS(B)SIN(B) + D p COS(A)SIN(B)
n r 1 1 3

+ Du D SIN(A)COS2(B) + DM p COS(A)COS(B))DEL(P.)
/'I 2' 3

+ (DM p- SIN2(B) + DM p COS(B)SIN(B) + DM p COS(B)SIN(B)
™'1 ' '1 2 1 1 ' 2

+ DM jR COS2 (B))DEL(P2 ) + (-DM jp COS(A)SIN2 (B)

- DM D COS(A)COS(B)SIN(B) + DM D COS(A)COS(B)SIN(B)
2' 2 1 ' 1

M D SIN(A)SIN(B) + DM D COS(A)COS2(
MTH3 M2'H1

- DM D SIN(A)SIN(B) + DM D C O S ( A ) C O S ( B )
M2'H

jp SIN(A)COS(B))DEL(P1)
C- O

(DM D SIN2(A)SIN2(B) - DM D SIN2 (A)COS(B)SIN(B)
npjrp rlp,r-|

D SIN2 (A)COS(B)SIN(B) - DM D COS(A)SIN(A)SIN(B)

- DM p COS(A)SIN(A)SIN(B) + DM p SIN2(A)COS2(B)

+ DM p COS(A)SIN(A)COS(B) + DM p COS(A)SIN(A)COS(B)

+ D COS2 (A))DEL(PJ + (-DM p SIN(A)SIN2(B)
' ' O j ^ o O O * 1

%5 O - L. I

- DM _ SIN(A)COS(B)SIN(B) + DM „ SIN(A)COS(B)SIN(B)
2 2 1 1
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+ DM D COS(A)SIN(B) + DM D SIN(A)COS2(B)
M3'H1 MTH2

+ DM p COS(A)COS(B))DEL(P 2 ) + (DM p COS(A)SIN(A)SIN2 (B)

- DM p COS(A)SIN(A)COS(B)SIN(B)

- DM D COS(A)SIN(A)COS(B)SIN(B) + DM ' SIN2(A)SIN(B)
MTK2 ' M2'H3

- DM D COS2 (A)SIN(B) + DM D COS(A)SIN(A)COS 2 (B)
M3'H2 MT 1

- DM p SIN2 (A)COS(B) + DM p COS 2 (A)COS(B)

- DM COS(A)S IN(A ) )DEL(P 1 )
N3'K3 '

The same procedure may be used to formulate the aerodynamic moments pro-
duced by linear and angular accelerations. These moments will not be included here,
since the cases considered so far are sufficient to demonstrate the facility with which
symbolic mathematical computation can be used to formulate and transform aero-
dynamic moments.

6.25 INERTIA MOMENTS

The formulation of inertia moments involves the determination of the product of
an angular velocity matrix, a matrix of inertia coefficients" and a column vector of
angular velocity components. This product is the matrix equivalent of the familiar
vector product c3 X H, where oJ is the angular velocity vector and H is the angular
momentum vector. By adding to the components of this vector, a vector which
represents the rate of change of angular momentum relative to the moving body
axes, the inertial moments relative to these axes are obtained (ref. 9). The rate of
change of angular momentum relative to the moving body axes may be expressed as
the product of the inertia matrix and a column vector of angular acceleration
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components. The required matrices may be entered and multiplied as follows: The
first matrix to be entered is the inertia matrix, with elements Jj.-. It is entered by
typing the statement ENTERMATRIX(3,3) and responding to the system's request
for elements.

(C23) ENTERMATRIX(3,3);

ROW 1 COLUMN 1

ROW 1 COLUMN 2

ROW 1 COLUMN 3

ROW 2 COLUMN 1

ROW 2 COLUMN 2

ROW 2 COLUMN 3

ROW 3 COLUMN 1

ROW 3 COLUMN 2

ROW 3 COLUMN 3

J[l,l];

J[l,2];

J[l,3];

J[2,l];

J[2,2];

J[2,3];

J[3,l];

J[3,2];

J[3,3];

MATRIX-ENTERED

(D23)

Jl, 1 Jl, 2 Jl, 3 ]

°2, 1 J2, 2 _ ° 2 , 3 ]

*2 1 *3 O ^^ oJ
O, I J, ^ O» O -i

- A statement of the fact that the ith component of the angular velocity vector is a
function of time requires the use of the DEPENDENCIES function. The use of this
function permits the system to differentiate the components Pj with respect to time,
and to enter the resulting acceleration components in the form of a column vector as
follows:
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(C24) DEPENDENCIES(P(I,T))$

(C25) ENTERMATRIX(3,1);

ROW 1 COLUMN 1 DIFF(P[T],T);

ROW 2 COLUMN 1 DIFF(P[2],T);

ROW 3 COLUMN 1 DIFF(P[3],T);

MATRIX-ENTERED

(D25)
dT

dT 3:
The angular velocity matrix and a column vector of angular velocity components

are entered next

(C26) ENTERMATRI-X(3,3);

ROW 1 COLUMN 1 0;

ROW 1 COLUMN 2 -P[3];

ROW 1 COLUMN 3 P[2];

ROW 2 COLUMN 1 P[3];

ROW 2 COLUMN 2 0;
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ROW 2 COLUMN 3 -P[l];

ROW 3 COLUMN 1 -P[2];

ROW 3 COLUMN 2 P[l];

ROW 3 COLUMN 3 0;

MATRIX-ENTERED

(D26)

(C27) ENTERMATRIX(3,1);

ROW 1 COLUMN 1 P[l];

ROW 2 COLUMN 1 P[2];

ROW 3 COLUMN 1 P[3];

MATRIX-ENTERED

(D27)

o -P3 P2

-p
0

pn

[ p, ][ ] ][ P 2 ] ]
p, ]3 ]

These four matrices are now combined to yield a column vector of inertia
moments relative to aircraft body axes.

(C28) ( ( D 2 3 ) . ( D 2 5 ) + ( D 2 6 ) . ( D 2 3 ) . ( D 2 7 ) ) ;
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/

(D28) MATRIXCtJ, . (-- PJ + Jn 9 (-- P9) + Jn n (-- Pn)1,3 dj 3 1,2 dj ^ 1,1 dj I

+ P
2(P3J3,3 + P2J3,2 + PM - P3(J2,3P3 + P2J2,2 + P1J2,1^'

"t" Jo o ( r / j ) + J- -I ( 'I/ r - | V u / 5 o'o ' OL'/7 9 "l"^9 1'o , c . j «: 0,1 / H T ' ' t,J o L C.,L \ £,i

The next two programming steps enable the system to express these inertia
moments in conventional functional form.

(C29) FOR 1:1 THRU 3 DO ROW[I ] :FIRST(ROW((D28) , I ) )$

(C30) FOR 1:1 THRU 3 DO (IM[I]:ROW[I][1],DISPLAY(IM[I]))$

IM1 = Jl,3 <~ P3) + Jl,2 (~ P2) + Jl,l ^ Pl) + P2(P3J3,3

IM2 = J2,3 (- P3) + J2,2 ( P2) + J2,l

IM3 = J3,3-(-- P
3)

 + J3,2 ( P2> + °3,1 Pl
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6.26 RESULTANT MOMENTS

7i It only remains to request MACSYMA to combine the aerodynamic and inertia
moments which have been formulated in preceding sections and to display the
results. The ith component of the resultant moment will be denoted by TMj, where
TMj is>'the /th component of the moment due to thrust. The two programming steps
and the-formulated equations follow.

(C31) FOR 1:1 THRU 3 DO TM[I]:IM[I]-SM[I]-CM[I]-MDU[I]-MDP[I]$

(C32) FOR 1:1 THRU 3 DO DISPLAY(TM[I])$

TM1 = -(-DM c COS(A)SIN(B) + DM Q COS(A)COS(B)

- DM r SIN(A))DEL(CJ - (DM ,, COS(A)SIN(A)SIN2(B)
3 K ' Ip »Up

- DM y COS(A)SIN(A)COS(B)SIN(B)

- DM „ COS(A)S IN(A)COS(B)S IN(B) '+ DM y SIN2(A)SIN(B)
1' 2 3' 2

- DM ,, COS2(A)SIN(B) + DM „ COS(A)SIN(A)COS 2 (B)
n2,u3 MI,UI

- DM „ SIN2(A)COS(B) + DM „ COS2 (A)COS(B)
M3'U1 MTU3

- DM „ COS(A)SIN(A))DEL(UJ - (DM p COS(A)SIN(A)SIN2 (B)
M3'U3 J m2^2

- DM >p COS(A)SIN(A)COS(B)SIN(B)

'- DM p 'COS(A)S IN(A)COS(B)S IN(B) + DM p SIN2(A)SIN(B)
' '"I > ' O ' 'o ' "oI C- O u.

- DM p COS2 (A)SIN(B) + DM D COS(A)SIN(A)COS 2 (B)
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- DM p SIN2(A)COS(B) + DM p COS2(A)COS(B)M3'Ki VK3

• - DM p COS(A)SIN(A))DEL(P.) - (-DM „ COS(A)SIN2(B)
M3* 3 2'U1

- DM y COS(A)COS(B)SIN(B) + DM y COS(A)COS(B)SIN(B)

- DM .. SIN(A)SIN(B) + DM ,, COS(A)COS 2 (B)
M3,u1 mru2

- DM .. SIN(A)COS(B))DEL(U9 ) - (-DM p COS(A)SIN2 (B)
M3'U2 d M2'K1

- DM D COS(A)COS(B)SIN(B) + DM D COS(A)COS(B)SIN(B)
1 ' ? ' 2 1 1

- DM p SIN(A)SIN(B) + DM p COS(A)COS 2 (B)

- DM p SIN(A)COS(B))DEL(P 9 ) - (DM .. COS2(A)SIN2(B)
M3'K2 L M2'U2

- DM u COS2 (A)COS(B)SIN(B) - DM J COS 2 (A)COS(B)SIN(B)

+ DM ,, COS(A)SIN(A)SIN(B) + DM ,. COS(A)SIN(A)SIN(B)
M3,U2 M2,U3

+ DM u COS2 (A)COS2 (B) - DM y COS(A)SIN(A)COS(B)

- DM .. COS(A)SIN(A)COS(B) + DM ,. SIN2(A) )DEL(U,)
nl'u3 M3'U3 '

(DM p C O S ( A ) S I N ( B ) - DM p C O S ( A ) C O S ( B ) S I N ( B )
v\^r^ 2 1

DM D COS2(A)COS(B)SIN(B) + DM D -COS(A)SIN(A)SIN(B)
nl'K2 3' 2
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+ DM D COS(A)SIN(A)SIN(B) + DM D COS2(A)COS2(B)
M2'H3 Ml' 1

)M p COS(A)SIN(A)COS(B) - DM D COS(A)SIN(A)COS(B)
M3'P1 M1'K3

)M p SIN2(A))DEL(P,) + SM COS(A)SIN(B) - SM COS(A)COS(B)
M3'H3 ' M2 1

- D

+ D

P2J3,2 + P1J3,1> - P
3(J2,3P3 + P2J2,2

+ DM9,C, COS(B))DEL(CK)
c. K

(-DM ., SIN(A)SIN2(B) - DM .. SIN(A)COS(B)SIN(B)
I l-i jUp ™lo '^O

DM .. SIN(A)COS(B)SIN(B) + DM ,, COS(A)SIN(B)

DM .. SIN(A)COS2(B) + DM .. COS(A)COS(B))DEL(U.),
2* 1 ™p>Uo <j

(-DM p SIN(A)SIN2(B) - DM D SIN(A)COS(B)SIN(B)
™1 >r 2 / ^o' 2

DM p SIN(A)COS(B)SIN(B) + DM p COS(A)SIN(B)
MT^1 MTK3

DM p SIN(A)COS2(B) + DM D COS(A)COS(B))DEL(PQ)
M2'H1 M2'P3 6

(DM SIN2(B) + DM .. COS(B)SIN(B) + DM „ COS(B)SIN(B)
I '1 jU-j no'u"] ^1 'U2

COS 2 (B ) )DEL(U) - (D SIN2(B) + D COS(B)SIN(B)
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DM p COS(B)SIN(B) + DM p COS2(B))DEL(P?)
1 ' ? 2 ' 2

(-DM ., COS(A)SIN2(B) - DM .. COS(A)COS(B)SIN(B)
ri-i ,i>2 i io»u2

DM ,, COS(A)COS(B)SIN(B) - DM ,. SIN(A)SIN(B)
VU1 VU3

DM >LJ COS(A)COS 2 (B) - DM }U S IN(A)COS(B))DEL(U ] )
,£. \ C. O

(-DM p COS(A)SIN2 (B) - DM COS(A)COS(B)SIN(B)
1 'l ^"2 2* 2

DM p COS(A)COS(B)SIN(B) - DM p SIN(A)SIN(B)n1,K1 nrP3

DM p COS(A)COS 2 (B) - DM p SIN(A)COS(B))DEL(P 1 ) - SM SIN(B)
^ I c. O I

I— VJ I VJ | U I

' P1(P3J3 3 + P2J3 2 + P1J3 1> + P3(J1 3P3 + Jl 2P2 + P1J11 *J *J $ \J £. O ) £. I J ) I J I ) %J \J ! ) £ . £ . I'l

I

13 = -(-DM >c
 >SIN(A)SIN(B) + DM ^ SIN(A)COS(B)

d * l \ I K

- DM c COS(A))DEL(CK) - (DM y SIN2(A)SIN2(B)

• DM .. SIN2(A)COS(B)SIN(B) - DM .. SIN2(A)COS(B)SIN(B)
M2'U1 . M1'U2

• DM . COS(A)SIN(A)SIN(B) - DM .. COS(A)SIN(A)SIN(B)
"VU2 M2'U3

- DM .. SIN2(A)COS2(B) + DM . COS(A)SIN(A)COS(B)
'Vul M3'U1
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+ DM COS(A)SIN(A)COS(B) + DM ^ C0S2fA))D£L(;U3.):

- (DM D SIN2(A)SIN2(B) - DM „ SIN2(A)COS(B)SIN(B)
M 2 ,P 2 M^

- DM p SIN2(A)COS(B)SIN(B) - DM ^ COS(A)SIN(A)SIN(B)

- DM „ COS(A)SIN(A)SIN(B) + DM p SIN2(A)COS2(B)
"V 3 V 1

+ DM p COS(A)SIN(A)COS(B) + DM p COS(A)SIN(A)COS(B)

+ DM p COS2(A))DEL(PJ - (-DM „ SIN(A)SIN2(B)
M3'P3 3 • M2'U1

- DM .. SIN(A)COS(B)SIN(B) + DM ,, SIN(A)COS(B)SIN(B) '
M2,U2 M1,U1 •

+ DM jj COS(A)SIN(B) + DM y SIN(A)COS2(B)

+ DM ., COS(A)COS(B))DEL(U 9 ) - (-DM D SIN(A)SIN2(B)
M3'U2 ^ M2'P1

- D, D SIN(A)COS(B)SIN(B) + DM D SIN(A)COS(B)SIN(B)
ip 9 Tp n-i » r-i

+ DM p COS(A)SIN(B) + DM D SIN(A)COS2(B)
I U»r- j 1 ' 2X

+ DM p COS(A)COS(B))DEL(Pp) - (DM „ COS(A)SIN(A)SIN2 (B)
I i o >' o ^ l ' o>^o

O ^> * L L.

- DM u COS(A)SIN(A)COS(B)SIN(B)

- DM n COS(A)SIN(A)COS(B)SIN(B) + DM „ SIN2(A)SIN(B)
rU ,Up PIpjUo

I ^- (L O
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DM „ COS2(A)SIN(B) + DM .. COS(A)SIN(A)COS2 (B)
rlo, Uo - n-i »U-|

M „ SIN2(A)COS(B) + DM .. COS2(A)COS(B)
"V 3 3'U1

D.
VU3

DM .. COS(A)SIN(A))DEL(U,) - (D.
r l o j U - 3 I I *

O -3

DM p COS(A)SIN(A)COS(B)SIN(B)

COS(A)SIN(A)SIN(B)

DM p COS(A)SIN(A)COS(B)SIN(B) + DM D SIIT(A)SIN(B)
VK2 N2'K3

DM p COS2(A)SIN(B) + DM D COS(A)SIN(A)COS2(B)
M3' 2 T 1

DM p SIN2(A)COS(B) + DM p COS2(A)COS(B) -
MTP3 M3'P1

- D.
•3

- SM SIN(A)COS(B) - SM COS(A)

SIN(A)SIN(B)

» dT
?(- P

^ dT

6.27 SPECIAL FORMS OF THE MOMENT EQUATION

As in the case of the force equations, the investigator sometimes wishes to modify
the moment equations to determine how the vehicle will respond if the motion is
restricted in some way (ref. 8). For the case of zero sideslip, MACSYMA goes
through the equations, makes the appropriate substitutions, and displays the modi-
fied results. The zero sideslip condition requires that SIN(B) = 0 and COS(B) = 1 .
The substitution and display statements required to implement this assumption and
the modified moment equations assume the following form:
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(C33) FOR 1:1 THRU 3 DO
TM[I]:SUBST([SIN(B)=0,COS(B)=1],TM[I])$

(C34) FOR 1:1 THRU 3 DO DISPLAY(TM[I])$

™i = ~(°M c COS(A) ~ DM c S IN(A))DEL(CK)

- (-DM .. SIN2(A) - DM „ COS(A)SIN(A) + DM „ COS(A)SIN(A)
™QjU-i | 'O»UT ll-j jU-i

+ DM .. COS2(A))DEL(UJ - (-DM D SIN2(A) - DM p COS(A)SIN(A)
M1'U3 J M3'H1 M3'K3

. + DM D COS(A)SIN(A) + DM D COS2 (A) ) DEL (P.,) - (DM ,, COS(A)
M1,P] M ] 5 P 3 3 MrU2

-D SIN(A))DEL(UJ - (DM p COS(A) - DM p SIN(A) )DEL(P?)
M3'U2 ^ M1'H2 M3'H2 *•

- (DM u SIN2(A) - DM u COS(A)SIN(A) - DM u COS(A)SIN(A)
0 O vJ I I «3

+ DM .. COS 2 (A) )DEL(U 1 ) - (DM D SIN2(A) - Du D COS(A)SIN(A)
M1,U1 I M3,^3 M3,P]

- DM p COS(A)SIN(A) + DM p COS 2 (A) )DEL(P, ) + SM SIN(A)
MTH3 MTK1 ' n3

,3 + P2J3,2 + PlJ3,l) ' P
3(J2,3P3 + P2J2,2

™2 = -Vc, DEL(CK) - (DM,.UI SIN(A) + \^ cos(A))DEL(u3)
c. l\ c. I f. 6

- (DM jR SIN(A) + DM }P COS(A))DEL(P 3 ) - DM ^ DEL(U2)
L. \ £3 C. L.
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- <DM2,Ul COSW - V3 SIN(A))DEL(U 1 )

- SIN(A))DEL(P l ) + J , - P 3 )

- P1<P3J3,3 + P2J3,2

P3(J1,3P3 + J1,2P2+

TM0 = -3 = ~(\,CV
 SIN(A) + °M,,C, COS(A))DEL(CK) - fD S I N ( A )

I K o K I I

+ DM .. COS(A)SIN(A) + DM ,. COS(A)SIN(A)
H3' 1 1' 3

+ DM jtj COS 2 (A))DEL(U 3 ) - (DM ?p SIN2(A) + DM jR COS(A)SIN(A)
O 0 I I O I

+ DM p COS(A)S IN(A) + DM p COS2 (A) )DEL(P?) - (DM „ SIN(A)
M1'K3 3' 3 T 2

+ DM ^ COS(A) )DEL(U 2 ) - (DM >p SIN(A) + DM jR COS(A) )DEL(P2')
\j C, I £ O £•

- (-DM ., SIN2(A) - DM ., COS(A)SIN(-A) + DM „ COS(A)SIN(A)
M1'U3 3'U3 TU1

+ DM „ COS 2 (A))DEL(U 1 ) - (-DM p SIN2(A) - DM p COS(A)SIN(A)
M3* 1 T 3 3' 3

+^DM p COS(A)SIN(A) + DM p COS 2 (A) )DEL(P 1 ) - SM SIN(A)
MTK1 M3'";i ^ 1

- SM3

P2J2,2 + P1J2,1} ~ P2^1S3P3 + J1,2P2
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In addition to the zero sideslip condition, the investigator frequently wishes to
determine vehicle response when the angle of attack is limited to small values. For
this condition MACSYMA would implement the assumption that SIN(A) = A. More-
over, if the angle of attack were sufficiently small, the program would request
MACSYMA to make the additional substitution COS(A) = 1.

In this case, the required substitution and display statements give rise to the
following modified moment equations:

(C35) FOR 1:1 THRU 3 DO TM[I]:SUBST([SIN(A)=A,COS(A)=1],TM[I])$

(C36) FOR 1:1 THRU 3 DO DISPLAY(TM[I])$

2

- (DM ,, - DM ,, A)DEL(U 9 ) - (DM DM, ,U? MVU? 2' M, ,P?
I i- _ %J f- \ f-

"» / ""* \ \Jttt ii r\ ~™ Umi M • * ~~ L'li/i I I •*

" (V3
 A " Vi

S t n / n i j _ D l 4 - D 1 ^ D ^ l p j . p l
m.t • ' o \ " o ^ ' o o "0*^0 o n*^o I / ™* ' o v ^ o oo oo orl-i ^- J J j O c. 31 c. I J, I O ^ j J o L L, L

+ P lJ2, l)

™2 = "DM C D E L^CK^ " (°M U A + DM U )DEL(Us) " (DM p A
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- DM ,, AJDEKUJ - (DM p - DM p A)DEL(P 1 ) + Jp 3(--
M2'U3 M2> h l M 2 > f 3 ' ^'J dT

+ J? 2(" P?) - SM + J2 ,(-- P,) - P!(P3J3 3
 + P2

J
3 2 +

<:,^i .-r c ri0 £ , i . T i i 0 0 , 0 ^ o,£

™ = -(D A + ) D E L ( C ) - (D A2
 + D A

A + DM3,U3)DEL(U3) - (DMrP
 + D A + D A

) - (° A + D

+ DM „ )DEL(P9) - (-DM „ A2 - DM .. A + DM ,, A
3' 2 T 3 3' 3 1' 1

Examination of these equations reveals the existence of terms such as A2 . If it is
assumed that second-order terms in A are negligible, a program statement instructing
MACSYMA to make the substitution A2 - 0 would simplify the moment equations
as follows:

(C37) FOR 1:1 THRU 3 DO
TM[ I ] : SUBST( [A**2=0] ,TM[I ] )$

(C39) FOR 1:1 THRU 3 DO DISPLAY(TM[I])$
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- DM3,cK
 A)DEL(V - (-DM3,u3

 A + Vui A

) - -D A + A +

- (-D A - DM A + DM y )DEL(U1) - (-DM p A - DM p A
n-,U-i rl,,Uo lyl-|jU-i I l l _ , r - j 1' 3

™2 = -

P2J3,2

™3 = - ( D M C A + D M , C ) D E L ( C
K ) - ^ A + D M 9 U A

A + D A
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- ( DM rU 2
 A + DM3 ,U

- (-DM3,U3
 A + VU1

!) -.SM A + J 3 j 3 ( - P3) - S + J 3 f 2 ( - P2)

- P 2< J 1,3 P 3 + J 1,2 P 2 + P1J1,1>

An additional simplification is possible if the assumption that angular velocity
perturbations are negligible is a valid one. Implementation of the assumption that
DEL(Pj) - 0 yields the following greatly simplified equations:

(C40) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO
TM[I]:SUBST([DEL(P[J])=0],TM[I])$

(C41) FOR 1:1 THRU 3 DO DISPLAY(TM[I])$

- DMS,CK
 A)°EL(CK) - <-DM3,u3

 A + DMrUl
 A

r2 2 ) - (-D
M3>Ul

 A

A +

™2 = -
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- P1<P3J3,3 + P2J3,2

P3 (J1,3P3 + Jl

™3 = -(VCK
 A + VK)DEL(CK) - <DM3,Ul " + VU3

A + J (<L p ] - s
33^ 3 ' MJ,J dT J Pig

P J- p 1 J. p 1
2 o v * ? 0 I 1 ?

jOO t- C ,£. \ C. •

J 1,2 P 2 +

6.28 THRUST MOMENTS

As indicated in section 6.19, the thrust moments TM^ appearing on the left-hand
side of these equations are the resultant of the moments produced by a number of
thrust generating systems. The equations (6.19.1) relate the thrust axes coordinates
Xn

l to the coordinate system Yn
l, which has the same origin as the thrust axes but is

parallel to the body axes system'.
To facilitate the formulation, equations (6.19.1) are entered here.

(Cl ) Y[l ,N]:X[1 ,N]*COS(K[N])*COS(P[N])$

(C2) Y[2,N]:X[1,N]*COS(K[N])*SIN(P[N])$

(C3) Y[3,N]:-X[1,N]*SIN(K[N])$
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The point of application of the «th thrust vector relative to the body axes system,
with origin at the center of gravity, has components (Ll rl*L2 n^i «)• Tne compo-
nents of the nth thrust vector in this coordinate system are given by equa-
tions (6.19.2). The product of the position matrix with elements (Lj W,L2 n£3 n)
and a column vector of thrust components can be processed as follows.

First enter the (3,3) position matrix, element by element, as requested by
MACSYMA. Next enter the (3,1) column vector of thrust components in the same
manner. When the matrices are entered the displayed form of each matrix assumes
the conventional textbook form

(C4) ENTERMATRIX(3,3);

ROW 1 COLUMN 1 0;

ROW 1 COLUMN 2 -L[3,N];

ROW 1 COLUMN 3 L[2,N];

ROW 2 COLUMN 1 L[3,N];

ROW 2 COLUMN 2 0;

ROW 2 COLUMN 3 -L[1,N];

ROW 3 COLUMN 1 -L[2,N];

ROW 3 COLUMN 2 L[1,N];

ROW 3 COLUMN 3 0;

MATRIX-ENTERED

(D4)

(C5) ENTERMATRIX(3,1);

-L

"3,N

2,N

"L3,N L2,N jj

° -h.N]

h,N ° ]
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ROW 1 COLUMN 1 T[N]*DIFF(Y[1,N],X[1,N]);

ROW 2 COLUMN 1 T[N]*DIFF(Y[2,N],X[1 ,N]);

ROW 3 COLUMN 1 T[N]*DIFF(Y[3,N],X[1 ,N]);

MATRIX-ENTERED
[ TN COS(KN) COS(PN) ]

(D5) [ TN COS(KN) SIN(PN) ]

[ -TN SIN(KN) ]

By requesting the system to multiply these two matrices, the following product
matrix is obtained:

(C6) (D4) . (D5) ;

C O S ( K ) SIN(PN) -i j

(D6) [ L^ TN COS(KN) COS(PN) + LUN TN SIN(KN) ]

[ L l j N TN COS(KN) SIN(PN) - L2)N TN COS(KN) COS(PN) ]

In order to express this column vector of thrust moments in conventional
functional form, the following two programming steps are required:

(C7) FOR 1:1 THRU 3 DO ROW[I ] :F IRST(ROW((D6) , I ) ) ;

(C8) FOR 1:1 THRU 3 DO (TM[I]:ROW[I][1],DISPLAY(TM[I]))$

TN COS<KN) SIN(PN) - L2,N TN

™2 = L3,N TN COS(KN ) COS(PN } + L1,N TN SIN(KN}

TM3 = L ] } N TN COS(KN) SIN(PN) - L^ TN COS(KN ) COS(PN)
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These equations give the moments produced by the «th thrust vector. When the
number of thrust generating systems is known, these equations can be summed on n
to obtain the total thrust moments.

6.29 SPATIAL ORIENTATION IN TERMS OF THE DIRECTION COSINES

The differential equations for the direction cosines can be obtained by first
entering a (3,1) column vector of direction cosines, with elements D^ , Dj2, and
Dfo, where I can assume the values 1,2,3, and by premultiplying this vector by the
angular velocity matrix. This operation is equivalent to the vector cross product of
the angular velocity vector and the unit vectors /, /, and K (ref. 9). The program-
ming steps and the displayed output are

(Cl) ENTERMATRIX(3,1);

ROW 1 COLUMN 1 D[I,1];

ROW 2 COLUMN 1 D[I,2];

ROW 3 COLUMN 1 D[I,3];

MATRIX-ENTERED

(Dl)

(C2) ENTERMATRIX(3,3);

ROW 1 COLUMN 1 0;

ROW 1 COLUMN 2 -P[3];

ROW 1 COLUMN 3 P[2];

ROW 2 COLUMN 1 P[3];

'1,1
'l,2

'l,3

390



MATHEMATICAL MODELING OF DIVERSE PHENOMENON 6.29

ROW 2 COLUMN 2 0;

ROW 2 COLUMN 3 -P[l-];

ROW 3 COLUMN 1 -P[2];

ROW 3 COLUMN 2 P[l];

ROW 3 COLUMN 30;

MATRIX-ENTERED
[ 0 -P. P ]
[ 3 2 ]

(D2) [ P 0 -P, ]
[ 3 ] ]

[ ~P2 Pl ° ]

The product of these two matrices is

(C3) ( D 2 ) . ( D 1 ) ;

[ P 2 D I , 3 - P3D I ,2 ]

[ P 3 ~ D I , 1 - P l D I ,3 ]

[ Pl DI,2 - P2 DI,1 ]

The individual terms of this column vector can be evaluated for /= 1,2,3 by
executing the following program statement:

' (C4) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO
EV(C[ I , J ] :ROW((D3) ,J ) )$

The evaluated terms can be printed out by using the now familiar display
statement

(C5) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO DISPLAY(C[I,J])$

C = [D P - D P ]
1,1 [ 1,3 2 1,2 3]
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C - [D P - P D ]
1.2 [ 1,1 3 1 1,3]

-C = [P D - D P ]
1.3 [ 1 1,2 1,1 2] -

C - [P D - D P ]
2,1 [ 2 2,3 2,2 3]

C = [D " P - P D ]
" 2,2 [ 2,1 3 1 2,3]

C = [P D - P D ]
2,3 [ 1 2,2 2 2,1]

C = [P D - P D ]
3.1 [ 2 3,3 3 3,2]

C = [P D - P D ]
3.2 [ 3 3,1 1 3,3]

C - [P D - P D ]
3.3 [ 1 3,2 2 3,1]

The dependence of the direction cosines on the indices / and / and the time T can
be shown by using the DEPENDENCIES statement. The use of this statement
facilitates the formulation of the differential coefficients

(C6) DEPENDENCIES(D(I,J,T))$

It only remains to request that the differential coefficients of the direction
cosines DCjj with respect to the time T be added to the coefficients Cjj and
displayed as follows:

(C7) FOR 1:1 THRU 3 DO FOR J:1 THRU 3 DO .
DC[.I,J]:C[I,J]+DIFF(D[I,J],T)$

(C8) FOR 1:1 THRU 3 DO FOR J:l THRU 3 DO DISPLAY(DC[I,J])$
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DC = [D P-D P ] + -- D =0
1.1 [ 1,3 2 1,2 3] dT 1,1

DC = [D P - P D ] + - - D =0
1.2 [ 1,1 3 1 1,3] dT 1,2

DC = [P D - D P ] + -- D - 0
1,3 [ 1 1,2 1,1 2] dT 1,3

:, = [p D -D p ] + -- D
2,1 [ 2 2,3 2,2 3] dT 2,1

D C - [ D P - P D ] + - - D = 0
2,2 [ 2,1 3 1 2,3] dT 2,2

D C = [ P . D - P D ] + - - D - 0
2,3 [ 1 2,2 2 2,1] dT 2,3

; = [P D -PD ] + -- D
3,1 [ 2 3,3 3 3,2] dT 3,1

DC = [P D -PD ] + -- D -0
3.2 [ 3 3,1 1 3,3] dT 3,2

: = [P D -PD ] + -- D
3.3 [ 1 3,2 2 3,1] dT 3,3

This concludes the formulation of the simplified aeronautical model considered.
The formulation gave rise to 18 equations: 3 force equations; 3 moment equations;
9 direction cosine equations to determine the spatial orientation of the vehicle; and
3 equations to determine the geographical location of the vehicle relative to an
Earth-fixed reference frame. It is seen that the technique of symbolic mathematical
computation, as implemented by the MACSYMA system, can be used ,to facilitate
the formulation of complex mathematical models of physical systems and reduce
the errors to which human operators are prone. The versatility and simplicity of the
system make it attractive to programmers and nonprogrammers alike. Moreover, as
already noted, the capability of working interactively enhances the utility of the
system by permitting the user to modify the formulation as he proceeds.
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6.30 REFERENCES

1. Mathlab Group, Project MAC, M.I.T.: MACSYMA Reference Manual. Massachu-
setts Institute of Technology, 1957.

2. McConnell, Albert J.: Applications of Tensor Analysis. Dover Publications, Inc.,
1957.

3. Spain, Barry: Tensor Calculus. Third ed., revised. Oliver and Boyd, Edinburgh,
1960.

4. Tolman, Richard C.: Relativity, Thermodynamics and Cosmology. Clarendon
Press, Oxford, 1958.

5. Gainer, Thomas G.; and Hoffman, Sherwood: Summary of Transformation Equa-
tions and Equations of Motion Used in Free-Flight and Wind-Tunnel Data

"Reduction and Analysis. NASA SP-3070, 1972.

6. Sokolnikoff, Ivan S.: Tensor Analysis; Theory and Applications. John Wiley &
Sons, Inc., 1960.

7. Tobak, Murray: On the Use of the Indicial Function Concept in the Analysis of
Unsteady Motions of Wings and Wing-Tail Combinations. NACA
Report 1188, 1954.

8. Etkin, Bernard: Dynamics of Atmospheric Flight. John Wiley & Sons, Inc.,
1972.

9. Kolk, W. Richard: Modern Flight Dynamics. Prentice-Hall, Inc., 1961.

394
•ft U.S. GOVERNMENT PRINTING OFFICE : 1979 O-302-096



National Aeronautics and
Space Administration

Washington. D.C.
20546
Ollicial Business
Penally lor Private Use $300

SPECIAL FOURTH CLASS MAIL

BOOK

Postage and Fees Paid
National Aeronautics and
Space Administration
NASA 451

NASA




