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ABSTRACT

Employing the L'Huillier, Redish and Tandy (LRT) wave function formalism

we develop a partially connected method for obtaining few body reductions of

the many body problem in the LRT and Bencze, Redish and Sloan (BRS) formalisms.

This method for systematically constructing fewer body models from the N-body

LRT and BRS equations is termed the Dominant Partition Method (DPM). The

DPM maps the many body problem to a fewer body one using the criterion that

the truncated formalism must be such that consistency with the full Schrodi.nger

equation is preserved. The DPM is based on a class of new forms for the

irreducible cluster potential, which is introduced in the LRT formalism.

Connecti •'''y is maintained with respect to all partitions containing, a given
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partition which is referred to as the dominant partition. Degrees of freedom

corresponding to the breakup of one or more of the clusters of the dominant

partition are treated in. a disconnected manner. This approach for simpli-

fying the complicated BRS equations it appropriate for physical problems

where a few body reaction mechanism prevails. We also show that the dominant

partition truncated form of the BRS equations may be obtained by distributing

the residual interaction in the exit channel in a manner cr+nsistent with the

dominant partition truncations of the irreducible cluster potential.



THE DOMINANT PARTITION METHOD

I. INTRODUCTION

Connected Kernel Equations (CKE's) have enjoyed considerable prominence

in the recent history of reaction theory. The equations due to Alt, Crass-

berger and Sandhas 1 (AGS), Bencze, Redish and Sloan 2 (BRS) and Kouri, Levin

and Tobocman3 (KLT) are representative examples. In the formalisms of AGS,

BRS, and KLT the many body scattering problem is formulated in terms of a set

of coupled integral equations for the transition Operators. These CKE's are

often viewed as extensions of the three-body formalism of Faddeev4.

Although the CKE's provide mathematically correct formulations of the

N-body scattering problem, these equations have not inspired extensive

uasge in direct reaction analysis. The Distorted Wave Born Approximation

continues to be the primary method employed in the analyses of direct reactions.

Significantly, there exists in the community an understanding that many body

effects should be included in reaction analysis; 5 however, the CKE's are

not generally regarded as offering a viable approach for such inclusions.

Even in the three-body case, the Faddeev Equations are often regarded as use-

ful for mathematical proofs but not as feasible for calculations6.

The complicated nature of CKE's as well as an uncertainty about how

the dynamics is distributed in these equations have been important factors

in limiting the role of CKE's in reaction analysis. Necessarily any use of

CKE's must involve truncations. This compelling necessity for methods of

truncating CKE's probably has contributed to their limited use.

The application.of the CKE's to nuclear and atomic systems is rendered

difficult because of the number of equations involved and the fact that many

channels are theoretically treated on an equal footing. We therefore consider
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what simplification can be achieved by reducing the number of equations

and/or channels. In practice since certain channels may be ignored or

treated phenomenologically it may not be necessary to preserve connected-

ness in them. We call the formalism derived from relaxation of full

connectedness in a set of CKE's a partials connected formalism. A par-

tially connected approach has been advocated as a means of circumventing

the difficulty imposed by the coupling of al p rearrangement channels by

Hahn and Watson in the three-body problem .

The choice of criteria (by which one truncates a CKE) is an open

question. A possible approach to simplifying these equations for some

problems is to map the many body space into that of a fewer body problem.

This approach will be useful in the case that the physics seems to be

dominated by a few-body mechanism. One example is the deuteron-alpha

scattering at energies below the threshold for breakup of the alpha.

Notably, such a mapping does not destroy all of the many-body infor-

mation which would be lost in the arbitrary imposition of a few-body model

on a given many-body system.

Actually, when one considers such a truncation it becomes clear that

many of the CKE's do not lend themselves to such a reduction method. The

AGS and KLT equations are notable examples. The explicit dependence on the

number of particles as exhibited by the AGS equations and the dependence on

the number of channels as exhibited by the KLT equations tend to make the

structures of these equations rather rigid. The AGS equations make explicit

the number of particles through kernels which contain all subsystem transi-

tion operators. The KLT equations are written for a fixed number of channels

which structurally excludes the possibility of later dropping one of the

channels.
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In this article we develop a method of truncating the many-body BRS
J

equations to a fewer body problem. The method is developed in the LRT8

connected kernel wave function formalism, and is similar in spirit to the

Hahn-Watson reduction method . This truncation is termed the Dominant

Partition Method (DPM). It maps the given many-body problem to a fewer

•	 body problem whose solutions satirfy tree full Schrodinger equation.

The equations obtained const- tute a partially connected set, the discon-

nectedness appearing in those channels which are not considered explicitly.

In section II the LRT wave function formalism and the related irre-

ducible cluster potential are reviewed. In section III the Dominant Par-

tition Theorem is presented and in section IV this reduction method is

applied to the BRS equations. In section IV it is also shown that the

reduced se's of BRS equations may be obtained via a distribution method4.

The summary and conclusion are presentee in section V.

II. THE L'HUILLIER, REDISH, TANDY WAVE FUNCTION FORMALISM

In this section a set of coupled connected kernel equations for the

wave function describing the scattering between many-body (N24) clusters

is obtained. These equations are derived by using the BRS equations and

the Green function for the system. The system under consideration has N

distinguishable particles which interact via two-body potentials. A

division of the N particles into n clusters, is termed an an partition.

The Greek alphabet is used to label two cluster partitions and the N-

cluster partition is labelled 0. The partition Hamiltonians H a , residual

interactions Va and associated Green functions are defined by

^g
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H	 H + V	 (1)
a	 o	 a

Va = H - Ha ,	 (2)

G  = (Z - Ha ) -1 ,	 (3)

where V  is the sum of two body interactions internal to the a-partition

and Z is the complex energy parameter (Z = E + ie). The full and free

Green functions are given by

G = (Z - H) -1 	(4)

Go = (`L - Ho ) -1	(5)

where H is the full N-particle Hamiltonian and Ho is the total kinetic

energy operator.

Consider the N-body scattering pb-oblem initiated by incoming bound

states of the two clusters comprising the partition R. The full wave

function is 

'Y = Qim ie G (P	 (6)

e-

where ( a describes a relative motion plane wave times the internal bound

state wave functions for the two clusters. The Green function is express-

ible in terms of GS,

G = G^ + GVSGS.

Using that

GSIDS = (ic)
_l4)

.^ c

we obtain	 S
T _ (1 + GV ) (D

Using (7) we have	 _1
T a = GGS (P

F Noting that
Va`Y, = Tasks,

(7)

(8)

(9)

(10)



(16)
,S(Y) 

= (D 6 y6 + GOKYGoVYT

7

.4

where Tas is the transition operator 
10 

we write (9) as

T S GoG Sl ( s + GoTOB (D	 (11)

Employing the BRS equation 2,

TaB	
VS + KGO C•oTas ,	 (12)

a

we obtain

`YS = Go (G 1 + V S)^D + GOKQOGOT'N^	 (13)

6

In (12) VS is the sum of two body interactions internal to S and external to

a. The kernel KQ is the sum of all Weinberg graphs 
11 

of connectivity  a

which begin with any interaction and do not end with an interaction in a.

Defining KQ = Ka: using (3) and (10) we have

T = 4 S + Ga aGOV'Y S	(14)

a

This integral equation has a completely connected kernel. The operator Ka

is the sum of all a-connected Weinberg graphs.

Decomposition of the wave function into parts associated with the two

cluster partitions of the N-body problem is achieved by writing

Ta _	 ^,(Y)	 (15)

Y

where
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The wave function Ts`Yi only has outgoing waves of the y-type, that is

bound clusters of the y-partition or direct breakup from the y-partition.

Equation (16) may be written in a convenient form by considering again

(9) and writing G in terms of GY . We find

`YS	
GYG R I ( 

R + GYVYG G s1 (D	 (17)

Using (9) and (10) we have

T = 
GYG R 1 ( 

s + GYTYS (D	 (18)

Multiplying from the left by G 
0 
G 

1 
we have

GpGY1T = GoG S14) + GoTYa (D	 (19)

Using (19) in (16) gives

`Y (Y) = (S	 - G K G G-1 )4^ + G K G G-
1
 T 
	

(20)
B	 Y6	 0Y0 S	 R	 01'0Y S

We not introduce the operator V  which is defined by

K 
Y 
G 
0 

YGY .	 (21)

The operator V  is termed the irreducible Y-connected potential. It is

the sum of y-connected graphs which become less than y-connected if the

rightmost interaction is removed12 . We have

Ta (Y) = (S YS - G0YGYGa1)^D + G0VYT S 9	 (22)

and 
GoVYGYGsl 

on sbAl is the same as G oVa 6 ay . This yields

T$ (Y) = 6YS (1 - G0 V$)(D S + G0YTC	(23)

v
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Noting that

(1 - Go VS)4 S = 0,	 (24)

whir.h is most easily seen on examining the anti -cluster expansion for V^

(section III) we obtain

y,
S 

(Y) = G V `Y	 (25)
o Y S

We write this in differential form as

(E - H - V ) T (Y) = V	 T (a) 	 (26)
o	 Y a	 Y 

a(#Y) 
s

which is reminiscent of the Faddeev three -body result. These are the LRT7

equations. lAe relation of these equations to other N-body CKE's is dis-

cussed in detail in ref. 13.

III. THE DOMINANT PARTITION THEOREM

The anti-cluster expansion for the kernel in the BRS equation has

been previously given 14,

ao	
N-1

K G = Y. 	 N(a,a )VS G	 (27)
a °	

m
m=2 (a^)am 	am am

The N's it the above equation are termed counting coefficients 14 . They

depend on both a and am . From (21) we have the anti-cluster expansion

e	 for the irreducible cluster potential.

N-1
V= I	 I N(a,a )V G G 

1.	
(28)

a m=2 (av ) a	 m am 
am a

m

Summing the components of equation (26) we note the interesting

result that

z
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is

we obtain

F

t
i

10

	(E - Ho -	 Va )Y a = 0.	 (29)
a

This property provides the underpinning for the truncation of the BRS

equations that will be presented in this section. Insight into the method

is afforded by the following theorem.

Theorem I. For arbitrary N, if Va is given exactly then

VaYf ^ = VY's
6

where V is the full potential and Y< d solves the Schrodinger

equation for the N-body system.

Proof:	 From (28) we have

G oTo -
	 N (a,am)Va r. Ga1T	 (30)

.a	 a m=2 (ate) a	 m m
M

Interchanging sums and using

 a

	

G-1 =G-1 - V m , a=a	 (31)a	 a	 a	 mm

we have

	

N-1 c
	 C	

a

	

Va '^a _ I E	 G	 rd(a,a^ (Va - Va Ga Vam ) Y< a .	 (32)
a	 m=2 a n a(^am )	 m	 m m

Noting that
a	 a

	

V 
6 
m=	

a6
V -V = V1II-Va	

m
a	 (33)

m

N
C	

c-1 c
	

a

F V	 Ga ^S =	 L	 L	 N(a,am) VP, (1-Ga v m f Ga v')T . (34)

a	 m=2 m a (yam)	 m	 m	 m



11

We use the result 151

a

T S = 
6 S 4

8 + Ga V m T s	 (35)
m	 m

I
to obtain

n-1
CC
L Va YS = V8 4S +	 G F	 G	 N(Q,am) Va	 Ga	 V `Y S . (36)

G m--2 am a(^am )	 m	 m

In the appendix we show that

a
= cm V 

m,

a(-
N(a,am)Va (37)

a)

where cm = (-1)m (m-1)! Using this in (36) and again employing (35) we obtain

n-1
V	 T_ I	 c	 V

6	 m	
am

(38)
Cy m=2	

a

m

Now we employ the lemmas:
a	 a

Lemma 1 : 16	 V m = S (k) V m	 (39)
c ck	 N-1
k

and
N-1

Lemma 2: 17	 Cn S (n) = 1, N a 3.	 (40)
n=2

The SNki are Stirlirg numbers of the second kind. SNki is the number of dis-

tint ways of making k clusters out of (N-1) objects. From (38) we now

obtain

I TJa T S = V T 	 O.E.D.	 (41)
a

This means that (29) with the a sum taken over the two cluster partitions

is the Schrddinger equation. This result motivates the consideration of

truncations of and/or V  such that the corresponding summed version of (29)
a

{
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remains the full Schradinger equation. We present a method which satisfies

this condition through the following three results.

Remark: For a given N, if V  is given exactly the arbitrary sum (F V  'YS)

over a subset of the two cluster partitions does not result in (E - Ho -

Va)T	 0 becoming the Schradinger equation when the sum is over an arbitrary
0
set of partitons a.

Proof: Consider the case N = 3 for which Va = Va. We label the possible

a's as al = (1)(23), a2 = (2)(13) and a3 = (3)(12). Note that

F	 V  T S =	 V  va s ,	 i42)
al ' a2	 a1'02

Va T^ # V 'Y s . Q.E.D.	 (43)

al "'a2

Remark: For a given N and V  truncated arbitrarily then the sum over all

a does not result in (E-H - I VT 'Y = 0 becoming the Schrodinger equation,
>	 ° all a a S

,there VT is a truncated version of Va.

Proof: Consider N = 4 and suppose we truncate V  by taking Va ,u Va = Va.

\,^W	
vT 	 I V T	 (44)

all a a s all a a s

From Lemma 1, Va = S (2)V and we have
a

VT `Y S	 S (2)V T	 Q.E . D.	 (45)
all a

We now introduce notation to represent a particular class of truncations
a

of the irreducible cluster potential. The operator Va is defined as a trun-

cation of Va that terminates with a single am, 3 m s N - 1. This operator

imrolves the set of partitions a  such that akP, a 	 This truncated irreducible

cluster potential is defined in terms of the anti-clus	 expansion for (28) as
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V m =	 /I	 N(a,a )V G C a 	(46)a	 n=2 (a-)an^am)	 n an an

This class of truncated operators allows us to introduce the Dominant Partition

Theorem (DPT). The term dominant partition derives from the role played by a

fixed partition am in the truncation of V  and in limiting the sum on two cluster

partitions.

Theorem II. (Dominant Partition Theorem)

For arbitrary N, and an arbitrary fixed partition am

a
Vam T = V T S t

a(^ 
m

a )

where T  solves the Schradinger equation for the M-body system 0 5 m -< N - 1).

Proof :

Using the definition (46) gives

am

	

V = 	T	 j	 Y	 - N(a,a )V	 G	 G 1 `Y	 (47)
a(--am) a S a(-am) n=2 (am)an0am)	

n an an Q s

We write (46) in a more convenient form by picking off the sit term

c	
a	

c	 C
M-1	 _

L V m
	

=	 L	 G	 Y	 N(a,a )V G G 1 T

a (-am) a s a (^ am) n=2 (a 3) an (^ m)	
n an an a 6

+	 N(6,am)Va Ga Gal T	 (48)
a (3a)	 m mm

'	 Again employing (31) we obtain

a	 m-1	 a
V m T =	 I[ I	 I	 N(a,a )V (1-G V n)

a(^am) a S a(^am) n=2 (a^)an(^ m)	 n an	 an a

a
+ N(a,am)Va (1-Ca V m)]Ts•	 (49)

M	 m
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Using (33) and (35) we have

a

s	

m-1

VY' =V (P+	 I	 F.	 G
C

N (a,a 
n 
)V G VaT

a(^a m	 m) a
	 a(aa ) n=2 (	

n
a^)a (?a 

m )
	 an n	 s

(50)

	+ 	 N(a,am )Va G Va T
a (-y 	 am

Interchanging

m m

Interchanging sums we have

C	
a	 m-1

L Vam T = V  D s + G	 G	 I 
N(a'an) Va G  

Va Ys
a(-am)	 n=2 an (?am) v (tea	 n n

(51)

	+ 	 N((Y,am )Va G  Va Y
a (yam )	 m m

Use of (37) and (35) yields

a	 m-1
V m T _[ I	 I C V + C V ] T	 (52)

a (^ am) a S	 n=2 an (?am) n a
n 	m am S

We now use

am	 (n) amLemma 3:	
a (
	 )Van	 Sm-1 V	 (53)

n m

A proof is given in the appendix. This yields

V am 	 = [mil C ( S (n) V + S (n) Vam ) + C V ] T ,	 (54)

a(->a) a Ts
	 n=2 n m a	 m-1	 m a	 S

m	
m	 m

where we have used (33) (with a replaced by a n) to express V  in (52) as
a	 n

V + V m.
am	an

Noting the results
f

mC
-1 C S (n) = 1 - C	 (55)
G n m	 m

n=2
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and

mcl	 (n) -

G ^n Sm-1 1	 (56)
n=2

which follow from Lemma 2 we have

V6m ~ Y S = V 'Y S .	 Q.E.D.	 (57)
Q (-')a)

Theorem II provides the basis for the DPM. It shows that we may truncate

V  through the anti-cluster expansion by retaining only those partitions

that contain a given dominant partition. Note that the full partition

Green functions G
a 

are retained in (46). They are not projected on the
n

Hilbert space corresponding to bound states of the dominant partition am.

The description of the breakup of these clusters is contained in these Green

functions.

The reduced problem is then solved by solutions to the original

Schrodinger equation. This theorem provides a consistent means of reducing

the many body problem in the LRT wave function formalism to a few body

problem.

Nuclear reactions are commonly analyzed in terms of a few body picture.

For a given N there are S (2) = 2N-1 - 1 two cluster channels. Any realistic
4

attempt to solve the many body problem cannot treat all of these channels on

fi	 an equal footing. Moreover, it is reasonable to expect that in direct

reactions the processes involved are not so extensive that all possible re-

arrangement and inelastic processes must be included. In many cases a

realistic approach to many-body reaction theory will be afforded by sytem-

atically building a fc a body models.

,rv8
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We now obtain dominant partition truncations of the BRS equations.

This is accomplished by restricting the sum on two cluster partitions to

the class defined by a(pam), where am is taken to be the dominant partition.

Correspondingly we introduce the appropriate truncation of the BRS

kernel by using the anti-cluster expansion (27). Restricting the sum on

two cluster partitions to those that contain a particular am terminates the

anti--cluster expansion with that term explicitly involving am . We write
a

the truncated kernel as K SQ, that is

Kam =	 N(a,a )V S G	 (58)
Sa n=2 (6^)an(?am)	 n an an

With s,a( am) we write the truncated BRS equations as

T$a V $	 Kam T6a .	 (59)

a a(^am) SQ

It will be recalled that in the derivation of the BRS equations that a

crucial step was the democratic distribution of the residual interaction over

all partitions. 16 If we restrict the distribution to those partitions contain-

ing am and proceed with the derivation, are the truncated equations obtained

the same as those we have termed the dominant partition truncated BRS

equations? The answer is yes and provides the next theorem.

Theorem III. The dominant partition truncated BRS equations (59) are

obtained by distributing the residual interaction V^ over

the subset of all possible partitions containing m and pro-

ceeding as in the derivation of the BRS equations (ref. 16).

J

•

This theorem provides a satisfying degree of consistency in the reduction

of the BRS equations. These considerations are displayed in Fig. 1.
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Fig. 1

Proof: From (39) and (53)

Vs = S (3) Vs
d, d^
	 N-1

J

and

am = SV	
.

di ('a n ) di
	m-1

Also note that

Vd = Sm	 mj ) V S , S	 a.
d (^ am)

Using (56) we obtain

s M-1

C3 V 	 S am .V =
J=2 dj

3 
(''am)

We use this in the definition of the transition operator 10

TSa=VSGG1.+	 a

We obtain

'au.
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m-1	 m-1	 d a
T+a =	 C V 	

G-1 + 
L L	 C VS G T .1	 S a

J=2 dj am) j d i dj a	
j =2 dj (_am) j dj dj 

+	 m

Using the Lippmann identity 16,18 
to transform the Born term gives the

following equation for a new set of operators T 	 are equal to

T+a on the half-shell

m-
C
1	 m-1	 d a

T 
Ba	

G	 Y^ C % dd a + i	 Z	
Cj V

d Gd T j , s -' am
(.j=2 d j am) j	 j	 j	 j =2 d j F am)	 )	 j

This yields

M-1	 d a
Tsa = Va + I	 !	 Cj Vd G  T j , a am , R am.

3 =2 d j (a am )	 j	 j

We use the Yakubovskii cluster expansion 
19 

to decompose the transition

operator internal to partition d  into pieces of different conni :ctivities.

We write

M-1
TYa = L.	 Kya+d3 n

=j (dj^)dn do

and

TRo G = Vs G = m-1
	

Kso G .
+dj o	

dj dj n°j (d ^ n)d do o
i 

a
The anti-cluster truncation procedure is to replace Koo Go by K 

d 
for

n	 n
N > m and to drop all other terms.

We then get

Oa	 m-1	 m-1	 am d a

T °"a+ I	 E	 C	
d

Y	 E	 K	 Tj
J =2 d j (yam) j n=j (d j^>)dn	 o

We interchange the n and j sums realizing that m is the largest number of

clusters that we can have in the limited space. We obtain

•t

t
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4

m-c1	
c	

a	 n	
c	

d	 -1

Tsa Va + G	 G	 sd	 [,	 C j V G Ga
n=2 dn (2a 	 n j=2 d j (^dn)

where (60) has been used. Employing

Lemma 6 : 16	 n	 d	 d
C  V j = d2n V n,

J=2 d j (-1-dn)
3 yields

M-1	 a	 d a
Tsa - 

Va + I	
Ksdm 62n T n

n=2 dn (^am) n

and

aTsa = V S + r	 Km Taa	 S a= am .
a,	

o (pa ) sa	 m

m

Q.E.D.

V. SUMMARY AND CONCLUSIONS

We have developed a generalization of the Hahn and Watson's 7 'partially-

connected" strategy appropriate for constructing r.-cluster models for N-body

problems where it is intended that n << N. The cases treated are those in

which the only channels treated explicitly are obtained by combining the clus-

ters of an n-cluoLer "dominant" partition, an . We obtain n-body equations

of the BRS type for transition operators and of the LRT type for wave func-

tions. The resulting equations are connected in the degrees of freedom cor-

responding to the relative motion of the clusters of a n , but not in those

internal to a single cluster of an . Following Hahn and Watson we assume that

these degrees of freedom are to be handled in some manner different from oper-

ator integral equations (e.g., by statistical or phenomenological methods).

Our main result is that the BRS and LRT equations for the small number

of clusters is in fact exact if the subsystem Green functions are put in

from some other source. This means that no incoming waves associated with
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channels breaking the cluster of an are to be admitted. Furthermore, it

does not matter whether one obtains the partially-connected equations by

truncating the anti-cluster expansion for the kernel or by only distributing

the residual potential over the appropriate limited set of partitions. The

same .equations are obtained by both procedures.

A specific example where a procedure such as described here,may be relevant 	 j

is in the six-nucleon problem where the initial channel is a low energy

(E < 20 MeV) deuteron incident on a 4 H nucleus. As is well known 
20 

this is

well described as a three-body problem. Here, our dominant partition would

be a3 = (n)(p)(nnpp) where the effects of exchange are ignored. The three-

body equation would fall out immediately upon approximating the Green function

G  by its part having the 4 H pole. This approximation would yield real
3

effective nucleon- 4He interactions.

More general results, including the appearance of more complete effective

interactions, can be obtained in a number of ways, the simplest of which is

the introduction of projection operators at the Green function G 	 The
a3

part corresponding to everything but the 4 H pole are then solved formally a la

Feshbach21 . This leads to the appearance of generalized optical potentials

as effective interactions plus the well-known 
22 

effective three-body force.
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APPENDIX

We now prove results which were employed in section III on the DPT. These

results are Eq. (31) and Lemma 3. According to (37)
a

N(c,am)va = C
m V 

m 	 (A.1)
a 0 am)

where Cm m
_ (-1) (m-1)!. An operator such as the T matrix for a given partition

can be written in terms of a Muster decomposition

N-1
Ta = L X 6a  b [T] b 	(A.2)
n m  b ri m	 m

m

where [T] a is the part of Ta with connectivity am and 6 a 2b is one provieded
m	 n	 n m

an contains b  otherwise it is zero. Inverting the above expansion we obtain

the [T] b in terms of the T a . The inverted expansion is termed an anti-

cluster expansion. In this expansion the numerical coefficients, N (the counting

coefficients) occur naturally. From the cluster expansion for T a we have
n

N-1

	

[ T ] b = I	 I	 N(bn,am) T a	 (A,3)

	

n m 	 (b
n :) m

) a	 m

The existence of the N(an ,am) follows from the fact that the matrix 6a nb is
z n- m

invertible	 Moreover using (A.2) and (A.3) we easily note that

kC	 c
G	 G N(cj ,am) 6a 

:Db = 6c b	 (A.4)

	

m=j am (ccj )	 m- k	 j k

We develop a recursion relation among the counting coefficients by following

Ref. 24. We write (A.4) as

k
I N(c ' am) (6c ?a + 6c .̂ -Ra ) 6a 2b = 6c b

	

m=j a	 .

	

m	 j	 m	 in m k	 j k

where we have used 6
c a m c 7 ^a m

	+ d	 = 1. We obtain.^,^-	 - 
k

mLj I N(cJ 
^am)6`J'am Gam:3b =-= 6c bk

M

kA. 5)

(A.6)

^s



c	
k	 b

G N(o'ak+l)V = -	 Cm	 V m.
a	 m=2	 b(? am k+l)

22

since N(cj ,am) = 0 for cj ,^ am. 24

Employing (A.6) we easily obtain a t+seful relationship among the counting

coefficients which allows us to determine N(cj ,am) in terms of the N (cj,aj),

N(cj,aj+1),...,N(cj,am-1). From (A.6) we have

k-1
N(cj ,ak) 6 cJ ^ak 6 ak^bk + 

fi^3	
N( cj ,am) 6cJ^am Sam^k = 0, 	 (A.7)

a 
	

m

which yields
k-1

N(cj ,bk ) 	 I E N(cj ,am) 6c ^a 6a --)b	 (A.8)
m=j am	 j m nr- k

We return to (A.1) and employ an inductive argument. We note that for

m = 2,3 that

,a

i

y

a
N(a,a2 )Vo = C2 V 2

6 a
^N(a,a3)Va= C 3 V 3.
Q

Assuming that

N (a , ak) 110 = Ck V k
0

we show that

N (a , ak+l) Va = Ck+l Va
lc+l .

Q

Consider
k

N (o ' alc+l) Vo
 = - m 2 b N (6 , bm) a o^bm 6 bmoak+1

 VII,,

m

where we have used (A.8). Using the assumption (A.11) we have that

c
k 	 b

alc+lL N(a,	 )V'	 L
c 

G
c C V m da	 m=2 b m	 b^ak+l'
m

We write this as

(A.9)

(A.10)

(A.111

(A. 12)

(A.13)

t1

(A.14)

..

(A.15)
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Van = Smn) V a m - Sri
 V a m	 (A.16)

a
n 

(Da m )

where the S (n) are Stirling numbers of the second kind. This result follows
m

almost immediately from Lemma 3 which will be proven. Employing (A.16) we

find

V

a	
a

N(Q'alc+l)Va = - Z Cm(S(m) Vk+l - 
Skm) Vk+l).
	 (A.17)

k+l
a 	 m=2

Fiaally we write

N(a,	 )Va = -[kIl C S (m) - ^ C S (m) - C	 S(k+l)]Vak+l	 (A.18)
a	 alc+l	 m=2 m k+l m=2 m k	 k+l k+l

and use the fact that 16
Ncl
G Cm SNmi = 1	 (A.19)

m =2

to obtain

L 	
al.+l

N (J ' a`k+l) Va = Ck+l V
	
.	 Q. E. D.

a

We complete the discussion by proving Lemma 3:

am = S (n) VaV	 m
a (^ a) an	 m-1
n m

Proof: Consider a particular pairwise interaction V. with j external to am.

This interaction will be internal to some number of the a clusters that include
n

am . We determine how many by considering an m-cluster system. In all of the

n clusters the particles of the pair j will have to be together so we construct

n clusters out of the m clusters by initially joining the two particles of

the pair j into a single ' particle'. Now the remaining (m-1) clusters may be

joined into n clusters in any way. This number is Sm ni. This is independent

of the pair index so every pair external to a m will appear this number of

times. This yields Lemma 3.
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