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1.0	 INTRODUCTION

The concept of using light tc transmit information in a communication system

took a significant step forward with the invention of the laser. 	 However,	 it >`

wasn't until	 the advent of low-loss optical	 fibers that a new dimension was

added to the optical	 communication link.	 At the preSL.It time	 it is not a

question of whether or not fiber optic links will 	 be used on future spacecraft

avionics systems,	 but how soon this will 	 happen.	 How soon depends on the indi-

vidual component development of the fiber optic system. 	 The goal	 of this study

was to determs►e the feasibility of implementing a fiber optics system for

potential	 Space Shuttle Orbiter application.	 The overall	 requirement was to

provide an	 intercommunications channel	 that could survive the Space Shuttle u

Orbiter manufacturing and flight environment whil es Satisfying the need for a

low-loss,	 multiport widely disc	 lbuted system.

Presently,	 heavy shielded twisted pairs	 (wire) are used for the intercommunica-

tion interface between spacecraft 	 avionics.	 While this system is satisfactory,

vehicle manufacturing is difficult and vehicle capabilities are limited due to

EMI susceptibility and limited intercommunications rate. 	 With the use of a

fiber optic digital	 data bus system, most of the above problems are signifi-

cantly reduced.	 The objective of the contract was to identify the current

supplies of fiber optics components,	 those components that are presently devel-

oped or are being developed,	 address system applications and system designs,

and finally identify any problem areas and make recommendations.
,t•+.

A detailed study of the fiber optics market was made along with a system eval-

uation of a 9-port star fiber optic data bus system for Bit Error Rate (BER) t

measurements, Electromagnetic Interference (EMI), lightning effects and system

losses.	 The state-of-the-art of fiber optics components was examined in detail.
4

These components included step-index fibers, 	 graded index fibers, 	 and single

mode fibers.	 The optical	 loss mechanisms, 	 strength properties,	 temporal	 disper-

sion,	 and	 radiation propo rties of fibers were examined. 	 Light sources	 (such as

ILD and LED) and detectors	 (such as PIN and APD) were studied for lifetime,

radiation hardness,	 and radiation patterns of the devices.	 Tables listing

vendors are given for the sources and detectors.

1
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A detailed study was made of optical interface losses between transmitter-to-

fiber interf^:,;e, connector-to- connector interface, and fiber-to-receiver

interface. System effects such as pulse dispersion, risetimes of the sources

and detectors, type of fibers used, output power of the sources, and detector

sensitivity were considered. Data bus systems such as TEE, Star, and Hybrid

were analyzed. A brief study of single fiber versus bundle technologies for

future avionics systems was conducted. The existing data bus system on Space

Shuttle was examined and an optical analog was derived for a fiber bundle

system, along with the associated power margin.

Finally, system tests were performed on a feasibility model of a 9-pork Star

data bus system including QER, star losses, connecter losses. etc. The same

system was subjected to EMI between the range of 200 Hz to 10 GHz at 20V/m

levels. A lightning test was also performed which simulated the conditions

sitni'lar to those on Space Shuttle. The data bus system was found to be EMI

and lightninq hard.

It was concluded that an optical data bus system is feasible for Shuttle

Orbiter type vehicles. Space qualification would be required for some compo-

nents. Such a system should consider utilization of single fibers and Star

coupler technol fjgy. The basic design has inherently large growth potential

to satisfy higher data rates and optical mux-demux capability requirements.

2
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2.0 OPTICAL FIBER SYSTEM COMPONENTS

2.1 OPTICAL FIBER WAVEGUIDES AND FIBER CABLE

2.1.1 Light-Propagation in Cylindrical Waveouides

There are primarily three different kinds of fibers available in the commer-

cial market, step index, graded index (both of which are multimode fib,,r:.),

and single mode. Light is contained in the fiber by the index of refraction

difference between the core and the cladding. This difference causes the

fiber to act as waveguide to the light. A typical fiber is shown in Figure

2-1 with core index n l , cladding index n2 , and a protective coating which has

an index of refraction n 3 . The core is usually made of some form of silica

which has a higher index than that of the cladding where dopants have been

added to increase its index of refraction. The protective coating may or may

nrt be a higher index of refraction than n 2 depending on the material of which

it is made.

The manner in which light propagates in the fiber depends on the index of

refraction, n, profile of the core, the index difference between the core/

cladding, and to some extent the diameter of the fiber. If the core diameter

of the fiber is many wavelengths of light, then the propagation of light may

be described by geometric or ray optics. By assuming some incident angle rr

defined as in Figure 2-1, it is possible to determine the maximum angle that

light incident on the face of the fiber can enter without exceeding the crit-

ical angle. This critical angle is called the numerical aperture (N.A.) of

the fiber. For rays incident with angles greater than N.A., the fiber will

not waveguide the light ray. The N.A. may be determined by applying Snell's

Law at the face of the fiber and once again at the core-cladding interface;

it may be shown to be sin f; = N.A. = [n l 2 - n 2 2 ] 1/2 . Hence, light rays will

propagate in the fiber, as shown in Figure 2-1, in a zig-zag path if they are

incident on the surface with an angle less than or equal to o. The fiber

optic waveguide described above is known as a step-index multimode type guide.

2.1.2 Step- Index Mul ti-Mode Fibers

The St(p­ index fibers are usually of three types: glass cladding-glass core,

plastic. cladding-glass core, or plastic cladding-plastic core. In order to

describe light propagation and mode structure in a fiber, it is necessary to

3
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solve Maxwell's equations for a cylindrical dielectric waveguide, This is a

complicated process that involves solving a transcendental equation. One of

the parameters resulting from this analysis is a quantity called the normal-

ized frequency, v, defined as: 0 )

`' = 
	 (nl2 - n22) 1/2
	

(2.1)

_ 'Id N.A.

where

a is the core radius of the fiber,

a is the wavelength of the light, and

N.A. is the numerical aperture of the fiber.

Using the normalized frequency, it is possible to estimate the number of modes

propagating in the fiber by N = v 2/2. (1) If the value v is 2.4 or less, the fiber

will only suppo^ • c one mode and hence is called a single mode fiber. For most

glass-glass step index fibers with a % 35 um and N.A. % 0.25, N will be ,, 200;

hence, most step index fibers are multi-mode. The number of modes that a 	 ^r

supports is directly related to the amount of temporal dispersion in the fiber

(see Section 2.1.7).

From Equation 2.1, increasing d increases v and hence the amount of temporal

dispersion present in a fiber; however, increasing the core diameter also makes

alignment in optical connectors easier and ies, lossy (see Section 2.5). The

amount that d can increase in a glass-glass fiber is limited due to the size

of the preform that the fiber is pulled from. To improve this situation, a new

kind of fiber was developed called plastic clad silica fiber.

Most of the initial funding for the development of the plastic clad silica

fiber was provided by the U.S. Army Electronics Command, Fort Monmouth, New

Jersey. (2) The objectives of the program were to develop a lightweight, flexible,

rugged cable which was cable of operating between 600 and 1060 nanometers for

both analog and digital transmission data rates of up to 20 Mbps. The profile

of this fiber is shown in Figure 2-2b. The core of plastic-clad step index

fiber is about twice that of the glass-glass step index fiber. Typical values

of core diameters for plastic clad fiber are between 100 and 200 lim. In

5

MCOONNELL OOUGS.AS ASTRONAUT/CS COMPANY-ST. LOU/S 0/V/S1O1W



X
n2 • .....

	

OPTICAL DIGITAL TECHNIQUES	 REPORT MDC E2052
FEBRUARY 1979

10-1979

VARIOUS TYPES OF FIBER AND THEIR INDEX PROFILES
no n2

GLASS-GLASS
STEP INDEX	 n1	 (a)
(MULTIMODE)

no	 n2 	n (INDEX)

PLASTIC-CLAD
STEP INDEX	 n1	 (b)	 n2
(MULTIMODE)	 X

n (INDEX)
n2	 1

GRADED INDEX	 z':	 (c)	 n2
(MULTIMODE)	 sj X

n (INDEX)

----- n1
n2	 ----- n2

SINGLE MODE	 ^	 (d)	 X
n.

FI GURE 2-2
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general, the plastic clad fiber tends to have a larger numerical aperture than the

glass-glass step index fibers, being on the order of 0.3 and higher. The numerical

aperture is an important parameter as far as coupling between the source and the

fiber is concerned (see Section 2.5.1). Care must be taken when using this fiber

as the N.A. drops with temperature.(2)

There is also a third kind of stepped-index fiber which has a plastic cladding-

plastic core and a very high N.A. (ti 0.6); however, this fiber is very lossy, being

about 1 dB/m at 820 nm, a;id is not very practical except for short run applications.

With the plastic-plastic configuration, it is possible to have core diameters on

the order of 400 to 600 um.

Ineneral the st ep index fibers are good for lower data rate short run9	 ^	 p	 9	 ,
systems. As the data rate increases, a graded index fiber is more suited

f

to handle the increase in information rate.

2.1.3 Graded Index Fibe rs

The graded index fiber profile is shown in Figure 2-2c. In this type of fiber,

the index of refraction of the core is quadratically varied from a maximum

value at the center of the core to a minimum value at the.fiber cladding. The

physical basis for the graded index fiber depends upon the speed of light in a

dielectric, which is given by:

V = c/n	 (2.2)

where c is the speed of light in free space (3 x 10 8 m/s). In a stepped index

fiber of length Q, light incident on the face of the fiber at an angle 0 must

travel Q/cos0. A similar situation exists in the graded index case; however,

the rays entering at an angle 0 see a lower index of refraction; hence, propa-

gate faster than those that enter with small angles of 0 which propagate for

most of the time in the higher index (lower speed) center of the core. In this

manner, most of the light rays, independent of entrance angle, arrive at the

output end of the fiber at the same time, eliminating most of the waveguide

delay dispersion.(3)

One of the main disadvantages of the graded index fiber is that the coupling

efficiency between the source and the fiber is considerably poorer than that

of the step index type. This loss is typically 10 dB for a glass-glass fiber

and may be as high as 4 dB for a graded index fiber (see Section 2.5.1).

7
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The main advantage of the graded index fiber is its increased bandwidth,

however, as the data rate increases or the length of the link increases,

even the graded index may not be suitable. If this occurs, single mode

fiber may have to be employed.

2.1.4 Single Mcle Fiber

As the core diameter of a stepped index multimode fiber is made smaller

(Equation (2.1)), the value of v becomes smaller. As v becomes smaller, the

number of modes that the fiber can support becomes less. When v becomes less

than or equal to 2.402, the fiber will only support the lowest order hybrid

mode HE 
11, this mode has no cutoff value of v. However, as v decreases below

2.4, more and more of the radiation is forced to propagate in the cladding.

This ratio of total power to power in the cladding is given approximately by (4)

4
Pcclad = uva
	

(1 - v)
T

(2.3)

where	 u`m is the mth root of the equation Jv (u m
0"
	 = 0

v is defined in Equation (2.1)

a is core radius of the fiber.

As v decreases, the amount of light forced into the cladding increases; in

the cladding this light is a '' enuated exponentially. This implies that the

value of v should be as close to 2.402 as possible.

The value of v is a function of the parameters a and N.A. Both of these

parameters can be varied independently in fiber fabrication so that close

tolerances can be held on v. One practical consideration in reaching this

value of v = 2.4 is that if it is increased to reduce source to fiber align-

ment problems, then the N.A. is decreased. A decrease in the N.A. of the

fiber increases the coupling loss between the source and fiber. On the other

hand, increasing N.A. to reduce fiber to source coupling loss increases the

amount of material dispersion (see Section 2.1.7) and also reduces a; hence,

increasing the alignment problem. Typical values for single mode fiber are

a = 2.5 um, N.A. = 0.1 for a = 820 nm.

8
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2.1 .5 Opti cal loss_ Mechan i sms i n Fi bers

The amount of optical loss in a fiber is related to the amount of material

absorption, material scattering, waveguide scattering, and cladding losses

present.

The amount of material absorption is directly related to amounts of impurities

in the fiber. These impurities such as Fe +2 , Cu+2 , C+r , and OH have energy

bands corresponding to wavelengths in the 0.6 to 1.1 jim range. The light in

the fiber interacts with these ions and undergoes photoabsorption. This photo-

absorption process causes loss in the fiber. An optical loss curve for the

various ions are shown in Figure 2-3 (5) with their respective concentrations

in parts per billion (ppb). Figure 2-4 shows a typical fiber loss curve

and the intrinsic scattering limit. (5) At the shorter wavelength most of

the optical attenuation in the fiber is caused by the drawing process itself.

During this process, local color sites are formed (dark spots in the glass)

where photoabsorption occurs. These sites are caused by the Si02 bonds break-

ing. The drawing induced loss effects are usaully limited to the region below

750 nm; and can be reduced by either increasing the water content of the glass

during drawing or heat treatment (annealing) afterwards. Between the wave-

lengths of 0.75 nm to 0.90 nm most of the optical attenuation in the fiber is

caused by metallic ions, while at the higher wavelength the most significant

loss occurs because of the OH-radical.

There are primarily four different types of material scattering mechanisms in

the fiber Rayleigh, Mie, Stimulated Raman, and Stimulated Brillouin. (6) Rayleigh

scattering is always present and is independent of amplitude of the field in

the fiber. This loss in a well-made fiber is on the order of 1 dB/km (la4).

Rayleigh scattering is caused by particles which are small compared to the

wavelength of light while Mie scattering is caused by inhomogeneities compar-

able in size to the wavelength of light. Rayleigh is predominately scattering

in the backward direction; Mie predominately in the forward direction.

Unlike Rayleigh and Mie scattering, Raman and Brillouin, which are nonlinear

scattering effects are field amplitude dependent and can be used to determine

the upper limit on the optical input power to the fiber. Below a certain

threshold these scattering effects are negligible. For Raman scattering the

maximum allowed power is:(7)
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Pmax = 4 x 10 -2
 aw2 watts
	

(2.4)

while for Brillouin it is:(8)

Pmax = 8 x 
10

-F
 (tw2AX watts
	

(2.5)

where in Equations 2.4 and 2.5 ,x is dB loss meter, w (in microns) is fullwidth

at half-maximum power density for the light; and ,',A is wavelength spread at

the source. Also, Equation 2.4 is for vitreous silica at a = 1 yam.

In the case of waveguide scattering, the main cause is core size variations

in the fiber. At points in the fiber where the core changes size the number

of modes that the fiber can support changes, causing modal conversion to take

place. In the ideal case, propagation constants for the different modes are

coupled in a unique way to insure complete power transfer between modes. In

reality, this conversion is never complete, hence, loss occurs and light is

radiated into the cladding.

Cladding loss occurs because there is an evanescent wave in the cladding.

Unlike the core, which is usually very pure, the cladding has more impurities

and because of this, intrinsic attenuation in the cladding and the core are

different. Total attenuation in the fiber is given by: 0 )

a	
_ a
	

aclad - acore	
(2.6 )

fiber	 core +	 2 ak (NA)

where the a's are in dB/km.

2.1.6 Strength Properties of Fibers

One of the more important physical fiber properties is how well it holds up

under stress. Generally, the fiber's tensile strength is related to the

number of flaws or microcracks present on the surface of the fiber. When

the fiber is placed under tensile load, the stress concentration at the

microcracks increases many times over the externally applied values. This

increase is caused by the crack geometry. If the external stress is not

relieved, the flaw starts to propagate (thus becoming a larger microcrack)
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with the propagation speed being directly proportional to flaw size. The

flaw eventually reaches a critical value (fatigue limit) where the fiber

breaks. The environment in which the fiber is placed generally has an

effect on fiber tensile strength. These effects are summarized below and

are the results of work done at ITT Electro-Optical Products Division.

1. Water is a determining factor affecting the aging characteristics

of silica fibers.

2. In plastic coated silica fibers, there is a drastic increase in

fatigue resistance below pH= O. Solutions with pH>O have an effect

on fatigue resistance similar to that of water.

3. n, the parameter relating time to failure and apllied stress, is

dependent on both water concentration and on temperature; and

4. The activation energy of the water reaction with silica is a func-

tion of the stress applied to the fiber.

Determining tertsile strength on long sections of fiber is an impractical pro-

cess. Instead, the strength of shorter sections is determined and by extrapo-

lation, the larger lengths. This iz accomplished by assuming that fiber

strength along its length obeys a Weibal distribution.(9)

F = 1 - exp (a ) m (L/Lo ) (T/To ) b	(2.7)
0

Where cf is the critical fast fracture stress, c yo , L o , To , m, and b=m/n -2 are

experimentally determined constants. Equation 2.7 can be used to determine

the tensile stress of longer length fibers provided enoung short samples are

used. In general, high strength fibers can be made if high quality starting

materials, cleanliness in drawing, proper preform handling, and on-line non-

damaging processes to coat the silica fibers with a UV-cured epoxy-acrylate

are used.

An interesting aspect of the tensile strength problem is shown in Figure 2-5.

This figure indicates that the fiber optic can withstand large stress forces

for short periods of time but won't hold up under small forces for long

periods. This leads to problems in permanent installation of fiber systems;

any tension on the fiber will eventually lead to its failure.

12
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2.1.7 Temporal Dispersion in Fiber Optics

The amount that an optical pulse spreads (in time) as it travels d9wn a fiber

is related to the amount of material dispersion, waveguide delay, and multi-

mode group-delay present in the fiber. If the amount of dispersion is large,

it may set the upper limit of the information rate for the fiber system. A

rough order of magnitude estimate of the overal fiber system risetime may be

made by using:(10)

tr = 1.1 (x i tit) 
112 

sec
	

(2.8)

where t i are the individual risetimes of the electrical elements and the fiber.

The fiber risetime may be computed from vendor's specs by multiplying the dis-

persion given in ns/km by the length of the fiber.

The magnitude of dispersion is related to the kind of fiber, with single mode

fibers having the least followed by graded index and finally step index fibers.

The cause of material dispersion is the index of refraction of the core is not,

in general, a constant but varies with the wavelength of light. Hence, an LED

which contains many different wavelengths of light has much more material dis-

persion (typically 3.5 ns/km) than ILD. The cause of waveguide delay distor-

tion is that for a given mode of radiation, the wave arrives at the end of the

fiber at different times depending on the wavelength, while multimode group-

delay spread is caused by the variation in group delay among the propagating

modes at a single frequency.

If the material dispersion characteristics of the core and the cladding for a

stepped index fiber are similar, the total fiber delay (dispersion) may be

expressed approximately by:(4)

T = C {N1 + (N l - N2 ) M} m/s
	

(2.9)

d(kn l )
where	

N1 = --acF-

d(kn2)
N2 =

dk
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k	 2

c	 = 3. x 108 m/s

m	 - mode designation number

M	 = is maximum that m can assume

If the fiber is single mode and the source has a finite bandwidth the approxi-

mate expression for thc total fiber dispersion is given by (4)

S	 , A A	 -	 1A + bE	 s/111	 (2.10)

where	 A?	 is bandwidth of source (nm)

I	 is center wavelength of the source (nm)

A	 material dispersion term

i3	 waveguide etfect term

For a good single mode fiber the value of A ,; 0.05 while b is on the order of 0.0030

hence most of the dispersion is caused by material effects.

It the source is a laser diode centered at 850 nm with a .2nm spectral band-

width then from equation (2.9)

S	 '2_-I.
x108	

[0.05] m 4 x 10 -5 ns/km.	 (2.11)
850	

3 

A value of 4 x ^!``, ' ns/km dispersion indicates that tens of kilometers length data

link are possible at GHz rates without repeaters.

The approximate amount of dispersion present for a multimode stepped index

fiber as a function of source bandwidth is given by (4)

S	 ,na_	 1-	
{ 

k d

dk

N
l - 2(N 1 - N2 ) ^M1	 (2.12)

0
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The second term in Equation (2.12), which is the multimode dispersion term,

usually dominates for step index fibers glass-glass fibers. Typically, the

glass-glass fibers have Temporal dispersion which is on the order of a few

tens of ns/km. Although this figure is quite good when compared to conven-

tional wire systems there are 5 orders of magnitude difference between the

dispersion present in tho stepped index fibers as compared to that of the

single mode fibers. The penalty paid in using a single mode fiber in a com-

munication system is severe, increased loss at source fiber interface, mechan-

ical alignment problems, etc. With the development of the graded-index pro-

file fiber, most of the waveguide and multimode dispersion effects have been

eliminated. The amount of dispersion present on a well-made graded fiber is

, 1 	 ns/km.

2.1.8 Radiation Properties of Fibers

The .	 ect that radiation has o., fibers depends on the type of fiber used and

the amount and kind of radiation present. The most damaging radiation to

fibers being gamma radiation. The main cause of space radiation is the

Van Allen Radiation Belt. This radiation is trapped, being centered about

the geomagnetic equator of the earth. The belt is usually broken into two

regions: the inner region, located between 100 to 5,000 miles above the eartii

and extending approximately 40° on each side of the earth's equator and the

outer region, located 3,000 to 20,000 miles above the earth and extendiog 60°

on each side of the equator. The inner region's r a diation consists mainly of

protons and low-energy electrons while the outer region's radiation is primar-

ily electron.

There is also the possibility that space fiber systems will be exposed to

neutron and gamma rays from nuclear reactions in the spacecraft. This radia-

tion consists of fast neutrons and high-energy gamma rays. Fast neutrons are

those with high kinetic energies, while fair;' energy gamma rays are electromag-

netic radiation (photons) which travel at the . qed of light. The gamma ray

is physically identical to an x-ray except for origin.

The quantity used to characterize the amount of radiation is called a RAD.

(Roentgen-Absorbed-Dose) which is defined by:

1 RAD = absorption dose of 100 erg/g (material)

16
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Since the RAO is a measure of energy absorption for a given material, the

material must be specified each time a dose is given. The following con-

version may be used to obtain the relationship between the various damaging

particles.

1	 rad(Si) = 3.0 x 10 7 electrons/cm2 at 1 MeV (electron)

I	 rad(Si) =	 1.0 x 106 protons/cm2 at 1 MeV (protons)

1	 rad(Si) = 3.0 x 10 10 neutrons/cm2 at 1	 MeV	 (neutrons)

1	 rad(Si) = 2.2 x 10 9 photons/cm2 at 1 MeV (photons)

It has been shown by Walkins and 8arsis (11) that the effect that a dose of

neutrons or electrons has on a fiber is the same as an equivalent dose of

gamma radiation using the above conversion factors. Figure 2•6 shows the

excess loss of fiber's irradiated with 60Co radiation as a function of total

dose. The results are valid for only low dose rates and do not apply for

high rates where transient effects introduce severe losses. Generally, space

avionics systems are not expected to operate in environments where a large

pulse of short duration radiation is pr;asent; however, it has been shown by

Skoog
(121

 that the fiber gamma radiation may be treated as a linear system.

Thus, if the response of the fiber is known to an impulse of radiation then

the results of any other shaped radiation pulse may be determined by convo-

luting the impulse response with the pulse whose radiation response is under

question. The impulse response for a number of fibers to a 3700 rad dose (Si)

delivered in 3 nsec is shown in Figure 2-7. Generally, when the fibers are

exposed to a pulse of radiation they superfluoresce for a short time. If they

are glass-glass fibers, they become very lossy and then gradually (sometimes)

return to their intrinsic value. If they are PCS fibers, the initial loss is

not quite as high as the glass fibers.

There also is a strong dependence on wavelength with radiation induced optical

attenuation. This is shown in Figure 2-8 for glass-glass fiber. The longer

the wavelength (up to about 1.211) then the better the radiation response of the

fibers.
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2.1.9 Summate and Vendor Tables

The selection of an optical fiber depends on the transmission distance, bond-

width or data rate, and fiber-source compatibility. The attenuation per

kilometer (dB/km) will limit the transmission distance. ;sigh attenuation

fibers such as Dupont's all plastic fibers can be used only on short runs

(>100m), while low attenuation fibers such as the ones made by Corning and

IT&T which are in the range of 10 dB/km or less can be used up to 1 km with

bandwidths of 500 MHz. The bandwidth can be used to calculate the maximum

transmission of data, although bit error rates will have to be calculated in

order to give a more precise limit to the number of bits/sec. In general,

step index fibers can handle data rates up to 50 mB/s with lower dispersion,

graded index fibers up to 500 mb/s. Pulse spreading, which limits bandwidth,

depends on the spectral width of the source as well as the material dispersion

in the fiber.

Fiber source compatibility can be considered to include wavelength similarity,

risetime, and numerical aperture. Normally, the wavelength accompanying an

optical fiber will be the wavelength in which the attenuation is the lowest

and should, but not necessarily, match the LED wavelength. The risetimes of

the fiber and LED should be approximately equal. Finally, the numerical

aperture (N.A.) should be as large as possible for the best coupling. High

loss cables typically have a high N.A. of 0.5 or more, medium and low loss

fibers have lower numerical aperture (typically 0.5 to 0.1), but the informa-

tion carrying capacity as higher. With both step index and graded index

fibers, dispersion increases with higher values of N.A. putting a practical

limit on the use of high numerical apertures to increase coupling efficiency.

Various manufacturers produce an assortment of optical fibers made up of a

variety of materials and dopants. All plastic fibers (Dupont) which are low

in cost and high attenuation have both a plastic core and plastic cladding.

Plastic clad fibers made by IT&T, Voltec,and Galileo have an outer plastic

coating to increase the stability and mechanical strength of the fibers, a

plastic cladding and a fixed silica cure; both all-plastic and plastic clad

silica fibers are step index. Nearly all manufacturers make a glass core

with a ylass cladding which may be either step or graded index. Recently,

prices have become similar for all varieties of optical fibers. One should

20
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be aware that various dopants (boron, phosphorus, and gerrianium) are used and

these affect the decree to which a fiber is considered radiation hardened,

while a thorough discussion is beyond the scope of this report, a designer

confronted with the problem should make himself familiar with the various

published papers on the subject.

The selection of the optical cables depends, in large part, on the environ-

mental conditions of the application, such as whether a cable will be laid

out in the field or used inside a structure such as an aircraft. IT&T cables

are extremely rugged and have been selected for field applications where

vehicles will run over the cable. Nearly all cables can be used for the

second application, and in extreme cases aluminum conduit can be used to

cover the cable (Valtec). Also some companies (Dupont) limit cable sizes to

one or two fibers, while others (Corning) restrict cables to even numbers of

fibers. However, most companies will design a cable to fit the designer's

need, often the extra fiber can become very useful when unsuccessful termina-

tions occur. Note also that flexible, high tensile strength, metal or plastic

strength members are usually included inside the cable. The designer has other

considerations such as bending losses when the optical fibers are flexed beyond

a certain point, temperature effects, tensile strength, and crush resistance,

all of which need to be considered but are not often given on the spec sheet.

Tables 2-1 and 2-2 give a list of the major manufacturers, and a list of

the optical fibers and their parameters.

2.2 SOURCES

Two semiconductor devices offer the most promise as optical sources for aero-

space optical data bus systems. These sources are light emitting diodes (LED's)

and double heterojunction stripe geometry laser diodes (ILD). LED's have been

available for several years while the stripe geometry laser diodes are a rela-

tively new device.

2.2.1 Light Emitting Diodes and Injection Laser Diodes

Light emitting diodes, suitable for application to data bus systems, are

noncoherent light sources ouerating in the near infrared range of 800-950 nm

wavelength. The semiconductor chip co , ,figuration for high radiance LED's are
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TABLE 2-1
OPTICAL FIBER COMPARISON

CORE FIBER
FIBER dB/ RADIATION DIAM. DIAM. FIBER INDEX CABLING

COMPANY PART 0 TYPE Knit HARDENING Jim um N.A. AVA ILABLE COST	 M PROFILE COMME NTS

GALILEO 3000 GLASS 60 7 56 68 .66 YES .85 STEP o PRELIMINARY
_ SINGLE FIBER

GALILEO 4000 PCs 20 FAIR 20.3 22.9 .48 YES 1.00 STEP SUPPLIER,
o CAN SUPPLY_

GALILEO 5000 GLASS 10 GOOD 60 125 .20 YES 1.00 STEP 7,19 FIBER
BUNDLES.

GALILEO 6000 GLASS 10 GOOD 60 125 .20 YES 1.00 GRADED

VALTEC MG05 GLASS 10 FAIR 65 125 .23 YES 1.00 GRADED o AVAILABLE IN

VALTEC! PC-05 PCs 40 FAIR 125 200 .3 YES 1.00 STEP
1,7,19	 FIBER
CADLFS

o
VALTEC PC-10 PCs 15 FAIR 250 430 .3 YES 1.00 STEP BUNDLES	

VAGN
VAILAB

DUPONT PFX-S PCs 50 FAIR 200 600 .4 YES 9.00/M STEP SII[u FIBER

CORNING 10020 GLASS 10 GOOD (1) 63 125 .21 YES .65/M GRADED o AVAILABLE IN

CORNING 408D GLASS 4 GOOD 63 125 .21 YES 2 GRADED
C

FIVER CABLESFIBER
4040 1.75

CORNING 5040 GLASS 5 GOOD 63 125 .21 YES 1.5 GRADED
o GLASS-GLY

GLASS-GLASS_
1	 6 FIBER TECHNOLOG

CORNING 6000
6060

GLASS 6 GOOD 63 125 .21 YES 1.5 GRADED
6040 1.3

CORNING 8080 GLASS 8 GOOD 63 125 .21 YES 1.6
1.04

GRADED
8040

COR NING 8020 GLASS 8 GOOD 63 125 .21 YES .75 GRADED

ITBT T-102 GLASS 8 GOOD 55 125 .25 YES .65/M STEP o STANDARD 1,7,19

ITST T-262 GLASS 8 GOOD 55 125 .25 YES 75/M GRADED F18FR CABLESI
SUPPLIED

IT&T T-212 GLASS 8 GOOD 55 125 .25 YES .75/M GRADED
o EXPERIENCEDSTOM

IN CUSTOM CABLE

IT&T T-303 PCs 10 FAIR-GOOD 125 500 .3 YES .55/M STEP CONFIGURATIONS
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TABLE2-2

COMPARISON OF VARIOUS FIBER OPTIC CABLES

!Can
V

Fiber	 - be Connector	 Availability Number

Part Tensile dB	 Radiation Parts	 of of Crush

m an "lumber Stren th Loss	 ^11ardened Number	 Cable Cost Fibers Resistance

lileo 5000 110 lbs 10-200 Yes Develop- Develop- $1/m 1

Km/ mental mental $2.08 7 5 ft-lb

lileo 000 110 lb 50-lOOdBi Yes Develop- off-the- $1.05/m 1 5 ft-lb

I—

Kin mental shelf $1.57/m 7

Bien	 13000 i10	 lb 50-iOOd0 No Anylienol off-tha- S	 .92/m 1 5	 ft-lb

I Kin 905-119-5009 sholf $1.43/m 7

Itec	 I PC-05 150	 lb 30dB/rm Yes Amphenol off-the- Not

905-119-5011 shelf $5.50/m 7 Available

I
ltac	 PC-10 ISO lb 15dB/Km Yes Not off-the- Not

Available shelf $2.00/m 1 Available

Pont PFX-P240R 180 lb 1000dB/ Yes Not off-the- Not
Kin shelf $3.30/m 2 Available

Pont PFX-P140R 80 lb 1000dB/ Yes Not off-the- Not
Kin shelf $2.30/m 1 Available

Pont PFX-Sl20R 110 lb 30dB/Km Yes Amphenol off-the- Not

i 905-119-5022 shelf $4.00/m 1 Available

.rning Strength- 00-200 lb IOdB/Km Yes Corning off-the-

oned

I
Metal shelf $2.9/m 1 1	 ft-ib

Siecor
I
I

I Connector

Fiber Can be Connector Availability 'lumber y

Part Tensile d0 Radiation Parts of of
I

Crush

'rm an Number Stren	 th Loss Hardened Number Cable Cost Mors Pes istance

:orning Strength- 80-200 lb lode/ Yes Corning off-the-

ened Km Metal shelf $5.60/m 2 1	 ft-lb

Siecor Connector

orning Strength- 80-200 lb iOdB/ Yes Corning off-the-

ened rm Metal shelf $13.501m 6 1	 ft-lb

Siecorcar Connector

orning Strength- 80-200 lb IOdB/ Yes Corning off-the-

ened
Kin

shelf $17/m 8 1	 ft-lb

Siecor Connector

orning 1300 110 lb 10-20dB/ Yes Amphenol Short $10/m 7 1	 ft-lb

1302
Kin

supply $13.5/m

TST Strength- 400 lb lOd8 Yes Develop- off-the- $10/m 7 3-5 ft-lb

dnnon ened mental shelf
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of two types: the surface emitter (Burrus type) and the edge emitter.

Examples of the surface and edge emitters are shown in Figure 2-9. The sur-

face emitter can generate more optical power than the edge emitter but,

because of the wider beam angle, it is difficult to couple the light from

the surface emitter into optical cables having low numerical apertures. By

utilizing a lens on the LED or the cable, or by employing high numerical

aperture fibers, the coupling efficiency from surface emitters may be

increased.

both surface emitting and edge emitting LED's provide several milliwatts of

output power at drive currents of 50-200 milliamperes. Figure 2-10 shows the

output power as a function of drive current for the RCS SG 1009A.

Double heterojunction stripe geometry laser diodes emit coherent light in

the 800-900 nm wavelength range. The laser diode emission is in a narrow

beam which permits efficient coupling to low numerical aperture fiber cables,

Optical power outputs in excess of 10 milliwatts for drive currents of a few

hundred milliamperes are possible. Figure 2-11 shows the output power as a

functional of drive current for the RCA C30130 AIGaAs laser diode. The dashed

line in Figure 2-11 denotes the threshold current. For drive currents below

the threshold level the optical output is noncoherent light and above the

threshold level the output is coherent light.

Table 2-3 presents a comparison of typical LED's and laser diodes for several

operational parameters. The output power for laser diodes is greather than

that of LED's; however, the laser diodes require higher drive current. In

laser diodes, the drive current must be above the threshold level (usually

100 mA or higher) before the light emission becomes a coherent signal. For

drive currents less than the threshold level, the output is noncoherent and

the efficiency of the laser diode is quite low. The quantum efficiency of

laser diodes is about twice that of LED's provided the laser diode is oper-

ating above the threshold current. The most efficient laser diode operation

is at drive currents of twice the threshold level.
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TABLE 2-3

OPERATIONAL PARAMETERS

PARAMETER

OUTPUT POWER

DRIVE CURRENT

QUANTUM EFFICIENCY

OUTPUT WAVELENGTH

SPECTRA. WIDTH

EMISSIOii ANGL

LIFE (tli TEMP)

FREQUENCY RESPONSE

TEMPERATURE EFFECTS

LED

1 -7mW

50 - 200 mA

3%

, 800 - 950 nm

20-40nm

100 - 650

10,000 HOURS

<200 MHz

.6%/°C

LASER DIODE

5 - 15mW

100 - 500 mA

8%

800 - 900 nm.

I - 3 nm

1 - 5°

1000 HOURS

>1 GHz

1.25/ °C
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Both LED's and laser diodes generate signals in the 800-950 nm wavelength.

The spectral width of the laser diode signal is an order of magnitude narrower

than that of the LED. Narrow spectral width is important at very high data

rates and for long transmission distances in order to prevent bit dispersion

effects from becoming a significant problem.

For surface emitting LED's the intensity of the emission is nearly Lambertian.

The intensity of the emission at any point depends upon the cosine of the

agnel between that point and the axis perpendicular 'to the surface of the

emitter. By using lenses or edge emitting configurations, the emission

pattern of LED's can be compressed. Figure 2-12 shows the Lambertian distri-

bution (dashed line) and the actual distribution of an edge emitting LED. For

the example shown in Figure 2-12, the half-power emission angle is 30' and the

angle that includes 90`) of thn emitted power is 60°; for efficient coupling,

the fiber used with this LED should have an acceptable half-angle of at least

30° and preferably 60°.

The emission pattern for stripe geometry laser diodes is elliptical. The beam

spread in the plan: perpendicular to the junction p 7 i;ne is generally between

10' and 30' and the beam spread in the plane paralle to the junction plane is

between 3 0 and 10°. The narrow beam permits efficient coupling of the laser

diode output to low numerical aperture fibers. An illustration of the emission

pattern of a laser diode is shown in Figure 2-13.

While the frequency response of laser diodes is an order of magnitude faster

than that of LEDs, both laser diodes and LED's are capable of accommodating

the data rates found on aerospace vehicles. Both LED's and laser diodes can

be directly current modulated.

The deleterious effects of temperature changes upon laser diodes is twice that

of LED. With both laser diodes and LEDs, the wavelength and output power

change with temperature; however, with laser diodes the change is greater. In

addition, the threshold current of laser diodes increases with high temperature.

If the junction temperature of the laser diode increases without a correspond-

ing increase in drive current, the light output of the diode will cease to be

coherent.

28

MCQONNELL ^OOUGLAS ASTRONAUTICS COMP/.INY-ST. LOUIS DIVISION

Ir



---.

OPTICAL DIGITAL TECF°-11"AQUIE=S
	

REPORT MDC E2052
FEPRUARY 1979

0	 0	 0	 G
C)
	

C)
	

o	
a]

W
CL

LL

W r—

J o -	 :_ _	 -	 kiIStMIJI 3AIDIM _ ,1•-- -- :rj

"•,`	 ,lr•ti t	 `	 4`	 I

O	 O	 O	 O	 Sa

FIGURE 2-12

29

K1!'FP^': "LMlF_L1C VVLJCrL MS .4STMVlW.4uT/CS COMPAA/V-ST. Louss O/V/S/ON

Y



. --V-- I

OPTICAL DIGITAL YECt-i AIQIJES	 REPORT MOC E2052
FEBRUARY 1979

LASER DIODE EMISSION PATTERNS

FIGURE 2-13
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In summary, laser diodes offer higher power and more efficient coupling to

low loss fibers than do LED's, but laser diodes suffer from shorter life-

times and poorer temperature characteristics. For applications in the near

term, LED's appear to be the best choice as an optical source. When the mean

life of laser diodes can be extended, they will be the best source for aero-

space data bus applications. The problems associated with temperature effects

can be overcome by monitoring the case temperature of the laser diode and con-

trolling the drive current as a function of case temperature. Alternately,

the intensity of the output can be monitored and the drive current controlled

to provide a constant intensity output.

2.2.2 Lifetime of Devices

The reliability of LED's and laser diodes operating at elevates temperature

(70 0 C) is not as good as would be desirable. In the above environment, the

mean life of a typical LED is about 10,000 hours and that of a laser diode is

about 1,000 hours. By way of comparison, the mean life of a silicon NPN tran-

sistor is approximately 1,000,000 hours. Laser diodes have two failure modes:

catastrophic failures and gradual degradation. The catastrophic malfunctions

are usually facet failures caused by the intense optical fields. The facet

damage is usually material disassociation or facet cracking. For laser diodes,

gradual degradation is usually an increase in the threshold current and a

decrease in the quantum efficiency. The result is a decrease in the power

output for a given current density. For LED's, gradual degradation is a reduc-

tion in the externally measured quantum efficiency of the device. In both

LED's and laser diodes, the reduction of quantum efficiency is caused by the

formation of nonradiative centers within the recombination region and an

increase in the internal absorption coefficient. An important characteristic

of the degradation process is that it is highly dependent upon the type of

semiconductor, the -.:` , gree of perfection of the material, and the methods used

to fabricate and assemble the device. Manufacturers are concentrating their

efforts to improve device reliability in the areas of material perfection and

assembly techniques.

2.2.3 Table of Sources and Contract Summary

Table 2-4 lists the salient characteristics for several models of LED's and

laser diodes. Since the stripe geometry laser diode is a relatively new item,
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TABLE 2-4

$DURCE CHARACTERISTICS

SUPPLIER MODEL TYPE
WAVELENGTH

(All)

OUTPUT
POiIER
(mu)

DRIVE
CURRENT

(na)

RISE
7111E

(nsec)

3 d8
EMISSION

ANGLE
DUTY

CYCLE

OPERATING
TENP

'C

EMITTING
SURFACE

AREA_

ASER DIODE IRE 00 LED 940 20 400 400 100 CW -65 to 100 .195"	 dia

,ASER DIODE IRE	 #ISO LED (EDGE) 820 1.5 100 7 • 50% 1AX 450 9 x 9 mils

ICA SG 1009A LED 940 7.0 100 900 Be CN -40 to 125 .155"	 dia

ICA C30119 LED (EDGE) 850' 0.5 200 3 300 CM -43 to 90 1	 x 6 mils
IL„ C30123 LED (EDGE) 030 1.0 200 B 30' CH -43 to 90 1	 x 6 mfl3

IERET ELT 327 LED 940 4.0 20 15 50• 50% • .5 x .5 mn
IERET iLT 345 LED 940 10 40 40 • 50% • 1 x 1 on
IERET ILT 33M LED 940 2.5 103 12 25• 50% • .5 mm dia
IEPEi IDL 100 LED 905 1.0 100 12 • 50% • .5 rmi dia

;PECTRONICS SPX 1715 LED (EDGE) 907 2.0 100 20 15' CH -65 to 125 40 mil dia
WECTROIi1CS SPX 1527 LED 905 .75 50 20 108 Cll • 18 mil	 dia
40TOROLA 1LED 910 LED 900 .55 150 10 241 CH •

Ti SL 1314 LED 905 2.0 50 15 200 Cw •

fl TIXL 471 LED 910 1.0 50 20 65• Eli -65 to 100 18 nil dia
!ALILEO 3555971T LED 905' 2.0 40 40 10" Cti • 39 x e9 mils
LIT041X IR 410 LED 9DO 1.5 100 1 3S• Cw • "

NONSANTO iE4 LED 900 1.0 100 1 38' CM • '

LASER DIODE Cu 10 GaA1As 850 14 300 .i 3' CN IAX 465 .01 x 5 mils
Laser Diode

RCA 30130 GaAIAS 820 1s 500 1 5' Elf -35 to 450 13 x 2 vmLaser Diode
RCA 30127 GaAIAs 820 5 300 1 5' E11 35 to 450 13 x 2 wm

Laser Diode
LASER DIODE 5 GaAlAs 850 7 300 .1 3` CN X 465 O1 x 5 milsILCW

Laser Diode

* DATA NOT AVAILABLE
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few data sheets are available for this device. Most of the information about

this type of laser diode has been gathered from magazine articles and papers.

2.3 PHOTODETECTORS FOR FIBER SYSTEMS

Photodiodes (PIN diodes) and avalanche photodiodes (APD's) are the two candi-

date devices for detectors in the optical data bus system. PIN diodes and

APD's are light-sensitive devices which offer wide spectral range, fast

response time, high sensitivity, and low noise. As the name implies, avalanche

photodiodes have a built-in gain mechanism that results in higher signals from

these devices than from PIN diodes.

2.3.1 General Characteristics of Photodetectors

Two common light detectors in fiber receivers are silicon PIN photodiodes and

avalanche photodiodes (APD). Other types of detectors can be used; however,

they have the disadvantages of size, power, or low sensitivity. The acronym

PIN signifies a P-region followed by an intrinsic region I (this region is

such a lightly doped N region that it is essentiall y intrinsic, i.e., the

conductivity is characteristics of pure undoped material) and this is followed

by an N region providing a good ohmic contact for lead wire. Although the APD

has better noise properties than the PIN it has many disadvantages such as

being greatly affected by small changes in temperature, requiring a bias supply

voltage as high as 230 volts, and being relatively expensive.

To measure the relative "goodness" of solid-state detectors, a number of differ-

ent specifications have been developed over the years. Some of the more impor-

tant terms and their definitions are:

(a) Responsivity Limits

The responsivity of the receiver is the output of the unit in either amps or

volts for the signal per unit of radiant power input with typical power units

of watts or milliwatts. The quantum nature of the radiation input, along with

the receiver gain, limits the maximum responsivity that can be obtained.

For a receiver current gain of G the maximum output current is:

P

I=enhv G
	

(2.13)
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and the maximum responsivity r = I/Po is

r = e q G/ by

where e is the electron change, (n P o /hv) is the number of electrons generated

per second and G is the c^irrent gain. The quantum efficiency or number of

electrons generated per photon is rl. For the photodetectors at 0.9 pm each

photon has an energy, b y = 1.4 eV, that is sufficient to form a hole-electron

pair which results in an increased current in the photodiode.

If all photons that are incident are absorbed and each releases one electron

that contributes to I, then n = 1. If only a fraction of the photons are

absorbed and release electrons that contribute to the current, then the value

of rl is less than 1. Po is the incident radiant power and b y is the energy

per photon (1.4 eV = 2.2 x 10 -19 joules). Thus, for a current gain G of 1,

the maximum responsivity for a quantum efficiency of 10 and a wavelength of

0.9 um (hv/e = 1.4 rV, v = c/a) is r = 0.1/1.4 which equals 0.7 milliamps per

milliwatts. For a 100Q resistor, the responsivity in voltage terms is 70 milli-

volts/milliwatt. By use of a voltage amplification the responsivity at the

output can be increased by the gain factor. In case of the avalanche photo-

diode, the current gain is achieved in the photodiode with typical values rang-

ing up to 100.

(b) Noise Limits

The photon nature of the radiation input to the photodetector limits the mini-

mum possible noise as well as the maximum possible responsivity. For an

incident power P o the number of incident photons per second is P o/hv and the

resulting number of electrons per second is nP o/hv. At a bandwidth of Af the

number of electrons N collected in a single sample time 1/20f is nPo/(2hvAf).

The RMS noise in the number N collected in a sampling period is A so the

corresponding signal-to-noise ratio is N// -N or v7 /2hv4f. The noise equivalent

power is the value of incident power, P o , that produces a signal-to-noise ratio

of one and is equal to 2hvQf/ri. For a quantum efficiency of 0.1, a wavelength

of 0.9 um (hv = 2.2 x 10-16 mj) and Af = 10 MHz, the noise equivalent power

is thus equal to 2 x (2.2 x 10 -16mj) x 107 Hz/0-1 which is 4.4 x 10
-8
 milli-

watts (-74 dBm). The unit dBm refers to dB with respect to 1 milliwatt (the

number of dBm = 10 log ioP, where P is milliwatts). The limiting noise equiv-

alent power corresponds to a quantum efficiency of n = 1 and is only
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4.4 x 10-9 milliwatts (-84 dBm) for the 10 MHz bandwidth. Although the

avalanche type of photodiode can come close to the limiting sensitivity

it has many disadvantages such as being greatly affected by small changes

in temperature and the requirement for bias supply voltages are as high as

230 volts.

The PIN photodiode does not have the gain of the avalanche diode so it is affected

by thermal noise and does not have the high sensitivity of the APD. However, in

many systems without excessively long cables, the signal is high enough to permit

reasonably large signal to noise ratios using the PIN photodiode.

For large thermal noise, the frequency dependence for the noise equivalent power

is a square root rather than the linear relation that is characteristic of quantum

noise limited detectors. The signal to noise ratio for large thermal noise is:

S/N =	
fleP 

) 2/(4 KTAf/R)	 (2.14)

where (r i ePo/hv) is the
square Johnson thermal

absolute temperature T

joules/degree Kelvin.

found by setting S/N =

average mean square signal current and 4KTAf/R is the mean

noise current in the amplifier load resistance R at the

The value of K, Boltzmann's constant, is 1.38 x 10-23

The noise equivalent power, NEP, per bandwidth root is thus

1 and solving for P o/ n to obtain

NEP/ (Af)1/2 = 
nhv 

KTR.
Ti
e

(2.15)

For R = 1 MQ, T = 300°K, a = 0.9 um (e^ = 1.4 eV), and n = 0.1 the minimum

NEP/(of) 1/2 becomes

(210.1) x 1.4 /1.38 x 10 -23 x 300/10 6 which is 1.8 x 10 -12 (2.16)

watts/Hz 1/2 . For a 10 MHz bandwidth, the NEP is thus 5.7 x 10
-6 

milliwatts. A

system which is intermediate between being quantum noise limited and thermal noise

limited will have a noise equivalent power that is less than the 5.7 x 10 -6 milli-

watt value.
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Once the noise statistics have been established along with the type of signal

coding it is possible to predict the bit error rate (BER) for comparison with

the system requirements. Very low bit error rates less than 1 in 10" are

available for commercial fiber optic data systems. The best detection to

discriminate against noise 'is the detection with the highest Q.E., while

detector to discriminate against internal noise is the detection with the

best NEP.

(c) Detectivity (D*)

D* is related to the NEP by D* = (A) 1/2/NEP where A is the effective area of

the photodiode, with units of D* being cm-Hz 1/2/watts.

(d) Risetime

The time the photodiode takes to go between 10110 to 90% of its final output

voltage when a risetime step wave-form of optical radiation is applied to the

light sensitive area. The unit of the risetime is seconds.

(e) Noise Current

This current for a photodiode operating in the reverse bias mode is a combi-

nation of shot noise, excess noise, and thermal noise.

(f) Dark Current

The RMS output in amps of the biased solid-state detection with no input or

background radiation incident on the detector.

2.3.2 App lication Considerations

Section 2.3.1 introduced several important parameters for PIN diodes and APD's.

This section will discuss some circuit applications for photodetectors.

PIN diodes can consist of either a PN juntion or a PIN junction. With the PIN

configuration, a large intrinsic region exists between the P and the N materials.

As the name implies, the avalanche photodiode has a built-in avalanche gain

mechanism that is quite similar to that of a photomultiplier tube. As a result,

the responsivity of APD's is much higher than that for PIN diodes. For photo-

elec'uric detectors, the responsivity is a measure of the electric current gen-

erated per unit of incident optical power. The responsivity of PIN diodes is

in the range of 0.4 to 0.65 amps/watt and the responsivity of APD's is in the
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range of 20 to 75 amps/watt. Because of the higher responsivity of APD's,

receivers equipped with APD detectors can provide the same performance with

as much as 20 dB less incident optical power than receivers equipped with

PIN photodiode detectors.

The high responsivity of APD's is not an unmixed advantage. The photomulti-

plication process that provides for the gain of the incident signal also

amplifies any optical noise incident upon the detector and also results in

higher dark current values for APD's than for PIN diodes. In Table 2-5, the

dark current is the amount of current that flows through the detector biasing

circuit when no light is incident on the detector. Naturally, the dark cur-

rent should be as small as possible. If we assume the amplifier that follows

the detector is noiseless, then the noise in the dark current is one of the

major -factors in determining the lower limit of the optical signal that can

be detected.

The speed with which a solid-state photodetector responds to incident light

signals is determined by the time it takes for the generated electrons and

holes to be collected in the diode and the response of any following RC

circuits. If the circuits following the photodetector are carefully designed,

the only capacitive component will be the junction capacitance of the detector.

Figure 2-14 shows the equivalent circuit of a photodetector and its load resistor.

The detector is a current source where the amount of current (i p ) generated is

proportional to the incident flux, the junction capacitance is C d , the junction

resistance is R S , and the load resistor is R L
. Junction capacity increases as

the size of the junction is increased. Thus, as the junction size of the

detector is enlarged to provide more efficient coupling from the fiber to the

detector, the junction capacitance (and the detector response time) is adversely

affected. Junction capacity is also affected by the detector bias voltage. As

the bias voltage increases, the junction capacitance decreases. Thus, for high

data rates, a high bias voltage is usually required.

In operational photodetector circuits, the series resistance of the detector

(RS in Figure 2-14) is much smaller than the load resistor R
L
. Typically, RS

is 100 ohms or less and R  is greater than 1000 ohms. The risetime of a photo-

detector is limited by 2.2 [C d RS R
L
1. The above equation defines the response
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TABLE2-5

^—	 COMPANY	 HE.,LETT PACKARD

PIN PHOTODIODES

MODEL 4203 4204 4205 4207 4220

,ACTIVE AREA
• CM2 2 x 10

-3
2 x 10

-3
0.5 x 10

-3
8 x 10- 

3 •2 x 10-3

RESPONSIVITY

@ 970nm A/W .5 .5 .5 .5 .5

DARK CURRENT
nano -A 2.0 0.6 .15 2.5 5.0

D*	 (7492 100, 6) 8.7 x 1011 6.2 x 1012 4.0 x 10 12 1.5 x 1012 5.6 x 10 1
an Hz	 /W

NEP (700, 100, 6)
W/Hz

14
5.1	 x 10-

1
2.8 x 10-

14
1.4 x 10-

14
5.7 x 10

8.1	 x 10

RISETIME

NOISE CU
l/2
RRENT

amps/Hz 1.2 x 10-14 1.2 x 10-1 4 x 10-14 4•.x 10-14 4 x 10-14

CAPACITANCE
pF' 2 2 .• 2 2 2

SENSITIVITY
(A/W) . 5 .5 .5 .5 .5

TEMP. RANGE
C°. -10 to+80 -10 to+80 -10 t0+80 -10 to+80 -10 to+80

SUPPLY VOLTAGE
50 20 30 20 50

Y 0

38

MCUONA/E'L.L OOUGLAS ASTRONAUT/CS COMPANY-ST. LOU/S O/V/S/ON

Y



OPTICAL DIGITAL TECHNIQUES	 REPORT MDC E2052
FEBRUARY 1979

time from the 10% amplitude to the 90% amplitude points for a step input.

In vendor device specification sheets the response time is usually quoted

for, an R
L
 equal to 50 ohms. In actual application, the load resistance may

be a few orders of magnitude greater than the 50 ohms value and the risetime

will be correspondingly slower.

T	 biasvoltage r	 red for h ode e tors ranges from a minimum of 10 voltsThe	 required	 p of	 t c	 g	 m

or less for some PIN diodes to 300 volts or more for APD's. For a given device,

the level of the applied bias voltage may affect the device's respcnsivity, dark

current, noise equivalent power, and capacitance. Because of their nigh oper-

ating voltages, photodetectors will probably require the addition of an extra

power supply.

The noise generated by a reversed bias photodetector is a combination of shot

noise and Johnson thermal noise. Photodetector data sheets specify this internal
i

noise as "noise current" or as "noise equivalent power" (NEP). Internal noise is

an important parameter because it represents the lower limit of the radiant flux

that can be detected. The two components of the noise current, shot noise (in)

and Johnson noise (i
i
) are statistically independent; thus, the total noise

current (i t ) is given by the root sum of the square of the two components

i t = i i 2 + i n 2	 (2.17)

The effects of the detector noise current upon the signal to noise ratio of the

detector receiver circuit is a function of the bandwidth of the receiver circuit.

To make the noise current parameter a useful parameter, the noise current is

expressed in terms of receiver bandwidth. Thus, noise current is expressed as

it	 i
V 2	

1 
n 2

	
(2.18)

Hz

where Hz is the bandwidth of the detector receiver circuit.
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The noise equivalent power (NEP) is the value of the incident flux on the

photodetector that gives a signal power equal in value to the noise signal. NEP

is given by

NEP = noise current (am s/ Hz)
responsivity amps/watt)

(2.19)

In designing an optical data bus, the first step is, usually, to determine the

signal power necessary to achieve the required signal to noise ratio at the re-

ceiver and to work back toward the transmitter through all the system to determine

the required output power from the source.

In order to minimize the unintercepted illumination loss at he fiber/detector

interface, the size of the active area of the detector must be large enough to

accept all (or nearly all) of the light emerging from the fiber. The output

emission from a fiber is a complex function of input launch characteristics,

source spectral width, fiber length, fiber loss, and acceptance half-angle.

Figure 2-15 shows the interface between a fiber bundle and a photodetector.

For a worst case analysis, assume the light exiting the fiber spreads at an

angle which is equal to the acceptance half-angle of the fiber , and the light

intensity is uniform throughout the beam. At a distance L from the bundle, the

beamwidth will be d l which is equal to

d l = 2(Ltang ) + d 3	(2.20)

where d 3 is the diameter of fiber bundle. The unintercepted illumination loss is

the ratio of the detector area to the beam area

d22

	

Unintercepted Illumination Loss (dB) = 10 log	 4
d12

4

d 2	 (2.21 )
2

	

= 10 log	 d 2
1

d2

	

= 10 log	 2
[2(Ltan9) + d317_
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PHOTODETECTOR EQUIVALENT CIRCUIT

RS

FIGURE 2-14

BUNDLE/DETECTOR INTERFACE
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PHOTODETECTOR	 FIGURE 2-15
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From this equation, the separation (L) between the fiber and the detector that

will result in zero unintercepted illumination loss may be determined.

Photodetectors have a response with 90 of the peak responsivity for wavelengths

of several hundred nanometers. Peak responsivity is at wavelength near 900 nm.

The response at higher wavelengths falls off more rapidly than the response at

lower wavelength. Figure 2-16 shows the response of a typical PIN photodiode.

Patching the spectral response of the source and detector is net nearly as crit-

ical as matching the spectral response of the source and the fiber.

2.3.3 Contract Summary, Vendor Information

Table 2-5 contains the information for the HP models 4203, 4204, 4205, 4207, and

4220 photodiodes. These HP silicon planar PIN photodiodes are ultra-fast light

detectors for visible and near infrared radiation. The speed of response of

these detectors is less than one nanosecond. Laser pulses shorter than 0.1 nano-

second may be observed. The frequency response extends from do to 1 GHz. The

low dark current of these planar diodes enables detection of very low light

levels. The quantum detection efficiency is constant over ten decades of light

intensity, providing a wide dynamic range.

Tables 2-6 and 2-7 have the electro-optical performance characteristics for a

few models of the EG&G line of photodiodes. Models in Table 2-6 are of the

nonguard-ring type while models in Table 2-7 are of the SGD series. The SGD

series of silicon photodiodes utilize a planar diffused, oxide passivated, guard-

ring construction. They offer a unique combination of wide spectral range, high

sensitivity, fast speed of response, low noise. This construction technique

eliminates the high noise and functional instability inherent in photodiodes

made by Shcottky barrier or lithium drifted processes.

RCA offers two different types of solid-state silicon photodiodes suitable for

fiber systems (see Tables 2-8 thru 2-11): single-element PIN photodiodes and

avalanche photodiodes. The broad spectral range and high responsivity of these

silicon photodiodes make them excellent choices for all broadband, low-level

light detection applications.
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PIN PHOTODIODE RESPONSE

WAVELENGTH (NANOMETERS)

FIGURE 2-16
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TABLE 2-6

COMPANY	 EG&G	 !
SILICON PHOTODIODES

MODEL SND-130 SND-140 SND-680

ACCTJ VE AREA 0.81 5.1 24.0

RESPONSIVITY
@ 900 nm A/W 0.45 0.45 0.45

DARE: CURRENT
Pico;amps @ 6V 50 300 500

D*	 (900	 10	 , 1)
cm Hz1/2/W

1. X 1013 1.02 X 101 3 1.14 x 1013

NEP	 {y20,	 107 , 1)
W/Hz 0.9 x 10 "14

"14
2.2 x 10

"14
2.8 x 10

RISETIME
ns_ - 8 10 12

NOISE CURREtdT
amp/Hz 1^Z

4 x 10"15 10 x 10
-15

13 x 10-15

CAPACITANCE
. pF " —: 5 - 35 150

SENSITIVITY
(A/W)	 900 0.45 0.45 0.45

TEMP. RANGE
Co -55 to+ 100 -55 to+100 -55 to+100

SUPPLY 'IOLTAGE
y 6 '6 6
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TABLE 2 7

COMPANY	 EG&G Silicon Diffused Pin Photodiodes

MODEL SGD-040A SGO-100A SGD-160 SGD-444

ACTIVE AREA

M2 0.82 5.1 13 100

RESPONSIVITY

@ 900 A/W 0.5 0.5 -	 0.5 0.5

DARK CURRENT
nano amps 1 3 20 50.

D*	 (0.9am.10	 ,l)

W14z 1/2 9X10" 2.3X1 O12 1 .2X1012 1.7X1012

NEP (0.9t,m,10	 ,l )
/2/W

Cm.Kzl
9.6X10-14 1X10-13 3X10-13 5.9X1Q 13

RISETI1 1E

nanoseconds 3 4 7 1Q

NOISE CURRENT

CAPACITANCE
:	 picofarads 2.0• •4.0 8.0 80.

SENSITIVITY
(A/W) 900 nm 0.5 0.5 0.5 0^5

TEMP. RANGE
.°C

-65tol50 -65to150 -65tol50 -65to150

SUPPLY VOLTAGE
Y 100 1100 100 100
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r_,....,--,-_- apmw-----

TABLE2-8

COAIPA.'iY	 RSA (Single Element	 i	 icon p- -n) P- ype

MODEL	 C30801 C30802 C30812 C30813 C30814

AgIVE AREA( 5 20 5 5 20 

RESPONSIVITY
@ 900 A/W	 0.6

'
0.6 0.'6 0.6 0.6

DARK CURRJE IT
npi 200 500 100 300 1000

NEP 1900,	 1000, 1)	
-13 10-13 1.5	 10-13 2.6 x 10-13 6 x 1Oj13W/Hz /2	 4 x 10 6 x x

RISETIiiE
ns at 900 nm	 7 7 15 40 40

NOISE CURREi;T
/2 1000 HzA/Hz 1

(2.5 x 10-t3 4 x 10-13 1	 x 
10-13• 1.7 x 10 -13 4 x 10-13

CAPACITANCE	 '
j)F • '	 5 17 _ 3 2 5

SENSITIVITY

(A/W) ! ..
TE14P. RA'iGE
degree C 15 to 80 15 to 80 -40 to 80 -40 to 80 -40 to 80

SUPPLY VOLTAGE _
y 0-225 0-225 0-225 0-225 0-225	 .

i
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TABLE 2-9

FI

s.

COMPANY
RCA (Single Element Silicon p-1-n) N-Type

MODEL C30807 C30808 C30808A C30009 C30810

A	 IVE AREA
^̂ 0.8 5 4.5 50 •100 

RESPONSIVITY
@ 900 A/W 0.6 0.6 0.6 0.6 0.6

DARK CURRENT
nA' 10 30 30 70 300

D* - - - - -

.
NEP	 (900,	 1000,	 1)
W/Hzl/2

1 x 
10-13

1.5 x 10-13 1.5 x 10-13 2.3 x 10-13 4.5 x 10-13

RISETIME
ns at 900 nm 3 5 5 10 12

.NOISE CURRENT

A/Hz1/2 1000 Hz
6 x 10

-14
l	 x 10 

13
1	 x 10

-13
1.5 x 10

-13
3 x 10-13

CAPACITANCE
;pF - . 2.5 6 6 35 70

SENSITIVITY
.(A/W)

TEMP. RANGE

Co	 -40 to+80	 -40 to+80	 -40 to+80	 -40 to+80	 -40 to+80

SUPPLY VOLTAGE
y	 0-100	 0-10D	 0-100	 0-100.	 0-100
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TABLE 2-10

COMPANY	 RCA (Single Element Silicon p-1-n) N- ype
i

MODEL C30822 C30831

ACTIVE AREA 20 0.2
am •

RESPON'SIVITY
@ 900 A/W 0.6 0.6

DARK CURRENT
nA: _ 50 10

D;

NEP M0, 1000, 1)
-13 l	 10-14W/Hz l/2 2 x 10 x

RISETI;;E
ns at 900 nm 7 3

NOISE CURRENT
/21000 Hz A/Hz l -13 6	 10-14

1.3 x 10 x

CAPACITANCE
pF. _- 11 1	 _	 •.

SENSITIVITY(A/
,.' 

)

TEM.:, .	 RANGF -40 to+80 -40 to+80
C°

SUPPLY VOLTAGE 0-100 0-100 -
Y
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TABLE 2•--11

COMPANY	 RCA Silicon Avalanche Photodiodes

MODEL C30817 C30872 C30884 C30895

ACTIVEAREA
0.5 7 0.5 0.5

RESPONSIVITY

@ 900 nm A/W 75 37 63 63

DARK CURRENT

nA 18 18 10 20

D*

NEP (900, 1000, 1)
W/Hz /2 1 x 10 14 2.5 x 10-1 1.2 x 10

-14
1.5 x 10-14

RISETII,E

ns at 900 nm 2 ^c 1
2

NOISE CURRENNT - -
-

CAPACITANCE'
^ff' 2 10 4 2

SENSITIVITY(A/W)	 .

TEMP. RAa`4GE

C
o -40 to+70 -40 to+10 -40 to+70 -40 to+70

SUPPLY VOLTAGE
V

_
335 320 300 350
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Similarly, Tables 2-12 through 2-16 show the device selections from other

manufacturers. As can be seen from the typical responsivity, dark current,

NEP, D*, and risetime, most photodiodes now on the market can be used in

systems such as Sp«ce Shuttle providing that connector losses are kept low.

As stated previously, there needs to be source-fiber and source-detector com-

patibility. Photodetectors can be found throughout the range of wavelengths

between 800 nm to 1100 nm and, in general, APD or PIN photodetectors can be

purchases off-the-shelf within this range. The response time of the APD and

PIN photodetectors are similar, but should also nearly match the LED or ILD

selected for the system. The temperature of the application should also be

compared to the components' tested temperature range. PIN photodetectors

normally have a wide temperature, however, APD photodetectors usually have to

include a constant temperature chamber.

In conclusion, PIN photodetectors are normally used for information bandwidths

up to 50 MHz and distances up to 500 m and require low bias voltages (15 to

100V). APD photodiodes are used when high receiver sensitivity is needed, they

have fast response times (0.5 to 2 ns), and require a high voltage supply

(200 to 300 volts) .

2.4 OPTICAL LOSSES IN FIBER SYSTEMS

How well a fiber optic data system performs depends, in general, on how much

system marg in is available. This, in turn, is dependent on the source, detec-

tors, and optical connector losses in the fiber systems. The optical connector

system losses may be subdivided into a number of individual loss terms. These

include source-to-cable interface losses, connector-to-connector losses, Tee or

Star losses, and fiber-to-receiver losses. Most of these losses are determined

by the state-of-the-development that exists in the individual components.

However, the maximum amount of radiation that is transferred between any two

points in an optical system is governed by the conservation of radiance which is(13)
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TABLE 2-12

COMPANY	 United Detector Technology Inc.
Pins and UDT Photops

MODEL Pin - 020A Pin - 040A UDT - 450 UDT - 500 UDT - 600

ACTjVE AREA

CM
2 x 10-3 8 x 10-3 .05 1.0 .05

RESPONSIVITY
@ 0.8 nm (A/W) .42 .42 :4 .3 .4

DARK CURRENT
.pico amps
10 vpltc^

75 300 5000

D* (0.85,	 10-1 .	 1)

cmHz1/2/watt
7.45 x 1012 8.94 x 101 4.5 x 1010 i	 r. 1012 4.5 x 1010

NEP	 ( 8	 10',	 1)

watt/012
6 x 10-15 1	 x 10-14 5 x 10 12 1 x 10 - 2 5 x 10

RISETIME
-As:: _ 5 5 350 3500 35

NOISJURRENT
A/Hz^ /

-15
3 x 10

-14
10 30 20 30

CAPACITANCE
-10.volt pF 4 lk	 .. 100 1100 10

SENSITIVITY

ON) .42 .42 .4 .3 .4

TEMP. RANGE

SUPPLY VOLTAGE
v

-12 -12 -±15 ±15 ±15
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TABLE 2-13

COMPANY	 Hamamutsa Silicon Photocell

MODEL 5874-5K 5874-8K 5874-18K 5875-16R 5875-16R

A	 IVE AREA
^̂ 5.7 26.4 1.29 5.79 5.55 

RESPONSIVITY
@ .930 A/W

0.45 0 . 45 0.45 0.45 0.45
'

DARK CURRENT

nA "
5 x 10-12 2.5 x 10-11 1.2 x 10

-12
5 x 10-12 5 x 10-12

D* (02 103 , 1)

cmHz	 /W
4 x 1013 4 x 1013 ' 4 x 1013 4 x 1013 4 x 1013

WEHz^/^ 	
103, 1) 6 x 10

-15
1	 x 10

-14
3 x 10

-15
6 x 10

-15

I.
6 x 10-15

RISETIIIE
ns 3.2 14 1.7 3.2 3.2

NOISE CURRENT

CAPACITANCE
nF• - ' -	 - 1.3 5.7 0.3 1.3 .1.3

SENSITIVITY
(A/W) 0.45 0.45 0.45 0.45 0.45

TEMP. RANGE

(CC).
-10 to+60 •-10 to+60 -10 to+60 -10 to+60 =10 to+60

SUPPLY VOLTAGE

1	 MC[70/WVEZ L 0011G-AS ASTRONAUT/CS COMPANY -ST. L04!/S 0/V/S/ON
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TABLE 2-14

COMPANY	 Quantrad Corporation
Pin and.PV Series Silicon Photodiodes	 •

MODEL 010-Pin-T05 050-Pin-Dl 003-PV-TO-1 010-PV-TOS 050-PV-RM

ACTIVE AREA

m
2 10 50 3 10 50

RESPONSIVITY
@ 905 A/W 0.45 0.45 0.5 0.5 0.5

DARK CURRENT
0.04 .25 0.02 0.07 0.37

PA 10 volts

D*

NEP	 (.9,	 10 	 ,	 1)

10-12 
W/Hzl/2 0.49 1.3 0.16 0.28 0.68

RISETIME

ns- - 7 8 9 12 30

NOISE CURRENT

pA/Hzl/2
0.22 0.57 0.08 0.14 .34

CAPACITANCE
oico:F 13 61-	 •• 10 37 185

SENSITIVITY
(A/W) - - - - -

RANGE -10 to+70 -10 to+70 -10 to+10 -10 to+70 -10 to+70
coC°

SUPPLY VOLTAGE 100	 - 100. 100 100 100
V
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TABLE 2-15

COMPANY	 Harshaw, Silicon IR Detectors

MODEL S1 l	 ' , S12 S37 S38 S49 '

ACTIVE AREA .5 .36 0.01 0.01 •0.001

RESPONSIVITY
@ 1.06 0.5 0.5 0.5 0.62 0.62

DARK CURRENT

PA '^ 2.5 2.0 .1 .1 0.05

D* (1.06,	 10 3 , 1 }

CMHzl/2/W
0.88 x 1012 0.86 x 101 0.53 x 1012 0.92 x 1012 C.25 x 1012

NEP (1126. 	 10'.	 1)
W/Hz

1.96 x 10 -12 1.76x10-12 0.44x10 -12 .27 x 10- .21	 x 10

RISETIME

ns. - 	- 15 15 10 5 5

NOISE CURRENT

10 Hz pA
.9 .81 2 1 .13

CAPACITANCE
pF • - 100 75 5 6 2

SENSITIVITY

(A/W)

TEMP. RANGE - - - -

SUPPLY VOLTAGE
y

180 180 180 100 1CO
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TABLE 2-16

COMPANY	 I.1ath Associates
Pin Photodiodes	 }

MODEL E-5100 E-5102

ACLU VE AREA .2 .2
mm

RESPONSIVITY
@ 900 0.42 0.42 '

DARK CURRENT
nanoamps 0.1 1.0

D*
an.Hz1/2/,W 7.45 x 1012 2.23 x 10 1

NEP
EP112 6 x 10- x 10-14

RISETIIIE
ns- - 5 5

NOISE CURRENT

CAPACITANCE
UNITS

SENSITIVITY
(A/W)	 900 .42 .42

TEMP. RANGE
°C -

SUPPLY VOLTAGE 25 25
V
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where

N = index of refraction of the medium

A = area of elements 1, 2

,X = numerical aperture of 1, 2

P = flux 1, 2

1 = input sided

This law, which is pictorally defined in Figure 2-17, is a restatement of the

second law of thermodynamics and states that it is impossible to construct a

heat engine that acts solely to extract heat from a reservation at T, and con-

vert the energy into an equivalent amount of work, thus creating a perpetual-

motion machine. This law holds even for monochromatic sources of illumination.

It is impossible to use a passive optical element that will increase the amount

of radiance in the system.

From Equation 2.22 it seems that the most efficient transfer occurs if the

numerical aperture and the area of the source, subscript 1, is less than the

receiving side, subscript 2, assuming of course that N 1 is approximately equal

to N 2 .

Fiber optic connectors may be divided into four categories:

1. Source-to-fiber connectors (Section 2.4.1)

2. Fiber-bundle to fiber-bundle connectors (Section 2.4.2)

3. Fiber-to-detector connectors (Section 2.4.3)

4. Branching connectors (Section 2.5)

Optical connectors usually limit the minimum bit error rate in a short-length,

low-loss optical fiber communication system. This occurs since generally the

loss per meter of cable is insignificant compared to the losses due to connec-

tors. For example, for 100 meters of cable the loss would be <2 dB from the

cable itself while for a four-port star coupler the loss would be on the order

of 20 dB (Section 2.8).

For the analysis which follows, plastic clad silica multifiber made up of 19

single-stepped index fibers is used to obtain numerical values. The multifiber

system insures adequate redundancy and the type of fiber used is S-10-PS (19)

ITT cable which has the following specifications:

56

MCOONNELL DOUGLAS ASTRONAUT/CS COMPANY-ST. LOA1/S O/V/S/ON

T



OPTICAL OIGITAL TECHNIQUES
	

REPORT MDC E2052
FEBRUARY 1979

CONSERVATION OF RADIANCE

10--2663

FIGURE 2-17
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Attenuation 10 dB/km

Numerical Aperture 0.3

Dispersion 30 ns/km
3 dB width

Core index of refraction 1.46

Fiber core diameter 125 ism

Jacketed fiber diameter 500 j,m

2.4.1 Source-to-Fiber Connectors

Optical sources presently used for fiber optic systems are the LED and the

laser diode. Of these two, the most probable source for space avionics systems

is the LED because present-day avionics systems use a comparatively low data

rate and hence can tolerate large amounts of pulse spreading. Therefore, there

is no need for a laser diode narrowband source. Also, the !-ED has a longer

demonstrated lifetime at the present time.

The primary loss mechanisms for coupling between a LED and a fiber optic bundle

are:

a. Front surface reflection loss between the fiber and air interface.

b. Packing fraction loss due to core/fiber area ratio mismatch.

c. Solid-angle loss factors due to uncollimated light of the LED and

the finite acceptance angle of the fiber bundle.

The front surface reflection loss is caused by Fresnel reflection which takes

place at the air/fiber interface. This reflection is related to the mismatch

of the refractive index of the fiber (1.46) and air (1.0). The transmitted

field across this boundary, independent of mode of polari?dtion of the light

and for normal incidence, is given by (14)

T	 2	 (2.23)F	 n+1

where

n = the index of refraction of the fiber

The power of light intensity transmitted is given by (^4)

4n=	 (2.24)TP	
(n+1)2
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Hence, for an i de-: of refraction of 1.46 the front surface reflection loss is

approximately 0.06 dB. This loss can be reduced or eliminated by either using

index matching at the optical interfaces or by butting the surfaces together

closer than a wavelength of light. However, neither of these approaches are

practical considering the small magnitude of the loss.

The packing fraction loss is traceable to two different origins. The first is

a geometric argument which implies that it is not possible to space round fibers

together without losing area between fibers. And second, the cladding physically

takes space in the fiber bundle. There is no way around the first loss term,

however, the caldding loss may be reduced by the removal of cladding by con-

trolled etching. It has been shown that there is a tradeoff between cladding

thickness re gioval (packing fraction loss reduction) and attenuation increase

a.hen surrounding a fiber with an absorbing, higher index material such as epoxy

used to secure fibers together. (11) These losses are plotted in Figure 2-18.

Curvy: A shows the loss as a function of cladding thickness for an individual

fibP- and Curve 6 represents the measured attenuation increase when the fiber

is siar,rounded by epoxy. As can be seen from Figure 2-18, the combined loss

(Cury A + 0) has a minimum at approximately 5 micrometers thickness. Also

from tPie figure, it is seen that the penalty is greatest for removing too much

cladding. From Figure 2-13, it is seen that the packing fraction loss is about

1.75 dB.

Multifiber optical bundles consist of several ;usually 7 to 300) closely packed

individual fibers. An illustration of a multifiber bundle is shown in Figure 2-19.

For light transmission, the only useful portion of the multifiber bundle is the

area of the individual fiber cores. Any illumination that falls upon the clad-

ding or the space between individual fibers is lost. Therefore, the parking

fraction loss is given by

P.F. loss (dB) = 10 log [
core area ]

bundle area
(2.25)

Figure 2-20 shows packing fraction loss as a function of the bundle packing frac-

tion. Some manufacturers prG%/ide the packing fraction information on the data

sheet. When the packing fraction is not provided it must be calculated from the

bundle diameter and the core diameter information.
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PACKING FRACTION LOSS

FIGURE 2-20
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The remaining loss, which is caused by the ratio of total fiber area to total

bundle area for a 19-bundle cable with the cladding removed, can be shown to

be about 1.2 dB. This gives a total loss for packing fraction of 2.95 dB.

The solid-angle coupling loss occurs because only light with small divergence

is trapped in a fiber having low numerical apertures, whereas an LED radiates

over a wide angle. By applying Snell's law at the end and side wall of the

fiber, it can be shown that incident light at half angles greater than 0, where

2
6 = and sin [n 2 core -n clad] 1/2	 (2.26)

will escape from the core.

The numerical aperture, NA, of the cable which is equal to sin 6 is

NA = (n 2 core -n 2 clad) 112
	 (2.27)

Hence, for a NA = 0.3 (the NA of S-10-PS(19) ITT cable) the half-angle is

0 = 17.46°.

Having determined the acceptance cone angle of the fiber, the angular emission

pattern of the LED may be used to determine the solid angle loss factor.

For a flat surface LED the radiation in watts/ster is proportional to the cosine

of the viewing angle. An emitting surface with a cosine distribution is termed

a LambeiLian source, and flat LED sources approximate Lambertian sources. Thus,

the number of watts/ster emitted from the LED is

(2.28)I = Bo cos 0

and the total radiation over a cone with half angle 0 is (15)

(15)

P	 ,fo M. cos 0 sin 0dp

or	 P = uB0 sin g 9 watts

':he power radiated into a hemisphere is P o = 7B
0
 watts.
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Thus,the total radiated power in watts collected and trapped by the fiber is:

P = Po sin  9

P = Po (NA)2

Hence, the above example yields for solid angle power loss a value of 10.05 dB.

If the source emission half angle is less than the fiber acceptance half angle,

the numerical aperture loss will be zero. The data sheet for the source will

either specify the emission half angle or present a curve of output power as a

function of the angle from the axis. The data sheets for fiber optic cahles list

either the numerical aperture or the acceptance half angle. Figure 2-21 shows nu-

merical aperture losses as a function of fiber acceptance half angles for various

emission half angles.

Unintercepted Illumination: If the source is larger in diameter than the fiber

bundle, some of the light emitted by the source does not fall upon the fibers and

is lost. This loss can occur at any junction: source-to-fiber, fiber-to-fiber,

and fiber-to-detector. By careful selection of component sizes, the unintercepted

illumination losses can be minimized. The unintercepted illumination Toss is

given by

U.I. (dB) = 10 log 
[ receptor area	

(2.31)
source area

A curve of unintercepted illumination versus receptor diameter for various source

diameters is shown in Figure 2-22.

The total coupling loss from an LED to the S-10-PS(19) ITT Cable is

0.16 + 2.95 + 10.05 = 13.16 dB.

The above losses were for a bundle fiber system. It is possible to reduce these

losses by going to a single fiber approach. However, if single fibers are

employed the system is not redundant; this problem is addressed in Section 2.6.

If the single fiber concept is employed the packing fraction loss term is no

longer present; hence, the total loss is about 10 dB. This loss can be further

reduced by realizing that the emitting area is smaller than that of the fiber.
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This configuration magnifies the size of the source while reducing the

apparent source angle, thus it is possible (at least in theory) to reduce

the solid angle loss term to zero.

2.4.2 Fiber-Bundle to Fiber-Bundle Connectors

When the fiber optic bundles must be interrupted (e.g., penetration of bulk-

heads, splicing cables, or repairing a cable break) a fiber-bundle to fiber-

bundle connector must be used. The losses that are most significant for bundle

connectors are:

a. Packing fraction loss

b. Alignment

c. Indexing losses

The packing fraction loss term was discussed in Section 2.4.1.

The alignment losses are transverse displacements between fiber bundles,

excessive gap distances, and axial misalignments. The most severe loss is

the transverse displacement between fiber bundles. The excessive gap loss

and axial misalignment requirr?'ments are more forgiving.

Th 'indexing loss occurs because the bundle fibers are not aligned across the

termination junction. This loss results in a 2 to 3 dB additional loss for

the bundle technology. Bundle fiber-fiber splice amounts to 14 dB and single

fiber systems amount to about 2 dB.

2.4.3 Fiber-to-Receiver Losses

The losses at the cable-to-receiver interface are similar to the losses

previously described. The losses are Fresnel Reflections and Unintercepted

Fresnel Reflections: As in the case of the transmitter-to-cable interface,

Fresnel Reflections occur at each boundary between two substances. Uninter-

cepted illumination: If the area of the cable is larger than the active area

of the receiver, unintercepted illumination losses will occur. The magnitude

of the unintercepted illumination loss will be the same as that previously

described.

The losses that have been previously derlcrihP d are those losses that occur

between the optical output of the transmitter and the optical output of the

receiver.
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2.4.4 Vendor Optical Connectors

The problem of terminating a single optical fiber and cable i. 	 iley selection;

however, terminating a multichannel optical cable involves locating a vendor who

will custom-build a connector to fit the cable and fibers. Table 2-17 provides

information on available connectors for single-fiber termination of multichannel

connectors. In general, numerous single-fiber connectors are available in both

plastic and metal, giving a consistent 0.5 to 1 dB per termination for glass-

glass fibers. Connectors are also available for bundled fibers as single-way.

Multiway connectors fall into two categories: real and unreal. All connector

companies are either in some stage of development or have produced a prototype.

Few companies produce off-the-shelf fiber-optic multichannel connectors; one of

the few is Amphenol (4-8 pin) and another is Hughes Connectors (52 pin). Note

also that these connectors do not accommodate all sizes and types of optical

fibers. Frequently, an adjustment in the ferrule diameter will allow usage.

However, at other times, the whole connector must be redesigned involving a very

high cost. In general, most connector companies feel comfortable terminaing

glass-glass fibers and plastic-plastic fibers, the first is simply epoxied into

a ferrule (optical contact) and then inserted into a connector; the second can

be crimped and then inserted into a connector. Plastic clad silica fibers

require special termination procedures resulting in losses of about 3 dB but

may be useful in some systems.

Losses in a connector result from a variety of sources such as: inherent fiber

losses due to differences in core diameter, NA, and retractive index profiles

in the mating fibers. Losses in the connector itself result from axial misalign-

ment, angular misalignment, and gap separation of the two fibers. Scattering

losses result from imperfect fibers and preparation of the fibers.

In conclusion, Hughes connectors have both field connectors and Mil-Spec con-

nectors which are multichannel and accept nearly all types of fibers and electric

wire. These connectors are readily available and the field connector is the best

of its kind. Amphenol has an off-the-shelf multipin connector (4-8 pin) that is

being used on the Harrier Aircraft. AMP and Carron (IT&T) both hanve multipin

(4-5-10 pin) connectors in various stages of development; prototypes, while
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TABLE 2-17
AVAILABLE MULTI-PIN CONNECTORS

APPLICABLE NUMBER DEVELOPMENT APPROXl,:HTE d8 STRONG WEAK
MFR SPEC OF PINS STATUS TYPE COST(MATED PAIR) LOSS POINTS POINTS

IT&T TESTED TO 4 OR 8 o OFF-THE- o JEWELED $1700 LESS THAN o AVAILABLE o TERMINATION

LEEDS
MEET SHELF STAINLESS FOR SMALL 1	 dB REQUIRES
ENGLISH 0 EXCESS- STEEL QUANTITIES (PCS OR o LOW LOSS LENGTHY

OCN MIL-SPEC IVELY FERRULE $1400 GLASS TERMINATION PROCEDURE

-CCXS LONG 0 PLASTIC FOR LARGER FIBERS) o NOT TESTED
LEAD GROMMET QUANTITIES TO U.S.

TIMES o ROUND METAL MIL-SPECS
(EL2112 - EXPERI- BAYONET o POOR DELIVERY
PATTERN 602) ENCED CONNECTOR EXPERIENCE

ITST
CANNON MIL-C-202 5 OR 10 PROTOTYPE o ROUND $500 GREATER o NOT PRESENTLY

HAS BEEN METAL THAN AVAILABLE
BUILT THREADED 2 dD

CONNECTOR EXPECTED
o PLASTIC

GROMMET

AMPHENOL MIT.-C- 4 OR 8 OFF-TIIE- o ROUND 4 PIN - $400 2 dB o ENVIRONMEN- o STRAIN RELIEF
83723 SHELF METAL B PIN - $1100 (GLASS) TALLY TESTED REDESIGN

LEAD TIME THREADED BY MCAIR REQUIRED
801 4-8 WEEKS CONNECTOR o WITH GLASS-
SERIES GLASS TER-

MINATIONS
THE dB LOSS
WAS IN BE-
TWEEN 1 AND
2 dB

AMP NONE 10 OR OFF-THE- o SQUARE $200 (WITH o AVAILABILITY o BEST USE IS
MORE SHELF MEAL 10 PINS) TBD BUNDLE

D CONN WITH TECHNOLOGY
SERIES JACK SCREW o NON-MIL SPEC

o PLASTIC CONNECTOR
INSERT

APPLICABLE NUMBER DEVELOPMENT APPROXIMATE dB STRONG WEAK
MFR SPEC OF PINS STATUS TYPE COST(MATEO PAIR) LOSS POINTS POINTS

HUGHES MIL-C- 10 OFF-THE- o SQUARE 2 dB 0 METAL o STRAIN RELIEF
85028 OR SHELF METAL $700 (PCS FIBERS) INSERT MUST BE

C-21 MORE LEAD CONN WITH (WITH 10 .^ 1 dB PROVIDES MODIFIED
SERIES TIME TWO JACK SCREW PINS) (GLASS FIBERS) EMP SHIELD o MODERATELY

OR THREE o AVAILABLE o MIL-SPEC RUGGED
WEEKS WITH CONNECTOR

ALUMINUM
INSERT

HUGHES 6-8 o ROUND $500	 (7) SAME AS o EASY TO o ONLY 6 PINS
DEVELOP- WEEKS FOR ALL- (IN QUANTITY C-21 TERMINATE, o DEVELOPMENT
MENTAL NONE 6 SMALL METAI, OF 1000 OR SERIES CLEAN 6 COST	 INVOLVED
COIlt1FC- QUANTITY IHUTAIIED MARE - $3700 RUPA1R IN ADDITIONAL
TUR CONNICTOR IN SMALL o HUGGED PINS

QUAN.)

DEUTSCH MIL-STD-202 OFF-THE- o ROUND
$150 1 dB o FOR GLASS- o MULTI-VIN CONN-

OPTICAL MIL-C-

1
SHELF MLTAL

FOR GLASS GLASS TER- ECTOR IS OVER
WAVEGUIDE 00815110 6-8 WEEKS BAYONET

FIBERS MINATIONS A YEAR AWAY
CONNECTOR MIL-STD- o PLASTIC

THERE	 IS
1344 INSERT

o	 I'111W LESS THAN o TERMINATIONS

RLf.IV- 1	 dB LOS; LIMITED TO

TACLF./
0 FifLD TER- TUNIC CABLE

PLUG MINATIONS TYPES

CONFIG-
o EASILY

ORATION
TERMINATED

o USES
USING

LENS
SPECIAL

TO LOWER
TOOLS

LOSS
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expensive, can be bought with long lead times. This situation should get

better by the end of the year. Deutsch's Electric Components Division has

introduced a low-loss connector that can be field-terminated in less than

10 minutes using a table model waveguide breaker and hand tools. The con-

nector achieves losses of less than 1 dB by using a lens system for light

coupling. This lens system is designed for specific fibers. A much smaller

lens will eventually be incorporated into the multipin connector which is

still under development.

2.5 STAR AND TEE COUPLER

In conventional wire systems the branching losses are overcome by an increase

in transmitter power; however, in a fiber optics system of moderate data rates

there is a limit to the available power source. The amount of optical power,

coupled to the fiber in the dbm minus that which is required by the receiver

in dbm for a given bit error rate, determines the excess power in dB that may

be used for fiber and connector losses. For a fiber optic system to replace

the wire data buses on a space avionics system, many branching paths are

required. There are two branching configurations for fiber optic data distri-

bution networks. These are: T coupler (a serial distribution system) and

star coupler (a parallel system). There also is a hybrid system made up of

T couplers and star couplers. The star, T, and hybrid couplers are depicted in

Figure 2-23.	 The T configuration employs T couplers dispersed along the fiber

optics line, This configuration, while convenient, imposes severe limitations

on the fiber optic bus because of the high loss per T coupler. However, the

T has the advantage in that to add another terminal to an existing system,

another T coupler is simply added to the system. In the start system :, adding

a terminal requires replacing star couplers. Most of the original work done

on the star coupler has been performed by Hudson and Thiel.

The star coupler (Figure 2-23) consists of a number of optical fiber bundles

terminated by a dielectic glass rod. The glass rod is surrounded by a clad-

ding whose index of refraction is lower than that of the glass core. This

cladding causes total internal reflection. The reflected light from the fiber

bundles is directed towards the mirrored end where it is reflected bakc to the

fiber bundles. In this manner, the light is uniformly distributed over the

face of the fiber bundle. The glass rod is called a mixer, and as such, func-

tions by dividing the power equally between all bundles.
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For the star coupler the optical losses are:

L C = insertion loss associated with the cable connectors

LCI = insertion loss of the star coupler

LS = splitting factor of bidirectional input-output connector

LT = 10 log (1 /N) is the tap ratio or splitting factor of the star

coupler.

Since, in a star system, the worst case loss is the loss between any two term-

inals, we have the power ratio (between terminal j and k) given by

Pj /P k = 4L  + 
L CI + L T + LS	

(2.32)

The T system has the following system losses:

L CI = internal insertion loss of the access couplers

LC = insertion loss of the cable couplers attached to the access coupler

at each of the three ports

LS = splitting factor of the duplex input-output coupler necessary for

bidrectional operation; this always has the value -3 dB

LT = tap ratio of the access coupler

L IT = insertion loss associated with power tapped by the coupler -10 log

(1-10-LT/10)

The two can be combined to form a hybrid system. The system losses are defined

as above and power loss is given by the following expression (16)

PNT-1 = (2L + L	 + L ) (J -3) + (2LC + 
L CI + L

T ) + LS (Tee)
P 1	 C	 CI	 IT

(2.33)

+ 4L  + L CI + L
S + 10 Log (N) (Star)

where

N = number of terminals

J = number of T couplers used.
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If we choose the following typical system parameters:

L
C
 = 'I dB

LCI = 2 dB (T)

LT = 10 dB (T)

LCI = 7 dB (Star)

LS = 3 dB

Then it is possible to plot the three worst case losses for the Star, T, and

hybrid systems. With the above system parameters the loss expression for each

system may be shown to be

PN-l /P
l = 4.46 (N-3) = 17
	

T System

These three expressions are plotted in Figure 2-24 for various values of N and

J. As can be seen from the figure, the star system is by far the more superior

from a l oss standpoint. However, it has the disadvantage of the centrally

located mixing point. The graph also indicates that with a properly designed

hybrid system a workable fiber system can be designed. The losses depicted in

Figure 2-24 are worst case losses; in a real-life fiber system these losses will

be considerably less.

2.6 Sin gle-Fiber vs. Bundle-Fiber Svstems

The information presented in Section 2.4 suggests that most of the future fiber

space avionics systems will have to employ single-fiber technology. If single

fibers are used, then care must be taken to ensure that the light emitting area

of the source is less than the area of the core of the fiber. Under these con-

ditions, due mainly to solid angle factors, the loss between the source and the

single fibers is slightly greater than 10 dB.

Once single fibers are employed, the connector-to-connector losses are reduced

to somewhere under 2 dB. This reduction of connector losses enables vastly

expanded architecture system capability. However, the price paid in going the
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single-fiber route is a loss of redundancy, Redundancy may be incorporated

in the system by employing a bidirectional coupler as shown in Figure 2-25.

The implication to the system margin may be understood by applying the law

of conservation of radiance at points 1 and 2. At point 1 the bidirectional

coupler acts only as a power splitter, while at point 2 ti.e coupler is used

to mix the radiation again. The coupler used to mix the radiation introduces

a 3 d6 loss. The reason for this is if the N.A. of all three fibers are the

same there is an area mismatch at point 2. This mismatch causes the 3 dB loss.

Another way to view the bidirectional coupler is as a star coupler with n equal

to two. The price of a 3 dB system power loss is a small one for the sake of

redundancy.

2.7 SYSTEM CONSIDERATIONS

The final configuration for any fiber data bus system depends on the particular

architecture of the bus. In this section, information is presented using state-

of-the-art fiber types and electronic components to obtain a crude estimation on

how well any given system will perform. This section is self-contained; however,

the information is based on material presented in Sections 2.1 through 2.7. The

different types of fiber systems possible are shown in Figure 2-26. The material

presented in this section will mainly analyze the point-to-point link. The

extension to other systems may be realized by using the information presented in

Section 2.7.4 Link Length, and Section 2.7.6 Different System Architectures.

The type of fiber components employed in the link depends on such parameters as

data modulation format, data rate, 'link length, required minimum bit error rate,

link security, system lifetime, radiation hardness, system cost, etc. Often

these parameters are related such that optimization of one set yields simulta-

neous degradations to others; hence, for any given fiber system there may be no

true optimum system configuration. For example, as the length of the link is

increased, to reduce repeater cost, the data rate must be reduced making the

system more nuclear-radiation sensitive.

2.7.1	 Sources

The type of source employed in the link is usually driven by suck 'actors as

ease of modulation, size, weight, and wavelength of sources. Sources such as

gas 'lasers and solid-state lasers are usually ruled out because of their size
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and difficulty of modulation. To date, the source most often employed in fiber

links has been semiconductor devices such as a light emitting diode (LED) and 	 i

injection laser diode (ILD). These devices have the distinct advantage that

they can be directly modulated. The technology of the devices employed is

dependent upon the wavelength of light required. Most of the LED's, which are

often modeled as Lambertian sources, have total output power of minus a few dBm

while the ILD has on the order of a few to 10 dBm. The advantages of using an

ILD over LED as the source to a fiber system are threefold: ILD's have more

power available to couple in the fiber, the fiber is capable of accepting more

power from the ILD, and the ILD has a much narrower spectral width; hence,

temporal dispersion is reduced. However, the ILD has a shorter lifetime.

2.7.2 Fibers

The choice of fibers employed is usually driven by the link length, link data

rate, and to some extent, the amount of nuclear hardness. The most common fiber

produced today is the glass-glass stepped-index fiber. The core, made of pure

fused silica, is lightly doped with Ge0 2 to increase its index of refraction.

This increase in index enables the fiber to waveguide the light. The glass-

glass stepped-index fiber has a core diameter of about 65 um, numerical aperture

(N.A.) of 0.23, loss of about 10 dB/km at 850 nm, and pulse dispersion of

15 ns/km. Generally, this fiber is only used for lower data rate short-length

fiber links. If link length or data rate needs to be increased, graded-index

fibers may be employed. Graded-index fibers have a core index profile which is

maximum at the center and quadratically varies to a minimum value at the core-

cladding interface. The graded-index fiber has a diameter of about 65 um,

N.A. = 0.2, loss of about 6 dB/km at 850 nm, and pulse dispersion of 2.5 ns/km.

Both the stepped-index and graded-index fibers are multimode fibers; hence, they

produce or cause a great deal of pulse spreading by temporal dispersion in the

fiber. If long link length and high data rates are required, then single-mode

fiber must be used. A multimode stepped-index fiber can be made single-mode by

decreasing the N.A. and the core diameter to the point where only a single-mode

of radiation is supported in the waveguide. A typical value for this diameter

is 5 um with the N.A. equaling 0.096 at 850 nm. At these small values of fiber

parameters, collecting the light from the source becomes a problem, as the

source-to-fiber alignment is critical and t'^a reduced N.A. makes the fiber an
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inefficient light collector. Nevertheless, the temporal dispersion is

extremely low and has been shown by Gloge to be for HE 
11 

mode (14)

RdN	 2
S = 333.(^^)	 dRl + (N1-N2) 

Ud (
2b)	 ns/km	 (2.34)

dV

where as is source bandwidth, X is the center wavelength of the source, k  is

the wavenumber, N 1 = d(kn l )/dk, N 2 = d(kn 2 )/dk, v is the normalized frequency,

while b is the normalized propagation constant. Equation (2.34) will be used

to determine link lengths in a later section.

The length of the link will depend on the dB/km loss of the fiber and the loss

per fiber termination. In the graded-index case, these terminations are no

problem as the dB loss is on the order of 0.5 dB or less. However, in the

single-mode case, standard optical connectors have not been developed and

would have to have extremely exacting tolerances considering the core diameter

of the fiber. Hence, for longer single mode fiber l inks, an optical splice

would have to be made. These splices are usually auout a half dB or less.

2.7.3 Detectors

The most commonly employed receiver detectors in a fiber link are either PIN

diodes or avalanche photodiodes (APD). The APD, which uses internal gain to

increase sensitivity, is approximately 20 dB more sensitive than a PIN for a

given data rate. The PIN diodes is usually used with a field effect transistor

(FET) front-end for data rates at or below 5 Mbps, while for higher modulation

rates a bipolar front-end is employed. In both devices the risetimes are

inversely related to collector area; hence, at higher data rates the detector

must become smaller, thus making the alignment between fiber and detector more

critical. The signal power at the required APD detector for a 10 -8 bit error

rate (BER) is, as a function of data rate

dBm = +10 Log R -70	 (2.35)

where R in Equation (2.35) is in Mbps.
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2.7.4 Link Length

The maximum system link length depends on the source type, the type of fiber

employed, and the detector. As with any communication system, the link can

either be power starved or limited by the dispersion of the transmission

medium. The system length in km as a function of data rate for an APD for

10-8 BER is given by

P 1 - [10 Log R -^ 70] - 0.5 [INT x/2] - K l - K2
X -
 a

(2.36)

Where, in Equation (2.36), P 1 is the output power of the source in dBm, K  is

the loss between the source and the fiber, K 2 is the loss between the fiber

and the detector, a is the loss of the fiber in dB/km, R is the data rate in

Mbps, and INT is the integer value of x/2 and is used to represent the splice

loss.

The maximum dispersion that the system can accommodate is related to the pulse

broadening in the fiber, which in turn is related to the impulse response of

the fiber. The expression for this is fairly complex and in general quite

difficult to evaluate; however, a reasonable estimation of system length, as a

function of pulse dispersion and data rate, can be made by assuming that the

overall system risetime is 1.1 times the square root of the sum of squares of

the transmitter, fiber, and receiver risetimes. To assure little or no dis-

persion effects, the risetime of the system should be less than or equal to

0.35/R*106 . If the receiver and detector are assumed to be ideal then the

maximum system length is

-15
X r 

0.35 xR10	
(I(m)	 (2.37)

If the detector and transmitter are not ideal then the inequality

I.1
	 td

2 + tt2 + (XS)2 + (tmX)2 1/2C 0.35 x 10-15
D	 (2.38)

must hold. Where td is the detector risetime in ns, tt is the risetime of the

source, also in ns, t  is risetime caused by material dispersion of the source.

Tne value of t  is typically 5.5 ns/km for and LED and usually negligible for

ILD.
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Equations (2.36) and (2.37) are plotted in Figure 2-27 for glass-glass stepped-

index, graded-index, and single-mode fibers assuming the following system

parameters

P 1 = +10 dBm (ILD)	 K1 = 12 dB	 K2 = 1 dB	 a = 850 nm

2	 kdN
U^V2Ub) = 0.15
	 dkl - 0.05	 N1-N2 = 0.015

Figure 2-27 can be used to obtain an estimate of system repeater spacing; hence,

an idea of overall system cost. For example, if a 100 Mbps system is desired,

either single-mode fiber or graded-index may be employed. However, if graded

fibers are used, the system is limited by dispersion and must have a repeater

every kilometer or so, while if a single-mode fiber is used with a source which

has a 2 nm bandwidth, then repeater spacing on the order of 8 km can be obtained.

Also, from Figure 2-27 it is seen that if a 0.2 nm source is employed with single-

mode fiber (loss of 5 dBm) the 1 Gbps system could have repeater lengths of

6-8 km. These numbers indicate large economical savings over conventional wire

systems.

2.7.5 Nuclear Hardness

The hardness of a system in relation to radiation is dependent upon the nature

of the individual components used and the amount of radiation to which the

system will be exposed. In the light source, radiation degradation usually

shows up in the form of nonradiating sites in the energy band of the device.

These sites reduce the differential quantum efficiency, thus reducing the output

of the device. However, if certain ternary elements such as Al are added to the

devices, the sources become hard. The hardness is believed to come about because

the ternary elements act as annealing centers. Hence, if a device such as a

GaAIAs I'...D is used, it should be hard.

Certain fibers become opaque when they are exposed to gamma radiation, and fluo-

resce for brief periods of time. When the fiber is exposed, local color sites

are formed. These sites act as absorbers in 800-900 nm range and have little

effect at longer wavelengths such as 1.06 um as can be seen from Figure 2-28.

The loci) color sites anneal with time. In general, the hardness of the fiber

-to radiation appears to be related to the amount of doping in the core, the
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less the better. The effects on system degradation caused by radiation may

be included in the margin calculations by the inclusion of an extra loss term

KR in dBs. KR values may be obtained from the information presented in Section

2.1.8.

2.7.6 Different System Architectures

The extension of the material presented in 2.7.1 to 2.7.5 to take into account

different bus architectures may be accomplished in a straightforward manner.

For any given fiber data bus, shown in Figure 2-29, the risetime analysis is

independent of bus architecture employed; hence, the inequality expressed in

Equation (2.37) must hold to insure that the system is not operating in the

dispersion-limited mode. If the overall system risetimes satisfy the inequality

in Equation (2.37) then to determine whether the system will perform from a

margin ;tandpoint, the total system power budget must be computed. To do this,

first compute all the losses that are encountered from going from point-to-point

in the system. These losses should be worst case and typically wil l include:

Time degradation effect (3-5 dB)

Source to detector loss

The sum of all connector losses

The total fiber loss

The loss going through tees

The loss going through the star

Loss between fiber and detector

Loss due to radiation

Once the total losses have been computed the amount of available optical power

in the system should be obtained. For an APD the pcvjer required for a 10 -8 BER

in dBm is

q = 10 Log R - 70	 (2.39)

while for a PIN

q = 10 i_og R - 55 	 (2.40)
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If the output power of the LED or ILD in dBm is u, then the system margin (SM)

is

SM = u - q - E all other system losses	 (2.41)

The larger the value of SM the better the system will perform. The effect of

a few dB on error rate is shown in Figure 2-29.

If the SM in Equation (2.40) turns out to be less than zero then the designer

has four choices. One, he may increase the output power of the source; this

probably means going from LED to ILD. Two, he may increase the receiver

sensitivity; probably by using an APD instead of a PIN. Three, he may reduce

the system data rate, or four, he may have to put a repeater in the system

somewhere.

2.7.7 Vendor Fiber Optic System Tables

Companies such as IT&T, Galileo, RCA, and Spectronics make fiber optic system

components, but they also make fiber optic systems as well. These systems may

be as simple as a pin photodetector and preamp to the complete fiber optic

system including fiber optic cable; nevertheless, this section will only include

the transmitter/receiver systems. Tables 2-18 and 2-19 give a list of the more

important parameters and a comparison of the two transmitter options (LED/ILD)

and two receiver systems (PIN/APO).

A few comments about Table 2-18. First, the Galileo and Hewlett Packard trans-

mitter/receiver system suffers froin low data rate, low operation temperature

range, and low excess margin. The disadvantage of the Plessey and RCA system

is the low excess riargin. The IT&T T614/T615 and T612/T606 both have low excess

margin; the T614/T615 system also has low data rate; and finally the IT&T T612/

T606 requires four (4) voltage supplies and an uncertain operating temperature

rnaqe. The MT T612/T613 system is satisfactory in most respects but requires

four power voltage supplies, APD detector, and again questionable operating

temperature range. In geffleral, the Spectronics systems are satisfactory in all

respects except they require high voltage.
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TABLE 2--18

SYSTEM RECEIVER DATA

nr,rnlPiR HCE RECEIVER
MARGIN ABOVE SYSTEM EXCESS 3YNAMIC RATE TEMP,

(OPERATING)
POWER
REQUIREMENTS

NUCIk.
SURVIVAOILITY

1	 L'ER .,IER SENSIitVITY 10'0 B/S 0ER LOSSES MARGIN RANGE (VANCIIESTER)

1 110." •12 -30 B de a d1 10 do - 2.5 Mblts 0' TO +5 0 40 %a TESTING

t^•l	 36b5971R dBm dBm +75'C •5 1 10 aN HEEDLO

i':LR I
for +5.5 1 100 ma

'L	 „'S971T TRANSMITTER

',; yVITTER y

:SCY -13 -30 17 dB 0 dB 9 d0 15 d0 15	 Mb1ts -20• TO +5 0 3DO ma TESTING

'1.ou dBm dBie +501C +12 0 150 ma NEEDED

-10 27 17 d0 6 d0 9 dB 10 Mblts +5 1 250 ma TESTING

).L din dBm +6 R 30 ma NEEDED
-6 1 20 ma

II ^. -12.5 -28 15,5 d0 B dB 7.5 d0 15 40 2.5 Mb1ts -20"C '0 +5 R 275 ma TESTING

.14-IRMIS din dBm +501C -5 0 75 ma NEEDED

;S	 ^a12 '-33 21 de B d0 13 dB 15 d0 10 Mblts - +5 R 250 ma TESTING

'.'•1 ;1 411`, ddn dGm +5 R 75 ma NEEDED

r[C
+15 0 100 ma
-13 0 75 wa

12
• 31

19 dB 8 dB 11 d0 21 d8 5 Mblts 0' TO +5 0 170 ma TESTING

E ' !, -12
-31

+70% +5 0 10 ma NEEDED

'il •'ICE.. —_,. .^..__ — —^--- .—°... ...	 .,..._.
__...^_.

•12 •52 40 dB 6 dB 32 d0 20 dB 10 Mbits +5 1 2b0 nn TEST ING

dBm 60m +5 R 75 ma NEEDED

TC" 1 '"
+13 1 1 GO IN
.13 0 75 ma

ECTPONICS -10 •39 23 d0	 1 d0	 16 d0	 33 d0	 10 Mb1ts	 -40% TO +5 1 70 ay TESTING

x3619-TRANS dBa d0m +801C +5 , 0,,200   ma NEEDED

t+.1,23-GEC +1 	 1 ma

0-RCA CJ0133
N•RCA C30807

ECTP"11iCS -10 -50 40 d0	 6 40	 u d1	 30 d0	 10 Mblts	 -46' TO
+5	 700ma

Y16 1 9-TRANS dom 04
0 NEEDED

1162n.PEC •335 / 1 au

D-PEA C30133

0•RCA C30895

ECTRO!IICS •10 -40 30 d0	 0 d0	 22 d6	 20 d7	 10 Mblts	 -/0•C TO +5 0 200 ma TESTING

•.,C.19-TRxriS d8m 434
+801C +6 6 20C ma NEEGE0

D-RCA 30133
.6 0 200 ma
445 0 1 au

N-RCA C3091SE
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TABLE 2­ 19
FIBER OPTIC DEVICE COMPARISON

t	 TRANSMITTER CIRCUITS RECEIVER CIRCUITS

ILD LED PIN APO

TEMPERATI'RE O'C TO 50 6 C -40'C TO +90'C -40'C TO•+80'C -40'C TO +700C

DRIVER RESISTANCE HEATING VARYDRIVE CURRENT
REQUIREMENTS 8 THERHO ELECTRIC WITH TEMPERATURE

COOLING REQUIRED. TO MAINTAIN LEVEL

CONSTANT CURRENT OUTPUT.
DRIVER REQUIRED

RECEIVER NO TEMPERATURE o HIGH VOLTAGE REQUIRED
9EQU1REMENTS COMPENSATION FOR BIAS.

NECESSARY o CIRCUIT REQUIRED TO
MAINTAIN GAIN OVER
TEMPERATURE RANGE.

RADIATION BETTER THAN LED CONSIDERED GOOD CONSIDERED GOOD WORSE THAN PIN

HARDENING HIGHER CURRENT OUT TESTING RCQUIR- BUT TESTING RE- LOSS OF APD GAIN WITH

DENSITY AIDS ED TO DETERMINE QUIRED TO DETER- RADIATION,
RECOVERY LEVEL, OF HARDNESS MINE LEVEL OF

IIARDNESS

OUTPUT INTO
OdBm (1mw) -12 d8m (80uw)^

POWER PIGTAIL

RECEIVER -40 dDm -55 dBm
SENSITIVITY

RECEIVER
DYNAMIC -10 dRm TO -40 dBm -25 dOm TO =55 dBm
RANGE

COST/1000 $350 $250 $300 $400

RELIABILITY NOT ENOUGH TEST DATA AT THIS TIME NOY ENOUGH TEST DATA AT THIS T114E

LED CONSIDERED SLIGHTLY BETTER THAN ILD PIN CONSIDERED SLIGHTLY BETTER THAN APD

LIFETIME 103 HOURS WITH 3dB 104 HOURS WITH 3dB 106 HOURS NO SIGNIFICANT

LOSS LOSS- TEST DATA

INPUT +5V a 200 ma +5 @ 100 ma
+45 @ 1 ma
+6 @ 50 ma,

+355 @ 1 • ma

+6 @ 50 ma,POWER
-6 Q 50 ma -6 @ 50 ma
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3.1 SPACE SHUTTLE DATA BUS SYSTEM

Part of the contract requirement was to establish a requirements definition

document for a fiber optic data bus configured similar to that which is on

Space Shuttle. This document is contained 'r. Appendix A, while seventeen

different Shuttle data bus system losses in alt optical radial data bus con-

figuration have been computed in Appendix B. The results of this study are

somewhat dated as it employed bundle technology.

3.2 FIBER SYSTEM SIZE, WEIGHT, AND POWER

Installation of a fiber optic data bus in place of an existing electrical data

bus would not result in a significant increase in either size, weight, or power.

As an example, assume the data bus selected for the fiber optics system has a

length of 200 feet (60 meters) (this length is characteristics of the longer

buses for the Shuttle) and 7 data bus stubs each 3 feet (0.9 meters) in length.

Replacement of seven data bus couplers with seven optical couplers and seven

transmitter/receiver package results in an increase of only 5400 cm 3 (330 in3)

in Shuttle avionics hardware. If the transmitter/receiver packages were

installed on Multiplexer Interface Adapter boards, as is discussed in Section

3.3, a reduction in equipment volume can be achieved.

Two hundred and twenty-one feet of 24-AWG twisted-shielded wire and 7 data bus

couplers weigh approximately 1.1 Kg (2.5 lbs). A similar length of 19-strand

optical fiber cable, 7 optical couplers, and 7 transmitter receiver packages

weigh approximately 5.4 Kg (12 lbs). Thus, the weight increase is only 4.3 Kg

(9.6 lbs) for the optical system. Based upon a power consumption of 3 watts

per transmitter/receiver package, the net power increase for the optical system

is only 18 watts.

3.3 FIBER O PT IC SYSTFM INTERFACE WITH SPACE SHUTTLE

Figure 3-1 shows Flight Critical Bus 1 in an optical bus configuration. The

changes to FC1 from the electrical bus configuration to the optical bus con-

fiu,,-ation include the installation of optical transmitter/receiver packages

and the substitution of optical couplers for electrical data bus couplers.

The trar:smitter/receiver characteristics must be compatible with the Multiplexer

Interface Adapter so that the interface between the General Purpose Computers
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and Bus Terminal Units remains unchanged. For illustrative purposes, the

optical transmitter/receiver package is shown external to the GPC and BTU.

The possibility of an optical transmitter/receiver module for installation

on the MIA within each GPC or BTU will be addressed in the component study.

An optical coupler similar to that shown in Figure 3-2 will provide the con-

nection bet!-jeen the optical data bus and the data bus stub. The optical

coupler provides fault isolation similar to that of the electrical data bus

coupler on the existing Space Shuttle Data Bus.

While FC1 has been selected for illustration of the optical data bus system,

it is by no means the only candidate bus for the optical system. Flight crit-

ical Bus 5, for example, is one of the longest data buses on Shuttle, and, as

such, should be considered for the optical system. In addition, McDonnell

Douglas Technical Services Company (MDTSCO) has performed and published a noise

prediction study of FC5; therefore, comparisons between the predicted inter-

ference levels, the actual performance of FC5 in copper wire bus configuration,

and the performance of FC5 in an optical bus configuration can be made.

Details of a portion of the optical data bus system are shown in Figures 3-3

and 3-4. The illustration of Figure 3-3 is a single cable system. In this

configuration the optical signal is bidirectionally transmitted along a single

optical fiber bundle. The single cable system requires fewer fiber optic cable

than does the bifurcated cable bus shown in Figure 3-4. With the bifurcated

cable system, the data from the GPC to the BTU is transmitted along one optical

cable. The bifurcated cable configuration requires fewer total optical couplers

per data bus and each optical signal need pass through only one coupler from GPC

to BUT versus three couplers for the single cable system. Fewer couplers have

the advantage of reducing the loss between the transmitter and receiver.

3.4 SECURITY CAPABILITY

With traditional copper wire digital data bus systems, the metallic conductor

acts as an antenna f-ir both reception of unwanted interference signals and

radiated transmission of the digital information carried along the conductor.

For data systems that contain secure information, special testing is required

to insure that this secure data is not inadvertently transmitted through con-

ductor radiation. Since the fiber optic cable does not contain a long current
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carrying metallic conductor to function as an antenna, there is little danger

of accidential RF radiation of secure information. The fiber optic system

must be light tight to prevent optical radiation of secure information. This

requirement will be considered during the evaluation of optical components.

3.5 EMI SUSCEPTIBILITY

One of the major advantages of fiber optic data links is the elimination of

susceptibility to electromagnetic interference (EMI) including inductive coup-

ling between wires, pickup of RF fields, and radiation of noise to other systems.

To obtain full advantage of the fiber optic's inherent immunity to EMI problems,

it is necessary that the electronics in the optical receiver and transmitter at

each end of the fiber optic cable be designed for low EMI susceptibility.

Significant RF shielding may be achieved by enclosing the transmitter and

receiver in a metallic container and utilizing conductive gaskets on all non-

welded package seams. The use of filter pin feed-through connectors on all

electrical penetrations through the enclosure and RF shielding on all wiring

outside the package will further enhance the RF immunity to the transmitter

and receiver.

3.6 TWO SHUTTLE FIBER OPTIC BUSES

Using the criteria contained in the Requirements Definition Document, we have

calculated the signal level at the Bus Terminal Units (BTU) on two Shuttle data

buses. The buses selected for this study were Flight Critical 2 and Instrumen-

tation 1. Flight Critical 2 (FC2) was chosen because it extends from the Upper

Crew Area to the Aft Section and has 10 BTUs on the bus. Instrumentation 1

(IP1) was selected because of its contrast to FC2. IP1 extends only from

Avionics Bay 1 to Avionics Bay 3 and has only 3 BTUs on the bus.

Figure 3-5 shows FC2 in the electrical data bus configuration. General Purpose

Computer 2 is in control of this bus under normal operation. The distances

shown in Figure 3-5 are the nominal wire lengths between components. Figure 3-6

shows FC2 in a linear optical data bus configuration using "T" bus couplers.

Note the absence of couplers for the BTUs at the ends of the buses. In an elec-

trical bus configuration, couplers are required for all BTUs in order to mainta-,n

-the characteristic impedance of the line and to provide fault isolation protection
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in the event of a short circuit. With an optical oata bus, there is no line

characteristics impedance and an open or short circuit will have no effect on

the source side of the fault.

The following signal levels and los q.es were used in all optical data bus con-

figuration calculations:

transmitter output for logic  "'i " = *3 dBm

tra,^;mitter/cable interface loss = 2.35 dB

GPC & BTU coupler/bus loss = -2 dB

bus coupler input/bus loss = -5 dB plus power splitting loss

bus coupler bus/bus loss = -5 dB plus power splitting loss

bus coupler bus/output loss = -5 dB plus power splitting loss

connector loss = -2 dB

cable loss = -0.35 dB/m

bus/GPC & BTU coupler loss = -5 dB

cable/receiver interface loss = -0.75 dB

For the linear bus couplers, the poser splitting loss for the input/bus path

and the bus/output path is given by:

P.S. loss = 10 log (pickoff fraction)

and the power splitting loss for the bus/bus path is given by:

P.S. loss = 10 log (1 - 2 [pickoff fraction]).

For the radial bus couplers, the power splitting loss is given by:

P.S. loss = 10 log (pickoff fraction).

For the configuration of FC2, shown in Figure 3-6, the pickoff fraction of the

bus couplers is 0.2. Therefore, the coupler input/bus and bus/output loss is

11.9 dB and the coupler bus/bus loss is 7.2 dB. Using the signal and loss

values shown above, the signal level for a logic "1" at the receivers located

in the various BTUs along the bus is:

MDM FF 2 = -32.65 dBm

GPC IN 4 = -42.55 dBm

GPC IN 1 = -50.15 dBm

DDU 1	 = -60.35 dBm

DDU 2	 = -67.90 dBm
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DDU 3 = -63.55 dBm

GPC IOP 5 = -32.65 dBm

GPC IOP 3 = -45.95 dBm

MDM FA2	 = -62.10 dBm

As stated in the Requirements Definition Document, the optical receiver shall

recognize as a logic "1" any signal having a level greater than -45 dBm and

shall recognize as a logic "0" any signal having a level less than -50 dBm.

The logic "1" level for 5 of the 9 BTU receivers shown in the preceding para-

graph is less than -50 dBm and would be recognized as a logic "0". For one

receiver, the logic 11 1 " level falls in the undefined region between -45 dBm

and -50 dBm. It is obvious that the losses associated with the standard

linear optical data bus configuration are too great to permit proper operation

of FC 2 in that configuration. Accordingly, optical repeaters were installed

in FC2 as shown in Figure 3-7. The Requirements Definition Document states

that the output from the repeater is -5 dBm for a logic "i". The signal level

for a logic "1" at the various BTU receivers with repeaters installed in the

bus are:

MDM FF2	 = -32.65 dBm

GPC IOP 4 = -42.55 dBm

GPC IOP 1	 = -23.40 dBm

DDU 1 = -34.60 dBm

DDU 2 =	 -41.15 dBm

DDU 3 = -36.80 dBm

GPC IOP 5 = -32.65 dBm

GPC IOP 3 = -23.35 dBm

MDM FA2 = -39.50 dBm

With two optical repeaters installed, as shown in Figure 3-7, the signal level

at the BTU receivers is compatible with the level shown in the Requirements

Definition Document.

Most of the published articles on optical data buses state that the optimum

pickoff fraction for the "T" coupler is the reciprocal of the number of couplers

on the bus. For the FC2 configuration, shown in Figure 3-6, the number of

couplers is 8 so the optimum pickoff fraction would be 0.125. However, in most

of the published articles, the BTU in control of the bus is assumed to be at one
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end of the bus; in FC2 the BTU in control of the bus is close to the center of

the bus. Therefore, the pickoff fraction equal to the reciprocal of the number

of couplers is not always the optimum value.

A comparison of the signal at each BTU receiver for the so-called optimum

pickoff fraction of 0.125 and the pickoff fraction of 0.2 is shown below:

BTU P.F.	 = 0.125 P. F. = 0.2

14DM FF2 -36.85 dBm -32.65 dBm

GPC IOP 4 -47.75 dBm -42.55 dBm

GPC IN 1 -52.30 dBm -50.15 dBm

DDU 1 -61.55 dBm -60.35 dBm

DDU 2 -68.10 dBm -67.90 dBm

DDU 3 -60.65 dBm -63.55 dBm

GPC IOP 5 -36.85 dBm -32.65 dBm

GPC IOP 3 -49.15 dBm -45.95 dBm

MDM FA2 -62.20 dBm -62.10 dBm

The preceding discussion on optimum pickoff fraction was included to illustrate

that the actual Shuttle data bus configuration is different from the theoretical

models shown in most published works, and an analysis is required prior to the

application of the theoretical work to the Shuttle System.

Figure 3-8 shows FC2 in a radial optical data bus configuration. In this con-

figuration only one coupler, a radial (or star) coupler, is used to split the

optical signal from the BTU in control of the bus to the remaining BTUs on the

bus. The pickoff fraction selected for this analysis is 0.1, therefore, the

coupling loss to each branch of the circuit is 15 dB. The signal level for a

logic "l" at each BTU receiver on the bus is shown below:

MDM FF2 = 23.50 dBm

GPC IOP 4 = 26.20 dBm

GPC IOP 1 = -26.20 dBm

DDU 1	 = -28.90 dBm

DDU 2	 = -28.90 dBm

DDU 3 = -29.25 dBm

GPC IOP 5 = -23.50 Am

GPC IOP 3 = -28.90 dBm

MDM FA2	 = -47.40 dBm
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With the radial bus configuration, the signal ieve.1 ,t all BTU receivers, except

for MDM FA2, is well within the range of the receiver requirements of the Require-

ments Definition Document. The optical signal level at the MOM FA2 receiver is

-47.40 dBm, 2.7 dB lower than the minimum level for a %gic 
11111.

Figure 3-9 shows IP1 bus in the electrical data bus configuration. IP1 was

selected to show the losses associated with a short data bus having few Bus

Terminal Units. Figure 3-10 shows IP1 in the linear optical data bus config-

uration. The signal levels at the BTU receivers are:

PCM 1 = -23.45 dBm

PCM 2 = -24.50 dBm

The pickoff fraction of the coupler is 0.2. This value was selected to permit

nearly equal signal levels at each BTU receiver. The radial bus configuration

for IPl is shown in Figure 3-11. The signal levels at the BTU receivers are:

PCM 1 = -20.30 dBm

PCM 2 = -26.05 dBm.

From the preceding discussior it is evident that a radial bus configuration is

usually preferable to a linear configuration because of the lower losses with

the radial bus. Additionally, the radial bus configuration requires only 1

coupler versus the 8 couplers regui red for the linear configuration of FC2.

One might expect the radial bus configuration to require much more cable than

the linear configuration. However, a comparison of the cable lengths, shown

in Figures 3-6 and 3-8, shows only a 10-meter difference between the linear

bus (65 meters) and the radial bus (75 meters).
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4.0 FIBER OPTIC HARDWARE

4.1 BASELINE SYSTEM (HARDWARE)

During the course of the contract, a fiber optic star data bus system was

purchased. )his system was obtained from the ITT Electro-Optical Products

Division in Roanoke, Virginia, and consisted of an ITT 2-D digital transmitter

and receiver, a 9-part star coupler, and a number of short lengths of termi-

nated fiber cable. This system is shown in Figure 4-1.

TI:1, Model 2-D optical transmission system was capable of a data rate between

10 Kbs to 20 Mbs. The inputs and outputs are TTL compatible, with amplitude

regenerated data out. The receiver also had a buffered analog signal output

for monitoring the received signal. The model 2-D transmitter employed a high

brightness LED, with four switch selectable LED driva settings. The receiver

used an avalanched photodiode detector which employs a hybridized high-voltage

power supply for the APD, with AGC controlled output voltage. The primary

specifications for the digital terminals are given below:

SPECIFICATIONS

Upper Bit Rate Cutoff

Lower Cutoff (10% Analog Droop)

TRANSMITTER

Input Impedance
Maximum Input Signal Level
Power S ,.r ;ply
Optical output Power (Max LED Drive)

With ITT type GG 702 graded index
fiber termination

With ITT type GG-02 step index

fiber termination

RECEIVER

Output Impedance
Digital output
Analog output

Analog output signal level
Digital output
Power Supplies

Optical Sensitivity at 10 -8 BER

Optical Dynamic range
Rise/Fall Time

Digital output

Analog output (for negligible
fiber dispersion)
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NOMINAL

20 Mb/ s
500 Hz square wave

5052, or 4 TTL loads
5 volts
5 = 0.25 Vdc at 300 ma max.

30pW peak (TTL high)

60pW peak (TTL high)

5051,
6000
3V P-P nom.
TTL Line Drive
+5 +0.25 Vdc at 75 ma max.

+8 to +18 Vdc at 100 ma max.
-8 to -18 Vdc at 75 ma max.
6 nW peak (TTL high)

20 dB

8 ns max.

20 ns max.
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,.4

FIBER OPT.0 STAR DATA BUS SYSTEM COMPONENTS

FIGURE 4-1

REPRODUCIBILITY OF THE
ORIGINAL PAGI% IS POC)R
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The radial star coupler is a reflection device configured with 9 input/output

ports. The optical mixer (which was a square glass rod) had an aspect ratio of

at least 40 to 1. The individual ports were made of four 165 um PCS single

fibers. The plastic cladding from each end of the 4 fibers was removed. The

4 fibers were fused together as shown in Figure 4-2. The cladding was removed

and replaced with an optical silver coating (99.10% relfective at 850 nm). The

32-fiber optic silvered end were arranged in a random fashion on the surface of

the optical mixer (dielectric rod) and permanently Epoxied there, while the 9

other ends were terminated with OSM connectors.

The fiber optic cables consisted of ITT LD-40-PS-(19) plastic clad silica fibers.

The lengths of the terminated fiber ranged from: 2 meters to 10 meters. The

bundle terminations were made in the following manner. The plastic cladding

from each of the 19 fibers were removed. The fibers were then coated with a

highly reflective silver coating. The coated fibers were then placed in the

OSM type connectors where they were surrounded with Epoxy. The Epoxy was cured

and the fibers were polished. Some of the more salient plastic clad silica

fiber parameters are given below:

SPECIFICATIONS	 NOMINAL

Attenuation @ 0.79 ;am
PS-05-35 35 dB/km
PS-05-20 20 dB/km
PS-05 ­ 10 10 dB/km

Numerical Aperture 0.3

Dispersion
10 dB'width 60 ns/km
3 dB w-;dth 30 ns/km

Core Index of Refraction	 1.46
Fiber Core Diameter	 125 um
Jacket Outer Diameter 	 500 um
Tensile Strength (1/2m gauge lengt") 	 500,000 psi
Minimum Bending Radius	 0.5 cm

4.2 FIBER OPTIC DATA BUS SYSTEM TESTS

The relative performance of the ITT radial star data bus system was judged by

performing a number of system tests. The tests conducted included connector-

to-connector losses, connector indexing losses, 1 star throughput loss, and

Bit Error Rate (BER) as a function of optical power incident on the detector.

The tests are described below.
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4.2.1 Connector-to-Connector Losses

The experimental setup to measure connector loss is shown in Figure 4-3a. The
.,	

ITT transmitter input was biased to a TTL logic 11 1" level (3 volts). The

output power was w:itored with side A of fiber cable `d connected to the trans-

mitted while side B was connected to an EG&G 550-1 power meter with flat filter,

see Figure 4-3a. Side B was connected to the power meter through a specially

fabricated adapter with OSM threads that mated to the Amphenol OSM fiber cable

plug. This adapter assured repeatability of the measurements and also elimi-

nated background light. The average output power from the LED of the ITT Trans-

mitter was found to be stable to better than 3% in any 30-minute interval (an

interval which was much longer than needed to perform any given set of

measurements).

The measurements were performed using the following procedure. Side B of cable

X was connected to the EG&G power meter and this power reading was recorded.

Side B of cable X was then connected to whichever connector of the cable under

test was being measured (see Figure 4-3a). The other side of the cable under

test was then connected to the adapter on the power meter. This reading was

recorded and the dB loss of the cable under test was computed. However, when

the above measurement procedure ^-ias repeated on the same cable, significan'c

differences in dB reading occurred. The reason for this difference was index-

ing in the cable. This problem will be addressed in detail in the next series

of tests.

A statistical procedure for estimating the indexing loss for each connec tor was

utilized. In a field environment it is unlikely that the individual connectors

would be adjusted for maximum radiation transfer between cables by adjusting

the rotational position. Hence, five measurements were made on each cable.

The cable under test was connected to side B of cable X via the OSM connector.

The output power at the other end of the cable under test was monitored through

the adapter and the EG&G power meter. The cable under test was disconnected at

side B of cable X, then both cables were set on the lab bench and the process

was repeated. After all of the measurements were taken, the data was processed

on a 9830A HP computer. The mean, variance, and skewness in the data were com-

puted. These results were used to make an estimation of the connector losses

-in a field environment.

105

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY-ST. LQU/S D/V/S/ON

LL



1
r

OPTICAL DIGITAL TECHNIQUES	 REPORT MDC E2052
FEBRUARY 1979

CONFIGURATION FOR LOSS MEASUREMENT

CABLE X

CONNECTOR	 EG&GITT	 g	 A OR BTRANSMITTER	 550.1

A
CABLE UNDER TEST

`3V	 A OR B

(A)

CABLE UNDER TEST-

360 ROTATION
	 EG&G

CONNECTOR UNDER TEST
	 550-1

MOUNTED IN BACK-,,,,

ITT
TRANSMITTER
	

FIRMLY FIXED
A	 B
	

OSM CONNECTOR

EG&G
550-1	 CABLE #4

(B)

STAR INSERTION
POINT

BB
CABLEI,,,

GREEN
A	 LASER

(C)

FIGURE 4-3
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Table 4-1 lists the results of the measurements performed with cable #6 as

the cable X in Figure 4-3a. ITT supplied fiber cables numbered 2 through 6

which appear in the test results. In Table 4-2 the results using fiber cable

#3 for cable X are listed. The small differences between average cable losses

can be explained by the effects of indexing losses.

4.2.2 Connector Indexing Losses

It became apparent after a few measurements with the test set, shown in Figure

4-3a, that indexing was a problem. Hence, the test setup shown in Figure 4-3b

was built to study this problem, For these tests, fiber optic cable X was

held in a constant position and the fiber cable under test was rotated in 100

increments. At each 10° increment the OSM connector was tightened and the

power was monitored on the EG&G 550-1.

This test was repeated 33 times per cable and the dB loss as a function of angle

was measured. Typical results for fiber cables #2 and #5 are shown in Figures

4-4 through 4-7.	 The fiber cable in position X in Figure 4-3b for the above

data was cable #3. One of the causes of the index problem is the fact that the

fibers are not aligned between the male and female parts of the OSM connector.

However, it can be seen that the relative magnitude of the indexing variation

is reduced when the fiber termination has a good packing fraction. This can be

seen by comparing Figures 4-4 and 4-5 (for cables with good packing fraction)

to Figures 4-6 and 4-7 (for cables with poor packing fraction).

4.2.3 Star Coupler Throughput_ Losses

Another test, which was performed, measured the throughput losses of the star

coupler. One of the primary components of any future fiber optic data bus

system will be a star coupler. The star coupler performance may be judged by

the following criteria: (1) the throughput losses between any two ports, (2)

amount of reciprocity between ports, (3) the amount of difference between each

individual port's loss, and (4) the average throughput lose, for the star.

The test setup used to obtain the following data is shown in Figure 4-3c. For

this experiment we used a green krypton ion laser which would not bias the data.

This was not true in the first two system tests because of the high dB loss in

the fibers at this color of light. The cables with the lowest loss connectors
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i
TABLE 4-1

CONNECTOR LOSSES

Fiber Cable #5 is Fiber Cable
X in Figure	 la

Average Loss dB	 Cable #2 Cable #3 Cable #4 Cable #5
Side A 6.19 7.25 7.16 9.06
Side B 5.76 6.39 7.2 9.50

Variance
Side A 0.08 0.11 0.16 .22
Side B 0.05 0.08 0.06 0.00

Skewness
Side A 0.91 .15 -.2 -.1
Side B 1.01 -.07 -.48 0.03

TABLE4-2

'	 CONNECTOR LOSSES

Fiber Cable #3 is Fiber Cable
X in Figure la

Average Loss dB	 Cable 7#2 Cable #4 Cable #5 Cable #6
Side A 6.04 6.39 8.85 7.88
Side 6 5.42 6.99 9.61 7.05

Variance
Side A 0.01 0.02 0.26 0.01
Side B 0.13 0.06 0.10 0.06

Skewness
Side A -.29 .27 -.64 0.05
Side B .11 -.21 0.97 0.46

108

MCOONNE'LL DOUGLAS A£.TRONAUTICS COMPANY-ST. LOUIS EP/VISION



"	 Y

30	 60	 90	 120	 ISO	 180	 210	 240	 270	 300	 330
ROTRTION (DEGREES)

FIGURE 4-4

^ m
w w
0

uiM
yr

V
L N
Z NOu

U
ti

m
N

0

CIRRQ 0 :7 RIDE R

Li
w

r-% m
tf3 lD

Q
v

ul
un
0
J

a
O
F-
iJ
W LA

^ N'L
O
V

m

0	 30	 60	 90	 120	 ISO	 180	 210	 240	 270	 300	 330
ROTRTION (DEGREES)

FIGURE 4-5

109

N/C"0fVlW l-l- OOUGL.AS ASTRONAUT/CS COMPANY-ST. LOUNS O/V/S/ON

r

OPTICAL DIGITAL TECHNIQUES REPORT MDC E2052
FEBRUARY 1979



e- I n e. n & e. m f n r n

p
0

m

Li
ci

r,
to
ca

Ln
ut
o m

e:
ri
l—
V
W

Z

V to
m

OPTICAL DIGITAL TECHNIQUES 	 REPORT MDC E2052
FEBRUARY 1979

Q

N
m

,-, m
W m
4 —
v

Ul
C:) lA

J Qj

It
O
F-
V
W p
Z ^
L
O
V

N
m

m
m	 -ter —^

0	 30	 60	 90	 120	 ISO	 IN	 210	 240	 270	 300	 330

ROTRTION (DEGREES)
FIGURE 4-6

0	 30	 60	 90	 120	 ISO	 180	 210	 240	 270	 300	 330

ROTHTION (DEGREES) FIGURE 4-7

110

MCOON/VELL DOUGLAS ASTRONAUT/CS COMPANY-ST. LOU/S O/V/S/ON



OPTICAL DIGITAL TECHNIQUES 	 REPORT MDC E2052

T
	

FEBRUARY 1979

were chosen for this test, although in most star characterizations the connector

losses are not considered part of the throughput losses, but rather the excess

loss and the splitting loss (-10 Log n). However, it is felt that the throughput

loss should include the connector losses as this indicates how the star would

perform in an actual system.

The data was taken in the following manner: the cables in Figure 4-3c were con-

nected together without the star coupler and a reading was taken with the EG&G

550-1. The cables were then disconnected and the port which was to be illumi-

nated was connected to side B of cable A. Then side B of cable #2 was connected

to the port, under test and the value of power received at the EG&G 550-1 was

recorded. This procedure was repeated for each of the eight ports. This proce-

dure was repeated 5 times for each port tested, and the data was then reduced on

the computer. Table 4-3 contains the average of the measurements between any two

ports of the star, while Tables 4-4 and 4-5 show the variance and skewness of the

data. Table 4-6 contains the difference in dB between port I,J and port J,I.

This table indicated the degree of reciporcity achieved by the star complex.

Table 4-7 contains the total average star loss (23.10 dB) minus the average loss

per port. This table indicates the degree of uniformity of the loss in the star.

4.2.4 Bit Error Rate Measurement

One of the most revealing parameters as to how "good" the optical data bus system

is functioning is the Bit Error Rate (BER). A BER performance test was performed

on the ITT system. In order to obtain good error rate data for a low data rate

system many samples must be taken. Since a bit error rate type measurement was

also used to study how well the system performed under Electromagnetic Interfer-

ence (EMI), a brief discussion is given on the relationship between confidence

level and confidence interval of the data taken.

The theory which follows is based on a branch of estimation theory which is known

as population statistics. If small e is the true value of error rate and capital

E is the measured value then small e and capital E are related by (15)

e = E + 22
	

N	 2+, LE(1E) + 6 ^ 1/2
1	 N	 4N	

(4.1)
2

e 2 =	 1 + N
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TABLE 4-3
AVERAGE STAR THROUGH-PUT LOSS (OD)

*INDICATES PORT ILLUMMATED

PORT

1	 I
I

2
3

4

S

6

7

e

9

1	 2 3 4 S 6 1 .• 9

•	 22.67 21.89 22.01 21.68 22.92 22.00 23.69 21.06

23.62	 • 23.61 23.48 23.04 23.88 23.28 24.75 22.81

22.83	 23.09 • 22.88 22.94 23.06 22.65 24.02 22.73

22.19	 a	 2T.83 23.10 • 22.22 22.92 22.92 23.93 21.37

22.42	 22.62 22.51 22.54 • 22.6A 22.68 23.42 22.27

23.62	 23.45 23.11 22.85 22.68 • 22.64 24.37 22.80

22.82	 22.84 22.77 22.85 22.61 23.10 • 23.33 22.77

24.87	 25.60 24.70 24.78 24.86 25.19 24.44 • 24.22

22.75	 22.83 22.78 22.73 22.70 22.94 22.77 23.00 •

TABLE 4--4
VARIANCE Cr STAR LOSSES

*INDICATES PORT 1L1.U141HATED

PORT

1

2

3

4

5

6

7

e

9

1 2 3 4 5 6 7 8 9

• 0.02 0.11 0.14 0.03 0.35 0.05 0.15 0.14

0.11 • 0.04 0.00 0.18 0.31 0.15 0.35 0105

0.15 0.01 • 0.14 0.03 i	 0.02 0.44 0.04 0.20

0.20 O.C4 0.02 • 0.04 0.11 O.OD 0.00 0.07

0.17 0.02 0108 0103 • 0.01 0.00 0.02 0.21

0.07 0.05 0.20 0.12 -0.01 • 0.07 O.OG 0.06

0.00 0100 0100 0.00 0.00 0.06 • 0.09 0.00

0.02 0.05 0.00 0.02 0.00 0.07 0.01 • 0.03

0100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 •

TABLE 4-5
SKEWNESS IS STAR THROUGH-PUT LOSS

*INDICATES PORT ILLL041HATED

PORT 1 2 3 4 5 6 7 8 9

1 • 0.43 -0.10 0.04 -0.18 -0.47 -0.18 0.00 -0.26•

'	 2 -0.71 • -0.32 -0.86 0.94 -1,11 -0.19 0.25 0.81

3 -0.59 0.46 • -0.84 -0.55 0.36 -1.03 -0.21 -0.95

4 -0.82 0.12 -0.83 • 0.62 0.04 0.74 -0.43 -0.92

5 -1.14 -0.98 -1.11 -1.10 • 0.13 0.29 -0.17 -1.12

6 0.16 0.32 0.29 1.06 0.34 • 1.14 0.05 1.14

7 0.09 0.78	 I -0.67 0.78 0.23 0.01 • 0.20 0.00

8 0.00 -0.10 0.39 1.03 -0.62 -0.34 0.10 • -0.40
PPP	 -	 9 0.25 -0.25 0.64 -0.28 -0.41 -0.20 -0.41 -0.48 •
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TABLE 4-6

LOSS PORT (I.J) - LOSS POPT (J.I)

*INDICATES PORT ILLUMINATED

FORT

i

3

4

!

6

7

•

1 2 3 4 5

• -0.95 -0.94 -0.18 -0.7

0.95 • 0.52 0.65 0.4

0.94 -0.52 • -0.'22 0.4

0.18 -0.65 0.22 • -0.3

0.74 -0.42 -0.43 0.32 •

0.70 -0.43 0.05
{{	

-0.07 0.0

0.82 -0.44 0.12 j	 -0.07 0.1

1.18 0.85 0.68 0.96 1.4

1.70 0.01 0.05 1.36 0.4

6	 7	 0^	 9

4	 -0:70	 -0.82	 -1.18	 -1.70

2	 0.43	 0.44	 -0.85	 -0.01

3	 -0.05	 -0.12	 -0.68	 -0.05

2	 0107	 0.07	 -0.96	 -1.36

-0.04	 -0.13	 -1.44	 -0.43

<	 •	 -0.25'	 -0.82	 -0.14

3	 0.25	 •	 -1.11	 0.00

4	 0.82	 1.11	 •	 1.22

3	 0.14	 0.00	 -1.22	 •

TABLE4-7

LOSS PER PORT - AVERAGE LOSS OF STAR

*INDICATES PORT ILLUMINATED

PORT	 1	 2	 I	 3	 4	 I	 5	 6	 7	 8	 9

1	 •	 -0.43	 -1.21	 •1.09	 -1.42	 -0;18	 -1.10	 0.59	 -2.04

2	 0.52	 •	 0.51	 0.38	 -0.06	 0.78	 0.18	 1.65	 -0.28

3	 -0.27	 -0.01	 •	 -0.22	 -0.16	 -01"4	 -0.45	 0.92	 -0.37

4	 •0.91	 -0.27	 0.00	 •	 -0.88	 -0.78	 -0.18	 j	 0.72	 -1.73

6	 -0.68	 -0.46	 -0.59	 -0.56	 •	 -0.46	 -0.42	 0.32	 -0.83

6	 0.52	 0.35	 0.01	 -0.25	 -0.42	 •	 -0.25.	 i	 1.27	 -0.30

7	 -0.28	 -0.26	 -0.33	 -0.25	 -0.29	 0.00	 •	 (	 0.23	 -0.33

i	 1.77	 2.50	 1.60	 1.68	 1175 ,
	 ♦ 	 1	 1.34	 •	 1.12

!	 0.34	 -0.27	 0.32	 -0.37	 -0.40	 -0.16	 -0.33	 0.10	 •
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where

a - a confidence paramter

N = the number of samples taken

Equation 4.1 may be looked at as a population parameter given by two numbers

[the ttNo roots of equation 4.1] between when the true paramter (small e) may

be considered to lie. This interval is defined as a confidence interval.

The level of confidence that any particular measurement is within this confi-

dence interval is related to a. The a value is based on the assumption that

the errors occur in a Gaussian manner. In other words if a = 1 then a given

measurement has a 68.27% chance of being in the confidence interval. Similarly,

if o = 2 then a confidence level of 94.45% is obtained. Written in terms of

probability, Equation 4.1 may be expressed as p[e +<e<e_ 1E] = 0.9445 (given

0 = 2).

The length of -the confidence interval is strongly related to the number of

samples taken. By looking at Equation 4.1 it is seen that as N approaches

infinity, then small e approaches capital E, independent of the value of '1.

A plot of Equation 4.1, the interval length vs. number of samples for a 99.99`,"

confidence level (o = 3.87), is shown in Figure 4-8. The measured error rate

is varied as a parameter; the y-axis in Figure 4-8 is the interval length in

of true error rate, while the x-axis is the total number samples taken. Figure

4-8 may be employed to obtain the number of samples necessary to obtain the

given	 of interval length and be 99.99; confident in that data. For example,

if the desired measured error rate is to be within 10% of a true 10-4 error

rate (v.9 x 10 -4 < E ^ 1.1 x 10-4 ) then from Figure 4-8 6 x 10 8 samples must be

taken. Figure 4-8 also shows that as the error rate becomes smaller the number

of samples that must be taken for any given confidence length must increase.

The above information was used to obtain the bit error data on the ITT data bus

system. A block diagram of the BER measurement system is shown in Figure 4-9.

The measurement system consisteb of a Bit Error Rate test set (Data Comm. 10 11),

a variable optical attenuator, an EG&G 550-1 optical power meter, a four-channel

oscilloscope, a variable (crystal controlled) timer and a HP counter.

Data was taken in the following way. The HP counter was set on the one-second

gate time. The Bit Error Rate test set was set on a 1 Mbps Manchester-Bi-Phase

code. The optical attenuator was adjusted by observing the error rate on the
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HP counter. This error rate was adjusted to the approximate desired value.

The timer was then adjusted to the desired length of time by using the infor-

mation given in Figure 4-8. The counter was set in the accumulate mode. The

timer was started and the errors counted. After a given error rate measure-

ment the optical power was measured by the EG&G 550-1 power meter.

Using this technique the curve in Figure 4-10 was generated. In this figure

a plot of average optical signal power in dBm as a function of error rate is

given.

4.3 EMI TESTS

4.3.1 Radiation Environment

One of the more troublesome areas in avionics data bus systems has been Electro-

magnetic Interference (EMI). The origin and amount of EMI present depends on

the particular system; however, even small amounts of RF energy (as little as

9 mW) may cause integrated circuit operation to be upset. In general, to pro-

tect against EMI, shielding must be added thus the syste, ii weight increases.

This increased weight, in the case of Space Shuttle, means reduced payload

capacity. The RF field strengths that Shuttle is designed to operate in are

on the order of 2V/m. However, in some areas on Shuttle the field strengths

may be as high as 100V/m. In fact, ground based radars can generate field

intensity of much greater than 2V/m.

How integrated circuits respond to EMI depends on what kind of circuit it is

(linear or digital) and what the RF power levels are. An example of the inter-

ference that may occur in digital integrated circuits is shown in Figure 4-11.

This figure illustrates the output voltage of a TTL 7400 NAND date as RF power

is conducted into the output terminal at 220 MHz. The output voltage, which

is approximately 0.3 volt (a low state) in the absence of RF power, is seen to

increase as RF power enters the output terminal. When the output voltage

exceeds 0.8 volt, succeeding stages may not correctly recognize the low state

voltage and logic errors may result. When the output voltage exceeds 2.0 volts,

succeeding stages will interpret the output voltage as a high state, and logic

errors are certain to occur. In this example, an RF power of 6 mW is shown to

cause state errors; however, state errors have been observed to occur with as

little as 9 mW of RF power.
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Interference in 7400 NAND Gate. RF Enters Output at 220 MHz.
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Linear circuits are more sensitive to voltage offsets caused by RF energy

than digital circuits, where logic states are defined in terms of voltage

ranges. The interference effects generally decrease with increasing fre-

quency of the interfering signal. As an example of interference in linear

integrated circuits, Figure 4-12 shows the output voltage from ten tests of

amplifiers containing 741 op amps. The circuit is an inverting amplifier

with a gain of 10 and an input voltage of 0.5 volt. Microwave energy con-

ducted into the op amp inverting input terminal at 3 GHz causes the output

voltage to deviate from its normal value of -5 volts. The output voltage

decreases until it saturates at -9 volts with 5 mW of RF power. Noticeable

output voltage changes occur at an RF power of only 0.1 mW. It is interest-

ing to note that at approximately 100 mW, the output voltage switches to a

positive saturation voltage of about +0 volt.

If the interfering RF signal is modulated, the interference effect that is

seen is also modulated. Essentially, the interfering signal is envelope

detected by the semiconductor junctions in the integrated circuit. Figure

4-13 illustrates the interference that would occur in a linear circuit due

to a pulsed RF signal. The circuit is an inverting amplifier with a gain of

one. The input is -0.5 volt, so the expected output voltage is +0.5 volt.

RF energy conducted into the op amp input terminal causes an offset voltage

to appear at the op amp input which, through the feedback network, results

in offsets at the amplifier output. Figure 4-13 illustrates that when the

interfering signal is modulated the interference effect seen in the output

voltage is modulated with the envelope of the RF signal.

In these examples, the interference effect was temporary and disappeared when

the RF signal was removed. If the RF power level is high enough, the effect

becomes permanent, or the device may not work at all. This happens when irre-

versible damage occurs within the integrated circuit. This effect is usual.

thermal in nature.

The basic situation that is representative of a typical EMI problem is shown

in Figure 4-14. A system consisting of several electronic "black boxes" with

interconnecting cables is contained within a system outer enclosure (skin).

Electromagnetic radiation incident upon the system outer enclosure couples
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Typical Interference Effects Due to Modulation of the Interfering RF Signal
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internal EM fields induce RF

conduct them into the elec-

such as integrated circuits

y the semiconductor devices,

that are large enough to

through apertures into the system interior. The

voltages on the system interconnect cables which

tronic "black boxes" where semiconductor devices

are located. The RF voltages can be rectified b,

and offset voltages and currents may be produced

upset the operation of the electronic circuits.

The amount of power an unshielded wire or cable will pick up from this environ-

ment depends on such variables as frequency, aspect angle, terminating impedance,

etc. One method for determining the maximum amount an unshielded wire will pick

up is given by the formula

P= 0.13 X2 P
d ,
	 (4.2)

where P is the maximum pickup power, ^ is the wavelength of interest, and P d is

the power density. Experimental data supports the use of this relationship for

frequencies greater than 100 MHz. Using this formula, the maximum amount of

power expected on system wiring can be calculated from the environment level.

The expression in Equation 4.2 is based on the power receive by a half-wave

dipole, and is only an approximation for unshielded wires.

There are two difficulties with using the half-wave dipole expresstion that

must be borne in mind, however. The first is that it is known that wires can

be made to exhibit greater effective apertures than given by the half-wave

dipole expression due to specific deisgn and/or fortuitous focussing effects

due to system structure (consider the increased pickup on a short dipole

possible when a large parabolic reflector is properly located nearby). Most

system configurations are not expected to produce such enhancement effects,

however, so it seems unreasonable to do a worst-case system hardening design

based upon such possibilities. Such possibilities strengthen the rationale

for checking a system hardening design in simulation environments, though.

The second difficulty with using the half-wave dipole expression comes when it

is desired to extrapolate the function to lower frequencies where the inverse

square frequency dependence leads to enormous effective apertures which are

not observed in practice. The paradox can be resolved by recalling that the
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half-wave dipole e,

(Thevenin) driving

^ r approaches zero(9)

losses counter the

constant amount of

Kpression is for a matched half-wave dipole. The equivalent

impedance of the dipole approaches zero as the frequency

so that, for a particular load on a cable, the mismatch

increasing aperture effects and the load will receive a

power, in accordance with common experience.

Based on the above information it appears that fiber optic systems should not

have this half-wave dipole pickup problem. The fact that the wires are removed

between the black boxes in Figure 4-14 means that the total EMI levels should

be reduced as the unshielded bus wires also act at transmitting antennas.

Removal of the data bus wires and replacement with fiber optics also helps to

isolate the individual black box's ground systems, thus eliminating ground loops.

If the data bus system is truly isolated by the fibers than the only way EMI can

penetrate the system is where the fiber interfaces with the detector or where

the shielding integrity has been violated; however, these penetrations can be

made to have as much EMI isolation as desired by employing a waveguide below

cutoff or a lossy waveguide.

4.3.2 Waveguide Below Cutoff

If a penetration is required in one of the black boxes shown in Figure 4-14 they

can be made with little or no effect to the EMI shielding by properly construct-

ing the penetration or aperture such that the EMI will be attenuated to the

value where it will not have any effect on the electronics. It is assumed in

the analysis which follows that the aperture or waveguide is cylindrical and

made of metal. The output at the end of aperture or waveguide depends on the

frequency the system will accept (cutoff) and the attenuation/meter in the guide.

The cutoff frequency is defined as that frequency for a waveguide below which

the EM wave will not be transmitted without being attenuated. This attenuation

is not caused by the losses at the guide walls but because of reflections, i.e.

the wavelength of the electromagnetic wave is too big to fit through the aperture

or guide opening. The cutoff frequency is a function of the mode of electromag-

netic radiation that meets boundary conditions in the guide (K NR ), the diameter

of the aperture or guide opening D, and the index of refraction of the material

in the guide n. The equation for fC is

123

MCOONNELL. DOUGLAS ASTRONAUTICS COMPANY-ST. LOUIS O/VISION



n	 KNR
fC =	 TrcD

(4.3)

r ,

OPTICAL DIGITAL TECHNI©LIES 	 REPORT MDC E2052
FEBRUARY 1979

11

1	 ..

whe re
	

c = 3 x 108m/c

The value of KNR is dependent on the mode of radiation that can be supported

by the guide. A plot of various values of K NR are given in Figure 4-15, along

with the modes of radiation, i.e., TE ij on TMij . From Figure 4-15 , worst-case

analysis will occur (lowest value of F C ) if a value of KNR of 1.84 is used (for

-

	

	 TEll which is the dominate mode). The index of glass may be assumed to be

n=1.5.

The amount of attenuation/meter in the

of wavelength. In the guide, however,

frequency (f) outside the guide. The

caused by reflection

a,=
2Tr8. 69 [n f 2 -

c	 c

guide caused by reflections is a function

this may be expressed as a function of

loss in dB/meter for a given frequency

fo 2 ] 
1/2 dB/m	 (4.4)

The above is the attenuation in dB/-meter cased by reflections in the guide due

_.	 to the fact that the guide cannot support the wavelength of radiation because

it is greater than the cutoff wavelength of the guide.

There is also a loss mechanism in the guide which is due to the attenuation

caused by th.e walls having finite conductivity. This mechanism will attenuate

waves above cutoff according to the following relationship 14)
(!) 2

17.4 R
e/Zc	 fC	 +	 22	 2

(K NR )- n

D R 
e 
Z 
d 

[1 - (fc/f)2] 112

where	 ReZc = Trp/

ReZd = 377

p = permeability of waveguide walls H/m

= conductivity of waveguide walls Q/m

D = diameter of waveguide meters

n = index of refraction of material inside guide
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not 3of V" 4A,) =0;

J" (hr) = max
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Frequency relative to cut off for dominant mode (TE Ir)

FIGURE 4-15
Possible TE and TM modes in a hollow cylindrical wavc^nnda as a function of
frequency. (After C-T Tai.) At 3 times the cutoff frequern,; 'jr the TE, I rnode
there are 9 modes which will pass (see text paragraph preceding Sec. 13-17) and
one mode CI'N1n:) at cutoff.

As in the rectangular guide, there are three conditions:

! At low frequencies, co small, y real, glide opaque (wave does not propagate).
2 At an intermediate frequency,w intermediate,y = 0, transition condition (cutoff).
3 At high frequencies, w large, y imaginary, guide transparent (wave propagates).

Putting y = 0 in (20), we find for the cutoff frequency and cutoff warelength

1 "r	 (Hz)	 (21)
27t-,/—.Uc ro

2nro	
(m)	 (22)

er

(KRAUS & rARVER)

FIGURE 4-15
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From Equation 4.5 it is seen that in order to obtain the highest attenuation/

meter, it would be best to use a very poor conductor for the waveguide with a

high permeability.

It is generally accepted that electronic semiconductor equipment does not respond

to electromagnetic frequencies much higher than 10 GHz. Most of the radiation

(EMI) that would be present on a data bus system would be much lower than this

and probably no higher than a few 10's of megaherzt. Also, the amount of radia-

tion transmitted by the black box which would increase the EMI environment will

be reduced if the aperture is designed such that it will not pass frequencies

above the fundamental data rate of the bus system. Unfortunately, many elec-

tronic systems must be vented to the ambient environment for cooling; hence, the

system shielding must be violated for this purpose. If a single fiber data bus

system is used then the single fiber connector (if it is metal) will act as a

waveguide below cutoff for most frequencies of interest. This may be seen in

Figure 4-16 where the attenuation in dB/m is plotted as a function at EMI fre-

quency for a fiber with a 300 m cone/cladding diameter. This figure is just a

plot of Equation 4.4 and shows that the system is almost inherently protected

from outside interference. The second plot on Figure 4-16 indicates that if a

small aperture such as 3 mm hole for air ventilation is used then a lossy wave-

guide may have to be employed to protect the system from EMI.

When considering lossy waveguide type of protection, care must be taken to

insure that the low loss mode is considered along with the dominate mode that

the waveguide can support. A plot of the dBm attenuation as frequency is shown

in Figure 4-17 where the loss for the TE 11 and TE01 are shown for a 3 mm hole

in the shielding. In this particular example, the system can be protected

almost to any desired level of dB loss. Note also the values of parameters

shown are quite conservative, and in general, the loss in the waveguide could

be increased.

From this analysis and the information given in Section 4.3.1 it is fairly

obvious that a fiber optic data bus system should be quite EMI hard. To verify

this, the ITT data bus system was subjected to EMI and liqhtning tests.
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4.3.3 EMI Susceptibility Measurement Criterion

The electromagnetic interference susceptibility tests were performed over the

frequency range of 50 KHz to 10 GHz at levels as high as 20V/m. The tests were

performed over two separate frequency ranges (low range and high range). The

low range was between 50 KHz to 200 MHz and used a parallel plate capacitor

while the high range, 200 MHz to 10 GHz, was performed in a Translational Elec-

tromagnetic Environment Chamber (TEMEC). Both of the susceptibility tests were

performed while monitoring the bit error rate. Monitoring the BER of the fiber

optic data bus system was believed to be the most sensitive measurement as to

how well the bus was fairing under the EMI.

The criterion which was used to judge whether the EMI affected the BER was

based on the theory given in Section 4.2.4. The unradiated fiber optic data

bus system's BER was set by adjusting the optical power level. The system was

then irradiated with a given RF field and the error rate recorded. The theory

presented in Section 4.2.4 shows that as the total number of samples increases

the smaller the confidence interval length becomes. As the confidence level

shortens, the amount of time required to obtain the BER measurement increase;

for example, if a 10% interval length is required at a 10 -4 BER then from

Figure 4-8, approximately 10 8 samples must be taken. This amounts to a total

data accumulation time of 10 8/106 = 100 seconds as the BER test would be per-

formed at 1 Mbs data rate. If a smaller confidence length, of, say, 2.5% at a

10-4 BER is required then from Figure 4-8 on the order of 10 9 samples are

needed or each run would take 1000 seconds. The number of BER measurements

that were actually performed were on the order of 300-400. This implied that

the small confidence level measurement should not be used.

The theory presented in Section 4.2.4 was based on the assumption that the

underlying statistics ,Here, at best stationary, and at worst, wide-sense sta-

tionary in time and temperature. Since the receiver consisted of an automatic

gai ► ; controlled APD configuration these assumptions would not be valid unless

a certain amount of care was taken in the experiment. To make sure that the

system was behaving as expected, a preirradiated test was performed. This test

was performed by placing the fiber optic data bus system in a temperature con-

trolled electromagnetic screen room (Faraday Chamber). The optical power was

adjusted to give approximately a 10 -4 error rate. Then a time history of the
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error rate was generated for two different sample time intervals. This data

is shown in Figure 4-19, where the screen room has been cooling for approxi-

mately 6000 seconds. Th ,i data rate of the bit error test set was 1 Mb/s.

The sample intervals shown in Figure 4-18 are 10 8 samples and 109 samples;

also shown iii the figure are the 10% interval levels for the 108 samples

and 25 interval level for the 10 9 samples.

The initial data point was an error rate of 108.0 x 10 -6 ; the next five data

points taken were of 100 seconds. These points lie in the accepted band of

statistical fluctuations that are predicted by the theory given in Section

4.2.4. However, the next 4 data points (sample size 10 9 ) can be seen from

Figure 4-18 to clearly fall outside the 2% confidence level. The reason

being, there is some drift of optical output power of ILD and gain of the APD

with temperature and time, thus causing the statistics to be nonstationary.

By examining Figure 4-18 it is clear that if 100-second sample size is used

to measure the error rate then the fiber system remains stable enough so that

a few thousand seconds can pass before the mean of the error rate drifts out-

side the confidence interval length as predicted by Equation 4.1. Hence, the

BER of the system may be used to monitor the effects that the RF fields have

on the system.

The bad aspects of using this cri^,erion to obtain information on irradiated

systems is that it is binary in nature. As the number of samples increases

then binary nature of the measurement disappears and goes toward a continum;

however, as the information presented in Figure 4-18 clearly shows the data

bus system did not have the stability to go much below a 10% confidence inter-

val length. It should be pointed out that the BER measurement is a much more

sensitive indicator as to how the system is performing under radiation than

many of the standard EMI measurement techniques. The reason for this is that

the system is measured in a dynamic fashion and any upset will propagate

through the entire system.

4.3.4 Low Radio Frequency Electromagnetic Interference Test

The low frequency EMI test was performed in a temperature-controlled screen

room with the fiber optic data link between a parallel plate capacitor. The
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frequency of the electromagnetic field was varied between 50 KHz and 200 MHz.

A block diagram of the set is shown in Figure 4-19. The screen room tempera-

ture was continuously maintained at a 50°C value. The RF generator, BER test

set, and the optical attenuator were kept outside the screen room. All of the

electrical connections were made through shielded coaxial cable and fed through

the screen room wall via BNC connectors. The fiber optic cable was also fed

M «

	

	 out of the screen room with a continuous variable optical attenuator placed as

shown in Figure 4-19. The optical attenuator was used to set the desired

preirradiated error rate value. The fiber optic link was placed between the

parallel plate cap.

The fiber optic link had cooling holes on the side cF the metal boxes of the

transmitter and receiver. The unit which was an off-the-shelf item from ITT

was in no way designed or built to be an EMI shielded system. There was some

question as to what the test rationale should be: should the system be made

EMI hard, then tested, or should the system be tested, and a susceptibility

plot be made as a function of frequency and level of field required to affect

it. The second rationale was the one which was followed. It was felt that a

plot of susceptibility vs. frequency would yield the most information, i.e.,

this plot would indicate the increased shielding necessary to make the system

hard. If these values were small then there would be little concern for

further fiber optic link as far as EMI was concerned. On the other hand, if

the approach of shielding first, then testing was used, in reality a measure-

ment of the ability to shield the system would result.

The fiber optic transmitter and receiver were orientated such that the cooling

holes were perpendicular to the direction of the polarization of the field

inside the parallel plate capacitor. Since it was not known how much shielding

the system did provide, a rather slow and a laborious technique had to be

applied at first. The approach was to obtain nonradiated BER measurements at

the given frequency, OV/m. The RF generator was adjusted to 5 V/m and another

BER measurement made. This procedure was repeated at the given frequency at

10 V/m and 20 V/m. After this measurement was made, another OV/m BER measure-

ment was made to insure no permanent radiation damage occurred to the system.

The maximum value of 20 V/m was used as this yielded a power density of somewhat

slightly greater than 1 watt/m, a power density at which junction damage might

occur.	
133

MCOONNE'LL DOUGLAS ASTRONAUTICS COMPANY-ST. LOUIS DIVISION

F e,



OPTICAL DIGITAL TECHNIQUES
	

REPORT MDC E2052
FEBRUARY 1979

These five measurements (0, 5, 10, 20 OV/m) were repeated at 75, 100, 150, 200,

1280, 1500, 2000 KHz. During the test, with the fiber optic transmitter and

receiver perpendicular to the field, no effects of the radiation occurred.

This is shown in Figure 4-20 where the percent change BER as a function of

radiation frequency. The percent change is computed using the 20 V/m value and

OV/m of BER. In order for the system to have been affected, a radiated value

of plus 10°o would have to occur in Figure 4-20. This experiment was repeated

with the fiber optic transmitter and receiver aligned parallel to the direction

of polarization of the field inside the capacitor. The results of this test are

shown in Figure 4-21. Here again, it is evident that the radiation of levels up

to 20 V/m had no effect on the bit error rate. To evaluate the system at higher

frequency the fiber data bus had to be placed in the TEMEC and irradiated.

4.3.5 High Radio Frequency Electromagnetic Interference Test

The results of the low RF EMI tests were not surprising since the size of the

apertures used in the transmitter and receiver for cooling were on the order of

2 to 3 mm. This implies that the cutoff wavelength (computed by using Equation

4.3 and fa = c/n KNR = 1.84) is 1.02 x 10-2 meters which corresponds to a cutoff

frequency of 3.92 x 1010 Hertz. The experimental setup, used to radiate the

fiber bus system, had to be changed for frequencies of much greater than 200 MHz

because the losses in the electrical cable to the capacitor and in the capacitor

itself became extreme at higher frequencies.

There is also some question as to how valid the results are which are given in

Section 4.3.3. The interaction of the electromagnetic interference with the

fiber system was only performed in two different orientations and thus of limited

value. The orientations chosen should have been the two in which the fiber optic

system was most susceptible to EMI; however, there may have been a given position

in which the system became resonance.

To circumvent this type of problem in EMI testing, M DAC developed the Transla-

tional Electromagnetic Environmental Chamber (TEMEC). The TEMEC is nothing more

than a large metal box (8' x 10' x 25') in which electromagnetic radiation is

injected by are antenna. Inside the screen room the radiation mode is stirred by

a large paddle wheel. This paddle wheel is driven by a 1200-discrete-step motor.

The position of the wheel may be controlled via manual control or by a computer.
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y,	 The fiber optic data bus system was placed inside the TEMEC as shown in

Figure 4-22. The position that the paddle wheel is, at any particular

moment, will affect the amount of radiation that reaches the fiber optic

data bus system.

The test rati",nale was different for the high frequency test than that of the

low frequency test. In the low frequency test the relative position of the

fiber syster, was constant, the error rate was monitored and this value wes

compared with unradiated value. By comparing these two numbers, a judoem2nt

was made on how well the system performed under radiation. The high frequency

test was performed by taking a base sample before each different frequency

measurement. This base sample consisted of taking 100 BER measurements with

no radiation on the fiber optic data bus. Each BER measurement consisted of

107 samples or a duration of 10 seconds, making the total data accumulation

time on the order of 1000 seconds (ti '17 minutes). These measurements gave an

approximation of the underlying probability density function. From this infor-

mation the mean, standard deviation, and coefficient of skew of the data were

computed. The density function was then integrated and an accumulated distri-

bution generated of which a typical example is shown in Figure 4-23. After

this curve was generated, the system was irradiated with a given electric field

strength. The mode stirrer was controlled by the computer and adjusted to a

new position every 10 seconds. The computer recorded the BER as a function of

mode stirrer position. At the end of a run this information was stored on a

magnetic tape. This stored information was processed by programs on the HP

9830. The mean, standard deviation, coefficient of skew, and the distribution

were computed and compared for every given frequency at the radiated and unrad-

iated levels. This information was then used to determine the effect of the

high frequency EMI. Although it was not strictly important from an EMI study

standpoint, an experiment was performed to determine the nature of the under-

lying probability density function for the BER. If this density function turns

out to be Gaussian in nature then the distribution may be completely expressed

by the mean and the variance.

This experiment was performed by placing the fiber optic data bus system in

the TEMEC, closing the door, and setting a BER. The system was allowed to

run overnight with the computer monitoring the BER in 10-second increments.
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During the run, a total of 32,000 samples were taken. A plot of the normal-

ized density function ( *) and distribution function (-) are shown in Figure
..	

4-24.	 The even order centralized moments are given by ( )

N
(X i - u) n P(X i ) = 1.3.5...(M-1)Qm 	 (4.6)

i=1

where u = mean

M2 = even value integer

a2 = variance

P(X i ) = discrete distribution

for a Gaussian variable.

NOTE: From the left-hand side of Equation 4.6 and the odd order centralized

moments are zero.

The computed values using the left-hand side of Equation 4.6 are compared with

the right-hand side of Equation 4.6 below.

N
(X i - u)m P(X i )	 1:3:5 ..... (M-1)om

i=1

	

m = 1	 -5.784 x 10
-16	

0.0

	

2	 2.666 x 10-10	 2.666 x 10-10

	

3	 -1.566 x 10
-16	

0.0

	

4	 1.899 x 10
-19	

2.132 x 10-19

	

5	 1.922 x 10-25	 0.0

	

6	 2.035 x 10 -28	 2.842 x 10-23

	

7	 -2.045 x 10
-34	

0.0

`	 8	 2.783 x 10
-37	

5.304 x 10-37

	

9	 -2.090 x 10 -43	 0.0

	

10	 4.494 x 10 -46	 1.2727 x 10-45

These moments give a fairly good indication that the BER curve is governed by

a Gaussian distribution. The reason that the odd order moments are not

strictly zero is caused by the fact that the data has some small value of
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skew (-0.0359), although the odd order moment values are, in gel .-al, many

orders of magnitude below the even order moments.

..	 Since the underlying BER statistics are reasonably close to Gaussian, the

process may be completely described if the mean and the standard deviation

are known. Using this information the following data collection technique

was employed. For every frequency an unradiated sample consisting of 100

ten-second BER measurements were made. These samples were then used to

compute the mean, standard deviation, and coefficient of skew. The unrad-

iated distribution function was also plotted. The system was radiated at

20 V/m and the statistics examined. If there was any radical change, the

system was radiated at 10 V/m and these statistics once again examined.

The radiation was reduced until no noticeable change was observed in the

mean, the standard deviation, or the skew.

The results of these tests are shown in Figures 4-25, 4-26, and 4-27. In

Figure 4-25 the absolute percent change of unradiated mean BER to 20 V/m

radiated mean BER is shown (dotted line); on Figure 4-26 is the absolute

percent change of unradiated standard deviation to the 20 V/m radiated

standard deviation (dotted line); on Figure 4-27 the absolute percent change

in unradiated coefficient of skew to the 20 V/m radiated coefficient of skew

(dotted line). Also shown on each figure is the 20 01.; change line which is the

amount of change required by the theory in Section 2.18 for the system to

be affected by the radiation. Figure 4-25 indicates that the average mean

BER was unaffected; however, Figures 4-26 and 4-27 indicate the s ystem was

affected by the 20 V/m radiation at frequencies of 0.2, 0.8, 1.0, 2.4, and

3.2 GHz. The data was again plotted on Figures 4-28, 4-29 , and 4-30 with

the affected radiation frequencies replaced by the 10 V/m radiated values.

This information is shown in the figures by the solid line. When these 10 V/m

values were plotted the system appeared to be unaffected by the radiation.

The reason that the mean BER, which is shown in Figure 4-25 for both the 10

and 20 V/m cases, did not show any radiation effects and may be understood by

observing the plots of the distribution function for the test frequency of

800 MHz for the OV/m case (Figure 4-28), the 20 V/m case (Figure 4-29 and the

10 V/m case (Figure 4-30). These figures represent typical data runs for

frequencies which were affected by the radiation. In Figure 4-29, the 20 V/m

141

E	 MCOONNELL DOUGLAS ASTRONAUT/CS COMPANY-ST. LOUIS O/V/S/ON
4

Y

F



r 10'-
Q

o:
O

w 101
F
m
z
Qw
Luw 100
C7
z
2U
* 10-1

20% CHANGE

+	 OPTICAL DIGITAL TECHNIQUES	 REPORT MDC E2052
FaRUARY 1979

NASA FIBER OPTIC EMI STUDY

103

•••••••••• 20 V/m
10 V/m . 20 V/m

li

10-2 L
10-1
	

100
	

101
RADIATION FREQUENCY GHz

FIGURE 4-25

142

MC"alwjwFLL OOUGL.AS ASTRO/MAUT/CS I:OMPAMY-ST. /.OU/S V/V/S/ON



10"
w
YN
u-
0
z	 10w
U
U.
LLw
O
L)
w	 101
(D
z
a
x
L)
zg 10-

i+

OPTICAL DIGITAL TECHNIQUES
	

REPORT MDC EM2
FEBRUARY 1979

NASA FIBER OPTIC EMI STUDY
103

102

z
O
Qi

101>w
0

Lu
Lu

100za_
U
3E

10-1

20 V/m
10V/m -20 Wm

10-2 `_
10-1
	

10p
	

101
RADIATION FREQUENCY GHz

FIGURE 4-26

NASA FIBER OPTIC EMI STUDY
103

•• 20 V/m
• 10 V/m - 20 V/m

+	 .4:	 20% CHANGE

r

10- 2 1 -TI It---i---T-iT
10- 1	100	 101

RADIATION FREQUENCY GHz
FIGURE 4-27

143
MCOnNNELL dOUGLAS ASTRONAUT/CS COMPANY-ST. LOU/S d/V/S/ON

••	 ••••

r



OPTICAL DIGITAL TECHNIQUES	 REPORT MDC E2052
FEBRUARY 1979

i

NRSR/JSC FIBER OPTIC EMI TEST 39

Ln
W
J
tL

o

Ln

(L
3	

MERN ERROR RRTEw 103.429	 *E-6

W	 ST.DEV.w 15.05499814	 *E-6
to 	 OF SKENw-8.671534988

2
	

TEST FREB. Q 8	 6H2

J	
FIELD 57REN6TH+ 0	 V/M

QM	
ORTE 4/ 19 /78

H
roN

0

•

80	 90	 100	 110	 130	 138	 140	 150	 168	 179	 180

ERROR RATE *E-6

FIGURE 4-28

144

MCOONNELL DOUGLAS ASTRONAUT/CS COMPANY-ST. LOU/S O/V/S/ON



,.

OPTICAL DIGITAL TECHNIQUES 	 REPORT MDC E2052
FEBRUARY 1979

NRSR/JSC FIBER OPTIC EMI TEST 48

MERN ERROR RRTEa IIS.9S3	 *E-6

ST.DEV.- 24.46336919 RE-6

COEFF. OF SKEW: 8.MS9196734

TEST FREM. w 3.2 6H2

FIELD 57RENSTHw 2e V/M

DRTE 4/ 18 /79

98	 lice	 Ile	 120	 131	 143	 ISO	 168	 178	 181

ERROR RRTE *E-E

FIGURE 4-29

Ln 6
W
J
CLt ^o
m
Ln

O

m
W
to
r-Z F
Z

J
2 0
O
L-

mN

0

0

Be

145

MCOnNNE'LL DOUGLAS ASTRONAUT/CS COMPANY-ST. LOU/S O/V/S/ON



OPTICAL DIGITAL TECHNIQUES	 REPORT MDC E2052•R
FEBRUARY 1979

case, the mean remains fairly close to the unradiated value (103.429) while

the standard deviation has changed by a factor of almost 2 and coefficient

of skew has decreased by 150. The distribution clearly indicates what is

happening as the paddle wheel inside the TEMEC is changed in position, the

system becomes more sensitive to the radiation at a certain position. At

these positions the BER changes (generally toward higher values), the system

sensitivity however is not a continum with paddle wheel position but exhibits

quite a discrete nature. The mean error rate is not particularly sensitive

to a few large excursions from the average value which are caused by the rota-

tional position of the wheel. However, the standard deviation and the coeffi-

cient of skew (which is proportional to the third order central moment) are

very sensitive to these few excursions taken by the BER, as the effect is

squared in the standard deviation case and cubed in the coefficient of skew

case.

Hence, these higher order statistics keep track of how well the system is

doing. From Figure 4-30 it is seen that the system returns to normal when

the radiation levels are dropped by 3 dB below the 20 V/m figure. The fact

that the unshielded ITT system could be made EMI hard in this way indicated

that to protect the system, at most, 3 dB of shielding would have to be added.

The levels that the system was protected to were 20 times greater than

MIL-461 levels (1 V/m) and ten times greater than those imposed by Space

Shuttle (2 V/m).

4.4 LIGHTNING TEST

The orbiter is designed to be an all-weather vehicle which would imply that it

would have to operate in a scenario where lightning was present. The effects

that lightning have on the data bus system in the orbiter are critical as it

is a fly-by-wire vehicle. The system was tested to determine whether the ITT

fiber optic digital data bus was susceptible to a li ghtninq-induced upset.

The test environment was chosen as the most probable lightning threat that would

be encountered on the orbiter. An aluminum cylinder was chosen to represent an
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airframe structure in which a fiber optic system may operate. This cylinder 	
3

was eight feet long and fourteen inches in diameter with the two ends capped,
	 i

and was constructed of 0.040-inch T6-aluminum with a 12-inch square hole

located twelve inches from one end. The square aperture was allowed to remain

open during all testing to simulate an open airframe aperture and thus allow

the lightning test radiation to enter the fiber optic mounting area and possibly

affect the system. A 1.6 x 10 6 volt high-voltage pulse generator was used to

generate the simulated lightning strike attack and resultant high-voltage fields.

The fiber optic unit set was mounted in the test cylinder with both units being

near the open aperture (within 6 inches). The mounting of the units near the

open aperture was done to simulate the effects of radiation that could be

encountered through the aperture of a flight vehicle. A signal strength greater

than 200 volts per meter was estimated to be at the location of the fiber optic

units in the test cylinder. (This minimum signal level is estimated because

field measurements in the confined area are altered due to the measurement

devices.)

A second fiber optic data transmitter and receiver set was used to send the

output of the test fiber optic unit to the screen room for signal evaluation.

This output signal was monitored by a Bit Error Test.

The cylinder, with its fiber optic electronics, was mounted on insulating stands

so that the cylinder ran parallel to and twenty-two inches above the floor. A

high-voltage arc (1.6 x 10 6 volts) was generated so that the arc attached to the

tube near the open aperture (within 18") completed the path to ground.

t

This high-voltage pulse was applied to the test cylinder ten times the frequency

of about one pulse every two minutes. During these tests no errors were detected

on the bit error detector.

No errors were detected at any time during the simulated lightning strike. This

indicated that the tested fiber optic digital data system was immune to transient

upsets as a result of strong field radiation.

r
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APPENDIX A. REQUIREMENTS DEFINITION DOCUMENT

1. SPACE SHUTTLE DATA BUS

1.1 General Description - The Space Shuttle data bus system provides digital data

paths between the General Purpose Computers (CPC's) and the Shuttle subsystems and

between the Pulse Code Modulation (PCM) Master Unit and the remote Multiplexer-

Demultiplexer (MDM) Units. The bus is a half-duplex command response party line

system utilizing time division multiplexing techniques. Each data bus is capable

of providing data paths to and from the CPC's and the Shuttle subsystems.

Figure A-1 is illustrative of the data bus configuration. Each GPC, through its

Input/Output Processor (IOP) section, is capable of controlling or monitoring any

of the data buses with which it interfaces. On each bus, one computer is in control

of the bus while the remaining four computers monitor vehicle system performance.

1.2 Data Characteristics - The digital data stream is	 a	 1 megabit per second	 (MBPS)

PCM format with a bi-polar Manchester II coding.	 A logic "one"	 is transmitted as

^,	 a positive pulse followed by a negative pulse. A logic "zero" is transmitted by a

negative pulse followed by a positive pulse. This is shown in Figure A-2. The word

size is 28 bit periods. A 5.5 + 0.5u sec dead time exists between words. The

first 3 bit positions are used for word sync. The word sync is the nonvalid

Manchester code shown in Figure A-3. The remaining bits are the valid Manchester

code previously described.

1.3 Terminals - The number of terminal (CPC's or Bus Terminal Units (BTU's)) on

each data bus may range from a minimum of five to a maximum of twenty. In relation-

ship to the GPC in control of the bus, the terminals need not be symmetrically

located along the bus.

Al
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1.4 Length - The length of the data bus is between 4.5 meters (15 feet) and 106

meters (350 feet). The GPC"s and BTU's are connected to the bus by data bus stubs.

The number of stubs on the bus may range between 5 and 20. The length of each

stub is betwen 0.3 meters (1 foot) and 6 meters (20 feet).

2. SYSTEM PERFORMANCE

The optical data bus system will be compatible with the data described in

Section 1. The bit error rate (BER) of the optical system shall be better than one

part in 1 x 108 for detection at a sing le-to-noise ratio of plus 14 dB or higher.

Figure A-4A illustrates the optical data bus in a linear bus configuration,

Figure A-4B illustrates the bus in a radial bus configuration. The electro-optical

components in the data bus system include transmitters, receivers, cables,

connectors, couplers, and repeaters. The specific requirements for these components

are presented in the following sections,

A2
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3.	 CABLES

5.1 Number of fibers - Multiple

3.2 Number of unbroken fibers - 95% of 3.1

3.3 Packing fraction - >.80

3.4 Numerical aperature - >.60

3.5 Optical attenuation - <.35 dB/m (1.1 dB/ft) at 800 nm to 950 nm

3.6 Pulse broadening -->.2 nsec/m (.66 nsec/ft)

3.7 Core Index of refraction - 1.6 at 800 nm to 950 nm

3.8 Maximum length - 106m (350 feet)

3.9 Bundle diameter - 1.14 nm (.045 in)

3.10 Jacket material - Kapton or Teflon

3.11 Weight - <15 kg/km (10 lbs/1000 ft)

3.12 Minimum bend radius - 12.3 mm (.5 in)

3.13 Tensile strength - 18 k3 (40 lbs)

3.14 Jacket diameter - <2.96 mm (.117 in)

A3
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4. CONNECTORS

4.1 Connector type - SMA (single bundle)

BNC (single bundle)

MIL-C-83723 (multiple bundle)

4.2 Termination diameter - bundle size - < 1.14 mm (.045 in.)

jacket size - < 2.96 mm (.117 in)

4.3 Optical Loss - <2.0 dB throughput loss at 800 nm to 950 nm for mated

connector pair

4.4 Cable retention - 18 kg (40 lb) pull

4.5 Durability - 1000 mate/demate cycles

A4
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5. COUPLERS

5.1 Bus "T" Couplers

5.1.1 Envelope Outline - Figure A-5.

5.1.2 Power Splitting - The coupler contains two reflective surfaces to split the

optical power between the throughput ports and the input/output port. The ratio

of the size of each reflecting surface to the size of the coupler is defined as the

power splitting factor (P.S.). This is shown in Figure A-6, The power splitting

factor may range between .125 and .03.

5.1.3 Throughput Port to Throughput Port Attenuation - <5 dB exclusive of power

splitting loss where the power splitting loss is given by 10 log (1-2 P.S.).

5.1.4 Throughput Port to Input/Output Port Attentuation - <5 dB exclusive of power

splitting loss where the power splitting loss is given by 10 log P.S.

5.2 Bus Star Couplers

5.2.1 Envelope Outline - The star coupler consists of a mating pair of MIL-C-83723

connectors. The connector size depends upon the number of terminals. Figure A-7

shows the outline size of the mated pair.

5.2.2 Power Splitting - The coupler contains a reflective surface to split the

optical power equally to all input/output ports. The number of ports may range

between 5 and 20. The power splitting factor (P.S.) may range between .2 and .05.

5.2.3 I npu t/Output Port to Input/Output Port Attenuation - <5 dB exclusive of

power splitting loss where the power splitting loss is gi ,;en by 10 log P.S.

5.3 CPC and BTU Couplers

5.3.1 Envelope Outline - The GPC/BTU coupler is mounted within a jam nut SMA

connector. The outline of this connector is shown in Figure A-8.

5.3.2 Power Splitting - Transmitted power is coupled to the bus port only. Received

power is split equally between the receiver and the transmitter.

5.3.3 Input Port to Bus Port and Bus Port to Output Port Attenuation - <4 dB

including power splitting.

A5
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6. REPEATER

6.1 Size - The repeater is contained within a jam nut receptacle MIL-C-83723

connector. A mating connector is furnished as part of the assembly. The specificati(

for the connector are shown in Section 4, An outline drawing is shown in Figure A-9.

6.2 Power Super - +24 VDC ± 2 VDC

6.3 Data Format - 1 MBPS Manchester T1 as defined in Section 1.2.

6,.4 Input Level - Log : n "1" >-45 dBm at wavelength between 800 rnn and 950 nm.*

Logic "0" < -50 dam at wavelength between 800 nm and 950 nm.*

6.5 Output . Level - Logic "1" >- 5 dBm at wavelength between 800 nm and 950 nm.**

Logic "0" >-45 dBm at wavelength between 800 nm and 950 nm.**

6.6 Input/Output Dely - #80 nsec.

6.7 Bit Error Rate - v1 part in 108 bits.

6.8 Power Splittin Factor - 0.5

6.9 Operat ional Life - >10,000 hours continuous operation.

* Measured at input to mating connector from source coupled by a cable with the

characteristics shown in Section 3.

** Measured at output of mating connector coupled into detector by a cable with

the characteristics shown in Section 3.

V0s
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7. TRANSMITTER

7.1 Size - The optical transmitter is contained within the envelope shown in

Figure 10.

7.2 Power Supply - +5.0 VDC ± .25 VDC

+12.0 VDC + .30 VDC

-12.0 VDC + .30 VDC

7.3 Data Format - 1 MPPS bipolar Manchester II as defined in Section 1.2.

7.4 Electrical Input Impedance - 70Q ± 3Q.

7.5 Electrical Input Signal - See Figure A-10A. The rise and fall times of this

signal shall be 150 nsec ± 50 nsec when measured between 10 and 90 percent of the

nominal plus and minus voltage levels.

7.6 Optical Output Signal - For a logic "1" (positive level) input, the output

shall be greater than 3 dBm (1 mw) at a wavelength between 800 nm and 950 nm*;

for a logic "0" (negative level) input, the output shall be less than -45 dBm

(2 x 10 -5 mw) at a wavelength between 800 nm and 950 nm*.

7.7 Input/Output Delay - <40 nsec.

7.8 Operational Lifc	 iO,uC- Hours CuriinuVUj ^;cration.

* Measured when coupled into a cable having the characteristics shown in Section 3.
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8. RECEIVER
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8.1 Size - The optical receiver is contained within the envelope shown in Figure A-11.

8.2 Power Supply - + 5.0 VDC ± 0.25 VDC

+12.0 VDC + 0.30 VDC

-12.0 VDC + 0.30 VDC

8.3 Da ta Format - 1 MBPS bi-polar Manchester II as defined in Section 1.2.

8.4 Optical Inp ut - Logic 1" >45 dBm at wavelength between 800 nm and 950 nm*.

Logic "0" <-50 dBm at wavelength between 800 nm and 950 nm*.

8.5 Electrical Output Impedance - 70Q + 3Q.

8.6 El ectrical Ouput S ignal - For a logic "I" input (input >45 dBm), the output

signal shall be between 0.6 and 15.0 volts zero to peak; for a logic "0" (input

<-50 Hip ), the output signal shall be between -0.6 and -15.0 volts zero to peak.

8.7 Input/Output Delay - <40 nsec.

8.8 Bit Error Rate - 1 part in 108 bits.

8.9 Operati onal L ife - >10,000 hours continuous operation.

*Measured when coupled from a cable having the characteristics shown in Section 3.
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9. ENVIRONMENT

The data bus and its individual components shall operate within the requirements

of this document when exposed to any natural combination of environments presented

in this section.

8.1 Temperature	 Minimum: -54°C (-65°F)
Maximum:	 +70°C (+160°F)

3.2 Pressure Minimum:	 10-10 Torr
Maximum:	 930 mmHg (18 psia)

3.3 Humidity Minimum:	 0 percent relative
Maximum:	 100 percent relative

3.4 Salt Fog Exposure to one percent salt
solution by weight.

3.5 Random Vibration 20-2000 Hz at 0.35 g2/Hz

Time duration 78 minutes in each of the
three mutually perpendiculat axes

3.6 Acceleration Plus or minus 5 g's 	 in all	 axes

3.7 Shock
LaAing Rectangular pulses of the following peak

accelerations, time duration, and the number
of applications in the vertical 	 (up)
direction during landing:

Acceleration	 Duration
(g peak)	 (ms)	 Application

0.23	 170	 22
0.28	 280	 37
0.35	 330	 32
0.43	 360	 20
0.56	 350	 9
0.72	 320	 4
1.50	 260	 1

Transient 5 to 35 Hz, plus or minus 0,25 g peak
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10. ELECTROMAGNETIC INTERFERENCE

The optical data bus will perform within the requirements of this document

during exposure to the EMI tests contained in this section. For the EMI tests,

the transmitter and reciever will be packaged in a container that simulates the

shielding and bonding characteristics of the GPC and BTU. Conducted emission

and conducted susceptibility requirements are applicable to the 24 VDC power only.

10. Conducted Emission - Figure A-12 and A-13.

10.2 Conducted Susceptibility - Figures A-14 and A-15.

10.3 Transient Susceptibility - Figure A-16.

10.4 Radiated Emission - Figures A-17 and A-18.

10.5 Radiated Susceptibility - Figure A-19.

A10
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11. Lightning

The optical data bus will perform satisfactorily during exposure to simulated

lightning strikes. Lightning strikes will be simulated by the configuration shown

in Figure A-20. The pulse generator shall be set to produce a 1 MHz damped sine

wave. The amplitude will be that which produces a 1 ampere signal in the electrical

wire.
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FIGURE A-3 WORD SYNC
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y	 x

1
v

FIGURE A-0 LINEAR OPTICAL DATA BUS CONFIGURATION

{	 .

nT	 OPTICAL TRANSMITTER

	
® BTU/GPC COUPLER

5  OPTICAL RECEIVER
	

OPTICAL CONNECTOR

^C	 OPTICAL "T" COUPLER
	

GPC	 GENERAL PURPOSE COMPUTER (5)

OPTICAL REPEATER
	

BTU	 BUS TERMINAL UNIT (15 MAX)
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FIGURE A-4B RADIAL OPTICAL DATA BUS CONFIGURATION
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BT	 OPTICAL TRANSMITTER	 OPTICAL CONNECTOR

FR	 OPTICAL RECEIVER	 GPC	 GENERAL PURPOSE COMPUTER (5)

® BTU/GPC COUPLER	 BTU	 BUS TERMINAL UNIT (15 MAX)
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FIGURE A-5 "T" COUPLER OUTLINE

CUA TAM p(fT

:AL
PLCS)

5.08 cm
(2.0 in)

11 e

5.08 cm-^
(2„0 in)
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THROUGH]
POR'

REFLECTING SURFACE TECHNIQUE
INPUT/OUTPUT PORT

BIFRUCATED TABLE TECHNIQUE
INPUT/OUTPUT PORT

FIGURE A-6 ILLUSTRATION OF POWER SPLITTING FACTOR

\-- COUPLER SURFACE

POWER SPLITTING SURFACE
X 1 - DIMENSION OF COUPLER

X 2 - DIMENSION OF POWER
SPLITTING SURFACE

P. S = X1

X2

nl - NU?fBER OF FIBERS
IN THROUGHPUT CABLE

n2 - NUMBER OF FIBERS
IN INPUT/OUTPUT CAB
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APPENDIX B

BUS LOSSES

The Requirements Definition Document contains a requirement that a signal of

-45 dB, be identified as a logic 1". The level of -45 dBm was based upon RIaLa

presented in "Optical Cable Communications Study", AD-AO16 846 and the noise

equivalent power of available optical receivers. The minimum receiver power

necessary to obtain a bit error rate of 10 -8 for a 1 x 106 bits per second data

rate and a signal to noise ratio of 5.75 to 1 was calculated using data from a

second source. Using equations contained in AFAL-TR-75-45, "Optoelectronic

Aspects of Avionics Systems II", the minimum receiver power for the above data

rate, bit error rate, and signal to noise ratio was calculated to be -48.8 dBm

which compares very closely with the -45 dBm value obtained from our origianl

source. Dr. Biard of Spectronics, Inc. has informed us that he has demonstrated

a bit-error-rate of 10-8 or better at a receiver optical power level of -45 dBm

for a 10 x 106 bit rate. In Dr. Biard's opinion, -50 dBm should be enough power

to achieve a 10 -8 bit-error-rate for a 1 megabit data system.

System losses for 17 Shutt l e data buses in an optical radial data bus configura-

tion have been computed. The system losses have been computed using the require-

ments contained in the Requirements Definition Document. For the analysis, the bus

losses were calculated for the normal GPC/IOP in control of the bus and for the

longest path between any computer and B ,ru. The results of this analysis are pre-

sented below.
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