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SUMMARY

Sonic-boom wave shapes and caustic lines generated by an airplane per-
forming a general maneuver are studied. The equations are programmed for
graphical output as a perspective view of the wave shape. This quasi-three-
dimensional presentation provides a qualitative insight into the effects of
the maneuver on the wave shape and the caustic locations.

For the special case of planar maneuvers, the principal curvatures of
the wave front are derived. These curvatures are needed to calculate the
sound field in the vicinity of a caustic.

The results of the analysis are applicable not only to sonic-boom studies
but also to the calculation of noise generated by a supersonic rotor or pro-
peller blade tip.

INTRODUCTION

When a supersonic aircraft accelerates or turns, the wave front generated
by the flight trajectory develops folds or caustic lines. Special interest is
attached to the regions near caustics because the sonic boom overpressures are
enhanced in such regions. The sonic-boom literature contains a number of anal-
yses which treat the local conditions near a caustic. (See, for example,
refs. 1 to 3.) Heretofore, these analyses have assumed expressions for the
local wave-front shape and curvature which are required to perform the calcula-
tion in the neighborhood of the caustic. The problem that remains is to relate
the wave-front shape and curvature to the actual maneuver that is being per-
formed by the aircraft generating the wave. The solution to this problem is
the primary subject of this paper.

Because of the complexity of the analysis, the expressions derived from
the wave-front curvatures are limited to planar maneuvers. This means simply
that the torsion of the flight trajectory is zero. The maneuver plane may be
horizontal, vertical, or skewed.

On the other hand, the equation for the rays and the wave-front shape is
not limited to planar maneuvers. Some types of sonic~boom problems, especially
those that are strongly dependent on refractive effects, are more advantageously
formulated in terms of the rays (refs. 4 and 5). However, when the flight pro-
gram involves turns and acceleration, the wave shape is no longer obvious, and
it is desirable to know the location of the entire wave front at any given time.
Other advantages of the wave-front formulation are discussed in reference 1.
However, from an engineering standpoint, probably the greatest advantage of the
wave—-front formulation is the intuitive understanding of the effects of maneu-
vers that it can provide. Toward this end, the wave-front equation has been
programmed with graphical output in the form of a perspective view of the wave.
This type of quasi-three-dimensional picture provides a rapid qualitative



insight into the relationship of the wave-front shape and caustic locations
to the aircraft maneuvers.

SYMBOLS

In numeric examples, distances are nondimensionalized in terms of the
distance that sound travels in 1 second.

speed of sound
=T x A

labels for groups of expressions defined by equations (A4a) to (A44d),
respectively

coefficients of first fundamental form for a surface, equations (Alb)
to (Ald), respectively

coefficients of second fundamental form for a surface, equations (A2a)
to (A2c), respectively

orthonormal base vectors, fixed in space

Mach number

unit vector perpendicular to flight direction, in plane of maneuver
curvature parameter (see fig. 8)

= a(t - 1)

generic vector of point on shock wave

position vector of aircraft

distance along flight path

unit base vector in direction of local tangent to flight path
time, sec

local flight speed

= yM2 - 1

denotes an increment in a quantity

angle variable for curved flight path

total surface curvature



K curvature

o) 1/k radius of curvature of flight path

P1:,P2 principal curvatures of wave front

T time at which aircraft is at position T

¢ angle variable in plane of characteristic, measured from horizontal
Subscripts:

t flight path or trajectory

T derivative with respect to T

0] derivative with respect to ¢

1 first

2 second

A prime denotes a derivative with respect to time.

ANALYSIS
Wave-Front Shape

It is convenient to use two_systems of unit base vectors. One is the
usual system of unit vectors (i,j,k) fixed in space, with k taken normal to
the plane of the maneuver for planar trajectories. The other system of unit
base vectors (E,B,B) moves with the aircraft. (See fig. 1.) The first vector,
T, is in the direction of flight and is defined by

dry
T = — (1a)
ds
or
dry
— = VT (1b)
<



The second vector, n, is defined by

daT (23)
— = KN a
ds t

or
ar VK n (2b)
— n
dat “t

where K¢ 1is the curvature of the flight path. (See ref. 6, p. 18.) Since T
is a unit vector, n is normal to T in the plane of the trajectory. For planar
maneuvers, the third vector b 1is parallel to k but may be oppositely directed.

The flight program may be defined in several different forms. It may be
given as a vector position of time TI¢(T), as a trajectory ri(s) and velocity
function of arc length V(s), or as a trajectory ft(s) and velocity function
of time V(T). In any case, the time and arc length parameters can be related
by

or

At time t the pressure disturbance created by the moving aircraft at
time T has spread a distance R = a(t - T). If T(t,T) is the generic point
of this disturbance, and Tt (T) is the source location at time T, then the
equation for the disturbance wave front is

(T - Tp) = (F - Ty) = a2(t - 772 = R2 (3)



The shock surface is the envelope of this one~parameter (T) family of
spheres. The characteristic lines that comprise this envelope are found by
differentiating equation (3) with respect to T and solving the resulting
equation simultaneously with equation (3). Thus,

(E - E¢) * VT = aR (4a)
or
(T - E¢) » T=R/M (4b)

Thus the component in the flight direction of a ray to the shock envelope
is R/M, which means that the characteristic line is a circle with center at
£y + (R/M)T and with radius BR/M. In the plane of this circle let ¢ denote
the angle with the horizontal. (See fig. 2.) Then the vector equation for the
shock surface at time t can be written explicitly in terms of the moving
trihedral base vectors and the two parameters T and ¢ as follows:

a(t - 1) _ aB(t)(t = T) cos ¢ aB(T) (t - T) sin ¢ _
F= —— T(T) + A(T) + B(T) + E¢  (5)
M(T) M(T) M(T)

If, on the other hand, both T and ¢ are held constant and t |is
varied, then equation (5) describes the trajectory of an element of the wave
front, that is, a ray.

The equation for a caustic line in the wave front at time t 1is found by
differentiating equation (4) with respect to T and solving the resulting
equation simultaneously with equations (3) and (4). This is the mathematical
equivalent of the geometric condition that two consecutive characteristic cir-
cles be tangent to each other. The derivative of equation (4) with respect to
T 1is

Substituting from equations (1) and (2) yields

(E - B¢) * (VKA + V'T) = B2a2 (6)



Combined with equation (4), this equation becomes

(f - L¢) 0= Ppj— - — (7a)

Equations (4) and (7a), respectively, give the components in the T and
n directions of the ray to a point on the caustic. The component in the b
direction follows from equation (1) as follows:

(F-T) *b=2t[— -p2(— -— (7b)

B2R2 B2 V'R
M2 M2 v2M

Equations (4) and (7) were given in reference 7 in a slightly different
form. 1In order to calculate the wave shape from equation (5) or the caustic
line from equations (4) and (7), the mov1ng vectors (T,n,b) must be expressed
in terms of the fixed base vectors (1,J,k) by using equations (1) and (2).

In the case of a straight accelerating flight, ki is 0 and the coeffi-
cient of f in equation (6) becomes zero. For this axisymmetric case, the
caustic line at time t is the circle determined by the value of T that
satisfies the equation

BZ(T)M(T)
R
M'(T)

which is obtained from equations (4) and (6).

Wave-Shape Examples

Even relatively simple maneuvers present some interesting examples of
wave shapes. Fiqure 3 shows in perspective the caustic line and a number of
the characteristic circles comprising the wave front that results from a simple
turn at constant speed. Figure 4 shows how the wave folds on itself to form a
caustic when the flight trajectory changes from a straight flight to a turn.
Only the half of the wave above the flight plane is shown in order to avoid
the confusion of too many overlapping lines. Figure 5 shows a different per-
spective of a similar maneuver, but with the airplane decelerating at a con-
stant rate from an initial Mach number of 2.4. The principal effect of the
deceleration is to move the caustic line farther from the flight trajectory
than it would be for constant flight speed. Figure 6 shows a similar maneuver
but with the airplane accelerating from an initial Mach number of 1.1. Two
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caustic lines appear in this case. The first occurs near the beginning of the
acceleration region and is due to the acceleration, while the other is associ-
ated with the turning maneuver.

The nature of the acceleration caustic is better seen in a detailed plot
of the wave cross section (fig. 7). At some distance from the flight path a
single caustic line forms initially, but two caustic lines appear as the wave
front crosses itself. These lines appear in the cross-sectional plot as cusp-
like points of reversal of direction. Note, however, that they do not repre-
sent cusp or aréte points in a caustic line. Some experimental data on sonic-
boom ground patterns and signature shapes are presented in reference 8.

Determination of Wave-Front Curvature

In order to calculate the flow field in the vicinity of a caustic, it is
necessary to know the curvature of the wave front approaching the caustic line
(refs. 1 to 3). In addition, knowledge of the curvature distribution over the
wave front provides an insight into the relative expansion or compression of
the wave.

The shock wave envelope is, except for straight, constant-speed flight, a
surface of double curvature. At a fixed time t, the equation of the surface
(eq. (5)) is a function of the two variables T and ¢. The theory for calcu-
lating the curvatures with the equation in this form is described in chapter 2
of reference 7. The procedure is to calculate the total radius of curvature,
which is the reciprocal of the total curvature. The details of the calculation,
which are somewhat tedious, are given in the appendix. The result is as
follows:

Ba
= PPy = -a(t - 1) e -a(t -1 (8)

— + Mak cos ¢

M

Some insight into the nature of the principal curvatures can be gained by
examining the example of straight, accelerating flight. Since for this case
Ky = 0, then D, £, and F are all zero (see appendix). Consequently, the
curvature directions are orthogonal and the principal curvatures can be computed
by the following equations (see ref. 6, p. 81):



Therefore,

BM2B
(% 5T (9a)

Substituting for B gives

B2Ma
M'

o] =a(t - T) - (9b)

and

G
Pp = —=— =a(t - T) (10)
g B

Thus, Ky 1is the curvature of the meridians along the shock envelope.
This curvature results from the acceleration maneuver. On the other hand,
Ko 1is the curvature associated with the normal acoustic spreading of the wave
front.

Equation (10) could therefore have been obtained by the following argument.
Since, according to equation (4), the wave surface consists of circles of radius
Ba(t - 1)
-

M
by the cosine of the angle between the normal to the surface and the radius vec-
tor of the circle. This result is in accordance with Meusnier's theorem (ref. 6,
p. 76). Since this cosine is B/M, the normal radius of curvature is simply
a(t - T), which is the same as equation (10).

the radius of curvature normal to the surface is this radius divided

This latter argument is applicable locally not only for the case of
straight flight but also for a general maneuver. At any point on the shock
surface one of the principal radii of curvature is P9 = a(t - T). Consequently,
according to equation (8), the other radius of curvature is

B2Ma
M =alt-T - (11)
M' + BM2%aKky cos ¢ '

The curvature Ky results from the maneuver. The curvature direction asso-
ciated with Ky 1is locally normal to the characteristic circle. Consequently,



near a caustic, where p7 = 0, the curvature direction is nearly normal to the
caustic, since the caustic is locally tangent to a characteristic line.

Thus, in the vicinity of a caustic line whose curvature is small compared
with Ky, the wave is approximately two-dimensional in character with its
radius of curvature given by equation (11).

The essential expression in the curvature calculation is the last term in
equation (11). This term (denoted by P) represents the distance of a point
on the caustic line from the trajectory point at which it was emitted. It is
readily seen that a positive acceleration decreases this distance and the
radius of curvature at a given distance along the ray, whereas a deceleration
has the opposite effect. These results are shown in the plots of figures 8(a)
and 8(b). The Mach numbers (1.2 and 1.6) for which these examples were calcu-
lated are the instantaneous Mach numbers at the time the caustic ray was emitted.
From the parameter P plotted in figure 8, the curvature p7; can be calculated
as R - P, where R and P are the first and last terms on the right side of
equation (11). The total curvature is then 1/Rpyj. Equation (11) could be
obtained in a brief but intuitive manner as follows:

Substitute
( F) a(t - 1)
E-rf . = —_—
t M
and
_ Ba(t -~ T) cos ¢
(£ - E¢) ° R =
M
into equation (6). This yields
a(t - T) (V2B cos ¢ + V') = B2Ma (12a)
or
B2Ma
a(t - 1) - =0 (12b)

M' + BMZaKt cos ¢

This is the condition that exists at a caustic point. It can also be obtained
by setting py = 0 in equation (11). Therefore, by using dimensional



considerations and the fact that the rays are straight, one can argue that

equation (11) follows from equation (12) without making the extensive curva-
ture calculation.

Ray-Tube Area

An incidental result of the preceding calculation for the curvature is a
formula for the ray-tube area. As given on page 63 of reference 6, an elemental
area of the wave front is determined by the square root of the discriminant of
the first fundamental form:

An = \/EG - F2 dat d¢

Thus, the variation of the cross-sectional area of a ray tube is deter-
mined by allowing t to vary in the expression EG - F4, while holding T
and ¢ constant. Equations (Ada), (Adc), and (A8) yield R = a(t - T):

Bza M! MKt [0.0}°} 6
A = — RIT - + R| dt d¢ (13)
B2Ma B

Equation (13) is the same result that was obtained by Rao (refs. 9 and 10)
by means of a somewhat more involved development. It may also be noted that
equation (5), for the wave shape, and equation (13), for the ray-tube area, are
useful not only for sonic-boom calculations associated with maneuvering super-
sonic airplanes but also for computing the noise field of supersonic propeller
or rotor tips.

Higher-Order Caustic Locations
A caustic point represents a point of tangency of two successive charac-
teristic circles of the wave front. Under certain conditions, caustic points
may also exist at which a higher-order contact occurs among successive charac-
teristics. Additional compression, beyond that normally experienced at a
caustic point, would be realized at these points.
The location of such a point is found by differentiating equation (6)

with respect to T and solving the resulting equation simultaneously with
equations (3), (4), and (6). The derivative of equation (6) is

VT + (V3K A + V'T) + (VW'KeR + V'T - V3K 2T + 2VV'K(A
+ VLA) + (E - Ep) = 2WW!
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or, with terms collected,
(E - E¢) - [(3w-n<t + v2ct) + (V" - V3Kt2)T:l = 3V (14)

For some maneuvers, equation (14) does not have a solution. One example
is a straight linear acceleration, for which Ky =0 and V" = 0. Another
example is a constant speed, constant radius turn, for which V' =0 and
Ki =0

t 0

It should also be noted that, even if it is possible to solve equation (14),
the caustic line does not necessarily have a cusped shape. A simple example is
straight nonlinear acceleration (V" # 0). If a value of t - T exists for
which both equations (6) and (14) are satisifed, then there is a higher-order
folding of the wave along the corresponding characteristic circle, but no cusp
is formed.

CONCLUDING REMARKS

The relationship of sonic-boom wave shapes and caustic lines to the maneu-
ver performed by the generating aircraft has been studied. The analysis treated
general turning and accelerating maneuvers in an isothermal atmosphere. The
equations were programmed for graphical output in such a way that the wave
shape could be observed in a quasi-three-dimensional perspective view in order
to provide a qualitative insight into the effects of the maneuver on the wave
shape.

For the special case of planar maneuvers, the principal curvatures of the
wave front were calculated. These curvatures are of interest in the calcula-
tion of the sound field in the immediate vicinity of a caustic line.

Although the analysis is based on equations originally derived for a
maneuvering supersonic airplane, the results are also applicable to the propa-
gation of sound from a supersonic rotor or propeller tip.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

December 7, 1979
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APPENDIX

METHOD OF CALCULATION OF TOTAL RADIUS OF CURVATURE

This appendix provides the details of the calculation of the wave-front
curvature K, which is the product of the two principal curvatures, Ky and
Ko. The basic formula, which is given on page 83 of reference 6, is

eg - £2
P — (ala)

EG - F2

In this expression, the numerator is the discriminant of the second funda-
mental form of the equation of the surface, and the denominator is the discrim-
inant of the first fundamental form. The individual quantities are the coeffi-
cients which are defined by i

E = ET * ET (A1b)
G = E¢ . I‘¢ (A14d)

Also required are the coefficients of the second fundamental form, defined by

e = (ETT ° ET X Eq)) /VEG - F2 (A2a)
£ = (Frp - B x E¢)[VEG - F2 (A2b)
g = (Egp * E7 X f¢)/VEG - F2 (A2c)

The derivatives of r are obtained by differentiating equation (5):

B2a M'a(t - T) _ M'a(t - T) cos ¢
fr=|— =~ ———— - Bka2(t - T) cos §|T + |aZke(t - T) +
M MZ BMz
Ba cos ¢ M'a(t - T) Ba _
- — i +]————— - —|sin 0 b (A3)
M 8M2 M

12



APPENDIX
In order to simplify the calculations, the mathematical expressions may be

grouped as follows:

B2a M'a(t - T) )
AZ — - ———— - Bkra“(t - T) cos ¢ (Ada)
M M2

M'a(t - T) Ba

B —— - ' (Adb)
Ba(t - T)
cz —m8 (Adc)
M
D = Kea2(t - T) (A44)
Thus,
A= -B(B + D cos $) (Ade)

In terms of these groupings, equation (A3) becomes

fTt = AT + (D + B cos §)n + B sin ¢ b (A5)
The derivative of equation (5) with respect to ¢ is

f¢ = -Csindn+Ccos ¢ b (A6)

The coefficients of the first fundamental form can now be obtained from equa-
tions (A1), (A5), and (A6):

A2 + p2 + 2BD cos ¢ + B2 (A7a)

o]
]

F=-CD sin ¢ (A7b)

13



APPENDIX

G = ¢2 (a7c)

The discriminant of the first fundamental form is found by substituting equa-
tions (A7) into the expression EG - F2 and simplifying by using equations (A4).
This yields

M2¢2p2
EG - F2 = (A8)
82

The second derivatives are required in the calculation of the coefficients of
the second fundamental form:

Err = [A' - VK¢ (B cos ¢ + D{]T + (VKA + B' cos ¢ + D')A + B' sin ¢ b (A9a)
Tty = BD sin ¢ T-Bsindn+Bcos ¢ A (A9Db)
Igp = =C(cos ¢ @i + sin ¢ b) (A9¢c)

From equations (A5) and (A6),

Er X I =C(B + Dcos $)T - AC cos ¢ i = AC sin ¢ b

or, from equation (Ade),
1 _ _
It x f¢ = ~AC E T+ cos ¢+ sin ¢ b (A1 0)

The first coefficient, e, is obtained from equations (A2a), (A9a), (A8),
and (Al10):

M 1
3 e = - E[A' - VK¢ (B cos ¢ + D{] - cos §(VK¢A + B' cos ¢ + D') - B' sin? ¢

(Al11)

14



APPENDIX
From equation (Ade),

MM'
A' = —B(B' + D' cos ¢) —T(B"' D cos d))

ml
-8(B' + D' cos ¢) + — A
82

Consequently, the first term and the last three terms on the right side of
equation (Al1) combine to yield MM'A/B3. Thus,

M'a VK¢
—[(B - BA) cos ¢ + D]
32 M

However,
Bcos & + D= (B + D cos ) cos & + D sin? ¢
A cos ¢
= - ——— + D sin? ¢
B
Therefore,
v VUK VKB cos ¢
t = .2
e = —-—+—-—cos § + ——— |A + aKyD sin® ¢
g2 BM M
or

M! M2aKt COSs d)
e = -f{—+ ————— A + aKtD Sj.rl2 ¢ (A1 2a)
g2 B

15



APPENDIX

The second coefficient, £, is obtained from equations (A9b) and Al10):

B
f = -ACD sin ¢<—>
MCA
- BD sin ¢
= y (A12b)

Similarly, from equations (A9c) and (A10),
B
AC2(—
MCA

Rc
M

o]
]

(Al12c)

The discriminant of the second fundamental form can be obtained from
equations (Al12):

, M Bak¢CD sin? ¢  g2p2 gin2 ¢
eg - £f4 = =|— + MaKg cos ¢|CA + -
&M M M2
Since Caky = BD/M, the last two terms cancel:
Ml
eg - £2 = - E_ + MakKg cos ¢|CA (A1 3)
M

The total curvature can then be calculated by using equations (A8) and (Al13):

eg - f2 g2 /m
K = K1Kg = = - — + Mak¢ cos ¢
EG - F2 M2ac \BM

16



APPENDIX

It is more convenient to work with the reciprocal, which after substituting
from equation (11), is

Ba
= MpPy = -alt - 1) ~a(t - 1) (A1 4)

MI
— + MaKy cos ¢
BM t

R| =

17
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Figure 2.- Ray and wave-front geometry.

Characteristic
circle of wave front



k4

Wave front

Normal view of flight path
(Turn radius =27.4 km)

Bt 2 T At

Flight path

Figure 3.- Perspective view of wave front with caustic resulting from a
constant-curvature turn at M = 1.16,



[44

Wave front

R
Flight path !

Normal view of flight path
(Turn radius =22.9 km)
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