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FOREWORD

The work was performed by the CF6 Engineering Department of General
Electric's Aircraft Engine Group, Aircraft Engine Engineering Division,

Cincinnati, Ohio. The program was conducted for the National Aeronautics and
Space Administration, Lewis Research Center, Cleveland, Ohio, under Subtask
2.4 of the CF6 Jet Engine Performance Improvement Program, Contract Number

NAS3-20629. The Performance Improvement Program is part of the Engine Com-
ponent Improvement (ECI) Project, which is part of the NASA Aircraft Energy

Efficiency (ACEE) Program. The NASA Project Engineer for the New Front Mount

Program was D.C. Reemsnyder. The program was initiated in February 1978 and

was completed in March 1979.

The report was prepared by W.A. Fasching, General Elee*_ric Program Man-

ager, with the assistance of H.J. Pinsent, U.F. Beatty, and W.R. Chiaramonte.

PECK 
PAGE SLAJW

iii



I

TABLE OF CONTENTS

Section Page

1.0 SUMMARY 1

2.0 INTRODUCTION 2

3.0 DESCRIPTION OF NEW FRONT MOUNT CONCEPT 4

3.1	 Overall Design Approach 4
3.2	 Design Criteria 17
3.3	 Design Description and Characteristics 17

4.0 APPARATUS AND PROCEDURE 19

4.1	 Stress and Low Cycle Fatigue Test Setup 19
4.2	 Deflection/Distortion Test Setup 22

5.0 STRESS TEST 45

5.1	 Test Procedure 45
5.2	 Test Results and Discussion 45

6.0 DEFLECTION/DISTORTIOV TESTS 57

6.1	 Engine Casing Deflection/Distortion Test 57
6.2	 Failsafe Load Test 75

6.3	 Thermal and Assembly Stress Correlatioa Test 81

7.0 IOW CYCLE FATIG'E TEST 91

7.1	 Test Procedure and Luads 91

7.2	 Test History and Description 91

7.3	 Test Results and Failure Investigation 93

8.0 ENGINE FACTORY AND FLIGHT TESTS 99

9.0 PERFORMANCE ASSESSMENT 108

10.0 ECONOMIC ASSESSMENT 111

11.0 SUMMARY OF RESULTS 115

APPENDIX A QUALITY ASSURANCE 117

APPENDIX B MARAGE 300 LOW CYCLE FATIGUE TEST 120

APPENDIX C REFERENCES 127

APPENDIX D SYMBOLS 128

APPENDIX E LIST OF ILLUSTRATIONS 129

v

PKFCF-D' 

PAGE BLAAIK

L_



1.0 SUMMARY

As part of the NASA-sponsored Engine Component Improvement Program a new
engine thrust mount has been developed which reduces fuel consumption and per-
formance degradation in current CF6 turbofan engines. This new front mount

reduces the induced point loads in the high pressure compressor (HPC) casing,

resulting in a decrease in localized case distortion. This in turn allows the

compressor to operate wish reduced blade-to-case tip clearances, which im-

proves the compressor efficiency and, consequently, overall engine performance.

Maximum radial deflection at each stage of the high pressure compressor
(HPC) case was reduced up to 42% with the new front mount under simulated

takeoff loads. The predicted HPC performance improvement due to the new
front mount was not fully realized. Initial tests of the original front

mount were conducted with a relatively flexible engine configuration and
indicated large local HP Compressor radial deflection. Subsequent tests of
the original front mount with the DC-10 wing pylon, inlet, and fan reverser
provided a stiffer and more realistic baseline engine installation and

reduced the measured maximum radial deflection. This decreased the available
or potential improvement that could be accomplished with the new front mount.

Consequently, the demonstrated performance improvement was 0.1% in cruise sfc
as compared to a predicted value of 0.3%. The new front mount provides a
1.5° C reduction in ECT at takeoff (predicted 3.5° C), a 16% improvement in

HPC stall margin, and a 10% improvement in compressor stator angle margin.
Improvements :n the stall and stator angle margins are significant for a new

compressor and are even greater for a deteriorated engine.

Low cycle fatigue testing demonstrated a life capability of the new front

mount system hardware in excess of 35,000 simulated flight cycles. Factory
engine and flight test results have indicated trouble-free operation with the
new front mount, and showed that the link loads agree closely with the calcu-

lations. Improved roundness in the HPC case due to the new front mount will

provide reduced operating and maintenance costs for all CF6 turbofan aircraft

engines.

The New Front Mount Performance Improvement concept offers an annual fuel

savings per aircraft of 18,500 to 77,500 liters (4900 to 20,500 gal.) depend-
ing on the aircraft application and mission range, plus reduced maintenance

costs resulting from higher stall margins which will reduce unscheduled re-

movals. Following the successful completion of component qualification static
tests and factory engine testing the new front mount system has been certified

and is now being incorporated into all new CF6-50 production engines.
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2.0 INTRODUCTION

National energy demand has outpaced domestic supply creating an increased
U.S. dependence on foreign oil. This increased dependence was dramatized
by the OPEC oil embargo in the winter of 1973 to 1974. In addition, the

embargo triggered a rapid rise in the cost of fuel which, along with the
poL-ntial of further increases, brought about a changing economic circumstance

with r:gard to the use of energy. These events, of course, were felt in the
air transport industry as well as other forms of transportation. As a result

of these experiences, the Government, with the support of the aviation industry,
has initiated programs aimed at both the supply and demand aspects of the

problem. The supply problem is being investigated by looking at increasing

fuel availability from such sources as coal and oil shale. Efforts are

currently underway tc develop engine combustor and fuel systems that will

accept fuels with broader specifications.

Reduced fuel consumption is the other approach to deal with the overall

problem. A long-range effort to reduce consumption is to evolve new tech-
nology which will permit development of a more energy effic":ent turbofan or

the use of a different propulsive cycle such as a t urboprop. Although studies

have indicated large reductions in fuel usage are possible (e.g., 15 to 40
percent), the impact of this approach in any significant way would be 15 or

more years away. In the short term, the only practical propulsion approach is

to improv •2 the fuel efficiency of current engines. Examination of this

approach has indicated that a 5 percent fuel reduction goal starting in the

1980 to 1982 time period is feasible for the CF6 engine. This engine is, and

will continue to be, a significant fuel user for the next 15 to 20 years.

Accordingly, NASA is sponsoring the Aircraft Energy Efficient (ACEE)

Program (based on a comgressional request), which is directed at reduced fuel
consumption of commercial air transports. The Engine Component Improvement

(ECI) Program is they element of the ACEE Program directed at reducing fuel

consumption of current commercial aircraft engines. The ECI Program consists
of two parts: Engine Diagnostics and Performance Improvement. The Engine
Diagnostics effort is to provide information to identify the sources and

causes of engine deterioration. The Performance Improvement effort is di-
rected at developing engine components having performance improvement and
retention characteristics which can be incorporated into new production and

existing engines.

The initial Performance Improvement effort consisted of a Feasibility

Analysis which was conducted in cooperation with the Boeing ai:'l Douf,las
Aircraft Companies and American and United Airlines, and is reported in Ref-

ei-ence 1. This study identified engine component modifications which had

fuel savings potential over current CF6 engines and provided a technical and
economic assessment of these modifications. This assessment included a

determination of airline acceptability, the probability of introducing the
concepts into production by the 1980 to 1982 time period, and their retrofit
potential.

In the Feasibility Analysis, the New FrOnt Plount 1erformance improvement
concept was selected for development and evaluation in ground test facilities,

2



because of its fuel savings potential and high payback. The objective of the
New Front Mount Program was to develop technology and to verify the predicted
reductions in compressor case distortions by component tests. Reduced case
distortions allow closer compressor blade and vane clearances which improve com-
pressor efficiency, thus resulting in lower fuel consumption. Improvement in
cruise sfc due to the reduction in compressor running clearance was estimated
to amount to about 0.3 percent.

The New Front Mount Program was a 13-month effort of component structural
tests and monitoring of engine tests. The structural tests consisted of stress,
deflection/distortion, and low cycle fatigue tests. The stress test served to
vor ify and determine critical stress areas of the new front mount. The deflec-
t,lon/distortion test consisted of three phases. The first phase was conducted
to compare engine casing deflection, distortion and structural stresses for the
original and the new front mount. The second phase tested the new front mount
to failsafe load conditions, and the third phase examined stresses induced by
thermal growth and assembly stackup conditions. The Low Cycle Fatigue
(Endurance) Test was conducted to demonstrate the cyclic load capability of the
new front mount system.



3.0 DESCRIPTION OF NEW FRONT MOUNT CONCEPT

General Electric has previously recognized the performance impact of local
engine deflections and has conducted analytical and component tests to assess
the problem and define potential solutions. The work, related to the compres-

sor, ha p progressed to the point where a new front mount design, having the

potential for reducing local compressor case deflections, was defined and pro-
totype mounts were fabricated. Analytical predictions of the potential reduc-

tion in deflections were translated into a compressor performance improvement.

This improvement was estimated to offer a reduction in engine specific fuel
consumption of 0.3 percent and a reduction in exhaust gas temperature of 3.5° C.

A modest increase in engine weight of 4.5 kg (10 lb) was predicted for the new

front mount.

3.1 OVERALL DESIGN APPROACH

The mounting system for the CF6 engine is ill ,istrated by the typical wing

installation shown in Figure 3.1. The engine and nacelle are attached to the
wing pylon by a front and rear mount; the front mount is designed to carry all
thrust and axial inertia loads together with side and vertical loads, while the

rear mount carries side load, vertical load, and rolling moment. The front

mount to pylon joint is fully clamped, which results in secondary redundant

moments about the pitch, roll, and yaw axes.

Analysis and component testing of the original front mount s ,°stem has
shown that the major portion of the axial thrust load is carried by the pin-

ended rigid link which connects the front mount to the fan frame 12 o'clock
midstrut casting (Figure 3.2). It was also shown that the clevis support

beams, which connect the clevis to the HPC case flange, transmit large radial
and axial point loads to the compressor casing. These point loadings result

in localized compressor case distortions which, when combined with the engine

casing "backbone" bending deflections, require larger-than-desired compressor

blade-to-case clearances in order to eliminate rotor rubs. Further, aircraft

certification of the higher thrust 244,650 N (55,000 lb) CF6-50C1 and CF6-50E
engine configurations has indicated more extensive compressor rotor rubs

through Stage 11 than previously observed. The original front mount system,
at these higher rated thrust loads, would require a further increase in blade

clearances with attendant losses in performance and stall margin, in order
to eliminate rotor rubs.

General Electric performed component static load tests with the original
front mount installation during which simulated flight loads were applied to
the engine shell structure to induce loads on the front mount. Deformation

of the high pressure compressor casing cross section relative to the rotor

axis was recorded by deflection potentiometers mounted radially from the rotor
shaft and swept through 360° to record the radial deflection of the casing. A

typical result is shown in Figure 3.3. 	 The maximum inward radial deflection
(reduction in clearance) occurs at the top vertical (12 o'clock) centerline,

and is the combined effect of local deflections due to vertical and axial punch
loads and the overall bending of the compressor casing in the vertical plane.
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If the maximum radial deflection at each compressor stage is plotted
versus the axial location of the stage, an upper backbone deflection curve

is obtained. Figure 3.4 shows the upper backbone deflection obtained during

a series of tests conducted to separate front mount individual load effects.
Curve (a) shows the deflection for the simulated maximum static thrust con-

dition with the engine weight supported (Zero G); Curve (b) shows the deflec-

tion for the same simulated maximum static thrust with the vertical reaction
caused by the above-center applied thrust force reacted elsewhere; and Curve

(c) shows the deflection when only the vertical load due to the simulated maxi-
mum thrust was induced on the mount.

Overall casing bending deflection was calculated from a harmonic analysis
of the total deflection curve. The Nn 1 component of the Fourier Series ob-
tained is the vertical translation of the section due to the overall bending
of the casing. The final separation of individual effects is shown in Figure
3.5. The calculated total deflection due to simulated maximum static thrust

is the sum of the experimental deflection values of the single point thrust

load and the vertical reaction load, plus the calculated beam bending deflec-

tion. These results were used to correlate and fine tune the finite element
computer structural model of the engine structure. A comparison between the

resulting calculation of casing deflection and test measurement is shown in
Figure 3.6. Very good agreement was obtained.

In addition to the distortion observed at the maximum static takeoff

thrust condition, more severe bending deflection occurs during aircraft rota-
tion at takeoff. This is caused by large vertical lift lords on the forward

portion of the nacelle. A comparison between the HPC casing backbone deflec-

tion for these two conditions simulated during a static test with the original
front mount is shown in Figure 3.7.

The basis of the reduction in deflection due to the local effect is illus-
trated in Figure 3.8. Curve (a) shows a typical exaggerated cardiod deflec-
tion curve obtained from a single point load application typical of the single

center link original front mount; and Curve (b) illustrates the effect of split-
ting the single point into two loads of half the intensity located at 30 * on
each side of the center point. Combining these defl,rction curves results in
the single curve of greatly reduced deflection amplitude shown by the dotted
line.

Based on this effort a new front mount system was designed. The new front

mount applies the engine thrust reaction at two points t30 * from the top ver-
tical and reacts engine vertical and side forces with a series of links con-
nected tangentially to the compressor casing forwari flange (Figure 3.9). A

prototype new front mount (Figure 3.10) was component tested and showed an
appreciable reduction in compressor deflection. Figure 3.11 presents the

predicted improvement in compressor deflection with the new front mount for
the most severe takeoff at rotation loading condition. Also presented for
comparison is the calculated core engine beam bending, which is the minimum

distortion possible without major stiffening of the compressor case.

8
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3.2 DESIGN CRITERIA

The CF6-50 new front mount was designed to achieve a total useful life

of at least 35,000 flight cycles or 50,000 aircraft operating hours, which-
ever occurs first. It was designed for operation to power settings and
within the flight envelope defined in CF6-50 Model Specification E2162.

Maneuver limit load factors for flight and landing conditions, and ultimate 	 3
or crash conditions were already established for the original front mount

design and have been adhered to for the new front mount. Failsafe loads and

failure criteria were established in conjunction with airframe manufactLrers
and the requirements of FAR 25.

Simulated low cycle fatigue loads were established to represent 35,000

flight cycles plus the cumulative effect of all flight maneuver and gust condi-
tions. All engine/airframe interfaces were required to be identical to those
of the original front mount.

3.3 DESIGN DESCRIPTION AND CHARACTERISTICS

The new front mount platform is a 6A1-4Va titanium forging which provides

a front mount to airframe interface which is identical to the original design.

The platform contains five clevises for the attachment of links which distri-
bute the loads into the fan frame and compressor casing such that the compres-
sor casing distortions are reduced.

The supporting members, two thrust links, two side links, and one sway

link are manufactured from 18% nickel maraging steel; grade 300. (The low
cycle fatigue test of this material is described in Appendix B). Corrosion
protection for the links is provided by a sealed aluminum spray coating.

All attachment bolts are of tensilized Inco 718 material. Figures 3.9 and
3.10 show the assembled front mount components.

A failsafe feature is provided as an integral part of the mount plat-
form, in the form of a tongue with an oversized and elongated hole for the
bolt which connects it to the fan frame 12 o'clock clevis. In the original

engine mount design this clevis carried all the axial thrust loads. In

the new design the tongue and clevis provide an additional axial, vertical,
and side load path in the event of failure of any of the supporting links

or attachment hardware.

The fan frame is modified locally to provide additional attachment clevi-
ses for the new thrust links together with local reinforcement to the one

o'clock and eleven o'clock strut root castings for the new clevis loads.

Maintainability

Compared with the original front mount, maintainability of the new front
mount is unchanged. Major interface surfaces have again been shot peened and
coated with a dry film lubricant to prevent the occurrence of fretting.

17



Installation procedures at the new front mount pylon interface are un-
changed from the original mount. Installation of the new front mount on the
engine at the fan frame and compressor casing front flange does entail the use

of an additional tool, a torque multiplier, to tighten the two bolts attaching
the thrust links to the front mount.

Reliability

The new front mount was designed to achieve a total useful life of 35,000

flight cycles and to operate for power settings and maneuver !cad factors for

flight and landing defined in the engine model specifications. Design limit
and fatigue conditions were established in conjunction with the airframe de-

signers, and a rigorous structural integrity test program of limit, ultimate,
and fatigue loadings has been conducted. Front mount component loads and
temperatures have been measured during factory engine and flight tests and

were correlated with the design loads used for the analysis and component
testing.

Safety

The new front mount was designed for engine operation within the power

settings and load factors established for flight and landing levels for 35,000

flight cycles. All major load paths in the mount are redundant and an addi-
tional load path, in the form of the failsafe tongue which does not normally
carry loads, has been incorporated.

Failsafe conditions have been established in conjunction with the airframe
manufacturer in which failure of one or more of the front mount load paths
has been assumed. Continuous operation of the aircraft under normal loading
is possible with each of the stipulated failures. The ability of the struc-

ture to withstand a reduced flight maneuver spectrum was demonstrated by

analysis and static load tests of the complete engine shell as described in
Section 6.2.

18



4.0 APPARATUS AND PROCEDURE

Two separate test configurations and facilities were utilised for the
New Front Nount Performance Improvement Concept structural test program. A
vertically assembled, floor-mounted setup was used for the stress distribu-
tion and low cycle fatigue tests. A horizontal assembly of the engine shell
and wing pylon was suspended from test facility structural frames for the com-
pressor case deflection/distortion, failsafe, and assembly and thermal stress
correlation tests. The tests were conducted in the Static Load Laboratory of
Building 703 at the General Electric Evendale, Ohio facility.

4.1 STRESS AND LOW CYCLE FATIGUE TEST SETUP

Test hardware consisted of all the engine outer structure in the load
paths provided to distribute the engine front mount loads into the fan frame
and compressor forward casing. Figures 4.1 and 4.2 show the test setup and
load nomenclature.

Included in the test assembly were the modified fan frame with the for-
ward, mid and aft fan casings, the Stage 4 booster case and the number 1 and
3 bearing housings with test facility rings to simulate engine component
stiffness. The fan frame and casings together with the new front mount com-
ponents were assembled together with the high pressure compressor casing,
which was in turn bolted to the test laboratory floor adapter plate.

Loads were applied to the front mount platform by means of a steel yoke
plate on which five hydraulic loading cylinders were attached. Two cylinders
applied loads parallel to the engine axis and were used to provide axial
force and yawing moments to the mount. Loads normal to the engine axis in
the vertical direction were applied by two cylinders which also provided the
pitching moments. Side loads were applied by a single laterally mounted
cylinder.

The cylinder loads were controlled by a hydraulic console and measured
by means of electrical strain gage type load cells. During the low cycle
fatigue tests, the takeoff and landing load cycles were applied at the rate
of approximately six cycles per minute by a hydroelectronic mechanical sensor
system. The loading schedule was programmed by a data track, and the load
output of each loading cylinder was measured by load cells and continuously
monitored on a strip chart recorder.

During each phase of the stress and low cycle fatigue tests, component
stress levels were derived from calculations based on strain gage readings
obtained from electrical resistance foil type strain gages installed on the
front mount platform, supporting links and fan frame. Deflections of the
mount platform relative to the fan frame rear flange plane were measured by
electrical deflection potentiometers attached on a ring mounted from the rear

19
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flange. Signals from the strain gages or deflection potentiometers were

selected by a micro scan relay or ' crossbar selector and read out on an
analog to digital converter. Permanent records of the data were stored

on "floppy disk." The stored data were processed by the General Electric
Evendale time sharing computer center into engineering units. The data

were ;resented in tabular printout or, if required, by means of polar

plots. Quick-look time sharing programs provided on-line data from se-
lected gages to monitor the testing.

Locations o` strain gages on each component are shown in Figures 4.4
through 4.8. Deflection gage locations for the new front mount are shown
in Figure 4.3.

4.2 DEFLECTION/DISTORTION TEST SETUP

Deflection/distortion tests were conducted on a complete CF6•50 engine
outer shell structure suspended from a DC-10 wing pylon as shown in Figures

4.9 to 4.11.

The engine shell assembl y consisted of the modified fan frame with the

forward, mid and rear fan casings, the Stage 4 booster casing, and the number

1 and 3 bearing hous 4.ngs. The core engine casings comprised the compressor
forward and rear casing, the compressor rear frame, turbine midframe, low

pressure turbine stator casing and the turbine rear frame complete with all
bearing cones. A DC-10 wing engine inlet was attached to the fan frame.

The engine assembly was installed on a DC-10 wing engine pylon by attach-

ment links at the rear mount which were strain gaged and calibrated, and by
means of either the original front mount or the interchangeable new front

mount.

Two steel arches, which supported the DC-10 wing pylon, were bolted to

the laboratory T-slot floor which also provided anchor points for the hydrau-

lic loading cylinders. Thrust loads were applied on the engine at the aft end
of the core casing by means of a hydraulic cylinder attached to the pylon

support frames. The inlet airload for the takeoff at rotation condition was

simulated by loads applied by hydraulic loading cylinders attached to nylon
belts wrapped around the lower circumference of the inlet. All hydraulic

cylinder loads were controlled manually and measured by means of electric re-
sistance strain gage type load cells.

Strain gages were installed on the front mount, supposing links, and

fan frame as shown in Figures 4.6 through 4.8. Relative motion of the engine
structure was measured using stationary mounted deflection potentiometers.

Radial deflection of the core and fan casings were measured by means of de-

flection potentiometers mounted from facility shafts which were supported at
the same bearing locations as the engine shafts. Slow rotation 360' "sweeps"

were made with these shafts to measure radial distortion at S' incrementb over
the upper 120' of the casings, and 10' increments for the remainder of the
circumference (Figures 4.12 through 4.19).
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Figure 4.7b. Fan Frame Strain Cage Locations.
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Figure 4.7d. Fan Frame Strain Gages on Strut 12 at 11 O'Clock.
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Figure 4.17. Compressor Rear Frame Ueflectioa Instrumentation.
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Potnntiometer signals at each increment were recorded by the digital re-

cording system and then transferred to the time sharing computer and plotting

system. Stationary potentiumeters were used to measure the overall deflection
(Figures 4.3, 4.16 and 4.20).
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5.0 STRESS TEST

The objective of the stress test was to use the Streascote brittle lac-

quer technique to verify predicted highly stressed regions and to determine

any other local stress concentrations in the new front mount, supporting links,
and backup structure. 	 Results of these tests were used to confirm the loca-
tion of previously installed strain gages and indicate areas where additional
strain gages should be located. A description of the stress test setup is
presented in Section 4.1.

5.1 TEST PROCEDURE

Four tests were conducted to simulate side loads, forward and aft axial

(thrust) loads, and vertical loads. Each test included either the maximum side,
axial, or vertical load component. The corresponding 100% load conditions are
defined in Figure 5.1.

Prior to the assembly of the individual test parts, electrical resistance
strain gages had been installed at the locations shown in Figures 4.4 through
4.8. Test components were assembled using normal assembly procedures to the
configuration shown in Figure 4.1. After torquing all attachment hardware,

Stresscote brittle lacquer was applied. Specified areas of the fan frame, new

front mount platform, supporting links, and compressor casing, together with
standard calibration bars, were coated and allowed to dry until the crack

sensitivity was within 0.005 to 0.009 mm/mm (in./in.). In each of the four

tests, loads were applied in 20% increments to the 100% values, and '_or spe-
cific test runs, up to 120%. At each increment, strain gage readings were re-
corded and after unloading to zero, the Stresscote crack patterns were mapped
and identified on each part.

5.2 TEST RESULTS AND DISCUSSION

Figures 5.2 through 5.8 show the Stresscote crack mapping on the respec-
tive components after completion of the four tests. Stresscote crack develop-
ment determined the limiting stress areas. Details of the individual tests
are as follows:

Side Loads Test

Maximum side load applied was 53,380 N (12,000 lb), which is 120% of

the value specified in the load table (Figure 5.1). This maximum test load

is approximately four times the typical design operating load and is approxi-
mately 29% of the design limit side load condition.	 Inspection of the
Stresscote did not reveal any crack formation of the new front hardware and

fan frame. The only Stresscote crack formation developed on the compressor
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Figure 5,2. photograph of Stresscoat Map Pattern,
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Figure 5.3. Photograph of Stresscoat Afap Pattern.
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Figure 5,9, Photograph of Stresscoat Map Pattern,
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Figure 5.8. Photograph of Strusscoat Map Pattern,
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case near the Stage 1 variable vane hole as shown on Figure 5.8, region 1A. A

review of the strain gage readings confirmed that the primary load-carrying
member for side loads is the center link. Ini.ccessibility of the center link
limited the capability to inspect this component for Stresscote cracks. The
absence of Stresscote cracks i.n other areas indicates a re"iti-e low stress
condition in members outside the primary load path fo •. a Belk: load ccndition.

.Axial Loads Test

The maximum axial (thrust) load applied w,ns 133,450 N (30,000 lb), which
is 120% of the value s pecified in Figure 5.1. This maximum load is 57% of
the typical maximum thrus' conditloc; and 29' of the maximum limit load con-
dition for axial loads.

Initial Strec . .icote cracks develcped on the axial thrust link as shown on

Figures 5.5 and 5.6, region 1B. Initial crack pattevns developed nt 66,720 N
(15,000 lb) axial load, The thrust links are the primary load-carrying mem-

bers frr the axial load and initial crack formation on these links was antici-
pated. During this test rtth suspicious formation of Stresscote cracks devel-
oped on the fan frame and side link, region 2B, Figures 5.6 and 5.8. Subse-
qLent investigation of strain gage data showed high strain readings on the

fan frame and a side load pickup in the center link. A visual inspection of
the test facilty detected that the mount facility loading fixture had rotated

and trade contact with the fan frame clevis at the 12 o'clock location and also

with the lock plate on the right side (aft looking forward) thrust link at
locations shown in Figure 5.3. It was determined that the rotation was caused
because the right side actuator was not vented. After the hydraulic actuator was

properly vented, the test facility fixture was reassembled. A checkout of the
system was completed and the axial load test was repeated. Stresscote cracks

that developed in the side link and fan frame from the test fixture movement

are valid for indicating the critical stress areas on the fan frame, side link,
and mount platform.

Initial Stresscote cracks in the fan frame clevises in line with the
thrust links developed at 88,960 N (20,000 lb) axial load, Figures 5.4 and

5.5. Thy load was increased to 111,200 N (25,000 lb) and additional stress

cracks developed in new areas on the fan frame and mount platform as shown on
Figures 5.4 and 5.6, region 5E.

Vertical Loads Test

Maximum vertical load 9rplied was 66,720 N (15,000 lb), which is 100% of
the value specified in Figure 5.1. This maximum load is 100% of the typical

flight condition vertical load and 22% of the maximum limit vertical load con-

dition. The side links are the primary members for carrying vertical loads.
Additional Stresscote crack formation on the mount platform was mapped for the

13,340 N (3,000 lb) vertical load. The Stresscote crack formation on the side
links and mount platform generally appeared to broaden from previous crack

5.1



development. Figures 5.2, 5.7, and 5.8 show the pertinent Stresscote cracks
for the vertical load. Visual inspection of the side links and mount plat-

form Stresscote crack patterns did not reveal a change in the principal stress
direction from preceding tests.

Revers; Axial Loads Test

This test was conducted to determine if additional Stresscote crack for-
mations could be detected for a reverse thrust axial load condition, which

simulates aircraft deceleration on landing. The test consisted of applying
a reversed axial load in 22,240 N (5,000 lb) increments to 88,960 (20,000 lb).
At each test point, the load was returned to zero for inspection. No addi-

tional Stresscote cracks were detected.

Discussion of Stress Test Results

Based on the four stress tests discussed in the previous paragraphs, nine

additional strain gages were added on the mount platform for the deflection/

distortion tests discussed in Section 6.0 (Figure 5.9). Strain gage 220 was
selected to provide additional strain distribution information along the for-

ward flange of the mount platform. The other eight strain gages were selected

based on the exhibited Stresscote crack pattern development which indicated
limiting stress areas not identified previously for strain gage instrumentation.

Limit Load Tests

Following the Stresscote tests, static limit load tests of the CF6-50 new
front mount system and associated structures were conducted to demonstrate
design limit load capability and structural integrity. Simulated key flight

loads were applied. The engine new front mount and associated structure did
not fail, malfunction, or permanently defo'm when tested to the defined limit

load conditions. Sufficient strength margin was exhibited to substantiate the

ultimate load capabilities to 150% of the certified limit load. The test re-
sults were submitted to the FAA for foru;al certification of the CF6-50 new

front mount.
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6.0 DEFLECTION/DISTORTION TESTS

Three separate tests were conducted as a part of the deflection/distor-
tion tests, and are listed below:

1. Engine casing deflection /distortion tests

2. Failsafe load tests of the new front mount with simulated element

faiiures

3. Simulated! thermal and assembly stress correlation tests.

In each of these teats, deflection of the mount system and distortion of
the compressor casing cress section was recorded, and the stresses obtained

from measured strain gage outputs were compared with calculated stresses.
Deflection of the fan case, compressor rear frame, turbine midframe, and low
pressure turbine case were also measured. A description of the deflection/

distortion teat setup with a complete CF6-50 engine outer shell structure
suspended from a DC-10 wing pylon is presented in Section 4.2.

The first test was conducted to measure the compressor casing deflection
and structural stresses induced for maximum power conditions by simulating

maximum static thrust and takeoff at rotation load conditions, first with the
original and theca the new front mount. In the second test, failsafe load
conditions, representing maximum axial, side, and vertical loads for the cor-

responding design maximum flight load condition were applied to the new front
mount, on which component failures were simulated by removal o: components
from the assembly. The third test examined stresses induced in the new front
mount system for simulated thermal growth of the supporting structure and
simulated stackup assembly conditions.

6.1 Engine Casing Deflection/Distortion Test

The objective of the engine casing deflection/distortion test was to
demonstrate, by back-to-hack testing, the advantage of the new front mount

system over the original front mount in reducing compressor casing distortion
caused by the local reaction of thrust and vertical loads at the front mount.
Overall deflection of the engine shell was also measured and strains gages,

installed on each of the front mount components and fan frame, were read to
confirm the calculated loads and stresses induced in the individual members.

6.1.1 Test Procedure

Comparison tests between the original and new front mount were conducted
under two conditions of maximum axial loads. Engine runup on the wing and
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ground engine tests were simulated by the maximum static thrust with a 1G

down inertia load. Takeoff at rotation was simulated by the corresponding
engine thrust plus an aerodynamic up-load on the inlet and the 1G down in-

ertia load. These two loading conditions have been used consistently for all

tests, and the associated loads and sign convention are shown in Figure 6.1.

Initially, a "zero" deflection reading was obtained with the engine in-

let removed and the engine supported by the fan case ground handling points
and the rear engine mount. This "zero" is very similar to the attitude of

and support for the engine when the internal boring of the cases is conducted
and represents closely the undeflected casing. After reconnecting the front

mount to the pylon a 1G down load was applied and all strain gages and de-
flection potentiometers were recorded, and a 360 0 sweep made with the shaft-
mounted deflection potentiometers to record casing radial distortion. The

loading was then increased incrementally to the maximum test values and the

stationary potentiometers and strain gages recorded at each step, and the
360° sweep of the shaft mounted deflection potentiometers was repeated. This

procedure was repeated for the test conditions listed in Figure 6.1.

6.1.2 Test Results and Discussion

Compressor Casing Deflection

Of major interest in this test series was the reduction in HPC casing
deflection which can be realized by the use of the new front mount system.
The reduction in radial deflection relative to the rotor shaft bearings was

obtained by comparing the radial deflection at each stage of the high pres-
sure compressor 01PC) casing with the original and the new front mounts under

identical loading conditions. In addition to these p ests with a titanium HPC

casing, a steel HPC casing was tested with the original and new front mount

under General Electric funding.

Immediately following each test, polar plots of the radial deflection
at various thrust load levels were obtained. Typical plots showing the
titanium compressor case circumferential distortion from 0 to the maximum

static thrust condition are shown in Figures 6.2 through 6.5. As noted, in-
creasing the axial (thrust) load increases the circumferential distortion of
the compressor case, and results in a cardiod-type shape. Both stages 2 and

3 of the compressor case show a significant reduction in maximum radial de-
flection at 12 o'clock with the new front mount as compared to the original.
(Note the difference in radial deflection scales on the polar plots for the

original and the new front mounts.) For the 55,000 lb. maximum static thrust

plus 1G down applied load, the maximum radial deflection at Stage 3 decreased
about 50% from 0.038 in. with the original to 0.018 in. with the new front

mount.

In Figures 6.6 through 6.11 the compressor casing radial deflections
with the original and the new front mount are compared for the maximum static

thrust and the takeoff at rotation conditions. The original titanium HPC

case was tested with the original and the y new front mount, and a new steel HPC
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STA	 STA	 STA	 STA

TQst Condition

Applied Test Loads	 N - (lb)

Thrust Inlet Air Load Inertia Load
F2

Axial
VIL

vertical
V1R

Vertical Vertical Vertical

Maximum Static Thrust
144,650
( 55,000) 0 0

-9,150
(-2,058)

-9,150
(-2,058)

Takeoff at Rotation
184,601

( 41,500)
19,570
( 4,400)

19,570
( 4,400)

-9,150

(-2,058)
—9,150
(-2,058)

*V2L $ V2R plus the tare weight of the test engine assembly give the correct

1 'G' down reaction at the front mount and very close agreement with the
compressor casing bending moment under vertical gravitational effects.

Figure 6.1. Test Loads for Deflection/Distortion Tests.
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44480 N (10,000 lh)	 R.L.F.

1334 0 IN 130,000 lh)
)(184600 N (41,000 lh)
$244650 N (55,000 lh)

Figure h._.	 CF6-50	 ginal Front Mount -lilt' t,«in,; Stare 2 Radial Det Icrt it'll,
0 it M.1\in111n Stati. • thrust t'011ditil)n (Illl'lUdiflO l C Down).
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Lege

I.

270'

0'

0	 N (0 lb)	 1800
X 44480 N (10,000 lb) 	 A.L .F .

133450 N (30,000 lb)
X184600 N (41,000 lb)$ 244650 N (55,000 lb)

Figure 6.3. CF6-50 New Front Mount- HPC Casing Stage 2 Radial Deflection,
0 to Maximum Static Thrust Condition (Including 1 G Down).
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90 °

08 mm
020 in)

270'

Le

of

A 0 N
44480 N

p 133450 N
X 184600 N
$ 244650 N

180°
(0 lb)
(10,000 lb)	 A.L.F.
(30,000 lb)
(41,000 lb)
(55,000 lb)

Figure 6.4. CF6-50 Original Front Mount- HPC Casing Stage 3 Radial
Deflection, 0 to Maximum Static Thrust Condition
(Tncluding 1 G Down).
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270'

Leg

90'

0'

1

&	 0 N (0 lb)
44480 N (10,000 lb)

0 133450 N (30,000 lb)
X 184600 N (41,000 lb)
$ 244650 N (55,000 lb)

180'
	

(0.010 in)

A.L.F.

Figure 6.5. CF6-50 New Front Mount- HPC Casing Stage 3 Radial
Deflection, 0 to Maximum Static Thrust Condition
(Including 1 C Down).
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So.

8 mm

20 in)

270•

o•

ISO

A.L.F.

O Original Front Mount, Titanium Casing
6 New Front Mount, Titanium Casing
q New Front Mount, Steel Casing

Figure 6.6. CF6-50 Original and New Front Mount- HPC Casing Radial
Deflection at Stage 3, Takeoff at Rotation Core{cion

(Including 1 C Down).
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0 Orisinal Front Mount, Titanium Casing
New Front Mount, Titanium Casiisg

q New Front Mount. Steel Casing

Figure 6.7. CF6-50 original and New Front Mount- HPC Casing Radial
Deflection at Stage 3, Maximum Static Thrust Condition
(Including 1 G Down).
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2?00 go.

o•

A.L.F.	
(0.020 in)

O Original Front Mount, Titanium Casing

6 New Front Mount, Titanium Casing

0 New Front Mount, Steel Casing

Figure 6.8. CF6-50 Original Ind New Front Mount- KPC Casing Radial
Deflection at Stage 1, Takeoff at R.,^ation Condition

(Including 1 C Down).
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A.L.F.
Original Front Mount, Titanium Casing

New Front Mount, Titanium Casing

New Front Mount, Steel Casing

270'

n

(0.020 in)

go

O
6
G
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Figure 6.9. CF6-50 Original and New Front Mount- HPC Casing Radial
Deflection at Stage 7, Maximum Static Thrust Condition
(Including 1 C Down).
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O Original Front Mount. titanium Casing	 (0.010 in)

n hew Front Mount, 'Titanium Casing
New Front Mount, Steel Casing

Figure. 5.10. CFb-:)U uri;;inal and New Front Moult- HPC Casing Radial

Deflection at Stage 10, Takeof f at Rotation Condition

(Including 1	 Down).
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Original Front Mount, Titanium Casing
	 (0.010 in)

New Front fount, Titanium Casing

Q New Front Mount, Steel Casing

Figure 6.11. CF6-50 Original and New Front Mount- HPC Casing Radial
Deflection at Stage 10, Maximum Static Thrust Condition
(Including 1 G Down).
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case was tested with the new front mount. The polar plats show the improve-
ment due to the new front mount at Stages 3, 7, and 10 of the compressor

casing. 1}:e new front mount reduced the radial deflection 0.010 to 0.020
its. in the forward HPC Stages 2 and 3, but in the later stages (7 and 10),

only a slight improvement (0.001 to 0.007 in.) was observed. An additional
reduction in the radial deflection of 0.006 to 0.010 in. was measured in the
later Stages (7 and '10) with the new front mount and the steel HPC case.

The influence of the new front mount is apparent at compressor stages
remote from the front mount. Figures 6.12 and 6.13 compare the 12 o'clock
radial deflections along the length of the compressor casing, and illustrate
that improvements are obtained along the complete length of the casing. For
the 244,650 N (55,000 lb) max. static thrust plus 1C down applied load con-

dition (Figure 6.12), the maximum radial deflection decreased 422 from 9.144
mm (0.036 in.) at Stage 3 with the original front mount to 5.334 mra (0.021
in.) at Stage 6 with the new front mount and the titanium HPC case.

For the takeoff at rotation load condition (Figure 6.13), the maximum

radial deflection decreased 292 from 12.446 mm (0.049 in.) at Stage 3 with

the original front mount to 8.890 mm (0.035 in.) xt Stage 6 with the new
front mount and titanium HPC cane. With the new front mount and steel HPC
case, the maximum radial deflection vas decreased 452 as compared to the
original front mount and titanium HPC case. The reduction in maximum radial

deflection obtained by the use of the new front mount with the titanium HPC
case is 292 for the takeoff it -otation condition and 422 for the maximun.

static thrust condition. With the Steel HPC case, the new front mount re-

duced the maximum radial deflection 33% and 412 for the takeoff at rotation
and maximum static thrust conditions, respectively.

Sensitivity of the radial deflection of the compressor casing to changes
in stiffness of the fan casing is shown in Figure 6.14. Deflection obtained

before and after the removal of the DC-10 inlet is plotted along the length

of the compressor casing. The large change in fan casing stiffness can be
seen to have a small but measurable effect on the radial deflection. Instal-
lation of the IBC-10 inlet increased the stiffness or the fan casing assembly
a ►id reduced the HPC case maximum radial deflection by about 122.

To determine the separate effects of compressor case backbone bending
and the local vertical load on the front mount, a test was conducted in whi.:h

a vertical load was applied to the fan casing to obtain the same vertical

reactions at the front mount as the maximum static thrust provides. The
compressor casing backbone bending effect, relative to the compressor shaft,
was obtained by a harmonic analysis of the radial deflections at each com-

pressor stage. Figure 6.15 illustrates the total radial deflection at 12
o'clock obtained from this test, the backbone bending curve calculated from
the harmonic analysis, and the difference between the two which gives the

distortion due to the vertical load on the new front mount (note low values
of radial deflection).
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All deflection/distortion testing demonstrated the improvement of the
new over the original front mount in substantially reducing the distortion of

the HPC casing.

Front Mount Component Loads and Stresses

Strain gage readings were obtained during these engine casing deflection/

distortion tests, and were used to calculate stresses and internal loads in
the front mount components for comparison with calculated values. Excellent
agreement was obtained for the calculated and measured axial loads in the

supporting side and thrust links, as may be seen from the curves in Figures
6.16 and 6.17. Calculated and measured stresses for the new front mount

platform and link components during takeoff loading conditions are shown in

Figure 6.18. Slight divergence occurs in some cases, which is attributed to
the differences in the calculated and measured bending stresses in the compo-
nents. The bending moment distribution is sensitive to the degree of assumed

end restraint of the link components. However, both calculated and measured
stresses are low and well within the fatigue allowable stresses for the ma-

terial.

Discussion

The new front mount reduced the local deflection of the high pressure

compressor casing for the takeoff conditions tested, permitting a reduction
in core compressor clearances. However, other factors also affected the per-
missible minimum clearances and a detailed discussion of these results is

given in Section 10.0, Performance Assessment.

Close agreement was obtained between the calculated and measured loads

and stresses in the new front mount and the supporting links under conditions
closely representing the actual engine/ pylon installation. This confirms the
calculated interaction loads between the pylon and front mount, which were

used in the Low Cycle Fatigue Tests described in Section 7.0 and the Company-
furled Certification Limit Load Tests described in Section 5.0, in which the

test loado applied to the front mount interface were calculated from a com-

puter structural analysis of the redundant engine/pylon configuration.

6.2 Failsafe Load Test

The objective of the Failsafe Load Test program was to examine the be-
havior of the new front mount and engine casings under several stipulated
modes of partial failure of the front mount. During the testing, the fail-

ure of an element was simulated by the removal of that element from the front

mount structure. Measurements of compressor casing radial distortion were

made to ensure that these were acceptable with regard to compressor blade
clearance. The behavior of the failsafe tongue, provided to reduce excessive

motion and stress in the mount, was also studied, and comparisons were made
between calculated and measured stresses in the front mount supports and
backup structure.
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MAXIMUM STATIC THRUST AND TAKEOFF AT ROTATION

COMPONENT

CALCULATED STRESS MEASURED STRESS

mPa	 psi x 10`3MPa psi x 10 `3

Max Static Thrust Condition

Thrust Link 384.8 86.5 424.4 95.4
Side Link -260.2 -58.5 -195.3 -43.9
Sway Link -31.3 -7.0 -93.2 -20.9
Mount Platform 222.8 50.1 235.31 52.9

Takeoff at Rotation

Thrust Link 299.8 67.4 369.2 83.0
Side Link -241.5 -S4.3 -201.S -45.3
Sway Link -43.6 -9.8 -100.9 -22.7
Mount Platform 125.9 28.3 135.7 30.S

I

Figure 6.18. Comparison Between Calculated and Measured Stress During
Takeoff Conditions for the New Front Mount.
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Test Procedure

The failsafe test loads shown in Figure 6.19 provide the most severe
axial, side, or vertical loads on the front mount from the failsafe con-
ditions. Since there are no specific low cycle fatigue requirements for
the failsafe condition, an objective of 5000 flight cycles was chosen to
provide ample time for any failure to be observed during regular mainte-
nance. The test load conditions of Figure 6.19 were compared with anal-
ysis to confirm the methods and analytical process. The most severe load
occurs during the takeoff at rotation condition, and is one of the low cycle
fatigue (LCF) spectra conditions. They remaining conditions are ultimate
failsafe design loads and provide the maximum failsafe vertical and side
loads.

Four fail ure modes were considered in addition to the unfailed base
run for each of the three loading conditions. The four failure modes ex-
amined were:

To provide a repeatable zero reference condition for the engine struc-
ture and to avoid initial sag due to disconnecting one or more lord links to
simulate their failures, the engine was supported with sufficient load at the
fan frame ground handling pins and at the rear mount to balance the dead
weight of the structure. Vertical inertia loads were simulated by distrib-
uted vertical 'oads along the engine (Figure 6.19). In each case, zero ref-
erences were made in th,- "zero C" condition and the loads then increased in
20% increments to the maximum values of Figure 6.19. At each increment all
stationary deflection puts and strain gages were recorded, and at the maximum
value, the internal shaft-mounted pots were swept incrementally through a
360 * arc.

During failsafe loading, stresses increase linearly in the mount and
supporting links until contact is tradc between the failsafe link and the
12 o'clock clevis on the fan frame. After contact is made, additional side
load and symmetrical vertical and axial loads are carried mainly by the fail-
safe link, and the mount and link stresses begin to build up. To determine
the effect of the lateral assembly stack-up on the failsafe stress levels,
tests were rerun with lateral contact. between the failsafe tongue and the fan
frame clevis, with shims introduced between the tongue and clevis to reduce
the clearance and increase the stresses due to the contact.



ETA	 ETA	 ETA	 ETA
195.90E 235.d21	 245.704 312.376

	

ETA	 STA 	 \STA	 STA	 STA	 ETA

In% a	 183.5^STA200.0	 24%.61 279.2 29I.S1 I 319.0'

Test

Loads

Case l

T/0 at Rotation

Case 2

Side Load Cond.

Case 3

Vertical Load Cond.

kN lb kN 3b kN lb

VIL 19.12 4300 - 8.? -1850 -10.7 - 2400

V1R 19.12 4300 - 8.2 -1850 -10.7 - 2400

51 0 0 20.5 4600 0 0

V1L 27.36 6150 -24.9 -5600 -59.6 -13400

V1R -61.61 -13850 -24.9 -5600 -59.6 -13400

S2 5.78 1300 38.3 6600 0 0

V X 58.3 13100 - 7.6 -1700 -16.0 - 3600

V3R -66.3 -14900 - 7.6 -1700 -16.0 - 3600

S3 0 0 2.7 600 0 0

VCRFL 62.3 14000 0 0 0 0

VCRFR -62.3 -14000 0 0 0 0

V4L 4.23 -	 950 - 8.01 -1800 -16.9 - 3800

V4R - 4.23 -	 950 - 8.01 -1800 -16.9 - 3800

S4 0 0 2.69 650 0 0

V5L -84.3 -18950 - 8.01 -1800 -16.9 - 3800

V5R +64.3 +18950 - 8.01 -1800 -16.9 - 3800

S5 0 0 2.89 650 0 0

F2 200 45000 -28.9 -6500 0 0

Figure 6.19. CF6-50 New Front Mount Failsafe Test toads.

80



6.2.2 Test Results and Discussica

The takeoff at rcLation condition resulted in the largest radial dis-
tortion of the compressor casing during the tests of the complete new front

mount. The failsafe tests demonstrated the additlona). radial deflections
caused by simulated failures of new front mount components. Figures 6.20
and 6.21 illustrate the radial distortion on the high pressure curtpressor

(HPC) casing at Stage 3 before and after the simulate4 link failures. Maxi-
mum inward radial deflection of the casing was 0.86 mm (0.034 in.) for the
complete mount and for the left side link failed condition (Figure 6.20), 0.96mm

(0.038 in.) with the right-hand side axial link failed, and 0.99 mm (0.039
in.) with the right-hand axial link and left-hand side link failed (Figure

6.21).

Figures 6.22 through 6.26 show the maximum stresses measured in the new
front mount components for all the failsafe tests conducted. The correspond-

ing calculated stresses are included, where available. Agreement is good ex-
cept for stresses in the right side link for the right thrust link failed

condition and the sway link failed condition. In each case the lack of agree-
ment is due to an overestimation of the degree of fixity at the clamped con-
nection between the link and the compressor casing flanges.

The compressor casing radial deflection increases slightly in the more

severe failure simulation during the takeoff at rotation condition. This
slight increase of 0.10-0.13 mm (0.004-0.005 in.) is acceptable consider-

ing the severity of the stipulated failure and loads. Stresses in the mount
and supporting structure during takeoff at rotation are low enough to permit

repeated application under the failure simulated. Stresses in the ultimate

failsafe conditions are also acceptably low.

Stresses in the failsafe tongue, the clevis and backup structure of the

fan frame are also acceptable and are generally lower than calculated stresses.
,tresses in the side link were overestimated for the side loading condition.
The major part of the side link stresses in these conditions are local bend-

ing stresses. Large bending stresses are calculated due to the relatively
large transverse motion of the mount end of the link. In the computer struc-
tural model, the fan frame/compressor casing end of the side links were as-

sumed to be completely restrained; the calculated bending stresses would be

considerably reduced by a reduction in the stiffness of the connection.

6.3 Thermal and Assembly Stress Correlation Test

The new front mount system is a redundant structure in that all link
end attachments, except the forward end of the thrust links, are clamped

joints. Assembly stack and thermal growth in the casings will therefore in-
duce stresses into the links and supporting structure. To give added con-

fidence to the thermal growth and assembly misalignment stress calculations,
the tests simulated the thermal and assembly stack conditions by the inser-

tion of various thicknesses of shims between mount/engine and mount/pylon
mating surfaces. Induced stresses were obtained from strain gage measure-

ments taken before and after the insertion of the shims.
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Q New Front Mount Complete
C] New Front Mount Left Side Link Failed

Figure x+.20. CF6-50 New Front Mount - HIT Casing Radial Deflection at
Stage 3 Due to Simulated Failure of Left Side Link. Take-
of s: Rotation CondiAon (Including I G Down).
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(:) New Front Mount with Left Side and Left Axial Link Failed

[] New Front Mount with Right Side Axial link Failee

Figure 6.21. CFS-50 New Front Mount - IIPC Casing; Radial Deflection kit

Stage 3 Due to Simulated Failure of Mount Links. 'Takeoff
at Rotation Condition (Including 1 C Down).
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6.3.1 Test Procedure

Thermal stresses and assembly stack stresses were obtained by taking

zero readings of all strain gages and then relaxing various clamped ,joints
in turn so that 0.127 mm (0.005 in.), 0.254 mm (0.010 in.) and 0.381 mm
(0.015 in.) shims could be inserted in turn. After insertion of the shims,
the joint fasteners were retorqued and the strain gages recorded once more.

The conditions considered are shown in Figure 6.27.

6.3.2 Test Results and Discussion

As anticipated, stresses induced by the insertion of thi . shims into the

mount and supporting links interface surfaces were very small. The maximum
stresses obtained during the tests occurred in the thrust links during the

simulated mount upper surface angular misalignment in the pitching direction.
The calculated and measured bending stress correlated well, being 115.2 MPa
(16,"00 psi) and 118.6 MPa (17,200 psi), respectively.

Stresses induced in the new front mount system due to thermal growth
and assembly stack misalignment are very small and close to the calculated

values. Although small, the stresses are not negligible and have been in-

cluded in the low cycle fatigue analysis calculations for the new front

mount structure.
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PYL

[IN T1

[IM T2

[IM T3

TEST DESCRIPTION
SHIM
T1

SHIM
T2

SHIM
T3

PYLON
BOLT
TOkQUE

19 Thermal correlation
Axial displacement - - x Tight.

20 Thermal correlation
Vertical displacement - x - Tigh.

21 Assembly correlation
Mount pitch rotation x - i	 - Tight

22 Assembly correlation
Axial displacement - - x Loose **

23 Assembly correlation
Vertical displacement - - Loose **

* Loosen Mating Faces Sufficient to Insert Shim and then Retorque.
Shim Sizes 0.127 mm (0.005 in.), 0.254 mm (0.010 in.) and 0.381 mm
(0.015 in.)

** Lossen all Bolts, Insert Shims and Retorque All Except Pylon Bolts.
Shim Sizes 0.127 mm (0.005 in.), 0.254 mm (0.010 in.) and 0.381 mm
(0.015 in.)

Figure 6.27. Simulated Thermal and Assembly Stress Correlation Test.
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7.0 LOW CYCLE FATIGUE TEST

The objective of the low cycle fatigue test was to demonstrate the
ability of the new front mount structure to withstand 35,000 simulated flight
load cycles, and to determine by what margin the structure would exceed this
requirement. A description of the low cycle fatigue test setup with the
engine outer structure in the load paths is presented in Section 4.1.

The simulated flight load cycle was based on the maximum loads obtainable
for the flight mission sequence. Maximum static thrust-takeoff at rotation-
landing with reversed thrust. One life cycle included 35,000 simulated flight
load cycles. In addition, loading to simulate the cumulative effects of the
design flight and gust loading s pectrum was applied to the front mount. Using
80% of the maximum limit load condition as a constant amplitude test load, cal-
culations based on the cumulative damage theory indicates :hat 100 cycles of
the 801 maximum vertical load condition and 130 cycles of the 30% maximum side
load condition would provide the equivalent cumulative damage of one life
cycle. This is more severe than the predicted opeational life cycle and will
substantiate the basic life capability for airline operation.

To cover the case of a mount having minimum material properties and
assuming, on the basis of material certificates and the material fatigue tests
designated ',n Appendix B, the test article was of average properties, the test
loads for the second lifetime test were increased by a factor of 1.25. This
factor was reduced to 1.20 for the maximum static thrust condition to account
for normal derating of the engine by the airlines. The takeoff and landing
spectrum and the 801 limit load conditions of Figure 7.1 for the second life-
time loads reflect these factors and also a more realistic reverse thrust
condition. The relief provided by the redundancy of the pylon mounted fan
reverser and core cowl were conservatively neglected.

7.1 TEST PROCEDURE AND LOADS

After first establishing the accuracy of the applied loads, by increasic.g
the loads incrementally ano reading all strain gages and load cells, the
cycling was continued automatically at six cycles per minute. Load cells were
monitored continuously on strip recorders throughout the test and after each
4,000 cycles, strain gages were recorded at the peak cyclic loads.

The test loads are tabulated in Figure 7-1 for the first and second life-
time load cycles.

7.2 TEST HISTORY AND DESCRIPTION

An initial problem of excess motion of the loading platform, caused by
the difficulty in maintaining identical axial loads on each end of the loading
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yoke, was solved by increasing the right-hand loading cyclinder force to
provide a small constant yawing moment sufficient to overcome any out of
balance occurring during the load cycles. A cons.4uence of this problem
were two failures, at 4,474 and 8,524 cycles in the first lifetime, of one
of the two facility bolts attaching the loading yoke to the platform, and
consiAerable fretting and galling of the mount platform upper interface
surface.

The engine completed the first lifetime cy:lic test with 35,000 cycles
of the takeoff thrust - takeoff at rotation - landing with reverse thrust
spectrum, 130 cycles at 80% of the maximum design limit side load condition,
and 100 cycles at 80% of the maximum design limit vertical load condition.
Examination of the mount platform after the first lifetime test showed little
increase in the severe fretting of the mount platform interface surface which
had occurred during the first 2,000 cycles. Examination of the links revealed
cracks on one lip of the spherical ball of the left-hand thrust link. These
cracks had not adversely affected the function of the link, and the ball was
not replaced so that crack growth rate could be observed.

The second lifetime cycle test commenced with loads increased by approxi-
mately 20% to take into account the ratio of minimum to average material pro-
perties, assuming the mount to be of average properties. It was at these
higher load levels that a failure occurred at cycle 47,360 (see Figures 7.2
and 7.3). The fatigue test program was concluded with the stress level tests
of a second new front mount strain gaged to determine the stress levels in
the failure region.

7.3 TEST RESULTS AND FAILURE INVESTIGATIONS

Stress levels measured at the maximum loads of cases IA, 1B. 2, 3 and 4
(Figure 7.1) at the beginning of each lifetime test agreed well with the cal-
culated values for these conditions.

Failure of the left thrust link lug on the mount platform occurred at a
total of 47,360 cycles, or 12,130 cycles into the more severe second lifetime
losd spectrum. After failure of the left thrust link lug, the mount platform
and links were dismantled for examination. i closeup photo of the failed lug
(Figure 7.3) snows the location of the failure and shows fretting on the outer
surface of the bushing lip which is it contact with the thrust link. Similar
fretting was noted on the mating face of the link. On-site removal of the
bushing revealed fretting on the mating surfaces of the bushing lip and front
mount platform (Figure 7.2).

The previously noted cracks iii the ball of the left thrust link hod not
propagated appreciably since first observed after 35,000 cycles. Fretting of
the upper interface surface of the mount platform appeared to be uncher.ged
since the previous examination.
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THRUST LINK

I

FRETTED LEGION AND PRIMARY
ORIGIN OF FATIG'?E CU. CKI'IG

LOCAL FRETTING AT
EDGE OF BOSHING AND
9ECONLART ORIGIN OF

FATIGUE CRACKING.

Figure 7.2. Cross Section of Left Lug of Mount Platform and 'Thrust Link
Showing Origin of Fatigue Cracks.
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SECONDARY ORIGI

4RY ORIGINS

Figure 7.3. Origins of Fatigue Cracking in Left Hand Lug
of New Front Mount Platform (Upper Surface)
After 47,360 Simulated Flight Cycles, Holy
Bushing Removed.

i^
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A failure investigation of the failed miw nt platform war+ conducted by the
Materials Group with the following conclusions:

The failure was caused by low cycle fatigue cracks having multiple ori-
gins in the fretted surface of the mount lug under the lip of the hole bush-

ing. The origins are shown in Figures 7.2 and 7.3 which shows the left lug
upper surface with the bushing for the bolt hole removed so that the fretted

region may be seen. The cracks propagated towards the edge of the hole and
away from the hole as indicated in the photograph.

To continue testing the remaining front mount components and to evaluate
the proposed procedure to eliminate the fretting problem, the following test
plan was initiated: A new front mount was provided and strain gaged (see
Figure 7.4) so that the surface stresses in the region of failure might be
measured. Stress tests were conducted on the second new front mount in the

same test facility. Following these stress tests, the mount was removed from
the test facility for rework to eliminate the fretting problem. After removal

of the bushings and strain gages, the surfaces were shot peened, and coated
with a plasma spray of copper-nickel-indium. The surface was also coated with
molybdenum disulphide lubricant before replacing the bushings.

Analysis of the results of the stress test on the second mount platform

from strain gage rossette 506, 507 and 508 (see Figures 7.4 and 7.5) resulted
in an effective low cycle fatigue stress of 170.65 MPa t 216.75 MPa (24,750 psi

t 31,440 psi).

Fatigue testing of the mount was continued to complete the second life-

time cycles of the remainder of the mount system and complete one life cycle
on the platform at the higher loads of the second lifetime cycles.

Discussion

The low cycle fatigue test demonstrated the life capability of the new
front mount hardware to be in excess of the required 35,000 simulated flight

cycles.

Stress levels in the failed area of the mount were sufficiently low
that fatigue cracking would not have been initiated without the aggravated

effects of local surface fretting.
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POSSIBLE

Figure 7.4. Strain Gages on Mount Platform for Stress Test with a
Second New Front Mount.
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Figure 7.5. New Front Mount — Low Cycle Fatigue Test, Strain
Variation on Mount Platform During Load Cycle.
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8.0 ENGINE FACTORY AND FLIGHT TESTS

Factory and flight engine tests were conducted on engines having the
new front mount with strain gaged links. Total accumulated time on all
engines to date (3/27179) is about 2,000 hours for factory engines and 1,227
hours for flight test engines. Figure 8.1 shows the time on the individual
engines.

The condition of a prototype new front mount which had no protective
coatings on the mount or links is shown in Figures 8.2 through 8.5 after
about 204 hours of factory engine tests. There is very little evidence of
galling of the mating surfaces. Production mounts have the titanium mating
surfaces protected by a dry film lubricant while the steel links have a
sealed aluminum spray corrosion protection coating.

Vibratory stress in the links were recorded during the factory tests
and flight tests. The maximun stresses recorded were low, being 7,800 psi
RMS total during the factory tests and 16,000 psi RMS total during flight
testing. These max stresses occurred in the side links in the uniform
portion of the link at SIG Station No. 15 (Figure 4.5).

Flight tests also provided strain gage records of steady-state strains
and vibratory strains. Both of these are illustrated in the typical data
taken during a takeoff run shown in Figures 8.6 a and b. The steady-state
link loads obtained from the flight test are shown in Figure 8.7.
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Time.	 Flight
Engine	 hours	 Cycles

Total Factory

4SS-115/4-6	 882	 2669

4SS-507/18	 82	 0

4SS-508/16 $ 17	 204	 9

4SS-509/2-5	 831	 4554

1999 hours	 7232 Cycles
DC-10-30 Aircraft

517-330 179 163

517-331 179 188

517-376 179 191

517-431 94 99

517-432 94 99

517-433 94 99

819 hours 839 Cycles

B747-200 Aircraft

517-373 102 59

517-375 102 59

517-401 102 59

517-408 102 S9

408 hours 236 Cycles

3226 hours 8307	 t'yr lE

Figure 8.1. CF6-50 New Front Mount Time on Flight and Factory Engines Up to

March 27, 1979.
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FRONT FOUNT SUPPORT LINK LOADS

THRUST LINK LOAD SIDE LIN9 LOAD
FLIMIT CONDITION

kN lb x 10-3 kN lb x 10-3

102.3 23.0 -45.8 -1013
STATIC T/0 111RUST

134.4 30.2 -54.3 -?2.2

20.0 -80.5 -18.189.0
T/0 AT ROTATION

117.9 26.5 -91.7 -20.6

CLIMB 73.4 16 . 5 -SS.1 -12.4

CRUISE 45.4 10.2 -31.6 -	 7.1

LANDING APPROACII 18.2 4.1 -22.7 5.1

LANDING 27.1 6.1

^

-23.1 - 5.2

___	 ^.-----

-17.3 -4.0 0 a
REVERSE THRUST	 ` -71.2 -19.0 -28.9 6.5

A CALCULATED MAXIMUM LOADS

Figure 8.7. CF6-50 New Front Mount Support Link Loads During DC-10-30
Flight Test Engine Position No. 3.

107

-



9.0 PERFORMANCE ASSESSMENT

An assessment of earlier tests and analysis had indicated that the in-
troduction of a redesigned front mount to the CF6-50 series of engines would
result in a performance improvement of 0.3% sfc. The improvement was to be
realized by tightening the clearance between compressor rotor and casing
and compressor vanes and spools, made possible by a reduction in compressor
casing distortion.

Results of the tests, described in Sections 5.0 and 6.0 herein, confirm
the ability of the New Front Mount to considerably reduce the compressor
casing deformation. However, these results, and a more detailed examination
of other influencing parameters, reduce the anticipated improvement resulting
from the decrease in deformation.

In the discussion below a concentrically ground casing is assumed and
the clearance between rotor and casing, and vanes and spools, is selected
such that a slight tough or rub would occur under the most adverse condition.

The estimated maximum radial deflection improvement due to the New Front
Mount over the original mount was thought to be as high as 0.79 mm (0.031 in.)
for the takeoff-at-rotation condition (Figure 9.1, curve a). However, these
levels were found to be optimistic for the following reasons.

Preliminary tests were conducted on a steel support with a Unibal uni-
versal joint at the front mount with this engine weight supported (Zero G).
Final testing with the DC-10 pylon with the clamped interface resulted in a
smaller improvement in radial deflection of 0.13 mm (0.005 in.). The instal-
lation of the DC-10 wing inlet resulted in a smaller improvement in radial
deflection of 0.10 mm (0.004 in.). More realistic comparisons which included
a 1G down load factor also lowered the improvement in radial deflection by
0.10 mm (0.004 in.). These effects are shown in Figure 9.1, curve b.

The fan reverser is a redundant installation, attaching to the pylon as
well as the engine, which reduces the deflection an estimated 15%. See Fig-
ure 9.1, curve c.

The deflection improvement available at the forward stages of the com-
pressor casing which may be utilized in reducing the clearances is therefore
0.41 mm (0.016 in.) rather than the earlier estimate of 0.79 (0.031 in.).
Another feature which reduces the effectiveness of the deflection improvement
is that aft of S' ;e 10, clearances are established by the effects of a
throttle chop wh..n exceed the local distortion effects of the casing (Figure
9.1).

Performance ir•:provements have been recalculated for a concentrically
ground casing, using semiempirical correlations based on General Electric
experience of the effect of clearance on the efficiency and stall margin of
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the CF6-50 high pressure compressor. The results of these calculations are
as follows:

Calculated
(Based can Measurement) 	 Predicted

ASFC Cruise
-0.1X	 -0.3X

AEGT Takeoff	
-1.50 C	 -3.5° C

AStall Margin (Takeoff Flow) 	 +3.5 Pts. (16X)

AStator Angle Margin (Takeoff) 	 +0.8 degree (10X)

&Engine Weight	 +4.5 kg (10 lb)

The improvements in the stall margin are significant. For a new production

high pressure compressor the baseline values are as follows:

Stabilized
	

Cold Burst Transient

Stall Margin (Takeoff Flow)
	

22.0 Pts.	 12.0 Pts.

Stator Angle Margin (Takeoff)
	

8.0 Degrees
	

5.0 Degrees

As can be observed, the above improvements provide a large percentage

gain on the margins. All the above improvements will be even greater for a

deteriorated engine.



ECONOMIC ASSESSMENT

The new front mount concept was evaluated by Boeing and Douglas during
the Feasibility Analysis (Reference 1). A cruise specific fuel consumption
improvement of 0.3 percent was predicted based on reduced HP compressor case
distortion.

Deflection/distortion tests conducted under this program indicate that

the sfc improvement for the new front mount amounts to 0.10 percent for a

new engine as discussed in detail under Performance Assessment ; Section 9.0.
Further savings in the form of improved performance retention are predicted

but not included in the economic assessment because of the difficulty of
quant if is at ion.

A 0.10 percent cruise sfc reduction results in the block fuel savings

per aircraft shown in Table 10.1 for the minimum fuel consumption mission
analysis. The estimated annual fuel savings per aircraft for the above

block fuel savings are shown in Table 10.2, and indicate an annual fuel
savings up to 77,500 1 (20,500 gal) per aircraft.

Economic assessment of Payback Period (PBP) and Return on Investment

(ROI) for a new engine is summarized in Table 10.3 for the medium interna-
tional fuel price of 14.531/1 (551/ gal) for the DC-10-30, and for the
medium domestic fuel price of 11.891/1 (451/gal) for the DC-10-10 and

the B747-200 (Reference 1.) Payback period for a new engine is about one
year, and is economically attractive to the airlines. This does not include
the effects of improved performance retention and reduced maintenance cost

resulting from improved stall margin. As noted, even with the conservative
assessment the new front mount is very attractive from both fuel savings and

economic considerations.

The new front mount is physically interchangeable with the original front

mount and requires rework of the fan frame and the HP compressor #-ase forward

flange for engine installation. Retrofit of existing deteriorated Ce" engines
may be economically impractical, since new compressor blading and casing rub-

strips would be required to obtain the tighter HP compressor tip clears.ices
for improved performance.
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3lock Fuel
a for

?uel Savings/Aircraft

X

,0 -0.10

.7 -0.10

.7 -0.10

1 -0.07

5 -0.10

5 -0.10

,3 -0.07

0 -0.10

7 -0.10
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Table 10.2. CF6 New Front Mount: Annual
Fuel Savings Per Aircraft:
(Minimum Fuel Analysis fir
ASFC	 s 0.1x).

Cruise

Aircraft (Engine)
Ran a Annual Fuel Savin s/Aircraft

km mi Liters AC Yr. Gals/AC/Yr.

DC-10-10 (CF6-6) 645 400 23,610 6,238

1690 1050 29,280 7,736

3700 2300 33,330 8,806

DC-10-30 (CF6-50) 805 500 18,480 4,882

2735 1700 29,890 7,897

6275 3900 58,260 15,392

B747-200 (CF6-50) 770 480 21,740 5,744

3460 2150 38,580 10,193

6195 3850 77,480 20,470
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Table 10.3. Economic Assessment (Payback and ROI) of New CF6
Engine with New Front Mount for 

ASFC Cruise
3 

0.1%.

(Medium Range, Minimum Fuel Analysis, Medium Fuel Price)

Aircraft
(engine)

Fuel Price
¢/1	 (0/gal)

Payback Period
(years)

ROI
(%)

DC-10-10 (CF6-6) 11.89	 (45) 1.15 87
(Domestic)

DC-10-30 (CF6-50) 14.53	 (55) 1.01 99
(International)

B747-200 (CF6 -50) 11.89	 (45) 1.17 85
(Domestic)
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11.0 SUMMARY OF RESULTS

As part of the NASA-sponsored Engine Component Improvement Program, a

new engine thrust mount has been developed which reduces fuel consumption and
performance degradation in current CF6 turbofan engines for today's wide-
bodied commercial aircraft. This new front mount reduced the induced point

loads in the high pressure compressor (HPC) casing, resulting in a decrease
in localized case distortion. This allows the compressor to operate with
reduced blade-to-case tip clearances, which improves HPC efficiency and over-

all engine performance.

The New Front Mount Program included a fatigue life analysis, correla-
tion of analytical and empirical stress and deflection data, material fatigue

tests, and component stress, deflection/distortion, and low cycle fatigue
(endurance) tests. Centractor-funded engine tests and aircraft flight tests

with the new front mount were also monitored.

During the stress test, brittle lacquer crack development identified

critical stress areas of the new front mount hardware, and indicated areas
where additional strain gauges should be located.

In the deflection/distortion tests, the new front mount reduced the maxi-
mum radial deflection at each stage of the HPC case due to simulated flight

loads. With the titanium HPC case the maximum radial deflection was reduced
29% for the takeoff at rotation condition and 42% for the maximum static

thrust condition. With the new front mount and the steel HPC case, a 33%
and 41% reduction in the maximum radial deflection were measured under the
same corresponding loads. However, the predicted HPC clearance improvement

of 0.66-0.78 mm (0.026-0.031 in.) due to the new front mount was not fully
realized. Preliminary predictions were based on early back-to-back tests

conducted with a high thrust load, a zero C down load, and with a rather
flexible engine configuration. Subsequent tests reported herein were con-

ducted with a lower applied maximum thrust load, a IC down load, and the

actual DC-10 wing pylon, inlet and fan reverser. This provided a stiffer

and more realistic baseline engine Installation, which reduced the radial
deflection with the original front mount, and decreased the potential and
measured improvement about 50% due to the new front mount.

Performance improvements due to the reduced HPC radial clearances have

been recalculated for a concentrically ground HPC casing, using semiempirical
correlations of the effect of clearance on the efficiency and stall margin of

the CF6-50 high pressure compressor, and the results are presented below:

r
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Calculated
(Based on Measurements)
	

Predicted

ASFC Cruise	 -0.1%
	

-0.3%

AEGT Takeoff
	

-1.5' C
	

-3.5' C

AStall Margin (Takeoff Flow)
	

+3.5 Pts. (16X)

AStator Angle Margin (Takeoff)
	

+0.8 Degree (10X)

Improvements in the stall and stator angle margins are significant for a new
compressor and are even greater for a deteriorated engine.

Low cycle fatigue testing demonstrated the life capability of the new
front mount hardware to be in excess cf 15,000 simulated flight cycles. A

failure of the new front mount platform attachment lug occurred after 47,130
cycles, or 12,130 cycles into the second lifetime test with about 20% higher

loads. Failure of the mount platform attachment lug was caused by low cycle

fatigue cracking initiated by fretting between the lip of the bolt-hole bush-

ing and the mating upper surface of the attachment lug. Stress levels mea-
sured in the same region on a second new front mount were sufficiently low
such that fatigue cracking would not have been initiated without the adverse

effect of local surface fretting. To eliminate the fretting problem, the
upper surface of the mount platform lug at the bushing lip interface was shot

peened and coated with a sacrificial protective layer of plasma sprayed
copper-nickel-indium, followed by a coating of molybdenum disulfide dry film
lubricant. The newly-coated mount platform was assembled with the hardware
from the previous cyclic endurance test. Low cycle fatigue testing was con-

tinued to complete the second lifetime cycles (70,000 total cycles) on all
remaining new front mount hardware, and to complete one lifetime (35,000

cycles) on the reworked mount platform at the 20% higher loads of the second
lifetime cycle.

Factory engine and flight test results have indicated trouble-free oper-
ation with the new front mount, and showed that the link loads agree closely

with the calculations. The new front mount system subsequently has been cer-
tified by the FAA and may be incorporated in all new CF6-50 production

engines.

The new front mount performance improvement concept offers an annual fuel

savings per aircraft of 18,500 to 77,500 liters (4900 to 20,500 gal.), depend-
ing on the aircraft application and mission range, plus reduced maintenance
costs resulting from higher stall margins which will reduce unscheduled re-

movals.
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APPENDIX A

QUALITY ASSURANCE

INTRODUCTION

The quality program applied to this contract is a documented system
throughout the design, manufacture, and repair, overhaul, and modification
cycle for gas turbine aircraft engines. The quality system has been con-
structed to comply with military specifications MIL-Q-9858A, MIL-I-45208, and
MIL-C-45662 and Federal Aviation Regulations FAR-145 and applicable portions
of FAR-21.

The quality system and its implementation are defined by a complete set
of procedures which has been coordinated with the DOD and FAA, and which has

their concurrence. In addition, the quality system as described in the
quality program for this contract has been coordinated with NASA-Lewis

Research Center. The following is a brief synopsis of the system.

QUALITY SYSTEM

The quality system is documented by operating procedures which coordinate
the quality-related activities in the functional areas of Engineering, Manu-

facturing, Materials, Purchasing, and Engine Programs. The quality system is
a single-standard system wherein all product lines are controlled by the com-

mon quality system. The actions and activities associated with determination

of quality are recorded, and documentation its available for review.

Inherent in the system is the assurance of conformance to the quality re-
quirements. This includes the performance of required inspections and tests.

In addition, the system provides change control requirements which assure that
design changes are incorporated into manufacturing, procurement and quality
documentation, and into the products.

Measuring devices used for product acceptance and instrumentation used to
control, record, monitor, or indicate results of readings during inspection

and test are initially inspected and calibrated and periodically are reveri-
fied or recalibrated at a prescribed frequency. Such calibration is performed

by technicians against standards which are traceable to the National Bureau of
Standards. The gages are identified by a control number and are on a recall
schedule for reverification and calibration. The calibration functions main-

tains a record of the location of each gage and the date it requires recali-
bration. Instructions implement the provisions of MIL-C-45662 and the appro-
priate FAR requirements.

Work sent to outside vendors is subject to quality plans which provide
for control and appraisal to assure conformance to the technical requirements.

Purchase orders issued to vendors contain a technical description of the work
to be performed and instructions relative to quality requirements.
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Engine parts are inspected to documented quality plans Which define the
characteristics to be inspected,the gages and tools to be used, the condi-

tions under which the inspection is to be performed, the sampling plan,
laboratory and special process testing, and the identification and record
requirements.

Work instructions are issued for compliance by operators, inspectors,

testers, dnd mechanics. Components part manufacture provides for laboratory
overview of all special and critical processes, including qualification and

certification of personnel, equipment and processes.

When work is performed in accordance with work instructions, the opera-
tor/inspector records that the work has been performed. This is accomplished

by the operator/inspector stamping or signing the operation sequence sheet

to signify that the operation has been performed.

Various designs of stamps are used to indicate the inspection status of
work in process and finished items. Performance or acceptance of special pro-

cesses is indicated by distinctive stamps assigned specifically to personnel
performing the process or inspection. Administration of the stamp system and

the issuance of stamps are functions of the Quality Operation. The stamps
are applied to the paperwork identifying or denoting the items requiring con-

trol. When stamping of hardware occurs, only laboratory approved ink is used
to assure against damage.

The type and location of other part marking is specified by the design
engineer on the drawing to assure effects do not compromise design require-

ments and part quality.

Control of part handling, storage and delivery is maintained through the

entire cycle. Engines and assemblies are stored in special dollies and trans-
portation carts. Finished assembled parts are stored so as to preclude damage

and contamination, openings are covered, lines capped an% %rotective covers
applied as required.

Nonconforming hardware is controlled by a system of material review at

the component source. Both a Quality representative and an Engineering repre-
sentative provide the accept (use-as-is or repair) decision. Nonconformance$
are documenLed, including the disposition and corrective action if applicable
to prevent recurrence.

The system provides for storage, retention for specified periods, and

retrieval of nonconformance documentation. Documentation for components is
filed in the area where the component is manufactured/inspected.

A buildup record and test log is maintained for the assembly, inspec-
tion and test of each major component or engine. Component and engine test-

ing is performed according to documented test instructions, test plans,and
instrumentation plans. Test and instrumentation plans are submitted to NASA
for approval prior to the testing.
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Records essential to the economical and effective operation of the qual-
ity program are maintained, reviewed, and used as a basis for action. These
records include inspection and test results, nonconforming material findings,
laboratory analysis, and receiving inspection.
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APPENDIX B

MARACL 300 STEEL LOW CYCLE FATIGUE TEST

OBJECTIVE

The objective of the low cycle fatigue test progrsm was to provide high
confidence fatigue properties of the Marage 300 steel (AMS 6514) in order to
support the limited data available during the design of the front mount link
components.

TEST SPECIMENS

Test specimens (Figure B0 were machined from two heat batches of Marais

300 steel obtained from Universal Cyclops Speciality Steel Division.

TEST FACILITY

Testm were conducted at tht , Ceneral Electric Companv's Material and

Process Technology Laboratory, Evendale, Ohio, using the low cycle fatigue
test facility described in Figure B2.

TEST DESCRIPTION

All tests were conducted at 400' F and at three different ratios of

alternating to mean stress (A Ratio). Test parameters were:

Control Mode
	

Load

Stress Ratio (A)
	

As noted

Cyclic Frequency
	

20 C.P.M.

Wave Form
	

Triangular

Test Temperature
	

400' F

Specimen Dwg.
	 As noted

A total of 56 specimens were tested.

TEST RESULTS AND DISCUSSION

Results of all specimens tested are shown in the tablets of Figures B3
through B6.

A comparison with the data used during the design of the steel eu,port-
ing links for the front mount indicates that the original data was conserva-
tive by approximately 5%.
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Figure Bl. Fatigue Test Specimens.
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Test Machine - M.T.S. Systems Corporation Fatigue Machine

Control Type - Closed-loop, servocontrolled, electrohydraulic

Control Modes - Constant load or strain amplitude (axial/axial, tension/

compression)

Control Mode Waveform - Triangle, sine., ramp, square, trapezoidal

System Frequency Range - 0 to 1 Hz

Capacity:	 GE	 1: +-20,000 lb. (2, 4, 10, 20,000 lb Ranges)

GE	 2: +-20,000 lb. (2, ;, 10, 20,000 lb Ranges)

GE	 3: +-10,000 lb. (1, 10,000 lb Ranges)

6-Inch Stroke
Maximum window opening - GE 1 6 2: 26" H x 24" W

GE 3: 6"Hx61/2"W

Test Temperature - R.T. and E.T., Induction or Resistance Heating

Special Features

1. Strip Chart recording of load and displacement.

2. Programmed stop at preset cycle count.

3. Crack initiation (N i ) is determined by various compliance change

techniques.

Figure B2. Details of Test Facility.
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APPENDIX D

SYMBOLS

FGT	 Exhaust Gas Temperature (° C)

sfc	 Specific Fuel Consumption kg/hrN (lb/hr lb)

HPC	 High Pressure Compressor

PBP	 Pay-Back Period

M .	 S/G	 Strain Gage

ALF	 AFT Looking Forward

RMS	 Root Mean Square

ROI	 Return on Investment
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