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SUM! iARY

This report is a compilation of the research in orbit determination,

navigation and optimization in space trajectories carried out by

Anaiytical Mechanics Associates, Inc. under contract to the Lyndon B.

Johnson Space Center, covering the period October 1, 1975 through

September 30, 1979.
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INTRODUCTION

Analytical Mechanics Associates, Inc. , under contract to the Lyndon B. Johnson

Space Center, acted in the capacity of consultants in the areas of orbit determination,

navigation, optimization techniques and trajectory design for manned space flights.

In this capacity, several reports were generated and are included in the text of this

final report.

(1) Initial Cartesian Coordinates for Rapid Precision Orbit Prediction

This report contains the equations of motion for a variation of parameters precision

trajectory prediction which is free of round-off error over long time periods and

permits large time steps for rapid computation.

(2) Curvilinear Projection Developments

This report reviews various methods for accelerating convergence in optimization

methods using search routines by applying curvilinear projection ideas.

(3) Perturbation-Magnitude Control For Difference-Quotient Estimation of Derivatives

This report develops estimates for choosing perturbation step-sizes used in difference-

quotient approximations of derivatives for optimization programs.

(4) Determination of the accelerometer Bias For In-Orbit Shuttle Trajectories

This report develops a closed form solution for estimating accelerometer Was when

using "delta V" accelerometer output for on-board computation of position and

velocity.
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SU NBLAR Y

This reporL developes the initial cartesian coordinates of the classical two

body problem as perturbation parameters for use in rapid and precise computation

of satellite coordinates in the presence of complex perturbations. The method is

competitive with the KS theory in that it is numerically stable over long integration

periods, permitting large integrator step sizes (of the order of 1/00 of the orbital

period). Aloreover, it requires only 7 first order differential equations and re-

quires no transformation to utilize existing cartesian coordinate perturbation com-

puting machine routines in the integration of the differential equations of motion.

iii



INTRODUCTION

The numerical integration of a differential equation suffers from two ;major

y es of numerical error. First, an improper choice of the integration sc,ieme

may produce spurious solutions in which the numerical error increases e.,monentially.

Such errors are due to the characteristic roots of a class of linear differential equa-

tions with constant coefficients and are associated with the difference equations

formulae used in the integration scheme. Thus, these errors are independent of

the actual differential equations whose solution is required and may be controlled,

or eliminated, by the proper choice of integration scheme and integration step size.

References [l, 2, and 3] contain discussions of these effects. The second error

source is due to the differential equation itself and is discussed in Reference [1! .

This error growth comes about from the nature of the solution of the variational

equations. If the homogeneous variational differential equation contains only

bounded solutions, the numerical solution of the differential equation will be stable

and integration can be accurately carried out over long time periods.

For the differential equations of the satellite numerical instability arises

from the existence of mixed secular terms in the variational eauation of the classical

two body problem. Reference [4] contains a good illustration of this effect. The

KS (Reference [5]) eliminates the mi.Yed secular terms in the equations of ::lotion

by reducing the two body problem to the problem of the linear oscillation. However,

the computing cost is somewhat increased by requiring a transformation between the

cartesian space and the regularized variables. Moreover, nine differential equations

are required in place of the conventional six. The method outlined in this report

eliminates the mixed secular terms in the variational equations and retains the

cartesian coordinate frame and time as the inde p endent variable. Onl y seven

differential equations are required and some computing time and data storage may

be saved in comparison with the KS theory for the same accuracy.



II.	 THE INT ITLAL CONDITION CARTESLAN ELE`•IE`"TS

The equation of motion of a satellite in the inertial reference frame of the

earth is given by

dt2 	r3

a2 
R = -u— R -F
	

(1)

where F represents the pertubation forces other than the central attraction of the

earth. We seek to represent the instantaneous position and velocity of the satellite

as an osculating ellipse. Thus, if R (t) and R ( t) are the position and velocity we

wish to describe, the solution is required in the form,

R(t) = f(6) R 0 ( t ) +g ( e ) R0(t)
	

(2a)

and

R(t) _ aft) Ro(t) + â  R ( t )	 (2b)

where

f(e), g ( e ), ft ( e ), gt(e)

are the classical f and g functions of the two body problem given in References

[ 6, 7, and S]

all - cos 6)
f(6) =1- 	 r
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d = R ' R	 (2a)
0	 0	 0

d	 cOnt,

r = IR I = all-cos 9)+r
o 

cos ^3--° va sin 6

and 6 is the difference in eccentric anomaly

8 =E-E
	

(3b)
0

Given any function h(1t0 , Rot t) xe define the total time derivative of h to

be

d	 ah + ah . ^R 0 + oh	 aRo

dt h bt	 oR	 ct	 et	 (^)
o	 aR

0

The first term represents the change in h when the initial conditions are considered

constant in time, and the sum of the second and third term are she perturbation deri-

vative of h in which only the variations in the initial condition parameters are per-

mitted. Thus,

h = oh 
aR 0 	R?h	 co	

(la)
T aR	 at

R
	of

o	 ^
0

For R (t), R (t) defined in Eq. (2a) and 2b) to be a solution of Eq. (1), we

require

dTR(t) = 0	 (''a)
and

dt R (t) = F	 (5b)

Equations (5a) and (5b) provide us with the necessary tools to obtain :he

perturbation derivativQs of R 0 (t) and R0(t).

Since we have

f^9) . t r^) - ,Id) f r^l = 1



Equations (^-a) and (2b) may be solved for R 0 (t) and R0 (t) in terms of R(t)

and R (t).

R0(t) = g t ( 6 ) R ( t ) -S( t ) R (^)	 (7a)

Ro(t)= - ft(9)R(t)+f(6)R(t)	 (7b)

In order to utilize Equations (5a) and (5b) to obtain the perturbation differen-

	

tial equations for the vectors R
U	 O
(t) and R (t) it is necessary to express the f and

functions in terms of the vectors R (t) and R(t). We have,

1 2 R•R
a r	 µ

ro =a(1-cos 6)+r cos 6_ R-R Vla (sin 6)	
(g)

N fl

g(6) = rya 
sin 6- 

R - R all -cos 6)

tiµ	 µ

To eliminate the mixed secular terms in the variational equations we follow

the recommendation of Reference _9,7 and stt the perturbation derivative of the

change in eccentric anomaly, 6, to zero. Thus,

d 6=0	 (0)

This ensures that the perturbation differential equation will contain period terms and

not mixed secular terms. Differentiating Equations (7a) and (7b), we luive

dt 
R o (t) gt; R ^t) - R(L) - g F	 il0a)

, R
o (t) _ - f tTR 

(t) +f % H ^t) - f F(lOb)

Eliminating R(t) and I;(t( in Equations (10ai and (10h ► %%e have,
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Since 111 the functions are given in terms of 6 and not the time, t, it is

necessary to have the value of 6 as a function of the independent v, r iable t.

Let S be given by

	

13 = 6 /a	 il:;)

Then, the tot.71 derivative of 6 with respect to time is n iven by.

d 3=5 ,a - 	ba	 1'14)dt 	t	 -
2 v" al



Since

b ^ ^t 	 a r

we have,

d_ 'u + 
8 aT

dt	 r	
2 v"a

Integrating Eq. (16), we obtain 3(t). The requii • ed bit) is given hv,

8 (t) -	
B t)

,/a (t)

The seven differential equations that are to be integrated are L•'quations t11z),

(11b) and (16).

To ohtain the perturbation vector F (t, R, R), "xe compute R(t) and Rit)

	

from Equations (`'a) and (^_b) (given R
0 (
	

0
t), R it) and e(t)) and employ exiting

perturbation routines for F as a function of t, R(t), and R(t),

III.	 :i CC.MMEI :T

It is to he noted that the equations outlined in this report are valid )nlv for

satellites. Thus, for parabolic and hyperbolic orbits, a universal lormUI-.10on of

these equations are required which cite outlined in Reference r4- .

(1r))

(17)

— -- -	 J
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CURVILINEAR PROJECTION DEVELOPMENTS*
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Henry J. Kelley and Leon Lefton
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ABSTRACT

Gradient Projection is a powerful algorithm for minimization of a function

subject to constraints (Refs. 1-5), at its best when the constraint functions are

linear or nearly so. Constraint nonlinearities hamper projection computations,

often requiring termination of a one-dimensional search in the projected negative

gradient direction short of the 1-D minimum sought, on account of build-up of

constraint violations. The constraints must then be restored before another pro-

jection cycle, at a certain computational expense. The restoration steps taken in

±be process of following nonlinear constraint surfaces can be used as a guide to the

construction of a curve which more nearly follows the constraints than does the

straight line in the projected gradient direction. This scheme, termed "curvilinear

projection", was explored in Reis. 7 and S. The study presently reported carries

out some computational experiments using a related version of the technique.

Some other details of projection computations which turn out to be practically im-

portant are taken up: rules for updating the variable metric in projection when

early termination of the 1-D search on constraint violation occurs; active-constraint

to is for screening inequalities that makes use of the Kuhn-Tucker necessary con-

ditions. Computational comparisons on simple problems are presented.

------------------------------------------------
*	 For presentation at the AAS/A1AA Astrodynamics Conference, Jackson, Wyoming,

September 7-9, 1977. Performed in part under Contract NAS 9-14818 with NASA
Johnson Space Center, Houston, Texas.

-	 Vice President

-- Senior Programmer/Analyst

y	 Aerospace Technologist, Mission Planning and Anal y sis Division
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INTRODUCTION

Original and variable-metric versions of gradient projection algorithms-Tor

constrained minimization of a function are reported in Refs. 1-5. The present pa-

per presents some recent improvements, and further investi gations of a curved-

search feature explored in Refs. 7 and 9 which affords improved constraint

following.

The resurgence of interest in projection, on the part of the present writers,

came with a surprise in the results of a comparison involving a seemingly slight

modification of the Kelley-Speyer projection algorithm (Ref. 3). The modification

was a provision for early updating of the variable metric whenever a screening

test is passed. A notable convergence improvement was realized, resulting in the

projection algorithm, which had been carried along merely for comparison, out-

performing a more complex algorithm utilizing linear and quadratic penalties.

The algorithm will first be reviewed in its original equality-constraint ver-

sion, then the updating rule just mentioned taken up. The restoration of constraints

and the handling of inequality constraints will be discussed. :attention will then

turn to the use of search along a curve, proposed in Refs. 7 and 9 with the idea of

staving closer to constraint surfaces. Some computational experiments will then

be described.
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VAPUBLE-1IETRIC PROJECTION

The projection version of the Davidoa-Fletcher-Powell algorithm (Ref. d) de-

scribed in the following is essentially the algorithm of Ref. 3; some details are different,

however, and the differences important computationally. The process begins with con-

straint restoration, usually requiring several cycles; then optimization cycles alternate

with restorations, which sometimes require more than one cycle. The present section

will deal with optimization cycles, the following one with restorations.

A function fix) (x an a-vector) is to be minimized subject to m equality

constraints

9  = 0	 j = 1, - - -, m	 (1)

The process of Ref. 3 employs the formulas

Ax = - ac H( fX + gY X)	 (2)

-1

-(gT H	 ) gT H f	 (3)
x	 `C	 X	 X

A one-dimensional search on the scalar a is then carried out to minimize

the function f Y g a . Appropriate penalty terms arrest the one-dimensional search

whenever equality constraint violations much exceed c. 	 I in magnitude (Ref. 5).
J	 )'

Projection cycles employ a DFP H-matrix , separate from that used in restoration

cycles, updated according to

T

/Ix L x 
T	 H( GfX^ Ig.{ X)( Af — Ag Y X) n

H + A,H = H-	
T	

-	 T	 l 4)

A  ( Af: Ag ^)	 ( Af + no X)` H( Li - ^g ^.)
x	 x	 x	 x	 x	 x



M.

I 'l :t Irk i = I
k = —
j 	 m

jxI

j	 --= 1,-,	 ,m 7l

The update is performed only if

Ax (Afx + Lgx X) > 0
	

(5)

which assures positive definiteness of the updated H. This represents a departure

from earlier versions of the algorithm (Refs. 3,5) in which termination of one-

dimensional search on a minimum of f + g X was required before updating of H

was permitted, i. e. , updating was deferred until the vicinity of the constrained

minimum had been reached.

CONSTRAINT RESTORATION PH.ASE

The initial nulling out of constraint functions often proves more challenging

than subsequent restorations in that the constraint violations to be dealt with are

ordinarily larger in magnitude. For this purpose, minimization of a function f

is employed:

m	 k
f =	 kj g^ + o (o- f)"h (f - o)	 (6)

j=1

This is a weighted sum of squares of the constraint functions plus a term intended

to counter gross increases in f. The term corresponds to penalty-function treat-

went of an inequality o - f 0 . Here h is the heaviside unit step function. The

k. are determined from
J
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where k is input. This choice would make equal the contribution of each equality

constraint to the second directional derivative of (6) in its own gradient direction

at gj = 0 , if the constraints were linear. The constraint o - f z 0 is included

quadratic-penalty-wise in (6) only during the first restoration sequence, with a

coefficient k taken as 1/10 the smallest of the k, calculated from (7). The
o	 J

constant o is estimated as the initial value of f + g X.

The metric employed in correction sequences may be denoted A (to dis-

tinguish it from H of the optimization cycles). It is adjusted approximately for

changes in the k  , one at a time, using

Ak.
A + DA = A -	 T	 A g, g. l A	 (8)

1 + Akj a- Ag)	 Jx Jt
Y	 X

This correction, from Ref. 9, is based on the idea that A approximates f -1 .
XX

The metric to start the first correction sequence is obtained as A - 'JA from (9),

using A = i and Qk.
J
 = k.J - 1 (k.

J 
from (7)). If a or more updates are completed

in this sequence, the emerging DFP metric is carried over to the neat: if not, the

initial metric is carried over. In either case, adjustments for any changes in :he

kj are performed via (8) before use. Negative increments p kj are limited in

magnitude to insure that the denominator of the fraction in parenthesis does aot

nearly vanish.

The second and subsequent restoration sequences employ

Ax = - a A gY (gx A gY ) 1 g	 (9)

together with a one-dimensional search versus ct for a  minimum of f riven by
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(6), but with the last term deleted. This correction scheme, with a = 1 and

without a search, was originally proposed by Rosen (Ref. 1); it effects restora-

ttoa in a single step for linear g. The existence of the inverse in (9) (and in (3))

requires that the matrix g
T 

have rank m. This condition is met at the constrained

minimum in the classical normal case in which the tangent-plane approximations to

the constraints are well-defined and distinct. Vote that there is no guarantee that

(9) is a direction of descent for f , with general k. values; thus the one-dimensional
J

search may fail and reversion to DFP Minimization of f become necessary.

The magnitude of constraint violation upon which optimization cycles are

terminated short of a one-dimensional minimum is c j ;j , where gj is a pre-

conceived tolerance and c. , usually- ^ 1 , is a factor adjusted with the aim of
J

just permitting restoration with a single cycle of (9), to within the tolerance. Use

of a single c-factor for all constraints met with only limited success, so a c-

vector was resorted to, the components adjusted adaptively if somewhat heuristi-

cally in the following way: c. is increased 10 17o if a single restoration proves

successful; it is halved if two restoration c ycles are required; and it is cut to

one-quarter if there are additional cycles.

THE AT'MENT OF LNEQUALIT?ES

It is of interest to determine a minimum subject to a mix of equality and

inequality constraints, the latter expressed by

g. Z 0	 j = m-1, -- -, m-P	 (10)
7

During the initial correction se q uence, these are handled penaitl,-function `fashion

(Ref. 2), the function f to be minimized amen by

!1-4;



k. 
=	 k

]	 (m+P)

m+P

191  

2

x 1

1 gjx12
j =1,2,- -,m+p 	(12)

m	 m+p	 k 1 Zf = 2
	kj gj + 2 L	 kj gj h(-gi) + 2 ( fo - fj

j=1	 j--m+1
h(f -fo)
	 (11)

with the k determined as though all constraints were equalities:

The determination of the active constraint set for optimization and restora-

tion cycles proceeds first by excluding those satisfied with a margin g  z gj , where

g  > 0 is a preset threshhold. Those candidate inequality constraints for which

9  < gj , are then screened further via the Kuhn-Tucker conditions X i s 0 (Refs. 10

and 11), using (3) first with all the candidates included, then successively with Kuhn-

Tucker violators dropped, as many times as necessary, until all X  s 0 or all

candidates are screened out. Inactive constraints are treated in penalty-function

approximation.

The Kuhn-Tucker conditions employed apply to the problem of minimizing a

linear approximation to the function f subject to linearized constraints and to a

quadratic constraint on step size. They become identical to the Kuhn-Tucker con-

ditions for the original problem when evaluated at the constrained minimum sought.

The Kuhn-Tucker screening has generally been found to be worth the com-

putational expense in reducing tendencies of constraints to switch between active

and inactive status from cycle to cycle. The present effort has proceeded on the

assumption that vector-matrix operations are cheap computationally in relation to

the cost of gradient and function samples; this is realistic for the trajectory op-

timization applications of particular interest to the writers.
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CURVED SEARCH

Constraint noniinearities hamper projection computations a great deal in

applications work, often requiring termination of a one-dimensional search short

of the 1-D minimum sought on account of constraint-violation build-up. It is of

interest to deflect the search away from the straight line in the negative projected

gradient direction so as to follow approximately the nonlinear constraint intersection,

as proposed in Refs. 7 and 8. An improved version of the curved-search technique

is given in the following.

It is assumed that at least one projection cycle has already been completed

(the first is done with a linear search) and that the derivative of f - g n with re-

spect to the step-size parameter a has been reduced in magnitude by ao more than

half, that the constraints have been restored by one or more correction cycles, and

that there has been no change in the active constraint set.

A curvilinear-projection cycle proceeds by

Ax = 4a 
+ rat	

(I3)

which replaces k1i). Here

= - H(X+ gX X)
	

(14)

n _ - L1x
-
-2^ c^	

(15)
Ci

a

i=1
(161

0

u ^l
i=1

H- x



The vector pi is the difference between x from the beginning of the preceding

projection cycle to the present restored point, the beginning of the next. The scalar

& < 0 is such that the earlier point is regenerated when a = a is introduced into

(13). Thus (13) generates a parabola in x space which passes through both restored

points and is tangent to the projected gradient vector at the later one.

The curved-search sequencing presently in use provides for a possible

curved-search on all optimization cycles except the first, which uses a linear

search. Subsequent optimization cycles use a curved search provided the H-update

test (5) was met on the preceding cycle, none of the inequality constraints has

changed status (from or to active), and the preceding one-dimensional search did

not proceed more than halfway to a minimum, as measured in terms of the mag-

nitude of the derivative of f + g X with respect to the step-size parameter at .

Earlier exploratory computations were more cautious in the use of curved searches,

and generally less successful. The curving steps do nothing beneficial for con-

jugacy In the subspace of the constraint intersection, but this is already a lost

cause with DFP when full steps to 1-D minima are sot being taken.

TEST PROBLEMS

The test problems employed for experimentation were:

f = x1 +a x^	 2+ a x1

91 = x1 - b 1 ty - bl) .t3 - b3 x4

gy = x3 - c

11 -9



The coefficients were

al = 102 	a2= 103

b 1 = 1	 b2 = 10 2 	b3 = 10 1

c - 10 1

The starting point for the numerical computations to be presented was

xl = 10	 xr) = 5	 x3 = 10

Test Problem 41 had a single equality, g1 = 0 ; #2 h::.i two equalities,

91 = 0 , Ay = 0; #3 one equality, g1 = 0 , and one inequality g,,2 0; 44 two

inequalities, g 1 Z:0 '  g2 2 0 ; #5 two ;nequalities with the second reversed,

91 2 0 , -gg 2 0 ; #G one equality, g1 = 0 , and one inequality, also reversed,

-g2 ' 0 .
V

COMPUTATIONAL CO:NIPARISONS

The following results illustrate various features in the context of equality

constraints.

NUI+IBER OF GRADIENT AND FU`TCTION-S.UdPLE COINIPUTATIONS
REQUIRED FOR VARIOUS TEST PROBLEMS

Test Problem =1 #?	 ^,

Original Kelley-Speye r {Re y. 3)iy 1.1 3, 691
I

^ ^ 01'_,

Kelley-Speyer plus early H update 3:.	 460 40 &	 .99

Improved restoration logic adc:ad	 I
^	 I

219 & 3 9 :: d	 32

Curved search added	 ; 1; ? '.:9 _ I _^3
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Linear versus curvilinear projection results are as follows for a larger

set of test problems:

NUMBER OF GRADIENT AND FUNCTION-SAMPLE COMPUTATIONS
REQUIRED FOR VARIOUS TEST PROBLEMS

Test Problem 41 #3 #4 ,	 #5 -i6

Kelley-Speyer 29&338 31&324 27&304 27010 27&324 27&329
improved, linear

Kelley-Speyer 17&218 24053 23&259 24&254 26&'296 25&285
curvilinear

It is noted that the improvement provided by the curved-search feature is considerably

smaller in problems which include inequalities.

CONCLUDING REILkRKS

Several developments and refinements of variable-metric projection have

been presented including a curved-search technique for nonlinear-constraint-

surface following, improved means for control and correction of constraint vio-

lations, and screening criteria for active-constraint logic for 7:,:;e -xith inequalities.

Projection schemes appear quite promising and worth further development and

evaluation effort. Experience with a larger variety of problems applying the

various features described is of interest.
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SUM_ MARY

A process for adjusting perturbation magnitude for accurate difference-

quotient estimation of derivatives is described in the following. The process

is intended to be carried out sequentially, alternating with iterations of a param-

eter-optimization algorithm. A more complex and computationally-expensive

scheme for occasional auxiliary use is also described.
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INTRODUCTION

It has been recognized for some time that accuracy of partial derivatives

is important for convergence of variable-metric optimization processes (Refs. 1

and 2) . An adjustment scheme, based upon central differences and truncation

error, is described in Ref. 3. The adjustment process of the next section is

similar in concept but focuses on agreement between forward and backward dif-

ference quotients.

The perturbation-control logic is being introduced into PEACE, NASA-

JSC's trajectory-shaping computer program currently in use for space-shuttle

applications.
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A TECHNIQUE FOR THE SEQUENTIAL ADJUSTMENT OF PERTURBATION

MAGNITUDE

First- and second-derivative estimates fa and fan are given by the usual

central-difference formulas,

f	 f+- f	 f = f} + f - 2f
c	 2 ba	 aca:	

8a 2

Here f = f((c) is a function of a scalar parameter ac , fT a f(ce -6  a:) , and

f a f(a: - b a) . If one requires that the magnitude of the difference between

forward- and back-ward-difference estimates of f be at most

a = E If ,	 if	 = I fa l a aL

= IL 	if	 E I a < aL

Then an analysis accounting for terms through second order in £ a leads to

A 3 a/b

where

b	 2 
aal	

if	 2^ fay ; 
Z b 

= b 	 if	 2 ; faa I < b 

for the largest magnitude perturbation which will hold the truncation (nonlinearity)

error to the specified level.
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Bounds are imposed upon the candidate perturbation magnitude,

ba * 3 A 	 if	 G < aL

a ^	 if	 pL s a s GU

a AU 	if	 pU < L

To relieve any tendency toward thrashing from cycle to cycle, the value used to

generate the ae= derivative estimate is the geometric mean of the old and the

new:

bC =	 6a - ba*

The idea of the scheme is to obtain equality of forward and backward dif-

ferences to a specified number of significant figures, e. g. , as F, of 107 4

corre:1ponds to four-figure agreement. The bounds a  , b  , AN , AU are

obviou:3 safety devices.

The adjustment process described generally works well if the function f

is smooth and nonlinearity the dominant source of error, i. e. , random errors

are relatively small. The process should survive brief encounters even with

such errors as jump discontinuities in f. However, if some algorithm is re-

lentlessly driving a toward the site of a modeling weakness, such as one char-

acterized by a jump in f or in its first derivative, any perturbation-control

scheme will be hard pressed to cope.
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The lower bound LL should be chosen to insure against appreciable

round-off error, but the choice is not as easy one to make a priori. A lower-

bound adjustment process, based on the number of significant figures agreement

between reference and perturbed values of f, will next be described.

The functions R + and R measure the agreement between reference

and perturbed values of f (e. g. , R = 10 7 indicates seven-figure agreement) :

R=
	

If
+- 

f

max (I f'1,I f I)

R _	 If - f I

max (If I, I f I)

With R.., and R	 defined by
TAX

RIIN = min (R , 1C)

RyIX = max (R, R )

an index of agreement between samples, F, R , initially input, may be employed

to determine the lower bound AL , which is to be adjusted from cycle to cycle

by a rule such as the following:

if F_R
 >R X1 N  

and R1LK > 1. 1 RIII\ , take

;,R = 10 ^R
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If ER > R
MN 

and R2VIX s 1. 1 RMN , take
1

*	 ^R
^R r 2

If ER 
s RMN' take

^R = ^R

The lower bound on perturbation magnitude which would correspond to

the index CR is

aL = R1RIV 
b a

where 6a is the perturbation magnitude actually used in the determination of

RIIN and F.R . To avert undue downward fluctuation in the bound pL , however,

the geometric mean of pL anc the. current A
L
 value

,L = OL ' ^L

is the updated value for use in the next cycle. The corresponding update for

F,R is

^R	 ^R ^R

The process just described adjusts the index of agreement ^ R and the

perturbation bound I L upward or downward whenever small-perturbation samples

become available. It attributes any disagreement between forward and backward
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differences to random error, adjusting e  upward when agreement is poor,

downward when agreement is good. The factors 1. 1, 10, and .5 are rather

arbitrary and intended merely to be suggestive.

An alternative scheme for the calculation of AL 
and aL will next be

described. This is in process of evaluation at the present writing. The round-

off error magnitude is estimated from the residuals of a least-squares fit in

the vicinity of the minimum found in the preceding one-dimensional search.

Of main interest for fitting are the samples is the band k m. =6k,  where

n
f	 f boc.x. I	 t

i = 1	 1

6  = n

fx.
i=1	 1

corresponds to the perturbation magnitude employed in the most recent estimate

of the gradient vector f  . All of the samples in the band are used for the fit

provided there are at least four in addition to the kmin sample. If not, more

close samples are added to make a total of five. If any of these fall outside the

band kmin - 10 6k, the computation is abandoned and no update of A  and

pL carried out.

After the least-squares fit has been completed, the residuals at kmin

and the two closest points are examined. If these all have the same sign, the

artempt to update A* and pL is abandoned, otherwise the average of the

absolute values is adopted for F_ R . vote that _R in this mode is a scalar,

applicable to adjustment of all components. The component-by-component up-

date proceeds as follows: If fWy z 10 9 , take
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*	

40':R

	

AL	 f
as

otherwise do not update pL for the particular component. Obtain "L from

the geometric mean:

	

pL	 pL pL

While the parameter a is a scalar in the preceding formulae, the pro-

cess is intended to apply to each component of the parameter vector in turn.

The idea of tailoring the choice of perturbation magnitude to the particular

component is hardly earth-shaking but, in fact, it is not often carried out in

practice.
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A SEARCH TECHNIQUE'^R PERTURBATION-MAGNITUDE; DETERMINATION

Applications of variable-metric optimization algorithms to complex

models sometimes encounter convergence difficulties which are attributed to

numerical errors, real or fancied. The analyst, in a moment of paranoia,

suspects- overlap between the regions of round-off and truncation, with no good

compromise choice of perturbation magnitude for the generation of secant par-

tials available. The situation may be thought serious enough to warrant a

search, usually a tedious cut-and-try affair.	 The present section describes

a mechanization of such a search, employing the one-dimensional minimiza-

tion technique of Ref. 4.

A function Q may be defined which measures the error between ior-

ward and backward derivatives:

If+ - f;I
Q

max (I f+	C )

Here the denominator-normalization choice between forward and backward

derivative magnitudes is intended to avoid small-divisor difficulties. The

proposed search is for a minimum of Q  subject to a round-off constraint

on perturbation magnitude introduced via quadratic penalty. Thus

min C Q2 + _R
(F-

R
- R. N)2 h(zR- R^LN

where h, the Heaviside unit step function, is unity for argument z 0 , zero

otherwise. The function R ' is that of the previous section. The round-off

constraint incorporated via penalty is R M = JR
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A choice of agreement-index eR is no easier to make than in the case

of the sequential-adjustment process. Values obtained in the course of sequenttal-

adjustment cycles may be employed, ur, in difficult cases, a range of values

investigated.
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CONCLUDLNG REMARKS

The two processes described herein have been given only limited trials

and require further attention. An initial application of the adjustment scheme

Indicates, a bit surprisingly, that it may turn out to have particular merit as

a "debugging" tool. The first full-scale application presently planned is to the

accelerated-gradient trajectory shaping program PEACE at NASA-JSC.
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SUIVIIAIA RY

This report yields a closed form deterministic solution of the accelerometer

bias for in-orbit shuttle trajectories given the difference between the ground

tracking solution of the trajectory and the on board estimate of the trajectory

using platform accelerometers.



INTRODUCTION

Due to the presence of small unpredictable accelerations acting on the

shuttle in orbit it may be necessary to use the stable platform accelerometers

to integrate the vehicle state. In this anode the most significant error will be

the accelerometer bias. A method is provided whereby these biases may be

estimated by using the difference between the vehicle inertial position vectors

as measured by ground tracking and that obtained by numerical integration of

the on board accelerometers.
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SOLUTION OF THE ACCELEROMETER BIAS LN' ORBIT

Let the inertial equations of motion of the orbiting vehicle as measured by

the ground tracking system be

R
R1 = -	 3 + F1	 (1)

rl

Let the inertial equations of motion of the orbiting vehicle as measured by

the on board accelerometers be given by

R2 =	 3 
+ F1 + B	 (2)

r2

where F1 is the true specific force acting and B an inertial vector of the small

accelerometer bias error. The difference between the inertial vector positions

is assumed small compared to either R1 or R2 .

That is,

I R1 - 
R2 I	 1 Rl I

 >> .001

and	
(	
((3)

1 R1 - 
R2 I	 1 R2 + > > .001

Under these conditions the difference in the orbiting states is given by

R2 - Rl	 (R2 - Ri	 t	 O
0 (t , t )	 + C	 (t+ r}	 dT	 (^)

R2 - Rl	 °	 R^ - R	 ^t	 B

t	 to	 0

The constant accelerometer bias vector
^ )

B is give n by

	

RI (t)	 31(t)
(B) = (C) R^-R 1 -	 R2-R1

t	 c R1 (to )	 to	 R (to)	 to
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Rl (t)	 ? Rl (t)
The 3 matrices ( C)

	

a R (to )	 R1(to^/

are g iven by

(C) = c1 R1 (t) 11
T
 (t)+ c2 R1 (t) R1 (t) + c3 R1(t) R1T(t)

(6)

T+ c4 R1 (t) R1 (t) + c5 I (3)

a R1(t)	 T' T	 Ta 1 R1 (to ) R1 (to) + a2 R1 (to ) R (to ) + a3 R1 (to ) R1 (to)
a R, (to )

+ a4 R1 (to) R (to) + a 5 I (3)

a Rl (t)	 T	 . T	 T
bl R1 (to ) Rl (to) 

+b2 
R,(tc ) Rl (to ) +b

3
 R* 	R (to)

a R.1(to)

+ b4 R1 (to) R,1(to) + b 5 I (3)

The matrix I (3) is the 3 x 3 unit matrix

0 0

I (3)	 =
(00

1 0 (7)
 0 1

The scalar coefficients a. , b. and c, are given by

G2	 1G1(p,	 G1	 (2 G4 - G3)
a 1 	 3	 3	 3

ro	 r	 r	 r	 r	 r0	 0	 0	 0

G1 G2
	 (5)

a2 =

r r  V µ
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G2 	pl	 G1	 3 G 5 - 3 G4
a3 = -	 3 -	 ^.-. r 3

	

r A(^r
	r

	

0	 0	 0

(8 con' t. )
G22

a4 =
rµ

G2
a. 1-

r0

where
d

p1 = 3G5-gG4 + r0(G3-^G2) + 0 (2 G4-SG3)

ro = I R  (to) I

r	 = I R1 (t)

do = R, (to) . Rl (to)

d	 =	 Rl (t)	 Rl (t)

vo = R  (to)	 Rl (to)

v2 = RZ (t)	 Rl (t)

(t - to )	 d	 d0
_	 - — +

a	 A^

2	 2
1	 1 2 _ v° 2 - ti—
a - 2 ( ro	 µ	 r	 µ

I yr - 3

(8a)



m

G.
i	 a	 (8a con t. )

k=	 (2 k+ i)

b = G1G2
1	 o1 µ

rr

b - - G lp l + 2 G 4 - S G3	

(8b)2
µ r ro	 µ ro

G 2
b =	 2

3
rµ

G2 p l	 3G5-0 G4
b4 

= -	 32 -	 32
r ;A	u

= ro 
G 
	

do G2b_	 + 

a	 IT;T	 µ

cl = ((dh1 +v h3) h3 - (d h2+v 
2  

h4 + h5) 
hll Ah5

c2 = (( h^ r2 r hod) hl - { hl r + h3 d + h 5) h 3̂  Ah5

(8c)

c3 = (( d hl + v2 h3) h4 - ( d h2 + `,2 h4 + h5) h
9 l /ph5

c4 = \( h2 
r2 

+ h4 d) h2 - ( 
hl r2 + 

h3 d + h5) h4)! '^S

c_
J	 a

where

h = - 

G2`

2 rµ
	 iSd)
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1	 G o G 5 B G4 + L G
µ	 2	 2	 12

G2 (3 G5 - ,g G4 )  G3 (2 G4 - ^ G3 )-2  G3G4
1

h3 = -	
3/2	

(8d)
rµ	 +3 (2 G7-3/2SG6+2 Go G 5 + 12 S G4+48g5G2)

3/2G2
  (G3 - O G2) + G2 G3 +2 G5 2 GoG 5 	 G4 - 82 G2)

µ `

G2 (3G 5 -^G4)-G3 (2G4-5G3)-2G3G4
h	

d4
	2	 1	 1	 1 5µ l^3(2G

7	 6 2
-3/28G + 

2 
G
. 

G
5 

+—
12 

G 
4 
+-

48 
5 G 

2)

r	 (G (3G -	 -gG) G (2G SG ))
X 3/2	 1	 5	 4	 2	 4	 3

r / G2 2 r	 2	 d
h5 = - -- (	 + ---- G1 -	 (G3Go + ^ G2 ))

µ ` 2	 2	 2/j—U
3e,

-2G
5 + 2 Go G5 + 6 G4 + 93

12 
G2

d
u3/2

+ r (G 1 G2 - 2 Go G3 - 2 6G 2

d	 2

2

_ Nµ G2

O = (hl a - h2 h3 ) ( r2 v2 - d2 ) + h5 (hl r9 + h3 d + h2 d + h4 v2 1 h5)

Since the rector bias, ( 13) , is considered to be constant over an estimate

period, it is recommended that several estimates of ^B) be obtained using the

scone initial epoch ( to , R1 (to) , R1 (to ) , R2 (to ), Rn (to) ) and several different
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later times, t . The recommended value of II will be given by

N

B =	 N	 B ( ti)
	

(9)

i=1

I^r - G
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