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AaSTRACT

The work performed under JPL Contract 955437 was for a

preliminary sur_ey program to examine the various aspects of

achieving a low mass heat pipe radiator for the NEP spacecraft.

Specific emphasis was placed on a concept applicable to a closed

Brayton cycle power sub-system.

Three aspects of inter-related problems were examined: the

armor for meteornid protection, emissivity of the radiator surface,

and the heat pipe itself.

The study revealed several alternatives for the achievement

of the stated goal, but a final reconmendation for the best design

requires further investigation.
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NEWTECHNOLOGY

The following item ,_f new technology was gencr_t©d under the

contract:

L. Segmented Heat Pipe Bumpor for-Protection Against Meteoroid

Collisions - Donald M. Ernst

LL
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5UI_4ARYANDCONCLUSIONS

This study program ©x_mined various aspects of achieving a iow

nmss heat pipe radiator for the NEP spacecraft, with emphasis on a

version using a Closed Brayton Cycle power sub-system. The mass of

the radiator is a complex function of several variables. Thus three

separate items were evaluated: the meteoroid armor, the emissivity

of the surface and the heat pipe itself.

These three factors are inter-independent. However, they were

analyzed separately in this preliminar T survey program. A fully

integrated analysis of a low mass heat pipe radiator would require

considerably more effort than was pe_issible under the scope of this

program.

The following conclusions can be drawn:

I. Small diameter pipes with the same wall thickness as larger

diameter pipes will show a decreased penetration depth for a

given meteoroid.

2. Interfaces between armo_ and underlying heat pipes are beneficial.

3. The armor must look homogeneous to the meteoroid. Taken in conjunction

with the high total emissivity requirement of the surface, this

consideration rules out the use of powder metallurgy armor.

4. Chevron fin archon' is at this time impossible to evaluate completely.

Howeverp based on the comments of Southwest Research Institute it

should be pursued further.

i 5. Segmented heat pipes used as bumpers on top of the radiator heat
pipes look quite attractive and need additional evaluation.

6. A total emissivity is excess of 0.9 can be obtained by the use of

geometrically produced effects in fins.

1
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7. The ums of the CBC heat pipe without protection can be subBtmntially

reduced by going to sm_ll diameter heat pipeB.

Finally one concludes that thiB study has just scratched the

surface of the auLnypossibilitles for low Rss radiators, and that

there is _mple and urgent reason for additional work on the design

and evaluation of the various alternatives.
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I. ,_ETEOROID PROTECTION

The Nuclear Electric Propulsion Spacecraft being concidered

for use in exploration and intensive study of the outer planets

and the surrounds of the solar system will be subjected to the

hazards of meteoroids during its _ourney _hrough space. Accordingly,

the spacecraft design must include some type of armor which will

protect the vulnerable areas from catastrophic failure upon impact

by these meteoroids.

Armor design is crucial to the success of a mission, without

it, missions could not be made. However, in order to achieve a

high overall probability of mission success, the armor may be so

massive that the system is no longer viable. Thus low mass armor is

highly desirable.

In the 400kWe NEP designs currently being looked at, the total

specific mass of the power sub-system is targeted at 2_ kf/kWe, of

which up to 35% (7 kg/kWe) maybe necessary to achieve the required

degree of protection from meteoroid impact. Accordingly, a reduction

in the mass og the armor could be instrumental in the power sub-

system achieving its targeted specific mass.

In the power sub-system_the majority of the armor which is

required is for the protection of the power conversion heat rejection

system which generally employs a _atrix of heat pipes. These heat

pipes _ay use a single element radiator for each conversion device:

they may be a matrix of interconnecting heat pipes where several main

heat pipes accept heat from many conversion devices for distribution

to the radiator heat pipes, oz. the radiator heat pipes may be fe_

from a gas ,)r liquid metal pumped loop. W,_atever the design_the ar_or

3
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must be an integral part of the radiator elements which means that

it must not act as radlsticn shield.

To arbitrarily design armor i_ not possible. In addition to its

being integral to the radiator elements, armor design (and therefore

mass) is a complex functio_ of the o_,erall system design. This is

seen when essential criteria are established beginning with the

mission which defines the flight ti_e and path from which a meteoroid

flux model can be generated. Additionally, an overall mission success

probability must be defined from which sub-system and component

probabilities are generated. These component probabilities are

themselves a function of unrelated probabilities based on mech_lical,

thermal, electrical or meteoroid inflicted degradation or failure.

Armor is required to protect sensitive components from meteoroid

pun,_ture. Protection from meteoroids is a function of mission time_

meteoroid flux, vulnerable area of the smallest component to be

protected, the required probability of survival o2 that component

which in turn is a function of the total number of components and

the probability of survival of the collection of components.

Therefore it becomes obvious that armor design is of primary importance

to mission success.

Accordingly, in order to evaluate low mass armo R certain

assumptions must be made in order to establish a base line design.

For this purpose the CBC base line radiator heat pipe will be used.

Section 3 establishes this base line as well as exploring other

possible heat pipe designs.

This section looks at the basic phenomena o£ hyper_-eloc_ty

impact and four different types of meteoroid armor: solid metal,

powder metallurgy, chevr.n fins, and heat pipes used as bumpers.

4
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The initial basis for this study lay in concepts generated under

JPL ¢ontr:.ct 955100 (powder metallurgy and chevron fin armor).

The intent was to evaluate the effectiveness of these al_or designs.

However, as information was received from new sources, it became

i apparent that additional theoretical and experimental work must be

carried out to fully evaluate them.

Specifically, this study showed that powder metallur_y material,

with its relatively low emissivity, is not well suited to the dual

i role of ar_or and radiating surface. Solid armor, with an interface
between ar_or and heat pipe, may prove to be lower mass than originally

though and is considerably less complex. The chevron Fin armor showed

promise but needs considerable additional investigation.

One new concept which was developed and showed several advLntages

as low mass ar_or is the idea of segmented heat pipes acting as

bu_pers to protect the underlying radiator heat pipe. This concept

evolved late in the study and was not fully evaluated.

i.i H_pervelocit_ Impact Phenomena

In examining hypervelocity impact, various books I, and reports 2'3'4

were reviewed along with discussion with eminent professionals in

the fie!d. ';-8 These pointed out the marked differences in single plate

m_or, a thin shield protecting a backup plate, multiple shields,

as well as the effects of velocity, mass and density of the meteoroid,

and the effects of various materials.

Hickerson 9, in Kinslow's book I, states "The hypervelocity impact

of a prc,jectile with a solid target results in an extremely complex

phenomenon. A complete description of this behavior would involve

5
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consideration of all phases of oontlnuum mechanics theory. In the

initial hiEh pressure phases of the impact, the material behave_

essentially as an inviscid, compressible fluid _ino© the pressures

arc high with respect to the maximua shear stresses that can be

developed within the material. A crater forms which expands rapidly

for a time, and a shock wave emanates from its surface. A stage

of plastic deformation follows which apparently decays rapidly into

a spherical elastic wave which continues through the target. A

complete theory for the description of the hypervelocity impact

phenomena would involve not only the above phases but also other

situations such as melting and resolidification, vaporization and

condensation, and the kinetics of phase change."

Accordingly, the evaluation of low density armor will be carried

out by first looking at the mass of solid armor capable of protecting

the CBC radiator followed by a narrative on several low density armors

as best evaluated by the information available.

1.2 Solid Armor

The JPL supplied penetration equation for the NEP missions is

t : 0.0010144 K AI._T_... 1 0.2902 Eq. 1.1

t = Required armor thickness in cm to prevent penetration of the armor
by the average meteoroid

K = _aterials factor -. g_ven as I for Lockalloy

A = Component vulnerable area - _m2

T = Mission time in hour_

P = Individual component survival probability

6
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The equation predicts the required armor thickness I:(_ prevent:

pcnel:rption of I.oekalloy at room temperatl_.',e by _.j_: expected average

meteoroid to he cncour,tered during the NEP mlssi.n. In order, to

evaluate other armor material at elevated temperatures, additional

information is required.

Examination of the various equations which have beeu theoretically

and experimentally developed reveals much similarity in che basic

equation. Accordingly, Equation l.l call be rewritten 3 in ter,,,sof

the armor properties as:

a('a)-_(Vs)-2/3 'T°Ta'l--'I/0., _ At' I0.2902
t--_/o

Where _o _ room temperature eratering coefficient
a = rear surface damage factor

Ca = density of armor - gm/cc

vs = velocity of sound in armor ..cm/sec

Ta = temperature of armor °K

To = room temperature °K

Kl = meteoroid flux constant

The cratering coefficient, k,r and, the rear surface damage

factor, A, vary for different materials as seen in Table 1.1. The

three modes of damage by meteoroid impact are defined as follows"

i. Dimple - The impacted surface is physically dented but the

integrity of the rear s,_rface is not disrupted.

2. Spa11 - The impacted surface may be oartially penetrated and

spallation may occur from the rear surface! however,

the complete r,hicknt,ss of the material is not perforated.

3. Perforation - The complete thickness of tile impactsd material is
physically perforated.

The absence of a rear surface damage factor for Lockalioy makes

it difficult to compare to other armor materials, llowever, since

the rent" surface factors for the listed materials are similar exce,pt

for Nb-t%_r, and the fact that Lockalloy to" 38% aluminum, the

7
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aluminum factor will be use_' for l oekalloy.

From Equation 1.2 and Table 1.1, the materials factor K in

Equation 1.1 can be calculated. Several values are seen in Table 1.2.

The value of 0.67 for 316_S is higher than the 0.53 value as sulgested

by JPL. This discrepancy should be resolved in order _o be able to

I fully evaluate $S as a possible armor.

Depending on the fina_ design o_ the radiator heat pipes it

is difficult to estimate whether displing or spallation w_ll render

the heat pipe inoperable. Thus, it was decided to use the perforation

rear surface factor in order to evaluate the mass of the axlor.

Table 1.3 shows the perforation factor for the selected satcrial at

i temperatures of interest f'or the ,_EP radiator.

r Since Lock.alloy and almsLntm can not be used throuilhout the entare

i te_erature range over which the CB¢ radiator must operate and are

: definitely not suitable for use in conjunction with the therlaionic

the materials will be evaluated and
system9 only higher temperature

! only at 700°K, the upper end of the CBC radiator temperature.

In discussing the required araor thickness, the thickness of

the heat pipe wail must also be taken into consideration.as _.ust

the diameter of the heat pipe which defines the vulnerable area,

f and whether there are fins which can be utilized as armor. In order
to reduce the nulher of variables so that the effects of the armor

design could be evaluated, a base line heat pipe was establLshed as

seen in Table 1.4.

d
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Table 1.1

CRATERING COEFFICIENT AND REAR SURFACE DAMAGE FACTOR

FOR SELECTED .qATERIALS

•qaterial Craterin B Coefficient Rear Surface Dma_le Factor "a"
_ Spa11 Perforation

2024 AL 1.07 2.5 2.3 1.7

LockalZ oy 2.06 - - 1• 7"

316 SS 2.19 2.4 1.9 1,4

A-2S6 1.77 2.4 1.9 1.4

Nb-l_ Ll"r 1.81 4.5 4.0 1.7

• Estimated Value

Table 1. _.

.qATERIALS FACTOR K FOR SELECTED MATERIALS

AT ROOMTEMPERATURE

,_aCeria...._l _ _ Perforation

2024 A1 1.68 1.54 1.14

Lockalloy _ - -

316 $S 1.15 0.91 0.67

A-286 O. 93 O. 73 O. 54

•_b-l%_ r 2.22 1,98 0.84

00000001-TSB02



Table 1.3

_ .'4ATERIALS FACTOR K FOR PERFORATION OF SELECTED

! MATERIALS AND TEMPERATURES

Naterial K

3OO°._.._K 500°.__.,..KK 700°.._ 900°___...KK

2024 AI 1.14 1.24 1.31 t.37

I Loekalloy 1.00 1.09 1.15 1.20
316 SS 0.67 0.73 0.77 0.80

A-286 0.54 0.59 0.62 0.65

Nb-1% _r O. 84 O. 91 O. 97 1 • O0

Table 1.4

BASE LINE HEAT PIPEm

O.D. - ".54 (1")

Wall - 0.0254 em (0.01")

Length - 262 era (103,,)

Vulnerable ,_rea - 665 cm 2 (103 in2)

,_lass _.P SS heat pipe - 1.75 '._g

10
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BAsed on a u£ssion time of 87,d00 hours and a no-ptmct_re

probability of 0.9 for each heat pipe, the required armor thickness

and mass for the selected materials aS 7OO°K is seen in Table 1.5.

Table 1.5

REQUIRED AI_IOR THIC_ESS AND MASS @ 700°1_

Material Thickness Mass

3t6 5$ 0.27 ca 2.26 k 8

A-286 0.22 ¢u 1.83 kg

Nb-1% _r 0.34 ¢m 3,05 kg

The mass of the armor was taken to be:

Ma : ","r'D2 t .' _'a Eq. 1.3

_1 = _ass cf the armor - gramsa

D = Heat pipe diameter - 2.54 cm

t - Armor thickness - cm

., = Heat pipe length - 262 cm

a - Density cf the ax_or - gm/ec

_hen _olid armor is employed, there can be some ;_dvantage to

having an interfae_ between the armur and heat pipe. i_alli_tie te_ts

t_
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e
of stainless tubes in aluminum armor show marked improvement over

s_ngle aluminum tubes. 3 That _s, in generalDthe _ntegrity of the

inner tube was not lost nor did spalling of the inner tube take place, i
1

even when the inner tube was completely closed. The rear surface

thickness factor was found to decrease as a function of _/D. H is the

inner tube dimple height and D is the tube diameter. Specific values

are seen in Table 1._.

Table 1.6

REAR SURFACE DAMAGE FACTOR A FOR ALUMINUM OVER STAINLESS STEEL

FOR VARIOUS RATIO OF DIMPLE HEIGHT TO TUBE DIAMETER

A H/D

2.5 0.O (No Dimple)

2.0 0.13

1.7 0.22

1.5 0.32

1.4 0.34

1 .O 0.60

0.9 0.75

0.8 1.0 tlnner Tube Closed)

By comparing the "A" factor for aluminum in Table I and 6,

it iS interesting to note that for an H/D of 0.22 or g_eate_the

rear surface damage factor as less than that required to prevent

12
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perforation. If this same relationship holds for stainless on stainless,

then the armor thickness required could possibly be reduced below that

given in Table 1.5. However, the effects of the dimple on heat pipe

operation would have to be taken into consideration.

A dimpled heat plpe can be affected in two ways. First, the

liquid flow path could be interrupted or blocked. Second, the vapor

flowpath could be partially or totally blocked. However, since the

armor thicknesses of Table 5 were based on the penetration r_ar surface

damage factor, the heat pipes would have suffered some dimpling and

spallation damage by those meteoroids which did not cause penetration.

Thus the use of arlor over a liner will have a definite advantage

over a solid tube. However, this does imply that the ar_or thickness

stands alone, i.e. the thickness of the heat pipe can not be used to

reduce the ar_or thickness.

In order to make use of this interface effect, the validity of

it with the materials of construction would have co be proven by tests,

us well as establishing what effect a dimple in the heat pipe wall

has on the heat pipe's performance. The reduction in heat pipe

performance with dimples has to be considered anyway unless the armor

is increased in thickness to prevent dimpling.

1.3 Low Mass Armor

Two types of low mass armor were investigated. They are powder

metallurgy foam metal and a collection of thin plates. The investigation

or evaluation of these armor types raised as many questions as were

answered, which leads to the conclusion that additional work needs to be

done in this area.

13
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, 1.3.1 Powder _letallurLy Ar_nor

In order to have a low ma _ armor either the real de:_sity or

apparent density of the armor must be reduced. _[aterials of low

density such as al,Lminum, beryllium, and Lockalloy are not useful at

the higher temperatures of interest and they also present a bonding

problem to a stainless heat pipe. Thus one look at low apparent

density materials such as powder metallurgy foam metal.

From Equation 1.2, it is seen that the required armor thickness

is proportional to the reciprocal of the square root of the density

of the armor. Since mass is equal to the thickness times the density,

the armor mass is proportional to the square root of the density.

Thus 25% dense armor will be twice as thick and have 50% of the mass

of solid armor. On the surface, this appears to he a good method by

which to reduce the mass of the armor. However, for this method to

be viable, the other physical properties of the armor cannot change with

the apparent density. Also, the armor must appear to be a "solid" to

the impinging meteoroids. That is, the dinmeter of the meteoroids must

be at least lO times the diameter of the particles making up the armor.

For a 50% dense armor made from 2 x lO -3 cm particles, the meteoroid

must be at least 2 x lO-Zcm in diameter for the armor to behave as though

it were solid. A particle of 2 x 10-2cm diameter with a 0.5 gm/cc density

will have a mass of 2.09 x 10-dgm. JPL considers only those meteoroids

with a mass in excess of lO-_gm as being of concern to the radiator

heat pipes. Therefore, if 50:o dense armor is to be used it must be made

with _x lO-°cm or less diameter particles.

For densities less than 50"_, non-spherical particles must be used

to make up _he armor, and the me_:eoroid size which will see the

L4
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armor as being solid will increase accordingly.

The reduction in mass of armor by the use of porous material

is based on the other physical properties of the armor being invariant

of the density, which is not the case. For instance, the velocity

of sound is equal to the square root of the modulus of elasticity divided

by the density. The actual velocity of sound of the individual

particles will remain the same. However, since the effective path

length will be a tortuous one, and increases with decreasing density t

b the effective velocity of sound should be lower. Thus the required
armor thickness and mass will increase as the sonic velocity decreases

with decreasing density.

One physical property which definitely changes with the apparent

density is the thermal conductivity. A high thermal conductivity is

necessary for the armor so that the AT through it is low, thus

keeping the radiating surface temperature as high as possible. At

first one might th_nk that the thermal conductivity is inversely
D

proportional to the apparent density. However, for perfectly square

packed spheres of the same diameter the theoretical packing density

is 52% and the spheres are tangent to each other. Thus the thermal

conductivity can not be 52% of the solid material since the particles

only have point contact.

A theoretical treatment of the thermal conductivity of porous

material should be carried out in a manner similar to that by which

the permeability of porous material has been determined. This model

should also take radiation into account, and be followed by experimental

determination of the thermal conductivity of various porous materials,

15

i

........ 00000001-TSB08



01

As part of the determination of the effective emissivity of porous

material (covered in Section 2) several tests were performed from which

an effective thermal conductivity of SO'Adense nickel at l/coCK was

calculated to be about 15% of that of solid nickel. These tests were

not designed to measure thernal conductivity. Therefore, the accuracy

is at beet _25% but it does indicate that indeed the thermal conductivity

of porous metal is considerably less than the apparent density times

the thermal conductivity of the base metal. Baaed on this marked

reduction in the thermal conductivity of porous metal, its use as a

low mass armor may be limited. The combined effect of reduced thermal

conductivity and increased armor thickness for porous armor muy increase

the AT through the armor by an order of magnitude. At 700°K the AT

through solid _$ armor is 2.2°K, _hus the AT through porous armor may

be as high as 22°K, which at 700°K would require an increase in

radiating surface area of 13.6% in order to dissipate the same amount

of heat as compared to a 1.3% increase for the solid armor. Table 1.7

compares the mass of a 700°K $S heat pipe with solid armor and 50%

dense porous armor. The armor mass is assumed to be proportional to

the square root of the apparent density (optimistic) and the thermal

conductivity i_ 10% of the base material.

From Table 1.1, it appears that the 5_,. dense armor will have

an overall lower mass than solid armor if the assumption about the

porous armor material is correct. Further reduction in mass may be

possible by going to 25% dense material. However, the effective

thermal conductivity will probably decrease by another order of magnitude

and the armor will start to look less like a solid surface to the

impinging meteoroids.
16



Additionally, if the interface effect can be utilized, as

I discussed in 1.2, than the solid armor may be reduced in thickness

such that its mass become_ comparable to that of the 50_ dense armor.

Table 1.7

MASS COMPARISON

SOLID ARMORVS. 50%DENSE A_MOR

_. Solid Armor 50_ Dense Armor

Heat Pipe 1.75 kg Heat Pipe 1.75 kg

Solid Amor 2.26 kg Ar_or (.707 x solid) 1.60 kg

Total 4.01 kg Total 3.35 kg

1.3% incPease in 13,6% increase in
mass due to 22OK mass due to 22OK
a_norAT a_orA_

Total mass 4.06 kg Total mass 3.81 k8

1.3.2 Thin Plate A_or

The evaluation of armor to this point has only considered

stopping the meteoroid from puncturing the heat pipe wall with the use

of solid or porous armor. This section will look at the use of

single or multiple thin sheets as a possible means of achieving low

mass armor.

Most of the thin shield work has been aimed at the concept

of bumpers protecting an underlying armor. In this concept, the

impinging meteoroids strike the thin shield causing the meteoroid

to break up and spread radially over a large area such that the

17
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force per unit area which is observed at the underlying armor is

subatant_ally reduced? This type of armor has from 3_ to _O'Aof

the mass of solld armor. The shield is anproximately IO'A as thick

as solid armor and placed at least five _olid axmor thickness sway

From the underlying armor, which is from 25 to 40% of the thickness

of solid armor. Thus the total thickness of a bumper and underlying

armor is at least six times that of the solid armor and has 50% of

the mass of the solid armor. Bumpers are not attractive For radiator

service because they will act as radiation shields. However, in

examining t_in shields several interesting things were brought to

light which were instrumental in arriving at the chevron a_or design.

Gehring_ in Kinslow's book_ states For thin shields "the damage

mechanisms to be considered are the breakup and dispersion of the

projectile and shield debris at high velocities and the gross defor-

mation, tensile Failure, and spallation of the rear sheet."

"Upon striking a thin sheet, a particle or projectile may

undergo a variety of processes depending upon impact conditions

such as the particle _elocity, the particle material and composition,

the ungle of impact, the material strength, and the thickness of the

thin sheet. (A thin ,beet as used herein will be defined as a

sheet whose thickness is equal to orless than the diameter of the

projectile). The particle may be stopped by the sheet, may pass

through the sheet essentially undamaged, or may pass through the

sheet fractured, molten, or vaporized. The last two cases arc the

cause of interest for meteoroid impacts as the velocities are

sufficiently high to cause melting or vaporization."

t8
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"If the thin sheet is penetrated, the debris from the projectile

\ and the shield then travel across the space between the sheets

and strike a second sheet. Upon striking the second sheet a sho_k

wave is generated within, and traverses, the second sheet. Depending

upon the intensity and the structure of this shock an internal fracture

or spall may form, resulting in some cases in complete detachment of

some material from the surface of the sheet."

"In addition the second sheet will be given an impulsive load

by the impact of the particle-shiel_ debris. This load is applied

q_ver a very short period of time (a few microseconds) and results

in a second sheet moving with some velocity. The sheet can then fail

from this load by tensile failure or shear failure."

"The whole process of fracture of a projectile and a thin shield

can be i, terpreted as a multiplu spalling phenomenon that starts

at the free ,'urfacee. Hence, the significance of a shield is that

it can fragmen_ the projectile, spread the fragments radially and

significantly reluce the velocity of many of the fragments below the

velocity of the original projectile,"

Summarizing, the following can be said about thin shield protecting

backup plates.

I. For a shield to be effective, it must break up the particle into

small pieces or cause melting to insure that no significant

penetration of the second sheet will occur.

2. As the shield thickness is increased, the debris is spread out more.

3. The thickness of the backup shield to prevent failure is proportional

to the mass of the projectile for high projectile velocity

which assures that the projectile is sufficiently broken up and/or
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vaporized.

4. The thickness of the backup shield to prevent failure is

proportional to the projectile diameter for low velocity impacts.

5. The lower the melting temperature of the shield material, the

lower the velocity of the meteoroid required tJ cause complete

fragmentation of the particle and vaporization of the shield

material. ('L 6 km/seo for aluminum)

6. Based on thin shields and backup targets_the thickness of a

shield to prevent fracture of the back plate for aluminum particles

at 30° kmlsec is:

, l .,,,tt = ______.

tt = Backup target thickness = cm

Mp = Mass of projectile - gram

S = Shield to target spacing - cm

t = Thickness of shield - cm
s

D = Particle diameter - cm

This equation is valid for:

To use this equation with projectiles of muterials other tharl aluminum,

the t /D ratio must be computed on an equivalent mass of aluminum
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particle, i.e. D = flp\_at]

7. '1'11(:t /b ratio) !ihollld b(_ as large a:'_ pos:libte,a

8. The inter-sheet spacing should be a:; large as p(msible.

9. The shield thickness scales with the projectile diameter.

tO. The thickness of a single sheet armor scales with the projectile

diameter.

ii. All things taken into consideration, two sheets ar_ better than one

on an equal mass basis because any high velocity impact upon a shield

results in the spread of the projectile - shield debris, the loss

of energy and at most a slight increase in momentum per unit area

are less.

12. Experiments with aluminum - aluminum and cadmium - cadmium impacts,

supported the theoretical conclusion that two sheets provide more

protection than a greater number sheets. These tests were at

7.4 kin/see for the aluminum and 6.4 kin/see for the cadmium.

I3. Experimental results for an aluminum - aluminum system showed that

if the back up shield could survive an impact of iO km/sec, which

causes the shield-projectile debris to be molten and/or vaporized,

the same size shields could resist failure for all low velocity

1 impacts. For aluminum below 7 km/sec the debris still contains

fragments which inflict severe damage on the second _heet. In fact,

the damage at 2.5 kin/see ks the same as at 20 kin/see.

However, since tile average velocity of meteoroids is 20 kin/see

the low ve]oeity impact damage will not be critical.

14. The above statements about thin shields are for impacts which arc

normal to the shield. This is not tilecase with meteoroids. They

will hit at all angles. The test:_whtei_ have been carried out wit i.
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aluminum - aluminum impacts and cadmium - aluminum impacts

show that as the angle from the normal is increased the particle-

I debris becomes more fragmenta_ and less molten or vaporized thus

having the tendency to increase the damage inflicted on the rear

sheet. However, the conclusion is that if a two-sheet structure

can resist a low-velocity normal impact it can resist the fragment

damage due to an oblique impact.

The signigicance of oblique impacts is in the fact that the

shield debris comes off normal to the shield, while the particle

m debris appears to be spread in the angle between the direction of

initial flight and t:le normal of the shield. It is this concentration

of the particle debris that inflicts fragment damage to the second

sheet. However, the important thing is that the integrated center

of the debris emanating froP the back side of the shield has

experienced a shift in the direction of motion towards the normal

to the shield. It is this change in direction which may be the key

to low density chevron armor.

15. The optimum shield _hickness to projectile diameter ratio is

ts/D - 0.15 and the total thickness of the shield and back up plate

divided by the particle diameter is between I and 1.5. i.e.

_ :_ (ts + ti_)/o_< 1.5

These _re the optimum values to prevent failure for high velocity

oblique impact and low velocity normal impact.

L6. For aluminum - aluminum impacts at 7,4 km/sec with a 5.08 cm

spacing the following equation hold for non-optimum shields.
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ts + tb 4 ts + I 5 _t _ 0.15
L
h

i Eq. 1.5

ts * ts tb

17. The depth of penetration of 81ass spheres into al_inua tubes,

where the tube wall _as held constant at 4.75 times the di_etur

of the projectile, decreased as the tube dieJaeter decreased. The

decrease in penetration as co_pared to that of an infinite di_eter

tube (i_lat plate} was 21.5,% for a 2" ID, 32.7% for a 0.5" OD.

and 4]..7 _. for a 0.125" _D,

As o_T be seen fros ¢he above sugary the amount of information

i directly applicable to _he protection of the _EP radiator is limited,
_, thus any conclusions which are drawn should be further ex_ined by

k a sore cotprehensive review of the literature, dLscueaion with

l current workers in the field _ experisental verification of the

design. Having su_aarized the pertinent work in the field of thin shield

protection, .hat can be said for pro_ection of the NEP radiator?

_ First, as _entioned earlier, the concept of the bumper can not be

) esployed due to the radiation shielding effect. However, the use

of multiple thin shieldsin a configuration shown in Section 2 to

have a high intrinsic emissivit),._Ly have some merit. For ease ,)f

,, analysis the shield was assuaed to be protecting a flat plate r_ther

than a tube and is seen in Figure 1.1. It i_ hard t,) sa_ whether ,_r nor

pr,tectinR a flat _urface will be Ies_ _assi_'e than a cur_ed _urface.
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to be Protected fr¢_m ,_teteoroid
Collisions

Fi I_Ure 1.1

£1,evron Armor Deaign i',*r Flat PLate
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As seen in 17 above, the smaller diameter tubes showed considerably

less vulnerability than a flat plate. However, in order to contour

the armor to a beat pipe additional mass may be required. It may

also be possible to construct a heat pipe with one surface flat, such

as a "D" shape, thus allowing for the use of the shield design, as

shown in Fig.s 1.1.

The idea behind the a_mor design of Figurel£ is that in all

probability most meteoroids will not Denormal to the surface. Thus,

the impact will be oblique to the outer portion of the shield and

according to item 14 above, the debris should start to align itself

into a path which is normal to the shield i.e. it will be parallelto

the plate that the shield is protecting. Likewise, the offset in the

i shield will protect the underlying beat pipe from nor:_l impacts and
i

if the impact is such that debris gets close to the heat pipe wall, the

F

portion of the shield which is perpendicular to the heat pipe should

change its direction of flight to be parallel to the heat pi_ wall.
An initial analysis of thin type of az_or was carried out under

JPL Contract 955100. This analysis was similar to that one in

Section 1.5.i where the mass of the armor was assumed to be equal to

the apparent density of the armor to the one half power. There the

apparent density is equal to the mass of the armor divided by the

total of the volume of the fins plus the volume o£ the space between

the fins.

This analysis is not valid since the density of this volume

will not be homogeneous to a_ incoming meteoroid. Accordingly, the

following analysis utilizes the thin shield approach summarized above.
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From Table 1.5, the solid armor thickness for 316 SS was shown

to be 0.27 um with a mass of 2.26 kg. Therefore, this is obviously

the upper limit for any low mass armor design. Accordingly, a

50_mass reduction was chosen as the target. Thus, the mass of

the armor should not exceed 1.13 kg.

In order to evaluate the effectiveness of the armor certain

assumptions must be made. First of all, if a 3-section shield is

used, then the last third must exhibit a black body cavity effect as

discussed in Section 2. For an emissivity of 0.9 to be achieved for

a surface emissivity of 0._ the minimum depth to width ratio is

2:1. (See Figure 2.1). However, the physical dimensions of the fins

preclude the use of Equation 1.4 as they do not fall within the

contraints of the equation. A_oordingly, the critical mass can not be

calculated for chevron armor.

Thus, the conclusion is that since the shield to shield spacing

is small with respect to the shield thickness (See number 8 above)

it is impossible without additional theoretical and experimental work

to determine the effectiveness of chevron type armor. However, its

potential is high as seen by the commen_s of James Hand of the

Southwest Research lnstitue in his letter of August 2, 1979, _ollowing.
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i SOUTHWEST RESEARCH INSTITUTE ,
POST OFFIC| DAAW|R 211|10 * ll2_0 CUL|llllA ROAD * SAN ANTONIO. ;|XA| ?112|4 * (al21i1114,1_11

Depart;_n t" of Ballistics
and Exploslvee Sciences
August 2, 1979

Mr. Donald M. Ernst
'_eZ'_lCoret Znc,

P. O. Box 135
Leola, Pennsylvania 17540

Dear M_. Ernst:

Thls is in response to your letter of June 12 to Alex Wensel
and our conversation of July 31 pertwinin 8 to your proposed heat
rejection system. The meteoroid protection eystemwhich you propose
is quite unique and has definite promise. However, before a rational
trade-off study can be performed on the advantages of the chevron armor
oveE _he solid armor, research will be necessary to establish the
assumptions inherent in the design.

Although _uch work has been done on the penetration nf thin plates
at velocities of interest to the ballistics industry, only li_Lted
data exist in the hypervelociCy regime which is necessary co simulate
the meteoroid environment. The advantage of the chevron armor design
is dependant on the assumption that the debris end eJecta will occur
p_rpendicular to the fin. Unfortunately, this is only a qualitative
observation since data exist which indicate that the projectile will
cont_ue on its original flight path while the spell or debris cloud
is ejected perpendicular to the target. An experimental program will
be necessary to define the li_/te of thlsmode of failure. A subsequent
program to observe _he synergistic effects of your particular design
would then be necessary.

The Southwest Research Institute has a highly competent professional
staff with experience in defining certain meteoroid impact effects for
NASA. However, an esti_aate of _he cost of a program in this area will
naturally be dependent on the nature and scope of the work to be performed.
I hope that you will plan co visit us when the ctme comes to prepare a
formal proposal for thls work.

Again, I would like to encourage you to pursue this concept. The
crltlclsm that you will undoubtedly receive regarding the inefficiency
of spaced bumper shields is based on normal _mpact theory. Should the

SAN ANTONIO HOUSTON TEXAS. AND WASHINGTON O C
2;
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Mr. Donald M. Ernst

There,score. Inc. -2- August 2. 1979

proJecc£1e be completely arrested by the £_ and if the debris cloud
is normal Co the fin, it does in fact seem possible to divert the cloud
co a direction parallel to the pipe. Only a well defined ballistics
prosr_11 congl_ this.

Zf I can be of any further assistance, please do noC hesitate to
call.

Sincerely yours,

_R:Jc

cc: A. B. Wenzel
J. S. Wilbeck
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t.+i Ileat Pipe - lleat Pipe AI_I_or

One concept which grew out of the evaluation of the different
#

types of armor is that of using a thin wailed heat pipe to protect Lhe _t
/

underlying radiator heat pipe. Several possible design confJguraLions

are seen in Figure _t. These heat pipe designs could employ configuration

pumping rather than conventional wicks.

The radiator heat pipe must be capable of axially transferring

all of the required power. However, the bumper heat pipe requirement

is a radial one with only enough axial capability to even out non-

uniforraities. Thus, the bumper heat pipe will not require as much wick

:_tl'UCture as the radiator heat pipe and will therefore have less mass.

tn fact, tile bumper heat pipe could have a Imurled inside surface

ix's) thus providing radial and axial grooves for liquid flow paths.

Segmented

Bumper Ileal Pipes __

_" _. .- _ }

Radiator

ileal Pipe

Segmented Heat•Bumper Pipe

t D-Shaped an,_

Pumped)

Ileal Pipe
_-" ( D-Shaped )

Figure 2.1

Segmented fltuaper Heat Pipe
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If the liquid inventory is small then a stainless steel circular

bumper heat pipe could have a wall thickness of 0.135 cm and have 50%

of the mass of the solid armor of Table 5.

Likewise, "D" shaped heat pipes with the bumper heat pipe having

a thicker flat section, could make use of the interface effect as

discussed in I.Z° In addition, the mass of a "D" shape is less than

a complete circle of equal wall thickness and diameter.

One thing which has to be considered is what happens when the

bumper heat pipe is punctured and the radiator heat pipe remains

intact. The remains of the bumper h_at pipe will act as a radiation

:_ shield and reduce the radiant heat transfer by up to 50%. However,

the radiator heat pipe will remain intact. Thus, there arises a trade-

off in the bumper heat pipe wall thickness and the radiation shield

l factor.

It may be possible to make the bumper heat pipe out of ten individal

compartments. Thus, if one of the bumper heat pipes is penetrated,

then the other nine can still dissipate the heat at a slightly higher

overall temperature. For the CBC radiator, if the small diameter heat

pipes evaluated in Section 3 were to be protected by large diameter

bumper heat pipes with ten segments, the total mass of the system will

be considerably reduced. In fact, the bumper heat pipe mass _hould be

i_ much less than that which would be required i f a "T" bar bumper

was used.

A complete evaluation of the bumper-heat pipe concept was not

possible as its evolution as an idea came at the conclusion of the

study. However, it does have enough merit to be considered along with

ti_echevron fins to be studied in luore detai_.
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2. HIGH EMISSIVITY SURFACES

The mass of a space vehicle's radiator is directly proportional

to the effective total hemispherical emittance of the radiating surface.

Additionally. the emitting surface must be thermally stable in the

environs of space_ i.e. it must not evaporate into the vacuum of

space nor be affected by the slow but continuous ere sign by the

micrometeoroids of 10 -6 grams or less which will not otherwise

ds_age the spacecraft. For minimum mass, the radiating surface

should have an emissivity of _. Thus, a minimum goal of 0.9 should

be established for the radiating surfaces of a spacecraft radiator.

There are several ways in which an emissivity of 0.9 can be

achieved. They include:

1. Use a material which has an emissivity of 0.9.

2. Chemically treat the surface to oxidize it or produce a compound

of the base material which has a high emissivity.

3. Apply a coating which has a high emissivity.

4. Geometrically produced effects.

When one looks at each of these four possibilities, it becomes evident

that most high emissivity materials are non-metals of poor thermal

conductivity such as ceramics, porcelain, glass, mar ble, water, ice,

and wood, and usually exhibit these properties below 2000¢.

Likewise, if a metal such as 316 SS, A-286 or Nb-l% _r is to be

used as the heat pipe - armor material, the chemical treatment of

these surfaces to produce a high emissivity compound or oxide is

possible. However, reactive layers usually have sufficient vapor

pressure in the range of interest such that they are not stable for

ten years.
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The remaining concepts are coatings and geometrically produced

effects. Coatings are seelb to be capable of producing emissivities

of 0.9. Geometrically produced effects are shown to be a function

of the geometry and surface emissivity with effective emissivities

greater than O.9 possible.

i Two coatings of interest have been shown to be themally stsble

at lO00°K for 10,000 hours in a vacuum by Pratt and Whitney Company. 10

These were calciumtitanate and iron titanate on 510 SS tubing, both

of which exhibited emissivities of 0.9.

The extrapolation of 10,000 hours to 87,600 hours is not

unreasonable. However, it is not known whether these coatings will

be able to survive the ten or so thermal cycles which will be required

for the multiple fabrication steps and ground level system check out,

_, and then survive the shock and vibration of launch, plus the continuous

erosion by the cosmic dust.

The high emissivity of these coatings is a function of at least

two things: the normal high emittance of the titanates and the fact

that the coatings are granular in composition which produces a high

== emissivity by geometric effects as is discussed in 2.2 below.

Coatings such as these are required if solid armor is to be

used to protect the radiator heat pipe from meteoroids. However,

the use of high emissivity coatings on the surface of low mass armor

which also produces n geometric effect may provide emissivity gre_tsr

than 0.9 which in turn will allow for further radiator mass reduction.
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2.2 Black Bod_ Effect

The artif_cai roughening of a surface is a known means of

increasing its emissivity. This enhancement of emissivity by surface

11
or geometric effects has been treated quite thoroughly by Sparrow.

The basis for this enhancement is the multi-reflections between surfaces

which "see" each other, and is a function of the angular separation

of a Vee. shaped cavity, the depth to width ratio for rectangular groove

cavities and depth to radius ratio for cylindrical cavities.

Additionally, the absolute value of the emissivity of the enclosing

surfaces is important, as is the type of surface involved, which in

turn defines the type of reflection, i.e., specular or diffuse.

Sparrow mathematically derived the effective emissivity of

parallel plate or rectangular groove cavities for specular and

diffuse reflecting surfaces. Figure 2.2 shows Sparrow's results

from which one sees that emissivity enhancement is most dramatic

for surfaces of low specular emissivity and low depth to width ratio.

This emissivity enhancement assumes that the enclosing surfaces

are isothermal, of uniform emissivity and applies only to the projected

surface area bound by the cavity and does not include the surfaces

of the edges forming the cavity_ i.e. fin tips for c_evron armor in

Figure 1.

Diffuse radiation denotes directional uniformity, i.e. the

intensity of the radiation leaving a diffusely emitting and diffusely

reflecting surface is uniform in all angular directions. Likewise,

radiation arriving with uniform intensity at a surface is diffusely

distributed, In other words, regardless of whether the incident

radiatiozl arrives as a beam directed along the surface normal, or as
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a beam grazing the surface, or is uniformly distributed over the

hemisphere, the radiation reflected from a difftme _urface J:;always

of uniform intensity.

i Specular cr mirrorlike reflection maintains directional dependence,
and a beam of rldiation contained in a solid angle inclined at some

anglo to the normal of the surface will be reflected in the same solid

angle on the opposite side of the normal at the s_mc inclination.

Although a black body is a diffuse emmitter of energy it is

J obvious from Figure 2 that the surfaces of a rectangular cavity can

not be diffuse reflectors in order to achieve a high emissivity

which is desired.

There is no known material which is a perfectly diffuse reflector.

However, it is interesting to note that the nonmetallic materials

which have a high emissivity such as AI203, paper, wood, glass, and

ice, also have a uniform emittance for inclination anglos between 0

and 60° before fallin E off to zero.

Conversely the emittance of the metals typically shows a very

high degree of directional dependence with a peak around 80°. Thus

one concludes that metallic surfaces will behave more like a specular

reflector and that nonmetallic surfaces will be more closely described

as diffuse reflectors,

').2. l Powder .%Iotailurg5"Material

In an attempt to understand the properties of powder metallurgy

material, Thermacere utilized some of its IN C D f'unds to construct a

potassium heat pipe which had an annulus of sintered nickel powder

around a portion of J1:scondenser. This powder had eight holes in
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it. Four were I mm in diameter, four were 6 m_ in diameter. Each

set of holes had aepth to diameter ratios of 3:1, 6:I, ?.@:L and IO:1.

The results of the experiment were quite inconclusive with respect

to measuring the effective emissivity of the material since it was

observed that the thermal conductivity of the 50%nickel powder was

so poor that the matrix could not be kept at a uniform temperature

even with the application of radiation shields.

Qualitatively the following can be said of the experiment_

1. The smaller dimeter holes appeared to have a lower effective

emissivity then the larger holes.

R. The larger the depth to diameter ratio the higher the effective

emissivity.

From l, it can be concluded that there is a relationship between

the diameter of the cavity and the roughness of the cavity walls which

a_fects the effective emissivity of the cavity. (In the experiment,

the cavity walls were both of identical material, 50% porous nickel}.

Quantitatively it was concluded that the effective emissivity of

the 5_A nickel fell between 0.4 to 0.7. This is not at all unexpected,

for if one looks at the actual emitting surface of the @0". dense

material one sees that the surface is 80% nickel and 20% voids. Thus

even if the 20% voids have an emissivity of 1, and the 80_ nickel has

an emissivity of 0.5 (oxidized nickel), and total effective emissivity

of the surface would then be 0.6.

It can be concluded that for powder metallurgy to be used to

achieve an emissivity of 0.9 or greater, the _>llowing i_ required.

The density will have t_ be less than 50", so the prnjected surface

azea of the cavities is increased, and the material which makes ,ip "he
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powder _tallurgy shuuld have a high eaissivity to begin with.

_ _ Fins

The evaluation of fins such as the chevron design of Figure l.l

is considerably more straight forward. Based on the results of 2.2.1,

a conservative approach is to assume chat the surfaces of the fins do

noc have any roughness factor by which to enhance the surface

emissivity. Also. based on the apparent high specular nature of

metals, the surfaces will be assumed co be specular reflecting.

From Figure 2.1, it is seen chat a depth/width ratio of 10:1

produces an effective enissivity of 0.9 for a material with a specular

eaissivicy as low as 0.3. IF the fins have an emissivity of 0.5 a

ratio of only 4:1 is required co achieve 0.9.

_f one asses the use of iron tica_tate on the fin with art

eaissivity of 0.9, then at a ratio of 2:1 the effective emissivity

will be in excess of 0.98. However, this _ay be risky based on the

results of the powder mecallur&y tests.

One thing that ausc be considered is whac the total emissivity

of the final structure is. If the fins represent 25% of the surface

area the cavtty represents 75_ and the following equation can be

written for the effective esissiviCy_

geff = Ea Aa • gc (A - At}
A

_eff = To_al effective enissivity of the radiator surface

_ = _mi_sivit_ Of the edges of the fins

_c = Effective em_ssix't_y of the cavity

_ = Area of _h_ edges of _he fin

A = T,_al area ,,f radi,,t_r
]7
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Thus if we have 25% fin area and Eeff = 0.9 then

0.6<Em_ 0.9 while I > Ec > 0.9
_ _

Therefore, a high emissivity fin material is required to increase

the effective emissivity of the cavity as well as the edges of the

fins.

Additionally, if the AT through the fin is taken into consideration

it is seen that short stubby fins will perform thermally the best, hut

may not provide the required amount of meteoroid protection.

It is concluded that fins can produce a total surface emissivity

in excess of 0.9. To achieve these high emissivities the surface

area of the fin tips should he as low as possible and the surface

emissivity as high as possible.

Additionally, i% is seen that there will be a delicate balance

in the protection afforded by the fins, a chevron armor, the /kT in

the fins and the associated mass increase and the effective emissivity

of the radiating surface. Additional work is necessary to fully

evaluate the total effectiveness of o hevron fins to produce an effective

low mass armor with a total effective emissivity in excess of 0.9.
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3. HEAT PIPE DESIGN FOR CBC RADIATOR
i

The 400 kW Closed Brayton Cycle power system for the Nucleare

Electric Propulstion Spacecraft has been designed by Garrett AirResearoh 12

to use heat pipes to achieve a thermally effective radiator which has a

high survival probability. It is _lso anticipated that the heat pipe

design will lead to a low specific _ass. The heat pipe design evaluated

in this work is for use in a cylindrical array as seen in Figure 3.1.

This design has eight dual gas-to-radiator heat p_pe heat exchangers fed

from a dual central duct. The heat pipes are attached to both gas ducts

over a length of 43 om on each duct. Thus, the heat pipes provide armor

protection for the gas ducts.

In normal operation, the total 86 om length attachment over the

heat pipes to the gas ducts will be used as heat pipe evapomtors. The

condenser is t76 ¢m long. If either gas duct or engine should fail,

then the whole power load will be transferred to the heat pipes through

only one of the 43 ¢m attachments. Accordingly, for design consider-

ations, the heat pipe must be sized as though it had a 43 cm evaporator,

43 cm adiabatic and 176 c_ condenser.

Fou_ different sets of heat pipe designs were analyzed with

respect to mass and performance. However, no consideration was given

to the required heat pipe armor and tradeoffs in the heat pipe di_eter

versus T-bar fins for total mass. The overall heat pipe cell dimension

as designed by 0arrett is 3.175 cm (1.25") and includes heat pipe and

fins. All heat pipes discussed in the Sections 3.1 and 3.2 have

computer printouts of their performance tabulated in Appendix 1.
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3.1 Baseline Desian

The total power to be dissipated is 1.1 x 108 watts. From the

gas side of the radiator heat exchanger, heat pipe temperatures were

calculated by Garrett AiResearch to range from 707°K down to 492°K.

The power levels are 720 watts per heat pipe at 707°K and 169 watts

per heat pipe at 492°K. Thus, O'AE can be computed to be 2882 x 10 -12

watts/°K 4 from:

P = _"A(T 4 Eq, 3.I

where

P = Power radiated - watts

0"= Stefan Boltzn_n Constant = 5.87 x 10 -12 wart._..__s

cm2_°K 4

T = Heat pipe temperature - OK

2
A = Individual heat pipe radiating area - cm

E = Effective thermal emissivity

Table 3.1 shows the required heat pipe power for each of the end

temperatures and each temperature divisible by 25°K.

Garrett AiResearch*s baseline design is a 2.54 cm (l") 0.D. heat

pipe with a 0.0782 cm (.03") wall. The initial heat pipe designs under

these conditions are seen in Table 3.2. Ru_idiu= is the preferred heat

pipe fluid from 707°K down to 6500K. Below 650°K Dowtherm A (DTA)

is the preferred fluid. In both cases, a screen covered groove design

is found to be the lowest mass system of those investigated. The

rubidium heat pipes have a 1.75 kg mass. The DTA heat pipes have a

1.74 kg mass.
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TABLE 3o 1

Req,
Te_pe_&_u_e Powe_

o_ o c Na_s
JJ i

707 434 720

700 427 692

675 402 598

550 377 514

625 352 440

600 .327 373
J

878 302 315

550 277 264

825 2_2 219

_00 oo-..I t$O

492 2_9 169

REQUIRED POWER PER HEAT PIPE AT ELEVEN

DIFFERENT TEMPERATURES
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Tabte 3.3 shows the _ame heat pipes, which have been, for the most

part, optimized with respect to the number of grooves and their aspect

ratio. The rubidium heat pipes have a t.48 kg mass. The DTA heat pipes

have a 1.55 kg mass.

The average mass reduction is 14%. Further groove optimization

may result in an additional I or 2% mass reduction. However, far

greater mass reduction can be realized by O.D. and/or wall thickness

reduction.

Table 3.4 shows the 2.54 om (1") heat pipe with a 0.025 cm (.01")

wall. This wall thickness is 0.01 times the diameter and has been

shown 13 to be acceptable for use as a heat pipe containment vessel where

external buckling is the ultimate constraint, i.e., the internal

pressure of the heat pipe was less than 14.7 psi, thus long term creep

due to hoop stress was low.

The use of a wall thickness O.Ol times the diameter was developed

for niobium, which has a modulus of_asticity of 15 x 106 psi. This

includes a safety factor of 2, Stainless steels have moduli of about

28 x 106 psi which reduces the thickness/diameter ratio of about 0.008

with a safe_y factor of 2. However, the use of 0.01 as a thickness to

diameter ratio will be used to assure success.

Examination _f DTA at 625°K shows a fluid pressure of 85 psi

which develops a hoop stress of 4250 psi. This stress is acceptable,

since 316 55 will only creep 0.t% in 105 hours at llO0°F under a stress

of 6000 psi.

The rubidium heat pipes have a mass of 0.69 kg and the DTA heat

pipes have a mass of 0.78k _.
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J
Design Optimization

Examlnation of Tables 3.2, 3.3 and 3.4 reveals chat a reduction

in diameter of the rubidlum heat pipes would soon result in the heat

!_ pipe becoming limited by sonic shock wave development in the vapor.

I However, the DTA pipes are capillary limited, thus a reduction in O.D.is possible. Accordingly, a higher pressure fluid, mercury, was used

in s=all diameter pipes in place of rubidium. These results are

seen in Table 3.5.

The mercury heat pipes are 0.635 cm (.250") in diameter with a

I wall to diameter ratio of 0.01. The mass of the mercury heat pipes

are 0.45 kg and have a hoop stress of 625 psi at 707°K.

The DTA heat pipes are 0.9525 cm (.37"} in diameter with a wall

to diameter ratio of 0_01. They have 12 grooves 0.275 om wide by a

depth that varies from 0.075 cm down to 0.05 cm. Accordingly, their

mass varie£ from 0.31 kg down to 0.27 kg. The DTA heat pipes at

_. 625°K will have a hoop stress of 1600 psi.
_w

The mercury heat pipes of Table 3.5 have eight grooves 0.2 cm

wide by 0.02 om deep. Optimizing the number of 0.275 cm wide by .02 cm

deep grooves for different power levels results in a reduction in

mass. At 7070K, a five-groove heat pipe has a mass of 0.29 kg. At

,_ 675°K, four grooves have a mass of 0_28 kg and at 550°K, three grooves

have a mass of 0.27 kg. These results are seen in Table 3.6. Also

shown in Table 3.6 is the thermal performance of two of the mercury

heat pipes with 86 cm evaporators, which shows an increase in maximum

power capability and a reduction in total AT.

Both the DTA heat pipes of Table 3.5 and the mercury beat pipes

of Table 3.6 have a performaneeAT. Accordingly, it _s important

to assess the effect of this temperature loss in terms of increased

'..... 00000001 TSD12
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F,

mass (length of condenser) to be able to radiate the required power.

Appendix 2 develops Equation 3.2 which is the increase in mass of

heat pipe due to its _T.

dm = m 1_ [(To/T)4 - 1 ] Eq. 3.2
w

Where

dm = Increase in mass

m = Initial mass of heat pipe

I c = Length of heat pipe condenser

I t = Total length of heat pipes

To = Desired operating temperature

T = Actual operating temperature

To_ T = /X T down heat pipe

From Table 3.5 and 3.6, using the lowest mass heat pipes, the

increase in mass was calculated using Equation 3.2 and is tabulated

in Table 3.7. Therefore, to a first approximation, one can say that

the heat pipes for the CBC radiator will have a mass of 0.3 k g each.

The performance of the mercury heat pipes is based on perfect wet-

ting, that is, the wetting angle is zero (0). For lung term stability,

this may not be the case. Wetting angles from 0-60 degrees have been

observed, with 30-60 degree angles the most common. Since the capillary

force iz a function of the cosine of the wetting angle, the mercury

heat pipes may have a reduction of capillary force of up to 5_

(cos 60 = .5). This reduction in performance will then require a

reoptimization of the hea¢ pipes with a small increase in mass.

5O
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Development work a_y be required to establish a reproducible wetting

angle for mercury in heat pipe service.

3.3 Advanced Heat Pipe Concept

The grooved heat pipe designs of Sections 3.1 and 3.2 were

optimized to an approxi_aate aass of 0.3 k_ per heat pipe, exclusive

of fins and ar_or. This mass is quite low and may be acceptable in

the overall system. However, there are several heat pipe design

concepts which may offer further reduced mass with increased performance.

These include but are not limited to arterial wick heat pipes and

configuration pumped heat pipes. These wick structures were not

available in Thermacore's computer library and were. therefore,

not included in the analysis.

3.3.1 Artery/Wick Beat Pipes

There is a natural division in heat pipe fluids which takes place

at approximately 6QO°K. Above 6OO°K, the liquid metals are useful

working fluids. Below 600°K, one generally deals with non-metallic

fluids and devises structures which compensate for their inferior

physical properties. The low temperature Fluids, taken as a class,

have relatively low latent heats of vaporization, low surface tension,

and low thermal conductivity. The consequences are that for a given

heat transfer rate, heat pipes using these fluid_ must move relatively

large quantities of liquid with unusually low pressure losses, yet

mu_ maintain very thin liquid films in the heat flow path. The

arterial wick structures of Figure 5.3 have been used to offset these

property limitations. The artery provides the primary liquid return
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to the evaporator. This passage has a large hydraulic radius and

provides a very low drag path. I_ hhe evaporator and condenser, a thin

film of liquid is distributed circumferentially. The distribution

wick is often a thin layer of screen or circumferential grooves.

The artery is removed from the evaporator and condenser heat

flow paths. The thin films provided by the circumferential wick prevent

the development of excessive temperature gradients. Arterial wicks

provide very high performance, sometimes even approaching that obtain-

able with liquid metals in more conventional wicks. Lengths in

excess of ten meters have been reported. The primary limitations of

arterial wicks lie in their difficulty of fabrication and their con-

sequent lack of reprrdueible performance. The wick structures are

quit_ difficult to form and to insert into the heat pipe vessel so

as to maintain uniform close fit to the wall. There has been repeated

difficulty with the priming of arteries, that is, the ability to fill

an artery with fluid and keep it filled.

TWO methods of priming are in use. Capillary priming, as the

name implies, depends on capillary forces to maintain the fluid

within the artery. The basic condition for capillary priming is that

the largest single pore at the artery surface in the evaporator must

provide sufficient capillary pressure to offset all counter forces

including accelerations. Consequently, the evaporator ends of the

arteries must be closed and there must be no single inadvertently large

pore on the entire periphery of the enclosing surface. Due to the

adverse effect of accelerations, capillary primed arteries can be

more fractious during ground testing than in subsequent zero g

operation. Yet ground testing is essential to establish the operability
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of the heat pipe.

If the artery is so located in the h_at pipe temperature gradient

that it always is the coldest spot, it will operate at a lower vapor

;i pressure than the balance of the heat pipe. If the magnitude of the

vapor pressure difference is sufficient, it will cause priming to

take place. This is known as vapor pressure or Clapeyron priming.

The process is highly temperature dependent. The pressure difference

caused by a given temperature difference varies enormously with

temperature. Thus, a heat pipe which primes reliably and quickly

I; at high temperature (i.e. high pressure) may fail to prime at all

at low temperature. It has also been reported that vibration has

caused artezies to lose their prime and that subsequent re-priming

can be unreliable.
i

In spite of their apparent drawbacks, the performance of arterial

heat pipes is sufficiently high to justify further work to improve

their reliability and reproducibility. In general, arterial wicks

require less total mass of wicklng material, and may also require less

fluid inventory than conventional heat pipes. They are, therefore,

serious candidates for use in space radiators.

3.3.2 Wickles_ (ConfiBuration Pumped) Heat Pipes

A crevice has capillary properties. Therefore, if the wall of

a non-round heat pipe is formed so as to produce longitudinal crevices,

these may serve the purpose of wicks. That i_, the configuration of

the wall provides the capillary pumping force. Several potential

configuration pumped heat pipe geometries are shown in Figure 5.3.

Conflgurat_.,_ pumped heat pipes have been built (Figure 3.4) and have
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Figure 3,4

Photograph of a Confzguratzon"" Pumped Heat Pipe

57

00000001-TSE08



been shown to operate. However, there has been very little work in

the field, and the mathematical prediction of performance is incomplete.

The driving pressure difference which causes liquid flow in a

heat pipe is determined by the surface tension and the difference in

the radius of the liquid meniscus in the condenser and evaporator.

Evaporation in the heat _nput section tends to depress the liquid

level while condensation at the heat output end tends to increase

the level. Thus, _uring operation, the liquid level in the evaporator

of a configuration pumped heat pipe recedes into the crevice, increasing

the pumping pressure but decreasing the flow area. The inverse occurs

in the condenser. This makes for a delioate tradeoff of liquid

fill versus power handling capability. The problem is somewhat

alleviated in the configuration/artery geometry of Figure 3.3d and 3.3f.

Configuration pumped hea_ pipes tend by their nature to have

relatively low capillary pumping forces and low liquid drag. They

therefore lend themselves well to consideration as elements in low

temperature space radiators where large radiating areas require long

heat pipes. The liquid inventory requirementof configuration pumped

heat pipes appears to be comparable to that of the arterial structures

discussed previously. The complete absence of conventional wicks

is a substantial mass reduction. However, the non-round shapes are

relatively poor pressure vessels so that the gain in mass due to

elimination of the wick may be at least partially offset by a thicker

wall requirement unless fluid vapor pressures are kept relatively low.

Thus the operating temperature range for a configuration pumped heat pipe

o£ low mass may be narrower than that for other geometries.

The ability of configuration pumped heat pipes to hold their
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shape is a function of the creep strength of the heat pipe envelope.

Thermacore 12 previously identified the iron alloy, A-286, which

exhibits an exceptionally high creep strength, and may well serve

as a containment for configuration pumped heat pipes. (A-286 has

a 0.1% creep at 1100°F in 105 hours under a 38,000 psi stress load).

3.3.3 Hybrid Wick/Pumped Heat Pipes

Since the dissipating capacity of a space radiator declines as the

fourth power of any temperature loss, there is a strong incentive to

minimize losses. One of the principal advantages of the heat pipe

is the low temperature loss it incurs while moving large amounts of

heat. This low __T operation is characteristic of vapor heat transfer.

There may, therefore, be reason to make use of vapor heat transfer

even at power levels which cannot be sustained by capillary pumping

alone. Alternative or hybrid pumping means are possible and deserve

consideration. This may be true not only for the radiators them-

selves, but also for the primary loops feeding them. A practical

hybrid system may use an alternative pumping means for liquid transport

over appreciable distances with capillary pumping for local distri-

bution and collection.

The heat transfer capability of a conventional heat pipe can be

limited by entrainment of liquid from the walls by the high velocity,

counterflowing vapor. Separation of the liquid and vapor passages

will permit greater heat flow under these conditions. Figure 3.5

is a hybrid system where the liquid and vapor flow are in the same

direction. Therefore, the vapor shear forces may aid rather than

inhibit liqu1_ flow.
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Hybrid heat pipes are directly analagous to two-pipe steam

heating systems fop buildings which use condensate pumps for liquid

return. The principle has been extended to liquid metals by Phillps

Laboratories for use in Stirling engines.

The main disadvantages .of the hybrid system are the increased

probability of a leak at pump seals and joints and the dependence of

operation on an external power source. For maximum redundancy, there

should be a pump for each heat pipe, a serious penalty in complexity

for a space radiator, making the approach seem more applicable to

primary loops.

It may be possible to make use of the "heat of the radiator" to

pump the liquid, much the same way that a capillary pump makes use

of the "heat of the radiator."

Thermacore has recently begun the exploration of a "liquid piston

pump" as part of its internal R £ D effort. This pump uses a localized

high heat flux, into the fluid, to develop a vapor bubble of sufficient

pressure to push the liquid forward. Backward flow is prevented by

the use of a check valve. A forward spring loaded valve permits

regulation of the pressure at which the pump is activated.

Initial work to date has concentrated on gravity feed liquid

systems with encouraging results. The extension of this concept to

two phase systems with freedom from gravity will pose challenging

work but may be worth a cursory investigation.

3.3.4 Other Concepts

There are numerous concepts which have been suggested as possible

fluid pumping mechanisms for heat pipes and includes electro-magnetic,
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electrolytic, clectrohydrodynamic and elcctrophoretic pumping. At1 of

these are not suited for individual spacecraft radiator heat pipes.

However, osmotic pumped heat pipes and artificial gravity are two

possible mechanisms which are suited for spacecraft use.

If a spinning spacecraft can be so arranged that its centrifugal

force will aid liquid return in heat pipes, it may be possible to

I eliminate pumping and depend entirely or predominantly on artificialgravity for this function. The result may be mass reduction (by wick

i elimination and, possibly, reduced fluid inventory) and an added degree-- of freedom in fluid selection (fluid need not have high surface tension),

i Osmotic pressures can exceed capillary pressures by a factor of

[ 100 to 1,000. An osmotically pumped heat pipe is feasible in principle.

Several designs have been proposed, but only one hardware program has

been reported. The proposed designs all make use of gravity in one

i.-

L way or another: to keep liquid in place, to redistribute salt by

I natural convection, etc. It may be possible to devise a geometry which

will function in gravity-free space. If so, osmotic heat pipes may

avoid entirely the capillary limitations on available pumping pressure.

Flow rates through semi-permeable membranes are low; i.e.,

large areas are required to permit useful heat flow. There is, how-

ever, an interesting factor which may favor further consideration for

low temperature space radiators. These radiators also require large

areas becussc of the low radiant power densities. The osmotic

process is such that the membrane must be located at the condenser

(heat dissipating) end of the system, which is the radiating surface

of a radiator. At temperatures below about 900°K, the power density

from a black body radiator is less than the power density sustainable
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by fh_w o£ the best fluidu (e._. ware- _) through m_mbra,_e_. Tlmt _:_,

below thi_ temperntur_ the unit [iqu_d CIow rate thro_gh _ memb_.,qne_

is more tharl sufficient to suppox,t tileunit rrldi'aJd; he;*t load fr,Jm a

radiator of equal area. and _',basic eo1%diti(m of suce_Issful (,per,*tion

has been satisfied.

The geometries considered to dute are relatively ma:_s[ve, havin_

two walls and a la*,ge liquid inventory. Numbl,anes do not ¢.xisi:for

operation above about 400°K. However, since an osmotic heat pipe

would need no atlxiliary Dowel" (comparable to a capillal,y heat pipe),

it deserves further consideration.
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APPENDIX I

This appendlx has complete performance printoucs of al1 the heat pipes

tabulated in Section 3.1 and 3.2. The heat pipe progrsmused L: T_rmacore's

6ROOVE2?. Fijure A.t depicts the placement and definitions o_ many of the

symbols in the printout.

Evaporator Adiabatic Condenser

, I

! , ' i
_,.,o,._o,,.,._--,o_J.,.._i,:_ooo2.o_,..,.

OPVE = Pressure deep in vapor in evaporator

OPLEG = Pressure drop in liquid in e,,aporatot grooves

0PUA = Pressure drop in vapor in &diabacic

DPLAG = Pressure drop in liqu_ in adiabatic grooves

DPVC = Pressure drop in vapor in condenser - ( l�meansdrop, _-_ means
recovery or increase

DPLGG = Pressure drop in 1iquid in condenser grooves
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APPENDIX 2

This appendix develops Equation 3.2 which shows how the mass of a

radiator hea_ pipe increases wi_h the performance T of the heat pipe.

TO = desired heat pipe temperature

AT = temperature drop down heat pipe

T = T - AT, actual heat pipe radiating temperatureo

A° = radiating area of heat pipe at TO

A = A° �da,actual heat pipe radiator area required at T

Q = power to be radiated from heat pipe

da increase in surface area

d"_ = decrease in temperature

da _ Eq. A.ld'_ = T

Q Q

bu_ A = _ and A° ..

therefore, with substitution into Equation A.I and proper rearranging,

_ = a_T[(To/T)4 - l] Eq. A.2

Now, since area is a function of length, we have

dl = Ic[ To/T) 4 - I] Eq. A.5

dl dm

_nere i¢= condenser hut T_t = _ where it= total heat pipe length,

m = mass, we obtain with substitution and rearrangement -

6_ = _".-_[r /r) 4 - tl za. a.4

which i_ 2quation 3.2.
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