NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE
Methods for Calculation of Engineering Parameters for Gas Separation

D.D. Lawson

October 1, 1979

Prepared for
U.S. Department of Energy
Through an agreement with
National Aeronautics and Space Administration
by
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California
JPL PUBLICATION 79-46

Methods for Calculation of Engineering Parameters for Gas Separation

D.D. Lawson

October 1, 1979

Prepared for
U.S. Department of Energy
Through an agreement with
National Aeronautics and Space Administration
by
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California
A group additivity method has been generated which makes it possible to estimate, from the structural formulas alone, the energy of vaporization and the molar volume at 25°C of many nonpolar organic liquids. From these two parameters and appropriate thermodynamic relations it is then possible to predict the vapor pressure of the liquid phase, and the solubility of various gases in nonpolar organic liquids. It is also possible to use the data to evaluate organic and some inorganic liquids for use in gas separation stages or liquids as heat exchange fluids in prospective thermochemical cycles for hydrogen production.
ABSTRACT

A group additivity method has been generated which makes it possible to estimate, from the structural formulas alone, the energy of vaporization and the molar volume at 25°C of many nonpolar organic liquids. From these two parameters and appropriate thermodynamic relations it is then possible to predict the vapor pressure of the liquid phase, and the solubility of various gases in nonpolar organic liquids. It is also possible to use the data to evaluate organic and some inorganic liquids for use in gas separation stages or liquids as heat exchange fluids in prospective thermochemical cycles for hydrogen production.
"Page missing from available version"
CONTENTS

I. INTRODUCTION - 1-1
II. ESTIMATION OF THE ENERGY OF VAPORIZATION AND MOLAR VOLUME
 BY THE GROUP ADDITIVITY METHOD - - - - - - - - - - - - - - - - - - 2-1
III. ESTIMATION OF VAPOR PRESSURE - - - - - - - - - - - - - - - - - - - 3-1
IV. ESTIMATION OF GAS SOLUBILITIES IN NONPOLAR LIQUIDS - - - - - - - - 4-1
V. MISCEIBILITY OF LIQUID SYSTEMS- - - - - - - - - - - - - - - - - - - 5-1
VI. CALCULATIONS - 6-1

REFERENCES - 7-1

FIGURES
2-1. RELATIONSHIP BETWEEN ΔH_{V}^{298} and T_b- - - - - - - - - - - - - - 2-3
4-1. EFFECT OF THE SOLUBILITY PARAMETER ON OXYGEN SOLUBILITY
 USING EQUATION 14 or 15 ($V = 46 \text{ ml}$) - - - - - - - - - - - - - - 4-5
4-2. DEGREE OF CHANGE OF OXYGEN SOLUBILITY WITH MOLAR VOLUME
 (EQUATION 14 or 15, $V_2 = 46 \text{ ml}$) - - - - - - - - - - - - - - 4-5
4-3. RELATIONSHIP BETWEEN $\ln \Delta S_{V}^{298}$ AND \tilde{V}_2 FOR CYCLIC (O) AND
 OPEN CHAIN (□) FLUOROCHEMICALS- 4-6

TABLES
2-1 GROUP CONTRIBUTIONS TO THE ENERGY OF VAPORIZATION AND
 MOLAR VOLUME AT 25°C- 2-5
2-2 PRESSURE FOR SOME NONPOLAR LIQUIDS- - - - - - - - - - - - - - - - - - - 2-6
4-1 PARAMETERS FOR CALCULATION OF GAS SOLUBILITIES- - - - - - - - - - - - - 4-4
4-2 COMPARISON OF EXPERIMENTAL AND CALCULATED VALUES FOR GASES
 IN VARIOUS SOLVENTS - 4-5
5-1 CALCULATED OXYGEN SOLUBILITY IN FLUOROCHEMICALS - - - - - - - - - - - - 5-2
5-2 SAMPLE CALCULATIONS OF PHYSICAL PROPERTIES FROM CHEMICAL
 STRUCTURE - 5-3
SECTION I

INTRODUCTION

For more than 50 years, a number of physical chemists have studied the nature of the solubility of gases in liquids and the processes of vaporization (Reference 1). In the following sections it will be shown how the thermodynamic relationships governing these phenomena, in conjunction with a group additivity system, make it possible to estimate the vapor pressure and solubility of a range of gases in nonpolar liquids. This opens the way with a minimum of information to make preliminary designs of gas separation or purification stages for new or existing thermochemical cycles. In the design or selection of liquids as possible heat exchange fluids, the boiling point, vapor pressure and degree of miscibility with sulfuric acid or other reagents can be estimated. Therefore it is possible to ascertain with sufficient accuracy the potential of a design application with very little or no physical properties data.
SECTION II

ESTIMATION OF THE ENERGY OF VAPORIZATION AND MOLAR VOLUME
BY THE GROUP ADDITIVITY METHOD

A number of group additivity methods already exist in the literature which assume that molecular properties can be partitioned among the individual functional groups and structural components of a molecule. Thus, simply by summing the group parameters, it is possible to estimate molecular properties from chemical structure alone. An extensive group additivity system for estimating both the energy of vaporization \(\Delta E_v^{298} \) and molar volume \(V \) of organic liquids has been developed by Fedors (Reference 2). Based upon examination of a large amount of data on simple liquids, he assumed that:

\[
\Delta E_v = \sum \Delta e_i \tag{1}
\]

\[
V = \sum \Delta v_i \tag{2}
\]

where the \(\Delta e_i \) and \(\Delta v_i \) are the atomic or group contributions to the energy of vaporization and molar volume at 25°C. The deviations between the experimentally measured values and those estimated by this method for a number of liquids were found to be less than 10 percent. The group contributions given by Fedors, although extensive, include only the parameters CF\(_3\)– and -CF\(_2\)- for fluorochemicals.

Our search of the literature uncovered adequate \(\Delta H_v^{298} \) or vapor pressure/temperature data for only 19 perfluorochemicals, but extensive boiling point and density data were found. However, the following empirical relationship proposed by Hildebrand and Scott (Reference 3) relates the heat of vaporization of nonassociated liquids at 25°C to the boiling point \(T_b \) at one atmosphere:

\[
\Delta H_v^{298} = 0.020T_b^2 + 23.7 T_b - 2950 \tag{3}
\]
When Equation 3 was tested on the 19 perfluorochemicals for which ΔH_{v}^{298} was known, the calculated and experimental values were often in disagreement by several hundred calories. Subsequently, it became evident (Reference 4) that no fluorochemical data were included in calculating the constants in Equation 3. Using the data collected by us, the following relationship for perfluorochemicals ensues:

$$\Delta H_{v}^{298} = 0.0724 T_b^2 - 17.17 T_b + 5309$$

or in terms of the boiling point:

$$T_b^{oK} = \frac{-23.7 + [561.7 + 0.08(\Delta H_{v}^{298} + 2950)]^{\frac{1}{2}}}{0.04}$$

Equation 4 is based on least-squares computer curve fit for the 19 liquid perfluorochemicals whose ΔH_{v}^{298} and boiling point values were found in the literature or calculated from vapor pressure/temperature data. The perfluorinated compounds include eleven straight and branched alkanes, one dimethyl cyclobutane ring, one cyclopentane, two cyclohexanes, decalin, a methyl decalin and two tertiary amines. Figure 2-1 is a plot of Equations 3 and 4. As can be seen, perfluorochemicals have higher heats of vaporization than hydrocarbons of the same boiling point. This is especially true of those with boiling points below 300°K, after which perfluorochemicals parallel non-fluorinated liquids fairly closely.
With the assumption that Equation 4 is a good first approximation to estimating ΔH_v^{298} for perfluorochemicals, we calculated ΔH_v^{298} for a large number of such compounds from their literature boiling points. For example, by taking the boiling points for perfluorobutane and perfluoropentane, one can calculate their individual ΔH_v^{298} which can be used to calculate ΔE_v^{298} from:

$$\Delta E_v^{298} = \Delta H_v^{298} - RT$$ \[
\text{[6]}
\]

The difference between the two ΔE_v^{298} values is an estimate of the group contribution of a $\text{-CF}_2\text{-}$ to the energy of vaporization. By using the boiling points for straight chain fluorocarbons from C$_3$-C$_{13}$, 10 values for Δe_i of a $\text{-CF}_2\text{-}$ were calculated, which were then averaged. Also, from the density data the molar volumes were calculated from:
\[V = \frac{MW}{D} \]

\[MW = \text{molecular weight}; \ D = \text{density} \quad [7] \]

The \(\Delta v_1 \) for \(-\text{CF}_2-\) was calculated in a similar way. Table 2-1 contains a list of fluorochemical group additivity values calculated in this work, as well as some hydrocarbon values published by Fedors (Reference 2).

By summing the individual group parameters, obtained by inspection of the structural formula of a compound, the energy of vaporization and molar volume can be estimated before it is used in an actual experiment. Also, by calculating \(\Delta H_v^{298} \) from Equation 6 and using this value in Equation 5, a reasonable estimate of the boiling point may be made. Similarly, the density of the compound can be estimated from the molar volume by Equation 7.

The predicted and reported boiling points for a number of perfluorochemicals are presented in Table 2-2.
Table 2-1. Group Contributions to the Energy of Vaporization and Molar Volume at 25°C

<table>
<thead>
<tr>
<th>Group</th>
<th>Δe_{298} cal/mole</th>
<th>Δv_1 cm3/mole</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF$_3^-$</td>
<td>1933</td>
<td>54.8</td>
</tr>
<tr>
<td>-CF$_2^-$</td>
<td>783</td>
<td>23.1</td>
</tr>
<tr>
<td>-CFH-</td>
<td>422</td>
<td>18.6</td>
</tr>
<tr>
<td>-CF-</td>
<td>-396</td>
<td>-15.0</td>
</tr>
<tr>
<td>-C- (Perfluoro)</td>
<td>-1515</td>
<td>-38.3</td>
</tr>
<tr>
<td>-N- (Perfluoro 3° Amine)</td>
<td>-914</td>
<td>-16.3</td>
</tr>
<tr>
<td>-O- (Perfluoro Ether)</td>
<td>8</td>
<td>19.0</td>
</tr>
<tr>
<td>Ring: 5 atoms</td>
<td>2023</td>
<td>37.7</td>
</tr>
<tr>
<td>Ring: 6 atoms</td>
<td>2272</td>
<td>39.9</td>
</tr>
<tr>
<td>CH$_3^-$</td>
<td>1125</td>
<td>33.5</td>
</tr>
<tr>
<td>-CH$_2^-$</td>
<td>1180</td>
<td>16.1</td>
</tr>
<tr>
<td>-CH-</td>
<td>820</td>
<td>-1.0</td>
</tr>
<tr>
<td>-HC=</td>
<td>1030</td>
<td>13.5</td>
</tr>
<tr>
<td>-C-</td>
<td>350</td>
<td>-19.2</td>
</tr>
<tr>
<td>-O-</td>
<td>800</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Values below the dashed line calculated by Fedors (Reference 2).
Table 2-2. Calculated Boiling Point and Vapor Pressure for Some Nonpolar Liquids

<table>
<thead>
<tr>
<th>Compound</th>
<th>Calc'd. ΔH_v</th>
<th>Calc'd. B.P.°C 760 Torr</th>
<th>Lit. B.P.°C 760 Torr</th>
<th>Calc'd. V.P. mm/Hg 25°C</th>
<th>Lit. V.P. mm/Hg at T°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-C_6F_14</td>
<td>7,590</td>
<td>59</td>
<td>57</td>
<td>202</td>
<td>220/25</td>
</tr>
<tr>
<td>F</td>
<td>10,608</td>
<td>141</td>
<td>142</td>
<td>11.1</td>
<td>6.6/25</td>
</tr>
<tr>
<td>CF_3CHF[OCF_2CF(CF_3)]_3F</td>
<td>11,110</td>
<td>152</td>
<td>152</td>
<td>7.4</td>
<td>10.4/37.5</td>
</tr>
<tr>
<td>CF_3CHF[OCF_2CF(CF_3)]_5F</td>
<td>15,766</td>
<td>244</td>
<td>224</td>
<td>0.4</td>
<td>0.4/37.5</td>
</tr>
<tr>
<td>(CF_3CF_2CF_2CF_2)_3N</td>
<td>12,524</td>
<td>183</td>
<td>174</td>
<td>2.6</td>
<td>2.5/37.5</td>
</tr>
<tr>
<td>n-C_9H_20</td>
<td>11,051</td>
<td>160</td>
<td>148.8</td>
<td>3.0</td>
<td>4.3/25</td>
</tr>
<tr>
<td>n-C_8H_18</td>
<td>9,860</td>
<td>130</td>
<td>123.0</td>
<td>14.0</td>
<td>7.7/25</td>
</tr>
<tr>
<td>CH_2CH_2CH_2CH_2</td>
<td>12,097</td>
<td>185</td>
<td>181.4</td>
<td>1.4</td>
<td>1.1/25</td>
</tr>
<tr>
<td>Br</td>
<td>10,839</td>
<td>154</td>
<td>152.3</td>
<td>3.5</td>
<td>4.2/25</td>
</tr>
</tbody>
</table>

*1. From Values in Table 2-1 or Reference 7
*2. Equation 3a, in terms of the boiling point is

\[T_B^{°K} = \frac{-23.7 + [561.7 + 0.08(\Delta H_v + 2950)]^{\frac{1}{2}}}{0.04} \]

*3. From Equation 9
*4. References 7 and 8
SECTION III

ESTIMATION OF VAPOR PRESSURE

In the preliminary design phase of a thermochemical cycle it is important to have data on the vapor pressure characteristics of the materials involved in the cycle. The liquids can be used for gas treatment and/or as heat exchange fluids.

From Hildebrand's general rule, Equation 6, that compounds have equal entropies of vaporization at equal molar volumes of their vapor, (Reference 5), the entropy of vaporization for nonpolar liquids can be predicted from a relationship developed by K. Sato (Reference 6).

\[\Delta S_v = \frac{\Delta H}{T} = \alpha R \left(\frac{P}{T} \right)^{\beta-1} \]

[8]

In terms of the vapor pressure (P in torr), Equation 8 becomes:

\[P = T \left(\frac{\Delta H}{\alpha R T} \right)^{\frac{1}{\beta-1}} \]

[9]

where \(T \) is the temperature in °K at which the vapor pressure is desired and \(R \) is the gas constant in cal mole\(^{-1}\) °K\(^{-1}\). Thus, Equation 9 provides a useful way of estimating the vapor pressure of a nonpolar liquid from its heat of vaporization when the constants \(\alpha \) and \(\beta \) are known. Sato originally calculated \(\alpha \) and \(\beta \) from vapor pressure/temperature data for 10 nonpolar liquids containing hydrogen.

New values of \(\alpha \) and \(\beta \) for perfluorochemicals have been calculated by the same procedure in this work. By plotting \(\Delta P/\Delta T \) vs. \(P/T \) from vapor pressure/temperature data, a family of overlapping curves was generated. The deviations of the vapor from ideality were corrected by fitting the data for each substance to an equation of the form:

\[\frac{dP}{dT} = \alpha \left(\frac{P}{T} \right)^{\beta} \]

[10]

and then taking the average of the \(\alpha \) and \(\beta \) values. Using these new constants, the vapor pressures of perfluorochemicals calculated from Equation
9 matches their literature vapor pressures much more closely than when Sato's original \(\alpha \) and \(\beta \) values were used. Sato's constants and our values for perfluorochemicals are:

- Nonpolar liquids: \(\alpha = 11.8822 \), \(\beta = 0.8810 \)
- Perfluorochemicals: \(\alpha = 12.2497 \), \(\beta = 0.8846 \)

Thus, by estimating \(\Delta E_v^{298} \) of a hydrocarbon or a perfluorohydrocarbon from the group additivity values given in Table 2-1, calculating its \(\Delta H_v^{298} \) with Equation 6 and using Equation 9 with the \(\alpha \) and \(\beta \) constants for hydrocarbons or perfluorohydrocarbon, the vapor pressure of the compound can be estimated before it is used in a cycle. Alternatively, if the boiling point of the compound is known, its \(\Delta H_v^{298} \) can be estimated from Equation 4 and its vapor pressure predicted from Equation 9. Table 2-2 contains vapor pressure of some hydrocarbons and perfluorohydrocarbons calculated from Equation 9, and corresponding experimentally measured values. It is believed that the accuracy of the vapor pressure predicted by this method is sufficiently reliable to make decisions on the utility of new hydrocarbon or perfluorohydrocarbons as material components of a thermochemical cycle, or other chemicals in energy systems.
ESTIMATION OF GAS SOLUBILITIES IN NONPOLAR LIQUIDS

In selecting gas-carrying materials involved in thermochemical cycles it is desirable to have a method of making estimations of the solubility of gases in candidate liquids.

It is possible, using regular solution theory as developed by Hildebrand and others, to make useful predictions of the solubility of a number of gases in a wide range of solvents.

There are two equations based on regular solution theory that are frequently used to calculate gas solubilities (Reference 11). The first is:

\[
-\log x_2 = -\log x_2^i + \frac{0.4343 \bar{V}_2(\delta_1 - \delta_2)^2}{RT}
\]

where the subscript 1 refers to the solvent and 2 refers to the solute. R is the gas constant (cal mole\(^{-1}\) °K\(^{-1}\)), \(T(°K)\) is the temperature at which the gas solubility is to be estimated, \(\bar{V}_2\) is the partial molar volume of the gas in the solvent, \(\delta\) is the solubility parameter defined as:

\[
\delta = \left(\frac{\Delta H_v - RT}{V}\right)^{1/2} = \left(\frac{\Delta F_v}{V}\right)^{1/2}
\]

and \(x_2^i\) is the "ideal" gas solubility calculated from:

\[
\log x_2^i = \frac{\Delta H_v}{4.574} \left(\frac{1}{T} - \frac{1}{T_b}\right)
\]

where \(\Delta H_v\) is the heat of vaporization of the gas at the boiling point, \(T_b\), and \(T\) is the temperature at which the gas solubility is to be determined. Equation 11 gives the best results when gas and solvent molecules are similar in size. For solutions where the molecules differ greatly in size, a correction of the Flory-Huggins type based upon the ratio of molar volumes is introduced which alters Equations 11 to 14 or 15 (Reference 10).
In terms of natural logs, Equation 14 is:

\[
\ln x_2 = \ln x_2^i - \frac{\bar{V}_2 (\delta_1 - \delta_2)^2}{RT} - \ln \left[\frac{\bar{V}_2}{V_1} + \left(1 - \frac{\bar{V}_2}{V_1} \right) \right] \tag{15}
\]

The application of Equations 14 and 15 has been described by Gjaldbaek and the author in a number of publications (References 11 and 12). The pertinent constants for Equation 15 to calculate the gas solubilities in hydrocarbons and perfluorohydrocarbon are given in Table 4-1. Experimental and calculated values using Equations 14 and 15 are shown in Table 4-2, for gases in various solvents.

Figures 4-1 and 4-2 show the effects that the molar volume and solubility parameters have on oxygen (or generally for any other gas). It can be seen that a low molar volume of the liquid phase and matching of the solubility parameters of gas and liquid phase, give the maximum gas in the liquid phase. In practical systems, liquids of low molar volume have high vapor pressure which could be a problem in some process designs.

For more refined calculations on a given gas, the change in the partial molar volume (\bar{V}_2) of the gases dissolved in different liquids needs to be taken into account. The procedure for oxygen can be used as a model. The value of $\bar{V}_2 = 46$ ml/mole for oxygen is the measured value obtained by Horiuti (Reference 12) in benzene and is the value normally used. However, Horiuti's measurements of the partial molar volume of oxygen in other solvents have shown that this quantity depends on the solvent and varies from 56 ml/mole in diethyl ether to 31 ml/mole in water, while in pure liquid oxygen at the boiling point it is 28 ml/mole.

When \bar{V}_2 was changed so that values of oxygen solubility calculated from Equation 15 agree for 24 liquid fluorocarbons reported by Clark (Reference 8), it was found that \bar{V}_2 varies over the range of 30-50 ml/mole. It can be seen from Figure 4-3 that a reasonable correlation exists between calculated values of \bar{V}_2 for these compounds and logarithms of their en-
<table>
<thead>
<tr>
<th>Gas</th>
<th>(\log X^i_2) (298.16 K°) (Ideal Solubility (X^i_2))</th>
<th>(\tilde{V}_2) (ml/mole)</th>
<th>(\text{Cal}^{1/2} \text{cm}^{-3/2} \text{Solubility Parameter})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H}_2)</td>
<td>-3.25964*</td>
<td>37</td>
<td>5.10</td>
</tr>
<tr>
<td>(\text{N}_2)</td>
<td>-2.79588</td>
<td>53</td>
<td>5.20</td>
</tr>
<tr>
<td>(\text{O}_2)</td>
<td>-2.75355</td>
<td>46</td>
<td>5.70</td>
</tr>
<tr>
<td>(\text{CO})</td>
<td>-2.80967</td>
<td>52</td>
<td>5.80</td>
</tr>
<tr>
<td>(\text{CO}_2)</td>
<td>-1.4209</td>
<td>105</td>
<td>3.31</td>
</tr>
<tr>
<td>(\text{CH}_4)</td>
<td>-2.40012</td>
<td>52</td>
<td>6.20</td>
</tr>
<tr>
<td>(\text{CH}_3\text{CH}_3)</td>
<td>-1.48545</td>
<td>66</td>
<td>6.60</td>
</tr>
<tr>
<td>(\text{CH}_3\text{CH}_2\text{CH}_3)</td>
<td>-0.92082</td>
<td>89</td>
<td>6.65</td>
</tr>
</tbody>
</table>

*The \(\Delta H_v \) of \(\text{H}_2 \) is 216 cal/mole at the boiling point which, from observed data is low, therefore a value of 326.6 cal/mole was used in Equation 13.
Table 4-2. Comparison of Experimental and Calculated Values for Gases in Various Solvents

The solubilities are in cc of gas per 100 cc of liquid at 25°C.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n-C<sub>7</sub>F<sub>16</sub></td>
<td>227</td>
<td>5.85</td>
<td>59.2</td>
<td>42.0</td>
<td>15.2</td>
<td>15.0</td>
<td>41.9</td>
<td>33.6</td>
<td>41.9</td>
<td>33.2</td>
</tr>
<tr>
<td>n-C<sub>6</sub>H<sub>14</sub></td>
<td>132</td>
<td>7.3</td>
<td>36.1</td>
<td>40.0</td>
<td>12.2</td>
<td>12.9</td>
<td>26.2</td>
<td>27.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>O</td>
<td>105</td>
<td>7.4</td>
<td>46.5</td>
<td>42.6</td>
<td>14.7</td>
<td>13.5</td>
<td>39.6</td>
<td>35.0</td>
<td>29.3</td>
<td>29.3</td>
</tr>
<tr>
<td>n-C<sub>7</sub>H<sub>16</sub></td>
<td>147</td>
<td>8.1</td>
<td>32.5</td>
<td>30.1</td>
<td>11.0</td>
<td>9.6</td>
<td>23.9</td>
<td>28.9</td>
<td>22.5</td>
<td>18.4</td>
</tr>
<tr>
<td>Cyclo-C<sub>6</sub>H<sub>12</sub></td>
<td>109</td>
<td>8.2</td>
<td>27.6</td>
<td>32.3</td>
<td>8.5</td>
<td>10.1</td>
<td>17.0</td>
<td>19.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCl<sub>4</sub></td>
<td>97.1</td>
<td>8.6</td>
<td>30.3</td>
<td>28.8</td>
<td>8.2</td>
<td>9.0</td>
<td>21.9</td>
<td>22.9</td>
<td>16.3</td>
<td>16.7</td>
</tr>
<tr>
<td>C<sub>6</sub>H<sub>6</sub></td>
<td>89.3</td>
<td>9.15</td>
<td>22.3</td>
<td>22.8</td>
<td>7.2</td>
<td>7.1</td>
<td>18.5</td>
<td>17.9</td>
<td>12.2</td>
<td>12.2</td>
</tr>
<tr>
<td>(CH<sub>3</sub>)<sub>2</sub>C=O</td>
<td>74.0</td>
<td>9.3</td>
<td>28.1</td>
<td>23.4</td>
<td>10.0</td>
<td>7.2</td>
<td>25.7</td>
<td>18.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C<sub>6</sub>H<sub>5</sub>Cl</td>
<td>102</td>
<td>9.5</td>
<td>20.9</td>
<td>17.6</td>
<td>7.6</td>
<td>5.6</td>
<td>15.1</td>
<td>13.4</td>
<td>10.5</td>
<td>8.8</td>
</tr>
<tr>
<td>CS<sub>2</sub></td>
<td>60.6</td>
<td>10.0</td>
<td>17.6</td>
<td>17.5</td>
<td>6.5</td>
<td>5.4</td>
<td>14.7</td>
<td>13.4</td>
<td>9.0</td>
<td>8.3</td>
</tr>
<tr>
<td>1,4-dioxane</td>
<td>86.1</td>
<td>10.0</td>
<td>15.3</td>
<td>14.0</td>
<td>5.5</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 4-1. Effect of the Solubility Parameter on Oxygen Solubility Using Equation 14 or 15 (V = 46 ml)

Figure 4-2. Degree of Change of Oxygen Solubility with Molar Volume (Equation 14 or 15, V₂ = 46 ml)
tropies of vaporization at 25°C, if the cyclic structures are treated separately. The equations of the least squares fit for the data and their correlation coefficients are:

Open chain compounds:

\[\bar{V}_2 = -19.85 + 15.90 \ln \Delta S^v_{298} \]

\[r^2 = 0.8999 \]

[16]

Figure 4-3. Relationship Between \(\ln \Delta S^v_{298} \) and \(\bar{V}_2 \) for Cyclic (o) and Open Chain (□) Fluorochemicals
Cyclic Compounds:

\[V_2 = -100.15 + 39.90 \ln S_{298} \]

\[r^2 = 0.8910 \quad [17] \]

By using Equation 16 or 17 in conjunction with Equation 15, it is possible to predict the oxygen solubility of 22 compounds to ±4 ml and 14 of these to within ±2 ml of their experimentally determined values. Since Equations 16 and 17 are empirical and we have not measured the partial molar volume of oxygen in these solvents, no physical interpretation of this relationship is attempted. Some compounds with their calculated oxygen solubility and corresponding experimentally measured values are presented in Table 5-1.

Therefore, to estimate the solubility of oxygen in a fluorochemical from its structure alone, \(\Delta S_{298} \) and \(V \) are estimated from Table 2-1. \(\delta_1 \) is calculated from Equation 12, \(\Delta H_{298} \) is calculated from Equation 6, and \(\Delta S_{298} \) (= \(\Delta H_{298}/T \)) is then determined. From \(\Delta S_{298} \) and either Equation 16 or 17, \(\bar{V}_2 \) is estimated. Then, using the estimated \(\delta_1 \), \(\bar{V}_2 \), \(V_1 \) and the constants \(x_2^i \) and \(\delta_2 \) in Equation 15, the mole fraction of oxygen, \(x_2 \), is obtained. This can be converted to cm³ of O₂/100 ml of liquid at 25°C by:

\[
\text{cm}^3 \text{O}_2/100 \text{ ml of liquid} = \frac{100 \cdot x_2 \cdot 24465}{V_1} \quad [18]
\]

Table 4-2 presents a sample calculation of all the physical properties discussed in this paper for a perfluoromethyldecalin.
In general, solubility, or miscibility of two liquids, is to be expected if there is a decrease in the free energy of mixing viz.,

$$\Delta F_{\text{mix}} = \Delta H_{\text{mix}} - T\Delta S_{\text{mix}}$$ \[19\]

Inasmuch as the entropy of mixing ΔS_{mix} is always positive (i.e., $-T\Delta S_{\text{mix}} < 0$), the enthalpy of mixing ΔH_{mix} will virtually determine solubility. The latter term for nonpolar substances is positive and its magnitude is proportional to the difference of the respective solubility parameters δ (i.e., square root of the cohesive energy density):

$$\Delta H_{\text{mix}} \sim (\delta_1 - \delta_2)^2$$ \[20\]

Thus, the closer the solubility parameter values, the smaller the ΔH_{mix} will be and, consequently, the greater the decrease in ΔF_{mix}.

For the condition of liquid immiscibility the following approximation is obtained:

$$\Delta H_{\text{mix}} \sim V (\delta_1 - \delta_2)^2 > 2RT$$ \[21\]

If an approximation is made for V, when $V_1 \neq V_2$, as the arithmetic mean of V_1 and V_2 is used, then the expression becomes:

$$\frac{(V_1 + V_2)}{2} (\delta_1 - \delta_2)^2 > 2RT$$ \[22\]

These equations or approximations are to be regarded as a first order estimation or guide in the selection of possible heat exchange fluid systems.
Table 5-1. Calculated Oxygen Solubility in Fluorochemicals

<table>
<thead>
<tr>
<th>Compound</th>
<th>b.p. °C</th>
<th>2D₂,25</th>
<th>3ΔHᵥ₂⁹⁸</th>
<th>4ᵥ</th>
<th>5₆</th>
<th>6ΔSᵥ₂⁹⁸</th>
<th>7₋₂calc.</th>
<th>8₋₂solub.</th>
<th>calc/lit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF₃CHF[O(CF₂)₆(CF₃)]₂F</td>
<td>104.4</td>
<td>1.656</td>
<td>9147</td>
<td>272.9</td>
<td>5.60</td>
<td>30.68</td>
<td>34.59</td>
<td>52.4/55.7</td>
<td></td>
</tr>
<tr>
<td>CF₃(CF₂)₂Br</td>
<td>140.5</td>
<td>1.890</td>
<td>10,595</td>
<td>264.0</td>
<td>6.16</td>
<td>35.54</td>
<td>36.92</td>
<td>49.1/52.7</td>
<td></td>
</tr>
<tr>
<td>(CF₃)₂CF(CF₂)₄Cl</td>
<td>108</td>
<td>1.77</td>
<td>9,283</td>
<td>228.2</td>
<td>6.17</td>
<td>31.14</td>
<td>35.82</td>
<td>52.7/52.7</td>
<td></td>
</tr>
<tr>
<td>(CF₃)₂CF(CF₂)₅CF₃</td>
<td>121</td>
<td>1.721</td>
<td>9,789</td>
<td>292.9</td>
<td>5.60</td>
<td>32.83</td>
<td>35.66</td>
<td>50.6/52.5</td>
<td></td>
</tr>
<tr>
<td>(CF₃)₂CF(CF₂)₆Cl</td>
<td>102</td>
<td>1.783</td>
<td>9,057</td>
<td>233.3</td>
<td>6.02</td>
<td>30.38</td>
<td>36.06</td>
<td>51.3/52.2</td>
<td></td>
</tr>
<tr>
<td>(CF₃)₂CF(CF₂)₇Br</td>
<td>120</td>
<td>1.977</td>
<td>9,749</td>
<td>227.1</td>
<td>6.35</td>
<td>32.70</td>
<td>35.60</td>
<td>51.1/51.4</td>
<td></td>
</tr>
<tr>
<td>CF₃CHF[O(CF₂)₇CF(CF₃)]₃F</td>
<td>152</td>
<td>1.738</td>
<td>11,096</td>
<td>355.6</td>
<td>5.43</td>
<td>37.22</td>
<td>37.66</td>
<td>47.0/47.3</td>
<td></td>
</tr>
<tr>
<td>(CF₃)₂CF(CF₂)₈Cl</td>
<td>151</td>
<td>1.63</td>
<td>11,051</td>
<td>275.4</td>
<td>6.16</td>
<td>37.07</td>
<td>37.59</td>
<td>48.0/45.6</td>
<td></td>
</tr>
<tr>
<td>[(CF₃)₂CF(CF₂)₉⁻]₂F</td>
<td>199</td>
<td>1.820</td>
<td>13,342</td>
<td>423.1</td>
<td>5.49</td>
<td>44.75</td>
<td>40.59</td>
<td>43.2/41.8</td>
<td></td>
</tr>
<tr>
<td>F F</td>
<td>160</td>
<td>1.972</td>
<td>11,455</td>
<td>259.6</td>
<td>6.47</td>
<td>38.42</td>
<td>45.43</td>
<td>39.9/38.4</td>
<td></td>
</tr>
<tr>
<td>CF₃CHF[O(CF₂)₉CF(CF₃)]₉F</td>
<td>399</td>
<td>1.848</td>
<td>26,477</td>
<td>873.4</td>
<td>5.44</td>
<td>88.80</td>
<td>51.48</td>
<td>32.9/33.3</td>
<td></td>
</tr>
</tbody>
</table>

1,2: Literature values from (Reference 8).
5: From ΔHᵥ₂⁹⁸ and Equation 12.
6: From ΔHᵥ₂⁹⁸
7: From ΔSᵥ₂⁹⁸ and Equation 16 or 17.
8: From Equations 15 and 18.
Table 5-2. Sample Calculations of Physical Properties from Chemical Structure

<table>
<thead>
<tr>
<th>From Table 2-1.</th>
<th>ΔE_v^{298} cal/mole</th>
<th>V^{298} cm3/mole</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 x CF$_2$</td>
<td>5481</td>
<td>161.7</td>
</tr>
<tr>
<td>5 x CF</td>
<td>-1188</td>
<td>-45.0</td>
</tr>
<tr>
<td>1 x CF$_3$</td>
<td>1933</td>
<td>54.8</td>
</tr>
<tr>
<td>2 x 6 atom ring</td>
<td>4544</td>
<td>79.8</td>
</tr>
</tbody>
</table>

\[\Sigma = 10,770 \quad \Sigma = 251.3 \]

1. $\Delta E_v^{298} = 10,770$ cal/mole
2. $V_1^{298} = 251.3$ cm3/mole (molar volume)
3. $\delta_1 = 6.55$ from Equation 12 (solubility parameter)
4. $\Delta H_v^{298} = \Delta E_v^{298} + RT = 10,770 + 592 = 11,362$ cal/mole (heat of vaporization)
5. $T_{b}^{\circ K} = 431 \ or \ 158^{\circ C}$ from Equation 5 (Boiling point at 760 torr)
6. $D_{25}^4 = 2.04$ from Equation 7 (density)
7. VP torr = 6.1 from Equation 9 using perfluorochemical α, β values (vapor pressure)
8. $\Delta S_v^{298} = \frac{\Delta H_v^{298}}{298.15} = 38.11$ cal/mole-$^{\circ K}$ (entropy)
9. $\bar{V}_2 = 45.11$ cm3/mole from Equation 17
10. Mole fraction of dissolved O$_2$ @ 25$^{\circ}$C: $X_2 = 4.111 \times 10^{-3}$ from Equation 15, cm3O$_2$/100 cm3 of liquid = 40.0 from Equation 18
SECTION VI.

CALCULATIONS

By use of a small programmable hand calculator it is possible to screen new schemes of gas separation for candidate thermochemical cycles.

Copies of the programs written for the Hewlett-Packard HP67 or HP97 are available by request from the author for the calculations done in this paper.
SECTION VII

REFERENCES

4. Private Communication from R. L. Scott, UCLA to D. D. Lawson, JPL.