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ABSTRACT

`

	

	 A group additivity method has been generated which makes it possible

to estimate, from the structural formulas alone, the energy of vaporization

` and the molar volume at 25°C of many nonpolar organic liquids. From these

two parameters and appropriate thermodynamic relations it is then possible

to predict the vapor pressure of the liquid phase, and the solubility of

various gases in nonpolar organic liquids. It is also possible to use the

data to evaluate organic and some inorganic liquids for use in gas separ-

ation stages or liquids as heat exchange fluids in prospective thermo-

chemical cycles for hydrogen production.
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SECTION I

INTRODUCTION

For more than 50 years, a number of physical chemists have studied the

nature of the solubility of gases in liquids and the processes of vapori-

zation (Reference 1). In the following sectijns it will be shown how the

thermodynamic relationships governing these phenomena, in conjunction with

a group additivity system, make it possible to estimate the vapor pressure

and solubility of a range of gases in nonpolar liquids. This opens the way

with a minimum of information to make preliminary designs of gas separation

or purification stages for new or existing thermochemical cycles. In the

design or selection of liquids as possible heat exchange fluids, the boil-

ing point, vapor pressure and degree of miscibility with sulfuric acid or

other reagents can be estimated. Therefore it is possible to ascertain

with sufficient accuracy the potential of a design application with very

little or no physical properties data.
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SECTION II

ESTIMATION OF THE ENERGY OF VAPORIZATION AND MOLAR VOLUME

BY THE GROUP ADDITIVITY METHOD

A number of group additivity methods already exist in the literature

which assume that molecular properties can be partitioned among the individ-

ual functional groups and structural components of a molecule. Thus,

simply by summing the group parameters, it is possible to estimate mole-

cular properties from chemical structure alone. An extensive group additiv-

ity system for estimating both the energy of vaporization (AE 
v298) 

and

molar volume (V) of organic liquids has been developed by Fedors (Reference

2). Based upon examination of a large amount of data on simple liquids, he

assumed that:

DEv = IAP i	[I]
i

V = SAv i	[2]
i

where the Ae i and the Ov i are the atomic or group callLributions to the

energy of vaporization and molar volume at 25°C. The deviations between

the experimentally measured values and those estimated by this method for a

number of liquids were found to be less than 10 percent. The group contribu-

tions given by Fedors, although extensive, include only the parameters CF 3

-and -CF 
2- 

for fluorochemicals.

Our search of the literature uncovered adequate AHv298 or vapor pres-

sure/temperature data for only 19 perfluorochemicals, but extensive boiling

point and density data were found. However, the following empirical relation-

ship proposed by Hildebrand and Scott (Reference 3) relates the heat of
0

vaporization of nonassociated liquids at 25 0C to the boiling point (TbK) at

one atmosphere:

AHv
298 _ 0.020Tb 2 + 23.7 T  - 2950	 [3]

2-1
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When Equation 3 was tested on the 19 perfluorochemicals for which AHv298

was known, the calculated and experimental values were often in disagree-

meet by several hundred calories. Subsequently, it became evident (Refer- 	 f

ence 4) that no fluorochemical data were included in calculating the con-

stants in Equation 3. Using the data collected by us, the following rela-

tionship for perfluorochemicals ensues:

AHv298 = 0.0724 T b 2 - 17.17 T  + 5309 	 [4]

or in terms of the boiling point:

17.17 + [294.9-0.2896 (5309-AH 298)]
TbOK -
	 0.1448	

v	
[5]

Equation 4 is based on least-squares computer curve fit for the 19

liquid perfluorochemicals whose 
AHv298 

and boiling point values were found

in the literature or calculated from vapor pressure/ temperature data. The

perfluorinated compounds include eleven straight and branched alkanes, one

dimethyl cyclobutane ring, one cyclopentane, two cyclohexanes, decalin, a

methyl decalin and two tertiary amines. Figur-- 2-1 is a plot of Equations

3 and 4. As can be seen, perfluorochemicals have higher heats of vapori-

zation than hydrocarbons of the same boiling point. This is especially

true of those with boiling points below 300°K, after which perfluorochemi-

cals parallel non-fluorinated liquids fairly closely.

-23.7 + 1561.7 + 0.08(AH + 2950)]
Tbog-	

0.04v
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Figurz 2-1. Relationship Between AHv
298 

and T 

With the assumption that Equation 4 is a good first approximation to

estimating 
AHv298 

for perfluorochemicals, we calculated AHv298 for a large

number of such compounds from their literature boiling points. For ex-

ample, by taking the boiling points for perfluorobutane and perfluoro-

pentane, one can calculate their individual AHv
298 

which can be used to

calculate AE 
298 

from:
v

AE
v 
298 _ AH 

v 
298 _ RT	 [6)

The difference between the two 
AEv298 

values is an estimate of the

group contribution of a -CF 
2- 

to the energy of vaporization. By using the

boiling points for straight chain fluorocarbons from C 3-C 13 , 10 values for

Ae i of a -CF2- were calculated, which were then averaged. Also, from the

density data the molar volumes were calculated from:

i
r

F

i

.y

T
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v=mr

MW = molecular weight; D = density
	

[7l

The Ov i for -CF 
2- 

was calculated in a similar way. Table 2-1 contains a

list of fluorochemical grove additivity values calculated in this work, as

well as some hydrocarbon values published by Fedors (Reference 2).

By summing the individual group parameters, obtained by inspection of

the structural formula of a compound, the energy of vaporization and molar

volume can be estimated before it is used in an actual experiment. Also,

by calculating AHv298 from Equation 6 and using this value in Equation 5, a

reasonable estimate of the boiling point may be made. Similarly, the

density of the compound can be estimated from the molar volume by Equation

7.

The predicted and reported boiling points for a number of perfluoro-

chemicals are presented in Table 2-2.
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Table-2-1. Group Contributions to the Energy of Vaporization

and Molar Volume at 25°C

Group	 Aei298 cal/mole	 Ali i cm3/mole

CF 
3 -

1933 54.8

-CF2- 783 23.1

-CFH- 422 18.6

-CF- -396 -15.0

-C- (Perfluoro) -1515 -38.3

-N- (Perfluoro 3 0 Amine)
i

-914 -16.3

i
-0- (Perfluoro Ether) 8 19.0

Ring:	 5 atoms 2023 37.7

Ring:	 6 atoms 2272 39.9

CH 
3
-1125	 33.5

-CH 2-	 1180	 16.1

-CH-	 820	 -1.(,
i

-HC=	 1030	 13.5
i

-C-	 350	 -19.2
i

-0-	 800	 3.8

Values below the dashed line calculated by Fedors (Refer-
ence 2).
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Table 2-2. Calculated Boiling Point and Vapor Pressure
for Some Nonpilar Liquids

	

Calc'd.	 Calc'd.	 Lit.	 Calc'd.	 Lit.

	

298	 B.P.°C	 B.P.°C	 V.P.	 V.P.
^v	 760 Torr 760 Torr mm/Hg 25°C mmn/Hg at T°C

Compound	 (1)*	 (2)*	 (4)*	 (3)*	 (4)*

n-C6F
14	7,590	 59	 57	 202	 220/25

F	 F	 10,608	 141	 142	 11.1	 6.6/25

r73CHF[OCF2CF(CF3 )1 3F	 11,110	 152	 152	 7.4	 10./37.5

CF3CHF[OCF2CF(CF3 )J 5F	 15,766	 244	 224	 0.4	 0.4/37.5

(CF 3CF2CF2CF2 ) 3N	 12,524	 183	 174	 2.6	 2.5/37.5

6	 11,87C	 179	 155.8	 1.6	 2.7/25

n-C9H
20
	11,051	 160	 148.8	 3.0	 4.3/25

n-C8H18	9,860	 130	 123.0	 14.0	 7.7/25

0
L I CH2CH2CH2CH2	12,097	 185	 181.4	 1.4	 1.1/25

0111 Br	 10,839	 154	 152.3	 3.5	 4.2/25

*1. From Values in Table 2-1 or Reference 7
*2. Equation 3a, in terms of the boiling point is

-23.7 + [561.7 + 0.08(AHv + 2950)]x`

TB^K -	 0.04

*3. From Equation 9
*4. References 7 and 8

2-6
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SECTION III

ESTIMATION OF VAPOR PRESSURE

In the pr liminary design phase of a thermochemical cycle it is im-

portant to have data on the vapor pressure characteristics of the materials

involved in the cycle. The liquids can be used for gas treatment and/or as

heat exchange fluids.

From Hildebrand ' s general rule, Equation 6, that compounds have equal

entropies of vaporization at equal molar volumes of their vapor, (Reference

S), the entropy of vaporization for nonpolar liquids can be predicted from

a relationship developed by K. Sato (Reference 6).

AH	 R-^

AS = -f- 	 aR (TI	
[8]

In terms of the vapor pressure (P in torr), Equation 8 becomes:

1

^ R-1

P = T 
\aRT	

^9^

where T is the temperature in °K at which the vapor pressure is desired and

R is the gas constant in cal mole
-1
 °K-1 . Thus, Equation 9 provides a

useful way of estimating the vapor pressure of a nonpolar liquid from its

heat of vaporization when the constants a and 0 are known. Sato originally

calculated a and 0 from vapor pressure/ temperature data for 10 nonpolar
liquids containing hydrogen.

New values of a and 0 for perfluorochemicals have been calculated by
the same procedure in this work. By plotting dP/dT vs. P/T from vapor

pressure/ temperature data, a family of overlapping curves was generated.

The deviations of the vapor from ideality were corrected by fitting t;1e

data for each substance to an equation of the form:

dP -

dT a (P)

and then taking the average of the a and 0 values. Using these new con-
stants, the vapor pressures of perfluorochemicals calculated from Equation

(10]

i
i
f

l

i

1

t

f
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9 matches their literature vapor pressures much more closely than when

Sato's original a and P values were used. Sato's constants and our values

for perfluorochemicals are:

Nonpolar liquids:	 a = 11.8822	 = 0.8810
Perfluorochemicals:	 a = 12.2497	 = 0.8846

Thus, by estimating AE v298of a hydrocarbon or a perfluorohydrocarbon from

the group additivity values given in Table 2-1, calculating its AH v
298 

with

Equation 6 and using Equation 9 with the a and constants for hydrocarbons

or perfluorohydrocarbon, the vapor pressure of the compound can be esti-

mated before it is used in a cycle. Alternatively, if the boiling point of

the compound is known, its AHv
298 

can be estimated from Equation 4 and its

vapor pressure predicted from Equation 9. Table 2-2 contains vapor pres-

sure of some hydrocarbons and perfluorohydrocarbons calculated from Equa-

tion 9, and corresponding experimentally measured values. It is believed

that the accuracy of the vapor pressure predicted by this method is suf-

ficiently reliable to make decisions on the utility of new hydrocarbon or

perfluorohydrocarbons as material components of a thermochemical cycle, or

other chemicals in energy systems.

3-2
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SECTION IV

ESTIMATION OF GAS SOLUBILITIES IN NONPOLAR LIQUIDS

In selecting gas-carrying materials involved in thermochemical cycles

it is desirable to have a method of making estimations of the solubility of

gases in candidate liquids.

It is possible, using regular solution theory as developed by Hilde-

brand and others, to make useful predictions of the solubility of a number

of gases in a wide range of solvents.

There are two equations based on regular solution theory that are

frequently used to calculate gas solubilities (Reference 11). The first

is:

0.4343V (S -6„)2
-log x2 = -log x2 +
	 2RT1

where the subscript 1 refers to the solvent and 2 refers to the solute. R

is the gas constant (cal mole - ' °K-1 ), T( OK) is the temperature at which the

gas solubility is to be estimated, V2 is the partial molar volume of the

gas in the solvent, S is the solubility parameter defined as:

(AH -RT 112
	

AE 1/2
s =	 _ ^° 1121

and x? is the "ideal" gas solubility calculated from:

i	
AHv
	 1 _ 1

log x2
 = 4.574	 T	

T 
	

[13]

where AHv is the heat of vaporization of the gas at the boiling point, Tb,

and T is the temperature at which the gas solubility is to be determined.

Equation 11 gives the best results when gas and solvent molecules are

similar in size. For solutions where the molecules differ greatly in size,

a correction of the Flory-Huggins type based upon the ratio of molar vol-

umes is introduced which alters Equations 11 to 14 or 15 (Reference 10).

fill
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0.4343V (S -S 2	 V

-log x2 = -iog x2 +	 RT 1 2) + log V2
1

V

	

t 0.4343	 1 - V2
	 [14]

1

In terms of natural logs, Equation 14 is:

	

i	
V2 (5 1

-62 ) 2
	V2

In x2 = In x2 -
	 RT 	

In(V2

	

y- + 1 - ^	 [15]

	

1	 1

The application of Equations 14 and 15 has been described by Gjaldbaek and

tha author in a number of publications (References 11 and 12). The per-

tinent constants for Equation 15 to calculate the gas solubilities in

hydrocarbons and perfluorohydrocarbon are given in 'Fable 4-1. Experimental

and calculated values using Equations 14 and 15 are shown in Table 4-2, for

gases in various solvents.

Figures 4-1 and 4-2 show the effects that the molar volume and solu-

bility parameters have on oxygen (or generally for any other gas). It can

be seen that a low molar volume of the liquid phase and matching of the

solubility parameters of gas and liquid phase, give the maximum gas in the

liquid phase. In practical systems, liquids of low molar volume have high

vapor pressure which could be a problem in some process designs.

For more refined calculations on a given gas, the change in the par-

tial molar volume (V2 ) of the gases dissolved in different liquids needs to

be taken into account. The procedure for oxygen can be used as a model.

The value of V2 = 46 ml/mole for oxygen is the measured value obtained by

Horiuti (Reference 12) in benzene and is the value normally used. However,

Horiuti's measurements of the partial molar volume of oxygen in other

solvents have shown that this quantity depends on the solvent and varies

from 56 ml/mole in diethyl ether to 31 ml/mole in water, while in pure

liquid oxygen at the boiling point it is 28 ml/mole.

When V2 was changed so that values of oxygen solubility calculated

from Equation 15 agree for 24 liquid fluorocarbons reported by Clark

(Reference 8), it was found that V2 varies over the range of 30-50 ml/mole.

It can be seen from Figure 4-3 that a reasonable correlation exists between

calculated values of V2 for these compounds and logarithms of their en-

q

t1
i
e

's

y
a

i

)

s
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Table 4-1. Parameters for Calculation of Gas Solubilities

Gas

Log Xl

(298.162K°)
(Ideal

Solubility X2)

V

ml/ ole
(Partial

Molar Volume)

Call/2a m-3/2

Solubility

Parameter

H2 -3.25964^ 37 5.10

N2 -2.79588 53 5.20

02 -2.75355 46 5.70

CO -2.80967 52 5.80

CO2 -1.4209 105 3.31

CH4 -2.40012 52 6.20

CH3CH3 -1.48545 66 6.60

CH3CH2CH3 -0.92082 89 6.65

i
r

f

F

i

.rte

i

i.

4

*The A11V of H2 is 216 cal/mole at the boiling point which, from

observed data is low, therefore a value of 326.6 cal/mole was used
in Equation 13.
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tropies of vaporizaton at 25°C, if the cyclic structures are treated

separately. The equations of the least squares fit for the data and their

correlation coefficients are:

Open chain compounds:

V2 = -19.85 + 15.90 InASv
298
	r2 = 0.8999	 [16]

{
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M
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Figure 4-3. Relationship Between 1nAS v298 and V2

for Cyclic ( o ) and Open Chain ( o )

Fluorochemicals
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1

}	 Cyclic Compounds:

V2 = -100 . 15 + 39 . 90 lnOSv
298
	r2 = 0.8910	 [171

By using Equation 16 or 17 in conjunction with Equation 15, it is

possible to predict the oxygen solubility of 22 compounds to #4 ml and 14

of these to within ±2 ml of their experimentally determined values. Since

}	 Equations 16 and 17 are empirical and we have not measured the partial

4 molar volume of oxygen in these solvents, no physical interpretation of

this relationship is attempted. Some compounds with their calculated

oxygen solubility and corresponding experimentally measured values are

presented in Table 5-1.

Therefore, to estimate the solubility of oxygen in a fluorochemical

from its structure alone, AE 
298 

and V are estimated from Table 2-1. b

1 

is

calculated from Equation 12, AHv
298 

is calculated from Equatica 6, and

298 (_ DH 298	 298
ASv	v /T) is then de±^rmined. From AS 	 and either Equation 16

or 17, V2 is estimated. Then, using the estimated 6 1 , V2 , V1 and the

constants x 1
2 

62 in Equation 15, the mole fraction of oxygen, x 2 , is

obtained. This can be converted to cm3 of 02/100 ml of liquid at 25°C by:

100 . x2 . 24465

cm  02/100 ml of liquid = 	
V

1

Table 4-2 presents a sample calculation of all the physical properties

discussed in this paper for a perfluoromethyldecalin.

i

5

[181

k
i



M

k
0

SECTION V

MISCIBILITY OF LIQUID SYSTEMS

In general, solubility, or miscibility of two liquids, is to be ex-

pected if there is a decrease in the free energy of mixing Viz,

AF
mix - 

AH
mix - TAS mix[191

Inasmuch as the entropy of mixing AS is always positive (i.e.,

-TASmix 
< 0), the enthalpy of mixing 

AHmix 
will virtually determine solu-

bility. The latter term for nonpolar substances is positive and its mag-

nitude is proportional to the difference of the respective solubility

parameters d (i.e., square root of the cohesive energy density):

2

AHmix 
ti 

(61 - 62 )	 [ "201

Thus, the closer the solubility parameter values, the smaller the

AHmix will be and, consequently, the greater the decrease in AFmix.

For the condition of liquid immiscibility the following approximation

is obtained:

AH
mix ^' V (6

1 - 62 ) 2 > 2 RT	 [211

If an approximation is made for V, when V 1 # V2 , as the arithmetic

mean of V 1 and V2 is used, then the expression becomes:

(V + V )
1 
2 
2 (6 1 - 62 ) 2 > 2 RT	 [221

These equations or approximations are to be regarded as a first order
estimation or guide in the selection of possible heat exchange fluid systems.
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3 A 
298

v

8150

9147

10,595

9,283

9,789

9,057

9,749

11,096

11,051

13,342

11,455

26,477

2D225

1.788

1.656

1.890

1.77

1.721

1.783

1.977

1.738

1.33

1.820

1.97'2

1.848

Table 5-1. Calculated Oxygen Solubility in Fluorochemicals

i

E

r

t

Compound	 lb.p.°C

-- O -	 ---- 16.3 ..

CF3CHF[OCF2CF(CF'3 )1 2F	 104.4

CF3 (CF 2 ) 7 Br	 140.5

(CF 3 ) 2CF(CF2 ) 4C1	 108

(CF 3 ) 2CFO(CF2 ) 5 CF3	121

F 	 102

(CF 3 ) 2CF(CF2 ) 4Br	 120

CF3CHF[0CF2 CF(CF3 )1 3F	 152

(CF 3 ) 2CF(CF2 ) 6 C1	 151

[(CF3 ) 2CFO(CF2 ) 4 -1 2	199

F	 F	 160

CF3CHF[OCF2 CF(CF3 )1 9 F	 399

80 solub.
4
V
	56 

605v298 7
V2calc. caicd/lit.

	

195.7 6.21	 27.34	 31.85	 58.1/57.2

	

272.9 5.60	 30.68	 34.59	 52.4/55.7

	

264.0 6.16	 35.54	 36.92	 49.1/52.7

	

228.2 6.17	 31.14	 35.82	 52.7/52.7

	

292.9 5.60	 32.83	 35.66	 50.6/52.5

	

233.3 6.02	 30.38	 36.06	 51.3/52.2

	

227.1 6.35	 32.70	 35.60	 51.1/51.4

	

355.6 5.43	 37.22	 37.66	 47.0/47.3

	

275.4 6.16	 37.07	 37.59	 48.0/45.6

	

423.1 5.49	 44.75	 40.59	 43.2/41.8

	

259.6 6.47	 38.42	 45.43	 39.9/38.4

	

873.4 5.44	 88.80	 51.48	 32.9/33.3

1,2: Literature values from (Reference 8)

3: From lit. : , .p. and Equation 4.

4: From lit. D" and Equation 7.

5: From AHv
298 

and Equation 12.

6: From Wi 298
v

7: From 
ASv298 

and Equation 16 or 17.

8: From Equations 15 and 18.
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Table 5-2. Sample Calculations of Physical Properties
from Chemical Structure

From Table 2-1.

7xCF2=

00 3x CF1 x CF 

2x6atom
ring =

AEv298 cal/mole	 V298cm3/mole

5481 161.7

-1188 -45.0

1933 54.8

4544 79.8

I = 10,770 1 = 251.3

1. QEv298 = 10,770 gal/mole

2. V1298 = 251.3 cm3/mole (molar volume)

3. 61 = 6.55 from Equation 12 (solubility parameter.)

4. Aiv298 = AEv298 + RT = 10,770 + 592 = 11,362 cal./mole

(heat of vaporization)

5. Tb OK = 431 Gr 158 OC from Equation 5 (Boiling point at 760 torr)

6. D25 = 2.04 from Equation 7 (density)

7. VP torr = 6.1 from Equation 9 using perfluorochemical a, 0 values
(vapor pressure)

298
AH

8.
asv298	

248.15 = 38.11 cal/mole- OK (entropy)

9. V2 = 45.11 cm 3/mole from Equation 17

10. Mole fraction of dissolved 0 2 @ 25°C: X2 = 4.111 x 10 -3 from Equation

15, cm302/100 cm  of liquid = 40.0 from Equation 18
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SECTION VI.

CALCULATIONS

By use of a small programmable hand calculator it is possible to

screen new schemes of gas separation for candidate thermochemical cycles.

Copies of the programs written for the Hewlett-Packard HP67 or HP97

are available by request from the author for the calculations done in this

paper.
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