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CHAPTER I
INTRODUCTION

The heavy and diverse demands on aircraft for commercial, private,
and military applications have made the task of the aircraft industry
increasingly more complicated. Now millions of dollars must be in-
vested over many years as teams of engineers carefully integrate the
many systems involved in a wide-bodied jet or a fighter-bomber. Scale
models are built and tested, and plans revised again and again as
different possibilities are sorted through to find the few that are
feasible and ultimately the one which best meets the demands for ap-
plication and conditions for production.

One of the systems which the design engineers must integrate
into the total aircraft is the antenna system. A poorly functioning
antenna on an automobile might result is the minor inconvenience of
occasional Toss of an AM radio signal. However, a similar loss of
signal for an airplane performing an instrument Tanding could be fatal.
Thus the number, type, and locations of antenrias to be used is an
important question, often made extremely difficult by the complicated
nature of the solution of such electromagnetics problems.

At low frequencies where the overall dimensions of the aircraft
are on the order of several wavelengths or less, solutions to these
problems can be obtained via the method of moments. And for extremely
high frequencies, the classical methods of geometrical optics would
provide a reasonable approximation. Howeveg, for fzvery wide range
of frequencies, typically on the order of 107 to 10°= Hertz both of
these methods of solution break down. Moment method solutions become
impractical as the number of unknown currents becomes too targe to
handle even on a large digital computer, and geometrical optics be-
comes inaccurate as diffractions become significant. In the past
the only practical method of predicting the performance of aircraft
antennae in this frequency range was in the building of a scale model
in order to experimentally determine its radiation patterns, a costly
and time consuming process.

However, recent advances in electromagnetic theory have made
this task much simpler. Sommerfeld showed that the solution for a
plane wave incident on a perfectly conducting wedge can be expressed
as the sum of the geometrical optics wave (V*) and the diffracted
wave (V,)[1]. And it was Pauli who made possible the expression of
(V,) as an asymptotic series[2]. Further work by many researchers
su%h as Keller[37, and Hutchins and Kouyoumjian[4] Tlead to the Geo-
metrical Theory of Diffraction (GTD), an asymptotic approximation



to the exact solution for diffractions from certain canonical forms,
in the case where the dimensions of the scattering body are on the
order of a wavelength or greater.

Research in the GTD and its applications has been carried on
at the ETectroScience Laboratory for almost two decades, resulting
in increasingly more sophisticated solutions. Several years ago a
computer code was developed, basically for far-field radiation pat-
terns af antennae mounted on large commercial aircraft such as the
Boeing 737, and delivered to NASA (Langley, Virginia) under Grant
No. NGL 36-008-138. The aircraft design engineer was then provided
with a relatively fast and efficient method of testing the performance
of varijous antenna configurations. Since that time, improvements and
modifications have been made to that code such that it can include
greater application and increased efficiency. A major advancement
has come about in the development of a new near field pattern solution
for the Navy under Contract NO0019-77-C-0299.

The question to be dealt with here, dielectric slab scattering,
was cncountered when this near field code was applied to the study
of small private aircraft[5]. Although noteworthy achievements oc-
curred in the modeling of various aircraft appendages such as fuel
tanks and engines, this approach broke down in the modeling of a wind-
shield, i.e., the only available solutions were for metallic bodies.
For example, Figures 1 and 3 show two possible plate-cylinder models
that could be used to analyze the elevation plane pattern of a Cessna
402B. The first assumes a transparent windshield (i.e., reflection
coefficient of magnitude zero), and the second a totally reflective
windshield (i.e., reflection coefficient of magnitude one). Compari-
sons of the resulting computed patterns with experimental measure-
ments provided by Melvin Gilreath at NASA (Langley, Virginia) are
shown in Figures 2 and 4. Note that the experimental pattern haa
rather large oscillations in the region from the top backward 30
due to interactions between direct source fields and reflected fields
from the windshield, which are not accurately predicted by either of
the previous simulations. This results because the reflection coef-
ficient of the windshield is not simply of magnitude zero or unity.
In fact it is found to be generally a complex number dependent on
the dielectric constant, thickness, frequency, and angle of incidence.

The hypothesis presented here is that modifications may be made
to geometrical optics and the GTD to provide accurate solutions for
scattering from such dielectric layers. A derivation of the basic
theory for reflection, transmission, and diffraction is given along
with comparisons of predictions of this theory to known results and
a summary.
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Figure 1. Computer simulation model for Cessna 402B elevation pattern
with windshield assumed transparent and monopole antenna
mounted forward of the cockpit.

(a) top view. (b) side view.
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Figure 2. Pattern resulting from Cessna 402B model with transparent
windshield shown in Figure 1.
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Figure 3. Computer simulation model for Cessna 402B elevation pattern
with windshield assumed perfectly conducting and monopole
antenna mounted forward of the cockpit.

(a) top view. (b) side view.
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CHAPTER II
TWO-DIMENSIONAL DIELECTRIC STRIP SCATTERING

Consider the geometry illustrated in Figure 5§ with a line source
in the presence of a dielectric layer. The dielectric may he of any
uniform material and thickness subject to the following restrictions:
1) the diffractions may be assumed to emanate from a single point
(Q); ?) energy leaving (Q) tangential to the layer due to a surface
wave or transmission through the endface may be ignored; and 3) loss
within the Tayer may be ignored. In light of our goal, a simulation
model for an aircraft windshield, these restrictions are not overly
severe.

For a metallic half n»lare the total solution would be composed
of incident, reflected, nd diffracted fields; however, for the general
discussion transmission must also bhe included. Thus the total electric
field at an observation point (P) may be expressed as

ebot _ ety ey 4 bt 4 gl , (1)

where u1, ur, and ut are unit step functions shown here explicitly
to emphasize the discontinuities in the geometrical optics (G.0.)
solution.

The individual terms of Equation (1) may be expressed, assuming
a unit magnitude source, as

-jks.
e | .
(—~——~——- Regions I and II
AURR] (2)
0 Region III
' -Jjks
r
(& ej— Region I
s
E'(P) =1 " (3)
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EX(P) =& -Jks, (4)
TS Regions III
~ Jsi




NN REGION ,
N\ 'e I 7
REGION N Q& 7

Q7
I \” O
X% XV
OBSERVATION " | S
P
POINT P O \Y%, QS§><§SD
REGION
s
SOURCE
\ IMAGE

Figure 5. Geometry for half plane scattering discussion.



P) = £1(Q)D e Regions 1, 1I, and III
Js, (5)

(Here and throughout an eJmt time dependence is assumed and supressed.)
The "R", "T*, and "D" are as yet undetermined coefficients of reflection,
transmission, and diffraction, respectively. The task now is to de-
termine expressions for these coefficients which when used in Equations
(1) through (5) will yield the correct total field for scattering

from a dielectric layer. In each case, the results will be stated

for a perfectly conducting structure, then extended to include an
arbitrary thin dielectric layer.

A. Reflection

If the half plane of Figure 5 is a perfectly conducting structure,
the reflection coefficient will be of magnitude one with the sign
depending on the polarization of the incident field. Thus,

+1 magnetic line source
R = {6)
-1 electric 1line source

for the case of perfect conductivity.

For the more general case, consider a wave propagating in free
space incident on a dielectric layer of thickness d and with a die-
lectric constant €4 38 illustrated in Figure 6. At the front face
the wave splits, a portion of its energy being reflected and the rest
being transmitted into the layer. At the opposite face the transmitted
wave again splits, some energy being transmitted out of the dielectric
and the rest reflecting back toward the front face. This process
continues until all the original energy has left the dielectric, either
as part of the total reflection or part of the total transmission.

Thus the total reflection is an infinite sum of waves each of
which can be related back to the incident wave provided that a plane
wave propagation approximation may be made. Letting R, represent
the reflection coefficient for the initial external re%]ection, R
represent subsequent internal reflection coefficients, T, and T %epre-
sent transsission coefficients into and out of the layer, respegtive1y,
P, represent the phase delay associated with the field in a single
crossing of the slab, and P_ be a term to account for the difference
in path length to the obserfer for different rays leaving the layer
in the case of oblique incidence as illustrated in Figure 7, the total
reflected field may be expressed as



Figure 6. Reflection and transmission for a wave incident on a
dielectric slab in free space. Slab assumed of finite
thickness but infinite in the other two dimensions.
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Use of P, as in the above equation assumes plane wave propagation
within the dig1ectric. And this usage of P_ assumes that the rays
between the slab and the observation point 8re parallel. These as-
sumptions are satisfied provided that neither the source nor receiver

is too close to the slab. These assumptions and some basic trigonom-
etry yield

p, o=eIke (8)
jkzzsinetsinei
Pa =e (9)

where g=d/cosg, and (k) and (k') are the propagation constants for
free space and the dielectric medium, respectively. Note that k'=k Eps
where Ep = ed/eo.

The coefficients of single reflection and transmission are found
via continuity of the tangential components of the E and H fields,
and are given by[6]

.2
€,.C0S0 jgr sin"g .

= - (10a)
.7
ErC0391+JEr-STH 61

(1/€r)coset"\/(1/€r)'51”29§_

(11a)

(1/e,)cos0 + J(l/er)-sinzet

for the case of a magnetic line source (E field parallel to the plane
of incidence), and

/ . 2
. ) cosei-\er-s1n 61

WE) ~ — (10Db)
cos0;+| e,~sin“a,

cosfy- j(l/er)-sinzet
R = (11b)
2() eyt

cose + [(1/g.)-sin"6,

for the case of an electric line source (E field perpendicular to
the plane of incidence). In both cases one finds

12



Ty = Ry +1 (12)

Ty =Ry + 1 (13)
6y = 0 (14)
sinot = sineiz/’g;. (15)

Through the evaluation of the geometrical series and noting that

R,=-R1, Equation (7) may he simplified to the desired total reflection
coefficient:

2
R - Rl(M,E)(l_PdPa) (16)
(M,E) 1-R% 2 ) ‘

1(M,E) PdPa

B. Transmission

Referring again to Figure 5, one finds for a perfectly conduct-
ing half plane that T = 0. For the dielectric case, howaver, the
transmitted field is once again an infinite sum and may be expressed
as

L=

2n-2 .1
tot ) JE

"R, , (17)

v 2n-1,, \n-1
TToPy 1 (PT (PR

n=1
where E' is the field that would have been incident on the receiver
in the absence of the dielectric layer. Here P, is a term to cause
the transmission coefficient to act as a simple 'modification of the
incident field as shown in Figure 8(a). Note that without this term
the phase is referred to point (B) in Figure 8(b). This term is given
by

Jk,Q:COS(G.I—et)

b = : (18)

As before in the case of reflection, much simplification is pos-
sihTe. After some manipulation one arrives at the desired total trans-
mission coefficient:

2
(1-Ry iy, g) )PPt
1-R P5P
1(M,E) d a

13
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C. Diffraction

Consider the geometry illustrated in Figure 9 which shows a wave
incident on a perfectly conducting wedge, one of the canonical forms
for which the Geometrical Theory of Diffraction (GTD) provides an
asymptotic solution. The diffraction coefficient for the 2D case
is generally given by

(Dh magnetic line source
D = (20)
1\DS electric line source,

where the "h" and “s" subscripts refer to acoustically "hard" (E field
perpendicular to diffracting edge) and "soft" (E field parallel to
diffracting edge) diffractions, respectively. Reference [7,81 gives
these coefficients for a half plane (n=2 in Figure 9) as

T
-3 g , , | l
Dg (650" 58)mn S —ny ElkEalO0 )] 5 EIKLBLOMLIL (o)
2 [2nk sin3, | cos (—?»~> cos (—?—- |
INCIDENT REFLECTION

WAVE SHADOW BOUNDARY

OBSERVATION
POINT (P)

INCIDENT SHADOW
BOUNDARY

Figure 9. Geometry for perfectly conducting wedge diffraction.
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where

. . 2
F(x) = 25X 3 [ 9T .

X
Often the notation
D ( iy = ' i | (22)
s.p(s0') = D(v=9") ¥ D(¢+o")
where I
4 +,
D(¢f¢') _ =€ F[kLa(¢-¢ )]

22k sing Cos(gf@')
~7

is used. This form shows explicitly how the GTD coefficients com-
pensate for each of the two discontinuities in the G.0. solution.
The D{¢-¢') term is associated with the incident shadow boundary and
the D(4+¢p') term is associated with the reflection shadow boundary.

Note that in the application of Equation (22) one would use the
(~) sign for the case of an electric 1ine source and the (+) sign
for the case of a magnetic Tline source. Thus the "R" of Equation
(6) may be incorporated here, and the diffracted field written as

-J’ksd
— . (23)

s,

Note that for the perfectly conducting case the discontinuity at the
incident shadow boundary is unity times the incident field near the
boundary and the coefficient of D(¢-¢') is unity; likewise, the dis-
continuity at the reflection shadow boundary is R times the reflected
field near that boundary and the coefficient of D(¢+o') is R.

e

E9P) = E7(Q) ID(p-0")+R D(4')]

As the subject of attention is now shifted to diffractions from
dielectrics, the discussion must be limited to flat layers rather
than wedges since uniform thickness was a requirement for derivation
of the reflection and transmission coefficients. As noted above,
there is a correlation between the magnitude of the discontinuity
at each shadow houndary and the coefficient of the corresponding Dipza')
term. In the dielectric case the discontinuity at the reflection
shadow houndary is again related to R, although R is no longer simply
-1; at the incident shadow boundary the discontinuity is (1-T) times
the incident field, which reduces to unity for the metallic case.
Therefore, it is conjectured that the diffraction coefficient for
a finite dielectric layer is given by

D= [(1-T)D(¢p~d')+R D(¢p+op')] . (24)

16



Th* values of "R" and "T" are given by Equations (16) and (19) with
hbeing the angle between the ray incident on the diffraction edge
aﬁd the normal to the reflecting face.

Equations (16), (19), and (24), when used in Equations (1) through
(5) give the desired solution for the problem shown in Figure 5. This
has been demonstrated experimentally as will be discussed in Chapter
IvV. However, before presenting this confirmation, the theory will
be expanded to the more general three dimensional case.

17



CHAPTER III
THREE DIMENSIONAL DIELECTRIC SLAB SCATTERING

In the previous chapter coefficients were developed for the var-
ious terms in the G.0.-GTD solution for two dimensional scattering
from a finite dielectric layer. These coefficients are still valid
in the more general case, however, care must he taken in their ap-
plication. In treating 3D problems one must keep in mind two facts:
1) spherical waves are being considered rather than cylindrical waves,
and 2) the field can he arbitrarily polarized rather than merely that
of a simple electric or magnetic Tine source. The first of these
fgsﬁg means that the spreading factors become more complicated than

/Js; the second means one must find a suitable coordinate system
in which to express the resulting fields, transforming coordinates
as necessary to apply the coefficients of the previous chapter.

It will be convenient at this point to introduce the "ray fixed
coordinate system." Letting n be the unit vector normal to the slab,
I be,the incident unit vector from the source to a point on the s]ab,
and R be the reflection unit vector from the point of reflection to
the observation point, one may define the following:

”~ ~ ~N
u, =nx I,
/\‘i ~ ~
u, =1 xu

n 4?

u: =R Xxu,,
where (+) and (") indicate vectors perpendicular and parallel, re-
spectiyely, to the ordinary plane of incidence, the plane containing
I and n. These unit vectors form the orthogonal bases for the ray
fixed coordinate system as illustrated in Figure 10. The field of
a ray traveling in the direction of I or R 1s1now completely speci-
fied by its components E and E,. Note that E corresponds to the
2D case of an electric 1ine solrce and E corresponds to the 2D case
of a magnetic line source. In the ray fixed system one may utilize
the coefficients of the previous chapter and express the reflected
and transmitted fields in the following manner:

"1 [r 0 3
l r] =‘ (M) } [ 1] f.(s) (28)
] o Reeyl LEL |

18



Figure 10. Ray fixed coordinate system used for 3D reflection
and transmission.
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The angle of incidence to be used in computing the coefficients is
given by

9. = cos_

; -I-n) (30)

The spreading factor for the transmitted field is the same as
that for an incident field,
e—jks

f8).= B, | (31)

‘

For the reflected field the spreading'factor is slightly more com-
plicated, given by[8]

rr

pP g

Fls) =l B eIk (32)
(p1+3)(02+5\

The ray fixed coordinate system, although ideal for refiection
and transmission problems, is not suitable for the diffraction solu-
tion. The diffraction coefficients presented in the previous chapter
are valid only when the incident field is expressed by components
parallel and perpendicular to the edge fixed plane of incidence, the
plane containing the incident ray and the diffracting edge; and the
diffracted field expressed by components parallel and perpendicular
to the edge fixed plane of diffraction, which contains the diffracted
ray and the edge. Thus the "edge fixed coordjnate system" is intro-
duced and illustrated in Figure 11. Letting e be the unit vector par-
allel to the diffracting edge, 1 be the 1nc1dent unit vector from
the source to the diffraction point ( , and O be the diffraction
unit vector from (QE) to the observat1gn point (P), one may define
the following:

5 = -e x I, (33)
3(') =4' x I, (34)
§ =éxb, and (35)
BO = ¢ x D. 1368)

These vectors form the two orthonormal hases of the edge fixed co-
ordinate system. Note that the ordinary plane of incidence inter-
sects the edge fixed plane of incidence along the incident ray, and

20
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the cdge fixed plane of diffraction along the diffracted ray. The
relationship between these planes, and thus the relationship between
the ray fixed system and the edg: fixed system is depicted in Figure
12. It can be shown[8] that the angles a and a, , defined as shown
in Figure 12 are related by = -0

It is apparent that the incident field may be expressed in the
edge fixed coordinate system as
E;. = E) cosa - El sina (37a)

E&. = E, sina + Ej cosa . (37h)

These expressions may be written more compactly in matrix notation
as

E; _ Tl-0)E' (38)
where
T(eq) = [cosa -sina] (39)
sina coso, .

Likewise the reflected field is transformed between systems by

Eg = I cosa + EE sina (40a)
0

E; = -El sina + Ef cosa . (40b)
This may be expressed as

Ee ¢ = T(@)E™, (41)
where

_ |coso sino
T() [—sina cosa] . (42)

In the edge fixed system, the 3D diffracted field may he expressed
in a manner analogous to the 2D case by

22 B
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d

3 . _ : Ei, , s
= [A D(¢-¢' )+B n(¢+¢')} E§o /-5755—;57 e kS (43)
I

2 b

E

where the matricos A and B sopve the same functinn of scaling the
NMdid'Y terms to the proper complex value of the discontinuity as

didd (RY and {1-T) in the 7D case. A is the polarizaticn matrix as-
sociated with the discontinuity in the G.0. field at the incident
shacdow houndary und B the polarization matrix associated with the
discontinuity at the reflection shadow houndary. However. vhese dis-
continuities must he expresserd in terms of the unit vectors §o, b.

On the 1it side of the incident shadow boundary one finds (see
Figure 11)

Ei u Ei.

ol = - Bo (44)
i i
E¢ E¢.

On the side not directly illuminated by the source, the Fransmitted
field is present. To express this one must start with E' in the edge
fixed system, transform to the ray fixed system in which the trans-
mission coefficients are valid, perform the transmission operation,
then transform back to the edge fixed system. Thus the field in this
region is given by

t . i
[EBO} = -T(-a) {T(M 0 } T (-a) [E%] . (45)
t 0 T [ E

So the total discontinuity is given by

J‘ ll 0] [cosa -sina

[cosa sinu}) {Eé,}
.0
~sina cosa_J’ E%.

l 0 IJ sino cosa 0 T(E)
such that
2 .2 .
~ -1+ T(M)cos a + T(E)s1n o (T(M) - T(E))s1na cosa
A= 2 >
.(T(M) - T(E))sina cosa -1 + T(M)sin a + T(E)cos o

(46)
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Likewise at the reflection shadow boundary one notes that

3 R 0 3
B (M) B,

[ r°} = T(a) { } 7 (0) { 10} (47)
E¢ 0 R(E) E¢.

Therefore the discontinuity'is given by

'( cosa Siheq R(M) 0 cosq Sina 1
L ~sina cosa | {0 R(E) -sina cosa I-
such that

~ {R(M)cosza— R(E)sinza (R(M) + R(E))sina cosa }
B = (48)

.-(R(M) + R(E))sina cosq, —R(M)sinza + ?(E)COSZ&

For computational purposes, the 3D diffracted field is written

as
d ' i
E -D -D E,., -
Bo _ a b Bo s! ~-jks 49
- C | JstsTsy © (49)
g4 D -D 3
) . C d o'
where
D = (1T, C0520=T, y5in2a)D (90" )= (R 1y cOS2a-R 1 51n2a)D (o' )
a (M) (E) (M) (E)
(50)
Db = (-(T(M)-T(Eysinacosa)D(¢—¢')—((R(M)+R(E931nacosa)D(¢+¢')
(51)
DC = (—(T(M)-T(E))sinaCOSa)D(¢—¢‘)+((R(M)+R(E))sinaCOSa)D(¢+¢‘)

(52)

lww]
i}

d (l-T(M)sinzq-T(E)cosza)D(¢-¢')+(R(M)sinza-R(E)COSZa)D(¢+$')-
(53)
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The total 3D solution for scattering from a dielectric slab is
now complete, given by the sum of Equations (28), (29), and (49).
In the next chapter, computed patterns are compared to experimental
results for confirmation of the theory.

26



CHAPTER 1V

RESULTS -
gy enohucnaTy oF TS
A.  Loefficients OLIGINAL PAGE IS POOR

Plots showing the variation of the reflection and transmission
coefficients of Chapter II with respect to the dielectric layer thick-
ness are shown in Figures 13(a) and 13(h). respectively. These re-
sults are for a typical dielectric (pogystyrene) il7uminated hy a
plane wave with normal incidence (0.=0" in Figure 6) In the eval-
uation of the reflection coefficient, one would expect the first two
terms in the series to dominate. These two terms will differ in phase
by Bhe propagation length of two transversals of the layer plus a
180" phase shift due to the R, reflection off the back face  Thus
a maximum is anticipated at tﬁe points where D/A = (2n+l)/4 with
n=1,2,3,°++, which is the case of the propagation phase delay plus
the reflection phase change equaling an integral multiple of 3607,
i.e., the first two terms of the series adding in phase. A minimum
would be expected when these terms add out of phase, which occurs
at D/Xx = n/2. Both predictions match the results shown in Figure
13.

In the transmission case, the second term has two R, reflections,
which add a 360° phase change. Thus the phase differencé between
the two dominant terms is effectively caused hv the propagation of
two layer transversals. Thus maxima occur at D/X = n/? and minima
at D/x = (2n+1)/4. These again match the computed results shown in
Figure 13.

R. Diclectric Layer I1luminated by a Rectangular Horn

For purposes of an initial testing of the theory in a real world
situation it is applied to the problem shown in Figure 14, where the
pattern is measured in the E plane of the horn with the phase origin
at the center of the horn aperture. A corresponding simulation model
made use of the above theory for scattering from the polyethylene.
The horn was treated as a set of magnetic Tine sources (one at the
apex and one at each of the diffracting edges) as in the corner re-
flector model presented in Reference [9]. The first measurements were
taken with the horn alone, and the results at various frequencies
are shown in Figures 15 through 19. Since only the main beam of the
horn will interact with the dielectric, and only these interactions
are of interest, extreme care was not taken in the setup of the horn.
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Figure 14.
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Polyethylene geometry used to test scattering theory.
Measurements are taken in the E plane of the horn.
Polyethylene thickness is .1285" and e =2.25

at 10 GHz. A standard gain horn manufictured

by Narda Corp. is used.
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This accounts for @uch ofothe diffgcu1tiesoin the back region of the
horn, especially 0° to 60" and 300" to 360°. Most notably, the meas-
ured patterns are not symmetrical. However, in all cases the main
beam is in good agreement with the computed results. This, as

will be seen, is sufficient for the testing of the theory.

Results for the entire geometry illustrated in Figure 14 are
shown in Figures 20-24 for various frequenciea. Agaén diffic81t1es
are ohserved in the region behind the horn, 0° to 60~ and 300~ to
3600; however, these can be attributed to the experimental setup rather
than the dielectric solution, which is the subject of investigation
at present. For confirmation of the theory, one should Took to the
two areas of the pattern most strongly affected by the dielectric,
i.e., the area of direct trangmission around $=180" and the area of
direct reflection around ¢=90°. In these two areas one finds the
results quite acceptable. The shape of the main beam, which is de-
termined totally by transmitted and diffracted fields, is at all fre-
quencies found to be in good agreement. In addition, the reflection
region shows good results. Here ripple is produced by interactions
hetween the horn sidelobes and scattering from the dielectric. The
amplitude and frequency of this ripple agree reasonably well with
the measured ripple in each case.

Figure 25 shows a second geometry used for verification of the
dielectric scattering theory. Here the slab is much thicker and of
slightly higher dielectric constant. Also it is closer to the horn
which will reduce the spacial frequency of pattern ripple, making
it easier to compare results. Calculated and measured patterns shown
in Figures 26-28 for various frequencies agree well in overall shape,
especially in the main beam and reflection regions.

Figure 29 shows another geometry with the same slab as the pre-
vious problem placed perpendicular to the horn axis. In thig case
the region of primary interest is the main beam around 4=180", deter-
mined completely by transmitted and diffracted fields. The calculated
and measured patterns illustrated in Figures 30-34 show reasonably
good agreement in each case.

C. Dipole I1luminating a Dielectric Covered Ground Plane

The geometry illustrated in Figure 35 shows a test of the theary
using a dipole source rather than a horn, and with the dielectric
slab backed by a ground plane. Here the calculated results are found
by a re-derivation of the coefficients of Chapter II sgbtting the coef-
ficient for reflections from the second face equal to -1, and the
experimental measurements were obtained by measuring the pattern in
the planes defined by the z axis and each of the dashed lines of Figure
35. Results are shown in Figures 36 and 37 for the principal planes
and Figures 38 and 39 for the two polarizations of the diagonal pattern.
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In order to illustrate the effect of the dielectric Tayer, a
comparison is made between these patterns and corresponding patterns
obtained from the same geometry in which the dielectric layer is re-
moved in Figures 40-43. It is apparent that the dielectric does sig-
nificantly affect the pattern making this geometry a valid test of
the dielectric theory.

D. Comparison with Moment Method

Further confirmation is obtained, as well as a study of appli-
cability by comparison of results of this theory with Moment Method
results [10,11] using the geometry shown in Figure 44. The moment
method results, as presented here, are assumed to be the exact solu-
tions to these problems. Working with first an electric and then
a magnetic Tine source, the effects of varying source to strip distance
eénd angle of incidence are studied. Results for varying the source
range are shown in Figures 45 and 46. Here it is noted that our re-
sults are accurate at ranges of greater than a wavelength, but begin
to break down inside that range. Results for varying the angle of
incidence are shown in Figures 47 and 48. It is apparent here that
the solutions are accurate to_at least 40° off normal incidence and
can perhaps be extended to 60 off normal incidence.
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CHAPTER V
CONCLUSIONS

This thesis has demonstrated that geometrical optics and the
Geometrical Theory of Diffraction can be modified to include scat-
tering from thin dielectric slabs. Thus it will soon be possible
to model structures such as private aircraft in which non-metallic
parts play a significant role. This approach will provide efficient
computation of a volumetric antenna pattern and is expected to give
reasonable accuracy.

The Timitations on the application of this theory are not severe,
but must be noted. As shown in the Moment Method comparisons, the
source must be kept at least a wavelength or so away from the dielectric
to keep within the plane wave approximation of Chapter II. The angle
of incidence, i.e., the angle between the incident ray and the nogma]
to the dielectric Tlayer, must be kept to not much greater than 60
or so to avoid exciting a surface wave, which was assumed not signif-
icant in Chapter II. An additional Timitation is on the thickness
of the dielectric. The theory was developed on the assumption of
the thickness being less than one tenth wavelength; however, accurate
results have been obtained for dielectrics with thickness of nearly
one half wavelength in free space based on comparisons with measure-
ments.

The question of diffractions from the junction of a dielectric
slab and a metal plate or two dielectric slabs remains unanswered,
but it is expected that a solution is avaiiable by the same methods
presented here. Derivation of this would then provide the total theory
needed for full incorporation in an aircraft antenna code.
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