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SUMMARY 

It has been known since the late twenties (Piercy and Richard- 
son) that unexpectedly high velocity and presumably pressure fluctua- 
tions are found in the stagnation region of blunt-nosed bodies placed in 
wind tunnels with uniform Streams. Very recently, visualization techniques 
have revealed frequent formations of streamwise vortices both steady and 
unsteady, These fluctuations and vortices are known to increase sub- 
stantially the heat and mass transfer in the stagnation region when 
r.m.s. free-stream turbulence exceeds approximately 1% of free-stream 
speed, U , 

P 
and may also cause increased acoustic radiation. The 

boundary ayer, though perturbed by the streamwise vortices tends to 
remain laminar in the region of accelerations around the head of the 
bluff bodies. However, these vertical disturbances are likely to con- 
tribute to earlier-than-expected transition to turbulence farther 
downstream so that prevention of such "seeding" should delay transition. 

In an attempt to understand the phenomena behind these impor- 
tant practical flow manifestations, a critical review of the theoreti- 
cal and experimental evidence was made. Current theory is revealed to 
be incomplete, incorrect, or inapplicable to the phenomena observed 
experimentally. The formalistic approach via the "principle" of 
exchange of instabilities should most likely be replaced by a "forced 
disturbance" approach. Also, many false conclusions were reached by 
ignoring the fact that treatment of the base and perturbed flows in Hiemenz 
coordinate 0 is asymptotic in nature. Almost surely the techniques 
of matched asymptotic expansions will have to be used to capture 
correctly the diffusive and vorticity amplifying processes of the 
disturbances vis-a-vis the mean-flow boundary layer and outer poten- 
tial field as r;, and y/diameter approach infinity., There are also 
serious uncertainties in the experiments which are discussed in 
detail. 



SYMBOLS 
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1 INTRODUCTION 

The purpose of this essay is to summarize and illustrate experimental 

information on flows in proximity of stagnation regions of cylindrical 

bodies and to examine critically the notions of flow instability, primarily 

as they might apply to these flows. The approach is expository, with 

emphasis on the structure of the phenomena and of the associated equations. 

The approach is also a searching one, because as new facts are uncovered, 

new questions also arise, especially with respect to our idealization of 

the phenomena. 

One might call the stagnation flows singular for they are physically 

complex, e.g. exhibiting singularly increased heat transfer response to 

even moderate free-stream turbulence, and also because their analyses in 

effect rely on singular perturbations. A glance at Figs.5, 7, 8, 11 and 12,: 

samples of the most organized features of these flows,will convey an 

introductory impression of their complexity. 

The immediate motivation for focusing on these flows was to understand 

more about mechanisms which could bring about commonly observed streamwise 

vorticity in nominally two-dimensional boundary layers, Morkovin (1979). 

However, this report will not dwell on the facts and scientific or 

technological consequences of the occurrence of such streamwlse vertical 

flows downstream of blunt (or sharp) leading edges nor on the rather 

controversial information and theories of the enhanced heat transfer. It 

will focus primarily on the curious physical and mathematical aspects of these 

unsteady, vertical, three-dimensional flow fields in stagnation regions. The 

rather discordant information on the enhanced heat transfer, found for instance 
in Kestin (1966), Smith and Kuethe (1966), Kayalar (1969), Lowery and vachon (1975)) 

(1975), Miyazaki and Sparrow (1977), Hoshizaki et al (1975), Swigart (1977) 

and others, will be brought in only insofar as it provides evidence for 

specific flow behavior. 

There is also much disagreement on the character of stagnation flow 

fields themselves and especially on their theoretical interpretations and 

modeling. In order to gain additional perspective, we shall need to 

consider basic questions of instability phenomena and their mathematical 

formulation. Relevant issues of temporal versus spatial stability, of 

receptivity to free-stream disturbances, of its relation to initial value 

problems of instability and of nonlinearity are discussed in Appendix 1. 



However, only the needed, still tentative conclusions are utilized in the 

body of the report. 

The initial free-stream disturbances convected toward -the cylinders 

are generally turbulent but the preseparation boundary layers on the 

cylinders, while displaying unsteady and random features, do not exhibit 

basic characteristics of turbulent wall layers (even when enhanced heat 

transfer isobserved). Here, and for stability problems in general,-we 

need to sharpen our concepts and terminology of what constitutes turbulent 

flows. Appendix 3 proposes operational definitions of turbulence and 

provides some background for considerations of a class of quasi-laminar 

flows, such as the boundary layers under study here, which could be called 

buffeted laminar wall layers. 

Some of the experimental and theoretical information discussed in this 

essay is at least partially contradictory, not an uncommon situation in 

problems dealing with instabilities, transition to turbulence and 

turbulence itself. The author presents here points of view close to a 

perceived consensus of specialists with whom he had disoussed the issues 

over the last three years. Contradictory and unconfirmed results have 

been recognized as a major block in the progress of transition research so 

that the U.S. Boundary Layer Transition Study Group adopted a set of 

guidelinesto remedy such uncertainties and avoid miscues for further 

research, Reshotko (1976),p345.Guideline No. 4 states: "Whenever possible, 

tests should involve more than one facility; tests should have ranges of 

overlapping parameters, and whenever possible, experiments should have 

redundancy in transition measurements". It has been broadened to theoretical 

research where by a "facility" we understand a theoretical model with its 

computer program", Morkovin (1978). We shall have to invoke this generalized 

attitude, designated henceforth as Gen.Reshotko 4, time and again in order 

to convey proper qualifications on the degree of reliability of various cited 

results and judgements. Despite this caution, it can happen that future 

experiments and theories will modify signifiaantly the currently perceived 

consensus as here interpreted. In fact, a major purpose of describing 

the new perspective on the stagnation flows is to stimulate further theory 

and experiments specifically designed to test different elements of this 

perspective in accordance with Gen. Reshotko 4. 
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The exposition in Section 2 starts with an account of the piecemeal 

information on the steady or mean viscous flows around cylindrical objects. 

In particular the stagnation Hiemenz flow; lacking any characteristic lengths, 

and its embedding within outer irrotational flows are described, It is anti- 

cipated that an even more severe problem of rigorous matching of inner and 

outer flows must be faced if the manner in which free-stream inhomogeneities 

and disturbances bring about unstable responses in the stagnation region is 

to be understood, In Section 3 the different characteristics and specifica- 

tions of these disturbances are first examined, An account of experimental 

observations of steady vortex formations upstream of cylindrical obstacles 

follows with an attempt at interpretation in terms of prototypes of nonlinear 

stability theory. The vertical instabilities in the stagnation region are 

commonly linked with the Taylor vortex instability in annular Couette flow and 

with the G&-tler streamwise-vortex instability in concave boundary layers. In 

order to gain further insight into instability phenomena in general, the 

differences in the physical and mathematical structure of these three super- 

ficially similar systems are outlined and discussed in Section 4. Considera- 

tion of disturbances and forced responses of the systems appears necessary for 

deeper understanding; see also Appendix 1. 

In Section 5, various processes and mechanisms are considered and 

illustrated through linearized equations. The G&tler-H&merlin perturbation 

model is examined with emphasis on its possible limitations in temporal depen- 

dence and in its confinement to the inner domain which lacks a characteristic 

length, Section 6 contains a careful account of the more detailed stagnation- 

flow experiments with unsteadiness and turbulence in free stream. An overview 

Of the important issues and the outlook for further progress is contained in 

Section 7. Useful information on various aspects of G&tler's linear model is 

given in Appendix 4. 

The rather unconventional views presented here in a searching spirit 

were first written up in May 1976. Eighteen copies of that report were circu- 

lated in the United States, Europe, and Japan to elicit critique and sugges- 

tions and to provide an opportunity for private prepublication rebuttals for 

those whose earlier work was questioned in the text. The present report 

incorporates, then, not only the information and views from publications since 
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1976 but also the advice and comments of a number of discussers, in particular' 

Profs. G. Inger, E. Roshotko, and I. Tani. Figures based on the reviewed 

publications are explicitly credited, The original NASA study under Grant 

NSG-1120 was guided, with understanding, by Ivan Beckwith. The 1979 revision 

was supported under AFOSR Contract F49620-77-C-013 concerned with instabili- 

ties and transition to turbulence. 

Use of trade names or names of manufacturers in this report does not 

constitute an official endorsement of such products or manufacturers, either 

expressed or implied, by the National Aeronautics and Space Administration. 



2 CHARACTERISTICS OF THE OVERALL FLOW 

a. Piecemeal Modeling of Viscous Flows around Bodies, Matching and 

Patching 

Before we can study the behavior of disturbances in a flow field we 

expect to have adequate knowledge of the undisturbed base flow. For 

slightly viscous flows around bluff cylindrical bodies the theoretical 

and experimental knowledge is piecemeal, resting on a series of idea- 

lizations and characterizations of local behavior. It is instructive 

for the rationale of handling the perturbed flow to examine the usual 

approach to the solution of the underlying Navier-Stokes equations for 

the base flow at Reynolds numbers in excess of say 1000. The Navier- 

Stokes equations are solved as such only in the immediate vicinity of 

the front stagnation line, where the classical solution of Hiemenz 

(Schlichting 1968, pp 87-90) demonstrates the existence of a thin viscous 

boundary layer without assuming its existence a priori. To continue the 

Hiemenz solution beyond the stagnation region,approximate boundary layer 

equations with an assumed outer potential flow are solved up to an ill- 

defined separation line where the wake begins (e.g. Schlichting 1968, pp 

154-162). There is no satisfactory Navier-Stokes solution for the wake 

and rather crude semiempirical modeling is resorted to for assessments 

of its significant steady and unsteady influence on the potential flow 

around and upstream of the cylinder. (Only Tani (1974) allowed for the 

wake influence in connection with our instability problem). 

For the base flow there is a consensus that the conceptual division 

into the "outer" irrotational flow and the viscous and rotational boun- 

dary layer and wake is justified on physical grounds even though careful 

mathematical treatment of the high-Reynolds number wake and its coupling 

with the upstream potential flow remains elusive. It is worth pointing 

out parenthetically a significant contrast between the irrotational base 

flaw and our perturbation flaw where vorticity (linearizable or nonlinear) 

is present upstream of the stagnation region. This complicates the matching 

between the approach flow and the perturbed flow near the stagnation line. 

This inner perturbed flow was conceived by Goltler (1955) and explored in 

much detail by H&merlin (1955). It is functionally equivalent to the 

Hiemenz component of the base flow and will be called the GH flaw. 

The word "matching" above is used here in the sense of Van Dyke 
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(1964, p. 89), i.e. applying systematic limiting processes which may 

assure a smooth continuation of the piecemeal appraimations to the 

solutions of the Navier-Stokes equations. Such dwetailing between the 

Hiemenz flow and the surranding potential flaw has been generally assumed 

as possible but has apparently been tried more rigorously only by J. Cole 

(1968, p. 159). Cole used the inviscid velocity potential and stream 

function for coordinates, but we fall back m rectangular coordinates x, 

y, &with z along the stagnation line, in order to illustrate several 

aspects of the matching process. But first we should recall some pro- 

perties of Hiemenz' solution. 

b. The Hiemenz Scaling and Embedding 

Figure 1 (after Schlichting 1968) depicts some velocity distributions, 

streamlines and the boundary-layer thickness of the Hiemenz solution (plus 

the stretching of a material line BICl into B2C2 for later purposes). 

The figure also conveys the crucial fact that in this flow field,which ex- 

tends to infinity in the x and y directions, there is no characteristic 

length f and no characteristic velocity V in terms of which distances x 

and y and velocities u and v could be measured or made dimensionless. This 

scaling feature leads to self-similar families of solutions in terms of 

Hiemenz magnification variable n=fiy, where a is an arbitrary velocity 

gradient (or an arbitrary ratio V/L) and V the kinematic viscosity. The 

solutions (tabulated and graphed as functions of n in most texts on viscous 

flows, e.g. on pp 89-90 Schlichting 1968),can be scaled to fit the inner- 

most field near the stagnation line of any irrotational flow approaching 

a blunt cylindrical body by proper choices of a and V. As 7l grows to 

infinity the viscous Heimenz solutions approach the potential flow 

U Ho0 = ax, V Ha = -a(y - 6*), 6* = 0.648m, (1) 

where 6* is a constant displacement thickness due to the viscous decelera- 

tion near the wall at y = o, see Fig. 1. The asymptotic approach to the 

Fotential flaw is very rapid so that already at rl = 2.4 the H flow is within 

1% of (l), the definition of 6 in Fig. 1. The vorticity layer is thin indeed: 

the vorticity generated at the wall spreads by weak molecular diffusion and 

is convected back by the stronger mean approach flow. We should anticipate 

similar physics for our perturbed flow field. 

Figure 2 indicates the manner in which three inviscid potential flows 
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(expressed in complex notation with Z = x + iy') are related to the 

limiting Hiemenz flow (1). It is clear that in small neighborhoods of 

the origin, as Z+o, all three flows merge into (1) if the x axis is 

shifted by the displacement thickness (which vanishes in the limit v+O): 

y' =y- 6*. For the cylinder, a = 2Vi/R, and for the flat plate strip, 

a = Vm/Lr while the wakes are disregarded. Their presence would primarily 

decrease the magnitude of the scaling potential velocity gradient at the 

the origin, a = [- av/ayl = r %3 xl , the unsolved problem being to 

determine by how much. (Ghe wakes alsz introduce u-velocity fluctuations 

at the stagnation line, dominated by the overall instability of the wakes, 

This larger-scale motion is not believed to influence the instability of 

the approach flow, although it is definitely present in most measurements 

such as in Fig. 9 , discussed in Section 6e.) 

Incidentally, the scaling parameter a also appears in the solution 

for the technologically important heat transfer rates in the stagnation 

region. Therefore, to provide a reliable reference base for discussion and 
evaluation of experimentally determined heat transfer rates, (au/ax, o 

must be evaluated carefully. 

C. Outer Scales and Matching of Base and Perturbed Flows 

From the preceding illustrations it should be clear that the limit 

n + 0) does not correspond to free stream conditions. Yet this is an 

implicit assumption in the various mathematical manipulations of the 

instability problem as will be seen later. In our illustrations the 

variables Y - y/R or y/L will be called the outer variable in terms of 

which the boundary conditions at the upstream infinity can be imposed 

and satisfied: Y + 00. The connection to the viscous boundary conditions 

at the cylinder comes through the adjustable self-similar H solution and 

its matching with the outer solution, see Cole (1968) p. 159. In simplest 

Van Dyke terms the matching requires that the limit of the inner solution 

as n + 00 coincides with the outer solution as Y -+ 0. Here the inner 

solution would consist of the Hiemenz solution near the stagnation point 

and of the local boundary layer solutions for other azimuthal positions 

(where the outer variable would be a curvilinear coordinate equivalent of 

y/N. Matching involves functional overlap over a region and the explicit 



rescription Y -P o emphasizes that this region is right at the wall. 

For the base flow with irrotational behavior upstream of the body the 

outer limiting process Y + 00 presents no difficulties. Desirable applica- 

tion of the technique to reattaching shear flows with mean vorticity 

(Inger 1976, Ginoux 1958, 19711, however, could not well disregard viscous 

diffusion in the outer flow, and the equivalent of the process Y -f m would 

require extra finesse. An even more serious situation faces us in our 

instability problem where the up-stream perturbation is vertical and 

is subject to the vorticity-modifying straining field induced by the 

body. In the physical problems of interest free-stream turbulence decays 

steadily in the uniform flow before entering the straining, partly ampli- 

fying approach flow. The turbulence characterization as a fixed percentage 

of II, therefore has little meaning as a boundary condition for Y -f 03. And 

if we seek true eigenfunction grcwth,somehow elicited by the presence 

of free-stream turbulence, as discussed in Appendix 1, where should we 

prescribe the vanishing of the perturbations? The condition of vanishing 

disturbances in the Hiemenz limit Al -f 00 appears inadequate unless all 

elements of the instability mechanism oculd be shown convincingly to 

remain confined to the region right at the wall. The eigenvariable r~ for 

this viscous-conditioned problem is along the stream direction in contrast 

to the usual instability problems where TJ lies across streamlines, see 

Appendix le. Wilson and Gladwell (1978) identify the instability as 

centrifugal and not only accept the Q -f 03 matching,but require that the 

perturbations vary exponentially in n, see Appendix le for details. These 

and other instability issues are discussed further in Section 7 after the 

relevant steady and unsteady experimental information is reviewed. At 

this stage, however, it is clear that the behavior of disturbances in the 

region corresponding to ?-I + 03 and to finite Y will require special atten- 

tion. 

d. The Hiemenz Flow Field 

Perturbation equations inevitably involve various characteristics 

of the base flow, in particular of the inner Hiemenz flow, as coefficients. 
For reference purposes we therefore recapitulate succinctly the salient 

features of the Hiemenz solution. 

Under the inner rl = my magnification all two-dimensional stag- 
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nation flows with an irrotational outer stream turn out to be similar, 

irrespective of the shape of the body, as in Figure 1. For irrotational 

outer flavs the stagnation streamline comes in perpendicularly to the 

wall, and under the magnification,it is difficult to distinguish between 

the wall and its tangent plane. The body shape (in particular the 

leading-edge radius) determinesthe strain rates at the origin, labeled 

a in Equation (1). Introduction of a dimensionless stream function @B(q), 

with appropriate scaling of the dependent variables: 

U H = ax @A (l-l), VH = -p aH (nl;n = fZ7Cy (2) 

automatically satisfies the continuity equation. The governing equation, 

that of the x manentum component, is expressible in terms of r) alone, for 

all outer irrotational flm fields,e.g. Schlichting (1968) p. 89: 

a”’ +(-41;2 H + QH @;I" + 1 = 0 . 

Here the highest order derivative describes the viscous effect as usual, 

the nonlinear terms (in parenthesis) reflect the inertial acceleration 

and the last term corresponds to the constant pressure gradient bp/bx 

=paL, made dimensionless. The no-slip boundary conditions at the wall are 

simply @I; (0) = (PH(0) = 0. The blending of the viscosity-conditioned 

region with the irrotional flow of Equation (1) is accomplished simply 

by the remaining boundary condition: 

1 'vH ----=Q;I(r)) +l,asn+a. 
a2Y (4) 

Because the Hiemenz scaling, Equation (2), absorbed the usual free non- 

dimensional parameter Re,characterizing the ratio of viscous and inertial 

terms, self-similar solutions became possible. As a result the corres- 

ponding instability equations and boundary conditions contain no base-flow 

characteristic parameter either, a parameter which could became "critical" 

as instability sets in, just as Reynolds number becomes critical in Toll- 

mien-Schlichting instability. 

For a circular cylinder of radius R, one may hopefully try to switch 

to cylindrical coordinates and consistently retain only the lowest order 

of an expansion in powers of 8 so that x = Re and r = R(l+ (Iv/an/R). If, 

following Tani (1974), one keeps the notation of U and V for the corres- 

ponding azimuthal and radial velocity components,one needs only to modify 

the second of definitions (2) to 
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VH = - (va cp, 0-l). 

and obtain the governing 

No new R-based parameter 

(1+ t 3 - 1 
I-- 

(5) 

equation - which is identical to Equation (3). 

appears to regularize the stability considera- 

tions, the solution @H (rl1 remains the same,and only the radial velocity 

component is slightly modified by.the factor (l+ y/R) 
-1 

for O<y<ym, 

corresponding to O~?'I<=. 

The solutions for @ H, @A, and @'I H are tabulated and graphed in 

Schlichting (19681, pp. 90-91. One should wish to supplement these with 

the solution of the y-momentum equation which yields the pressure field: 

PHw-l) = PH(O,Ol-1/2p{Zx2+Vi (n) I-pVa@;l . (6) 

The main pressure rise in the stagnation region is inertial, as expected, 

the last term in Equation (61, due to viscous resistance, being very small. 

The Hiemenz displacement thickness is 6* = 0.648 v and momentum thickness 

is 0.292m. 

10 



3. FREE-STREAM DISTURBANCES AND STEADY UPSTREAM VORTEX FORMATION 

3a. Spatial and Temporal Dependance of Free-Stream Disturbances 

The notion of instability implies small perturbations from established 

states of flow, i.e. from the matched approach- and Hiemenz flows of 

Section 2 in the present problem. There are an infinite number of possible 

perturbation fields; they can be usefully idealized into several characteristic 

types. Since there is no evidence that small acoustic disturbances do 

affect significantly the flow around cylindrical bodies (except at separation 

of the shear layers which initiate the wake) irrotational disturbances are 

not usually considered. At a given section y= const.'of the approach flow 

the rotational departures from uniform flow are functions of x and z 

which can also be (a) time-independent,as for wakes at very low Reynolds 
t I 

numbers, (b) time-periodic, as in the case of non-turbulent von Karman 

wakes, (c) random-stationary, as free-stream turbulence is usually portrayed 

in textbooks or (d) a superposition of motions (a), (b) and (c). 

Appendix lf discusses the spotty and sporadic nature of decaying free- 

stream turbulence,which at least for the purpose of some instability 

modeling may perhaps be idealized in terms of separate, energy-sharing 

coherent structures. 

For small disturbances we also have Fourier decanpositions at our 

disposal to reduce the complexity of the functional representation in 

XI =I and time. Thus for a low-Re wake, diffusing from an x - oriented 

upstream cylinder (i.e. perpendicular to the z orientation of our stagnation 

line and parellel to the line Bl Cl in Fig. 1 ) the free-stream perturbation 

would be AV = f(z), resembling an error function, see the right side 

of Fig. 3b. The error function is expressible in a rapidly convergent 

Fourier series so that an analysis with 

Av = A cab (~I'~z/?L) = A Cob k z (7) 

would be meaningful. Alternately, a single row of thin parallel wires with 

mesh M = A, called a zither for short, can be shown to generate a decaying 

wake in the form (7) with A(y) decreasing exponentially over a significant 

distance, see Kellogg (1965). 

These are of course but simplest illustrations of general Fourier- 

integral decompositions of arbitrary fields in the wave number space, which 

are singled out because of their special usefulness for our problem. The 

disturbancevorticityassociated with (7) is parallel to the x axis and 
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has the magnitude -Ak b&Z kz. A number of visualization techniques, 

e.g. Fig. 12 , have disclosed sporadic vortex formations in the stagnation 

region with a dominant W X 
content, as in Fig. 3a, even when the upstream 

disturbances were not generated steadily and preferentially as for Fig. 3, 

but by general turbulence grids at high Reynolds numbers. Thus Equation 

(7) seems to be on the right track and our main task is to quantify the 

mechanisms which select this orientation of disturbances and which 

(more critically] prefer a relatively narrrm range of wave numbers k when 

incoming turbulence contains broad spectra of frequencies and wave 

numbers. 

3b. Knowledge and Specification of Free-StreamConditions 

A quarter-century after Go;tler devised the analytical formulation 

of the problem, and focused on disturbances of the type (7), the second 

part of the task has not been convincingly carried out and the 1978 voices 

of Wilson and Gladwell question the accomplishments in the first part. 

One reason for this is that until a few years ago the experimentalists did 

not seek the simplest controlled disturbances of the type (7). Instead 

they tackled directly the most complex unsteady problem of free-stream 

turbulence and tried to interpret it in terms of the steady formulation 

(7). Without exception, the wave-number characteristics of the turbulence 

remained unknown and the complicated function f(x,z,t;kx,kytkZ,) of the 

preceding Section was specified by a single number, Tu = F m /L in 

percent. 

Miyazaki and Sparrow (1977) comment that poor specification of Tu 

(e.g. its y location and decay rate) and inaccuracy of Tu measurements are 

probably the most serious flaws which face the interpreters of heat-transfer 

enhancement. Furthermore, when Tu on the order of 3% or higher is claimed, 

nonhomogeneity in x and z of both Tu and V, can be suspected; the problem 

then also acquires nonlinear features from the beginning. Even for linearizable 

T-u values, the unsteadiness and the broad wave-number spectra would make it 

essentially impossible to ascertain whether part of the response represents 

a true free eigenfunction behavior, even if space-time correlating tech- 

niques were used, see Appendix lb and lc. 

3c. Steady Vortex Formations Upstream of Obstacles 

Any student of vorticity and three-dimensional flows is well advised 

to ponder the lessons of the beautiful Frontispiece in HInccmpressible 
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Aerodynamics", a remarkable collective effort edited by B. Thwaites (1960). 

The flow in the Frontispiece featuring a steady five-vortex formation 

upstream of a cylinder within a laminar boundary layer, is described 

as "radically different" from its two-dimensional counterparts and its 

"complexities" are intended as a challenge for the reader. A correspond- 

ing seven-vortex formation was studied by Norman (1972) by a single 

smoke-sheet generator which he moved across the boundary layer to trace 

the individual streamlines in the plane of symmetry as they wind their 

ways into the different vortices, e.g. in Fig. 4. There, two near-by streamlines 

with high total pressure Pt are also outlined by dashed lines. Furthermore 

arrows are added to emphasize the jet-like character (evident in Norman's 

movie) of the upstream directed motion along two of the streamlines as 

they push against the decelerated fluid near the wall. 

In 1973, guided by this experience, the present author conjectured 

that steady separated vortices upstream of cylindrical obstacles could also 

form away from sidewalls, as in Fig. 3, if the streamlines with the slowest 

velocities of an oncoming steady laminar wake had sufficiently low stagnation 

pressure Pt. Such upstream separation must entail a free stagnation Point Sf 

(Fig. 3) where the jet moving upstream from the stagnation point S on the 

cylinder is brought to rest at a total pressure P f by the oncoming low- 

inertia fluid in the center of the wake. The stagnation pressure at the 

cylinder point S opposite the center of the wake must be lower than that 

farther along the stagnation line SL, where the full undisturbed Ptm is 

achieved. There is therefore acceleration along SL toward S in addition 

to the usual Hiemenz acceleration "around the obstacle", aH, in the x 

direction perpendicular to the plane of the lower Figure 3. Apart from the 

viscosity effects, the magnitude of acceleration aH tends to limit the 

maximum velocity that can be generated along the stagnation line toward 

S, and therefore P . The pressure at the free stagnation point, Pf, 

should be very neazly p,+ #p(V, - Av)', if p OD and V, represent "initial" 

conditions two or three diameters upstream of the cylinder (often denoted 

by subscript i). For conditions under which Ps builds up beyond Pf, a 

reverse flow and vortex formations should ensue as in Figure 3. 

3d. Steady - Flow Experiments of Hodson and Nagib 

By studing wakes of single and multiple cylinders at low 

Reynolds numbers as these wakes approached either rectangular or circular 
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cylinders, Hodson and Nagib (1975) verified the present author's conjecture 

of Section 3c and provided approximate criteria for the rather sudden appearance 

of the vortices such as the one seen in Fig. 5a. They also clarified considerably 

the effect of free-stream unsteadiness on the vortex behavior and on heat 

transfer rates at various locations of a large cylinder, but these observations 

will be discussed later. In Fig. 5a, the dye marks the center of a steady 

subcritical horizontal wake which impinges upon the vertical face of an 

elongated rectangular cylinder. By making the length of the main cylinder six 

times its width, D=23.75 mm, the upstream influenct of its wake (end of Section 

2b) was minimized so that the bifurcation of the oncoming wake at Sf (Fig. 3) 

and its tight roll-up into a pair of horseshoe vortices was steady to the eye. 

In the side view of Fig. 5a the horizontal traces of the two vortex cores obscure 

the fact that the dye did not penetrate the boundary layer of the target 

cylinder although some of the fluid from the edges of the wake should do so. 

The flow was always observed simultaneously in the plan view through a 45O 

mirror arrangement. The reader is referred to Hodson and Nagib (1975) for 

discussion of the plan-view observations which revealed significant alterations 

of separationand wake behavior of the main cylinder in the proximity of the 

.Jortices. While the implications of such observations for various flow 

characteristics, including heat transfer, are of interest, for the present 

purposes the important findings are the existence of steady vertical response to 

steady upstream nonhomogeneity and what Hodson and Nagib call the threshold of 

incipient formation of the vortices. - -.~ 
3e. Evidence of Steady-State Threshold and Implications for Theory -. 
Figure 6 presents an ad hoc empirical correlationofthe conditions which 

separate states with and without vertical cells in several series of visuali- 

zation experiments by Hodson and Roadman (1975) under Nagib's guidance. 

They were done with smoke in air and dye in water (in a water channel and a 

towing tank) and with single and multiple wakes which impinged on one 

rectangular and one circular cylinder. The experiments were carried out with 
the concept of the vortices as amodule in heat-transfer convection rather than 

with stability theory in mind. 

Other attempted correlations involving wake momentum defect and wake 

vorticity met with lesser success. One should keep in mind that these 

quantities and the thickness 6 of the stagnation boundary layer 
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are very difficult to measure without probe interference at the conditions 

needed for visualization and therefore had to be estimated. In Figure 

6, 6/D = c W/DVoD) 4, c = 6.59 and 4.66, gives the estimate for the boundary 

layer thickness at the stagnation line of the rectangular and circular 

cylinders, respectively; M is the "mesh" or lateral distance between wake- 

generating multiple cylinders, which provide a variation of AV without 

change in the important lateral length scale after the individual wakes 

merge ; U is the grid solidity d/M; and the subscript of Re indicates 

the length on which the Reynolds number was based. The ordinate (Ay/d) t 

is related to the strength of the centerline momentum defect empirically - 

Hodson and Nagib (1975), Nishioka and Sato (1974), Kellogg (1965). The 

term Red. (b/d) in the abscissa is proportional to D/6: One would wish 

that the correlation be more physical but even in this steady laminar 

case too many parameters enter the formation mechanism. Without theoretical 

backing, there is no reason then to expect the threshold state to map 

into a single curve in a two-dimensional representation. 

How does this threshold as perceived by Hodson, Nagib, and Roadman 

relate to instability theory in the light of the discussion of nonlinear 

effects and diagnostics in Appendix lh and li? Let us assume that the 

system would allow initially exponential growth in time as its characteristic 

Reynolds number passes the neutral condition, Recr, if the disturbances 

could be kept infinitesimal. This assumption is made in most of the 

theories thus far. Sutera et al (1963), Sutera (1965), Williams (1968) 

and Inger (1977) also start with infinitesimal disturbances but suppress 

time dependence in their analysis. Let us also assume that free-response 

finite disturbances in the system could be characterized by a single 

amplitude A(t) and that the system has an inverted bifurcation at Re so cr 
that its neutral curve has a shape as in Sketch 1. These assumptions 

allow for the simplest threshold behavior in temporal stability. It is 

the behavior anticipated by Tani (1974) on the basis of the heat-transfer 

variations with intensity of free-stream turbulence of Kayalar (1969, Fig. 1). 

Whih the free response is characterized by A and a sinqle scale, say a 

dimensionless wavelength A* ,a.X* axis out of the paper has to be added 

and neutral states then correspond to surfaces in three dimensions rather 

than simple curves in Sketch 1. The more basic parameters there are, the 

higher the dimensionality of the neutral states. 

* Since 6 is proportional to JDv/u,. 15 
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Re min Re 

S&etch I 

According to bifurcation theory of the free eiqenfunction behavior, 

e.g. Joseph (1974), the dashed part of the neutral curve separates the 

domain of stable initial system states (Re,A(O))at the left from the 

domain to the right, where the states evolve unstably. The unstably 

developing states to the right of B-Recr may reach the stable amplitudes 

of the upper part of the neutral curve B-C provided turbulence does not 

set in - there is disagreement on the stability of states BC to all 

disturbances. In temporal instability, any initial state (Re, A(0)) to 

the left of B-WC, decays until it settles on the stable line 0-Recr of 

zero disturbance energy. The system follows a path such as l', if Re 

remains constant. 

Actually there were two distinct experimental procedures: Hodson's 

data in Fig. 6 with a horizontal slash through the symbols denote experi- 

ments in which the wake-casting cylinder was fixed, at y=y., while V, was 1 
slowly increased, and his data with a vertical bar through the symbols 

signify that V, remained constant while y. increased until the vortices 1 
disappeared. According to the simplified theory, as V, increases in the 

first set, the system would either decay along paths like l', or, if A(0) 

were on the B-Recr dashed line or to the right of it, the path would 

shoot up to the stable equilibrium B-C, as along path 1 in Sketch 1. Thus, 

if the temporal nonlinear growth rates past the neutral curve B-Re were 
cr 

fast enough, all the experiments of the first set in the region marked 
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"CELLS" in Fig. 6 should be observed to map into the.curve B-C in Sketch 1, 

with amplitude A dependent only on Re and not at all on the initial ampli- 

tude. Corresponding to the region marked "NO CELLS" in Fig. 6, the 

experimenters should see not -Just the absence of cells but rapid temporal 

decay of all normal mode disturbances to the zero energy states corres- 

ponding to O-&c, in Sketch 1. To change V, experimentally entails 

inevitable time lags. Therefore, identification of the initial time t 
0 

for the system (Appendix lb) is not feasible for the experiments and one 

should not expect to make definite conclusions from whatever transient 

temporal behavior might be observed. 

The experiments unquestionably indicate the presence of nonvanishing 

disturbances thus contra-indicating behavior 1' in Sketch 1; in fact the 

steady disturbances even grow spatially over part of the region, most 

likely in accordance with mechanisms discussed in Sections sa and 5b. 

Could it be argued that these nonvanishing, spatially growing velocity 

variations represent a forced rather than a free response of the system 

to spatial initial conditions of Hodson et al, within a temporal framework? 

Forced responses are not dealt with in the instability theory and are not 

present in Sketch 1. But if the interpretation in terms of forced motions 

were correct how could one maintain that the nonlinear threshold behavior 

which results from strengthening of this forcing is transformed into a 

free response describable within the framework of Sketch l? Since the 

computable free eigenfunctions of the linear theory would be modified in 

an unknown manner by nonlinearity in their evolution toward the time- 

independent modes corresponding to the neutral curve segment B-C, there 

seems to be little hope of operationally confirming the free-eigenfunction 

interpretation in this case. Esthetically, the forced-response interpre- 

tation would appear self-consistent. Given future computational capabilities 

it might even be numerically verifiable starting with a time - independent 

nonlinear perturbation of the Hiemenz flow with constant finite A values 

in the upstream boundary condition, Equation (7). The aforementioned 

papers of Sutera et al (1963), Sutera (1965) and Williams (1968) in fact 

proposed such a forced, steady, weakly nonlinear model and carried out 

some rather limited computations of uncertain convergence. At present, 

neither these computations nor the experimental information are adequate 

to validate the forced response viewpoint in any detail. 
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Thus far the comparison of experiments in set 1 with behavior 

portrayed in Sketch 1 dealt with paths of the type 1'. We have already 

seen that corresponding to-paths of type 1 the observable amplitude A 

should depend only on the Reynolds number. No assessment of the strength 

of the nonlinear vortices, such as the positions of the free stagnation 

point Sf in Fig. 3b or Sa, were made in the experiments of type 1. 

However experiments of type 2, where Re was kept constant and the forcing 

amplitude gradually decreased by moving the wake-generating rods upstream, 

do partly bear on the same issue of exclusive Re-dependence of the equilibrium 

amplitude A past the threshold. To conform to the nonlinear behavior of 

free eiqenfunctions in Sketch 1, the amplitude A2 would have to remain 

unchanged on B-C as the rod position yi increased until a state at or 

past the unstable neutral curve segment B-Recr was reached - at which 

time the amplitude should snap from A2 to a finite value and then decay 

along the path 2 in a manner simular to 1'. (The snap from A2 to below 

B-Recr would allow for the possibility of hysteresis in this peculiar 

open system.) 

Again, no specific record was made of amplitude characteristics as 

yi was increased,but in type-2 experiments amplitudes (as characterized 

by the position of Sf> are directly and immediately comparable. According 

to the memories of the experimenters, A2 did not remain constant during 

procedure 2, again contra-indicating behavior 2 and further undez-rnininq 

the basis of the two-dimensional Sketch 1. However, as y. of a single 
1 

rod varies, not only the wake disturbance amplitude, but also its scale 

varies (while for contiguous multiple wakes h* remains constantI. In a 

three-dimensional generalization of Sketch 1 to A, Re, h* space, 

procedure of type-2 for a single wake would correspond to a neutral curve 

in a plane Re=constant starting with A2 and varying with A*. The 

experimental observations do not therefore rule out a theoretical threshold 

behavior in a generalized three-dimensional space. 

According to the author's simplified reasoning in Section 3c, based 

on upstream forcing plus enhancement due to adverse pressure gradient 

(Section 4a) , one would expect slow growth of the vortices (after they 

are fully formed), as long as the effective strength of the disturbances 

can be increased. These expectations are not inconsistent with the 

Hodson-Naqib-Roadman experiments. The general impressions seem to be that 
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some forcing response is present and that somehow the characteristics of the 

boundary layer on the cylinder enter the quantitative determination of the 

geometry of the horseshoe vortices. whether these features can be 

incorporated in some modifications of the present linear and nonlinear 

theories will be taken up in Section 7. 

Figure 3b shows a fully formed double vortex which, according to 

Hodson, corresponds to conditions "sufficiently away from the correlation 

curve" in Fig. 6. Hodson also colmnents that "usually a small hairlip 

is observed at the threshold" (illustrated in Fig. 8 of Naqib - Hodson 

1977). This corresponds to a thin cusp of dye extending upstream from 

S in Fig. 3b when two dye lines are used on either side of the oncoming 

wake*. If this visualization discloses faithfully all the upstream 

motion,there would exist a second type of free stagnation point (within 

the boundary layer?) besides the regular type Sf in Fig. 3b, albeit over 

a very limited range of parameters. Also, developments past the threshold 

would not be discontinuous but rather rapid as a function of the steady 

disturbance strength. 

In accordance with Gen. F&shotko 4 one would like to see more detailed 

independent corroboration of the findings of the Hodson-Naqib experiments, 

especially since they were not devised to test stability theory. As stated 

in the Introduction, new information also gives rise to new unresolved 

issues; the formulation of these issues in this Section should help to focus 

the new experiments. 

* It is possible that the slight momentum defect from these two far-upstream 
slender ejectors was sufficient to modify the critical conditions at the 
zero-momentum stagnation line and caused the cusp. 
is in the wake-generating rod as in Fig. 

when the dye source 
Sa, the above interference is 

absent. 
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4 DIGRESSION ON OTHER INSTABILITIES LEADING TO STREAMWISE VORTICES 

(4a) Similarities and Differences between Three Flow Families 

It is instructive to compare the growth of the vortices discussed in 

Section 3e to that of Taylor vortices in an annulus between two cylinders 

when the inner cylinder rotates, e.g. Stuart (1971, p 348), and to the 

growth of G&tler vortices in a boundary layer with concave curvature, e.g. 

Bippes (1972), Tani (1962), and Wortmann (1964). Usually, the stagnation 

flow is linked to the Taylor and G&tler centrifugal instability, e.g. 

Stuart (1963, p SOS), because the streamlines in Fig.1 also have concave 

curvature. We shall see that the analogy may be weak at best (Section 5d) 

and that there may be significant differences in the stability character- 

istics of the three flows. Already the geometries of the base flows differ 

substantially: there is no "upstream", "downstream", or "free stream" in 

the annulus, while all these stream limits are present in the boundary layer 

on concave walls, and "free stream" and "upstream" coincide in the stagnation 

flow, One might expect the structure of the eigenvalue problems to reflect 

the associated physical differences, but the original formulations in terms 

of temporally evolving normal modes were essentially identical in the 

three cases. In particular, the growing vortices were all expressed as 

aw( 7) w?prsin (kls) , alternating in the spanwise direction 3. Also, the 

eigenvariablegwas always taken directed across the viscous layers of the 

base flows. However, in the region of validity of the stagnation Hiemenz 

flow this r)direction (Fig 1) is essentially upstream rather than cross- 

stream, a key physical difference which is hidden by the formal similarity 

of the eiqenvalue problem. 

(4b) Couette Flow Instabilities 

The temporal formation seems suited to the physics of the Taylor vor- 

tices in the closed annulus domain, Any local vorticity disturbance is not 

convected away by the stream (as in the concave boundary layer or in the 

stagnation flow) but remains within the closed confined space, Linear 

theory for an annulus of infinite length indicates that past a critical 
n 

Taylor number, Tcr('P(Vid/3)4(d/Ri); Ri,Vi, radius and velocity of inner 

cylinder; d, gap between cylinders) normal perturbation modes of computable 

wavelength Acr grow as exp/3t . A number of weakly nonlinear models (Stuart 

1971) suggest that the higher terms are stabilizing so that a steady vertical 
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motion, with A-AC,, should result. The centrifugally stimulated motion 

feeds repeatedly back on itself and the strong constraint of mass conserva- 

tion leads to the topology of an infinite series of vortex cells. 

Experimentally, when the inner cylinder of an annulus of finite 

length L is suddenly started rotating at speeds somewhat above Vcr, vor- 

tices spread axially inward from the ends, grow very rapidly past their 

linearized stage, and indeed reach nonlinearly limited finite amplitudes. 

However, the pattern evolving after the spin-up assumes a non-unique span- 

wise wave length fairly near that of the theoretical linear A,, for L-CO. 

Its exact value evidently depends on the initial distribution of vorticity 

in the domain at the time of the sudden spin-up (see Appendix lb for com- 

ments on initial value problems in closed regions). Snyder (1969, p 288) 

concluded on the basis of imaginative experiments with initial disturbances 

that "the mode having the highest amplitude initially (always) prevails". 

While the rapid initial growth in time appears consistent with the 

linearized exponential growth (if one keeps in mind that the impulsive 

acceleration is finite and that instruments have resolution thresholds), 

the vortex spacings h/d after two dozen revolutions will exhibit some 20% 

nonuniformity, presumably related to the initial distribution. Snyder 

(1969, Fig 6) showed that asymptotic equalization of the individual vortices 

depends on slow spanwise diffusion through the full chain of cells, with 

acceptable adjustment time of approximately LL/6v. (Unless use is made of 

high-viscosity fluids "steady state is not reached for periods of from hours 

to days", and therefore "all past measurements of A are open to criticism", 

Snyder, lot. cit., p 286). Snyder's findings were essentially confirmed by 

the overlapping investigations of Burkhalter and Koschmieder (1974) and 

Cole (1974). 

When the other experimental procedure of slowly creeping up to Vcr is 

employed, the initial velocity perturbations consist of (a) the flows induced 

at the axial boundaries which do not move in accordance with the ideal 

Couette velocity distribution,V=Ar + B/r,expected far away from the ends (but 

see Coles and Van Atta 1966), and (b) the nonuniformities induced by the 

final speed increment AVi of the inner cylinder. The latter influence is 

probably small, but the boundaries bring forth clearly discernible "anomalous" 

vortex pairs at the ends at about 0.8V and continue to induce additional 
cr 
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"ghost" vortices as V cr is approached. However, for sufficiently long 

annuli, "the speed at which all divisions between cells just become visible 

has been found to agree well with the calculated critical speed," Cole 

(1976, p 7). Cole (1974, 1976) and Burkhalter-Koschmieder (1973) provide 

us with detailed systematic observations and error estimates. The L-inde- 

pendence of the final rapid growth of the center cells in long annuli 

probably justifies viewing the final vortex formation process as a true 

instability which may grow nearly exponentially when the center disturb- 

ances are still small, in accordance with Taylor's linear normal-mode 

theory. 

The vertical formations induced by the ends are part of the initial 

conditions for the last AV i increment, but since the no-slip conditions at 

these boundaries persist, the sidewall motion may be considered as consti- 

tuting steady forcing by the boundaries. This sidewall action thus bears 

functional similarity to the role of the upstream rods in the Hodson-Naqib 

experiments. (There is even scattered evidence that at very high speeds 

the first seeding of randomness and turbulence starts in the forced,anoma- 

lously larger, vorticity formations at the ends,in the Couette case, just 

as it unquestionably starts in the forced wakes in the Hodson-Naqib and 

other experiments.) Thus, in presence of the steady forcing and the 

initial conditions (e.g., the initial flow distributions of Snyder), modes 

of motion similar if not identical to Taylor's linear normal modes are 

elicited away from the ends , grow and settle to nonlinearly modified stable 

modes with wavelengths near the unforced theoretical linear Acr. 

As Vi grows beyond Vcr an increasingly broader family of normal modes 

is admissible according to the linear theory. However, a small subset, 

judged by measured A values, is actually observed. Nonlinear theory for 

infinite L (Stuart, 1971, p 354; Stuart and DiPrima, 1978) suggests that 

some linearly admissible modes are nonlinearly unstable and that resonance 

mechanisms among sideband modes and the harmonic of the fundamental are 

responsible for the narrower range of allowable )r values. For finite L the 

additional requirement that the number of cells has to be an inteqer,imposes 

strong quantization restrictions on the observed modes and leads to hyster- 

esis effects in experiments with increasing and decreasing Vi. These major 

features of nonlinear Taylor flow behavior probably hold a lesson for anyone 
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expecting a well-defined A variation for the stagnation-flow vortices. 

In line with our interpretation of the end-wall geometry as forcing, 

Koschmieder (1975) introduced 0-rinqs,O.l7d in heiqht,at equal distances 

Af along his annulus in order to impose and stimulate preferential growth 

of vortices on the flow. And stimulated they were: "the first photoqraph 

With signs of vortices along the entire column was taken at 0.03TCr", i.e. 

at 0.17vcr compared to approximately 0.8Vcr for the flow with normal end 

effects (Cole 1976). In quasisteady procedures,vortices with 

1.47Acr<% <2;oxc, were unstable and split up into two vortices in a non- 

critical, continuous manner, Consistently with nonlinear theory, the range 

of stable vortices 0.69x0( Af <l.18hcr (roughly the same for quasisteady and 

sudden-start procedures) was narrower than the admissible range of linear 

modes; see Fig 2 of Koschmieder (1975). In accordance with Gen. Reshotko 4 

(section l), one would wish for corroboration of the nonlinear theory with 

nonpermanent forcing elements, e.g. vortex qenerators,which oould be with- 

drawn during the experiment once Vcr had been exceeded. It should be the 

nature of this closed nonlinear system, as it is the implication of Snyder's 

experiments (1969),that the forced components of those periodic motions with 

4 within the allowed set would decay after the withdrawal of the generators, 

i.e. the motion would evolve into the allowed Af nonlinear mode without 

rearrangement. Those forced motions with Af outside the allowed set would 

break up and rearrange themselves ultimately into one of the allowable set. 

In contrast, according to the Hodson-Nagib experiments, it is the nature of 

our stagnation-flow field that removal of the forcing rods upstream of the 

cylinder removes the horseshoe vortices near the stagnation line altogether. 

The disturbances simply are convected out of the open system and so are 

their response formations. 

In terms of bifurcation theory the configuration for the amplitude A(t) 

of the equilibrium disturbance states of the system with infinite L is super- 

critical, as in Sketch 2; see Stuart (1971) or Stuart (1977). Below Tcrr 

the quiescent states denoted by the heavy line 0-Tcr are the equilibrium 

states and other perturbed states should decay in time along paths like 

path 1' in Sketch 2. Past Tcr the quiescent states along the dotted hori- 

zontal axis correspond to unstable equilibrium. Statile equilibrium states 
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0 

‘higher bifurcations 

Sketch 2 

are now associated with the regularly bifurcating branch To-B, with defi- 

nite non-zero amplitudes, Other pure initial states would approach equili- 

brium along paths like 1. Again, Sketch 2 describes states completely 

characterizable by a single amplitude A(t;T);and to accommodate specifica- 

tion of wave lengths x or wavenumbers k we must generalize the equilibrium 

curve T cr 
-B to an equilibrium surface in the A,T,h or the A,T,k space. 

The dots past B in Sketch 2 allow for higher bifurcations, specifi- 

cally for the so-called wavy instabilities (Stuart 1971, Fig 2) at higher 

Taylor numbers (which depend sensitively on the ratio of the cylinder 

radii). The annular vortices develop an integral number of waves in the 

azimuth which propagate around the annulus so that a fixed probe records a 

discrete frequency (and weak harmonics). As an example, Coles (1965) 

observed 3 to 7 waves for Ri/Ro of 0.874 and a length-to-gap ratio of 27.9. 

As these waves set in,they presumably first grow exponentially in time until 

they reach new nonlinear equilibria where the vorticity distribution is 

characterized by terms like exp[i(me-i2nft] in addition to the earlier 

factor sin(k 5+ const) . We shall see that Hassler's 1972 experiments on 

the instabilities in the stagnation region also indicate a time-periodic 
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behavior of the streamwise vortices which has not been previously discussed 

as a possibility, Section 6e. 

The bifurcation diagram of Sketch 2 strictly corresponds to the infinite 

annulus and does not allow for forced responses, steady or unsteady. Never- 

theless, according to our brief account, forced motions are a fact of life 

in any physical realization of the flow. The concept seems to provide 

fruitful guidance for experimental diagnostics even though the forced motion 

cannot be generally treated as a small perturbation. In bifurcation theory, 

attempts to accommodate finite geometry (but not other forced motions) are 

sometimes described as studies of imperfect bifurcations. According to p 141 

Of Stuart's 1977 review, "it is believed (though in no sense proven) that a 

smooth transition takes place" and that the new equilibrium states correspond 

to a curve in Sketch 2 which runs somewhat above,but follows the heavy equili- 

brium lines rather closely, with the maximum deviation in the neighborhood of 

T cr * Stuart goes on for three pages to describe the difficulties of match- 

ing this abstract theory to experiments and the existing discordant views of 

both. 

(4~) Gsrtler Vortices in Concave Boundary Layers 

As pointed out in Appendix Id, the temporal formulation of the growth 

of streamwise G&tler vortices in concave boundary layers definitely does not 

fit the experimental observations: there is no time variation in the early 

development and the growth is in x. To the author's knowledge the determina- 

tion whether the instability is subcritical or supercritical has not been 

made, theoretically or experimentally. We therefore do not know whether to 

anticipate behavior associated with Sketch 1 or Sketch 2. In fact, there 

have even been substantial discrepancies in the computed neutral curves for 

the critical G&tler number G versus wave number k (G = Reth %; i- R, wall 

curvature; th, momentum or displacement sickness or J;- YX u , depending on the 

author). A survey of the problem and a collection of contending neutral 

curves is found in Herbert (1976). Herbert pinpointed inconsistencies in the 

difficult treatment of streamline curvature as a major contributor to the 

discrepancies. He also concluded that the gradual thickening of the boundary 

layer should be a first-order effect, of more importance than for the TS 

instability. An extended abstract of Floryan and Saric (1979),available at 
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this writing,suggests that they succeeded in devising a systematic non- 

singular approach to the curvature problem via the method of multiple scales 

and the DiPrima-Stuart (1972) scaling of disturbances in streamwise vor- 

tices. They also traced some of the past discrepancies to computational 

errors. Interpretations of experimental results should thus probably start 

from the new curves of Floryan and Saric. 

Experimental study of the G&tler vortices is itself very difficult 

because measurements of steady perturbations in space are much more insensi- 

tive and inaccurate than those of unsteady perturbations at a fixed position. 

Nevertheless, the hot-wire studies led by Tani (Tani 1962, Tani and Aihara 

1969) leave no doubt that there is at first an exponential growth in x which 

diminishes downstream either due to nonlinear saturation or due to detuning 

of the normal modes in a thickening boundary layer. Wortiann's (1964) 

ingenious Tellurium visualization technique in water generally corroborates 

the findings of Tani and coworkers. He also observes that the normal and 

spanwise velocity perturbations are twenty to thirty times smaller than that 

in the streamwise direction, thus providing support for the DiPrima-Stuart 

(1972) scaling. The rate of rotation of the streamwise G&tler vortices is 

apparently exceedingly slow (completing barely a 90' turn before transition) 

in comparison with our stagnation-flow vortices, such as in Figs 5 and 12, 

also in water. Stereoscopic studies of hydrogen-bubble traces in water by 

Bippes (1972) itidicate that the slow rotation ultimately accumulates bulky 

ridges of low-inertia fluid along directions where the vortex flow is away 

from the wall and that a complicated, nearly time-periodic secondary 

instability develops in proximity of these ridges. For comparison of its 

characteristics with features of secondary instabilities of nonlinear TS 

waves and of the wavy-form instabilities of Taylor vortices, see Bippes' 

1972 discussion, pp 165-175. 

There is some disagreement among the experimenters concerning the 

nonlinear developments and the nature of the breakdown (which are unlikely to 

be universal, anyway). However, there is general consensus about the linear 

behavior. At incompressible speeds without heat transfer, the amplification 

rates are relatively slow* in comparison to TS amplifications. As the 

* G&tler instability is suspected of contributing to transition on the con- 
cave walls of supersonic wind tunnels. 
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experiment of Bippes in Appendix la indicates, the more highly amplified 

normal modes are evidently selected from disturbances present in the layer. 

However, the maximum of these amplification rates with respect to wave number 

may be shallow. Thus by driving a disturbance with a wave length twice the 

preferred one, by winglet devices above the boundary layer, Tani and Aihara 

(1969) completely preempted the normally observed mode. Presumably, the 

forced mode was built up to nonlinear levels before the usual mode was of 

any consequence and thereafter became nonlinearly inhibited. "Mild selecti- 

vity to wave length" would explain why the wavelengths observed in four 

different experiments of Tani and Aihara were "almost independent of free- 

stream velocity". Evidently, small nonuniformities of flow inherent in a 

given experimental arrangement can force the G&tler response in their image 

provided the wavelength is amplified by the instability mechanism. 

(4d) Reprise of Comparison of Instabilities with Streamwise Vortices 

In Section 4a we listed a number of a priori similarities and dissimi- 

larities of the three families of flows with streamwise vortex formations, 

which in textbooks are linked by susceptibility to centrifugal instability. 

All three were originally formulated as temporal instabilities. The experi- 

mental evidence reviewed in the preceding sections strongly suggests that 

only the Taylor instability in Couette flow can be considered temporal in 

nature and that the G&tler instability is definitely spatial. Even though 

end-effects cause end vortices to be formed below the linearized critical 

conditions in Taylor instability, at T cr the vortices all along the annulus 

grow rapidly-- to undoubtedly nonlinear configurations. Spanwise equalization, 

however, takes place rather slowly by diffusive processes in an adjustment 

time on the order of L‘/~Y , In the other instabilities such times are not 

available as the vorticity is transported downstream. For these, we should 

therefore expect (and indeed do see: Tani 1962) spanwise variations in ampli- 

tude and wavelength of streamwise vorticity unless the vorticity is uniformly 

seeded upstream, 

Among the three flows, only stagnation region vortices exhibit velocity 

components opposite to the direction of the momentum which drives the flows. 

It is in the development of this local counterflow that the threshold-like 

phenomenon appears. Neither Taylor nor G&tler vortex behavior seem to pro- 

vide any guidance for understanding of the Hodson-Nagib experiments and in 
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particular of the threshold-like behavior in Fig 6. Nor is the model of 

subcritical instabilities in Sketch 1 truly consistent with the observations, 

incomplete as they are. 

However, in all three systems various aspects of the observed linear 

and nonlinear behavior seem to require for adequate explanation the presence 

not only of instability modes but also of forced response to initial and/or 

complete boundary conditions which are present in any given physical realiza- 

tion, This is the message of the Taylor-flow experiments of Snyder (1969), 

Koschmieder (1975), Cole (1976), Burkhalter and Koschmieder (1973) and of the 

selective stimulation of G&tler vortices with upstream grid and with narrow 

streamwise heating elements in the wall by Bippes (1972), and with winglets 

placed outside of the boundary layer by Wortmann (1964) and Tani and Aihara 

(1969). Quantitative mathematical elucidation of the details of the mecha- 

nisms constitutes the generalized problem of linear and nonlinear receptivity. 

Some of the forced responses may decay in time or space, after determining 

the early development of the normal mode response, as in Bippes' case of the 

small heating elements, while in other cases the forced response remains a 

factor throughout. Mathematical clarification of the characteristics of 

various categories of possible behavior would be helpful. The nonlinear 

aspects seem to be rather prohibitive at present, but are needed at least 

conceptually. With hindsight of the preceding sections, we can conjecture 

that the steady Hodson-Nagib vortices represent in part a forced nonlinear 

response which may or may not involve a free response, i.e. non-zero solutions 

of the associated homogeneous system of equations and boundary conditions. 

The disappearance of the vortices as the wake-producing rods are moved 

farther upstream seems to support the conjecture. 
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5 MECHANISMS AND LINEARIZED DISTURBANCE EQUATIONS 

5a Prandtlrs Inviscid Linearized Formula 

That there should be a tendency to accentuate steady-flow defects 

between neighboring streamlines, 4V ofFig3, in regions of adverse pres- 

sure gradients has, of course, been known for a long time, That it could lead 

to local reversal of the flow in absence of a "sidewalltt with its no-slip con- 

'dition (which was present in the case of Fig 4), that is intriguing. Prandtl 

(1932) considered small steady flow velocity differentials Vl and V2 between 

two stations where stream velocities are Vl and v2 and the stream tube 

areas Al and A 2 * 
Assuming that the process of acceleration or decelera- 

tion was rapid enough to neglect the slow action of viscosity, he used the 

conservation of stagnation pressures and of mass flux to derive a first order 

expression for the relative magnitudes of the defects; see Corrsin (1963),p.553, 

= V2A2 . (8) 

Here it is the change in the stream tube areas which reflects the role of the 

given streamwise static pressure drop or rise, p2- pl , Actually, Equation 

(8) has been used primarily for assessment of channel contraction ratios A2/Al 

which would depress steady-flow nonuniformities to a tolerable level. It is 

equally valid for expansion of stream tubes in front of cylinders which takes 

place in planes perpendicular to their axes, The stream divergence accord- 

ing to the asymptotic Hiemenz solution for the stagnation region is depicted 

in Fig 1. With AZ in the direction of the cylinder axis, a typical stream 

tube area A1 =f?lclAz expands to A 2 = T2 AZ and Equation (8) can be 

rewritten as 

Av2 
L: 2 &lJ B2C2 (9) 

A1 l 
----Avl . 

BICl 
While the result (9) basically rests on the fact that a given increase 

in pressure along streamlines has much more effect on fluid elements with 

lower inertia, it can also be interpreted in terms of the companion variable, 

vorticity, because AY~/Az - Uxl and oV2/pz h ax2 , Equation (9) 

then represents the increase in vorticity by stretching of vortex lines, 

which is the mechanism usually associated with the increased velocity 
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differences in stagnation regions. However, Equation (8) is clearly valid for 

non-planar geometries, say upstream of asymmetric three-dimensional bodies, 

where the corresponding analysis of the vector velocity field would be unwieldy. 

5b Forcing by Diffusive Vorticity Convected from Upstream 

Figure 7, borrowed from Kestin and Wood (1970), presents schematically 

computational results of a steady second-order theory as well as the coordinate 

system, matching that of Fig 1, i.e. with z axis along the stagnation line 

and the free stream coming from y H+ ag. Weak periodic steady laminar wakes 

-Vlcos kz (such as generated by Hodson and Nagib's two-dimensional grid in 

Fig 3) and the free stream, -V. , convect vorticity Gx = -kVlsin kz from 

upstream "infinity" toward the cylinder which is approximated locally by its 

tangent plane y = 0 in Fig 7. 

As long as the stream remains unaffected by the pressure field of the 

cylinder, roughly for y > 2.5D , the vorticity perturbation decays exponen- 

tially by diffusion - exp{-Ivk2(yi- y)/VoI) from some initial reference 

location y. , 1 For uniform base flow, V. constant, the sources in the vor- 

ticity equation (A2-5) of Appendix 2 are all zero and the vorticity evolution 

is governed purely by diffusion. This viscous diffusion and decay of vorticity 

does not cease, of course, as the cylinder is approached. It complicates the 

formulation of the upstream boundary conditions for the disturbances. The 

formula suggests that the disturbance amplitudes may have to be prescribed at 

specific values y. 1 
on the order of 2D if the free-stream forcing is to be 

taken into account realistically, This is of course way beyond the reach of 

Hiemenz variable '). 

There is a degree of confusion concerning the outer behavior in this 

direct inflow problem. To the experimentalist the subsidence of vorticity 

with decreasing y represents a most natural decay, To stability analysts 

looking outward from the body, the behavior appears as an exponentially 

divergent growth of disturbances to infinity. Such a divergence is not con- 

sidered permissible for the normal modes which are presumably rooted in the 

body boundary layer. In the Hiemenz plane, where the velocity of the base 

flow is allowed to diverge proportionally to r) asr)+e, the diffusive 

behavior of the Yorticity is further camouflaged by straining. Asymptoti- 

callY algebraic decay (or growth) then replaces the exponential decay obtained 
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for uniform v. * 
As discussed in Appendix 1, the normal modes do not develop out of 

nothing, but in conjunction with the forced response of the system. The outer 

diffusive behavior of the vorticity represents predominantly the forced res- 

ponse, For the Hodson-Nagib experiments, analyzed at length in Section 3d 

and 3e, the relation between the forced and free responses remained elusive, 

but the necessity of paying attention to the forcing was clear, Figure 7, 

kindly supplied by Professor Kestin, shows explicitly the upstream boundary 

conditions (which were deleted in the published version) and thereby under- 

scores the peculiar nature of the instability in the direct inflow stagnation 

region. What looks like a non-homogeneous forced problem is reducible to a 

homogeneous normal-mode problem by switching the boundary condition 

vl = constant to the condition on the derivative, dVl/dy = 0 as yI + 00, 

Assuming for the moment that the full problem was solvable in the r) variable 

alone, the full solution would presumably consist of the forced solution plus 

a dovetailing solution of the homogeneous equations with Vl = 0 as r) -f 00, 

if such a solution exists. The mechanisms underlying the equations (which 

differ only in one boundary condition) would in this case be the same. 

5c Vorticity Diffusion and Vorticity Stretching 

In approaching the cylinder the flow diverges in the yx plane perpen- 

dicular to the cylinder axis and the convected Wx vortex lines are stretched 

by the Hiemenz flow as already seen in Fig 1. For instance, the vortex line 

segment - BICl stretches into segment B2C2 as it is convected with the 

main flow and thereby generates a vorticity source in the sense of the right 

hand side of Equation (A2-5). According to Equation (A2-S), the rate of 

change of Wx observed as one moves with the material particles toward the 

cylinder depends therefore to the first order on the race between the dominant 

stretching source wx(aU/ax> (equal to +.)(aV/aY) by continuity) and the 

diffusion loss rate w2qay2+ a2qaz2) . The diffusion due to the curva' 

ture of the vorticity profile in the yz plane is governed by the square 

of its wavelength A2 : v(a2tdx/ax2) = -vk2% = -v(4*2/A2)wx . The squared 

length controlling the diffusion 
2 

V(a Wx/aY2) is that associated with the 

approach to the cylinder, i.e. usually a much larger term, on the order of 

D2 , except in the inunediate.vicinity of the cylinder, roughly up to twice the 
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height of the vortices in Fig 7. Furthermore, above this height this loss, 

besides being small, is of the same sign as -Vk20x. A slightly conserva- 

tive estimate of the ratio of the competing local stretching and diffusive - . 
rates is therefore -A* 2 /v4n2 or +A* 9 /V4Sr2 everywhere in a narrow 

wedge-like domain centered on the yz plane upstream of the body, where the 

above approximations are valid. 

Far upstream, a/ aY is negligible, the above ratio approaches 

zero, and we recover the exponential decay. The gradient aV/Jy scales 

with VO/D since total L)V is VD itself and the only characteristic 

length is D. For a circular cylinder in potential flow, 2 V/ 2 Y grows 

to approximately 1.5,/D at y = 0.250 and reaches its maximum of 

4VO/D at the edge of the boundary layer. There, however, the diffusion 

term 3 ( h2dx/> Y2) cannot be neglected so that the maximum x'Vo/JI12D 

of the approximate ratio of the stretching rate to the diffusion rate may be 

misleading. In particular, we do not expect the ratio to increase indefinitely 

with wavelength x . As X increases, the x-diffusion decreases, so that it 

will cease to be a controlling factor. Furthermore, as h increases, the 

likelihood of building up the stagnation pressure Ps beyond Pf , the 

free stagnation-point pressure, also decreases-- see the discussion in connec- 

tion with Fig 3b and the dual view at the end of Section 3c. 

Clearly, in case of counter-trends, general physical considerations such 

as in the preceding paragraphs need to be replaced by actual solutions of the 

governing equations. As will be seen in Section 7, such solutions have not 

yet yielded convincing criteria for the "most amplified wavelength h '1. 

The preceding discussion at least brought out the importance of both the 

diffusion and vortex stretching as the dominant physical factors in the steady 

phenomena portrayed in Fig 5a. It also suggests that we can expect net 

vorticity growth, solely from vortex stretching, especially very near the body. 

5d Centrifugal Destabilization 

Despite references to concave streamlines, no comparable demonstration 

of the role of centrifugal destabilization has been reported in the literature. 

According to Equation (A2-5), there are no additional terms in the G&tler- 

H&erlin vorticity equation beyond those identified above, not even within 

the boundary layer. Wilson and Gladwell (1978) conclude on the basis of a 
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generalization of Hayleigh's inviscid instability criteria that "the 

(centrifugal) destabilizing forces are confined to the region where W (the 

base flow vorticity) is appreciable, namely the boundary layer". The same 

conclusion can be drawn from Stuart's remark (1963, p, 505): "In such a flow, 

there are certainly regions where the circulation (product of local velocity 

and local radius of curvature) increases as the local center of curvature is 

approached normal to the curved streamlines; consequently Hayleigh's 

criterion suggests instability," In accordance with Helmholtz' theorem this 

change of the circulation vanishes outside the boundary layer, In other words, 

curved irrotational flows are neutrally stable, 

Wilson and Gladwell identify two types of terms in the x and y 

momentum equations as due to centrifugal acceleration. However, they conclude 

that these are relatively smaller and end up with the G&tler-H&mnerlin system 

of equations. 

5e The G&tler Perturbation Mode, Its Temporal Dependence 

In 1955, long before any visual evidence of the formation of horseshoe 

vortex pairs at blunt two-dimensional leading edges was available, &rtler 

proposed that unstable, vertical, spanwise-periodic perturbations might account 

for the reported increase in unsteadiness and heat transfer in that region, 

The linearizably small three-dimensional perturbations were superposed on the 

Hiemenz flow, Equations (2), so that the velocity and pressure fields were 

represented essentially as follows: 

U = ax~@~(ri)+Ul(n)eBt cos kc) 

V = -6 COH(n)+Vl(n)eBt cos kc) 

W = i JZ Wl(rj)e f3t sin kc 

P = PH(x,n)+ pvaPl(n)eBt cos kg , 

Here and henceforth T = at and k stands for the dimensionless wave- 

number related to the dimensional spanwise wave length X by k = (2v/?,) fi 

since the spanwise coordinate z undergoes the same magnification as did y, 

namely z=mGr;. Substitution of (11) in Navier-Stokes equations and 
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linearization yields a system ofmomentum equations and the continuity 

equation 

5 -V;'WIEO. (12) 

Undifferentiated PI(~) appears in the z momentum equation and Pi(n) in 

the y momentum equation, Differentiating the former and eliminating Pi(') ) 

leads to a sixth order differential system in the velocity components which 

is expected to be subject to six boundary conditions. Mathematical proper- 

ties of the system and its solutions form a subject beyond the present dis- 

cussion, much as they influence the question about their relation to the 

physics of the problem. However, the simplest, nearly self-contained equation 

is the vorticity equation, which is well worth examining here, 

We first note that G&tler allowed for non-propagating temporal insta- 

bility through the sole unsteady factor exp((37) which cancels out in the 

continuity equation. The eigen-number /j enters all the other equations; in 

particular in the vorticity equation below it enters as /3 til and acts as a 

sink of vorticity, always in unison with the z - diffusion sink k2W ' 1' If 
the equation is interpreted in a steady system. As discussed in Section 3, 

the experimental evidence of Hodson and Nagib does not support the exponential 

time dependence, but neither does it definitely exclude its possibility. 

Furthermore, hot-wire evidence of Hassler, Figs 9 and 10 and Section 6e, dis- 

closes quasi-periodic time variations in response to random turbulence Tu 

of approximately 0.85% measured at y. 
.I = 0.83D upstream of the cylinder 

(10 cm or 120 mesh-length downstream of the screen). Such experimental evi- 

dence contains unknown contributions from forced motions, At any rate, the 

Gdlrtler normal-mode system does not allow for such temporal behavior. 

5f The Vorticity Equation and the Domain of its Validity 

Its mathematical properties and physical interpretation have been cen- 

tral to most analyses, starting with H&merlin (1955), who studied in detail a 

function !3(3) without identifying it as vorticity. If we enlarge the 

definitions (11) by wx = awl(n)exp(BI)sin kg , its relation to V-W velocity 
components becomes Y = Wi/k- kV1 and through the continuity equation (12) 
to U' 1 as well (Vi'- k2V,-Ui)/k , H&merlin's g function. Since the 
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perturbations are assumed to be small one can obtain an equation for ~1 

directly from Equation (A2-5) in.Appendix 2: 

The vorticity stretching source rate wx(aU/ax) and the diffusion loss 

rates v(a2~x/az2) and v(a2qay2) , used for the less restricted approach 

to the cylinder in Section5c, become for this specific perturbation pattern 

(whichis immersed in Hiemenz flow) Q;lwl , -k2wl , and w" 1' respectively. 

(The term -@HUi represents the observer derivative as he follows the mean 
Hiemenz path toward the cylinder.) The ratio of sources to sinks becomes 
rPyk2, independent of w1 when k2 is not too small and rl > 6 for y 
diffusion to be negligible. ln contrast to Section 5cthis lower bound on a 
characterization of the net local amplification increases monotonically as the 

cylinder is approached. 

According to Section 5c, the free-stream disturbances first decay due 

to vorticity diffusion before vorticity stretching reverses the trend; (see 

also the experiments of Sadeh, Sutera and Maeder, 1970b). The specification 

of the boundary conditions for the system and its consequences will be taken 

up in Section 5g; however we already saw in Section 5b that the problem of 

computing the response to the prescribed spanwise-periodic inhomogeneity at 

"infinity" of Fig 7 is included in the homogeneous problem when the deriva- 

tive of Vl is made to vanish at infinity. The monotonic rise in the net 

local amplification associated with the vorticity equation (13) indicates that 

the system cannot duplicate the occurrence of the minimum where vorticity 

diffusion is balanced by vorticity amplification. This again reflects the 

fact that the domain of validity of the Hiemenz and the G&-tler-H&merlin 

equations should be measured in small multiples of the boundary layer thickness 

rather than in terms of the body characteristic length D and that application 

of the method of matched asymptotic expansions, MMAE, should be considered; 

see also Sections 2a - 2c. 

It is not surprising, therefore, that the study of asymptotic solutions 

of Equation (13) for q + 4, (which is not the same as for Y-* O" , as 

brought out in MMAE), remained the center of theoretical investigations as well 

as of contention, e.g. Kestin and Wood (1970), Tani (1974), Iida (1978a,b) I 

Sade$ Sutera and Maeder (1970a) in fact abandoned attempts to characterize the 
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approach to free stream through the magnified variable and used "cylindrical 

coordinates" x,y Ci,e. 8 orx2/y2 very small as in our discussion lead- 

ing to Equation (5) ), to obtain a Reynolds number parameter in the equiva- 

lent of Equation (13) for the outer y-field, However, no rigorous matching 

with the inner field as characterized by Equation (13) was attempted, Sadeh 

et al (1970a) oversimplified their system so that their Equations (22) and 

(23) are inconsistent and their subsequent results at best qualitative. In 

view of the sensitivity of these issues, it is worthwhile to review the 

untranslated G&tler-H&merlin results and the discussion of the outer limits 

in their 7 variable, 

5g The Outer Boundary Condition on Vl 

The no-slip boundary conditions at the wall Ul(0) = y(o) = Wl(0) = 0 

present no difficulties but the outer limit y;)-coo does, on two counts. As 

previously noted, the first is philosophical: do we view the overall problem 

as an open system where small but nonzero upstream perturbations on v of 

the form Vloo exp((3?-).cos kJ (with /s possibly zero) can be admitted in or 

beyond the limit 9 +dc) ? This would be the view of experimenters and of 

engineers concerned with observed enhancement of heat transfer. Or do we 

ask that all perturbations strictly vanish as 7-06 and then arise 

"spontaneously" along the paths of the fluid elements? This would be the 

pure normal approach confined to the Hiemenz scales. In Tollmien-Schlichting 

waves and Gortler vortices, the normal-mode amplitudes are linked to the 

amplitude of the disturbance environment, though the mathematics of the 

linkage remains obscure, If a similar linkage existed here, solutions with 

both types of outer Vl behavior would presumably be present. 

The second difficulty with the outer limit is associated with the 

singular nature of the 7 limit in which the base flow velocity itself grows 

without bound: V-*ooas7+& . 0 Since this limit is fictitious (unless 

MMAE is applied), what is a logical physical requirement for perturbations 

around it? 

Gdlrtler (1955) first asked that all perturbations U1, Vl, and Wl 

approach zero as v)+a , but then observed that the milder requirement 

vl/vo --* 0 should be sufficient, even if V 1 should increase indefinitely. 
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5h R&merlin's Results and Some Implications 

The solvability of G&tler's system of equations and boundary condi- 

tions was investigated by R&merlin (1955). It involved first an assess- 

ment of the number of nondivergent linearly independent asymptotic solutions 

of the asymptotic equations in ul and V 1 in which 
@H was replaced by 

y= yI - 0.648 and 4; by unity as y and 9-90 . H&merlin then 

examined the feasibility of matching smoothly at some u] 0 the outer solu- 

tions (made up of the available, linearly independent outer asymptotic 

solutions) to the well-behaved inner solutions, q I' v7 0 (made up of six 

regular linearly independent solutions) and the possibility of simultaneously 

satisfying the wall boundary conditions. For the continuous wave number 

spectrum 0</3+ k2(1 , H&merlin found an extra degree of freedom for 

the coefficients of the linearly independent solutions. Equivalently, for a 

chosen positive value of /?I + kL < 1 , one "amplitude" can bechosen arbitrar- 

ily at 9 0 ' and then there would be a unique set of solutions such as those 

of Inger (1974) in Fig 17, For 'f3 + k2)> 1 , the extra degree of freedom 

disappeared because a previously convergent solution diverged and had to be 

discarded by setting its coefficient to zero. Hherlin considered the 

possibility that the resulting nine homogeneous equations in the nine constants 

could have discrete eigensolutions but concluded that this could only be 

settled numerically. In a limited numerical search with H.J. Maehly on a 

1955-type computer no eigenvalues were found. 

For the so-called neutral, i.e. steady, solution, f3 = 0 , H&merlin's 

asymptotic solution2for vl involved algebraic variation with the dominant 

term (r) - 0.648)k -' . This would be allowable for k2( 2 according to 

G&tler's weaker boundary condition vl/vo + 0 as y) + 00 . However, 

according to H&merlin the boundary condition Vi-t 0 (needed to make 

w1 -f 0 through Equation (12)) requires that k2 < 1 so that the above 

term would also decay to.zero. Thus for perturbations of Hiemenz' flow as 

'Y-t@ I Vi ~ 0 implies Yl-+ 0, According to Inger (1974 and 

private communication), that is the case for his solutions such as those in 

Fig 17, 

The implication of this is that the forcing boundary condition of 

Fig 7 cannot be satisfied with Vl # 0 within the Hiemenz flow, where V. 
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itself diverges as ( y) = 0.648). Wilson and Gladwell (1978) believe that all 

instabilitymechanisms should occur within the Hiemenz scale and reject 

H&merlin&s algebraic approximation to Yl as unphysical, They maintain that 

any linearizable vorticity influence upstream fram the boundary layer must 

decay exponentially outward with v] . As discussed in Section 5b, this 

algebraic solution has the earmark of diffusive vorticity strained in the 

convective Hiemenz motion downstream toward.the body, If so, discussion in 

Section 5f and H&merlin's conclusion concerning Vl + 0 as 7 -b 00 

indicate that responses to unavoidable oncoming disturbances in this open 

system and their possible linkage with free normal modes cannot be accom- 

plished in the Hiemenz plane and that at least a two-region asymptotic match- 

ing process may be required to improve the correspondence of G&-tier's model 

with experimental observations, Even then nonlinearity and unsteadiness 

(quasi-periodic or randomlike) are likely to stand between the theoretical 

model and the physical phenomena. In this writer's opinion, however, the 

main stumbling block is the confinement to the Hiemenz plane. It is for this 

reason that he does not discuss the painstaking,weakly nonlinear treatment of 

Iida (1978a, 1978b). It does not seem to improve the physical picture, 

presumably because it is locked in the 7 variable. 
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6 EXPERIMENTS WITH UNSTEADY DISTURHANCES 

6a Possible Mechanisms of Enhanced Heat Transfer at the Stagnation 

Line 

As noted in Section 3b, all the reported experiments other than that 

of Hodson and Nagib had unsteady free-stream perturbations which clearly do 

not correspond to the assumed perturbations of Equation (11). Most investi- 

gations, largely motivated by experimental observations of heat transfer 

rates in excess of the theoretical (laminar) predictions, Schuh (1953), 

naturally focused on the technologically important cases at higher Reynolds 

numbers where the oncoming stream is usually turbulent. However, the exis- 

tence of steady vertical flow fields, such as in Figs 3 and 5a, suggests 

that increased heat transfer rates could be due to (a) increased "mixing" in 

steady nonlinear horseshoe vortex formations associated with steady nonhomo- 

geneity of the oncoming flow; (b) increased heat transfer rates across tempor- = 
ally thinner shear layers associated with some unsteady aspects of the flow; 

or C, additive or more than additive effects of simultaneous conditions (a) 

and (b). Small perturbation theory of Fourier-decomposed unsteady stagna- 

tion boundary layers yields only small second-order heat transfer effects, 

e.g. Lighthill (1954), so that effect (b) alone is unlikely to account for 

the observations. 

6b Visual Evidence of Hodson and Nagib and of Sadeh and Coworkers 

It is instructive to watch the movies which Hodson and Nagib made while 

gradually introducing unsteadiness in the oncoming low-Reynolds number wakes 

such as in Fig 5b. One finds that even though the modulation of the vortex 

formations is relatively slow, the relaxation times in this through-flow 

system are extremely short in comparison with those in Taylor vortices; see 

Section 3g. The sequence of frames shown in Fig 8 was recorded at the inter- 

vals of time shown in the figure. Here the steady wake of Fig 5a was replaced 

by a periodic but still laminar von Karman vortex street at Red of 90 by 

increasing the speed threefold. At 111 diameters downstream of the wake 

generating rod the fluctuations are rather weak, e,g. Kovasznay (1949), and 

this small, relatively high-frequency vorticity variation appears to change 

the mean stagnation region vortex cells very little. (For lower forced 

frequencies the effect could well be more substantial,) 
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Special interest centers on the response of the "amplifying system" to 

a moderate local disturbance marked P whose progress through the system is 

documented in Fig 8 and is described by Hodson and Nagib as follows: "The 

vortex flow module is always present on the average but is kicked out of 

position into the 'free stream' by the perturbation, When this occurs a 

large amount of the fluid in the vortices, which is marked by the dye, is 

ejected away, providing a very efficient mechanism for the mixing of the flow 

in the stagnation region with that in the free stream. It is conjectured 

that this mechanism also leads to added enhancement of heat transfer from the 

bluff body." The break up of the vortex pair and the ejection are seen in 

stages 5 and 6 of Fig 8. They are rapid and nonlinear and should give rise 

to some very thin temporal boundary layers. In Fig 8, the "disturbance" P 

marks a relatively small change in the oncoming unsteady but rather regular 

vorticity pattern so that the events can be clearly identified, contorted as 

the streaklines are, Apparently, when the disturbances are strong enough to 

cause mildly unsteady horseshoe vortex pairs to form we can expect sharper 

vortex interactions as the oncoming vortex pattern changes. Hodson and 

Nagib also mention interaction with vortices in neighboring cells when 

multiple wakes are observed. 

Sadeh, Brauer, and Garrison (1977) and Sadeh and Brauer (1978) present 

visualization studies using a single smoke filament injected just 0.321) 

upstream of the stagnation line, The short length of the history-integrating 

smoke streakline facilitates somewhat the interpretation of the motions in 

the region of interest which is viewed from the side, from the top, and from 

the rear. However, the momentum defect from the injection tube and its 

support system (enhanced by the adverse pressure gradient) is convected 

directly at the stagnation line and interferes with the sensitive motions 

over half of the span. The Reynolds number Red of the wake generating rods 

was 650, yielding a much more random onflow than that of Fig 8. Since the 

rods were only 18.3 mesh-lengths upstream of the main cylinder, there was 

ample upstream nonhomogeneity (category a) and unsteadiness (category b), 

Eachstudydescribes detailed analysis of 62 frames of motion picture film, 

each frame with elaborate interpretative sketches. A companion motion 

picture, available on loan from NASA, makes one appreciate the complexity of 
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the erratic response of the rolled-up vortex structure to oncoming turbulent 

eddies and the possible interaction with the neighboring horseshoe vortices. 

At these upstream wake conditions visual information concerning the oncoming 

eddies (such as that in Fig 8, where the disturbance P is identifiable) is 

not obtainable, which hampers the interpretation of the-responses and inter- 

actions, 

This writer has some reservations concerning a few passages of less 

critical interpretation* and the smoke ejector interference, The reader would 

benefit from studying the reports first-hand and could then judge for himself. 

Even if the reservations were correct, the net evidence amply demonstrates 

that increased turbulence intensifies distortions and vortex interactions 

such as described above in connection with Fig 8. In particular, in the top 

views, (Fig 11 of Sadeh and Brauer corresponding to sequential views of Y 

streaklines in our Fig 5b), "an additional feature of utmost significance 

hitherto unexplained is unfolded". To this observer, the sequence of 

stills and the associated sketches in their Fig 11 seem to portray variants 

of strong interaction between the one visible half of the dancing horseshoe 

vortex pair, the invisible oncoming upstream-modulated vorticity and probably 

the invisible neighboring vortex pair. The strongest interaction does not 

appear dissimilar in nature to that in the last three frames of present 

Fig 8 (where, however, the neighboring vortices are altogether absent). 

Whatever the best perception of the motions may be, their very complex- 

ity raises the question of adequacy of analytical modeling. These motions can -_-_^ _ 
hardly be considered quasisteady and mildly nonlinear. Could they possibly 

be portrayed with satisfactory accuracy by the first two or three terms of 

poorly convergent, weakly nonlinear approximations grafted on steady .neutral 

solutions ((3 = 0) of the GH equations (ll)? Do we have to adopt statistical 

* Seldom do two independent observers agree fully on the interpretation of 

single, history-integrating streaklines in randomly modulated flows with 

strong vorticity. Also some of the disagreements may be a matter of termi- 

nology. The one important issue, which is discussed in Appendix 3, concerns 

the criteria for callingthe boundary layer on the large cylinder turbulent in 

the classical sense. 
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.technigues from turbulence theory because of the randomness? Is the fonna- 

tion of the horseshoe vortex structures at all explainable within such 

theories? 

6c Csfer 

While the steady nonlinear cellular motion pictured in Figs 5a and 7 

may bring forth heat transfer rates in excess of those in a regular stagna- 

tion boundary layer, the unsteady motions described in the preceding section 

are likely to enhance the heat transfer even more. In other words, the 

observed increased heat transfer rates in presence of free-stream turbulence 

appear to be more likely due to category (c) in Section 6a than to category 

(a) alone. Hodson and Nagib devised a heat transfer experiment which 

covered the change from steady to unsteady controlled wake disturbances, The 

control was accomplished by moving the wake generators from outside while the 

tunnel was running and thereby inducing or suppressing the nonlinear horse- 

shoe vortices at will. 

They constructed a two-dimensional zither-like mesh of fine wires 

(diameter of 0.127 mm or 0.005 in.; solidities 0.05 and 0.10) and cast their 

wakes on an instrumented circular hollow Pyrex cylinder (diameter of 50.8 nun 

or 2 in.) in the arrangement of Fig 3b. As the wind-tunnel speed was slowly 

increased these wakes experienced transition to an unstable state revealed by 

an oscilloscope trace from a continuously monitoring hot-wire anemometer. 

This occurred near Red of 25, depending on the proximity of the zither wires 

to the adverse pressure gradient generated by the cylinder. A gold strip 

less than 10B6mm thick was baked onto the front of the cylinder, covering 

angles -ll"( q ( 11'. Whenever the hot wire would indicate instability of 

the wakes, the strip-chart recorder measuring the temperature of the gold 

strip would register a sharp decrease. Thus, substantially increased cooling 

by the air stream took place when unsteadiness set in. Since the vorticity 

released into the wakes of the "zither" wires increases continuously with 

Reynolds number, even in presence of an essentially two-dimensional instabi- 

lity, and since the strength of steady vortex cells, such as in Fig 5alalso 

increases continuously with Reynolds number, the sudden change in cooling 
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can be ascribed* to the onset of unsteadiness. 

For methodology and detailed quantitative results the reader is 

referred to Hodson and Nagib (1975) or Nagib and Hodson (1977). Their 

results relevant to flow instabilities are as follows: for steady wakes of 

the zither, the average Nusselt number over the gold strip increased by 5% 

at Re d of 19 and by 10% at Red of 24 when the zither was brought to the 

y/d range of formed vortex cells. As already mentioned, a discontinuous 

increase in Nusselt number occurred in this y/d range when multiple Karman 

vortex streets were sensed near Re d of 25. At Red of 27, the increase of 

Nusselt number due to combined effects of the cells and the Karman-street 

unsteadiness was about 23%. At Red values of 31, 37 and 42 the rise leveled 

off at approximately 29%, with increased scatter. The experiment demonstrates, 

therefore, that the formation of steady vortex cells does increase heat trans- 

fer rates in the stagnation region, category (a), and that presence of rather 

regular unsteadiness increases them more, category (c). We should keep in 

mind that the wakes at these low Re d values below 42 are not turbulent. The 

conditions probably correspond closer to the unperturbed patterns of Fig 8 

than to the disturbed pattern after the perturbation P interacts with the 

vortex. These are difficult experiments and corroboration of the results and 

their extension to higher Red values would be desirable. 

6d Experiments in a Towing Tank 

Our account would not be complete without discussing and digesting the 

most detailed experimental information thus far on the vortex structure in a 

turbulent environment, that from G&tler's Institute for Applied Mathematics 

and Mechanics in Freiburg, Germany. The reader really should examine the 

German originals of Hassler (1971) and :olak-Antic (1971) to appreciate the 

foresight, special technique, and care it takes to elicit the small-scale 

details of this unstable and unsteady phenomenon in vivo. Its unsteadiness 

* Evidence from continuous changes in variables (velocity increase and de- 
crease past the critical condition; back and forth motion of the wire grid 
without stopping and opening the wind tunnel) is of course more convincing in 
diagnostics of instability effects than from discrete changes in variables 
(such as installations of different grids). Discrete changes in parameters, 
which require stopping of the wind tunnel, invariably bring about unmonitored 
changes in some conditions of the flow or instrumentation and increase 
scatter substantially. This and the need to fair discrete data impair our 
ability to document cause and effect in instability phenomena from discrete 
changes in variables. 
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dictated the use of hot-wire anemometry; the need for x magnitudes on the 

order 6 - 15 mm for adequate spatial resolution and visualization called for 

water as a medium. The hydrogen-bubble visualization experiment of colak- 

Anti; and the hot-wire explorations of Hassler were therefore carried out in a 

water tank 0.23 x 0,28 x 3 m. Water provided relatively high Reynolds numbers 

and visualizability at low speeds, 5 - 40 cm/s, but at the price of (a) 

special techniques and constant recalibrations because of the conductivity of 

the medium and (b) the need to move the cylinder model with all instrumenta- 

tion (including turbulence screens, traversing mechanisms, the hydrogen- 

bubble cathode wire and the camera) on a sliding carriage along the channel. 

Two details are of particular relevance to the data to be examined: 

(1) the hot-wire signal itself was used as a guide to minimize the vibrations 

induced by the carriage motion so that these did not influence appreciably 

the 0 - 80 Hz spectrum of interest; (2) the bare 90% platinum-rhodium hot- 

wire sensors had a diameter of 5 microns and lengths of 1 - 2 mm and were 

welded onto conical prongs of like material. In Figs 9-10 and 13-16, due to 

Hassler, the wavelength was 7+cm (i.e. the wire averaged the signal over 

roughly one-fourth of a vortex cell), the boundary layer was 1.8 mm thick 

(Fig 14) , and the closest probe position was 0.5 mm from the cylinder, 12 cm 

in diameter. Thus when we consider the results in the plane of symmetry 

(from which the angle y is measured), we should again allow for the possi- 

bility of some probe interference: the flow is instability-prone and the 

probe does force upon it additional boundary conditions including an addi- 

tional momentum defect. For larger yN x/R, the component U of the base 

flow (Fig 1) builds up and the danger of upstream interference rapidly 

decreases. 

Since the wire senses only the velocity normal to itself, the same 

Fig 1 or Equation (1) also helps us to assess the relative wire sensitivity 

to the LJ and V components of the velocity. The flatter the streamline, the 

larger is the response to U, a fact to remember in interpreting the figures 

because Hassler always calls the signal u, irrespective of local streamline ~___-,-_-L ..---. .- ~-.- 
orientation. 

6e An Unexpected Quasiperiodic Behavior 

Figs 9 and 10 of Hassler disclose the presence of various types of 
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unsteadiness, which over the 0.16 second intervals (2,4 cm of cylinder 

travel) may display quasiregularity, some of it of unknown origin. These 
fluctuations are conditioned by free stream turbulence characterized by Tu 

of .85% (same for all the figures of Hassler) but unfortunately not by a 

spectrum; see discussion in Section 3b. Even though the 12 cm cylinder had 

a 24 cm long splitter plate attached at its rear, the wake oscillated at 

approximately 8 Hz (see lowest of Figs 10, past separation). For cylinders 

without splitter plate, upstream influence of both sets of vortices in the 

alternating wake produces appreciable fluctuation near the front stagnation 

line, at double the wake frequency. The small sample at 15.6 Hz in the 

upper trace of Fig 9 for 9 = O" suggests that the effect may appear even in 

the presence of the splitter plate. 

Because of the acceleration around the cylinder, the boundary layer 

thickens very slowly so that little error is committed if one uses a single 

scale b ~1.8 nun,even at\P = 45". Then the indicated y positions can be 

converted to the Hiemenz scale: q-l.3 - 1.4y, for rough comparison with 

Figs 17, 18, and 20 of eigenfunctions of the steady linear theory. The 

linearized vortex height corresponds to Wl = 0. The trace at y = 5 mm in 

Fig 9 with the largest unsteadiness corresponds then to approximately twice 

that height where the steady Vl perturbations have dropped 30 - 40% from 

their maximum. These traces exhibit a remarkably regular mysterious frequen- 

cy of about 86 Hz (60 - 70 Hz in other longer samples, according to Hassler's 

private communication). It is helpful to recall that Fig 9 portrays the 

behavior in the stagnation plane so that small vorticity perturbations are 

convected from the region of the lowest trace against the pressure gradient 

to the region of the uppermost trace. The lowest trace corresponds to 0 

of about 27, i.e. to the asymptotic region of the Hiemenz flow beyond the 

confines of Figs 1, 7, and 18. 

As we move away from the interference-sensitive stagnation plane to 

y= 15O (x ~1.6 cm~8.8b ) the mysterious frequency is still present, randomly 

modulated, according to the first trace of Fig 10. Here the signal would 

represent mostly the temporal fluctuation in U, if it were comparable in 

magnitude to that in V. The remaining three traces make it clear that the 

temporal tangential fluctuations damp out farther around the cylinder: the 
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boundary layer remained laminar despite its spanwise corrugations and 

despite the relatively high free-stream turbulence of 0.85%. 

The higher frequency oscillations of Figs 9 and 10 are representative 

or the quasiperiodic behavior mentioned in Section 4b in connection with 

wavy instabilities in Couette Flow. The turbulence level of 0.85% here is 

undoubtedly much lower than the unspecified level of Sadeh and Brauer, who 

saw no quasiperiodic patterns. However the same level of turbulence is high 

enough to hide the periodic Tollmien-Schlichting response in non-stagnation 

boundary layers in most investigations. Hassler's diagnostics seem con- 

vincing enough to exclude as possible causes the relative vibrational 

motion between the hot-wire and the cylinder-attached velocity gradients, 

and purely electrical effects. Unsteadiness there should be as a response 

to the grid turbulence, but what mechanisms would selectively amplify a 

narrow band of frequencies just at the outer edge of the boundary layer? 

The linear instability formulation of G&tler does not allow for such temporal 

periodicity. Could it possibly be associated with secondary instability of 

the nonlinear vortex formations as in the wavy instability of Taylor vortices 

(Section 4b) and the G&tler vortices (Section 4c)? Unfortunately, the 

plans to verify that the effect is indeed generic and to study its parametric 

dependence in a larger towing tank at Freiburg have fallen through with the 

closing of the laboratory. 

6f Visible Patterns of Eolak-Anti< 

&lak-Ant&'s two snapshots of the hydrogen bubble "time lines", Figs 

11 and 12, display the "top view", vertically downward onto the cylinder, 

with the leading edge seen tangentially at the upper edge of the photographs. 

The corresponding velocities V, of 11.9 and 19.4 cm/s bracket the 15 cm/s 

velocity of all the Hassler data in Figs 9-10 and 13-16. The lines of bubbles 

are released at equal intervals at 9 = ll" = 0.19 rad, y = 2 nun, i.e. just 

beyond the edge of the boundary layer and away from the sensitive stagnation 

plane, Once formed upstream of this station, streamwise vortices should 

follow the pattern of Figs 7 and 20 even if they "dance around a little". 

If the bubbles were released at the height of the vortex centers where W 1 =0 , 

a short time At later the bubble line Ay = Vl.At would resemble the profile 

of the Vl curve in the lower Fig 20 except that the bubble density would 
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increase or decrease depending upon the local narrowing or widening of the 

stream tubes in the y - 2 crossplane. For bubble release above or below the 

height of the vortex centers the bubble time lines are also subject to span- 

wise distortions due to Wl motion indicated in the lower Fig 20. Ultimately, 

had they had enough time , most bubbles would migrate toward the vortex cen- 

ters according to the streamlines of the upper Fig 20. At the speed of 

11.9 cm/s of Fig 11 the upwelling motion between the vortex pairs (near 

cos kz = 1 of Fig 20) is clearly visible and thenshapes suggest that the 

bubble line was released below the vortex centers, The bubble lines also 

distort in the streamwise direction because of the variation of mean and 

perturbation tangential velocities U(y) as is especially visible in Fig 12. 

At the higher Reynolds number of Fig 12 the irregularities seem to be more 

pronounced, including a tendency for stronger vortex pairs to interact and 

even absorb neighboring weaker vortex pairs. Some of this behavior is not 

as surprising as it might overwise be after the lessons of the Hodson-Nagib 

movie associated with Fig 8. 

6g Qn the Casesof Spatially-Fixed Mean Patterns in Nominally .~- 
Homogeneous Turbulence 

If free-stream turbulence were truly homogeneous one would expect 

vortex pairs to arise and disappear irregularly along the stagnation line as 

the different free-stream vorticity formations sweep in and out of the stag- 

nation region, giving instantaneous impressions similar to that of Fig 12. 

If the amplification along the paths had a sharp peak in wave number for the 

more complex unsteady perturbation equations here operative, one would expect 

a preferential wavelength to occur rather frequently but randomly along the 

span. However, true homogeneity would dictate no spanwise preferential 

location of vortex pairs, not even on a nonlinear basis. It is difficult to 

imagine an upstream influence from a finite-size vortex structure (which is 

being washed out of the stagnation region) strong enough to force the inde- 

pendent oncoming free-stream vorticity formation to replicate its pattern. 

That oncoming vorticity formations are rather powerful even in presence of 

strong mean vorticity fields was illustrated in Hodson-Nagib, Fig 8. And yet - 
substantial spanwise regularity in the mean does frequently occur in nominally 

homogeneous fields, as the remaining figures of Hassler will demonstrate, To 

the present writer this suggests that even subtle steady departures from 
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spanwise homogeneity in the oncoming stream do get picked up in an amplify- 

ing process and enforce a steady mean pattern, (The effect could be likened 

to that of a minute mean drift making itself felt in face of random molecu- 

lar motion, except that in this analogy the drift would be amplified.) When 

occasionally a rare experimenter investigates the character of turbulence 

downstream of a turbulence grid or screen, with care great enough to resolve 

small mean changes in presence of large A.C. signals, he invariably finds 

that there is more inhomogeneity and nonisotropy than expected, e.g. Bradshaw 

(1965) and Grant and Nisbet (1957). In particular, the idea that parallel 

rods can generate a turbulent field 10 - 40 mesh lengths downstream, homo- 

geneous for the purposes of experiments in stagnation regions,must be con- 

sidered a myth. 

6h Hassler's Averaqed Quantitative Field 

In the face of the unsteadiness exhibited in Figs 9 and 10, Hassler 

averaged the signals over one-second intervals (trace lengths over six times 

those in Figs 9 and 10) and labeled this averaged velocity component normal 

to the hot wire ii . Fig 13 displays the spanwise variations of E at 

q= 4‘ , x&O.41 cm-2.3s. A vertical cut at x = 2.3s in Fig 1 tells us 

that ii partakes more and more of -jx v1 than of ax-U1 (Equation 11) as y 

increases. Note also that fi - 0.42.aS for Hiemenz flow and that accord- 

ing to Fig 17 the maximum of U 
1 

is very small and close to the wall at 

V.-l.2 or y-.09 mm . Thus Hassler's averaging indicates vertical motion 

with h - 7+mm, k - 0.65 (using &= 2.4 fi = 1.8 mm), below 

y-3.6 mm = 2 d or ~~4.8. While Hassler could document only the peak-to- 

valley spanwise variation of the mean velocity normal to the wire, denoted b: 

ii' I we can safely infer the mean pattern of motion without direct W 1 informa- 

tion because of eolak-An&Is visual evidence under essentially the same 

conditions in the same laboratory. 

The quantitatively determined mean strength of the vortices, measured 

in terms of K', is substantial; see Fig 14. For y = 4' the maximum of the 

ratio ii'/u'(y=lOmm) is approximately 0.2 (0.1 in the U1/Uo , Vl/Vo notation of 

Equation (11)). A "zero-length" hot wire would indicate still sharper 

minima and maxima in Fig 13 and therefore higher iI'. The "instantaneous 

vortices" seen by ;olak-Anti; must have then been much stronger to yield 

Hassler's average numbers despite their spanwise shifting and dancing. 
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6i The Extent of the Hiemenz and the G&tler-H&merlin Domains 

and Decay inx 

The reader who wishes to develop a more concrete feeling for the nature 

of the imbedded Hiemenz-flow approximation will enjoy the exercise in inter- 

preting the mean "normal" U profiles at 'f' = 4O and O" in Figs.13 and 16, 

respectively,in terms of the theory; i.e., Equations (1) and (2) and the field 

of Fig.1 when modified for the stagnation region of a circular cylinder by 

Equation (5). 

For y < 1 mm in Fig. 14, the signal u1 should reflect mostly the behavior 

of the theoretically increasing component ax-U1 with downstream distance or y , 

but it decreases instead. Presumably this is associated with the curvature of 

the streamlines which now become convex: we are apparently beyond the domain 
II 

of validity of the Hiemenz and Gortler-Hkerlin flows. The cooling of the hot 

wire by the V 1 component may have also contributed to this trend. Note, however, 

that the decay of i' at y = 0.5 mm in Fig. 14 is much less rapid than at y = 2 mm, 

the height monitored in Fig. 15 as a function of y . 

Fig.15 tells us that spanwise variations, ii' , decay more or less hand 

in hand with the temporal fluctuations of Fig 10 as the flow accelerates 

around the cylinder. While the choice of the monitoring height may exaggerate 

the decay, it is unlikely that strong streamwise vertical activity would take 

place below this height. The time lines in colak-Anti;' Figs.11 and 12 

which were generated at the same height of 2 ran at y = 11° , may be displaced 

somewhat inward by the base velocity V. at this early station, but the main 

upwellingR motion in these figures probably occurs near y = 2 nun or even 

farther out. The genuineness of the decay is also born out by mean heat- 

transfer measurements and by the refusal of the boundary layer to become 

turbulent for rp(60° at Reynolds numbers below PeU on the order of 3.106 . 

At first glance Figs 11 and 12 of Golak-Anti; seem to contradict the decay of 

Fig.15, but his time-line distortions probably represent primarily the nearly 

frozen integrated effect of past history. It is difficult to judge the local 

time-rate of the distortion which is proportional to the local strength of 

the motion. colak-Anti: agrees with this interpretation. 
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The Mysterious Wavelength Doubling at the Stagnation Line 

The lowest curve depicting variations in the stagnation plane in Fig 

16 seems to show an effect opposite to the tendency to coalescence of vortex 

pairs observed in Fig 12 for larger 9 values. The development of this new 

.mysterious effect as the flow approaches the cylinder in the stagnation 

plane is documented in intriguing detail in Fig 16. At y = 10 mm h 5.66. 

mean hot-wire measurements (which now correspond purely to - m(vO+Y1simkz)) 

sense only the same pure wavelength, manifest at 9 = 4“ in Fig 13, but 

somewhat more iryegular. At y = 0.5 mm an irregular but definite and 

puzzling double structure is evident-- the explanation for the four points at 

f= o" marked with a question mark in Fig 21,transcribed from Tani (1974). 

How can this near-doubling be viewed in consonance with the rest of 

the concepts described here? It could be a manifestation of a true discrete 

eigenvalue selection in a borderline situation where two modes with Al , say, 

and h, = 2 h, would be near equally likely and the randomness of the free- 

stream disturbances would shift the flow between the two patterns in time. 

Since the fields associated with the smaller-scale vortices also reach out 

less in the y direction, it would be possible for the time-averaged 

measurements to sense the larger A, mode alone at larger distances such as 

y =lO mm. While not impossible, the situation has no counterpart among 

linear shear-flow instability systems, nor among prototypes of nonlinear 

systems such as discussed in Sections 3 and 4. 

An alternative is the coexistence at all times of larger eddy formations 

for large y values with smaller formations near the wall. This pattern is 

even harder to imagine and believe. Presumably the mean streamline pattern 

would have to be somehow generalized from that in upper Fig 20 to accommodate 

first a row of free stagnation points at distances 4 apart at a height 

near 7 mm. Closer to the wall a second set of free stagnation points would 

apparently be called for. The two sets would have to mesh in such a way as 

to satisfy the topological consistency of the streamlines and achieve stable 

equilibrium everywhere. Recalling the discussion in Section 3c one tends to 

be pessimistic. 

Any explanation must not only clarify how the mean vortices could 

suddenly split in midstream as the flow approaches the stagnation line but 

a& hEthey could suddenly disappear as the flow leaves the staqnation 

line in the x direction. According to Fig 13, at y= 4O, i.e. x = 4.1 mm 

= 2.3 b , the smaller vortices are no longer sensed by the probe. 
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In the opinion of the writer, the most probable explanation is that 

the appearance of the second set is induced by the additional boundary con- 

ditions due to the presence of the probe. Stagnation regions and nearly 

separating (i.e., nearly stagnant) boundary layers are notoriously sensitive 

to probes approaching the wall. Here in the stagnation plane the absence 

(or smallness) of U to relieve the situation compounds the danger of 

localized probe interference. As the probe is shifted to y= 4O where its 

momentum defect is no longer convected totiard the stagnation line, the 

vortex formations in the stagnation plane cease to be influenced and the 

false signals disappear. In a 1977 lengthy private review of the likelihood 

of the various possibilities, Dr. Hassler also agreed that the last one 

appears as the most probable at this stage of our research. The question 

mark was placed in Fig.21 to warn of the probability that only the wave- 

lengths reported for y= 4" had best be used for comparison with theoreti- 

cal modeling. 

Another explanation for the measurements of Fig. 16, was pointed out 

by Ivan Beckwith and Dennis Bushnell, of NASA Langley, after reviewing a 

draft of this report. In presence of the vortices spaced X apart, a subset 

of counter rotating vortices with a wave length X/2 may be induced by 

viscous effects and could exist beneath the most unstable mode of vortices. 

Due to the structure of the mean flow (Fig. 1) this subset of vortices would 

move closer to the wall with increasing y, so that at y = 4O they would 

presumably be found only for y < 0.5 mm. Such vortices have been predicted 

by numerical solutions of the Navier-Stokes equations and observed experi- 

mentally in flows inside cavities beneath a shear layer or near horseshoe 

vortices upstream of an obstacle immersed in a boundary layer. This 

explanation is somewhat related to the second of those listed above. 
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7 OVERVIEW OF ISSUES 

7a Is There a True Instability? 

Perhaps the best point of departure for this Section are the theoretical 

findings of Wilson and Gladwell (1978). Having rejected the algebraic solutions 

utilized by all others (e.g. in Figs 7, 17, and 18), they show numerically that 

that G&tler equations then yield only stable solutions. They add, "There is, 

however, considerable experimental evidence that instability of this kind can 

occur," and "It must be concluded that this instability is, as yet, not satis- 

factorily explained". 

Is it clear that the observed phenomena really constitute an instability 

in the usual fluid-mechanical sense where a linearized system of equations des- 

cribes the basic mechanisms and admits exponential growth in time or space? ~0 

we have a well-posed mathematical problem? Wilson and Gladwell tellingly point 

to the severely limited upstream feedback from the body boundary layer and yet 

find it "appropriate to assume that all disturbances are proportional to 

exp@T)exp(i ky) M = Our Section 4b on Taylor vortices described the conditions 

physically appropriate to exppr growth with /3 real: disturbances are not 

convected away but reinforce themselves in the closed domain. What physical 

agent could make a the fluid disturbances grow in unison exponentially in time, 

even far upstream,in our problem? Experimental evidence illustrated in Fig 8 

suggests that the upstream influence is indeed very limited. Vorticity pertur- 

bations are convected in, interact, and are convected out. Rapid variation of 

the base flow in the direction of convection also distinguishes our flow from 

quasi-parallel flows where exp/33 (withf3 complex) may be rationalized. It was 

the purpose of the studies of the three flows with streamwise vortices in 

Sections 3 and 4 to compare the actual instability characteristics which were 

originally considered analogous. Sections 4a and 4d, in particular, underscore 

the special character of the stagnation flows which make it unlikely that 

exp637 is appropriate. The experiments of Hodson and Nagib in Section 38, 

however, did not definitely exclude expf3 7 as a possibility. 

7b Implications of Controlled Steady Experiments of Hodson and Nagib 

The same experiments show that steady flows corresponding to the steady 

free stream forcing portrayed in Fig 7 exist. When Vl is small, the forced and 

free response (if any) remains below the resolution limit of the visualization 
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experiments. As 
v1 is gradually increased, a threshold-like behavior leads to 

the appearance of mature nonlinear vortices with X set by the forcing distur- 

bances in these experiments with limited h range. The onset of the steady 

vortices evidently corresponds to a mild but definite increase in the heat trans- 

fer rate in the stagnation region (Section 6~). In accordance with Generalized 

Guideline 4 (Section 1) it would be desirable to replicate and improve the 

Nagib-Hodson-Roadman experiments and focus on the stability questions rather than 

heat transfer modules; (see Section 3e for relevant issues). In particular, the 

widest range of the ratio x/s should be tried to uncover any special scale 

receptivity of the stagnation boundary layer as Bippes has done for G&tler vor- 

tices (Appendix la) and Koschmieder for Taylor vortices (Section 4b). 

7c Forced Motion, Free Response, and Linkage 

Given the nonlinearity of the observed phenomena, can we recognize a 

pattern of known instability behavior in these steady experiments? In Section 4b 

the author proposed a forcing experiment in the non-unique Taylor-cell regime 

using a spanwise arrangement of vortex generators withdrawable through the wall 

of the fixed external cylinder. Withdrawal of the generators after the nonlinear 

cells with admissible h's are established will remove only the steady 

forced contribution to the flow but not the stable cells themselves, Withdrawal 

of the vorticity forcing rods in our stagnation flow removes the whole pheno- 

menon. Forcing and receptivity are central to our problem. 

In the G&tler instability in concave boundary layers and in the Tollmien- 

Schlichting instability, the receptivity in these open systems includes the diffi- 

cult subproblem of penetration of the disturbances into the shear layers. Its 

resolution for rotational disturbances may require a solution of an auxiliary set 

of equations, In the stagnation flow problem the disturbances are convected 

directly into the boundary layer along the streamlines of Fig 1 and this process 

is governed by the same differential equations as the postulated instability. In ---- 
the steady linearized case, this leads to the G&tler equations with /3 =o. 

If we could resolve the weak-disturbance cases of Hodson-Nagib experimentally, 

how much forced motion and how much free instability response would we observe? 

In the TS and G&tler instabilities above, the experimentally observed modes, 

presumably indistinguishable from normal modes, rise with the disturbance ampli- 

tude. In controlled acoustic excitation of a free mixing layer, the stimulated 
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normal-mode vorticity is linearly proportional to the forcing acoustic pressure 

gradient around the point of separation (before nonlinearity sets in). Does a 

similar linkage exist in our problem in the linear regime (if there is a linear 

instability)? 

7d A Crucial Limitation of the Hiemenz Plane 

At first thought the direct-inflow aspect of our problem should make a 

theoretical answer to the question far easier than in the other systems (Section 

5b) . The penetration subproblem is not a problem. But the search for an answer 

is thwarted by the limitations of the formulation of the problem in the Hiemenz 

plane alone (Section 5h). If Ul and W1+ 0 as YI-* , then 

Vi + 0 by continuity and so does Vl for the algebraically decaying solution, 

which should be linked to vorticity incoming from upstream. Thus treatment of the 

problem without using at least two asymptotically matched regions precludes 

answers to our quantitative search for a forced solution and a linked,free 

response (if any). 

The threshold behavior in the Hodson-Nagib experiments indicates that 

interesting answers could be sought through nonlinear formulation of the problem, 

which should then also include other higher order effects such as body curvature 

effect, etc. The initiative of Tani (1974) and Iida (1978a,b) in this direction 

is therefore interesting. However, this effort, too, is hampered by confinement 

to the Hiemenz scales. 

7e Continuous Spectrum and Optimum h 

If the algebraically decaying eigensolutions are admitted, a continuous 

spectrum of eigenfunctions for O<k (1 exists. Many of their "physical" 

characteristics for the "neutral" or steady solutions, 13 = 0 , are discussed in 

Appendix 4: "Miscellaneous Observations on the G&tler Model". Since, uniquely, 

the eigenvariable is colinear with the motion, the increasing functional values 

as YI decreases (say, for G)x in Fig 17) can be viewed as spatial amplifica- 

tion. Much can be learned about the complex motion by studying the relative 

shapes of the Ul, Vl , Wl , G), , and 
pl 

eigenfunctions as dependent 

on the wave number k. It would be interesting to know more about energy 

transfer in these flows, in particular production and dissipation, which are 

now computable. 
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The presence of the continuous spectrum is most likely due to the absence 

of a characteristic length in the Hiemenz base flow (Section 2). Extension to 

two or more asymptotically matched regions would probably supply an extra condi- 

tion and thereby criteria for an optimum h . At least two sets of researchers 

are working along these lines at this writing. The path is strewn with traps: 

the matching should be rigorous, A critique of one such attempt by Kestin and 

Wood (1970) can be found in Wilson and Gladwell (1978). Tani (1974) also pointed 

out that the crucial assumption of Kestin and Wood to the effect that the vorti- 

city Ux' 7 ) has no zeros in the whole 9 domain is incorrect (see Appen- 

dix 4). There has been no rebuttal to the latter criticism, Iida (1978a) 

proposes two weak criteria for A selection based on integral properties of the 

eigenfunctions in the Hiemenz domain. 

7f Agents of Instability 

Focusing on the instabilities associated with the vorticity in the bound- 

ary layer (rather than on the vorticity coming in through the open streamtubes). 

Wilson and Gladwell (1978) diminish the degree of freedom among the independent 

solutions of the G&tler equation by rejecting the algebraically decaying solu- 

tion as unrepresentative of the possible instability mechanisms. They show 

numerically that for O<k (10 the least negative fj in the expo 7 

factor is -1.3754 , whatever such global decay implies physically (Section 7a). 

Having removed the continuous spectrum and believing that the short upstream 

influence is fully covered in the Hiemenz range, Wilson and Gladwell see no 

reason for using matching and inner Hiemenz 7 and outer, Y/D I scales, 

advocated above for different purposes. 

They also demonstrate that centrifugal instability is not a factor in 

stagnation-flow instability despite frequent invocation of the analogy in the 

literature. Examination of the terms in the vorticity equation (Section 5a-5c 

and Appendix 2) identifies the stretching of any 'x - oriented vorticity, as it is 

convected toward the body,as the dominant destabilization in the steady motion. 

It is the Brown University group, Sutera, Kestin, Maeder, Sadeh, Williams, Wood, 

etc. who emphasized that this mechanism (so familiar in turbulence) is at work 

here where others invoked centrifugal instability. However, it was not made 

clear whether they viewed their eigensolutions as forced motion, free normal 

modes, or both. This could make a difference in starting the computations at 

large 3 values -- see the paragraph "Computer Differences?" in Appendix 4. 
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7g Experimental Information in Unsteady Environments 

The preceding issues dealt with steady or exponentially growing behavior 

in presence of Fourier-analyzed steady spatial nonhomogeneities in the spanwise 

Z direction. Most free-stream environments are also temporally nonhomogeneous, 

in fact more or less turbulent. The Hodson-Nagib experiments with controlled 

onset of K&m& instability in the upstream forcing wakes (Sections 6b and 6c) 

provide some insight into sporadic, more violent vortex interactions which are 

possible even for relatively low unsteadiness leyels (e.g. Fig 8). The 

careful stereoscopic hydrogen-bubble visualization of eoiak-Antic' for mild, 

presumably isotropic and nominally homogeneous turbulence add more physical 

insight (Section 6f and Figs 11 and 12). Hassler's unique hotcwire information 

at slightly higher Tu -., 0.85% (Sections bd, be, bg, and 6h) brings forth two 

questions: what mechanisms select the dominant temporal quasi-periodicity 

(Figs 9 and 10) and the prominent average spatial quasi-periodicity 

(Figs 18 and 20) at 240 meshlengths downstream from a nominally homogeneous 

turbulence screen? These most detailed of the available experiments, carried out 

in a reasonably controlled and monitored environment, give indications that the 

spatial vortex structure scales to some extent with the thickness of the boundary 

layer d , Fig 21. The grosser experiments of Brun et al (1966) and Kestin and 

Wood (1970) with less assurance of homogeneity are in general agreement with the 

results of Hassler and Eolak-Anti: concerning the one feature of preferred 

average A , Fig 21. 

At higher intensities of turbulence with distinct mean nonhomogeneity, 

Sadeh and Brauer (1978) demonstrated visually how complex and violent the vortex 

interactions can be. There is little chance to model these types of highly non- 

linear unsteady nonhomogeneous turbulent flows rationally for some time so that 

the conceptual issues perhaps should be addressed in flows with Tu (1%. 

7h Interpretation of Experiments with Unsteady and Turbulent Free Stream -_ 
Do these motions represent forced response, true instability, or a combi- 

nation of both? If we cannot reach an answer to these questions in the case of 

steady disturbances, we shall not be able to do so for this more complex motion. 

The limitations of the confinement in the Hiemenz plane are undoubtedly just as 

operative. We can certainly say from the visualizations that forced motions are 

present, probably to an increased degree; see, for instance, the strong forced 

vortex interaction in Fig 8. colak-Antic and Hassler agree that in their case 
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the disturbed motion subsides as the vortices are stretched around the cylinder 

with increasing y (Figs 10, 14, and 15). Such damping is often observed in 

thin laminar boundary layers despite the continued vorticity stretching which, 

however, occurs in the proximity of the wall. Time-line and streakline visuali- 

zation portrays the integrated history of the fluid elements, not their local 

rates of deformation, so that Figures like 12 and the stills of Sadeh and Brauer 

(157&) often give false impressions of excessive activity. Even at relatively 

high body Reynolds numbers the agitated motion does not cause turbulent bursts 

intrinsic to the scales of the body boundary layer. Thus the enhanced heat 

transfer subsides around the cylinder until a genuine transition in the buffeted 

laminar boundary layer of the body takes place at high Reynolds numbers. The simplest 

telltale sign of transition is the onset of high frequency oscillations in the boundary 

layer on the scale of 0.1 6 to 0.0015 and less; (see also Appendix 3). 

Does the.evidence in Fig 21 of vortex scales on the order of 2 - 4 b 

prove that there exists genuine laminar instability in the stagnation region in 

the sense of Section 7a, alongside the forcing motion? It suggests the possi- 

bility of unstable response but by no means demonstrates its presence. The forced 

response, after all, is also a solution of the motion in presence of the boundary- 

layer field and must reflect some of its characteristics such as the thickness. 

(Similarly the frequencies in decaying Wygnanski-Champagne puffs in a pipe at 

Reynolds numbers below 1800 will scale with the pipe shear layer without consti- 

tuting true instabilities of the shear layer.) 

7i Whither Further Progress? 

This brings us back to the question we posed in Section 7a in connection 

with the apparent impasse of the Wilson-Gladwell findings: is there a true 

instability in the steady and unsteady cases? The question is unlikely to be 

answered experimentally because the instruments read the whole motion, and it is 

impossible to decompose the signals without knowing much about the characteristics 

of the ingredients. Theoretically the most promising approach seems to be the search 

for the linkage between the forced and free responses (if any) for the steady 
environment, which means breaking out of the Hiemenz scales constraint 

(Sections 7c - 7d). 

For the unsteady problem it might be worthwhile to explore changes in the 

structure of the linear problem (forced or free) which would ensue if one replaced 
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w/37- ( (3 real) with exp (irT) ( freal or complex) in G&tler's 

formulation, Equation (11). Kayalar (1969 ) set up some general equations along 

this line but studied only the case with k = 0 , i.e. the bulk oscillation 

without vortex formation, Could there perhaps be any new ways of transferring 

energy to the disturbed flow due to special phase relationships? 

Since the Hassler hot-wire information is currently unique, it should 

serve as a springboard for still more incisive and more controlled experiments, 

in accordance with the Generalized Guideline No, 4 of Section 1. If two-probe 

space-time correlations could be accommodated for this interference-prone 

geometry, the experiments should prove most rewarding. 

Without improved information on detailed motion and on coherent motion we 

can say little about correspondence of unsteady reality with theoretical models. 

For instance, to use any comparison of optimal h values,drawn from steady 

linear theory in the Hiemenz plane,with the measurements in Fig 21 in unsteady, 

highly nonlinear flows as sufficient evidence for a model is an exercise in 

unwarranted extreme faith. Analyzing the present experimental information makes 

one feel very humble and conscious of the need for rigorous experimental proce- 

dures and rigorous inferences. 

7j Applicability of the Information 

Although the original motivation for scrutinizing the stagnation flows 

came from applications, the emphasis in this report has been on the basic infor- 

mation. Reliable, rational semi-empirical prediction methods for a host of 

applications cannot be expected without deeper appreciation of the physics and 

mathematics of the problems. 

The most immediate applications deal with heat and mass transfer in stag- 

nation regions of bluff bodies. When the leading edge is quasi-cylindrical and 

normal to the flow, the present account of the experiments and theory provides 

us with some conceptual understanding of the underlying mechanisms. It should 

appeal to the intuition of the engineer. Both the vortex roll-ups associated 

with spatial nonhomogeneity in the environment and the unsteady vortex inter- 

actions in a homogeneous turbulent environment contribute to an increase in 

scalar property transfer (Sections 6a - bc), without the body boundary layer 

becoming turbulent. Unless the body boundary layer undergoes transition to its 

own intrinsic turbulence, the heat transfer enhancement subsides with increasing 
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‘4 l The motions associated with the enhanced heat transfer evidently bear a 

resemblance to the general pattern of motion envisaged by G&tler in 1955. The 

vorticity-stretching mechanism is part of the dynamics , as has also been recog- 
by Bearman (1972) and Hunt (1973). 

The subject of transfer mechanisms and boundary layer instabilities at 
swept-back cylinders and axisymmetric bodies is a separate matter. There seem 

to be some similarities and some important differences so that drawing analogies 
is not reconrmended without further studies. 

- 
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APPENDIX 1 

RECEPTIVITY, INITIAL VALUE PROBLEMS, TEMPORAL AND SPATIAL NORMAL-MODE 

APPROACH AND NONLINEARITY 

a. The Problem of Receptivity to Disturbances and Some Illustrations 

In a detailed study of the grawth of Go:tler streamwise vortices in 

boundary layers on a concave surface in water Bippes (1972) deliberately 

stimulated disturbances of different spanwise wavelengths x by local 

heating at the wall. When the imposed A was substantially larger than 

the eigenwavelength Am of maximal amplification the initially daninant 

flow response was in vertical motions with the forcing periodicity A, 

followed by slow spatial development of ultimately dominant motions near 

A m' When Knapp and Roache (1968) irradiated the laminar boundary layer 

on an axisymmetric ogive-cylinder body with an acoustic frequency f in 
1 

a relatively broad band near the maximally excitable Tollmien-Schlichting 

frequency fm, the response apparently developed into that of free TS eigen- 

waves at the forcing frequency fl. When loud sound at frequency f2 near 

fm/2 was beamed at the boundary layer, the response appeared to be a TS 

wave of frequency 2f2,again near fm. When Loehrke (1970) gave a sudden 

pulse to a spanwise stretched thin wire (0.038mm in diameter), vibrating 

in the flaw direction within a 4mm thick Blasius boundary layer,a slowly 

broadening wave packet of TS waves with frequencies around fm grew and 

traveled downstream. 

These are but three examples of selective responses of unstable 

shear layers to identified forcing disturbances. Complicated responses 

with wavenumber spectra in the region of most-amplified eigenfuctions 

are knm to evolve in presence of low-intensity turbulence in the free 

stream for both the TS and Goltler instabilities. The intensity of the 

response grcws with the intensity of the free-stream disturbances and 

leads to earlier transition to turbulence in the shear layer. In open 

flaw systems: duct flows, free shear layers, and boundary layers (in 

wind tunnels or in free flight), the upstream regions generally contain 

nonvanishing acoustic, vorticity or entropy fluctuations which penetrate 

the shear layers and excite their responses. These responses evidently 

include free eigenfunction motions (normal modes) which dominate in un- 

stable shear layers. The processes of penetration, excitation of forced 
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and free responses ("internalization" of the disturbances) constitute the 

receptivity problem as identified by Morkwin (1969) and discussed by 

Reshotko (1976). Rigorous experimental elucidation of receptivity and 

its convincing theoretical modeling represent an important step in our 

further understanding and estimation of transition to turbulence, see 

Morkwin (1978). 

b. Temporal Initial Value Problems 

Receptivity is sometimes linked to initial value problems of linear 

instability. For such problem formulation it is assumed that the dis- 

turbances have already penetrated the shear layer and that they are known 

throughout the region at scane initial time to. The evolution of the forced 

and free responses is sought for t>t o generally in the easier temporal 

formulation. The motion associated with any normal mode k then grows 

(or decays) uniformly throughout space in proportion to exp(Bkt). This 

approach has the virtue of potentially identifying the forced response 

which presumably has little to do with the build up of disturbance energy 

to nonlinear levels. (However, this motion may possibly play a role in the 

initiation of subsequent secondary instabilities which seem to be necessary, 

but not necessarily sufficient, for onset of turbulence). Quantitative 

linking of the disturbance at to with initial amplitudes \ at to of the 

amplified normal modes of the free response would be conceptually helpful 

to the understanding of one element of receptivity. The equally important 

element of receptivity, associated with the transformations of the distur- 

bances as they penetrate the shear layer and adjust to it, is absent in 

the initial value problems. 

C. Spatial Initial Value Problems 

We must keep in mind that the analytic problem is exceedingly diffi- 

cult and that without substantial idealization it beccmes intractable. 

But whatever the useful conceptual lessons of initial value problems 

in time are, it should also be recognized that the approach does not seem 

to be adaptable to a number of important situations. For instance it 

does not fit the cited cases of Loehrke, or Knapp and Roache, and of 

Bippes, nor Bippes' case of excitation of Goitler instability by free- 

stream turbulence. In the cases of Loehrke and Bippes, the disturbances 

were introduced artificially directly into the boundary layer at fixed 

streamwise locations, and the forced and free responses evolved spatially 
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rather than in time. Apparently, the single-frequency, constant-amplitude 

acoustic excitation of Knapp and Roache also developed according to the 

spatial instability formulation, but involved furthermore the penetration 

and internalization problems, For these cases an initial-value problem 

in the streamwise direction x would be more appropriate although it is 

mathematically less well posed. (The handling of the downstream boundary 

conditions is not rigorous and remains ad hoc at this writing). Numer- -- 
ical experimentation on canputers with either linearized or full Navier- 

Stokes equations, e.g. Fasel (1976), Fasel eta1 (1977) and Orszag (1979), 

suggests that additional insight into receptivity could be gained with this 

approach for two-dimensional and simple three-dimensional disturbances, 

given enough funds and computer capacity. The word experimentation is 

used on purpose to emphasize that one loses the generality of analysis 

and that there are also problems of resolution and convergence. On the 

other hand nonlinearity can be handled. At this writing, however, no pub- 

lished contributions to the receptivity problem have appeared based on the 

spatial initial value problem. 

d. Issues in Spatial and Temporal Growths in Normal-Modes Techniques 

In principle, the temporal or spatial initial value problems can provide 

a quantitative sequential link between the internalized initial disturbances 

and the free normal modes which ultimately dominate the unstable motion. 

However, most linear instability analyses merely assume exponential temporal 

or spatial growths of normal modes of specific functional form and focus on 

the analytic-numerical problem of determining the eigenvalues and some typical 

eigenfunctions. Again the assumed temporal or spatial formulation may not fit 

the physics of the problem and may lead to serious difficulties in interpreta- 

tion. Thus, in our first example of receptivity, the streamwise Goitler vortex 

instability was originally assumed to grow as exp& while Bippes (1972) and 

others find only growth in x. For Tollmien-Schlichting propagating instabilities 

Gaster's transformations establish a direct link between spatial and temporal 

growth of the normal modes which is valid for relatively slow amplification rates 

in non-decelerating quasi-parallel boundary layers, Gaster (1962). 

For a system to be capable of both exponential grwth in t and x, 

inplicit in the Gaster transformation, the linearized stability equations 
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must have coefficients independent of both t and x, i.e. they should 

correspmd to a strictly steady and parallel base flaw of infinite extent. 

For slowly grwing boundary layers the slow x variation leads to second- 

order corrections which do not vitiate the physical interpretation. 

For non-parallel base flws with rapidly converging or diverging stream- 

lines, such as our flow toward the stagnation line, the exponential 

distnrbance growth in the streamwise direction is precluded by the variable 

coefficients in the governing equations. Since the coefficients remain 

constant in t, the exp8t factor for the solutions is available - and used 

by default. Its meaning deserves careful scrutiny. 

For quasi-parallel boundary - layer instabilities of the TS and 

GoFtler type, the eigenvalue problems develop in the cross-stream y 

direction. Free-stream vorticity and entropy disturbances travel along 

mean streamlines of the base flow and influence the fluctuations within 

the shear layer either by vertical Biot-Savart induction across streamlines 

or by slow penetration alcmg with the external streamlines because of the 

departure fran strict parallelism. (Acoustic disturbances, of course, 

can always propagate across streamlines). 

e. Some Special Features. of the Eigenvalue Problem for Stagnation Flaws 

Here again the contrast with the stagnation flow near the plane of 

symmetry x - 0 in Fig. 1 is striking. All vorticity and entropy dis- 

turbances are directly convected into the region of presumed instability. 

Furthermore, unlike in the boundary-layer cases, they are subjected to a 

known straining field (due to the base flow) during this convection. This 

means that forced response of the flow to upstream disturbances should 

be easier to calculate. However, the singular fact that the independent 

variable y or7in the eigenvalue problem is here in the direction of the 

stream and thus ties together the whole upstream history of the flow 

suggests that the physicsof the eigenrelations is basically different. 

Geanetrically, this is associated with the streamline bifurcation and 

the 90% turn at the stagnation line, not present for other instabilities. 

Sensing the peculiarity of the variable,Wilson and Gladwell (1978) 

argue on p. 517 that "the instability, if any, is the centrifugal insta- 

bility" which can take place only as the concave streamlines reach the 

vertical region of the base flow, i.e. the viscous layer. They believe 

that the upstream influence (working against the inflow) of a mechanism 
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confined to the viscous layer should be dying out exponentially and 

thereby they change the character of the eigenvalue problem. 

Wilson and Gladwell consider the possible role of free-stream 

disturbances and the effect of the upstream straining only in their 

closing remarks and negatively so. A major part of their argument is 

based on direct misreading of the German text of Hassler (1971) and 

colak-Antic (1971). Their experiments did not have "exceedingly small 

free-stream vorticity" because they towed a turbulence-generating grid 

ahead of their cylinder in the otherwise quiet water tank. The reported 

measured intensity is 0.85%, i.e. substantial enough to be dominant in 

other instabilities. The other part of the Wilson-Gladwell reasoning is 

taken up in the final discussion of the phenomenon. 

f. Reflections on Receptivity to Turbulence Leading beyond Initial 

Value Problems 

Since time and again interpretation of instability experiments hinges 

on the role of free-stream turbulence, it is worth-while to reflect on the 

nature of such turbulence and on how the inherent variability of its local 

intensity and scale may interact with potentially exponential responses in 

shear layers. It appears likely to this observer that receptivity to free- 

stream turbulence involves a problem more complex than can be handled by 

either of the initial value problem formulations. Already the first 

experiments on TS waves, those of Schubauer and Skramstad (19471, disclosed 

that free-stream turbulence elicits modulated wave-packet response in 

boundary layers. Free-stream turbulence in uniform flows is a decaying 

field, spotty in space and time (and only nominally isotropic and homo- 

geneous when time or ensemble averaged). Especially in the latter stages 

of decay, there are sporadic occurrences of higher-amplitude events and 

of patches with different scales , occasionally referred to as inner intermittency. 

A boundary-layer response in the form of finite TS wave packets is therefore 

consistent with such spotty, time-modulated, three dimensional, forcing 

disturbances. Within a given wave packet there is energy transfer in space 

and time. Because of this energy sharing the primary packets induced in the 

upstream region of a growing boundary layer by a spotty sporadic vorticity 

formation as it is convected downstream near and within the boundary layer 

will probably have to be characterized by a finite spacetime domain, Ax, AZ, At. 
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We note that information on temporal averages of free-stream 

turbulence or even on its three-dimensional spectra (if obtainable) 

would be of little help for the above picture of response to weak 

turbulence. Rather, for fundamental studies of receptivity at least 

two-probe, space-time correlations of the exciting and response signals 

are indicated. 

g. _Apparent Consequences of Substantial Amplitude Variations in 

x and t: Gaster Experiments 

The exploration by Gaster and Grant (1975) of simpler wave packets 

generated by sudden puffs through a small hole in a plate supporting a 

growing Blasius boundary layer and its theoretical modeling, Gaster (19751, 

taught us much about the linearized development of three-dimensional TS 

wave packets. It appears now, Gaster (1978) (subject to Gen. Reshotko 41, 

that the finiteness of the wave packet in AX,A z, At, brings about 

"dramatically" different nonlinear development and an earlier secondary 

instability (also called breakdown of TS waves). This comes from compar- 

isons of the behavior of the wave excited by the sudden puffs and those 

excited by "continuous puffing" through the same hole at the central 

frequency fm of the pulsed wave packets. Strictly speaking this is not 

a receptivity effect, because the linear development(whichis present 

because the disturbance is linearizably small)is modeled satisfactorily. 

However the effect warns us that there may be dangers of misinterpretation 

when we use the otherwise attractive procedure of studying responses to 

single-frequency normal modes. 

h. Subcritical Instability, Threshold Phenomena and Receptivity: 

The Duct-Flaw Case 

When the environment disturbances are larger and involve some non- 

linear processes the problem of receptivity gets even more complicated. 

It is likely that the cited 2f2 frequency response of the boundary layer 

of Knapp and Roache to a forcing acoustic disturbance f 
2 

resulted from 

nonlinearity in the sound. The harmonic 2f2 component may have been 

hidden in the background noise and yet brought out by the exponential 

amplification of the TS mechanism. Analysis of weakly nonlinear, slightly 

stable systems, e.g. Stuart (1971) p. 359, shows that "nonlinear effects 

may permit the existence of a threshold amplitude" above which instability 

can grw even though the system parameter is below the critical value for 
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linear (infinitesimal) instability. 

Hard evidence of such subcritical instabilities may elude our measuring 

instruments especially if it develops temporally in a truly parallel flow. 

For instance it has been stated in numerous papers that TS waves in two- 

dimensional Poseuille flow cannot be observed because the growth of the 

instability would be so rapid that only the final turbulent state of 

equilibrium would be ascertainable. And indeed for more than half a 

century no investigator was successful in preventing transition to turbu- 

lence above 60 to 90 percent of the infinitesimal critical Reynolds number, 

- until Nishioka, Iida, and Ichikawa (1975) brought down their free-stream 

turbulence to approximately 0.01% and maintained laminar flow beyond 

Recr b see Morkovin (1978, pp 7-9)for discussion of the issues . By intro- 

ducing controlled, nearly two-dimensional disturbances through a vibrating 

ribbon,Nishioka eta1 also set the stage for a spatially growing initial 

value problem and demonstrated the spatial subcritical threshold behavior 

of their TS waves. It is instructive with respect to the character and 

role of disturbances that Karnitz, Potter and Smith (1974) were able to 

reach only 0.87% of Recr with free-stream disturbances of approximately 

0.3% and reported privately that any loud voices or even finger snapping 

near the Poiseuille duct would switch the flow from laminar to turbulent 

near that Reynolds number. Theory has established that this flow exhibits 

subcritical bifurcation so that we are forewarned in our interpretations 

of the influences of disturbances. But what about interpretation of 

behavior in presence of disturbances in systems that have not been adjudged 

subcritically unstable? Or by observers who are not familiar with the 

peculiarities of nonlinear instability? 

1. Diagnostics, Thresholds, and Visualization Evidence 

The awareness of the possiblility of threshold phenomena is an essen- 

tial ingredient of diagnostics of instabilities. The willingness and 

capability of devising deliberate perturbations (the general "spoiler" 

technique, Morkovin 1969) is another mainstay of instability diagnostics. 

From such explorations by Hodson and Nagib (1975) it appears that the 

stagnation flow does show threshold behavior with respect to steady low- 

Reynolds number disturbances, see Section 3d and 3e. 

in important question with respect to diagnostics relying on visuali- 

zation techniques is their capability of resolving disturbances in their 
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linearizable stages. General information from hot-wire anemometry, 

primarily for TS type instabilities, suggests that velocity fluctuations 

below approximately 1% of local maximum velocity exhibit behavior 

consistent with linearized equations, e.g. apparent local exponential 

growth, absence of higher harmonics (within resolution of instrument), 

independent superposability of disturbances with different frequencies, 

no threshold with respect to subsequent stabilization etc. With care 

and know-how, monochromatic fluctuation amplitude of the streamwise 

velocity component can be measured quite reliably to 0.01% of the local 

maximum velocity so that the 1% estimate cannot be grossly in error and 

certainly is not on the order of 3%. 

Comparison of various visual indications of spatially growing 

narrow-band TS type waves with hot-wire traverses of the same controlled 

fields lead one to conclude that visualization almost surely does not 

resolve the fluctuations in their linearizable stage.* The conclusion 

is reinforced by studying Bippes' 1972 stereographic measurements of 

steady G&tler vorticies growing in x. The implication of these 

considerations is that when using visualization diagnostics we should 

be conscious that we are probably seeing only the nonlinear regimes,and 

that a threshold phenomenon may have taken place. Generally, then,we 

should distinguish between linear receptivity following a threshold 

jump when making our diagnoses. 

* Actually the issue is sufficiently important in diagnostics to 
warrant quantitative research for the several visualization techniques: 
smoke, hydrogen bubbles, thin oil films which indicate stress lines at 
the wall, evaporation and sublimation techniques. It is possible that 
steady streamwise vortices may be disclosed in their linear stages by 
the cumulative effect of evaporation and sublimation over sufficiently 
long time periods. 
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APPENDIX 2 

ON YORTICITY AND PRESSURE RELATIONS 

For "incompressible" flows with constant viscosity but variable ( for 

instance stratified) density,application of the skew curl operation to the 

Navier-Stokes momentum equation, Ox g , leads to an equivalent of a local 

angular momentum equation, expressed in terms of vorticity xx: = w 

D@/P) 
Dt 

(A2-1) 

This skew operation is said to decouple vorticity from its companion, the 

pressure, which in the momentum equation appears as Vp , i.e. operated upon - 
by a symmetric operation. 

When we use the symmetric divergence operator on the Navier-Stokes 

momentum equation, VO M , we banish skew entities by virtue of - - ,0-&l= 0 

and arrive at the pressure equation, companion of the vorticity equation (A2-1) 

(now with density constant) 

(A2-2) 

For compressible flows both the vorticity and the pressure equations get much 

more complicated,but only Equation (A2-2) changes its nature by becoming hyper- 

bolic: the operator on the left hand side of the generalized equation (A2-2) 
becomes the wave operator (l/a2) (a2p/3t')-(V2p) , (e.g. Phillips, (1960)), 

where a L 
is the speed of sound squared. It is then possible to use the 

equation as a vehicle for analysis of aerodynamically generated sound, with the 

non-homogeneous right-hand-side terms of the wave equation interpreted as 

effective generators, attenuators, and redistributors of sound, generally 

called "sources". As a fluid becomes "more incompressible", its speed of sound, 

a , increases indefinitely and the hyperbolic wave operator reduces to Laplace's 

operator in Equation (A2-2). Thus for idealized incompressible fluids any 

pressure changes, however caused, act "instantaneously" at any distance and 

come back "instantaneously" from any "reflectors" in the field. This mutual 

instantaneous interaction within the whole field conveys one of the essential 
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properties of the resulting elliptic differential equation, Since it at times 

camouflages causes and effects, it is often helpful to think of slightly com- 

pressible fluids with large but finite speed of sound, The instantaneous 

action concept is also present in the Biot-Savart law of induction of velocity 

by a "source-like" vortex, Such action must in fact be transmitted "hand in 

hand with the companion agent, the pressure", and often it is useful to think 

of it as propagating at the speed of sound, e.g. for linearized supersonic 

flows. 

The concept of sources comes from the fruitful study of linear 

ential equations with their right hand side given by the Diract delta 

function, such as 

1 & _ gp 
a2 at2 

= acz- x+) , t- to> , 

aT 2 at - K v T = 6(r_- rr, , t- to) . 

differ- 

or source 

(A2-3) 

(A2-4) 

The latter equation is the familiar parabolic heat equation for non-deforming 

(stagnant) fluids or solids where K stands for Kelvin's diffusivity or 

Maxwell's thermometric conductivity, e.g. Carslaw and Jaeger (1947), Chapter I. 

The inquisitive reader will also find a lucid presentation of the power of the 

source concept in Chapters X and XIII of Carslaw and Jaeger. For non-stagnant 

fluids, the local derivative operator b/at is replaced by the material deriv- 

ative operator D/Dt so that the left-hand-side operator in the heat equation 

(A2-4) becomes identical with the operator in the vorticity equation (A2-1) 

if K is replaced by V , the kinematic viscosity, 

It is instructive to linearize equation (A2-1) around a two-dimen- 

sional base flow u~(x,y) ,v,(x,Y) I ‘nBz (x,y) for the x-perturbation component 

of vorticity U-p and put it in the above form: 

(A2-5) 

The intrinsically three-dimensional terms on the right-hand side thus act as 

effective sources of r3 X’ The first term is the Wx stretching source due to 

base-flow straining while the other two terms are due to rotation of 4 and 

n onto the 0 BZ X direction, These two terms, however, are automatically 
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zero for the outer Hiemenz flow where >LJ,/>y =n I32 = 0, The two terms 

cancel each other exactly in the G$tler-&merlin flow for which YB and w 

remain independent of x . In these cases the vorticity stretching indeed 

dominates the behavior of Ox, 
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APPENDIX 3 

ON TURBULENCE CONCEPTS USEFUL 

IN DIAGNOSTICS OF LAMINAR-TURBULENT TRANSITION 

TURBULENCE implies spatially and temErally irregular nonlinear three- 

dimensional vertical motion resulting in transport of momentum (heat or mass) 

much larger than that due to molecular processes in laminar motion at the same 

mean Reynolds number (Rayleigh number or Taylor number, etc.). For point 

measurements turbulent character implies continuous three-dimensional power 

spectra decaying monotonically past some characteristic wave number (frequency). 

Turbulence may be present locally within large-scale organized motions (nearly 

regular, nearly periodic). 

TURBULENT-LAMINAR INTERFACES occur at sufficiently high Reynolds numbers 

as sharp gradients in flow characteristics between irrotational (exterior) flows 

and turbulent shear flows (jets, boundary layers, wakes,, plumes, etc.); also 

between laminar shear flows with regular oriented vorticity and neighboring 

shear regions which had undergone transition to irregular three-dimensional 

vertical motion (boundary layers, pipe flows, Couette flows with counter- 

rotating cylinders, etc.). 

TURBULENT SPOTS are formed through isolated localized fine-scale, 

higher-order-instability breakdowns of laminar shear flows. Through the 

ensuing turbulent-laminar interfaces turbulence spreads into adjacent laminar 

neighborhoods and is simultaneously convected with a "mean speed". In boundary 

layers "TRANSITION" begins at the upstream locations of the sporadically forming 

turbulent spots and ends where the spots have grown together leaving no laminar 

lacunas. 

INTERMITTENCY refers to repeated crossings of laminar-turbulent inter- 

faces at a fixed observer point. It is usually characterized by Y , the 

fractional time (between 0 and 1) of turbulent behavior at the point. 

In TURBULENT BOUNDARY LAYERS identifiable violent motions called "bursts" 

erupt sporadically near the wall. A disproportionally large portion of turbu- 

lent energy and Reynolds stress is generated in the burst activity. Bursts 

do not take place in boundary layers below some still poorly defined Reynolds - 
number Ree min depending on pressure gradient, three-dimensionality, etc. 
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Interfaces associated with turbulent boundary layers or spots at low 

Reynolds numbers (just past Ree min ) are diffuse, and it is difficult to 

determine operationally whether a boundary layer is a laminar, randomly 

buffeted boundary layer or a self-sustaining turbulent boundary layer. 

BUFFETEDBOUNDARY LAYERS, When upstream turbulence impinges upon a 

boundary layer below Remin , the resulting motion.has all the specified 

earmarks of turbulence, except that the scales of the motion exceed the 

boundary layer thickness, The mean gradients near the wall are then less 

steep than if the boundary layer itself was intrinsically turbulent. The 

transport of momentum (heat or mass) in such laminar buffeted boundary layers 

is therefore enhanced, i.e. more than if the boundary layer were not buffeted 

and less than if it were turbulent on its own scales. As the buffeted boundary 

layer grows, the transport of momentum (heat or mass) will increase as its own 

transition takes place. Laminar buffeted boundary layers occur frequently at 

leading edges of bodies and are of technological importance, e.g. in turbo- 

machinery. 

One can speculate that in high-speed Couette flow periodically oscilla- 

ting Taylor cells with periodic instabilities in wall boundary layers or in 

shear layers between cells can also be buffeted by neighboring turbulent 

regions. Since turbulence sets in at discrete locations, coexistence of 

laminar and turbulent regions should be expected. The temporal spectrum in 

such a doubly periodic cell near another partly turbulent cell would consist 

of two discrete lines plus a continuous spectrum as is observed. 
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APPENDIX 4 

MISCELLANEOUS OBSERVATIONS ON THE G;;RTLER MODEL 

Geometrical configurations often possess preferred vertical formations. 
Gijrtler's "spontaneous" pattern, Equations (ll), or its forced counterpart 
(say, generated by weak merged wakes from the dotted grid in lower Figure 3) 
certainly describe a family behavior which is present in many physical 
situations but not necessarily all. Kayalar (1969) proposed a different set 
of streamwise vertical patterns,without theoretical or experimental backing. 
Inger (1975) discussed another "forced disturbance model" of streamwise 
vortices, which may be too simplified, e.g. V1b-l) = 0 , and saw little 
evidence for their existence. In this section, agreements on GErtler forma- 
tions and the corresponding physical fields are reviewed in detail. 

The Detailed Fields 

The general flow pattern, though to second order in the small quantities, 
is represented in Figure 7 and upper Figure20according to Kestin and 
Wood (1970). The n variation of the perturbation velocity components 
and the pressure for k = 2/3 in Figure17was borrowed from Ir.ger (1974) 
where additionalprofiles for k = 0.2, 0.5 and 1 , as well as for cases of 
very cold and very hot cylinder walls can be found. The lower part of 
Figure 20 for x = constant was constructed to show schematically the relation 
between the full flow streamlines in the upper part of Figure20 and the -- 
linearized Pl, Vl, Wl, a1 profiles of Figure17. The circles with + and 
- signs locate the local maxima and minima of the linear pressure 
perturbation with the ones near the wall being typically 4-6 times stronger 
than those near the edge of the boundary layer. The arrows show the relative 
magnitude of the physical perturbation velocity Vl (which is opposite 
to V ) according to Equation (11). 

Nonlinearity 

The Wl field and the rotational patterns of lower Figure20 are directly 
comparable with the upper figure, except for the second order effects present 
in the latter. However, for the full vertical-velocity and pressure picture 
we must superpose their counterparts on the base Hiemenz flow. The amplitudes 
of the linear eigensolutions in Figure17 are arbitrary as long as they are 
"small". One could normally dare to assume ratios of maxima in the boundary 
layer of Vl/Vo , P,/P, , etc. to be on the order of 0.2 f= the linear 
regime and up to 0.4 for second order analysis and still retain good pattern 
resemblance. However at the value of n corresponding to the free stagnation 
point in the Kestin-Wood upper Figure20,where Qo+V = 0 , oo- 5 and 
therefore V is locally a rather massive "disturbance". That such.large 
steady disturbances commonly occur in the real world has been shown by Hodson 
and Nagib (1975), e.g. upper Figure 5. 
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The Pressure Fields 

The flow away from the pressure minima at kc = 0 and 2~ in lower 
Figure20 could be puzzling until one makes some estimates of the Hiemenz 
pressure rise from the + circle to the - circle that must be superposed. 

According to Equation ( 6) this Ap- JrpVi (at +) = 'rPav@i (+)l. Because 
it takes a V perturbation of 1@,(+>I - 5 to cause stagnation at the + 
circle, and because the largely viscous pressure perturbation Pl is likely 
to remain nearly proportional to the first power of the velocity perturbation, 
this quadratic inertial pressure rise #2 

0 
will surely make the full static 

pressure at the - circle larger than that at the + circle. The pressure 
at the + circle near the wall at z= x/2 will then be the highest 
achieved stagnation pressure. The relative magnitudes of the stagnation 
pressures at the three stagnation points SQ , S and Sf in upper Figure 20 
should then be in the same descending order as at SE , S and Sf in lower 

Figure 3 discussed in connection with the threshold vortex appearance in 
Section3e. In the linearized viscous solution (lower FigureZO), the local 
pressure minima seem to be induced by vortex associated entrainment (viscous 
pumping) away from the regions in question. 

Does Vorticity w Have a Zero? X 

According to lower Figure20, the standing vortices have cores with solid 
body rotation as witnessed by the linear distribution of velocities from 
zero at their centers. But there are no pressure minima at these centers, 
as there would be in vortices resulting from roll up of thin vorticity sheets. 
It is a topological necessity for these vortices to induce Wl velocities 
as shown, velocities which generate their own thin vorticity boundary layers 
at the wall of a sign necessarily opposite to that of the standing vortices. 
Thus the upper figure, borrowed from the 1970 paper of Kestin and Wood, 
demonstrates the impossibility of a key statement of theirs in the same 
paper, to the effect that + does not change signs between n = 0 and 
rl+- (we shall return to the implications of the statement in Section 7 ). 
All linear vorticity computations (including those of Kestin's coworkers 
Sutera (1965), Figure 4, and Williams (1968), Figure 11) disclose the sign 
reversal as in Figure 17here, but the topological argument transcends 
linearity. 

The Smallness and Limited )IReach" of U Fields 

Thus with minor exceptions, there is a general accord on the consistency 
of the G%tler vorticity and velocity patterns and their occurrence in steady 
real flows, Hodson and Nagib (1975). All the computed perturbation profiles: 
Sutera (1965),Williams (1968), Inger (1974) and Tani (1974) also agree on 
the shapes of the profiles, their sign changes and on the smallness of the 
amplitude and the limited n extent of the Ul erturbation (Figurel7). p 
Sutera and Inger observe that Ul acts as if it were decoupled from Vl 
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and W,. Since velocities in the y and z directions and the pressure 
in Gb'rtler's‘model, Equations (11) are independent of x , the coupling of 
the Ul equation with the others is solely through the convective derivative 
v1 auo/ay - -vlq , which vanishes outside of the Hiemenz boundary layer 
near n = 4 . Thus the Ul equation is indeed independent of the rest, 
outside of the unperturbed boundary layer. H&merlin (1955) used that fact 
to start his asymptotic analysis. The single independent nondivergent 
asymptotic solution for the second order differential equation in Ul has 

the leading term Af(k)exp T-I- 0.648j2 
2 1 l (n- 0.648)-(k2+3) . The quadratic 

exponential decay signals the quenching of the coupling source. ( A is one 
of the free coefficients of the linearly independent solutions discussed in 
Section 5 in connection with H&merlin's smooth matching of the regular inner 
solutions and the outer asymptotic solutions.) The extensive outer reach 
of Vl and Wl variations relative to that of Ul underscores the inviscid 
nature of the basic amplifying processes (Equation (g), Section 5, or 
-wxW/ay): the Ul component is stimulated only through the gradient 
aU,/ay which is generated within the viscous boundary layer. 

Contrast with Grtler's Vortices on Concave Walls 

In 1955, before computers could numerically experiment with complex 
equations and grind out results on which the present discussion is partly7 
based, G&tler conjectured about the analogy between the vortices in the 
stagnation region and the "other" vortices bearing his name, arising in 
boundary layers on concave walls. The latter are driven by centrifugal 
instability, just like the famous Taylor vortices exterior to a rotating 
cylinder, whereas streamline divergence and adverse pressure gradients are 
essential here. It is unfortunate that this early conjecture is being 
perpetuated in widely used texts and reference books. The structure of the -- 
"other"Gortler vortices is vastly different. - In particular the Ul 
component, instead of being smaller than Vl and Wl by factors on the order 
20 (for reasons already discussed) is orders of magnitude larger as pointed 
out by A.M.O. Smith (1955) and Betchov and Criminale (1967). In one case 
Smith-computed the ratios- Ulmax /Vlmax and 'lmax 'Wlmax to be 285 and 
667, respectively! 

The Spanwise Flow Field 

The dimensional steady-state velocity in the x direction, 
ax@; (n)+ axU1 (n)cos kr; , also have x as coefficient, making the 
perturbation term still smaller in the region of validity of the approximation. 
The normal component of velocity, -6 (@o+Vlcos kc), gows only as t12 
from the wall because V(0) = V'(O) = 0 . The spanwise component is by far 
the largest in the vicinity of the wall at x = 0 . In other words, the 
solutions suggest that considerable velocity "can be generated along the 
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stagnation line toward S II despite the streamwise "leak" promoted by 
acceleration aH (see the end of Section 3c ) but that this motion does not 
build up a larger stagnation pressure pS because of the viscous pumping 
effect near S . The streamline pattern near the stagnation line should 
therefore look as depicted in Figure 6 in Inger (1977). 

The Temperature Field and its Limited "Reach" 

The slow streamwise removal of matter from the stagnation region should 
also make the steady-flow heat transfer at the wall more limited than 
intuitive ideas comparing molecular "mixing lengths" of the undisturbed 
Hiemenz flow with the "vortex-size mixing lengths" of the perturbed flow 
would at first suggest. Insofar as the fluid chums without substantial 
streamvise motion the heated elements return to the wall decreasing the 
origi.nal AT between the fresh fluid and the wall and therefore the 
capacity for subsequent heat flow. In the steady nonlinear regime there is 
undoubtedly a much larger thermal boundary layer thickness than could be 
accommodated by the Hiemenz flow, but quasi-periodic nonlinear removal of 
heated matter from the region appears as an additional mechanism that could 
help to account for the observed effects as conjectured by Hodson and 
Nagib (1975) - see Section 6a and Figure 8. 

If the dimensionless difference of temperature from its wall value is 
AT = lTW- T(~I)~/(T~- ToD) and its linear perturbation is 6,(n) , the 
differential equation for the latter, in the Hiemenz flow, reads: 

e;l+PrQO 0i-k 2 Cl1 = -PrAT' Vl 

where Pr is the Prandtl number. Comparing this with Equation (13) for 
wx ' we readily identify the thermal diffusion in Q and < directions 
as 0; and -k2el and the convective derivative -VU aelan as PrQO 0; . 
The source-like term on the right represents modifications of the otherwise 
stratified temperature by the cellular "mixing motion" Vl and plays the 
role of the stretching term -(aV,/an)w, = Qh* w1 in Equation (13). Both 
-AT'V1 and its aforementioned counterpart in the U1 equation, 
-(a2u,/a~2wl , vanish outside of the boundary layer whereas the stretching 
term continues to infinity as +wl in the Hiemenz flow. So like U1 , 
el is decoupled from the inviscid amplified vertical motion outside of the 
boundary layer and for Prancitl numbers near unity, i.e. for most gases, has 
n profiles very similar to that of lJl in Figure17. Typical profiles of 
linearized temperature perturbations can be found in Sutera (1965), Figure 9, 
and Williams (1968), Figure 16. The isotherms of the combined mean and 
perturbation field are essentially cosine like with higher temperatures 
occurring at z = 0 and X , where the perturbed flow is away from the 
vall (i.e. something like the V curve itself in lower Figure 20,but less 
exaggerated). The isotherms are straight at the wall because of the constancy 
of temperature imposed by the authors as boundary condition and again past rlof 
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4, the edge of the thermal diffusion from the wall in the V counterflow. 
They are the waviest near D - 1.2 - 1.4 , the maximum of the el profile- 

Computer Differences? Guideline No, 4 - 

In the preceding section we relied heavily on computers to elicit the 
general properties and features of the velocity, pressure, and temperature 
fields.. But computing is still an art rather than science in complex 
instability problems. Could differences in computational details and errors 
due to approximations be also amplified? Comparison of the results of 
Sutera (1965), his Figure 4, and Inger (1974), our Figure17, indicate 
substantial differences in relative variations for the one case computed by 
independent programs: k = 213 . (Inger actually used a compressible code, 
but the results in Figure17are for AT = 0 , Ao = Au = 0 , and yield the 
same Hiemenz base flow as a check.) Sutera's maximum of V1 and zero of 

wl (vortex center height) are located at n - 2.4 , while Inger's are at 
n - 3.0 . From its maximum at n = 2.4 to n = 8.5 , Sutera's Vl drops 
by a factor of 5 while Inger's V1 drops only by a factor of 2 between 
11 = 3 and 9 . The ratio of the negative inner maximum of W1 to its 
positive outer maximum (Figurel7) is approximately 2.7 for Sutera and 4.6+ for 
Inger. It seems that we can trust the general features discussed in the 
preceding section but not necessarily the magnitudes. 

It is not clear whether the differences creep in from error amplification, 
from handling of the conditions at "computer infinity" or from other causes. 

The Condition at Infinity: Reprise 

To start his integration toward the wall from a finite n , Inger uses 
asymptotic solutions which insure V,(-) = 0 . Sutera like all the Brown 
University investigators formally asks that Vi(m) = V;l(m)etc. + 0 as n + Q) 
and speaks only of boundedness of V1 at large D not of vanishing of V1 . 
The details of his procedure are not clear nor is it clear whether he agrees 
with the analysis of Himmerlin (1955) which indicates that for kc1 , 
vp -t 0 implies V,(m) + 0 as GErtler (1955) pointed out - see Section5h. 

All these investigations deal with Hiemenz base flow. For non-Hiemenz outer 
flow, V'(a) -f 0 would not necessarily imply V,(m) -f 0 as mentioned in 
Section'5. 

Tani and Iida, as reported by Tani (1974), make an explicit statement that 
the condition V1+ 0 as Tl+ Q) is incompatible with their differential equations 

which generalize the C&tler-H&nmerlSn system in several respects. First a 
circular cylinder is considered (with allowance for the wake) by introducing 
cylindrical coordinates and obtaining the factor (1+&&R)-' which 
modifies the limit of VO as n+rn, see Equation (5) in SectioA2d. Since 
for large n , a0 - n- 0.648 , V. + -aR = 1.765 V, (rather than m or V, ) 
as ll+-. Tani and Iida also account for the second-order boundary-layer 
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effects of nonzero curvature and for displacement thickness. The detailed 
equations are not shown in Tani (1974) but it is likely that the first effect 
is the governing one as regards the approach to infinity. The same modifying 
coordinate factor of Equation (9) is present in the definitions of the 
perturbations Vl and Wl . 
Flow Fields for Decreasing k --More Computer Differences? 

Tani and Iida's 1974 nan-Hiemenzian system included a mixture of first- 
order and higher-order terms, which presumably caused V,(d) to be a nonvanish- 
ing constant dependent on the wave number k, The smallest Vliw) occurred for 
k=O.35,corresponding to a longer wavelength X = 21~/0.35 &/a = 27.70 6* - 7.496. 
Thus each vortex cell is just less than four Hiemenz boundary layer thicknesses 
wide. The corresponding T) profiles in Figure 18 indicate the location of 
the linearized vortex center to be near ?-I of 4.5 or almost two boundary- 
layer thicknesses out. It is curious that Inger's adiabatic solutions with 
Hiemenz base flow (which have V,(w) + 0 ) for the sequence k = 1.0, 0.667, 
0.5, 0.2 show no outward shift of the vortex centers. The one striking 
trend in Inger's sequence is the strong relative decrease of Vl with 
respect to Wl as k decreases. In fact his Vl vanishes for all practical 
purposes at four Hiemenz boundary layer thicknesses from the wall for 
k = 0.2: according to him, longer wavelengths flatten out the motion and 
inhibit the normal velocity perturbations. Tani and Iida's solutions in 
Figure 18 ( V,(m) = min # 0 , curvature taken into account, etc.) appear then 

quite different, in particular in regard to the vigorous V1 motion relative 
to the Wl motion for such a relatively long wavelength. 

Iida (1978a) systematically sorted out the orders of maqnitudes in the 
Tani-Iida model in preparation for his weakly nOnlinear treatment (1978b). TO 
the first order (O(A.EO), in Iida's notation), H&merlin results of SeCtiOn 5h 
were recovered, The only first-order profile printed in Iida's paper is for 
k= 0.5, SO that a direct comparison with Fig 18 to observe the differences iS 
not possible, However! c~par-son with Inger!s 1974 k = 0,5 profiles reveals 
that Iidats results do not follow Inger's trend described aboYe, In fact, 
Iida's ratio Vlmax/Wlmax exceeds two, just as in Fig 18, whereas Inger'S falls 
below 0,5: 

The Hainzl-Hherlin Contradiction and Possible Resolution -___- 

One more clue for the far-field near-field relationship,(3 = 0 , should be 
mentioned, especially since it seems to have been forgotten. G&tler was 
well aware of the basic difficulties brought on by the parameterless, unbounded 
Hiemenz base flow. At his instigation Hainzl (1965) turned to a circular cylin- 
der and first found "a new rigorous solution of the steady Navier-Stokes equa- 
tions as a replacement for the Hiemenz flow", Physically, Hainzl's new base flow, 
see Fig 19, represents an incompressible field induced by applying infinite SUC- 
tion along the rear stagnation line. Ifthe v)= my magnification were 
applied, this flow could not be distinguished from Hiemenz', in rectangular 
coordinates fitted to the front stagnation line, and presumably from that of Tani 
and Iida in cylindrical coordinates for which V o is given by Equation (9). In. 
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1968, G&tler privately described the situation as puzzling, 

One can surmise that the puzzle centers on the asymptotic behavior of the 
stream function in the limits '7-t- and y+- . Neglecting the displace- 
ment effect for the limiting processes to follow Etainzl's stream function 
(Equation (5) ) for y> 4m , i.e. beyond the boundary layer thickness S ,is 

c&(r) = Ln(l++) = ,-!n(l+fi$) , (15) 

For y values large with respect to6 but small with respect to R , 

@H - y/R = m n/R - 00 of Hiemenz. The corresponding expression for the 
base velocity VO beyond the boundary layer is according to Equation (9) 

'OH = -&+n(l+ y/R$l+ y/R)-' which in the intermediate limit 

e -6 Qo(n>(l+ fi n/R)-l , the Tani-Iida expression. As n grows large, 
the latter approaches -aR , not V, , when the Hiemenz approximation is 
imbedded in a potential flow with uniform upstream V, , nor zero, the 
correct y limit of VOR when the Hiemenz flow is imbedded in Hainzl's new 
field solution. In the light of our discussion in SectionScof the vorticity 
amplification source -f.+ avo/ay there is ample opportunity for differences 
in results depending on which limit is taken and how carefully any matching 
of functions is performed. In Hainzl's case, vorticity disturbances oncoming 
from large y are first inviscidly depressed (cf narrowing of stream tubes 
coming from far upstream in Figure 19) as well as depleted by diffusion. hlY 
for y/R of less than 0.5 or so (in the 8 wedge of convergence of the 
perturbation equations) is there inviscid amplification. How far does q+oo 
really extend when the Hiemenz flow is analytically contained in a given 
external flow, such as that of Hainzl, and one is using a computer? The 
puzzle could be explained if H&-merlin (1955) worked within the limit of the 
inviscidly amplifying region near the cylinder and Hainzl apparently beyond 
it for his base flow. 
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Figure 1. Hiexnenz two-dimensional stagnation flow. (After Schlichting,l968.) 
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Figure 2. Fxamples of Wedding of Hiemenz flow in outer ir,rotational flows 
which provide a characteristic length. 
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Figure 3. Schematic of counterflow vortex formation due to impingement of 
steady wakes of "rods" on stagnation region of bluff bodies. 
(Courtesy of Hodson and Naqib, 1975.) 
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Figure 4. Centerplane smoke visualization of three outer streamlines in counterflow vortex forma- 
tions caused by placing a prismatic obstacle in a laminar wall boundary layer! (Cour- 

E teSy Of R. N03m~1, 1972.) 
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Figure 5. Side-view dye visualization of vortex formation due to a steady and 
a mildly unsteady single rod wakes. In (b) far-upstream laminar 

dye injection causes small momentum defects at the edges of the wake which may 
influence near-singular flow conditions. (Courtesy of Hodson and Nagib, 1975.) 
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Figure 6. Rnpirical correlation of threshold conditions for counterflow vor- 
tex formation for single and multiple wakes impinging on a rectang- 
ular cylinder. (Courtesy of Nagib, Hodson, and Roadman, 1977.) 
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Figure 8. Side-view dye visualizatiofi of strong unsteady interaction between 
a counterflow vortex pair and a "natural" perturbation P of the 
vorticity in the rod wake at Red = 90. (From a movie of Hodson 
and Nagib, 1975.) 
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Figure 9. Oscillographs of u'(t), the perturbation velocity perpendicular 
to a hot wire located at various normal distances y from the 

cylinder, presumably in the stagnation plane. Water tank experiments: 
v, = 15 cm/s; b = 1.8 nun; time = 0,02 sec/div; sensitivity lOOmV/div; 
TIN .85% generated by a screen riding 20 cm upstream of the cylinder; Tu 
measured 10 cm downstream,and 10 cm above the stagnation plane; screen mesh: 
12/cm; wire diameter: 0.31 mm. (Courtesy of H. Hassler, 1971, and private 
communication.) 
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Figure 10. Oscillographs of u'(t), the perturbation velocity perpendicular 
to a hot wire located at a normal distance y = 2 mm from the 

cylinder in planes at angles 9 from the stagnation plane. Conditions as in 
Figure 9. (Courtesy of H. Hassler, 1971.) 
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Figure 11. Vertical view downward on the 12 cm diameter cylinder moving in a water tank with 
L = 11.9 cm/s into screen-generated turbulence,Tu,of approximately 0.6%. Hydrogen- 

bubble time lines are formed at a horizontal cathode-pulsed wire location at y = 2mm, ‘p = ll" at the 
top of the picture, The time lines are progressively deformed by the upwelling motion of an irregular 
series of unsteady vortex pairs. Originally, the bubbles move towards the plane of symmetry of each 
pair, are uplifted and then thin out as they move away from the plane of symmetry. Ultimately the 
bubbles tend to concentrate at the core of the vortices, The time-line shapes near 7 = 80° correspond 
to the integrated history of the motion, not to the local vortex strengths. (Courtesy of P. colak- 
Antic', 1971, and private communication.) 



Figure 12. Strengthening of vortices with increase in I& to 19.4 an/s, other conditions remaining 
.- * . as in Figure 11. Stereoscopic viewing identifies the seemingly closed spirals at left 

0’ l . “%.’ 
.*.’ :, + center as a succession of time-line tongues'stretched by rotation into mushroom shapes 

. with low bubble density at the top, The concentration of bubbles in the cores develops 
somewhat irregularly. Stronger vortex pairs often have weak neighbors and there is some amalgamation, 
(Courtesy of P. Eblak-AntiE, 1971, and private communication.) 



U cm/s 

6- 

-10 

-4 

0' I 
0 lo 20 z mm 

Figure 13. Distribution of u(y,z) , the short-time averages (over one second) 

tions 
of velocity perpendicular to a hot wige located at spanwise loca- 

z and normal distances y in the plane '9= 4 . Other conditions as in 
Figure 9. (Courtesy of H. Hassler, 1971.) 
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Figlire 14. Distribution of one-second averages of velocity zl perpendicular 
to a hot wire at normal distances y from the cylinder, at various 

Cp angles and a fixed z location. Other conditions as in Figure 9.' (courtesy 
of H. Hassler, 1971.) 
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Figure 15. Distribution of one-second averages of velocity u(2,z,y) perpen- 
dicular to a hot wire located at spanwise locations z, a fixed 

normal distance y = 2 mm, in planes at angles P from the stagnation plane. 
Other conditions as in Figure 9. (Courtesy of H. Hassler, 1971.) 
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Figure 16. Distribution of one-second averages of velocity u(y,z) perpen- 
dicular to a hot wire locate2 at spanwise locations z and normal 

distances y in the stagnation plane 'p= 0 . Other conditions as in Figure 9. 
(Courtesy of H. Hassler, 1971.) 
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Figure 17, Steady disturbance field profiles of velocity components, static 
pressure and vorticity; eigenvalues for prescribed wave number 
k = 2/3. (Courtesy of G, Inger, 1974.) 
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Figure 18, Velocity and vorticity solutions of the steady (neutral) linear 

be a minimum. 
eigenvalue problem, subject to asymptotic condition that Vl(-) 

This condition selected k = 0.35. (After Tani, 1974.) 
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Figure 19. Streamline pattern of Hainzl's base flow, generated by sink 
distributions along the wake axis. Hanmerlin's unstable range 
O(k (1 disappeared. (After Hainzl, 1965,) 
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FULL NON-LINEAR STREAMFIELD 
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CORRESPONDING LINEAR PERTURBATIONS 

Figure 20. Second-order streamline pattern (Courtesy of Kestin and Wood, 
1970) and corresponding linear disturbance fields. 
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I U/U, 
BRUN,DIEP EI KESTl N (1966) n 0.3 A 2.0 
KESTINBIi’OOD(1970) 0 0.02 l 2.0 
ZOLAK-ANTI~BHASSLER (1971) 0.85 

I 13q/=400q/,=o~ 

iv- 
Reynolds number RU,/v 

Figure 2i. NoXdimensionalized, experimentally observed, time-averaged span- 
wise wavelengths in flows with various turbulence levels as 

functions of cylinder Reynolds number, (After Tani, 1974.) Diamond-shaped 
data is from Figure 16 and is probably unreliable because of probe interfer- 
ence. 
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