SYSTEM FOR NEAR REAL-TIME CRUSTAL DEFORMATION MONITORING

Inventor: Robert A. Frosch, Administrator of the National Aeronautics and Space Administration, with respect to an invention of Peter F. MacDoran, Altadena, Calif.

Filed: Dec. 21, 1977

Abstract

A system for use in detecting earth crustal deformation using an RF interferometer technique for such purposes as earthquake predictive research and eventual operational predictions. A lunar based RF transmission or transmissions from earth orbiting satellites are received at two locations on Earth, and a precise time dependent phase measurement is made of the RF signal as received at the two locations to determine two or three spatial parameters of the antenna relative positions. The received data are precisely time tagged and land-line routed to a central station for real-time phase comparison and analysis. By monitoring the antenna relative positions over an extended period of months or years, crustal deformation of the earth can be detected.

6 Claims, 2 Drawing Figures
SYSTEM FOR NEAR REAL-TIME CRUSTAL DEFORMATION MONITORING

ORIGIN OF INVENTION

The invention described herein was made in the performance of work under a NASA contract and is subject to the provisions of Section 306 of the National Aeronautics and Space Act of 1958, Public Law 85–568 (72 Stat. 435; 42 USC 2457).

BACKGROUND OF THE INVENTION

This invention relates to a method for near real-time crustal deformation monitoring using long-baseline radio interferometry.

There has been a continued and growing interest in the use of long baseline radio interferometry for monitoring crustal deformation of the earth for prediction of earthquakes. See "Geophysical Applications of Long Baseline Radio Interferometry," by I. L. Shapiro and C. A. Knight in Earthquake Displacement Fields and the Rotation of the Earth, edited by L. Mansinha, et. al., and published by D. Reidel, Dordrecht, Netherlands, 1970. The present inventor has made a study of the feasibility of radio interferometry in this respect and the results were reported in a paper titled "Radio Interferometry for International Study of the Earthquake Mechanism", Acta Astronautica, VOL. 1, pp. 1427–1444, Pergamon Press (1974). The technique is not unlike that employed in stellar interferometers. It is operable on a very wide range of baseline lengths from 100 m to intercontinental separations. The term "Astronomical Radio Interferometric Earth Surveying" has been adapted for the techniques which are described in that report.

A precision geodetic measurement system based on ARIES has been designed and implemented through the use of a 9-m transportable antenna and fixed antennas, such as the NASA 64-m antenna of the Deep Space Communication Complex at Goldstone, California, and the 40-m telescope of the Owens Valley Radio Observatory. The system requires extragalactic random (quasar) radio signals received by the two antennas on a very long baseline to be recorded on magnetic tape for off-line cross correlation. The system will detect subtle motions of the Earth's crust in three dimensions. Such motions are believed to precede an earthquake. If that is so, then a reliable earthquake prediction technique could be developed. The key to the system is the capability of measuring the difference in arrival of identical quasar radio signals at the two antennas on the baseline using atomic clocks as timing references and high speed computer techniques for cross correlation. The problem in adapting the system to real-time monitoring, or to near real-time monitoring, using quasar interferometry is cumbersome for real-time observations because of the need for utilizing wideband data communications lines and a plurality of quasar sources to eliminate the effects of system drifts and achieve full three dimensional measurements.

SUMMARY OF THE INVENTION

In accordance with the present invention, real-time crustal deformation monitoring can be achieved by independent stations in a radio interferometry system with a pair of antennas on earth illuminated by an artificial narrow spectrum radio signal from a source on the moon. Telephone circuits are used for real-time transmission of the radio signal received by the two antennas to a central station for cross correlation together with data from synchronized clocks at the stations for use in compensating for transmission delay differences in the telephone lines.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates the conceptual elements for monitoring stations on a very long baseline.

FIG. 2 illustrates a spherical triangle which relates the right ascension, \(\alpha \), and declination, \(\delta \), of the source to the right ascension, \(\alpha_b \), and declination, \(\delta_b \), of the direction of the baseline vector.

DESCRIPTION OF PREFERRED EMBODIMENT

Although the ALSEP signals will allow only fringe frequency observations and measurement of equatorial baseline components, 82% of vertical deformation can be sensed at a 34° latitude. This system will occupy sites previously measured in three dimensions by ARIES and monitored thereafter by this small antenna system. By comparing the ARIES equatorial baseline components, derived from quasar positions, with those determined by ALSEP signals, it will also be possible to relate lunar motions relative to the quasar reference frame within approximately 0.1 arc sec.

Unlike the quasars which emit very wideband radio signals, the ALSEP is spectrally narrow, it being composed of telemetry signals from lunar-based scientific instruments. The ALSEP units are not radio transponders of the type used aboard interplanetary spacecraft. The ALSEP units do accept uplink commands from earth to control certain functions. However, no coherent response occurs from the device.

Although the ALSEP spectrum is narrow, about 6 KHz at 3 db, the radio flux arriving at the earth is equivalent to 50,000 Jansky (10⁻¹⁶ w/m²/Hz). By comparison, in ARIES experiments a strong quasar is considered to be a source of 5 or more Jy. This factor of 10⁴ difference in flux is then available to be traded off to achieve a simpler radio interferometry system, but at the expense of having introduced radio source dynam-
ics into the problem. Fortunately, LURE (Lunar Ranging Experiment) and the ALSEP/Quasar VLBI experiments, have been successfully dealing with such problems and now represent a valuable resource for achieving the desired radio interferometric geodesy simplifications. See Bender, P. L., et al., "The Lunar Laser Ranging Experiment," Science, Vol 182, pp. 229-230, 1973, and Slade, M. A., Presto, R. A., Harris, A. W., Skrjerke, L. J., and Spitzmesser, D. J., "ALSEP - Quasar Differential VLBI," in the Deep Space Network Progress Report, 42-33, Vol 2, pp. 37-47, Jet Propulsion Laboratory, Pasadena, Calif., 1976. The RF spectral narrowness of the ALSEP radio signal does represent a limitation relative to the extremely wide RF continuum emissions of quasars. A broad RF emission spectrum allows the interferometer to precisely measure the delay function by signal cross-correlation within 0.1 nanosecond, but a narrow spectrum allows only the time rate of delay change to be precisely measured. See Williams J. G., "Very Long Baseline Interferometry and Its Sensitivity to Geophysical and Astronomical Effects," The Deep Space Network, Space Programs Summary, Tech Rep. 37-62, Vol. 2, p. 49. Jet Propulsion Laboratory, Pasadena, Calif., 1970. Three dimensional geodesy requires interferometry delay measurements from at least two quasars at substantially different declinations. In actual practice, ARIES experiments use ten to twenty quasars observed over periods of 8 to 26 hours because of a need for an alternate solution strategy caused by frequency system instabilities.

Having access to only delay rate data, also called fringe frequency, results in the interferometer being sensitive to only the two equatorial components (X and Y) of the baseline vector. The Z component insensitivity results in a loss of 18% of the information and some uniqueness of interpretation. More specifically, consider the effect of applying the rotation matrix (valid for latitude 35°) to transform a unit local vertical displacement into geocentric baseline components:

\[
\begin{bmatrix}
-26 & 63 & -39 \\
-49 & -47 & -73 \\
-83 & 0 & 56
\end{bmatrix}
\]

Thus, a one meter increment in the local vertical appears as a 39 cm decrease in the geocentric X component (direction toward Greenwich) and a 73 cm decrease in the Y component (90° E of Greenwich). The spin axis component, which will not be sensed by this system, experiences a 56 cm increase.

The narrow RF spectrum of ALSEP does offer an important advantage of being easily recorded or transferred via telephone lines 54 and 16. A 3 KHz information bandwidth is suitable from signal to noise ratio considerations and quite reasonable for telephone circuit transmission for real-time cross-correlation signal detection processing.

The phone lines have instabilities that need frequent calibration. This can be accomplished by timeformatting the data in the usual Very Long Baseline Interferometry (VLBI) manner at each station using clocks 18 and 20. Each of the antenna stations will have a cesium clock which can be synchronized to the other clock within one microsecond or better. The time at each station is continually transmitted as spurs (pulses) over the telephone lines with the ALSEP signal, and the time received from each station is compared at a cross-correlator station 22. Thus, the phone line delay can be determined well within the 3 KHz bandwidth restrictions of the line.

Consider two or more 2.5 meter (~ 8 ft) diameter dish antennas with efficiencies of 50%, 200 Kelvin S-band receiver operating temperatures, 3 KHz bandwidth, 10 second coherent integration time and receiving ALSEP signals equivalent to 5 x 10^8 Jy. The signal to noise ratio (SNR) of the cross-correlation output is then 27. See the paper by the present inventor in Acta Astronomica, supra.

By deriving the interferometer phase every 10 seconds over an 800 second interval it will be possible to extract the fringe frequency with a precision of 50 to 100 µHz of S-band. Several 800 sec. samples of the fringe frequency over a wide range of sky visibility for the ALSEP units will allow the amplitude and phase of the diurnal signature to be determined along with the frequency system offset. Thus, equatorial baseline components can be measured. See Williams, supra, and the paper by the present inventor, supra. Having 50 µHz data quality every 800 sec. implies 10 cm baseline precision.

The independently operated atomic frequency systems at each station introduce another error source. Ideally, a frequency system such as a hydrogen maser could be used with virtually no contribution to the allowable error. However, cost aspects make it important to consider other frequency sources for this study where unattended remote station operations are highly desirable. At 800 sec. a cesium frequency system having a stability of about Δf/f = 1.6 x 10^-13 at S-band causes a 350 µHz noise level. Incoherently combining these 350 µHz observations over a 10 hour observation period allows improvement to an effective 50 µHz observation which is equivalent to about a 10 cm baseline precision.

Because the equatorial baseline information is inherently diurnal in nature, special care must be taken to either stabilize the receiving system or to explicitly measure possible thermal phase variations over the tracking pass. Such phase calibration can be performed and transmitted along with the time-formatted video data.

Based upon LURE data presented by Williams, J. G., "Lunar Laser Ranging: Present Results and Future Plans," EOS, Trans., Am. Geophys. Union, Vol. 56, 970, 1975, the lunar ephemerides are believed to be internally consistent to within approximately 0.01 arc sec. Considering the two small antenna stations to be deployed 100 Km apart at established ARIES sites, a 0.01 arc sec lunar position internal error causes a 0.5 cm baseline error. Possible angular rotations between the lunar frame and the quasar frame might be present and could be sensed at about the 0.1 arc sec level by this 100 Km baseline. A 100 Km baseline is short enough that diurnal variation of the ionosphere are self-cancelling in the differential measurement that is intrinsic to interferometry. Residual errors due to ionospheric clouds of scale < 100 Km are estimated to be 10 cm per pass and random on a pass to pass basis.

It is also possible to transmit surface meteorology through the phone line. The radiosonde calibrations will be accurate to 3 cm at zenith and considering that tracking data will be taken to only 20° elevation angles, the baseline will be affected at about the 10 cm level on a single pass basis. Water vapor radiometers could calibrate the set tropospheric delay effects with a path
equivalent accuracy of 2 cm, however, such instruments are relatively expensive and may be non-optimal for continuous monitoring on a time scale of months to years. Solar hydrometers may serve the wet tropospheric calibration need.

In summary, a radio interferometry method has been proposed which uses the relatively strong S-band radio signals coming from the ALSEP stations on the moon. These strong signals allow several simplifications to independent station radio interferometry such as small 2.5 m antenna sizes and real time cross correlation. The frequency system requirements of \(\Delta f/f \approx 2 \times 10^{-13} \), \(\tau \approx 800 \) sec, are obtainable commercially. Stations of the type discussed could be implemented and operated at comparatively low cost and could make important geophysical contributions to the determination of crustal deformations. Commercial telephone lines coupling the antennas stations to the cross correlator make near real-time cross correlation possible. The cross-correlation data are then used with calibration data to determine geophysical contributions to the determination of crustal deformations. Commercial telephone lines coupling the antennas stations to the cross correlator make near real-time cross correlation possible. The cross-correlation data are then used with calibration data to determine geophysical contributions to the determination of crustal deformations.

The technique of interferometry as investigated by Williams, supra, but applied to the present invention, will now be briefly reviewed. Assuming the two antennas are separated by a distance \(D \). The direction of the radio source \(12 \) makes an angle \(\psi \) to the baseline between the antennas. There will be a difference with time of reception of the signal at the two antennas proportional to the angle \(\psi \), at the farthest antenna from the source. The time delay \(\tau_g \), is given by

\[
\tau_g = \frac{D}{c} \cos \psi
\]

where \(c \) is the speed of light and \(D \) is the baseline distance. The electric field at antenna 11 is given by

\[
E_{11} = A \cos \omega t
\]

where \(A \) is the amplitude, \(\omega \) the frequency, and \(t \) the time. The electric field of the other antenna is given by

\[
E_{10} = A \cos \omega (t - \tau_g)
\]

The voltages received by the cross correlator are given by

\[
V_{11}(t) = A \cos \omega t + \phi_{11}
\]

\[
V_{10}(t) = A \cos \omega t - \varphi_{10}
\]

Phase shifts \(\phi_{11} \) and \(\phi_{10} \) are introduced by instrumental and atmospheric delays which are explicitly calibrated (24) in the data analysis.

The frequency of the signal from the antenna 10 is

\[
F = \omega - \omega \text{drift} / t_f
\]

The quantity of \(\omega \text{drift} / dt \) is known as the fringe rate \(V_F \).

It is the negative doppler shift between the two antenna sites. Cross correlator allows the time delay \(\tau_g \) and the fringe rate \(V_F \) to be measured.

To be useful, the angle \(\psi \) must be related to the right ascension and declination of the source. FIG. 2 illustrates a spherical triangle which relates the right ascension, \(\alpha_b \), and declination, \(\delta_b \), to the right ascension, \(\alpha_b \), and declination, \(\delta_b \), of the direction of the baseline vector. From spherical trigonometry, the law of cosines gives

\[
\cos \psi = \sin \delta B \cos \delta E + \cos \delta B \cos \delta E \cos (\lambda_b - \alpha)
\]

The baseline is fixed to the earth so that its right ascension \(\alpha_b \) can be related to its constant longitude \(\lambda_b \) and the right ascension of Greenwich \(\alpha_B \) (t) by

\[
\alpha = \lambda_b + \alpha_B(t)
\]

Substituting Eq. (6) in Eq. (1) gives

\[
\tau = \tau_g + \tau_0
\]

where \(\tau_0 \) represents the synchronization of the station clocks,

\[
\tau_g = \frac{D}{c} \sin \delta B \cos \delta E \cos \delta E \cos (\lambda_b - \alpha)
\]

The fringe rate is given by

\[
V_F = -a \omega D/c \sin \alpha_b \cos \delta B \cos \delta E \sin (\lambda_b - \alpha) + V_0
\]
where ω_D is the rotation rate of the earth, 0.73×10^{-4} rad/s and ν_D is the frequency offset caused by the fact that the clocks run at slightly different rates. If ν_F is expressed in Hertz, then

$$\nu_F = -\omega_D \cos \delta \cos \phi \sin (\lambda_D - \phi) + \nu_D$$

(10)

The equatorial projection of D will be

$$r_D = D \cos \delta_D$$

(11)

so that the fringe rate becomes

$$\nu_F = -\omega_D r_D / \Delta \sin (\lambda_D - \phi) + \nu_D$$

(12)

For $r_D = 250$ km and $\Lambda = 13$, the coefficient $\omega_D r_D / \Lambda \approx 140$ Hz. Equation (8) yields the time-delay quantity and is useful when the stations are able to receive wide-band signals. For a narrow band signal, as in the present invention, Equation (12) is more useful as it yields the fringe rate. In other words, for a narrow band signal it is preferable to operate in the frequency domain, rather than in the time domain. The frequency offset term ν_F will not be known a priori with the necessary 50μHz (i.e. $\Delta f/\nu = 2 \times 10^{-14}$) accuracy and therefore should be simultaneously estimated with the baseline parameters r_D and ϕ. In order for the estimation to be valid, it is critical that the frequency systems driving the clocks have no diurnal dependence because ν_D will then become confused with the r_D and ϕ terms.

From the foregoing, it can be appreciated that the fringe rate (fringe frequency observed) as the output of the cross correlation function may be used to estimate the equatorial baseline component r_D and ϕ for crustal deformation monitoring applications. By measuring r_D and ϕ over an interval of days, months and years, it will be possible to detect crustal strain accumulations and may significantly contribute to an earthquake predictive system.

Although a particular embodiment has been illustrated and described, it is recognized that modifications and variations may readily occur to those skilled in the art. It is therefore intended that the claims be interpreted to cover such modifications and variations.

What is claimed is:

1. In a system for monitoring crustal deformation using long-baseline radio interferometry, the method of receiving at two independent stations a radio signal of limited spectrum from a source at a known location in space, maintaining synchronized clocks at said station, time tagging the radio signal received at each station, transmitting the time-tagged radio signal received at each station to a convenient location for cross correlation using communication channels having a bandwidth sufficient for said limited spectrum, adjusting the transmission delay of one radio signal relative to the other to synchronize time tags prior to cross correlation, and estimating the interferometer delay or delay rate in order to derive baselines for near real-time crustal deformation monitoring.

2. The method of claim 1 wherein said source is an artificial narrow band radio signal, and said communication channels are comprised of telephone lines.

3. The method of claim 2 wherein said source is an S-band transmitter on the moon.

4. The method of claim 2 wherein said source is an L-band signal from a global positioning system satellite.
5. The method defined by claim 4 including rapid simultaneous estimating of baseline using several global positioning system satellites in order to significantly reduce the stability requirements of the time and frequency systems.

6. In a monitoring system, using a pair of antennas at separated stations on earth for receiving a radio signal of limited spectrum from an artificial source at a known location in space and a pair of synchronized clocks, one clock at each station for time tagging the radio signal received, the method of transmitting the time tagged radio signals from the stations to a third station, adjusting the transmission delay time of one radio signal relative to the other to synchronize time tags, and cross correlating the signals thus time synchronized for obtaining fringe frequency observations to be used in near real-time crustal deformation monitoring.