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We report on the results of the first year's activities udder NASA grant

5254, covering u period from March 15th 1978 to March loth 1979, "Stochastic

modeling of the time-averaged equations for climate dynamics". We discuss two

analyses, both based on a simplified set of barotropic equations for representing

large scale non-linear atmospheric circulation characteristics.

We have essentially completed study of the statistical properties of this

set of equations for small values of a parameter ko , corresponding to the

physical case of large zonal westerlies and relatively weak eddy motions. We

have also started an investigation of the effect of seasonal type forcing on the

solution of these equations, and some preliminary numerical results are presented.

In audition to describing the formal analyses, we include a more general

discussion on the significance of the results in the context of the use of the

simplified equations, and indicate the directions along which we expect progress

to be made.
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Introduction

The first year's work performed under NASA grant 5254 has concentrated on

study of the statistical properties of a particularly simple model for large scale

atmospheric motions - a three wave component barotropic system, first introduced

in the meteorological literature by horenr^ i) , the so called "minimum hydrodynamic

system" of equations. The immediate objective of our program was to investigate

the long term statistical propA ties of this model, employing time-averaged

quantities as the dependent state variablca. Introduction of the latter, it was

hoped, could lead to direct means for obtaining detailed climatic states more

efficiently than by computing average statistics from long term integration of

deterministic general circulation models.

Although such a basic approach to climate is appealing on fundamental grounds,

it leads to considerable analytic complexity because of the multiplication in

the number"-of differential equations that result from the time-averaging procedure;

we are in fact confronted with the need to deal with a formally infinite number of

coupled non-linear differential equations defining the statistical moments of the

system. It was expected that the problem of closure of this set could be tackled

more easily by using the simplified minimum equations as a model for the more

complete and realistic system, not just because of ease of computation of numerical

solutions, but primarily because analytic solutions for the minimum equations are

available, and these can be used as a check on approximate methods of closure of

the moment equation set.

One approximation method that held promise (based in part on experience gained

with the same system of equations applied to weather forecasting problems (2)) was

a linearisation of the moment equations and truncation at a fairly low order for

estimation of small c1:.Aatic changes. A large part of the first year's work
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stemmed from this approach, but, as we shall describe shortly, during the course

of the investigations an important property of the minimum equations was dis-

covered that largely eliminates the need to consider a small climatic change

linearisation approximation for closure.

A second theme, introduction of seasonal variation into the study of climate

statistics, was also started. Here again we have used the minimum equation system

as a model and simulated seasonality by introduction of additional forcing terms

In the equations.

Gloejre of the moment eguations for the minimum equations

In the process of calculating magnitudes of higher order moments of the

minimum equation solutions, an unexpected characteristic was discovered, namely

a systematic reduction in magnitude of the moments with increasing order, thus

enabling us to formulate a closure technique for the infinite set of moment equa-

tions that we can demonstrate gives good approximations to exact solutions. This

result applies for small values of the parameter k  (tn be defined below)

corresponding to the case of relatively large Westerlies and low eddy energy,

matching conditions that Lorenz originally suggested best approximated mid-

latitude conditions on the earth. We have completed a comprehensive analysis of

the reasons for this useful result, and present next a summary of the approach and

the analytic results.

The equations governing the temporal development of the amplitudes of the

three largest scale Fourier components of the barotropic flow in a rectangular

domain have been shown by Lorenz to be
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where

cl 1/0(a 2 + 1)

c2 a 3/ (a2 + 1)	
(2)

c3	 (1 - a2)/2.c

and a - k/.0 - the ratio of the meridional to zonal dimensions of the rectangular

domain. We note that the important Coriolis grandient effects are omitted in

this model. The time averaged form of the moment equations can be shown to be
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where the moments are defined as
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As shown by Lorenz
(1) exact analytic solutions for (1) are given by

where do , sn , cn are elliptic functions, modulus k o , and It , t* and

k  are given in terms of the maximum amplitudes As*, as,  Az, by

d2♦ I

i

0

The parameter k  determines the periodicity of the elliptic function

solutions, which in turn corresponds to a vacillation phenomenon, analogous

to variations in zonal index that occur in the real atmosphere. Larger k 

values corresponds to slower cycling, the periodicity becoming infinite as k 

approaches 1. Lorenz 
(1) 

chose a value of ko 0.2 as representative of typical

(5)

(6)
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mid-latitude conditions; this yields a vacillation period of 5.6 days and, with

the parameter	 oL	 2 , a zonal wave length for the Fourier component of 5000 km.

Exact analytic results can be calculated from (1) for moments, defined over

an averaging time	 T	 We list values up to the third order moments:
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where )K and G are complete elliptic integrals of the the first and second kinds.

If we let the averaging time approach infinity, a number of the moments defined

by (7) vanish, and the remainder are given by
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In this case the moment equations (2) reduce to an algebraic set:
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and we should be able to derive the solutions (8) from (9), once the two

Integral invariants of the system - energy and enstrophy - are prescribed.

The amplitudes Ax , .A2 and A3 are in fact calculable from the energy V
and enstrophy E :
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We have found no general technique for solving (9) 0 given E and V. and

indeed the situation is made more perplexing by the fact that some of the

original differential equations (2) are no longer independent in the steady state

form, (9). For example, the three time-dependent equations for the second order

moments

Iii z	 2 C	 3 Crs, -$t" Tz'. -R T. t3 )	 (13)

C' 30 = .2c
 .1 ('A4t G % 

♦ P& rs r I T i a1)

reduce to the single equation

`11) _ A '040/ &'P-43'	 (12)

when the time derivatives vanish. Thus far we see no profound reason for

studying this anachronism and have not tried to understand structure of the

steady state system. As we appreciate the subtlies of the statistical behavior

of the minimum equations we may wish to return to the problem.

For small values of ka , we can expand the elliptic function solutions of

equation (8) (the infinite Averaging time case), yielding

s
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and from studying the order of magnitudes (in k2) of the terms in (13) we nee

that the first and second order momenta arc in fact given to order k Q by

solution of the closed set of equations
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Our numerical work with the minimum equations has centered on choice of

k2 ¢ 0.2 , as was the original study by Lorenz. The approximation for small

k  that we are discussing is quite adequate to cover this situation, as can

be seen in the graphs plotted in figure (1). Here we show approximate solutions

for some of the moments corresponding to equation (lei) lie give the variation

_ o !

r,

of
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with ko of the first order approximation for ^,^ , 9'01 and 9•a: , and the

second order approximation for p,,

If we go on to look at the structure of the moment solution system for

finite x values,aga n with small values of ko , we find a somewhat more

complex ordering, but still of a nature that enables us to close the moment

equation set. For example, from the analytic forms (7) 0 using the expansions
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A systematic procedure for developing the approximation to the moment

equations for small k0 can be devised by considering an expansion of the
dependent variables as power series in k0 . The complete development is rather

laborious, and we shall only outline a few results. We first simplify the algebra

by introducing non-dimensional variables defined as

X^ Ai ^A M Xz % A&f Aid , N s = A3 1,130d ,
/ z tl, a t^ M . t "A ^	 (19)

may/

giving the modified form of the differential equations

X^ — k. X1 ^s

Xy = X') Xi	 (20)

.x , xz.

The moment equations now read
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When power series expansions for the moments are introduced into (21), a

series of closed coupled equations result. We cite only the lowest order result.

a:

i^
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This, with the Ltxpantaians
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.,A w	 which is solvable as a closed set, given initial values for the moments.

We note that to this order., we have no values, for example for the
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covariances cro ) Cr,., 	 as well as for several of the higher order moments.

To obtain estimates of the former, we need to go to the next higher order equations

.,

namely
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(24)

in which the r represent complicated functions of the indicated variables which

we have no need to specify here. Equation (24) forms another closed set for a

number of the higher order moments, as well as the two covariances v ,and %that

were not obtained by solution of equation (23).

Earlier we presented some results on the error that results from the small

k  assumption (figure (1)) for the infinite time averaged case. Finite time

averaging does not worsen the situation, as we illustrate in figure (2), which

plots that variation in time (in units of the periodicity IK of the elliptic

function) of the error in N,°5 for various values of the averaging time, T .
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The fractional error rarely exceeds 2%.

The above illustrates the systematic procedure that can be used to develop

solutions for the moment equations. Whether the expansion (22) is appropriate

i

for equations more general than the minimum equations is not yet known, though
i

its basis in the small ko assumption appears to have a logical physical foundation
1

If indeed extendable, the result is of great importance, providing at first sight

a means for dealing with the very formidable problem of closing the moment equation

system that defines climate means and statistics.

Seasonal cycle simulation

The minimum equation system (1) is based on the use of the two-dimensional

barotropic vorticity equations without forcing or dissipation:

	

^^•''	 =	 C?	 (25)

I

or
l

't
 r'

z yi' ^ _ ^^, a ( ^ z^` „} w	 pz^1	 (2G)

where V is the stream function. lie introduce a forcing term

(27)

Fee)	 Fo s;N (,.^ t^

where J2 corresponds to a seasonal cycle, on the right hand side of equation (25).

Fourier transformation of (25), when so modified, and retention of only

three Fourier components, as with the development of the unforced minimum equations,

yields the new set of equations:

tt	 d Al PZ^3 t Flt)

	

d t '	 (28)
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for the Fourier components of the transformed vorticity, PLV . With F(t) - 0

the normal form of the minimum equations (1) is regained.

In contrast to the case F(t) A 0 , analytic solution of (28) is not possible

and numerical techniques have to be used. A numerical Taylor series expansion

technique for solving (28) has been carried out for a range of values of the

amplitude of forcing F0 . Stability of the systems seems to be quite sensitive

to the choice of F  , but has not been investigated in detail.11owever, a choice of

Fo- 4.8x10_6 sec^2 gives good stability as well as a seasonal amplitude variation

that looks reasonable. Figure 4 is an example of some of the results. We show

the variation during a year of the energy in the system and the behavior of the

component A2 (equation 28). The band of values for A 2 correspond to the limits

of its oscillation amplitude at a high frequency tine scale, corresponding to the

unforced elliptic function behavior (equation 5). This frequency now varies during

the season, in accordance with the formula (30) below; a total of approximately

150 cycles occur in one year. The frequency variation is in fact quite slow,

according to the numerical results, as is the variation in amplitudes of the

three components Al , A2 and A3 . To within the accuracy of the calculation,

the system appears to return exactly to its initial, state after a one year cycle.

At least for the magnitude of forcing that we have used here, the effect of slow

forcing appears to be rather simple and can be represented in quasi-stationary

fashion by introducing appropriate values for the constants that appear in the

unforced elliptic function solution (5) which we let to vary with the season.
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From this we draw the important conclusion that imposition of forcing in our case

does not lead to a major change in the spectral distribution of the solutiono apart

from the superposition of the slow amplitude variation for A2 .(There is no

corresponding slow change in Al or A3). In particular t there is no additional

long period non-linear oscillation introduced that could interact with the forcing

frequency.

An empirically determined form for the variation in amplitude and frequency

of the elliptic function solutions induced by the forcing we find to be

At e:	 * aft [ f(t) CA t- K)3

Aa x ni 41e) *I., r 116 At - K)]	 (29)

A=	 Al ch r f10 At -K)^

in which the modulus of the elliptic function k'' is given by

Ito	 k ^ / f	 (30)

where ko is the value with no forcing (F(t) . 0) , and

+
 Q

s t 1^^ °fit	 (31)
J0

It seems that these results should be derivable , '. analytically as

approximations for small values of	 f-'/,+	 We have yet to show that

this is the case. .

F	 Linearisation of the moment equations

Linearisation of averaged atmospheric state variables for the study of

climate change should be a valid approximation for small perturbations of climate.
>x•

g	 Note that linearisation for a deterministic (non-averaged) computation of atmos-

pheric dynamics is not valid for estimating long term (climatic) changes, because
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of the large day-to-day variability of the state variables.

Our previous work on stochastic dynamic weather prediction (2) on a lineari6jed

approach to assessing the growth in error of weather forecasting models, suggested

that an analagously useful result might hold in the consideration of small climatic

changes. Thus we hoped that the statistical moments for small perturbations in

climate would progressively decrease in magnitude as their order increased, thus

leading to the possibility of a systematic closure procedure for the corresponding

moment equations.

We have been carrying through a check on the validity of this idea using the

minimum equations as a test case. We have developed numerical algorithms for

truncation of linearised forms of the moment equations for the minimum equation

set at the second and third orders. The accuracy of such approximations can be

judged by comparison with exact solutions for the moments obtainable from the known

analytic solutions of the minimum equations (equation 5).

Persistant programming errors have thus far prevented us for assessing

whether this approach to closure of the moment equations is or is not possible.

Future work

Although some questions remain concerning the significance of the small k 

approximation discussed above, we believe we have now covered this particular

property of the minimum equations adequately. We have yet to ascertain whether

the important simplification in the stochastic formulation that it implies is

extendible to other more complete and realistic climate simulation models.

A serious concern in planning our future studies relates to the relevance

to the real world situation of the minimum equation behavior in their original or

in modified form (modified by the introduction of a 
P 

effect, deterministic or

stochastic forcing and dissipation). It is clear that the minimum equations
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are vastly oversimplified in many respects, and their utility as partial simulators

of real atmospheric effects depends a great deal of the mathematical rieh,►ess of

their non-linear properties. Let us briefly discuss two major apparent weaknesses.

Firstly, we note that all three solutions (5) are phase coherent; but introduction

of the Coriolis gradignt effect, as demonstrated by raeglo and Robl (3) , eliminates

this oversimple property without destroying analytic simplicity. Secondly, the

solutions of the minimum equations are strictly periodic, as therefore are also

their climatic means. This is quite different from more complicated simulation

models, such as that of Lorenz (' ) , as well. as the real atmosphere. Non-periodicity

is a fundamental characteristic for long term behavior of non-linear systems that

it seems important for us to duplicate in any simplified models.

We had, until recently, considered the latter deficiency of the minimum equa-

tions to be serious enough to cause us to drop their use as simulators of even the

most simple of climatic phenomena. However, a new paper by Dutton (5) has demon-

strated the radical effect on behavior of the minimum equations when stochastic

forcing is added. In particular, he stows that the revised system has bifurcation

properties and multiple solutions, with a degree of complexity quite surprising

in view of the simplicity of the behavior of the original, unforced system. In

view of this result we have revised our opinion, and we now propose to continue

study of the minimum equations, introducing stochastic forcing as we had originally

planned, and now also studied by Dutton. In contrast to his work, however, which

was a deterministic analysis of the time evolution of a single trajectory in phase

space, we shall look at the stochastic properties of the forced system. This work

has yet to be started, but the hope to do so in the coming year.

With the completion of the studies on seasonal forcing discussed above, and

the proposed introduction of stochastic forcing, there only remains the introduction
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of the ef,f^act to round out a complete pictures of what the three-compo►acnt

minimum equations system can yield. It in our present intent to try to carry

through such a program to fruition.

Was should Also mention here yet another property of the minimum equations

that has in the past led to criticism of their use as a real world simulator, but

which recant developments in theory of large scale atmospheric simulation down-

plays. The minimum equations describe an Inherently two dimensional barotropic

modal for long term atmospheric behavior, thus omitting all the baroclinic affects

that are essential in an uandarstanding of the overall atmospheric circulation

pattern and its energetics. We now seta appearing, however, m growing body of

theoretical and numerical work (6) (7) (g) suggesting that large scale atmospheric

structures, not only on earth but even oil 	 and Venus (9) , can very well be

simulated in barotronic iodels. Forcing of such models must, of course, arise

from baroclinic effects, as indeed would be represented in our proposed further

worts with the minimum equations, by stochastic forcing terms.
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