
'J '

.J

~ORTRAN
r ,

NASA-CR-159142
19800006515

Subroutines for
Out-of-CoreSolutions
of Large 'Complex Linear Systems

Elizabeth L. Yip

Boeing Commercial Airplane :Company
Seattle, Washington

, \

~.

Prepared for
Langley Research Center
under contract NAS1·15128

NI\SA
National Aerorjautics and
Space Administration

November 1979

r;, n l;'·'~'i·'\' i:.'! C;',..··'.·..'f·>
!~::J ;:- _.~- t. \.-: ~ fo. _-

LAj\JC3Lr~Y j,\,2.~')El\l\Cl--i

UUrV\fIY I'IJ\'::!\

.tih.i:VIj.~r()_Nl' ~V;;~~~j~l/\

Errata

"FORTRAN subroutines for Out-of-Core Solutions of Large Complex
Linear Systems" NASA CR-159142 by Elizabeth L. Yip, November, 1979.

page Location Corrected
Form

1

2

2

2

3

3

3

3

Line 4

Line 21

Line 29

Line 7 from bottom

Line 1

Line 12 from bottom

Line 3 from bottom

Next to last line

subprobram

arbitray

Out basic

43 and .44

th

for B+D

FORTRAM

outer

subprogram

arbitrary

Our basic

4.3 and 4.4

the

form B+D

FORTRAN

other ,.,
.J

3 last line secion section

5 By threshold pivoting, line 4

5 By threshold pivoting, line 5

7 line 6 from top

8 Line 2 beneath Fig. 3

8 Line 2 beneath Fig. 4 decomplse

the decompose

a.. ~max la ..J
11 1>"'- 1J

m =max ta··1
1>4. 1J

Dahquist

'aiil~ ~~: laij't­

\a. l ~ max {a .. \
1m :j>.-\. 1J

Dahlquist

then decompose

decompose

(last part of line
should notobe at sub­
script level)

so the so that

.U = U1 =

\un\> \uU\<
tow row

\ lu12\, la42\} =l·la421 ~\U12\' la42\~ =/4a421
u12 u12

Line 3

Line 2 from top

Line 3 from top

Line 12

Line 4 from top

2nd matrix definition

9

9

9

10

10

10

10

10

2nd matrix definition

Line 5 of text

a42
L1P1A12
L1P1A12

11 line 7 '''on .disk (rename Aij as Uij) should not be part
of subscript

15 Line 7' of text compution computation of .

-.......,-_.- .. ~ .. " _.._'..n ~ __._ ., ..~ '~ ._..,..,_.--.- -.----. ._.."..-_ _ ~- ._-..------- ~'.-.....-- ..~-:-_o.~. -..__......"...,......

16

16

18

18

18

21

23

24

26

26

26
26

26

26

26

26

27

27

.
Line 10

Line 5 from bottom

By 2.

Last line of 2

By 3.

Item 5

Line 9

Line 10 of text

Equation (6)

Equation (7)

2nd line in Proof
3rd line in Proof

4th Line iri Proof

5th line in Proof

6th line in Proof

7th line in Proof

Equation (8)

Equation (9)

Experimaentally

asfollows

"".!lJ
~

Aj

3. Write Al

I-T

N(2,4)=m22

N(2,n(2)+2)=m2,n(2)

expli cityly

I -

I -

. A =a - UyT
I -n

I ­n

U-
U - yTa-lur

I ­r
(I - yTa-lutl= U+BA-IU

I -

Experimentally

as follows

-Aj -3. Write Al

I+T

N(2,4)=m22

N(2,n(2)+2)=m2,n(2)

explicitly

1+

I +

A=a + UyT

In +

In +

U +

U(I
r

+ yTB-IU)

I r +

(I+yTB-IU)-I=U+BA-1U

I +

27 Inequality (10) and the equation above

k (I- VTn- Iu) = III -VTa-I u112·11 (I. - VTn-Iu) -1112
~(I-VTB-IU) ~ min. {21,22 ,23 } k(A) keD).. (10)

should be .

k(ItvTn-1u) = llIt'vTn-luI12·11(I.fvTn-lu)-1112

k-(livTn-1u) < min. {2J,2i.23} k(A) ken). (10)

,. -27 Lineo9from bottom I - I +

27 Line4 from bottom accuracy(11) accuracy(ref.11)

29 Line5 INTERGER INTEGER

29 4th linefrom bottom entries entry

29 Line 7. nk(k=l,2.., nk rows (k=1,2...

Line9 augumented augmented

30 Line9 ARGMENTED AUGMENTED

31 Lineg ARGMENTED AUGMENTED

32 Line5 of step 3 BENDED BANDED

33 Line 12 of SubroutineETCIT will overwrites overwrites

36 Line 9 from bottom TO RED TO READ

37 Lin_6 TRIDIANGONAL TRIDIAGONAL

• F

}<

..

, ;­

""

1 Report No 12. Government Access'on No 3 RecIpIent's C.talog No

NASA CR-159142
4. T ,tie ann Suhtltle 5 Report Dale

FORTRAN Subroutines for Out-of-Core Solutions November 1979

of Large Complex Linear Systems 6 Perform 109 Organllat,on Cone

'.'

7 Authorlsl 8. Perform,ng OrganlZat,on Report No

Elizabeth L. Yip BCS-40283

10 Work Unrt No
9 Perform,ng Organllat,pn Name ann Andress

Boeing Commercial Airplane Company
P.O. Box 3707 11 Contract or Grant, No

Seattle, Washington 98124
NASI-15128

13 Type of Report and Pe"orj Cove,ed

12. Sponsorrng Agency Name and Address Final ReportLangley Research Center
National Aeronautics and Space Administration 14 Sponsollng Agency Cone

Washington, D.C. 20546
15. Supplementary Notes

Contract technical monitor: Robert M. Bennett

lG Abstract

This document describes the design and usage of two main subprograms using direct
methods to solve large linear complex systems, of the form Ax = b, whose coefficient
matrices are too large to be stored in core. The first main subprogram is for systems
whose coefficient matrices are of a particular sparse structure, namely, the matrix A can
be written in the form B + D, where B is a block-banded system, and D has only a few
columns of nonzeros. Key elements of the algorithms used in the subprogramsinclude:
the data structure, the strategy for preserving numerical stability, the adaptability of the
algorithms for dense systems as well as for block-profile systems.

17. Key Warns (Suggesten by Author/sl) 18. D,stllbutlon Statement
upper triangular matrix
threshold pivoting block-profile matrix
pivotal tolerance block-banded matrix
rank
Sherman-Morrison Updating Formula

19. Secu"ty Class,t. (ot th,s report! 20. Security Classlf. lof th,s page) 21 No. of Pages n. Pllce

Unclassified Unclassified 39

'For sale by the Nat,onal Technical Intormat,on Serv,ce. Sp"nglleld, VrrglO,a 22151

..

'.

"l.

....

CONTENTS

1.0 SUMMARy... 1
2.0 INTRODUCTION... 2
3.0 NOMENCLATURE.. 4
4.0 DISCUSSION.. 7

4.1 Algorithm I (Subroutine ETCGP) .. 7
4.2 Remarks on FORTRAN Implementation of Algorithm I 12
4.3 Numerical Stability of Algorithm I .. 16
4.4 Comparison of Algorithm I with Other Approaches. 18
4.5 Algorithm II (Subroutine) 20
4.6 Remarks on FORTRAN Implementation of Algorithm II 22
4.7 Numerical Stability of Algorithm II 25

5.0 COMPUTER PROGRAM USAGE , 28
5.1 Machine and Execution Environment 28
5.2 Operating System 28
5.3 Timing.. 28
5.4 Files and File Format 28
5.5 Usage 28

5.5.1 Using Algorithm I (Subroutine ETCGP) , 28
5.5.2 Using Algorithm II (Subroutine ETCSM) , 32
5.5.3 Using the Iterative Refinement Subroutine (ETCIT) , 33

5.6 Error Messages 34
5.6.1 Error Messages from ETCGP , 34
5.6.2 Error Messages from ETCSM 34
5.6.3 Error Messages from ETCIT 34

5.7 Sample Problems , 35
5.7.1 Sample Problem 1 35
5.7.2 Sample Problem 2 37

REFERENCES. .. 39

iii

":

1.0 SUMMARY

This document describes the design and usage of two main subprograms using direct
methods to solve large linear complex systems of the form Ax =b, whose coefficient
matrices are too large to be stored in core. In the first main subprobram, the basic idea is
to reduce the matrix to an upper triangular matrix and subsequently solve the problem
by backward substitution. A row interchanging strategy called "threshold pivoting" is
adopted to preserve numerical stability and to minimize disk-transfers. This algorithm does
not yield the usual LV factorization of some row permutation of the coefficient matrix.
The second main subprogram is designed for linear systems with a certain sparse structure,
namely, the matrix can be written as B + D where B is a block-banded matrix, and D has
only a few columns of nonzeros. A variant of the Sherman-Morrison updating formula is
employed in this case. The second main subprogram callsthe first main subprogram to solve
B(x,y) = (b,u) where x,y are unknowns, b is the right-hand side of the linear system
(B + D)x = b, and U is the nonzero columns of D.

2.0 INTRODUCTION

This document describes the design and usage of two FORTRAN main subprograms for the
CDC digital computer systems, namely subroutine ETCGP and subroutine ETCSM. These
subroutines were written as part of a research effort investigating unsteady transonic flow.
References I through 5 present a procedure for analyzing the flow about harmonically
oscillating airfoils and wings in the transonic regime. This procedure is based on small per­
turbations. A solution is formulated using finite difference techniques which results in a
large set of simultaneous equations, written matrix form as

Ax::::b (1)

where A is a sparse complex matrix of order equal to the number of mesh points. The
matrix b is a complex matrix with the number of columns equal to the number of modes for
which pressure distributions are to be found. The matrix A may be of order 3,500 for a
practical two-dimensional airfoil.

Numerical solutions to equation (1) were initially obtained using relaxation techniques.
However, for a significant range of practical values of Mach number and reduced frequency,
experience showed that relaxation techniques applied to equation (l) failed to converge.
The matrix A in equation (l) does not possess any of well-known properties (e.g., positive
definiteness, diagonal dominance) which guarantee the convergence of relaxation methods.
However, the physical origin of equation (1) guarantees the existence of a unique solution.
Thus the obvious alternative is a direct solution method, which assumes no properties of
the matrix A other than existence of a unique solution for an equation of the form of (l)
when any arbitray matrix b is applied.

Out-of-core algorithms have been discussed in standard textbooks of numerical analysis
(e.g. Reference 6). These algorithms are numerically as stable as the well-known regular
Gaussian elimination, yet they are not designed for efficient execution in modern day
computers. The physical origin of equation (I) makes "blocking" of the matrix A an
obvious and attractive data structure. Yet existing "blocked linear equation solvers" at best
assume non-singularity and the well-conditioning of the i-th diagonal sub-block at the i-th
blocked pivotal step (e.g. Reference 7). This property is unnatural and is not based on the
physics of the problem. Out basic algorithm does not require the matrix A to have this
particular property. As stated in the above paragraph, the only property of A it assumes
is non-singularity of the matrix A. It also takes into consideration numerical stability and
computational efficiency. Sections 43 and 44 discuss these advantages in detail.

The FORTRAN subroutines described here are applicable to both dense and sparse matrices
that are too large to be stored in core. Thus they are useful for solving any equation of the
form of equation (l), in particular in the case when there is no useful properties of the
matrix A to guarantee convergence of any iterative methods. For example, subroutine
ETCGP (as well as the version for real matrices) has been used in different research and
production computer codes at the Boeing Company.

2

".

Results of applying the routines of this document together with th program described in
reference 5 are presented in reference 4. The development of the routines of this document
was in conjunction with work described in references 4,5, and 8.

The first step in developing the algorithm for solving equation (I) is to partition the
augmented matrix [AlB] into blocks so that it can be considered to have the following
structure:

All Al2 . . AIS BI

A21 A22 · . A2S B2

Figure 1. - Data Structure

Each block is stored as a record in mass storage with the requirement that at least three
blocks can be held in core simultaneously, and the diagonal blocks are square blocks. The
mass storage used should be a random access file (called direct access file in the IBM nomen­
clature).

The methods used in both main subprograms are direct methods. In the first main sub­
program, the basic idea is to reduce the coefficient matrix to an upper triangular system.
In the second main subprogram, the coefficient matrix is assumed to have the for B + D,
where B is a block-banded matrix, and D is a matrix with only a few columns of nonzeros.
A variant of the Sherman-Morrison updating fo~ula is employed.

Features of the two subprograms include options to
• Solve more than one set of right-hand sides
• Control the frequency of pivoting
• Access the submoduli of the main subprograms
• Take advantage of the block sparsity of the coefficient matrix.

In section 3.0 we shall list our symbols and nomenclatures. Insection 4.0, we shall discuss
the algorithms in detail, analyze their numerical stabilities, remark on their FORTRAM
implementation and compare our approaches with outer approaches outlined in the liter­
ature. In sedon 5.0, we shall discuss in detail the usage of the two subprograms.

3

A =(a' .)1,)

A = (A· .)
1, J

Upper triangular

matrix

Block profile

matrix

3.0 NOMENCLATURE.

A is a matrix, the entry of the i-th row and j-th column is

denoted by ai, j

. A is a matrix partitioned into blocks, the block in the i-th

block row and the j-th block column is denoted by ~, j

The transpose of A

Matrix with all zyros below the diagonal

Matrix of the form:

(where the shaded area indicates non-zero entries)

4

Block-Banded

matrix

Threshold pivoting

and pivotal

tolerance

Random Access file

Matrix of the form:

(Where the shaded area indicates non-zero entries)

Threshold pivoting is a row interchanging strategy controlled

by a pivotal tolerance parameter 11. The 11 parameter is a

real number such that 0 ~ 11 ~ 1 :. If A = (ai, j) ,and

ai i ~ J!1a~. IaiJ·1 ,then there is no row interchanging,
, J > 1

otherwise interchange rows i and m where m =~>ax.. IaijI
J 1

Multi-record mass storage input/output file which allows the

user to create, access and modify its records on a random

basis without regard for their physical positions or internal

structures. (They are called direct access files in IBM

nomenclature .)

Sherman-Morrison Updating Formula for A= B + UVT :

5

Matrix norms: IIAII = '1ax.{f laijl}

IIAlloo=m~x.{~ laul}
IJ 1

IIAII2 = m:x. {(f a2ij)1/2)
Condition Number of a nonsingular matrix

m = 1,2,....00

Growth (growth factor)

of a reduction

process

The largest absolute value of the numbers generated by the

reduction process

6

I

4.0 DISCUSSION

In this section, we highlight the special features of our algorithms. In sections 4.1 to 4.4,

we shall discuss Algorithm I, which reduces the coefficient matrix to an upper triangular

matrix and solves the problem by backward substitution. Then we shall remark on

FORTRAN implementation and compare the efficiency of this algorithm with the ap­

proaches outlined by Bjorck and Dahquist (ref. 6), and Reid, (private communication).

In sections 4.5 and 4.7, we shall discuss Algorithm II, which employs a variant of the

Sherman-Morrison updating formula. Then we shall remark on its FORTRAN implementa­

tion, and the numerical stability of our particular application of the Sherman-Morrison

updating formula.

4.1 ALGORITHM I (SUBROUTINE ETCGP)

For the convenience of discussion, we shall firstly assume the coefficient matrix A to be

dense. We shall show how the algorithm can be modified for a block-profile system.

We shall first illustrate the algorithm with a 3 x 3 block system, and assume no row inter­

changing is necessary. In this case, the algorithm yields Crout's LU decomposition. The LU

factors can replace the original coefficient matrix A on disk. Assume, graphically, A is

stored on disk as in the following figure.

,

Figure 2. -Original Matrix

In the first block pivotal step, we form the LU factorization of A11' A 11 =L1U1 and

replace All ,A I2 ,A13,A21 ,A31 as in figure 3.

7

LlU l
-1 -1

Ll A12 Ll A13

A2lUfl A22 A23

A31Ufl A32 A33 ~

Figure 3.-After First Block Pivotal Step r

For i =2, 3, write Ll -1 Ali as Uli' and U1-1 Ail as Lil ·

In the second block pivotal step, replace A22 with A22 - L2 l U12' the decompose the

resultant into its LU factors, and complete the rest of the second block pivotal step as

illustrated in fig. 4.

LlU l U12 U13

LlU l U12 Ul3

L2l A22 A23 - L21 (L2U2) L2- l (A23 - L21 Ul3)

L3l A32 A33
A22 - L2 l U12

L3 l U2- l (A32 - L3 l U12) A33

Figure 4.-Second Block Pivotal Step

Write L2(A2rL2l U13) as U23' and U2(A3TL3l U12) as L32. In the third pivotal step,

we replace A33 with A33 - L3l U13 -L32 U23 and decomplse the resultant to its LU

factors. The third block pivotal step can be illustrated by fig. 5.

LlUl

LlU l U12 U l3

L2l L2U2 U23
--+- L2l

L3l L32 A33
!L3l

(L3U3)

A33 - L3l U13 - L32U23

,

Figure 5.-Third Block Pivotal Step

8

Thus we have reduced the matrix A to an upper triangular matrix, and thus equation (l) can

be solved by backward substitution.

Now we shall explain our row interchanging strategy, which is commonly known as

threshold pivoting. A real number J1 is chosen so the 0 ~ J1 ~ 1. We perform row inter­

changing only when la"l < J1 • Max. la", .
11 . > .)1

J 1

Note that if J1 =0, there is no row interchanging at all; if J1 =1, we have the regular row

interchanging. We shall illustrate the application of this row interchanging strategy to a

2 x 2 block system:

ull ul2

~:J
0 a22

=
a31 a32

a41 a42

Figure 6.-First Pivotal Step of a 2 x 2 Block System

In the first pivotal step, we first decompose All into its LU factors with pivoting, i.e.,

All =Ll U1PI' then replace Al2 with Ll - l PI Al2.

and

We have to interchange row 1 ofU1 with row 1 of A21' then eliminate ull and a41 with

a31 as the pivot, the resultant is as follows:

o

o

Now suppose

We have to interchange tow 2 with row 2 of A2l' and eliminate u12 and u22 with a42 as a

pivot, the resultant is:

o o

o 0

After the first block pivotal step, the disk storage should be as follows:

~
LlVl

Multipliers and
pivoting information

(In the formal description of our algorithm, we shall write L l PI A12 as V 12' and the disk

record that stores the multipliers and pivoting information as indicated in the previous

diagram L2l·)

The following is a formal description of Algorithm I:

Algorithm I

Let A be an n x n block system

fur i = 1 step 1 until n do

For j =i step 1 until n do

Read ~j into core

For k = 1 step 1 until i-I do

Read Ljk, Vkj into core .

Modify ~kJ'. by repeating the row operation, done to

A..
1J

If there i, row interchanging between rUkl, rewrite Uki on disk.

0kJ

10

•

Enddo ~ J
EliminateAji from Vi with row interchanging if necessary.

A.. .
Jl

Store multipliers and pivoting information as Lji on disk.

Enddo

Enddo

Repeat the samerow operation to the right-hand side, and solve for x by backward sub­

stitution.

Note:

1. If there is no interblock pivoting, it requires two disk read/write's in the innermost

do-loop; otherwise, it requires three.

2. Nowhere in the algorithm do we assume non-zeros in the diagonal blocks. Although

nonzeros in the final upper triangular form will indicate matrix singularity, and back­

ward substitution will be impossible to carry out.

11

Now we shall show how the algorithm can be modified for a block-profile system.

Define an n x n matrix K such that:

K(i,j)= 0 indicates the (i, Dblock is a zero block

K(i, Dt 0 indicates K(i, j)is the location of the (i, j)block (a nonzero block) on disk.

For example, for the following block-profile matrix,

Where the shaded area indicates the nonzero blocks, its corresponding K matrix can be

1 12 .
3
4 5
6 7
10

8 9
11

We call the K matrix the profile matrix of the matrix A.

In subroutine ETCGP, we scan the profile matrix to determine the beginning and end of

each block row and block column, and change the "ends" the do-loops in the algorithm

accordingly. To handle the "fill-in's "of the zero blocks (i.e., if the (i,j)block is originally

a zero block, but the r'eduction process turns it into a nonzero block), we find the maximum

entry of the original K matrix, m, and set K(i, j)= m + 1, update m by adding 1 to it, and

revise the information on the beginnings and ends of the i-thblock row and j-th block

column if necessary.

4.2 REMARKS ON FORTRAN IMPLEMENTATION OF ALGORITHM I

1. Storage of the multipliers and pivoting information

Suppose the i, j block is a nonzero block that is nixnj' and i>j. The number of words

in its corresponding record on disk is 2*(ni*nj)+nj+1 ' Before the j-th block pivotal step, the

first 2*(ni*nj) words stored the entries of the (i,j) block, and the last nj+1 words are zeros.

After the j-th block pivotal step, the first 2*(ni*nj) words store the multipliers used, and

the last nj+1 words store the pivoting information. We can consider this record as consist- .

12

ing of two separate arrays: an array of complex numbers, A(ni,nj), and an array of integers,

I(nj+1). In the 2 x 2 block system we used to illustrate the threshold pivoting discussion,

after the first pivotal step, the (2,1) block of fig 6., that is A21' is stored as an array of

complex numbers, A(2,2), as

Ull /a3i

a4l/a3l·

U12/a42

U22/a42

and the pivotal information is stored In the integer array, 1(3), as

2

3

The two arrays are packed as one record on disk.

The matrix A stores the actual multipliers used in the reduction process, 1(1)=1 indicates

the first row of A2l interchanged with row 1 of the upper triangular matrix U1 before the

first column of A2l is eliminated. 1(2)=2 indicates the second row of A2l interchanged with

row 2 ofUl before the second column of A2l is eliminated. 1(3)=1(1)+1(2)>0 indicates

there is interblock pivoting between the first block row (the pivotal block row) and the

second block row. If there is no interblock pivoting in this step, 1(1)=0, and 1(2)=0, thus'

1(3)=0. As it is obvious from this example, l(k)=O indicates that no row interchange is

needed to eliminate the k-th column of the O;j) block. l(k)=m>O indicates that the m-th

row of the (ij) block is interchanged with the k-th row of the corresponding upper triang­

ular matrix Uj before the k-th column of the (i, j)block is eliminated, and

I(nj+1)=1(1)+1(2)+...+I(nj)' If I(nj+1)=0, it indicates that there is no interblock pivoting

between the i-th and j-th rows; if l(nj+1»O,it indicates that there is interblock pivoting

between the i-th and j-th block row.

2. Optimization of the Innermost Loop

As indicated by the 3 x 3 block system in section 4.1 , if there is no interblock pivoting, the

most expensive operation is the matrix operation

13

A·· ...- A.. - L'k • Uk'1J 1J 1 J

In subroutine ETCGP, this operation is carried out by a Compass subroutine CCSMAB

which is about five times faster than straight FORTRAN. Even if there is interblock row

pivoting, we still can take advantage of CCSMAB. Consider the situation in the innermost

do-loop in the description of Algorithm I. We have the following blocks in core:

~k
If there is no pivoting between the i-th and j-th block row, the operation can be repre~

sented by the following equation:

where L is such that

If there is pivoting between the i-th and j-th block rows, then the operation can be repre­

sented by the following equation:

where P is that permutation matrix that interchanges the rows and L is such that

14

1\
L

1\ 1- 1\
Thus in ETCGP, we. compute Ukj = Lo- Ukj then useCCSMAB to compute Aij - MU

kj
.

Note that M is just the lower block of P ~:] and can be computed quite efficiently by

forward substitution. (The following describe the compution M and U = L
o

- IUkj .

M would overwrite Lik, and U would over write Ukj . We shall call Lik , M and Ukj , U and

the actual row and column dimension of U, NR, and NC.)

For m=2 step I until NR do

If I(m»O
k=I(m)

For h=1 step I until NC do
m - I

V(m, h) = V(m, h) - E M(k, s)*U(s, j)

s = I
Enddo

15

For h==l step 1 until m-I do

M(k,h)=O

Enddo

Else

(no operation)

Endif

Enddo

3. Pivotal Tolerance
At this point, we cannot give any theoretical guidance on the choice of the pivotal tolerance

fl. Experimaentally, fl = 0.001 proves to be satisfactory. In ETCGP, we store fl in a labelled

common block

COMMON/ETPIVOTIV
and V is set to 0.001 by at DATA statement. The user can reset the value of U by any ex-

ecutable statement before calling ETCGP.

4. Monitoring of Stability
ETCGP keeps track of the "growth" of the reduction process (which is the largest absolute

value of all the numbers generated by the reduction process). Our motivation for keeping

track of the growth is explained in section 4.3.

ETCGP also generates an extra right-hand side row which is the row sum of the coefficient

matrix A. It subtracts (1.0,0) from each element ,in.the solution of this extra right-hand side.

The resultant gives some indication of the "smallnes~"of the residue Ax-b of the actual

problem.

4.3 NUMERICAL STABILITY OF ALGORITHMI

Reid (ref. 9) and Wilkinson (ref. 10) have analyzed the stability of the regular Gaussian

elimination. If Land U are respectively computed lower and upper triangular factors of A,

the A, Land U are related asfollows :

A= LU+E

with E==(ei' j)and lei' jl~ 3.01 *m* €*g
where m is the order of A, and € is the machine precision, (in CDC equipment, € = 10-

14
),

g is the growth of the reduction process.

16

Reid and Wilkinson analysis cannot be extended in any obvious manner to give a practical

bound for E for Algorithm I of this document. The best we can do at present is the

following:A = M -1 M -1 M -lU M -1 M -1 M -IE +
1 2····n +1 2 n n

where Mi is the matrix that performs the ith block pivotal step

Ei = (ekli) leklil ~ 3.01 * e * gi with gi being the growth of

the first ith block pivotal step.

The main difficulty is due to the fact that we do not use the same pivots for eliminating

the subdiagonal elements in the same column. Thus
-1 -1 -1 E f 12MMl M2 ... Mi Ei f:. i or i = , , ...,

whilst equality holds for the above expression in the regular Gaussian elimination. However

each block pivotal step the process of eliminating the lower triangular elements of ~, i from

[SJ Ai, i + 1 I IAi, n I

and the process of elimination Aj , /rom

~I Ui, i + 1 1 .. · 1 Ui, n I
5] Aj , i + 1 I ·1 Aj , n [

for i ~ j ~ n are regular Gaussian elimination. Thus the "growth" of Algorithm I at least

gives the local stability of these substeps. The norm of the difference of the computed solu­

tion from the actual solution give a realistic bound for the norm of E, because the actual

solution x satisfies the equation Ax =b, the computed solution y satisfies the equation

(A + E)y =b.

Thus

Ax =(A + E)y

A(x - y) = Ey

In all our test problems

Ilx - yll === 10-11

17

4.4 COMPARISON OF ALGORITHM I WITH OTHER APPROACHES

Bjorck and Dahlquist (ref. 6) and Reid (ref. 8) have proposed approaches to the problem of

solutions of large dense linear systems. Bjorck and Dahlquist's approach follows.

The matrix is partitioned into block rows:

Al

with the requirement that a minimum of two block rows can be held in core simultaneously.

The first block pivotal step can be described as follows:

1. Read Al into core and reduce it to ~lwithregular Gaussian elimination.

2. For j=2,3 ... ,n read Aj into core reduce

to

with row-interchanges when necessary, and write ~ back onto disk.

3. Write Al back onto disk.

The other pivotal steps are similar.

Reid proposed the same data structure as we do. His first block pivotal substeps consists of

the following substeps to be performed for i=2,3,... ,n.

1. React into core the hlocks (~i) and apply normal Gaussian elimination, overwriting

18

eliminated elements by multipliers and using row interchanges. Note that for i > 3

the modified block A11 is upper triangular and advantage may be taken of this.

2. For j=2,3...n read in blocks (Alj) modify them using the multipliers and interchanges
Aij

held in (A11) and then write them back to disk.
Ail :

3. Write modified block Ail to disk.

The remaining block pivotal steps are performed similarly. Operations on the right-hand

side vector may be performed subsequently using the stored multipliers or at the same

time as the elimination.

Reid has proved that given the same amount of core, the block row storage scheme is only

efficient for matrices of order ofless than 300. For large matrices, Algorithm I requires the

least amount of disk input/output. The following table summarizes the features of the three

approaches.

Approaches Features
No. of

disk access

Dahlquist two block rows are needed in core m4
4-

and Bjorck N2

Reid four blocks are needed in core

four disk read/write's in the 32(my
3JN

inner most do-loop

Algorithm I three blocks are needed in core

~(~y(without pivot- two disk read/write's in the 3JN
ing) inner most do-loop

Algorithm I three disk read/write in the inner

5J3(~r(with the worst most do-loop
possible case of 2JN
pivoting)

* m is the order of the matrix,.and N is one half of the number of words
available in core.

19

4.5 ALGORITHM II (SUBROUTINE ETCSM)

Algorithm II is designed for coefficient matrix with a special sparsity structure:

*xx
xxx

xxx
xxx
xxxx

A= x xxx
x xxxx
x x xxx
x x xxx
x x xx

We can write A =B + D where B is a banded matrix:

xx
xxx

xxx
xxx

xxx
B= xxx

xxx
xxx

xxx
xx

and D = A -B:

*The x's are single elements

D= x
x
x
x
x
x

x
x
x
x

20

D can be written as D = UyT, where Uand yT are as follows:

o 0
o 0

o 0
o 0

U = x 0

x x
x x
x x
x x
x x

T _ IC.o 0 I 0 0 0 0 0 0 01

y-~00010009~

Thus to solve a x = b, we apply the Sherman-Morrison updating formula

, -I
x = A-Ib =(B + UyT) b

= B-Ib - B-Iu(I + yTR-lutlyTB-lb

The algorithm II can be described as follows:

1. Reduce B to an upper triangular matrix with Algorithm I.

2. Repeat the row operation in 1 to [bIU]. Solve for B[z,y] = [b,U] by backward

substitution.

3. Compute [S,T] = yT [z,y].

4. Decompose (I+T) into its LU factors with row interchanging.

5. Solve for w in the equation (I-T) w=S by forward and substitution.

6. Compute x=S-T*x.

21

4.6 REMARKS ON FORTRAN IMPLEMENTATION OF ALGORITHM II

In this section, we shall use the notation we have defined so far.

1. Storage of V and V

We partitioned U comformable to the partitioning of the coefficient matrix A:

VI

V2

V=

Vn

and store them on disk in the same block which stores the corresponding partition of the

right-hand side.

Since the mattix V only consists of ones and zeros, we do not store V explicitly.

We use two-dimensional array:

INTEGER N(MR,MC)

where MR ~ the number of block columns that contain element columns in the matrix

D=VVT, and MC ~ 2 + the total number of columns in the matrix U. The contents of N are

defined as follows:

Let i1h,. ... be the indices of the blocks that contains columns of D, and then

NO,l)=il

N(2,1)=i2

22

Suppose for j=l ,2... all (ij,m) blocks for some m > kj contain the nonzero elements of

D, then

NO ,2)=k1
N(2,2)=k2

Suppose for j= l,2 ... , D contains the following columns of the irth block:

mj,l ,mj,2' ... , mj,nU)' with mj,l <mj,2<' ..<mj,nU)·

Then

NO ,3)=m l,1' NO ,4)=m 1,2' , NO ,nO)+2)=m1,nO)' NO ,nO)+3)=0

N(2,3)=m2,l' N(2,4)=m2,2' , N(2,n(2)+2)=m2,n(2)' N(2,n(l)+3)=0

It is important that N(j,nU)+3) be set to zero, so that the program know the mj,nU)is the

last column from the irth block column to go into D. The following 3 x 3 block system

will illustrate our scheme: '

.... "-
xx
xxx

xxx
xxx
xxx
x x xx
x x xxx

A= x x xxx
X X xxx
x x xx
x x xx
x x xxx
x x xxx
x x x x x
x x x X

I.- -

23

-

x x
x x

D= x x
x x
x x x
x ·x x
x x x
x x x
x x x
x x X

L-. -

NO ,1)=1 meaning the first block column contains columns for D

N(2,1)=2 meaning the second block column contains columns for D

NO ,2)=2 meaning in the first block column, only (m,l),m ;;::. 2 contains columns for D

N(2,2)=3 meaning in the second block column, only (m,2),m ;;::'3, contains columns for D

NO ,2)=3,NO ,4)=5 ,NO ,5)=0 meaning only the third and fifth columns of the first block

column belongs to D

N(2,3)=3,N(2,4)=0 meaning only the third column of the second block column belongs

to D

2. Computation of VT(z,y) (Step 3 of Algorithm II)

Since V is not stored explicityly, we use the following:

(Let NB be the number of block columns that contain column of D, L be the total number

of nonzero columns of D, and the two-dimensional array N, is as defined as before, and

NC=L+number of right-hand sides.)

g=l

For i=l step 1 until NB do

k=N(i,1)

Read Tk=bk,Uk into core·

For j=3 step 1 until LU+2 do

m=N(i, j)

If m=O, then exit do-loop with index j

24

Otherwise

S(s,h)=Tk(m,h)

Enddo

g=g+l

Enddo

Note that the array S contains vT(z,y)

4.7 NUMERICAL STABILITY OF ALGORITHM II

Suppose A and B are matrices of order n and are related in the following manner:

A=B+UyT (2)

where U and Yare nxr matrices with r ~, and both U and V are of rank r. Then it follows

from a variant of the well known Sherman-Morrison formula (ref. 6) that

(3)

where Ir is the identity.matrix of order r. Assume B is well-conditioned and has been

decomposed into LU factors B=LU, then equation (3) provides a very efficient method to

solve the linear system

Ax=b.
(4)

number of A, denoted by k(A) is such that

However, a general concern when using equation (3) is that the matrix (Ir +yTB-1u)
may be ill-conditioned. In this section, we prove a sufficient condition for the well condi­

tioning of (Ir + yTB-I C)

Before we proceed, we state the usually accepted definition of the condition number of a

matrix and an inequality related to it.

Let A be an nxm, n>m, matrix with linearly independent columns, then the conditional
max. II Ax II

k(A) = IIxll = 1
min. II Axil

IIxli = 1

25

(5)

It is also true that

k(A) ~ IIAlb ·I\A+11 2

where A+ =(ATA)-l AT, the generalized inverse of A.

Let R(A) be the range of A. Inequality (5) is obvious from the fact that:

min min IIAxll max IIxll II xoli IIA+AXol1 max 11 II
IIxll2 =F 1 II

Ax
ll2 = /I xII#: 0 W = IIxlitGo IIAxll = IIAxoli = IIAxoll ~ lIyll =1 A+Y

Further, if A is nonsingu1ar, equality will hold.

We now prove the following:

Theorem 1. If A and B are related as in equation (2), and A and B are invertible, then

(I - y TB-1u) =U+AB- 1U (6)

(I - YTB-1u) =y TB-1A (yT) + (7)

where U+ = (uTU) -1 UT , and (y T) + = Y (YTY) -1 are the

generalized inverses of U and Y, respectively.

Proof: Note
A = B-UyT

= (In - UyTB-1)B

AB-1 = (In - UyTB-l)

:. AB- 1U =:' (u -UyTB-1U)

:. AB-1U = (Ur-yTB-lu)

:. (Ir - yTB-1 U) = U+AB-1U

Thus we have proved the validity of equation (6). The proof of equation (7) is similar

26

The following equations are direct derivations from equations (6) and (7):

(I - yTB-1 U) -1 = U + BA-1U

(I - YTB-1U) -1 = YTA-I B (yT) +

(8)

(9)

Combining equations ((6), (7), (8), and (9) with the factithat IICDI12 ~ IICII211DII2

foi- any two matrices C and D,

Inequality (0) states that if A and B are well-conditioned, and either U or Y is well-conditioned

then 1+ YTB- 1U is well-conditioned.

Inequality (0) is useful because IluJ, Ilu+lb, IlyT11 and II (yT)+11 can be

computed quite economically and the physical problems that yield matrices A and B usually

give some indication of their well-conditioning. The well-conditioning of B and (I - VTB-1u)
ensures that the solutions of Bx = bo

By = U

(I + yTB-IU)i = yTxo

can be computed with satisfactory accuracy. Thus the solution of Ax=b via equation (3)

can be computed with satisfactory accuracy (1).

In our particular application of the Sherman-Morrison updating formula, YTy is a permu­

tation matrix, thus Ilv+Ib· IIvl12 = 1. Therefore as long as A and B are both well-condi­

tioned, Algorithm II is always stable.

27

5.0 COMPUTER PROGRAM USAGE

5.1 MACHINE AND EXECUTION ENVIRONMENT

The algorithms described in the previous section are programmed as a FORTRAN sub­

routine library (which we call OCSLIB out-of-core solution library). The subroutines are

written for the FTN compiler of the CDC computers.

5.2 OPERATING SYSTEM

This subroutine library is designed for NOS 1.1. Its compass subroutines are optimized for

the CDC 6600.

5.3 TIMING

Timing is hardware and operating system dependent, The following formula gives a very

rough estimate for the timing:

CP second = 1/2 * n * p2* k

where n is the order of the linear system, and p is the band-width and k is machine­

dependent. To estimate k, make a sample run and compute k using the above formula.

For the Cyber 175, k ~ 8 x 10-.5

5.4 FILES AND FILE FORMAT

OCSLIB uses at least one random access file. OCSLIB has each block of the coefficient

matrix as a record. If the block is ni x nj' then the record length is 2*ni*nj + nj + 1.

5.5 USAGE

5.5.1 USING ALGORITHM I (SUBROUTINE ETCGP)

We recommend the following precedure:

Step 1. Define the block system of the coefficient matrix: choose a sequence of positive

28

integers n l' n2' ... nN to partition the matrix into a block system like fig. 1 of section

1.0, so that the block Ai' j is ni x nj' The partition is to be chosen so that at least three

blocks can be held in core simultaneously.

Step 2. Define the block profile of the matrix: define an array

INTERGER INDEX (M,M+I)

such that M> N, and INDEX(i, j)=0 if the Ai'l j is a zero block.

INDEX(i,j»O if the Ai' jhas at least one nonzero entries.

(here we consider bk=Ai N+1' for k= 1,2, ... , N),

Step 3. Write the augumented matrix on disk for ETCGP,nk (k=l ,2, ... N) at a time.

In this step we provide a subroutine ETBMGEN to write a block row of the augmented

matrix on disk in a format that is acceptable by ETCGP. Thus we shall describe the usage

and argument list of ETBMGEN.

COMPLEX W(MXR,MXC)

INTEGER INDEX(MT,MT+l),JN(NT2),NDBLK(NTl) (where NTl>NTBLKS+l

NT2>NTBLKS**2 + NTBLKS+3)

DO 101=1, NTBLKS

(Code to generate the i-th block row of the augmented matrix.)

CALL ETBMGEN(I,NTAPE,IN,MT,NTBLKS,WORK,MXR,MXC)

10 CONTINUE

29

The argument list for ETBMGEN is described as follows:

ARGUMENT LIST

I - BLOCK ROW INDEX
NTAPE - OUTPUT DISK FILE

OUTPUT - ARGMENTED MATRIX IN ETCGP FORMAT
INDEX - 2 DiMENSIONAL ARRAY FOR THE PROFILE OF THE MATRIX

ROW DIMENSION = MT, COLUMN DIMENSION = MT+I
INDEXlI,JI=O lI,JI-TH BLOCK IS ZERO
INDEXll,JI.GT.O LOCATION OF 1I,JI-TH BLOCK ON NTAPE

MT - ROW DIMENSION OF THE ARRAY INDEX
IN - INTEGER ARRAY FOR THE RANDOM ACCESS FILE NTAPE, AT LEAST

lNTBLKS+NTBLKS*NTBLKS+31 MANY WORDS LONG
NTBLKS - NO. OF BLOCK ROWS
NOBLK - ARRAY TO STORE BLOCK SIZES,NDBLKINTBLKS+ll=NO.OF RHS
WORK - 12 DIMENSIONAL TO USERI

INPUT ARRAY FOR THE NON-ZERO BLOCKS OF THt I-TH BLOCK ROW
MXR - ROW DIMENSION OF WORK
MXC - COLUMN DIMENSION OF WORK

TO WRITE THE NON-ZERO BLOCKS OF A BLOCK ROW OF MATRIX
IN ETCGP FORMAT

SUBROUTINE ETCGP ASSUMES ALL THE NON-ZEROBLOCKS TO BE
DENSE BLOCKS. ISEE THE SAMPLE CALLING PROGRAMI

NOTE

P<URPOSE

SUBROUTINE ETBMGENlI,NTAPE,INDEX,MT,JN,NTBLKS,NDBLK,WORK,
$MXR,MXCI

C**
C
C
C
C
C
C
C
C
C
C
C
C·
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C**

ETBMGEN alters the contents of the array INDEX.

Step 4. To solve the linear system via ETCGP

COMPLEX WORK (LW)

INTEGER INDEX(MT,MT,+l),NDBLK(NTl)

CALL ETCGP(NTAPE,INDEX,NTBLKS,NDBLK,WORK,LW,ITAG)

The calling sequence of ETCGP is as follows:

SUBROUTINE ETCGP(NTAPE,INDEX,NDBLKS,NDBLK, WORK,LWORK,ITAG)

30

PURPOSE MAIN SUBROUTINE
REDUCE MATRIX TO AN UPPER TRIAGULAR MATRIX - CALL ETCGPRM
REPEAT ROW OPERATION ON RHS - CALL ETCGPFS
BACKWARD SUBSTITUTION - CALL ETCGPBS

ARGUMENT LI ST
NTAPE - INPUT/OUTPUT DISK FILES FOR MATRIX

INPU 1 - CR IG INAL ARGMENTED MA TRI X
OUTPUT - ROW OPERATIONS PERFORMED AND UPPER

TRIANGULAR FORM AND SOLUTION
INDEX - 2 DIMENSIONAL ARRAY FOR THE PROFILE OF THE MATRIX

ROW DIMENSION = NTBLKS, COLUMN DIMENSION = NTBLKS+l
INDEXII,JI=O (I,JI-TH BLOCK IS ZERO
INDEX(I,JI.GT.O LOCATION OF (I,JI-TH BLOCK ON NTAPE

NTBLKS - NO. OF BLOCK ROWS
NDBLK - ARRAY TO STORE BLOCK SIZES,NOBLKINTBLKS+ll=NO.OF RHS
WORK - WORKING ARRAY (COMPLEX TO USERI
LWORK - LENGTH OF THE ARRAY WORK REGARDED AS COMPLEX

LWORK.GE. (NTBLKS**2 + 3*NTBLKS + 3*MXB + 3*NI
WHERE MXB = IMXBLK**ZI + IMXBLK+ZI/Z WITH MXBLK = THE
MAXIMUM OF ALL THE ENTRIES OF THE ARRAY NDBLK, AND WHERE
N IS THE ORDER OF THE SYSTEM

ITAG - CUMPUTATIONAL PATH
ITAG= 1 REDUCE MATR IX TO UPPER TRI ANGU LAR FORM AND

SOLVE AX=B
ITAG=2 REDUCE MATRIX ONLY
ITAG=3 SOLVE AX=B ASSUMING A HAS BEEN REDUCED

SU5ROUTINE ETCGP(NTAPE,INDEX,NT5LKS,NDBLK,WORK,LWORK,ITAGI
OPTION, KEEP =OFF, INLI ST=ON

c**
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c***

(The array WORK should be equivalenced to the arrays Wand IN as follows:

EQUIVALENCE (WORK,W) (WW(l,MXC+l),JN)

Step 5. Read the solution from NTAPE. In this subroutine we provide a subroutine

ETRDSOL which has exactly the ~ame calling sequence as ETBMGEN. Its usage is described

below:

DO 10 I=l,NTBLKS

CALL ETRDSOL(NTAPE,INDEX,MT,NTBLK,W,MXR,MXC)

(code to process the part of the solution corresponding to the i-th block row)

10 CONTINUE

31

5.5.2 USING ALGORITHM II (SUBROUTINE ETCSM)

We recommend the following procedure:

Step 1. Same as step 1 of section 5.5.1.

Step 2. Same as step 2 of section 5.5.1, except call subroutine ETSMGEN

instead of ETBMGEN. The argument list of ETSMGEN is as follows:

ARGUMENT LIST
I,NTAPE,INDEX,MT,JN,NTBLKS,NDBLK,WORK,MXR,MXC - SEE SUBROUTINE

ETBMGEN
NB,MLB,LB,LU GIVE THE SPARSITY STRUCTURE OF THE MATRIX 0
NB - DIMENSIONED AS

INTEGER NBIMLB,LU+21
NBII,ll=K, THE K-TH BLOCK ~OW CONTAINS THE COLUMNS OF D
NBII,21=J, ONLY THE BLOCKS'IM,KI,M.GE.J CONTAINS THE'COLUMNS

OF D
FOR T.GE.3, NBII,TI=S, THE S-COLUMNS OF THE K-TH BLOCK COLUMN
I S IN D. IF D ONLY CONTAINS H COLUMNS OF THE K-TH BLOCK COLUMN
THEN SET NBII,H+21=O

MLB - RUW DIMENSION OF NB
LB - TOTAL NO. OF BLOCK COLUMNS THAT CONTAINS COLUMNS OF D
'LU - TCJTAL NO. OF NON-ZERO COLUMNS OF D

WRITE THE MATRIX IN A FORM ACCEPTABLE BY ETCSMPURPOSE

SUBROUTINE ETSMGENII,NTAPE,INDEX,MT,JN,NTBLKS,NDBLK,WORK,
$ MXR,MXC,NB,MLB,LB,LUI

C
C ***
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

Step 3. Solve the linear system via ETCSM. The argument list of ITCSM is as follows:

ARGUMENT LIST
NTAPE,INDEX,NTBLKS,NDBLK,WORK,LWORK - SEe SUBROUTINE ETCGP
ITAG - THE VALUE OF ITAG IS PASSED ON TO ETCGP
KNB,MUhLB,LU GIVE THE SPARSITY STRUCTURE OF THE MATRIXD
KNB - DIMENSIONED AS

I NT EGER KNB(MLB, LU+21
KNBII,II=K, THE K-TH BLOCK ROW CONTAINS THE COLUMNS OF 0
KNBII,21=J, ONLY THE BLOCKS (M,KI,M.GE.J CONTAINS THE COLUMNS

OF D
FOR T.GE.3, KNB(I,TI=S, THE S-COLUMNS OF THE K-TH BLOCK COLUMN
IS IN D. IF 0 ONLY CONTAINS H COLUMNS OF THE K-TH BLOCK OJLUMN
THEN SET KNB(I,H+21=O

MLB - ROW DIMENSION OF KNB
LB - TOTAL NO. OF BLOCK COLUMNS THAT CONTAINS COLUMNS OF D
LU - TOTAL NO. OF NON-ZERO COLUMNS OF 0,

THE RHS.

APPLY THE SHERMAN-MORRISON UPDATING FORMULA TO SOLVE
IBE+DIX=B, WHERE BE IS A BLOCKED BENDED MATRIX,
AND 0 ONLY ,CONSISTS OF A FEW COLUMNS OF NON-ZEROES.
THE NON-ZERO COLUMNS OF 0 IS ASSUMED TO BE STORED WITH

PURPOSE

SUBROUTINE ETCSMINTAPE,INDEX,NTBLKS,NDBLK,WORK,LWORK,ITAG,
$KNB,MLB, LB ,LU I

c***
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c**

32

5.5.3 USING THE ITERATIVE REFINEMENT SUBROUTINE (ETCIT)

ETCIT requires the original matrix and the output matrix from TECGP to be in different

files. The usage of ETCIT is obvious from the explanation of its argument list:

ARGUMENT LIST
NTAPEI - INPUT DISK FILE STO~ES ORIGINAL MATRIX
INDEX I - 2 DIMENSIONAL ARRAY FOR THE PROFILE OF THE MATRIX IN

NTAPEI (SEE EXPLANATION FOR THE ARGUMENT INDEX IN
SUBROUTINE ETCGPI

NTAPEO - OUTPUT DISK FILE FROM ETCGP, STORES THE UPPER TRIANGULAR FORM
AND THE 'ROW OPERATIONS PERFORMED BY ETCGP, ALSO THE
SOLUTION FROMETCGP.
THE FINAL SOLUTION FROM ETCIT WILL OVERWRITES THE SOLUTION
FROM ETCGP.

INDEXO - 2 DIMENSIONAL ARRAY FOR THE PROFILE OF THE MATRIX IN
NTAPEO (SEE EXPLANATION FOR THE ARGUMENT INDEX IN
SUBROUTINE ETCGPI

NTBLKS - NO. OF BLOCK ROWS
NDBLK - ARRAY TO STORE BLOCK SIZES,NDBLK(NTBLKS~ll=NO.OF RHS
WORK - WORKING ARRAY (COMPLEX TO USER)
LWORK - LENGTH OF THE ARRAY WORK REGARDED AS COMPLEX

LWORK.GE. INTBLKS**2 + 3*NTBLKS + 3*MXB + 3*N)
WHERE MXB = (MXBLK**Z) + (MXBLK+2)/Z WITH MXBLK = THE
MAXIMUM OF ALL THE ENTRIES OF THE ARRAY NDBLK, AND WHERE
N IS THE ORDER OF THE SYSTEM

ITERATIVE REFINEMENTPURPOSE

SUBROUTINE ETCIT(NTAPEI,INDEXI,NTAPEO,INDEXO,NDBLK,NTBLKS,
$WORK,LWORK) '.

c***
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C******* *********,**

33

5.6 ERROR MESSAGES

5.6.1 ERROR MESSAGES FROM ETCGP

1. WORKING SPACE TOO SMALL, AT LEAST ************* WORDS ARE

NEEDED RETURN FROM ETCGP.

2. WRONG CHOICE OF COMPUTATION PATH, ITAG SHOULD EQUAL TO 1,2 OR 3.

3. MATRIX SEEMED SINGULAR, EXIT FROM ETCGP.

5.6.2 ERROR MESSAGES FROM ETCSM

1. WORKING SPACE TOO SMALL, AT LEAST ************* WORDS ARE

NEEDED RETURN FROM ETCSM.

2. MATRIX SEEMED SINGULAR, EXIT FROM ETCSM.

5.6.3 ERROR MESSAGES FROM ETCIT

1. WORKING SPACE TOO SMALL, AT LEAST ************* WORDS ARE

NEEDED RETURN FROM ETCIT.

2. CONVERGENCE TOO SLOW, RETURN FROM ETCIT.

34

•

5.7 SAMPLE PROBLEMS

5.7.1 SAMPLE PROBLEM 1

C
C
C
C
C
C
C

'C
C

PROGRAM TGP(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,TAPE8

THIS PROGRAM ItLUSTRATES THE USE OF ETCGP.
THE PROFILE OF THE MTRIX IS BLOCK TRIADIAGONAL.
THE SUBBLOCKS ARE 2 X 2 BLOCKS.
WE CALL THE RANDOM NUMBER GENERATOR TO GENERATE THE MATRI2< ENTRIES
WE USE THE ROW SUM OF THE MATRIX AS OUR RHS.

COMPLEX W(lOOO),WW(lO,lOO)
INTEGER IN(lO,11),NDBLK(11),JN(115),KN(110),NC(lO)

C
C NOTE THE W ARRAY SHOULD BE EQUIVALENCED TO WW
C AND IN SHOULD BE EQUIVALENCED TO WW(1,MXC+1)

EQUIVALENCE (WW, W), (KN, IN), (IN, WW(l, 12»
DATA KN/110*O/,W/1000*(O.,O.)/
DATA NTBLKS/5/,NDBLK/2,2,2,2,2,1/

C
C NOTE THE W ARRAY SHOULD BE E\.JUIVALENCED TO WW
C AND IN SHOULD BE EQUIVALENCED TO WW(1,MXC+1)

EQUIVALENCE (WW,W),(KN,IN),(JN,WW(1,12»
DATA

C
C GENERATE INDEX ARRAY IN IN
C

NT1=NTBLKS
NT1=NTLBKS+l
NTM1=NTBLKS-l
IN(l,l)=l
IN(1,2)=2
I N(l , NT1) =3
NS=3
D03I=2,NTMl
IN(I, 1-1) =NS+l
IN(I,I) =NS+2
IN(I,I+1)=NS+3
IN(I,NT1)=NS+4
NS=NS+4

3 CONTINUE
IN(NTBLKS,NTM1)=NS+l
IN(NTBLKS,NTBLKS)=NS+2
IN(NTBLKS, NT1) =NS+3
NS=NS+3

35

C
C FI NO OUT HOW MM'Y NON-ZERO COLUMNS IN THE BLOCK· ROW
C

D04I=1,NTBLKS
NC(I)=O
D04J=1,NTBLKS

4 IF (IN(I,J).GT.O)NC(I)=NC(I)+NDBLK(J)
C ~

WRI TE (6, 100) (O:.N (I , J) , J =1, 11) , I =1, 10)
100 FORMAT(*I~DEX ARRAY IN .*,1,(1115»

C GENERATE NTBLKS BLOCK ROW OF THE MATRIX
o

D010L=1,NTBLKS
NC1=NC(I)+1

C
C GENERATE NC(I)*20 RANDOM NUMBERS

CALL NOGEN(W,NG(I)*20)
C
C ZERO OUT WW(.,NC1)FOR ROW SUM
C

ND=NDBLK(I)
C
C COMPUTE ROW SUM

MC=NC(I)
C

C~L ETBMGEN (I,8,IN,10,JN,NTBLKS,NDBLK,WW,10,11)

D06J=1,ND
WW(J,NC1)=(0.,0.)
D06K=1,MC

6 WW(J,NC1)=WW(J,NC1)+WW(J,K)
C
C WRITE I-TH BLOCK ROW FOR ETCGP
C

C
10 CONTINUE

C
CALL ETCGP(8,IN,NTBLKS,NDBLK,W,1000,1)

C
C TO RED SOLUTION FROM TAPE8
C

D0111 =1 , NTBLKS
CALL ETRDSOL (I,8,IN,10,JN,NTBLKS,NDBLK,WW,10,11)
ND=NDBLK(I)

11; WRITE(6,101)I, (WW(J,l),J=l,ND)
101 FORMAT(lX,I5, *-TH BLOCK SOLUTION*, ,1,(8E10.4» ,

STOP
END

36

b

5.7. 2 SAMPLE PROBLEM 2'

PROGRAM TSM(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,TAPE8)
C
C THI S PROGRAM ILLUSTRATES THE USE OF ETCSM.
C THE PROFILE OF THE MATRIX IS OF THE FORM A=B+D, WHERE B IS
C BLOCK TRIDIANGONAL, AND D ONLY CONSISTS OF 2 NON-ZERO ROWS.
C THE SUBBLOCKS ARE 2 X 2 BLOCKS.
C WE CALL THE RANDOM NUMBER GENERATOR TO·GENERATE THE MATRIX ENTRIES
C WE USE THE ROW SUM OF THE MATRIX AS OUR RHS.
C

COMPLEX W(1000),WW(10,100)
INTEGER IN(lO, 11), NDBLK(11) , IN(115) ,KN(llO) , NC(lO) , NB(2,5)

C
C NOTE THE W ARRAY SHOULD BE EQUIVALENCED TO WW
C AND IN SHOULD BE EQUIVALENCED TO WW(1,MXC+1)

EQUIVALENCE (WW,W),(KN,IN),(JN,WW(1,12»
DATA KN/110*O/,W/1000*(O.,O.)/
DATA NTBLKS/5/,NDBLK/2,2,2,2,2,1/

C
C GENERATE INDEX ARRAY IN IN
C

NT1=MFBLKS
NT1=NTBLKS+l
NTM1= NTBLKS-1
IN(l,l}=l
IN(1,2)=2
IN(1, NT1) =3
NS=3
D03I=2,NTM1
IN(I,I-1) =NS+1
IN(I,I)=NS+2
IN(I, I +1) =NS+3
IN(I, NT1) =NS+4
NS=NS+4

3 CONTINUE
IN(NTBLKS,NTM1)=NS+l
IN(NTBLKS,NTBLKS)=NS+2
IN(NTBLKS,NT1)=NS+3
NS=NS+3

C
D05I =4, NTBLKS
NS=NS+l

5 IN(I, 2) =NS
C
C DEFINE THE STRUCTURE OF D
C

NB(1,1)=2
NB(1,2)=4
NB(1,3)=1
NB(1,4)=2

C
NB(1,5)~O

C FIND OUT HOW MANY NON-ZERO COLUMNS IN THE BLOCK ROW
C

37

D04I=1,NTBLKS
NC(I) =0
D04J=1,NTBLKS

4 IF (IN(I,J).GT.O)NC(I)=NC(I)+NDBLK(J)
C

WRITE(6,100)«IN(I,J),J=1,11),I=1,10)
100 FORMAT(*INDEX ARRAY IN.*,I,(11I5»

C GENERATE NTBLKS BLOCK ROW OF THE MATRIX
C

D010I=1,NTBLKS
NC1=NC(I)+1

C
C GENERATE NC(I)*20 RANDOM NUMBERS

CALL NOGEN(W,NC(I)*20)
C
C ZERO OUT WW(., NC1) FOR ROW SUM
C

ND=NDBLK(I)
C
C COMPUTE ROW SUM

MC=NC(I)
C

D06J=1,ND
WW(J,NC1)=(0.,Q.)
D06K=1,MC

6 WW(J,NC1)=WW(J,NC1)+WW(J,K)
C
C WRITE I-TH BLOCK ROW FOR ETCGP
C

•

C

C

CALL ETSMGEN (I,8,IN,10,JN,NTBLKS,NDBLK,WW,10,11,NB,2,1,2)

10 CONTINUE

CALL ETCSM(8,IN,NTBLKS,NDBLK,W,1000,1,NB,2,1,2)
C
C TO READ SOLUTION FROM TAPE8
C

D01II=1,NTBLKS
CALL ETRDSOL (I,8,IN,10,JN,NTBLKS,NDBLK,WW,10,11)
ND=NDBLK(I)

11 WRITE(6,101)1, WW(J, 1) ,J=l, ND)
101 FORMAT(lX,I5, *-TH BLOCK SOLUTION*, ,I, (8EIO.4»

STOP
END

38

•

REFERENCES

1. Ehlers, F. Edward: "A Finite Difference Method for the Solution of the Transonic
Flow Around Harmonically Oscillating Wings," NASA CR-2257, January 1974.

2. Weatherill, W. H.; Ehlers, F. E.; Sebastian, J. D.: "Computation of the Transonic
Perturbation Flow Fields Around Two - and Three~DimensionalOscillating Wing, "
NASA CR-2599, December 1075.

3. Weatherill, W. H.; Sebastian, J. D.; and Ehlers, F. E.: "The Practical Application ofa
Finite Difference Method to the Analysis of Transonic Flow Over Oscillating Airfoils
and Wings," NASA CR-2933, December 1977.

4. Weatherill, Warren H.; Ehlers, F. Edward; Yip, Elizabeth; and Sebastian, James D.:
"Further Investigation for Finite Difference Procedure for Analyzing the Transonic
Flow About Harmonically Oscillating Airfoils and Wings, " NASA CR-3195, 1979.

5. Weatherill, W. H.; and Ehlers, F. E.: ':4 User's Guide for A 344 -A Program Using a
Finite Difference Method to Analyze Transonic Flow Over Oscillating Airfoils, "
NASA CR-159141.

6. Bjorck, A.: Dahlquist, D.: "Numerical Methods," Prentice-Hall, Inc. 1974.

7. Calahan,D. A.: ':4 Block-Oriented Sparse Equation Solver for the CRAY-]," Proceed­
ings on 1979 International Conference on Parallel Processing. Bellaire, Mich. August
27 to 24,1979.

8. Ehlers, F. Edward; Weatherill, Warren H.; Yip, Elizabeth; and Sebastion, James D.:
':4n Investigation ofSeveral Factors Involved in a Finite Difference Procedure for
Analyzing the Transonic FlowAbout Harmonically Oscillating Airfoils and Wings,"
NASA CR-159143, 1979.

9. Reid, J. K., ':4 Note on the Stability of Gaussian Elimination, " J. Inst. Math Applies.
(1971) pp. 374-375.

10. Wilkinson, J. H., "The Algebraic Eigenvalue Problem, " London, Oxford University
Press., 1965.

11. Wilkinson, J. H., "Rounding Errors in Algebraic Processes," Prentice-Hall, 1963.

39

