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3. Write A1
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1.0 SUMMARY

This document describes the design and usage of two main subprograms using direct
methods to solve large linear complex systems of the form Ax = b, whose coefficient
matrices are too large to be stored in core. In the first main subprobram, the basic idea is
to reduce the matrix to an upper triangular matrix and subsequently solve the problem

by backward substitution. A row interchanging strategy called “threshold pivoting” is
adopted to preserve numerical stability and to minimize disk-transfers. This algorithm does
not yield the usual LU factorization of some row permutation of the coefficient matrix.
The second main subprogram is designed for linear systems with a certain sparse structure,
namely, the matrix can be written as B + D where B is a block-banded matrix, and D has
only a few columns of nonzeros. A variant of the Sherman-Morrison updating formula is
employed in this case. The second main subprogram calls the first main subprogram to solve
B(x,y) = (b,u) where x,y are unknowns, b is the right-hand side of the linear system

(B + D)x = b, and U is the nonzero columns of D.



2.0 INTRODUCTION

This document describes the design and usage of two FORTRAN main subprograms for the

CDC digital computer systems, namely subroutine ETCGP and subroutine ETCSM. These
subroutines were written as part of a research effort investigating unsteady transonic flow.
References 1 through 5 present a procedure for analyzing the flow about harmonically
oscillating airfoils and wings in the transonic regime. This procedure is based on small per-
turbations. A solution is formulated using finite difference techniques which results in a
large set of simultaneous equations, written matrix form as

Ax=b ¢8)

where A is a sparse complex matrix of order equal to the number of mesh points. The
matrix b is a complex matrix with the number of columns equal to the number of modes for
which pressure distributions are to be found. The matrix A may be of order 3,500 for a
practical two-dimensional airfoil.

Numerical solutions to equation (1) were initially obtained using relaxation techniques.
However, for a significant range of practical values of Mach number and reduced frequency,
experience showed that relaxation techniques applied to equation (1) failed to converge.
The matrix A in equation” (1) does not possess any of well-known properties (e.g., positive
definiteness, diagonal dominance) which guarantee the convergence of relaxation methods.
However, the physical origin of equation (1) guarantees the existence of a unique solution.
Thus the obvious alternative is a direct solution method, which assumes no properties of
the matrix A other than existence of a unique solution for an equation of the form of (1)
when any arbitray matrix b is applied.

Out-of-core algorithms have been discussed in standard textbooks of numerical analysis
(e.g. Reference 6). These algorithms are numerically as stable as the well-known regular
Gaussian elimination, yet they are not designed for efficient execution in modern day
computers. The physical origin of equation (1) makes “‘blocking” of the matrix A an
obvious and attractive data structure. Yet existing “blocked linear equation solvers” at best
assume non-singularity and the well-conditioning of the i-th diagonal sub-block at the i-th
blocked pivotal step (e.g. Reference 7). This property is unnatural and is not based on the
physics of the problem. Out basic algorithm does not require the matrix A to have this
particular property. As stated in the above paragraph, the only property of A it assumes
is non-singularity of the matrix A. It also takes into consideration numerical stability and
computational efficiency. Sections 43 and 44 discuss these advantages in detail.

The FORTRAN subroutines described here are applicable to both dense and sparse matrices
that are too large to be stored in core. Thus they are useful for solving any equation of the
form of equation (1), in particular in the case when there is no useful properties of the
matrix A to guarantee convergence of any iterative methods. For example, subroutine
ETCGP ( as well as the version for real matrices) has been used in different research and
production computer codes at the Boeing Company.



Results of applying the routines of this document together with th program described in
reference 5 are presented in reference 4. The development of the routines of this document
was in conjunction with work described in references 4, 5, and 8.

The first step in developing the algorithm for solving equation (1) is to partition the
augmented matrix [A|B] into blocks so that it can be considered to have the following
structure:

- .
Ajp Apy. .. A By

b

A
S1 Ass_ By
Figure 1. - Data Structure

Each block is stored as a record in mass storage with the requirement that at least three
blocks can be held in core simultaneously, and the diagonal blocks are square blocks. The
mass storage used should be a random access file (called direct access file in the IBM nomen-
clature).

The methods used in both main subprograms are direct methods. In the first main sub-
program, the basic idea is to reduce the coefficient matrix to an upper triangular system.
In the second main subprogram, the coefficient matrix is assumed to have the for B + D,
where B is a block-banded matrix, and D is a matrix with only a few columns of nonzeros.
A variant of the Sherman-Morrison updating formula is employed. _

Features of the two subprograms include options to
° Solve more than one set of right-hand sides
o  Control the frequency of pivoting
o  Access the submoduli of the main subprograms
o Take advantage of the block sparsity of the coefficient matrix.

In section 3.0 we shall list our symbols and nomenclatures. In section 4.0, we shall discuss
the algorithms in detail, analyze their numerical stabilities, remark on their FORTRAM
implementation and compare our approaches with outer approaches outlined in the liter-
ature. In secion 5.0, we shall discuss in detail the usage of the two subprograms.
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3.0 NOMENCLATURE

A is a matrix, the entry of the i-th row and j-th column is

denoted by a; i

- A is a matrix partitioned into blocks, the block in the i-th

block row and the j-th block column is denoted by A; ;

The transpose of A

Métrix with all zeros below the diagonal

Matrix of the form:

i

i

(where the shaded area indicates non-zero entries)



Block-Banded

matrix

Threshold pivoting
and pivotal

tolerance

Random Access file

Matrix of the form:

T

(Where the shaded area indicates non-zero entries)

Threshold pivoting is a row interchanging strategy controlled
by a pivotal tolerance parameter u. The u parameter is a
real number such that 0 <<u <1 ' If A= (ai_ j) ,and

a; ;2> max. |ai jl , then there is no row interchanging,

i, i S

i
otherwise interchange rows i and m where m = max.
j>i

au'

Multi-record mass storage input/output file which allows the
user to create, access and modify its records on a random
basis without regard for their physical positions or internal
structures. (They are called direct access files in IBM

nomenclature.)

Sherman-Morrison Updating Formula for A=B + UVT:

Al=pl.ply '(14 +vTprly)-lyTpl



Matrix norms:  ||All = max. { Z |aij| }
i j

|All oo max. {z o) }
' 1

i ,
1Al = max. { (2 %) 1/2}
i j )
Condition Number of a nonsingular matrix
K@) = |A] 47 m =1, 2,00
Growth (growth factor) The largest absolute value of the numbers generated by the

of a reduction reduction process

pProcess



4.0 DISCUSSION

In this section, we highlight the special features of our algorithms. In sections 4.1 to 44,
we shall discuss Algorithm I, which reduces the coefficient matrix to an upper triangular
matrix and solves the problem by backward substitution. Then we shall remark on
FORTRAN implementation and compare the efficiency of this algorithm with the ap-

proaches outlined by Bjorck and Dahquist (ref. 6), and Reid, (private communication).

In sections 4.5 and 4.7, we shall discuss Algorithm II, which employs a variant of the
Sherman-Morrison updaﬁng formula. Then we shall remark on its FORTRAN implementa-
" tion, and the numerical stability of our particular application of the Sherman-Morrison

updating formula.

4.1 ALGORITHM I (SUBROUTINE ETCGP)

For the convenience of discussion, we shall firstly assume the coefficient matrix A to be

dense. We shall show how the algorithm can be modified for a bloc’k-profile system.

We shall first illustrate the algorithm with a 3 x 3 block system, and assume no row inter-
changing is necessary. In this case, the algorithm yields Crout’s LU decomposition. The LU
factors can replace the original coefficient matrix A on disk. Assume, graphically, A is

stored on disk as in the following figure.

Aqq Ap Al;

Figure 2.—Original Matrix

In the first block pivotal step, we form the LU factorization of Ay, Ay =L;Uq and
replace Ay 1,A12,A13,A21 ,A31 as in figure 3.



[L.U L. 1A L lA A
1U1 1 A2 1 A3
-1
Ar1Up Ao Aj3
| -1
A3V - Az Az3

Figure 3.—After First Block Pivotal Step

Fori= 2, 3, write Ll —lAli as Uli’ and Ul-lAil as Lil'
In the second block pivotal step, replace Ay, with Asy-191U19, the decompose the
resultant into its LU factors, and complete the rest of the second block pivotal step as

illustrated in fig. 4.

_ -
LUy Up2 Ujs
LU Uy U |
. _1 _
Loy Ay Apl— Ly (V) Ly (A23 - L21Yy3)
Any-Lsy Uy
L3 A3 Az3 227721712
..1 _
L31 Uz (A32 L31U12) A33 N
Figure 4.—Second Block Pivotal Step

Write L2(A23—L21U1 3) as Ujy3, and U2(A32—L31U12) as L3q. In the third pivotal step,
we replace Az with A33 - L31Uj3 -L39 Up3 4pnd decomplse the resultant to its LU
factors. The third block pivotal step can be illustrated by fig. 5.

i -

LUy Uia Ui
. \
LUy Uiz Upg
Ly, LU,  Uypl=— [l21 LUy U3
L3 L3p A3z ‘
- - (L3U3)

L3 L32

_ Az3~L31U13 " L32Us3

Figure 5.—Third Block Pivotal Step



1

Thus we have reduced the matrix A to an upper triangular matrix, and thus equation (1) can

be solved by backward substitution.

Now we shall explain our row interchanging strategy, which is commonly known as
threshold pivoting. A real number u is chosen so the 0 < u < 1. We perform row inter-
changing only when [ai] <u - Max. Iajil . :
Note that if u = 0, there is no row interchanging at all; if u = 1, we have the regular row
interchanging. We shall illustrate the application of this row interchanging strategy to a

2 x 2 block system:

| U11 u12
Uj _ 0 ag9
Ay ' 31 - a3y
B VY

Figure 6.—First Pivotal Step of a 2 x 2 Block System

In the first pivotal step, we first decompose A1 into its LU factors with pivoting, i.e.,
A1 =L UyPy, then replace Ay, with L;"1P; Ay,
Let U12 = L1-1P1A12 Now suppose
U Ui Y12
0 Uy
|u11|>u * max. {|a31| s |a41|_ } il l.a31|

and

We have to interchange row 1 of U with row 1 of Ay1, then éliminate uqq and agqq with
a3 as the pivot, the resultant is as follows:

23 azg]
O u22
° 42|




Now suppose
Jugal <w - max {[u1a] logal } = #°|242

We have to interchange tow 2 with row 2 of Ayy,and eliminate uyy and uyy with agy as a

pivot, the resultant is:

31 23]
0 242
0 0

0 0 ]

After the first block pivotal step, the disk storage should be as follows:

r LUy | LiPiAr
Multipliers and l Ayy
pivoting information

(In the formal description of our algorithm, we shall write L1P1A12 as Uyg, and the disk
record that stores the multipliers and pivoting information as indicated in the previous

diagram Lyt
The following is a formal description of Algorithm I:

Algorithm I
Let A be an n x n block system
Fori=1step 1 untiln do
Forj =1istep 1 until n do
Read Aij into core
For k = 1 step 1 until i-1 do
Read ij, Ukj into core o
Modify Uki\ by repeating the row operations done to [:Ukﬂ.

Aji Agi

If there is row interchanging between Uk , rewrite Ukj on disk.
Axi

10



Enddo

- Ifj=i
Ay = LiUP;
Else
A= L7 TRAy
Endif
RewriteAy; on disk (rename AU as Uy;)
Enddo

Forj=1step 1 until n do
Read ‘Aij into core
Fork=1step l untili-1 do
. Read ij, Uy; into core

. |Yki . . Uk
Modify by repeating the row operations done to
ji . ik
If there is row interchanging between | - stewrite Uy on disk.
Ajk
Enddo
* Eliminate Aji from 1| with row ihterchanging if necessary.
Store multipliers and pivoting information as Lji on disk.
Enddo '
Enddo

Repeat the same row operation to the right-hand side, and solve for x by backward sub-

stitution.

Note:

1. If there is no interblock ﬁivoting, it requires two disk read/write’s in the innermost
do-loop; otherwise, it requires three.

2.  Nowhere in the algorithm do we assume non-zeros in the diagonal blocks. Although |
nonzeros in the final upper triangular form will indicate matrix singularity, and back-

ward substitution will be impossible to carry out.

1



Now we shall show how the algorithm can be modified for a block-profile system.
Define an n x n matrix K such that: ‘

K, j)= O indicates the (i, j)block is a zero block

K@, j)# 0 indicates K(j, j)is the location of the (i, j)block (a nonzero block) on disk.

For example, for the following block-profile matrix,

ke | |

Where the shaded area indicates the nonzero blocks, its corresponding K matrix can be

1 2
3
4 5
6 7 8 9
10 11
A

-
We call the K matrix the profile matrix of the matrix A.

In subroutine ETCGP, we scan the profile matrix to determine the beginning and end of
cach block row and block column, and change the “ends’ the do-loops in the algorithm
accordingly. To handle the ‘fill-in’s ’of the zero blocks (i.e., if the Gy j)block is originally

a zero block, but the reduction process turns it into a nonzero block), we find the maximum
entry of the original K matrix, m, and set KGj)=m+1, update m by adding 1 to it, and
revise the information on the beginnings and ends of the i-th block row and j-th block

column if necessary.
4.2 REMARKS ON FORTRAN IMPLEMENTATION OF ALGORITHM 1

1.  Storage of the multipliers and pivoting information

Suppose the i, j block is a nonzero block that is X, and i>j. The number of words
in its corresponding record on disk is 2*(ni*nj)+nj+1 " Before the j-th block pivotal step, the |
first 2*(ni*nj) words stored the entries of the (i,j) block, and the last nj+1 words are zeros.
After the j-th block pivotal step, the first 2:#(n; *nj) words store the multipliers used, and

the last nj+1 words store the pivoting information. We can consider this record as consist-

12



ing of two separate arrays: an array of complex numbers, Any n-) and an array of integers,
I(n +1). In the 2 x 2 block system we used to 111ustrate the threshold p1vot1ng discussion,
after the first pivotal step, the (2,1) block of ﬁg 6., that is A21, is stored as an array of
complex numbers A(2,2), as

[v11/a31]
a41/a31
Uralagy
U22/247)

and the pivotal information is stored in the integer array, 1(3), as

1
2
.

The two arrays are packed as one record on disk.

The matrix A stores the actual multipliers used in the reduction process, I(1)=1 indicates
the first row of A5 interchanged with row 1 of the upper triangular matrix U; before the
first column of A21 is eliminated. I(2)=2 indicates the second row of A21 interchanged with
row 2 of Uy before the second column of A, is eliminated. I(3)=I(1)+1(2)>0 indicates
there is interblock pivoting between the first block row (the pivotal block row) and the
second block row, If there is no interblock pivoting in this step, 1(1)=0, and 1(2)=0, thus"

" 1(3)=0. As it is obvious from this example, I(k)=0 indicates that no row interchange is
needed to eliminate the k-th column of the (i,j) block. I(k)=m>0 indicates that the m-th
row of the (i,j) block is intercha_nbged with the k-th row of the corresponding upper triang-
ular matrix Uj before the k-th column of the (i, j)block is eliminated, and
I(nj+1)=I(1)+I(2)+. . .+I(nj). If I(nj+1)=0, it indicates that there is no interblock pivoting
between the i-th and j-th rows; if I(nj+1)>0,it indicates that there is interblock pivoting
between the i-th and j-th block row.

2.  Optimization of the Innermost Loop

As indicated by the 3 x 3 block system in section 4.1, if there is no interblock pivoting, the

most expensive operation is the matrix operation

13



Ay =— Ay ~Lig = Uy

In subroutine ETCGP, this operation is carried out by a Compass subroutine CCSMAB
which is about five times faster than straight FORTRAN. Even if there is interblock row
pivoting, we still can take advantage of CCSMAB. Consider the situation in the innermost
do-loop in the description of Algorithm 1. We have the following blocks in core:

Lix Ay
If there is no pivoting between the i-th and j-th block row, the operation can be repre-

sented by the following equation:

L |V j
= A
where L is such that
L‘l B I 0
Lik |

If there is pivoting between the i-th and j-th block rows, then the operation can be repre-

sented by the following equation:

where P is that permutation matrix that interchanges the rows and L is such that

-1
i =]+P 0 0

14



We can write

Therefore
A LT o
L = -1
[ |-mL, !
Also write
U,
kj
. P =
L2
Therefore
-1
A Lo Uy
L =

- -1=
Aij ML, Uy

A _ A
Thus in ETCGP, we_ compute Ukj = Lo_lUkj then use CCSMAB to compute Aij - MUkj .
o N
Note that M is just the lower block of P Ly and can be computed quite efficiently by
i

forward substitution. (The following describe the compution M and U = Lo'lUkj .
M would overwrite Lii> and U would over write Ukj' We shall call Lix, M and Ukj’ U and
the actual row and column dimension of U, NR, and NC.)

For m=2 step 1 until NR do

If I(m)>0
k=I(m)
For h=1 step 1 until NC do
, m-1
U(m, h) = U(m, h) - 37 M(k, s)*U, j)
s=1
Enddo

15



For h=1 step 1 until m-1 do
M(k,h)=0
Enddo
Else
(no operation)
Endif
Enddo

3. Pivotal Tolerance
At this point, we cannot give any theoretical guidance on the choice of the pivotal tolerance
u. Experimaentally, 4 = 0.001 proves to be satisfactory. In ETCGP, we store u in a labelled
common block

COMMON/ETPIVOT/U
and U is set to 0.001 by at DATA statement. The user can resét the value of U by any ex-
ecutable statement before calling ETCGP.

4. Monitoring of Stability
ETCGP keeps track of the “growth” of the reduction process (which is the largest absolute
value of all the numbers generated by the reduction process). Our motivation for keeping

track of the growth is explained in section 4.3.

ETCGP also generates an extra right-hand side row which is the row sum of the coefficient
matrix A. It subtracts (1.0,0) from each element in the solution of this extra right-hand side.
The resultant gives some indication of the “smallness” of the residue Ax-b of the actual

problem.
4.3 NUMERICAL STABILITY OF ALGORITHM I

Reid (ref. 9) and Wilkinson (ref. 10) have analyzed the stability of the regular Gaussian
elimination. If L and U are respectively computed lower and upper triangular factors of A,
the A, L and U are related asfollows:

A=LU+E
with E=(e;, j)and le; j|< 301 *m*e*g
where m is the order of A, and e is the machine precision, (in CDC equipment, € = 10'14),

g is the growth of the reduction process.

16



Reid and Wilkinson analysis cannot be extended in any obvious manner to give a practical
bound for E for Algorithm I of this document. The best we can do at present is the
following: - - - - - - - - -
OTOWINE A =M iMoo My I M TTE MM, R+ MOIE
where M; is the matrix that performs the ith block pivotal step
E;= (ekll) |ekli| < 301*ex*g withg being the growth of
the first ith block pivotal step.

The main difficulty is due to the fact that we do not use the same pivots for eliminating
the subdiagonal elements in the same column. Thus

MMy v TE; 2 B, for  i=1,2,...,M
whilst equality holds for the above expression in the regular Gaussian elimination. However

each block pivotal step the process of eliminating the lower triangular elements of A;, ; from

Ai,i Ai,i'l‘l ........ Ai,ﬂ

and the process of elimination Aj, jfrom

Ui, l Ul, 1 - 1 ......... Ul, n
Aj, 1 A], 1 + 1 ......... A‘], n

for 1<{j<n are regular Gaussian elimination. Thus the “growth” of Algorithm I at least
gives the local stability of these substeps. The norm of the difference of the computed solu-
tion from the actual solution give a realistic bound for the norm of E, because the actual
solution x satisfies the equation Ax= b, the computed solution y satisfies the equation
(A +E)y =b. |
Thus

Ax=(A+E)y

A(x-y)=Ey

Byl < HAo I HIx - il

" In all our test problems
lix -yl = 10711
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4.4 COMPARISON OF ALGORITHM I WITH OTHER APPROACHES

Bjorck and Dahlquist (ref. 6) and Reid (ref. 8) have proposed approaches to the problem of
solutions of large dense linear systems. Bjorck and Dahlquist’s approach follows. - '

The matrix is partitioned into block rows:

Al

Ap

Ap

with the requirement that a minimum of two block rows can be held in core simultaneously.
The first block pivotal step can be described as fo_llows:

1. Read Aq into core and reduce it to \.7\ 1 | with regular Gaussian elimination.

2. Forj=2,3...nread Aj into core reduce

to ‘
Aj E

- with row-interchanges when necessary, and write A] back onto disk.

3. Write Al back onto disk.

The other pivotal steps are similar.

Reid proposed the same data structure as we do. His first block pivotal substeps consists of

the following substeps to be-performed for i=2,3,. . .n.

A
1. Read into core the blocks < Al 1> and apply normal Gaussian elimination, overwriting
il

18



eliminated elements by multipliers and using row interchanges. Note that fori> 3

the modified block Ay is upper triangular and advantage may be taken of this.

A .

2. Forj=2,3.. .nread in blocks < 1J> modify them using the multipliers and interchanges
ij

A .
held in 11\ and then write them back to disk.
\Ait/:

3. Write modified block A;y to disk.

The remaining block pivotal steps are performed similarly. Operations on the right-hand

side vector may be performed subsequently using the stored multipliers or at the same

time as the elimination.

Reid has proved that given the same amount of core, the block row storage scheme is only
efficient for matrices of order of less than 300. For large matrices, Algorithm I requires the

least amount of disk input/output. The following table summarizes the features of the three

approaches.
No. of
Approaches Features disk access
Dahlquist , two block rows are needed in core m4
4 —
and Bjorck N2
Reid four blocks are needed in core 3
four disk read/write’s in the 32 m
, 3\IN
inner most do-loop
Algorithm I three blocks are needed in core 3
2{ m
(without pivot- two disk read/write’s in the =l
| 3\WN
ing) inner most do-loop
Algorithm 1 three disk read/Write in the inner
53/ m\3
(with the worst most do-loop — | =
possible case of . 2 \JUN
pivoting)

* m is the order of the matrix,-and N is one half of the number of words
available in core.
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4.5 ALGORITHM II (SUBROUTINE ETCSM)

Algorithm 11 is designed for coefficient matrix with a special sparsity structure:

— *
X x 7]
X X X

X X X

XXX

X XXX

A= X XXX

X XXXX

X X XXX

X X XXX
| x X X X]

We can write A = B + D where B is a banded matrix:
X x -]
XXX
X XX
XXX
XXX
B= X XX
XXX
XXX
XXX
XX

and D = A -B:

LI T
Mo KR

¥ The x’s are single elements

20



D can be written as D = UVT, where Uand V1 are as follows:

' oolooooooo
H VT:_
: oooolooooo

G
i
I % X% X <o o o ol

J@ = % x %0000 o]

Thus to solve a x = b, we apply the Sherman-Morrison updating formula

x=ATlp=(B+uvT) b

- - “1.\-1 _
=B lp-B 1u<I+VTB'1U) vIply

The algorithm II can be described as follows:

Reduce B to an upper triangular matrix with Algorithm I.

2. Repeat the row operation in 1 to [b|U]. Solve for B [z,y] = [b,U] by backward
substitution.

Compute [S,T] = VT [z,y].
Decompose (I+T) into its LU factors with row interchanging,

Solve for w in the equation (I-T) w=S by forward and substitution.

o oW

Compute x=S-T#x.
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4.6 REMARKS ON FORTRAN IMPLEMENTATION OF ALGORITHM 11

In this section, we shall use the notation we have defined so far.

1. Storage of Uand V

We partitioned U comformable to the partitioning of the coefficient matrix A:
Uy

Uy

Up

and store them on disk in the same block which stores the corresponding partition of the
right-hand side.

by | U
by | Uy
i | 5,

Since the matrix V only consists of ones and zeros, we do not store V explicitly.

We use two-dimensional array:
INTEGER N(MR MC)

where MR > the number of block columns that contain element columns in the matrix
D=UVT, and MC > 2 + the total number of columns in the matrix U. The contents of N are
defined as follows:
Letiy,ig,. ... be the indices of the blocks that contains columns of D, and then

N(1,1)=i;

N(2,1)=iy
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Suppose for j=1,2. .. all (ij ,m) blocks for some m > kj contain the nonzero elements of
D, then

N(1,2)=k,

N(2,2)=k,

Suppose forj=1,2 ..., D contains the following columns of the ij—th block:
mj’l,mj’z, e mj,n(j), with mj’l <mj,2<' . <mj,n(_])

Then

N(1,3)=mq 1, N(1,4)=m1,2, e N(I,n(1)+2)=m1,n(1), N(1,n(1)+3)=0
N(2,3)=m2,1, N(2’4)=m2,2’ cee N(2,n(2)+2)=m2’n(2), N(2,n(1)+3)=0

It is important that N(,n(G)+3) be set to zero, so that the program know the m; n(j)-is the .
last column from the ij-,th block column to go into D. The following 3 x 3 block system

will illustrate our scheme:

XX
XXX
XXX
XXX

>
s
>

X X
XXX
XXX
XXX
X X

ta it

XX

XXX
XXX
XX X

IR
Mox % b M| oMo

- 23



[ -
X X
X X
D= X X
X X
X X X
X - X X
X X X
X X X
X X X
N X X X |

N(1,1)=1 meaning the first block column contains columns for D

N(2,1)=2 meaning the second block column contains columns for D

N(1,2)=2 meaning in the first block column, only (m,1),m = 2 contains columns for D

N(2,2)=3 meaning in the second block column, only (m,2),m =3, contains columns for D

N(1,2)=3,N(1,4)=5,N(1,5)=0 meaning only the third and fifth columns of the first block
column belongs to D

N(2,3)=3,N(2,4)=0 meaning only the third column of the second block column belongs
toD

2. Computation of VT(z,y) (Step 3 of Algorithm II)
Since V is not stored explicityly, we use the following:
(Let NB be the number of block columns that contain column of D, L be the total number
of nonzero columns of D, and the two-dimensional array N, is as defined as before, and
NC=L+number of right-hand sides.) '
g=1
Fori=1 step 1 until NB do
k=N(,1)
Read Ty =by,Uy into core.
For j=3 step 1 until LU+2 do
m=N({, j)
If m=0, then exit do-loop with index j

24



Otherwise
S(s,h)=Tk(m,h)
Enddo
g=g+l
Enddo
Note that the array S contains VT(z,y)

4.7 NUMERICAL STABILITY OF ALGORITHM 1

Suppose A and B are matrices of order n and are related in the following manner:
A=B+UVT (2)

where U and V are nxr matrices with r <n, and both U and V are of rank r. Then it follows

from a variant of the well known Sherman-Morrison formula (ref. 6) that
Al=p1 13‘10(1r +vTply)lyTp ! 3)

where 1. is the identity matrix of order r. Assume B is well-conditioned and has been
decomposed into LU factors B=LU, then equation (3) provides a very efficient method to

solve the linear system

Ax=b. )

However, a general concern when using equation (3) is that the matrix (Ir "'VTB'IU)
may be ill-conditioned. In this section, we prove a sufficient condition for the well condi-
tioning of (Ir+VTB'1C)

Before we proceed, we state the usually accepted definition of the condition number of a

matrix and an inequality related to it.

Let A be an nxm, n=m, matrix with linearly independent columns, then the conditional

number of A, denoted by k(A) is such that Il?:llai'l llAxIl
k(A) = ——————
min. || Ax]|
lIxIl =1
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It is also true that
k(a) = llall, -lla*l, (5)
where AT = (ATA)—IAT , the generalized inverse of A.

Let R(A) be the range of A. Inequality (5) is obvious from the fact that: -

+
min IAX[ = min  [Axl_max Ixll _ %ol “A Axo” max |
- - - - =
Ixlly#= 1" "2 ixliEo Ikl Ixi#o IlAxIl A%l Ax . lyli=1 "7

|l

«

Further, if A is nonsingular, equality will hold.
We now prove the following: ,
Theorem 1. If A and B are related as in equation (2), and A and B are invertible, then
(1 - VTB‘1U) =utaslu (6)
(1 - VTB'IU) =vTpla (VT) + (7)
+ Tyr) -14;T T\t Ty) 1
where U"= (U'U) "'U" , and (V =V(V V) are the

generalized inverses of U and V, respectively.

Proof: Note
A = B-UvVT
(1 -uvT -1)
= (1,-uvTE!) B
AB"‘] = (In - UVTB—.l)
LARlU = <U-UVTB'1U)
~ABlU = (Ur-VTB'1U>
(Ir- VTB'IU) = UtaBlu
Thus we have proved the validity of equation (6). The proof of equation (7) is similar d
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The following equations are direct derivations from equations (6) and (7):

<I—VTB'1U>'1 = U+BA’lU (8)
(I_VTB—1U> -1 - VTA—IB(VT> + (9)
et 21 = (lully- utlly) % e 2 =(| VA ) I, ) o T o v [ |

Combining equations ( (6), (7), (8), and (9) with the factfthat |ICD|I2 I|C||2||D||2

for any two matrices C and D,

11
k(I-VTB'1U> = “I-VTB -vTg 1U> ”2

k(1-VTBIU) < min {92, %) k@A) k®B).  (10)

Inequality (10) states that if A and B are well-conditioned, and either U or V is well-conditioned
then I+ VTB lU is well-conditioned.

Inequality (10) is useful because “U2" , "U+”2 , ”VTII and ||(VT)+|| can be
computed quite economically and the physical problems that yield matrices A'and B usually
give some indication of their well-conditioning. The well—conditioning of B and ( I- VTB_1U>
ensures that the solutions of Bx, = b

By = U

(1+vTBu)z = vTx,
can be computed with satisfactory accuracy. Thus the solution of Ax=b via equation (3)

can be computed with satisfactory accuracy (11).

In our particular application of the Sherman-Morrison updating formula, vIvisa permu-

= 1. Therefore as long as A and B are both well-condi-

tation matrix, thus

tioned, Algorithm II is always stable.
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5.0 COMPUTER PROGRAM USAGE

5.1 MACHINE AND EXECUTION ENVIRONMENT

The algorithms described in the previous section are programmed as a FORTRAN sub-
routine library (which we call OCSLIB out-of-core solution library). The subroutines are

written for the FTN compiler of the CDC computers.

5.2 OPERATING SYSTEM

This subroutine library is designed for NOS 1.1. Its compass subroutines are optimized for
the CDC 6600. .

5.3 TIMING
Timing is hardware and operating system dependent. The following formula gives a very
rough estimate for the timing:
CPsecond = 1/2% n = p2* k
where n is the order of the linear system, and p is the band-width and k is machine-

dependent. To estimate k, make a sample run and compute k using the above formula.

For the Cyber 175, k = 8 x 1075

5.4 FILES AND FILE FORMAT

OCSLIB uses at least one random access file. OCSLIB has each block of the coefficient

matrix as a record. If the block is n; x ny, then the record length is 2*ni*nj + n +1,

5.5 USAGE
5.5.1 USING ALGORITHM I (SUBROUTINE ETCGP)
We recommend the following precedure:

Step 1. Define the block system of the coefficient matrix: choose a sequence of positive
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integers ny, n,, . .. ny to partition the matrix into a block system like fig. 1 of section
1.0, so that the block A, jis n; X n;. The partition is to be chosen so that at least three

blocks can be held in core simultaneously.

Step 2.  Define the block profile of the matrix: define an array
"INTERGER INDEX (M,M+1)
such that M= N, and INDEX(, j)=0 if the A j
INDEX (1, j)=0 if the A;, jhas at least one nonzero entries.
(here we consider bk=Ai,N+1’ fork=1,2,...,N)

is a zero block.

Step 3.  Write the augumented matrix on disk for ETCGP,nk (k=1,2,...N) at a time.
In this step we provide a subroutine ETBMGEN to write a block row of the augmented

matrix on disk in a format that is acceptable by ETCGP. Thus we shall describe the usage
and argument list of ETBMGEN.

" COMPLEX W(MXR,MXC)
INTEGER INDEX(MT,MT+1) JN(NT2),NDBLK(NT1) (where NT =>NTBLKS+1
NT2>NTBLKS**2 + NTBLKS+3)

DO 10 I=1, NTBLKS ‘

(Code to generate the i-th block row of the augmented matrix.)

CALL ETBMGEN(I,NTAPE,IN MT NTBLKS,WORK MXR MXC)
10 CONTINUE
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The argument list for ETBMGEN is described as follows:

SUBROUTINE ETBMGEN (I NTAPE,INDEXsMTyJINyNTBLKSNDBLK sWORK,
$MXRyMXC)
C ko Aok ok lokskdok etk Rtk ARk ook ok dokok Ak otk ko ol o ololok koKl ok

" PURPOSE TO WRITE THE NON-ZERO BLOCKS OF A BLOCK ROW OF MATRIX
IN ETCGP FORMAT

ARGUMENT LIST

C

C

[

C

c

c I — BLOCK ROW INDEX

c NTAPE — OCUTPUT DISK FILE

C OUTPUT - ARGMENTED MATRIX IN ETCGP FORMAT

c INDEX ~ 2 DIMENSIONAL ARRAY FOR THE PROFILE OF THE MATRIX

C ROW DIMENSION = MT, COLUMN DIMENSIGN = MT+1

c INDEX(I,J)=0 (I,J)-TH BLOCK IS ZERO

C INDEX(I4J)oGT.0 LOCATION OF (I,J)-TH BLOCK ON NTAPE
C MT ~ ROW DIMENSION OF THE ARRAY INDEX

C JN — INTEGER ARRAY FOR THE RANDOM ACCESS FILE NTAPE, AT LEAST
c (NTBLKS+NTBLKS*NTBLKS+3)} MANY WORDS LONG

C NTBLKS — NO. OF BLOCK ROWS )

c NDBLK —~ ARRAY TO STORE BLOCK SIZES,NDBLK(NTBLKS+1}=NO.OF RHS
C WORK — (2 DIMENSIONAL TO USER)

C INPUT ARRAY FOR THE NON-ZERC BLOCKS OF THE I-~TH BLOCK ROW
C MXR — ROW DIMENSION OF WORK

C MXC - COLUMN DIMENSION OF WORK

c

c

C

C

C

NOTE SUBROUTINE ETCGP ASSUMES ALL THE NON-ZEROBLOCKS TO BE
DENSE BLOCKS. {(SEE THE SAMPLE CALLING PROGRAM)

s e e ootk ek sk e sk o s s o sl o o e e s e ok 0K s e e ok ko s e ook oK AoKoR ko sk koo R ok ookl ook kR ok

ETBMGEN alters the contents of the array INDEX.

Step 4. To solve the linear system via ETCGP
COMPLEX WORK (LW)
INTEGER INDEX(MT MT,+1) NDBLK(NT1)

CALL ETCGP(NTAPE,INDEX NTBLKS,NDBLK ,WORK,LW,ITAG)
The calling sequence of ETCGP is as follows:
SUBROUTINE ETCGP(NTAPE,INDEX NDBLKS NDBLK, WORK,LWORK,ITAG)
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SUBROUT INE ETCGP(NTAPE yINDEXyNTBELKS ¢NDBLK¢WORK,LWORK,ITAG)
CPTIONsKEEP=0FFy INLIST=0ON
Coeieade e e ook X Ak 30K 30K 3 XK A8 o K ok A ek e s e ol el o ek et o kR sk o ok Kok ok

C
C PURPOSE MAIN SUBROUTINE

C REDUCE MATRIX TO AN UPPER TRIAGULAR MATRIX ~ CALL ETCGPRM
[ REPEAT ROW OPERATION ON RHS ~ CALL ETCGPFS

C BACKWARD SUBSTITUTION -~ CALL ETCGPBS
C
C
c
C

ARGUMENT LIST

NTAPE ~ INPUT/GUTPUT DISK FILES FOR MATRIX

INPUT -~ ORIGINAL ARGMENTED MATRIX

C OUTPUT — ROW OPERATIONS PERFORMED AND UPPER
C TRIANGULAR FORM AND SOLUTION
C INDEX — 2 DIMENSIONAL ARRAY FOR THE PROFILE OF THE MATRIX
C ' ROW DIMENSION = NTBLKS, COLUMN DIMENSION = NTBLKS+l
c INDEX(I9J)=0 (I,J)-TH BLOCK IS ZERO
c INDEX(I+J).GT.0 LOCATION OF (I,J4)-~TH BLOCK ON NTAPE
C NTBLKS =~ NO. GF BLOCK ROWS
C NOBLK — ARRAY TO STORE BLOCK SIZES,NDBLK(NTBLKS+1)=NO.OF RHS
C WORK ~ WORKING ‘ARRAY (COMPLEX TO USER)
c LWORK — LENGTH OF THE ARRAY WORK REGARDED AS COMPLEX
c LWORK«GEe (NTBLKS*%*2 + 3«NTBLKS + 3%*MXB + 3%N)
C WHERE MXB = (MXBLK*#%2) + (MXBLK+2)/2 WITH MXBLK = THE
C MAXIMUM OF ALL THE ENTRIES OF THE ARRAY NDBLK, AND WHERE
C N IS THE ORDER OF THE SYSTEM
C ITAG —~ COUMPUTATIONAL PATH
c ITAG=1 REDUCE MATRIX TO UPPER TRIANGULAR FORM AND
C SOLVE AX=8B )
c ITAG=2 REDUCE MATRIX ONLY
C 1TAG=3 SOLVE AX=B ASSUMING A HAS BEEN REDUCED
c
C

e sl et e oot o o et e ol e e e e sk s ek el sl sl s ek s ok ke e et o o gk ok ko o ool s ook ook ok o K

(The array WORK should be equivalenced to the arrays W and JN as follows:
EQUIVALENCE (WORK,W) (WW(1,MXC+1),JN)

Step 5. Read the solution from NTAPE. In this subroutine we provide a subroutine
ETRDSOL which has exactly the same calling sequence as ETBMGEN. Its usage is described
below:
DO 10 I=1,NTBLKS
CALL ETRDSOL(NTAPE INDEX MT ,NTBLK,W MXR MXC)
(code to process the part of the solution corresponding to the i-th block row)
10 CONTINUE
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5.5.2 USING ALGORITHM II (SUBROUTINE ETCSM)
We recommend the following procedure:
Step 1. Same as step 1 of section 5.5.1.

Step 2.  Same as step 2 of section 5.5.1, except call subroutine ETSMGEN
instead of ETBMGEN. The argument list of ETSMGEN is as follows:

SUBROUTINE ETSMGEN(IJNTAPE.INDEX ¢MTy INyNTBLKSyNDBLK»WORK,
$ MXReyMXCyNBoMLB,LB,LU)

A RO AR A A A AR o o o A sk ol o ok kol K ok Aok ok Kok ok
PURPOSE WRITE THE MATRIX IN A FORM ACCEPTABLE BY ETCSM

ARGUMENT LIST »
1,NTAPEINDEX,MTINyNTBLKS ;NDBLK yWORK,MXR,MXC - SEE SUBROUTINE
ETBMGEN
N8B yMLB,LB,LU GIVE THE SPARSITY STRUCTURE OF THE MATRIX D
NB — DIMENSIONED AS :
INTEGER NB(MLB,LU+2)
NB(I,1)=K, THE K~TH BLOCK ROW CONTAINS THE COLUMNS OF D
NB(I,2)=J, ONLY THE BLOCKS (MsK)yM.GE+J CONTAINS THE- COLUMNS
OF D
FOR T.GE«3, NB(I,T)=S, THE S—-COLUMNS OF THE K-TH BLOCK COLUMN
1S IN D. IF D ONLY CONTAINS H COLUMNS OF THE K-TH BLOCK COLUMN
THEN SET NB(I,H+2)=0
MLB - RGW DIMENSION OF NB
LB - TOTAL NO. OF BLOCK COLUMNS THAT CONTAINS COLUMNS OF D
‘LU - TOTAL NO. OF NON-ZERD COLUMNS OF D

[aXsXakskalaXzinkakaksXaRk s aRake e oo ol el

st oo e e Aok ol e o ook o RO e b o ook ol Aok sk koo R o sk el e ol e sk e s Ko ok ok ok

Step 3.  Solve the linear system via ETCSM. The argument list of ITCSM is as follows:

SUBROUTINE ETCSM(NTAPE yINDEX yNTBLKSyNDBLK yWORK,LWORK,ITAG,
SKNBsMLB,LB,LUY)
Csek ok ok skototok ook o ok ook skakdok Selorole okl ok ikl sottokol ok kol RSk ook 3okl ook

PURPGSE APPLY THE SHERMAN-MORRISON UPDATING FORMULA TO SOLVE
(BE+D)}X=By WHERE BE IS A BLOCKED BENDED MATRIX,
AND D ONLY CONSISTS OF A FEW COLUMNS OF NON-ZEROES.
THE NON-ZERO COLUMNS OF D IS ASSUMED TO BE STORED WITH THE RHS.

C

c

c

c

C

c

C ARGUMENT LIST

C NTAPE, INDEX s NTBLKS yNDBLK s WORK4LWORK -~ SEE SUBROUTINE ETCGP

c ITAG -~ THE VALUE OF ITAG IS PASSED ON TO ETCGP

c KNBsMLB,LB,LU GIVE THE SPARSITY STRUCTURE OF THE MATRIX D

C KNB — DIMENSIONED AS

C INTEGER KNB(MLB,LU+2)

C KNB(1s1)=Ks THE K-TH BLOCK ROW CONTAINS THE COLUMNS OF D

c KNB{Is2)=J, ONLY THE BLOCKS (MyK)yM.GE.J CONTAINS THE COLUMNS
C OF D :

c FOR TeGEe3y KNB(I4T)=Sy THE S~COLUMNS OF THE K~TH BLOCK COLUMN
c IS IN DO. IF D ONLY CONTAINS H COLUMNS OF THE K~TH BLOCK COLUMN
c THEN SET KNB({I H+2)=0

c MLB - ROW DIMENSION OF KNB

C L8 ~ TOTAL NO. OF BLOCK COLUMNS THAT CONTAINS COLUMNS OF D

c LU - TOTAL NOe. OF NON-ZERO COLUMNS OF D.

C

C

e ol sk ok sk o s sl e o o s o okl ok el 3k o o ok e s ok 3k sl sl e ok s S o o s e o skl ik e ol 3 e o ok ke ok ok e skl ok e oleok
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5.5.3 USING THE ITERATIVE REFINEMENT SUBROUTINE (ETCIT)

ETCIT requires the original matrix and the output matrix from TECGP to be in different

files. The usage of ETCIT is obvious from the explanation of its argument list:

SUBROUTINE ETCIT(NTAPEI,INDEXTsNTAPEO,INDEXOsNDBLKyNTBLKSy.
$WORK y LWORK)
C % stode ool e ol sk o koo ko ok KKK S Aol KRR KRR KK K AR AR KKK ok ok koK e

PURPOSE ITERATIVE REFINEMENT

c

c

C

c ARGUMENT LIST

C NTAPEI - INPUT DISK FILE STORES ORIGINAL MATRIX

c INDEXI -~ 2 DIMENSIONAL ARRAY FOR THE PROFILE OF THE MATRIX IN
C NTAPEY (SEE EXPLANATION FOR THE ARGUMENT INDEX IN

c SUBROUTINE ETCGP)

C NTAPEO -~ QUTPUT DISK FILE FROM ETCGP, STORES THE UPPER TRIANGULAR FORM
C AND THE ROW OPERATIONS PERFORMED BY ETCGP, ALSO THE
c SOLUTION FROM.ETCGP.

c THE FINAL SOLUTION FROM ETCIT WILL OVERWRITES THE SOLUTION
c : FROM ETCGP. .

c INDEXO ~ 2 DIMENSIONAL ARRAY FOR THE PROFILE OF THE MATRIX IN
C NTAPEQ (SEE EXPLANATION FOR THE ARGUMENT INDEX IN

c SUBROUTINE ETCGP) -

C NTBLKS -~ NO. OF BLOCK ROWS

c NDBLK -~ ARRAY TO STORE BLOCK SIZES,NOBLK(NTBLKS+1)=NO.OF RHS

C WORK — WORKING ARRAY (COMPLEX TO USER)

C LWORK = LENGTH OF THE ARRAY WORK REGARDED AS COMPLEX

C LWORKeGE+ (NTBLKS*%2 + 3%NTBLKS + 3%MXB + 3%N)

C WHERE MXB = (MXBLK**2) + (MXBLK+2)/2 WITH MXBLK = THE

C MAXIMUM OF ALL THE ENTRIES OF THE ARRAY NDBLK, AND WHERE
C N IS THE ORDER OF THE SYSTEM

c

C

****************}t**************************** *k Aok
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5.6 ERROR MESSAGES
5.6.1 ERROR MESSAGES FROM ETCGP

1. WORKING SPACE TOO SMALL, AT LEAST *#####&xxixiik WORDS ARE
NEEDED RETURN FROM ETCGP.

2. WRONG CHOICE OF COMPUTATION PATH, ITAG SHOULD EQUAL TO 1,2 OR 3.
3. MATRIX SEEMED SINGULAR, EXIT FROM ETCGP.
5.6.2 ERROR MESSAGES FROM ETCSM

1. WORKING SPACE TOO SMALL, AT LEAST ##*##*#*#x#iiris WORDS ARE
NEEDED RETURN FROM ETCSM.

2. MATRIX SEEMED SINGULAR, EXIT FROM ETCSM.
5.6.3 ERROR MESSAGES FROM ETCIT

1. WORKING SPACE TOO SMALL, AT LEAST ##¥*##kdssxiiks WORDS ARE
NEEDED RETURN FROM ETCIT.

2. CONVERGENCE TOO SLOW, RETURN FROM ETCIT.
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5.7 SAMPLE PROBLEMS
5.7.1 SAMPLE PROBLEM 1

PROGRAM TGP (INPUT,OUTPUT, TAPES=INPUT, TAPE6=0UTPUT, TAPES

THIS PROGRAM IELUSTRATES THE USE OF ETCGP.

THE PROFILE OF THE MTRIX IS BLOCK TRIADIAGONAL,

THE SUBBLOCKS ARE 2 X 2 BLOCKS.

WE CALL THE RANDOM NUMBER GENERATOR TO GENERATE THE MATRIX ENTRIES
WE USE THE ROW SuM OF THE MATRIX AS OUR RHS.

COMPLEX W(1000),WW(10,100)
INTEGER IN(10,11),NDBLK(11),JN(115),KN(110),NC(10)

NOTE THE W ARRAY SHOULD BE EQUIVALENCED TO WW
AND JUN SHOULD BE EQUIVALENCED TO WW(1l,MXC+l)
EQUIVALENCE (WW,W), (KN,IN), (JN,WW(1,12))

DATA KN/110*0/,W/1000*(0.,0.)/

DATA NTBLKS/S5/,NDBLK/2,2,2,2,2,1/

NOTE THE W ARRAY SHOULD BE EQUIVALENCED TO WW
AND JN SHOULD BE EQUIVALENCED TO WW(1l,MXC+l)
EQUIVALENCE (WW,W), (KN,IN), (JN,WW(1,12))

DATA

GENERATE INDEX ARRAY IN IN

NT1=NTBLKS
NT1=NTLBKS+1

NTM1 =NTBLKS~-1
IN(1,1)=1

IN(1,2)=2
IN(1,NT1)=3

NS=3

DO3I=2, NTM1
IN(I,I~1)=NS+1
IN(I,I)=NS+2
IN(I,I41)=NS+3
IN(I,NT1)=NS+4
NS=NS+4

CONTINUE
IN(NTBLKS, NTM1) =NS+1
IN(NTBLKS, NTBLKS) =NS 42
IN(NTBLKS, NT1) =NS+3
NS=NS+3
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FIND OUT HOW MANY NON-ZERO COLUMNS IN THE BLOCK

D041 =1, NTBLKS

NC(I)=0
D04J=1, NTBLKS
IF (IN(I,J).GT.0)NC(I)=NC(I)+NDBLK(J)

WRLTE(6,100) ( (EN(I,J),0=1,11),I=1,10)
FORMAT( *INDEX ARRAY IN :*,/,(11I5))
GENERATE NTBLKS BLOCK ROW OF THE MATRIX

D010I=1, NTBLKS
NC1=NC(I)+1

GENERATE NC(I)*20 RANDOM NUMBERS
CALL NOGEN(W,NC(I)*20)

ZERO OUT WW(.,NCl)FOR ROW SUM
ND=NDBLK(I)

COMPUTE ROW SUM
MC=NC(I)

DO6J=1, ND

WW(J,NC1)=(0.,0.)

DO6K=1,MC

WW(J, NC1) =WW(J,NC1) +WW(J,K)

WRITE I-TH BLOCK ROW FOR ETCGP

ROW

CALL ETBMGEN (I, 8,IN,10,JN,NTBLKS, NDBLK,WW,10,11)

‘CONTINUE

CALL ETCGP(8,IN,NTBLKS,NDBLK,W,1000,1)
TO RED SOLUTION FROM TAPES

DO11I=1,NTBLKS

CALL ETRDSOL (I, 8,IN,10,JN,NTBLKS,NDBLK,WW,10,11)

ND=NDBLK(I)

WRITE(6,101)I, (WW(J,1),J=1,ND)
FORMAT(1X,15, *-TH BLOCK SOLUTION*,,/,(8E10.4))
STOP

END
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5.7.2 SAMPLE PROBLEM 2°'
PROGRAM TSM(INPUT,OUTPUT, TAPE5=INPUT, TAPE6=0UTPUT, TAPES)

THIS PROGRAM ILLUSTRATES THE USE OF ETCSM.

THE PROFILE OF THE MATRIX IS OF THE FORM A=B+D, WHERE B IS
BLOCK TRIDIANGONAL, AND D ONLY CONSISTS OF 2 NON-ZERO ROWS.
THE SUBBLOCKS ARE 2 X 2 BLOCKS.

.WE CALL THE RANDOM NUMBER GENERATOR TO GENERATE THE MATRIX ENTRIES

WE USE THE ROW SUM OF THE MATRIX AS OUR RHS.

COMPLEX W(1000),WW(10,100)
INTEGER IN(10, 11) NDBLK(11),JdN(115), KN(llO) NC(10),NB(2,5)

NOTE THE W ARRAY SHOULD BE EQUIVALENCED TO WW
AND JUN SHOULD BE EQUIVALENCED TO WW(1l,MXC+1l)
EQUIVALENCE (WW,W), (KN,IN), (JN,WW(1,12))

DATA KN/110*0/,W/1000*(0.,0.)/

DATA NTBLKS/5/,NDBLK/2,2,2,2,2,1/

GENERATE INDEX ARRAY IN IN

NT'1 =NFBLKS
NT1=NTBLKS+1

NTM1= NTBLKS-1
IN(1,1)=1

IN(1,2)=2
IN(1,NT1)=3

NS=3

D031 =2, NTM1
IN(I,I-1)=NS+1
IN(I,I)=NS+2
IN(I,I41)=NS+3
IN(I,NT1)=NS+4
NS=NS+4

CONTINUE

IN(NTBLKS, NTM1)-NS+1
IN(NTBLKS, NTBLKS) =NS+2
IN(NTBLKS, NT'1) =NS+3
NS=NS+3

DOSI =4, NTBLKS
NS=NS+1
IN(I,2)=NS

DEFINE THE STRUCTURE OF D

NB(1.1)=2
NB(192)=4
NB(1,3)=1
NB(1,4)=2

NB(1,5)=0
FIND OUT HOW MANY NON-ZERO COLUMNS IN THE BLOCK ROW
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D04I =1, NTBLKS
NC(I1)=0
D04J=]1, NTBLKS
4 IF (IN(I,J).GT.O)NC(I)=NC(I)+NDBLK(J)

WRITE(6,100) ((IN(I,J),Jd=1,11),I=1,10)

100 FORMAT(*INDEX ARRAY IN:s¥*,/,(1115))
GENERATE NTBLKS BLOCK ROW OF THE MATRIX

D0101=1, NTBLKS
NC1=NC(I)+1

GENERATE NC(I)*20 RANDOM NUMBERS
CALL NOGEN(W,NC(I)*20)

ZERO OUT WW(.,NCl) FOR ROW SUM
ND=NDBLK(I)

COMPUTE ROW SUM
MC=NC(I)

DO6J=1, ND
WW(J,NC1)=(0.,0.)
DO6K=1,MC

6 WW(J,NC1) =WW(J, NC1) +WW(J, K)

WRITE I-TH BLOCK ROW FOR ETCGP ,
CALL ETSMGEN (I, 8,IN,10,JN, NTBLKS,NDBLK,WW,10,11,NB,2,1,2)
10 CONTINUE
CALL ETCSM( 8, 1IN, NTBLKS, NDBLK, W, 1000,1,NB, 2,1, 2)
TO READ SOLUTION FROM TAPES
DO11I=1, NTBLKS
CALL ETRDSOL (I,8,IN,10,JN,NTBLKS,NDBLK,WW,10,11)
ND=NDBLK(I)
11 WRITE(6,101)I,WW(J,1),J=1,ND)
101 FORMAT(1X,15,*-TH BLOCK SOLUTION%*,,/,(8E10.4))

STOP
END
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