

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

(NASA-CR- 162551) A PROJECT TO INVESTIGATE
MECHANISMS AND METHODOLOGIES FOR THE DESIGN
AND CONSTRUCTION OF COMMUNICATING CONCURRENT
PROCESSES IN REAL-TIME ENVZ.ROFMENTS Yearly
UL.Ilinois Univ. at [t .rbana-Champaign.) 55 p

N80-14791

Unclas
G3/62 46469

A Project To Investigate Hechanisms and Methodologies

for the Dasign and Construction r•`

Communicating Concurrent Processes in Real-Time Environments

Yearly Report, 1979

R. H. Campbell

Department of Computer Scien^.e

University of Illinois at Urbana-Champaign

Urbana., Illinois 61801

217-333-0215

December. 21, 1979

r.

ABSTRACT

Software for embeddad aerospace computer systems is becoming more
sophisticated and increasingly involved with the programming of asytichrot ous
pr.oces;,es, .iynchrontzation, coordination and communication between processes,
and ,guarkintee of performance within a set of real-time constraa.nts. Surth
Leal- time software is dif•fic:u.,'.;: to develop, error prone, and expensive. This
report sixmtrnarizas the ror,, ults of research undertaken in + 979 into effect.ivc
and appropriate mecha-,i .sms too aid in th(-_ design aad constriction of such
snttwara for use is the flight research progzams undertaken by NASA.

L.,

1

2

2

5
5

5
6
8

9

10

11

13

I

TABLE OF CONTENTS

1 Introduction
1.1 Real-Time Systems Programming.

	

1. 1.1	 Path Pascal System

	

1.1.2	 Experiments

	

1.1.3	 I/O Device Programming
	1.1.4	 Real-Time Implementation

	

1.1.5	 Portability
	1.1.6	 Encapsulation

1.1.7 Path Expressions
1.2 Specification of Timing.
1.3 Theoretical Results,

2 Summary

3 References

APPENDICES

^z

t

1 ^

Page 1

1	 Introduction.

This report describes the results of research undertaken at the

University of Illinois by a project funded by a grant from NASA [Campbell,

78b]. The problems of real-time programming including high-level language

mechanisms to support device prograiuJng, concurrent processing, encapsula-

tion, fault-tolerance and reliability were investigated.

The advent of low cost, lightweight computers with sophisticated com-

putational abilities enables analog control systems, monitoring systems, and

pilot functions in aerospace vehicles to be replaced or enhanced by the inclu-

sion of embedded computer systems. This technology may permit the application

of radically new techniques to the design of aircraft, spacecraft and ground

control. Software for such systems involves the programming of asynchronous

processes, coordination and communication between processes, design of network

protocols, programming of hardware devices, and guarantee of performance

within a set of real-time constraints. Such software is difficult to develop,

often error prone and a major expense.

Several new mechanisms have been devised to aid programming of real-

time systems. High-level declarations of synchronization, concurrency, and

encapsulation have been proposed and included in an experimental language

called Path Pascal. The language has been used to program a wide variety of

applications as supportive evidence of the effectiveness of these mechanisms.

In addition, a deadline mechanism has been proposed that provides a specifica-

tion of real-time constraints within the real-time program. The mechanism

provides a means to program algorithms whose.completion must occur before the

deadlines specified and provides tolerance to classes of timing-faults in the

M	 t

Page 2

design of the algorithms or the hardware. Finall17, research results indicate

that the programming of hardware devices is possible from a high-level

language permitting a more readable, modif'Lable, and concise description of

such algorithms. hUgh-level mechanisms to allow the programming of device

handling routines were included in Path Pascal and have been used to implement

several practical stand-alone systems.

1.1 Real-Time Systems Programmin-a.

Real-time systems require programming of synchronization, coordination

and communication between concurrent processes. This activity should be per-

formed in a clear, structured manner which aids in the verification of the

programs produced. An experimental real-time systems programming language

called Path Pascal has been constructed [Kolstad & Campbell, 791, [Campbell,

et al., 791. This language is based upon Pascal [Jensen & Wirth, 751 and

extended to include processes, a synchronization mechanism based on Open Patti

Expressions, input and output device programming features, and an encapsula-

tion mechanism. These additions to Pascal are sufficiently general that they

can be adopted as extensions to programming languages currently used by NASA

such as HAI,/S. The language is being used as a testbed to experiment with Path

Expressions and real-time programming problems.

1. 1. 1	 Path Pascal.	 stem.

The Path Pascal. programming system provides a small set of simple,

experimental software development tools for the design and production of

real-time systems. Currently included is a compiler and several interchange-

able run time environments for the Path Pascal programming language. The run

time envir::r.ents allow the language to be used to write real-time systems

e

t

Page 3

that run efficiently on machines with or without native operating systems.

Patti Pascal programs may be executed interpretively (for emulating the perfor-

mance of a machine programmed in Path Pascal) or used to simulate the perfor-

mance of algorithms using the simulation paclage. The simulation and emula-

tion environments have been used successfully as design tools for several sim-

ple stand-alone PDP-11 software systems including simple network communica-

tion software.

Path Pascal is a superset of the Pascal P language [Ammann, et al.,

761.	 It contains constructs for concurrency along with encapsulated data

objects and synchronization provided by Open Path Expressions [Campbell, 761.

The Path Pascal compiler translates programs into an intermediate language

called P-code. The P-code can be interpreted or transformed into a particular

machine language. The interpreter, compiler, and machine code assemblers are

all written in Pascal [Kolstad & Campbell, 79], [Balocca & Campbell, 791. The

interpreter for the intermediate code can simulate concurrency and can collect

statistical information on the behavior of Path Pascal programs. Translators

and run time environments exist for the Zilog Z-80, the PDP-11 and the PRIME

500 machines. The PDP-11 environments include a single process (pseudo-

concurrent) environment under the Unix operating system, a stand-alone mul-

tiprocessor environment, and a stand-alone multiprogramming environment.

The compiler, interpreter, and the stand-alone system for the LSI/11

appear to be reliable and have been distributed to other orpni.O.zations as

experimental systems. NASA distributes the compiler and interpreter to

interested organizations on request.

Several short presentations of Path Pascal have been given [Campbell,

78a], (Campbell, 79a], [Campbell, 79b] in addition to papers presented at

w	 i

Page 4

conferences: [Campbell & Kolstad, 79a7, [Balocca & Campbell, 791, and [Camp-

bell & Kolstad, 79b].

1.1.2	 Experiments.

In order to evaluate the practical. aspects of programming real-time

systems using proposed language constructs, several systems with Path Pascal

have been implemented and Path Pascal has been used in operating system

courses at the University of Illinois. Among the various examples programmed

are:

1) A real-time executive based on a description of ASPS, a space tele-
scope system designed by NASA which schedules periodic tasks. The
resulting program is smaller and more concise than the original execu-
tive written in assembler code.

2) Teletype device driver software and a simple message passing system.
The software allowed full 4800 baud communication between two termi-
nals controlled by an LSI/11.

3) DiJkstra's concurrent garbage collection algorithm.

4) A simulation of a Batch Spooling System.

5) Network software based on a design by Brinch Hansen [Campbell & Kol-
stad, 79a1. This network software has been reconfigured to execute on
several stand-alone PDP-11s linked together by serial lines. The
changes in the software to allow it to run on the PDP-11s were minor
and localized to the hardware/software interfaces.

6) Simulation language much in the same manner as Simula. A simulation
package to support simulation in Path Pascal has been written and will
soon be available. Various simulations have been performed and a
report describing this application of Path Pascal is being prepared.
Unlike Simula, the algorithms simulated in Path Pascal may be tran-
sported directly to a stand-alone machine. Thus, the Path Pascal sys-
tem permits direct development of algorithms in one language, from
design through simulation to actual implementation. This provides a
useful tool in the construction of systems [Randell, 681.

7) A simple file system for electronic mail on a LSI/11. Concurrent
access to the mail system by users is possible. The file system uses
a floppy disk and is written entirely in Path Pascal (including device
drivers).

u	 A

Page 5

Path Pascal has been used as the major programming tool in three

operating system courses at the University of Illinois. It proved to be a very

useful teaching tool as it permitted students to explore the programming of

concurrent systems without requiring them to familiarize themselves with a

particular set of hardware. The Path 7,ziscal compilier is being used experimen-

tally by Dr. Foudriat at NASA Langley.

1.1.3	 I/O Device Programming.

Path Pascal includes interrupt processes which may be used to program

I/O device drivers in a high level language. An Experimental translator from

the intermediate code of Path Pascal to PDP-11/20 machine code was developed

and has been used to construct 'stand alone' software. Device drivers for

teletypes and disks have also been written.

1.1.4 Real-Time Implementation.

A translator from P-code to PDP-11 machine code has been developed

which uses an average of only 3.1 bytes of PDP-11 storage for each P-code

instruction. This translator allows the implementation of fast, efficient

PDP-11 real-time programs in Path Pascal [Balocca & Campbell, 791.

1.1.5	 Portability.

Path Pascal is easily portable to various computer systems since the

compiler is written in Pascal P4. Although the intermediate P-code produced

i7 the Path Pascal compiler includes device processing, synchronization and

concurrent processing instructions, this code retains the machine independence

of the Path Pascal Language. Translators for this P-code to a particular

1

t.

l
E

--*^ar €mss-. ~,,,„^---

Page 6

machine are easy to write as demonstrated by the current implementations of

Path Pascal on several machines:

1) An 8 bit word microprocessor: Z-80 [Morgan, 791

2) Small, 16 bit word machines: PDP-11/20, PDP-11/40, and LSI-11 [Ealocca
& Campbell, 791.

3) A large minicomputer with 32 bit words: the Prime 500

The run time system for Path Pascal programs is' quite small and easy

to program for a target machine. One LSI-11 implementation has 1,645 source

lines which translate to 2,792 bytes of code (including several hundred bytes

of run time messages and diagnostics).

1.1.6	 Encapsulation.

One aspect of the encapsulation mechanism of Path Pascal allows the

programming of abstract data types which can be manipulated only through spe-

cial procedures. The purpose of this restriction is to encourage the program-

mer to construct modular programs in which the description and implementation

of a data type is declared only within a small module of the program. Indeed,

knowledge of the internal representation of an abstraction may be harmful

[Parnas, 721. Path Pascal can implement data abstraction in several ways:

The standard Pascal data type mechanism permits the program-
ming of user defined types. However, the abstraction of such data
types is not enforced and the details of any data structure may always
be accessed in any program statement.

Path Pascal includes a construct called an 'object' which can
be used to program abstract data types. This abstraction is compiler
enforced -- variables of type object cannot be assigned, compared, or
manipulated other than by invocation of the object's operations.

Objects may include constant and type definitions to be used
in the formation of the internal data structure of the object or to
provide abstract data types which are 'managed' by the object. An
abstract data type to be managed by an object though instantiated

1

I	 x	 ^

Page 7

outside the object is declared as an entry type within that object.
Entry types are exported to the scope containing the object and may be
used in type and variable declarations. The Internal data structure
of the entry type is completely inaccessible outside the object. Com-
parison and assignment of variables of the same entry type is permit-
ted. An example of an entry type and its object manager is shown
below:

var clx: object	 (* complex numbers *)
path 1:(add, cons) end;

type pair -	 record
ip, it : real
end;

complex = entry "pair;

entry cons(var z: complex; x,y t real); 	 (* instantiate *)
min

new(z); z^.ip .= x; z^.ir := y
end;

entry add(cl, c2: complex; var c3: complex); 	 (* add *)
begin

new(c3);
c3 ip := c2 ip + cl".ip;
c3".ir := c2".ir + cl".ir

end;
end (*clx*);

var rootl, root2, root3: complex;

(* create a pair of complex numbers and add them *)

cly.. cons (root 1, 0.57, 3.3);
clx.cons(root2, 23.3, 4.3);

clx.add(root1,root2,root3);

An object for storage of complex numbers is created. The
'cons' routine allows construction of a complex number containing the
usual real and imaginary parts. The 'add' routine performs the usual
operation which has been expressed here in three address code. Within
the object, immediate access is obtained to the detail of the vari-
ables declared as entry types. The synchronization of the object is
used to maintain the integrity of any complex numbers declared in a
concurrent processing environment. Entry types permit a data abstrac-
tion mechanism similar to that of Modula (Wirth, 77). Operations
within an object may be defined with efficient access to the internal
representation of several variables declared to be entry types of that
object. Note that the object synchronizes the execution of its opera-
tions and that it thus synchronizes access to all instances of its
entry types.

r

V

Page 8

1.1.7	 Path EXpressions.

Several variations of the Path Expression notation have been examined.

in one variation, names are allowed to be repeated in a single Open Path

Expression. An implementation of a stack is shown below to illustrate the

utility of this concept:

const stacksize = 235;

type stack = ob ect

path stacksize:(push; pop), 1:(push, pop) end;

Liar stk: array [l..stacksize] of element;
pointer: l..stacksize;

entry procedure push(var item: element);
b.tai-n

stk[pointer] :- item;

pointer := pointer + 1
end (*push*);

entry function_ pop: element;
be in

pointer := pointer - 1;
pop := stk[pointer]

end (*pop*);

init; begin pointer : s 1 end;

end (*stack*);

The Path Expression defines all the legal sequences of operations that can be

performed on the stack data structure without contravening its stack-like

behavior. The Path Expression specifies that there are 'stacksize' resources

to be shared between executions of the procedures 'push' and 'pop'. The 'push'

procedure acquires a resource and 'pop' releases one. The second part of the

Path Expression (1:(push, pop)) declares that a single resource (the stack

pointer) is to be shared between 'push' and 'pop'. The synchronization con-

E	 straints expressed on each operation apply in the carder declared: from left to

^n

.

Page 9

right. Thus, several executions of 'push' may occur !ae nre a 'pop' need

occur. The scheme allows many synchronization schemes that u;mAd require an

implementation involving several nested object's to be expressed in one object.

It does, however, permit deadlocks to be expressed by a single Path Expres-

sion. The current Path Pascal compiler does not include this extension.

1.2	 Specification of Timing.

Fault-toler,nnce is difficult to achieve in real-time systems without

the ability to respond to timing errors in real-time. One way proposed [Hot-

ton, et al., 781, [Campbell, et al., 791 (Horton, 791 to meet this ti=--

dependent requirement for fault-toa,t,,;nce is the deadline mechanism. The

deadline mechanism provides a means to specify and program the timing con-

straints that apply to algorithms within the system. The mechanism also pro-

vides a means to define completely redundant algorithms that are to be per-

formed in the event of a timing fault in a primary algorithm of the system.

The redundant algorithms are typically short and complete their execution

within a known length of time. The deadline mechanism ensures that either the

primary algorithm or the alternate algorithm is performed before the deadline.

The mechanism permits the construction of completely redundant systems which

maintain their full system service despite timing faults or partially redun-

doat systems which gracefully degrade as timing faults occur. In either case,

the mechanism guarantees that each deadline of the system is met. Fault-

tolerant real-time systems are required in many applications where immediate

'.,=«an intervention is impossible. Examples of such applications occur in

,.rospace, control systems, process control, computer networks and telecommun-

ications. For example, network routing algorithms may ,provide a primary ser-

vice which determines an optimized route for communication given the current

s

1

Page 10

network load, or as an alternative may find any available route. Currently,

an experimental version of the deadline mechanism is being implemented in Path

Pascal using the recovery cache built into the Path Pascal interpreter (Wei,

et al., 781. A simulation of the multi,-mission modular satellite software is

being written using this deadline mechanism to provide fault-tolerance. The

simulation, we believe, will be useful in evaluating the effectiveness of the

mechanism in practice (see appendix).

1.3	 Theoretical Results.

The deadline mechanism can be applied in a modified form to time-

shared single processor systems (such as ASPS) which execute a set of ,jobs

periodically and within a fixed set of deadlines. An algorithm has been

defined which selects and schedules alternates and primaries to optimize the

number of primaries that are executed (Liestman, 791.

For many periodic real-time systems like the ASPS system it is possi-

ble to devise schedules that optimize the degree of fault-tolerance of those

systems. That is, if timing faults occur and future deadlines can no longer

be met with primary algorithms, it is possible to determine a schedule which

will permit the maximum number of primaries to be attempted in the available

time. This schedule may be determined at compile time or at run-time by an

algorithm with order n computations (where n is the number of real-time

tasks.) A report on the theoretical aspects of the deadline mechanism applied

to periodic systems follows (see appendix].

iir ► .
Page 11

The project has proposed •several mechanisms to aid in the construction

and the design of software for reliable, fault-tolerant real-time systems con-

taining asynchronous processes. Some of these mechanisms have been incor--

porated in the Path Pascal compiler which can be used to program practical

real-time systems. Theoretical, practical, and simulation studies have been

performed on fault-tolerant mechanisms for real-time programming and the

results of these studies are very encouraging.

The Path Pascal language is based on Pascal and -includes Path Expres-

sions, concurrent processes, device programming and raal-time features. Path

Pascal has been implemented efficiently and easily on several computers and

may be used to program software that executes on a bare machine or execute

under supervision from an operating system. Path Pascal programs can be run

interpretively by emulating a particular computer or run in a simulation

environment. The use of Path Pascal for simulation permits the design and

measurement of particular algorithms (including algorithms involving the use

of multiprocessors or networks). These designs may be refined by the addition

of configuration and machine implementation dependent modules into a practical

system on a given set of hair<eware. Path Pascal has been used to program exam-

ple real-time control systems and network communication systems.

The deadline mechanism provides a means to implement program real-time

systems to meet deadlines and allows such programming to include recovery from

timing faults that may occur because of design of hardware faults. 1.'he feasi-

bility of the deadline mechanism has been examined by simulations and theoret-

ical. studies. The theoretical study indicat^:s that for the periodic real-time

4 ^^

Page 12

systems of the type frequently used by NASA for control, simple algorithms

exist which may be used to generate fault-tolerant schedules optimizing possi-

ble recovery. The simulations demonstrate the applicability of the mechanism

in demand and interrupt-driven real-time systems. A practical implementation

scheme is being devised and various applications of this mechanism to actual

NASA real-.ime control systems are being made.

We believe that the results from this research project will be of

benefit to the production of software for aerospace computer systems in gen-

eral, and in particular, to the flight research undertaken at NASA.

µtl'

Page 13

3 xererences.

(Ammann, et al., 761 Ammann, U., K. Nori, and C. Jacobi, "The Portable Pascal
Compiler," Institut Fuer Informatik, EIDG, Technische Hochschule CH-8096,

Zurich, 1976.

[Balocca & Campbell, 79] Balocca, R. and R. H. Campbell, "PP-11, A Path Pascal
Language System for the PDP-11," Proceedings of the Eighth Texas Confer-
ence on Operating Systems, Dallas, November, 1979.

(Campbell & Kolstad, 79a] Campbell, R. H. and R. B. Kolstad, "Path Expressions
in Pascal," Fourth International Conference on Software Engineering, Mun-
ich, September 17-19, 1979.

[Campbell & Kolstad, 79b] Campbell, R. H. and R. B. I:olstad, "Practical Appli-
cations of Path Expressions to Systems Programming," ACM79, Detroit,

1979.

[Campbell & Miller, 781 Campbell, R. H. and T. J. Miller, "A Path Pascal
Language," Technical Report UIUCDCS-R-78-919, Department of Computer Sci-
ence, University of Illinois, Champaign-Urbana, 1978.

(Campbell, 761 Campbell, R. H., "Path Expressions: A technique for specifying
process synchronization," Ph.D. Thesis, The University of Newcastle upon
Tyne, August, 1976; Also, Department of Computer Science Technical
Report, University of Illinois at Urbana-Champaign, UIUCDCS-R-77-863,
May, 1977.

[Campbell, 78a] Campbell, R. H., "Path Expressions for Real-Time Programming,"
NASA/AIAA Workshop on Tools for Embedded Computing Systems Software,
Hampton, Virginia, November, 1978.

[Campbell, 78b] Campbell, R. H., "Progress Report 1: A Project to Investigate
Mechanisms and Methodologies for the Design and Construction of Communi-
cating Concurrent Processes in Real-Time Environments," Progress Report,
Department of Computer Science, University of Illinois, Champaign-Urbana,
1978.

[Campbell, 79a] Campbell, R. H., "Path Pascal.," Software Development Tools
Workshop, Pingree Park, May, 1979.

[Campbell, 79b] Campbell, R. H., "Path Pascal," NASA Workshop on Tools for
Embedded Computing Systems Software, Hampton, Virginia, November, 1979.

(Campbell, et al., 791 Campbell, R. H., K. Horton, and G. G. Belford, "Simula-
tions of a Fault-Tolerant Deadline Mechanism," The Ninth Annual Interna-
tional Symposium on Fault-Tolerant Computing, June, 1979.

[Horton, 791 Horton, K. H., "A Fault-Tolerant Deadline Mechanism," M. S.
Thesis, University of Illinois, Urbana, October, 1.979.

(Jensen & Wirth, 751 Jensen, K. and N. Wirth, Pascal User Manual and Report,

.-inger-Verlag, New York, 1975.

Page 14

[Kolstad & Campbell, 791 Kolstad, R. B, and R. H. Campbell, "Path Pascal User
Manual," Department of Computer Science, University of Illinois, Systems
Research Group, September, 1979.

[Liestman, 791 Liestman, A., "A Fault-Tolerant Scheduling Problem," In
Preparation, December, 1979.

[McKendry, et al., 191 McKendry, Martin, Roy Campbell and Robert Kolstad,
"Implementation of a Tree-Structured Operating System," to be published,
1979.

[Morgan, 791 Morgan, R., "Translating Path Pascal Pseudo Code into Zilog Z80
Microprocessor Assembly Code," M.C.S. Report, University of Illinois,
Urbana, 1978.

[Parnas, 721 Parnas, D. L. "A technique for software module specification with
examples," Comm. ACM 15, pp. 330-336, 1972.

[Randell, 68] Randell, Brian, "Towards a Methodology of Computing System
Design," Software Engineering Conference, %,trmisch, Germany, October 7-
11, 1968.

[Randell, et al., 781 Randell, B., P. A. Lee, ine P. C. Treleaven, "Reliabil-
ity Issues in Completing System Design, — Computing Surveys, Vol. 10,
No. 2, pp. 123-165, 1978.

[Schindler & Steinacker, 79] Schindler, Sigram and Michael Steinacker, "A For-
mal Specification of an X.25 Protocol Machine," Fachbereich In.formatik
Technische Universitat Berlin, Available through authors, 1979.

[Wei, et al., 781 Wei, Anthony Y., Roy H. Campbell, and Geneva G. Belford,
"Reliability Modeling of Recovery Blocks," Systems Research Group Report,
University of Illinois/Urbana-Champaign, 1978.

[Wirth, 771 Wirth, N., "Modular a Language for Modular Multiprogramming,"
Software-Practice and Experience, Vol. 7, pp. 3-84, 1977.

0	 t

f
l

Page 1

i
	

Progress Report on

A Fault-Tolerant Scheduling Problem

1	 Introduction.

N

A real-tame system is designed to provide a service which meets a set of

specifications including real-time constraints. Should timing errors occur

(either because of interrupt specifications or faults in design) and the sys-

tem become heavily loaded with requests for service it may be impossible to

satisfy all the requests by their respective deadlines. Based on the recovery

block mechanism [Randell, 75) for fault-tolerant software, a deadline mechan-

ism (Campbell, Horton & Belford, 791 has been proposed. In this mechanism two

algorithms are provided for each service subject to timing constraints. The

primary algorithm produces a better quality service than the alternate.	 The

alternate is a simpler algorithm which requires less time to produce an

acceptable result than the primary algorithm. This paper considers the prob-

lem of maximizing the number of primaries scheduled when error recovery is

required.

We consider a scheduling problem in which a time-shared single-processor

computing system is to execute a set of jobs each of which consists of a

sequence of periodic requests. That is, each ,job periodically demands a

response within a certain time interval. This response can consist of the

completed execution of either a primary algorithm or an alternate algorithm.

A further property of the proposed system is that each job's request period is

a multiple of the next smallest request period. We will refer to such a system

4`	 _

Page 2

y periodic. Let J=(Ji9J2'...,Jr) denote a set of jobs with periodic

. We shall use Ti to denote the request period, P i to denote the com-

putation time of the primary and A i to denote the computation time of the

alternate for job J i=1,2,...,r. The jobs are ordered such that m
i
T
i Ti+1

for some positive integer m for i=1,2,3...,r-1.

We define the deadlino of a request to be the time at which the next

request of the same job arrives. By schedUlinB a set of jobs with simply

periodic requests we mean to specify which alternate or primary is to be exe-

cuted at every time instant. A schedule is feasible if all requests will be

satisfied before their deadlines. We assume that the execution of an alternate

or primary can be interrupted if it is so desired. Consider the following

example: Let J i , J2 denote jobs such that A l =5, P 1 =9, T 1 =10 and A2=7, P2=17,

T 2= 50. A schedule for such a set of jobs can be described by a timing

diagram:

A. ^ P.

n	 5	 Ib	 20	 25	 31	 yo 41	 So

The execution of P 2 is divided into three sections which are scheduled in the

intervals 5-15, 25-31 and 40-41.

Due to the nature of the primary and alternate algorithms we would like

to execute as many primaries as possible whilf still ensuring that all dead-

lines are met. We note that in the above example, two P i 's and one P2 are

executed during the period of J2.

As the following schedule illustrates, the number of primaries executed

in this example can he improved:

C	 5	 l0	 19 zo	 Z13o	 ,3`1 4o	 Sf; sa

Page 3

'r
In this schedule four P i 's are executed and idle time is scheduled during

the intervals 39-40 and 49-50. It is easy to see that this is the largest

number of primaries which could be executed in one period of J2.

2 A Schedul ing AlRorithm,

Given a set of jobs J=(J l , 1
29

...,Jr) we can create a schedule which will

maximize the number of primaries executed. The algorithm below creates such a

schedule for the period of J r given Ai , Pi and Ti for i=1,2,...r. Each unin-

terrupted section of a job's execution is represented by a list element of the

following type:

element = record
start-time	 : integer;
scheduled-job	 : jobtype;
diff	 : integer;
next-job	 : Telement;
next-diff	 : Telement;
next-sec	 : Telement;
next-idle	 : ?element;
end;

The start-time field contains the time when this particular section

begins execution. The scheduled-job field contains A i . Pi for i=1,2,...r or

IDLE to indicate what job is scheduled for this time period. The diff section

contains the value PCAi when the section is the first section of a scheduled

Pi and a zero otherwise. The next-job field contains a pointer to the next

.list element. The next-section field points to the next section of the execu-

tion of this particular job. A list of the scheduled primaries is kept by the

next-diff field.	 This list is sorted by diff values in nonincreasing order

with equal values being ordered by decreasing start times. A list of scheduled

t

I

Page 4

idle time is maintained using the next-idle field.

Given P 1=8, Al =5, P2=8, A2=7, T 1=10 and T 1=30 we could represent the

schedule:

P,	 P2 A	 P.	 ^'i	 =

0	 g 10	 Is	 ZQ	 Ze X9 30

as:

start sched next next next	 next
time job diff job diff sec	 idle

1	 0 P1 3 2 2 -	 -

2	 8 P2 1 3 - 4	 -

3	 10 Al 0 4 - -	 -

4	 15 P2 0 5 - 6	 -

5	 20 P1 3 6 1 -	 -

6	 28 P2 0 7 - -	 -

7	 29 IDLE 0 - - -	 -

The schedule for J = (J 1 , J2 ,...,Jr) is created by iteratively creating

schedules for the sets (J 1) , (J 1 , J2),..., {J 1 , J2,..., Jr) • In particular

the schedule for (J1,..O,Ji) is constructed by concatenating m i-1 copies of

the schedule for 011.04,j i-1) and then modifying the resulting schedule.

This modification is described in the following procedure:

Page 5

(* procedure to create modified schedule by adding either an alternate
or a primary to the existing schedule 	 *^

MODIFY(ALT,PRIM)

while idle time < ALT
begin

change the first primary in the diff list to its alternate
add the newly created idle time to the idle list

end

if PRIM <= idle time
then begin

idle time	 idle time - PRIM
schedule the primary at the current level to

execute in tile_ first PRIM units of idle time,
inserting PRIM-ALT in the diff list.

end
else begin

if PRIM - ALT < largest diff value
then begin

idle time := idle time + largest diff value - PRIM
change the first primary in diff list to its alternate
schedule the primary at the current level to execute
in the first PRIM units of idle time, inserting
PRIM-ALT in the diff list.

end
else begin

idle time	 idle time	 ALT
schedule the alternate at the current level to

execute in the first ALT units of idle time.

end
end

end (* of MODIFY *)

The schedule for J is then found by executing the following program:

for i	 1 to r do
begin

concatenate m i-1 copies of the schedule for (J i ... ''Ji-1)

MODIFY (AV Pd
end

We note that the schedule for {} is one unit of idle time and mO,^ 1

ps

Page 6.

Let us consider an example. Let J l , J2 , J 3 be jobs such that A l =6, P1-10,

T 1=10, A2=4, P 2=7, T2.30, A 3=4, P 3=10 and T3=60.

On the first call to MODIFY , P 1 is scheduled since P 1=10 <- idle time-10:

Q,
D	 to

When i=2, 3 copies are concatenated to give:

P1 ,	 P,	 I
0.	 (o	 zv	 30

The first step of MODIFY changes the last
P1

to Alt

P,	 -	 P,	 A, toles

•	 ^°	 Zo	 26 ^

Since P2=7 > idle time=4 and P 2-A 2=3 < largest diff, value =4, one more P l is

changed to A l and P 2 is scheduled:

L	 4^,	 P2	 A	 PZ

0	 to	 2.G 2A 30

When i= 3, 2 copies are concatenated to give:

1P, I A	 t pZ	 A I 	 jP? 11 	 PI	 AI	 1 TL	 A	 _(P,- ̂ xl
C	 Iv	 !`	 36 C1 Ca

The first step of MODIFY changes a P l to Al:

At. 	
^ I

At
i
^t N A 11><n^A, j J2.	 A, ^L^

I c	 li.	 io	 ZL 79 30	 36	 qo V4	 is+	 Sc r9 6D

Since P3=10 > idle time=6 and P3-A 3=6 > largest diff value= 4, A.3 is scheduled:

Vt.	 A,	 Pt 131 A	 P3-^,—a ,	 P,
to	 to	 u., s1)o -	 ;6	 51 Vo	 je	 ii b

We call a schedule optimal if it is feasible and has the maximum number

of primaries scheduled among all feasible schedules.

I

Nam

Page 7

The schedule produced by the above algorithm is optimal and has as

much idle time scheduled as any optimal schedule

Proof: (by induction on r)

For r=1, the algorithm schedules P 1 if P 1 <T 1 and schedules A l otherwise.

This is clearly optimal and the idle time is maximized among optimal schedules

since all optimal schedules have the same amount of idle time.

We assume that the algorithm produces an optimal schedule with maximum

idle time for any set of p jobs.

Consider the set of jobs J - (J 1 ,J 2 , ... ,J
p+1
	 The first p iterations of

the algorithm produce an optima]. schedule for J' _ (J1,J2,...,Jp) with maximal

idle time. Let us concatenate m copies of this schedule and call the result-

ing schedule S. Let t be the number of primaries in S. Clearly S is an

optimal schedule for the jobs in J' over the period
Tp+1•	

We must now add

either A
p+1

or Pp+1 to the schedule.

We wish to maximize the number of primaries in the final, schedule.	 The

number of primaries contributed by the jobs in J' cannot exceed t. AL least

AP+1 units of idle time are needed to schedule a response for
Jp+l•

If the

idle time in S is less than AP+l then there is no feasible schedule for J with

t primaries for the jobs in V. Thus, some of the primaries must be changed

to alternates so that either A
P+1

or Pp+1 can be scheduled. By changing those

primaries with the largest diff values first, it is clear that the number of

primaries changed is minimum and that among such changes, the idle time when

AP+1 is scheduled is maximized. Thus if AP+1 is scheduled we have succeeded in

finding an optimal solution for J.

Page 8

There are two cases under which Pp+l might be scheduled instead of Ap +10

First, if Pp+l fits in the time allotted for Ap+l plus the remaining idle time

then clearly this solution would be optimal since it includes one more primary

than the solution with Ap+l•	
The second case under which Pp+l would be

scheduled would be if a single P for j<p+l could be converted to A 	 so that

Pp+l fits into the time allotted for Ap+l plus the idle time plus P j - A and

the resulting idle time is greater than the idle time in the solution with

A	 In this case the idle time is increased and the number of primaries is
p+1

not. Among such solutions, an optimal solution would be one such that Pj-Aj

is maximum thus leaving the largest idle time in the solution for J.

Let Mi = mIm2 ... m i . Let M0 = 1.

Theorem: The above Algorithm creates a schedule for O(M r-l) jobs in 0(rMr-1)

time.	 M

Proof: Let us first consider the number of jobs scheduled. Clearly there are

M imi+1 *
 ..mr-1 requests for Ji for i<r and 1 request for J r . The total number

of requests is

r-1
E (Mr-l /Mi). Since mi> = 2 for all i then Mi> = 2i , thus

i=0

r-1

Mr-1 <=E
(Mr--1/Mi.) < 2Mr-1'

Thus O(Mrwl jobs are scheduled.

Let us consider the time required to create the schedule. On the ith

iteration of MODIFY the first step changes k primaries to alternates. This

requires 0(k) steps where k is bounded by the number of primaries scheduled.

Page 9 1

The second step of MODIFY will result in either an alternate or a primary

being added to the schedule. This requires at most 0(h) steps where h is the

number of elements in the idle list. A call to MODIFY requires at most 0(k+h)

steps. Both k and h are bounded by the number of list elements.

The largest amount of time is consumed by the copy/concatenate step. The

schedule created by the i-A
,st iteration must be copied m i-1 times to produce a

schedule for the period T 1 0 The copies must then be concatenated which

requires modification of the start times as well as forming the new diff list

and idle list. This may be accomplished by visiting each element of the

schedule for Ti-1 mi-1 times. Thus, if s i-1 is thn number of list elements

after the i-1st iteration, the i th step requires
O(si-lmi-1)

steps and the
r

entire algorithm requires 0(E s 	 m) steps.
i

1
i-1 i-1

The procedure MODIFY can easily be implemented so that at worst each T1

may contain one section from each level scheduled plus one idle section. Thus

si-1 <- iMi-2 and the i'
r
h step requires no more than O(iM

i-2mi-1) = O(iMi_1)

steps. Summing over the r iterations we get:

r	 r	 r

E iMi
-1

<= r E Mi-1 <= rMr_1 E 2-i+I <= 2rMr-1'
ia 1	 i=1	 i=1

Thus the algorithm requires O(xM r-1) steps.

3	 A Fault-tolerant Scheduling Algorithm.

The above algorithm maximizes the number of primaries executed in the

system proposed. An interesting case arises when we make a slight change in

the assumptions concerning the execution times of the primary algorithms. Let

Page 10

us assume that the actual execution time of the primary is not known in

advance. In this case the value P i may be the expected execution time or the

minimum execution time of the primary. The use of the above algorithm for

this case can clearly lead to timing faults which result in failure to meet

the real-time constraints.

In order to ensure a fault-tolerant schedule we must guarantee that every

request i is fulfilled by either an A i or a Pi.

We want to guarantee that if P i fails them A i can still be executed

before the deadline. If we input P i+Ai as the primary time for task i and Ai

as the alternate time to the above algorithm, the result will be a schedule

which maximizers the number of primaries scheduled with the additional con-

straint that whenever a primary is scheduled it's alternate must be scheduled

to follow it.	 We must also make slight changes to MODIFY so that 'primary'

means 'primary followed by alternate'. We may then use the following program

to generate a fault-tolerant schedule for J:

for i :- 1 to r do
begin
concatenate mi-1 copies of the schedule for (J1,J2,•••,J1-1)

MODIFY(Ai,Ai+Pi)
end

A schedule-is f-t feasible if all requests will be satisfied before their

deadlines even if no primary algorithms succeed. A schedule is f-t optimal if

it is f-t feasible and has the maximum number of primaries scheduled among all

feasible schedules.

Theorem: The schedule produced by the above algorithm is f-t optimal and has

cis much idle time as any f-t optimal schedule.

Page Al

r'

i
i

,

Proof: follows easily from the first Theorem.

Theorem: The above algorithm creates a f-t schedule for 0(Mr-1) jobs in

0(rMr-1) time.

Procf: follows from the second Theorem.

Let us consider an example. Let J 1 , J 2 , J 3 be Jobs such that A,-4, Pi-4,

T 1 =10, A2 =5, P 2=7, T2=30, A3=6, P 3=8 and T3=60. The f-t scheduling algorithm

produces the following schedule:

^^! J ^ ^	 h^ P,	 A,	 hz P►A A, ,
c3
	 (^^ L,
	

P'	 I A, IA,	 ^	 A, A,
0	 4 9	 to 14	 IB	 to	 t4

I
4tA30	 3H	 31 VC, 5''1

wl
Y8 50	 3V	 3'4i4n

As the scheduled jobs are executed let us assume that at	 time 4,	
P1

fails

to complete. A l is then executed and the deadline for J 1 at time 10 is met.

The 2 units from 8 to 10 are used to begin execution of A,,. At time 10, P1

interrupts and begins to execute. At time 14, P 1 succeeds. The request by J1

tins been satisfied and thus the time allocated to A l in the interval 14-18 can

now be set to idle. Ile propose a new algorithm which can be used to reallo-

Cate this wasted time.

Let us assume that P succeeds at time t 8 .	 We wish to create a new

schedule for the interval i s-Tr so that the number of primaries scheduled is

maximized. We must gear in mind that some parts of alternates and primaries

on other levels may have already been executed. Consider the following

representation of the periodic structure:

f _	 n	 r,

t

Y

Page 12

We define EXAi to be the number of time units of Ai already executed dur-

ing the current Ji period when Ps succeeds at time t 8 . Similarly, EXPi is

defined to be the number of time units of Pi already executed. We use [x] to

denote the largest integer not greater than x. Di , the next Ji deadline after

t a , can be computed by: Di a It s /Ti l * Ti . Let Ri = Di-t a denote the remaining

time before the next J deadline. When P s succeeds, we compute Di and R for

each level i#s. Between R and Di we must schedule a response to the request

for J if it has not already been satisfied. We may schedule either a primary

followed by an alternate or just an alternate. The times required for these

responses are Pi+Ai ,-EXAi-EXPi and Ai-EXAi respectively. From Di to Dr we must

schedule responses as before.

As before we create the schedule iteratively beginning at ti)e lowest

level.	 Except for levels s and r we create 2 schedules for level i. The

first schedule is for the interval i s-Di and is built upon the schedule for

i s-Di-1 from the previous iteration concatenated with
(Di-Di-1)/Ti-1

copies of

Lite second schedule at level i-1. We call this schedule. SHORT i .	 The second

schedule at level i is built on m i-1 copies of the second solution at level

i.-1 as in the previous algorithm. We call this schedule FULL i - 10

The following algorithm is executed whenever P s succeeds:

a	 r

E

Page 13

EXA i : - As

for i :- 1 to r do
begin
concatenate 1 SHORT i-1 schedule with (Di-Di-1)/Ti

copies: of FULL i-1schedule

create SHORT = MODIFY(Ai-F.XAi , Ai+Pi-EXAi-EXPi)

if Di < Dr

then begin
concatenate mi-1 copies of FULL i-

1
schedule

FULLi = MODIFY(Ai , Ai+Pi)
end

end

Let us consider the use of this algorithm in the previous example.

Recall that A l =4, P 1=4, T 1=10, A2=5, P2=?, T2=30, A3=6, P3=8 and T3=60. The

following schedule was produced for these jobs by the previous algorithm:

El r-^, At 91	 A, ^z V,	 A, t P. a, ykt
o	 4	 6 a	 14	 to za	 1A	 U t4iO	 3y 3k qo	 44 V4 So	 Y4 $270%10

At time 14, P 1 succeeded. We have s=1, EXA 2=2 and EXP 1=4. All other EXA and

EXP values are 0. D 1=20, D2=30, D 3=60, R 1 =6, R2=16 and R3=46.

For i - s = 1, the algorithm produces 6 units of IDLE for the SHORT

schedule and the following FULL schedule:

P, A,a
C7	 y	 to

For i - 2, the first concatenation yields:

P. I A
I q	 'to 	 V4	 2z

The SHORT schedule is:

A` _ A

!W	 11 Zc	 L4	 ti 3a

r=

4

Page 14

The second concatenation yields:

I p, JA I b<1 P, _j A, 1x^ RJ_A
P0	 14	 14' 40	 44	 4 V A 5'y Ss i o

The FULL schedule is:

A ► lit P, A , A: P ► A, A,^

30	 3.,{	 3g No	 44	 4e Va	 s4	 58 =S'7^—'+bo

For 1	 3, the first concatenation yields:

I4 i} z 	 z°I	 LS 3,, w	 35r	 liy	 4B So W	 Sg 5'+ be

The SHORT schedule is:

14	 11 to	 LV	 t$ 70	 1 4	 3S 40	 44	 4 8 5-0	 54	 ye y► bo

The net effect of the new algorithm on this example is to add the execu-

tion of a P 1 in the interval 50-60.

Theorem: The schedule produced by the above algorithm is f—t optimal and has

as much idle time as any f—t optimal schedule.

Proof: follows easily from the first Theorem.

Theorem: The above algorithm creates a f—t schedule in O(rM r-1) time.

Proof: follows from the second theorem.

Using the above algorithms we can create an, initial 'fault—tolerant

schedule for a set of gobs J. The jobs can. then be executed as scheduled.

When a primary algorithm succeeds we can create a new schedule which may allow

F

Page 15

more primaries to be executed. In all cases, the schedule produced includes

as many primaries as any ether schedule which guarantees that the deadlines

will be met.

4 Work in Progress..

Currently we are investigating another algorithm for rescheduling after

primary success. This algorithm creates a new schedule by making only local

changes in the existing schedule.

We are also investigating the effect of different T 1 values on a given

set of jobs.	 Given the Ai , Pi and mi values, the number of primaries which

are scheduled depends on T i . If T 1 is chosen to be large enough, all of the

primaries will be scheduled by the scheduling algorithm. If the primaries

always succeed, a much smaller value of T i will allow all primaries to be exe-

cuted due to our rescheduling algorithm. We would like to be able to deter-

mine this smaller value of Ti and to investigate the behavior of the

rescheduling algorithm in cases where a small number of primaries may be

expected to fail.

5	 References.

(Campbell, Horton, b Belford, 791 Campbell, R.H., K.H. Horton. and G.G. Bel-
ford., "Simulations of a Fault-Tolerant Deadline Mechanism", Proceedings
of the 1979 International Symposium on Fault-Tolerant Computing, June
1979.

[Randell, 75) Randell, B., "System Structure for Software Fault Tolerance",
IEEE Transactions on Software Engineering, Vol. SF-1. No. 2, pp. 220--232,
1975.

'-	 Y

•	 .-v ,r	 .	 'ie	 ..two	 ..	 _	

._	 .. .

's

Page 1

i

`	
1	 MMS Concept.

1.1	 MMS (Multi-mission Modular Spacecraft).

* 1980's program designed by NASA [NASA S-700-10, 771
I
r
F	 * unmanned satellite

* 1,500 kg at medium altitude orbit

* 1,000 kg at geostationary orbit

* multi-mission : meteorological, communication, remotesensing, scien-

tific, broadcasting, etc.

1.2	 System Concept.

MIS
	 —3 Tl)RSS

	radio link
	

radio link

	

(TLM,CMD,RNG)
	

(TLM,CMD,Mission data)

TT &C	 TT & C
	

CDAS
	

CDAS

Station	 Station

data link
	

data link

y	 ^:
M1tS
	

Data
Control
	

Processing	 ---> to data users

Center
	

Center

TT & C Tracking, Telemetry and Command.
CDAS	 : Command and Data Acquisition Station.
RNG	 : Ranging.
TLM	 : Telemetry.
CMD	 : Command.
TDRSS : Tracking, Data Relay Satellite System

r^

a

Page 2

1.3 MMS On—Board Data Handling.

Ant.
^^ ----- Receiver --- 	 --------> Direct Command

CMD
-- 1	 (125bps — 2Kbps)--

STACC <----> OBC
^	 CU

Transmitter -------------------- 	 _
PCM
(1Kbps — 64Kbps)

Multiplex data bus (1M bps)
^ssoaoscaaoaaoo^ac====a.00c-oca3a^aa=vocoac.o :..e..v.ao=-oc.a,==^:>

I	
f)
	 I

l,

RIU	 RIU		 RIU

to S/S	 to S/S
	

to S/S

STACC : Standard Telemetry And Command Component
CU	 : Central Unit (Multiplex bus control, OBC interface)
OBC	 : On—Board Computer
RIU	 : Remote Interface Unit
S/S	 : Subsystem
S/C ' : Spacecraft

1.4	 OBC Configuration.

CPU	 ROM
	

RAM

DMA control

^saaetnae aza==a

STINT

cu

STINT STACC Interface Unit

yr,

Page 3

1.5	 Functions of OBC.

I. Power Management

2. Attitude Control

3. Data Formatting

4. Stored Command Processing

5. Thermal Control

6. Delayed Command Storage

7. Program Loading

8. Command Output

9. Telemetry Data Input

10. Telemetry Format Control

11. Data Output to Real-time Telemetry

12. Data Dumps Direct to the Modulator

13. Direct Computer Access to any Satellite Data Point via the Multiplex

Data Bus

' G

Page 4

2	 Simulation of a Simplified MMS Data Handling System.

2.1	 Objective of the Simulation.

MMS is chocent as a model for the simulation because it is a multipur-

pose satellite with a real-time executive which is written in the lower level

language and developed by NASA.

The objective of this simulation is to show that Path Pascal with the

extension of the deadline mechanism is capable to program the real-time

software, especially for the flight project.

2.2	 Scĉpe of Simulation.

The following diagram shows the simplified MMS data handling system

which is of interest for simulation.

01D (1024 bps)	 -

CU ----------> :OB
<-------------
PCM (8192 bps)

I	 Multiplex Data Bus
<^^r^^^^^^ors^^^^srrw^sr^^^^^csva3aneca^^^ao+a^^^r.^oacc^^s=c=a^>

I	 I-^	 I	 I	 I
RIIJYl	 RIU 2	 KI[i- 3 	RIU-4 	 I RIU_5

Power	 Communication	 AOCS	 Thermal	 Mission Eq.I
&	 ff

Data Handling

AOCS : Attitude and Orbit Control System
Eq. : Equipment

1

1

Page 5

2.3	 I/O signal.

2.3.1	 Input command from thers; ound (1024 bps serial).

B. Command type

command ===--- normal =____= pulse

serial magnitude

delay =_____= pulse

serial magnitude

normal command : executed at a moment

delay command : time taged, executed at the taged time

pulse command : switching command such as turn ON, OFF, etc.

serial magnitude command

: send magnitude

b. Command format

wo	 W1

W0,W1 : introduction

W2	 : satellite address

W3	 : command type I.D.

W4	 : command

I	 I-----------------------------
W2	 W3	 W4

.r

Page 6

2.3.2	 Output PCM (8192 bps serial).

a. PCM data

* real time data from S/S

* processed data (min.,max.,avg.,etc)

* command answer back signal

* memory dump

b. PCM format

* 1 minor frame : 32 words (16 bits/word)

* 1 major frame : 32 minor frames

* word sampling rate : 512 Hz

* commutated word sampling rate : 16Hz

* subcommutated word sampling rate	 1/2Hz

c. major frame

WO
	 I

W1
	

r

W2
W3

W15
W16

W28
W29
W30
W31

1	 2	 3	 m	 n	 30 :

* W0,1 : Frame Synchronization

* W2	 : Minor Frame Count

* W15,16: Subcommutated Word

{
f

t
tr

f
i

^..5

Page 7

* W28,29

30,31: Subcommutated Word (Computer Processed Data)

* Minor frame (WO - W31)	 : 62.5 ms

* Major frame (FRMO - FRM31) 	 2 sec

2.4	 OBC Function.

2.4.1	 Attitude Control.

a. Read Gyro Signal (every 125 ms)

b. Read Sun and Earth Sensor (every is)

c. Attitude Determination

d. Provide Inertial Wheel Control Signal (every 125 ms)

2.4.2	 PCM.

a. Telemetry Data Input

b. Limit Checking

c. Statistical Calculation (min.,max.,a y .,sdv)

d. Output to Real-time Telemetry

2.4.3 CMD.

a. Delayed Command Storage

b. Stored Command Processing

c. Command Output

2.4.4	 Fault Tolerant Deadline Mechanism.

The fault--tolerant deadline mechanism [Campbell, et al., 791 has been

implemented into Path Pascal [Campbell and Wei, 791. It will be applied

extensively to ROCS and other periodical processes.

f
Page 8

2.5	 OBC Data Rate.

2.5.1	 Synchronous Data.

Sampling Acquisition	 Distribution Item

8 Hz 3W Gyro (AOCS)
3W Inertial Wheel (AOCS)

1 Hz 2W Sun and Earth Sensor (AOCS)

1/2 Hz: 1024W PCM Acquisition
128W PCM Distribution

1W - 15 bits

2.5.2	 Asynchronous Data.

Asynchronous Command Acquisition and Distribution

,

F

Page 9

REFERENCE

[Campbell, et al., 791 Campbell, R. H., K. Horton, and G. G. Belford, "Simula-

tions of a Fault-Tolerant Deadline Mechanism," The Ninth Annual T.nternational

Symposium on Fault-Tolerant Computing, June, 1979•

(Campbell & Wei, 791 Campbell, R. H. and A. Y. Wei, "Fault-Tolerant Real-Time

Programming in Path Pascal," to be published.

(NASA S-700-10, 771 NASA Goddard Space Flight Center, "Multimission Modular

Spacecraft (MDtS) System Specification," May 1977.

UIUCDCS-R-,79-998

A FAULT-TOLERANT DEADLINE MECHANISM

by

K. H. Horton

December 1979

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF ILLINOIS AT URBANA-C11AMPAIGN

URBANA, ILLINOIS 61,301

Stippor.ted in part by the National Aeronautics and Space Administration under
grant US NASA ;N'SG 1471. and submitted in partial fulfillment of the requirements

of the Graduate College for the degree of Master of Science in Computer Science.

ACKNOWLEDGEMENTS

This research was supported by NASA grant

NSG-1471.	 I would like to thank Professor Roy H.

Campbell for his guidance while directing this

,research. I would also like to thank Professor

Geneva G. Belford and Ira Greenberg for valuable

assistance in preparation of earlier reports of

this research.

iii

1

}

I ..
	 , 	

I

'rri;;

TABLE OF CONTENTS

1	 INTRODUCTION 1

2	 FAULT—TOLERANT REAL—TIME SYSTEMS3

3	 DEADLINE	 SCHEDULING^,......8
3.1	 Earliest—Deadline—First Scheduling8
3.2	 Rate—Monotonic	 Scheduling8

4	 DEADLINE MECHANISM10
4.1	 Primary and Alternate Algorithms10
4 .2	 Scheduling	 of	 Alternates * . * .. ** eose.osees9*12
4.3	 Scheduling	 of	 Primaries15

5	 SIMULATION	 MODEL16
5 .1	 Simulation	 Program16
5.2 Scheduling Algorithms in Simulation Program 18
5.3	 Parameters	 of	 the	 Simulations20
5.4	 Simulation Model	 Results21

6	 APPLICATIONS see--...-.29

7	 PATH PASCAL IMPLEMENTATION 31

8	 CONCLUSION34

REFERENCES35

APPENDIX A:	 Skeletal	 Simula Program36

APPENDIX B:	 Scheduling Algorithms40

APPENDIX C:	 Simulation Data Plots47

iv

..r

I INTRODUCTION

This thesis reports research of a fault -tolerant deadline mechanism,

[Campbell et al., 79b] and [Horton et al., 781 are earlier reports. The dead-

line mechanism can aid in the design of fault -tolerant real-time systems.

Separate sections discuss terminology, deadline scheduling, implementation

details, the simulation model and applications. Various scheduling algorithms

are considered, each, with its own advantages and disadvantages. Results from

simulations of the deadline mechanism are presented indicating the mechanism's

practicality.

A real-time system is designed to provide a service which meets a set of

specifications inc:Luding real-time constraints. Constructing software to meet

these real-time constraints is a difficult problem for many applications, such

as aerospace control systems and process control. Incorrect design or imple-

mentation of the system can cause timing faults which result in failure to

meet the real -time constraints. Such timing failures are difficult to avoid,

even though program proving and testing techniques are applied. Design of

real-time systems which are tolerant to timing faults is currently ad hoc,

expensive and difficult. The deadline mechanism can aid in the design of

these systems.

The deadline mechanism is based upon the recovery block mechanism [Ran-

dell, 751 for fault-tolerant software. Two algorithms are provided for each

task which is subject to timing constraints. The "primary" algorithm produces

a better quality service than the "alternate". The alternate is a simpler

1

LL^

2

algorithm which produces an acceptable result, in a known, fixed length of

time. The reason that recovery blocks cannot be used to provide tolerance of

timing faults is that they are insensitive to the passage of time. (That is,

it is impossible to recover from a missed deadline by resetting the system

clock and executing an alternate algorithm). The acceptance test of the

recovery block is replaced in the deadline mechanism by a centralized

scheduler and supervisor. The supervisor provides fault-tolerance by detect-

ing timing errors in the primary and switching to its alternate. The deadline

mechanism is orthogonal to recovery blocks and the mechanisms may be nested

in a complementary manner.

The deadline mechanism has a variety of applications. Completely redun-

dant algorithms may be specified to maintain full system services. The "qual-

ity" of the service performed can be gracefully degraded without producing

timing failures. Load shedding during periods of high load can be programmed

in a structured manner. In addition., the mechanism allows a flexible approach

to system reliability. It permits algorithms which provide a very desirable

service, but may contain timing faults, to be used in systems which must have

a reliable real-time performance. Modifications may be made to maintain the

system software without having the system become susceptible to a timing

failure. Finally, time-dependent diagnostic routines may be scheduled by the

mechanism during`periods of low load.

W.

2 FAULT-TOLERANT REAL-TIME SYSTEMS

The deadline mechanism is designed to permit the construction of fault-

tolerant real-time systems. 	 We now define this terminology more carefully,

and introduce'important characteristics of real-time systems for which the

deadline mechanism is suited. 	 The definitions of system, reliability, and

fault-tolerance follow those of (Randell et al., 78) and [Hecht, 76].

A system is defined as a set of components (together with their interre-

lationships) which is designed to provide a specified service. (The components

themselves may also be systems.) This service is regarded as being provided to

one or more environments.	 An interaction between a system and one of its

environments occurs in the following pattern. The environment requests a ser-

vice from the system; the service is then performed by some component of the

system, which is called the service component; and a response is made to the

environment.	 Farts of this pattern may be implicit in a particular interac-

tion. The internal s tate of a :system is a summary of the states of its com-

ponents.

Real-time programming concerns programs whose validity depends on the

execution speed of the utilized processors (Wirth, 77). A real-time system is

a system in which the validity of some of its services depends on processor

speed. One of the components of a real-time system is a system clock. System

time is part of a real-time system's internal state. It is assumed that con-

sistent views of the time in external environments can be obtained as func-

tions of the state of the s ystem clock.

3

w

	
	 a,

wa

4

Timing constraints are imposed on a system by its specification.	 These

constraints are expressed in terms of response periods and arrival periods. A

responseeQ, riod is the maximum allowable amount of system time that can elapse

from a request time until a response time for a particular service. Thus a

response period is a specification of a service that the system must provide.

A request time is the system time when a request is detected by the system,

and a response time is the system time when a response is completed by the

system.	 An arrivalep riod is the minimum interarrival time of requests for

the service, measured with respect to the system clock. 	 Thus the arrival

period is an assumption made in the specification of the service.

A deadline is the system time by which a system must respond to a

request. Given a request for a particular service, the deadline is calculated

by adding the service's response period to the request time.

An executionep riod is the maximum amount of system time required to exe-

cute a particular block of instructions, assuming that it does not contain

residual faults and is not interrupted. This is a measurable rather than a

supplied quantity and is determined for a particular block of instructions

executing on specified processors [Schaefges, 78]. The execution period of a

service component is called the service period. The deadline mechanism is

designed for services whose arrival periods are greater than their response

periods, which are in turn assumed to.be greater than their service periods.

These quantities are illustrated in Figure 1. Note that the i th request

for the service is processed in less system time than is indicated by the ser-

vice period. Also, the service period could be repositioned within the

response period, or even split into several piece . because it is smaller than

t

5

the response period.

request	 response	 deadline request
time
	

I time 	 time
	

time i+1

--- ---------------- (---------- --------- ----->

system
---service period-----'	 time

response period------'

------arrival period------------'

Figure 1. Relationship between timing quantities.

It is difficult to determine the correctness of large, complex systems.

Instead, it is common to use the concept of reliability, which is a measure of

the success with which a system conforms to some authoritative specification

of its behavior. The problem of establishing correctness or reliability in

real-time systems is compounded by the time-dependent nature of service com-

ponents. Timing reliability is defined as the reliability with which a real-

time system conforms to the timing constraints in its specifications. 	 If a

real-time system meets all of its timing constraints it is characterized as

timely.

When a system deviates from its specified behavior, a failure is said to

occur. A failure can ultimately be traced back to a fault, which is a mechan-

ical or algorithmic construction that causes an error. An error is that part

of an internal state of a system which is incorrect. An internal state of a

system is called an erroneous state if there are circumstances (within the

6

.4„

specification of the use of the system) in which further processing, by the

normal algorithms of the system, will lead to a failure which is not attri-

buted to a subsequent fault.

The following definitions can then be made for a real-time system.	 A

timing failure is a failure which occurs when a real-time system violates 'one

of the timing constraints in its specification. A timing fault is a fault

which causes a timing error, and a timing error is incorrect information about

timing constraints in an internal state of the system. A timing error might

be identified by information such as the system time, the instructions being

executed, the point of execution, outstanding deadlines, etc.

A variety of timing faults can lead to a timing failure. one example is

the execution of a service component whose service period has been miscalcu-

lated and is larger than the response period. In this case, a timing failure

could occur even though all computations were correct. Another example is the

execution of a service component in which a repetition bound is miscalculated.

r This could cause an unanticipated amount of system time to elapse. Precise

detection of timing errors may be expensive, but watchdog timers provide n

practical detection scheme. Such a timer, together with error confinement and

repair techniques, based on recovery blocks, can be used to design fault-

tolerant real-time systems.

A system can be designed to be fault-tolerant by incorporating additional

computations and abnormal algorithms which attempt to ensure that occurrences

of erroneous states do not result in later system failures. A fault-tolerant

real-time system is a fault-tolerant system which contains additional computa-

tions and abnormal, algorithms which attempt to ensure that the occurrences of

F	 R	 ^	 a

7

erroneous states do not result in timing failures. The deadline mechanism is

an example of an abnormal algorithm which incorporates additional computations

to provide fault-tolerance for timing faults.

For a real-time system to be timely, there must be some restriction on

the arrival, response, and service periods. Given a single processor, arrival

and response periods of the same length and constant interarrival times, a

necessary and sufficient condition for the existence of a schedule which meets

the system's deadlines is given by condition 1.

Condition 1:
The service period divided by the arrival period, summed

over all components, is less than or equal to one [Liu & Lay—
land, 73).

This constraint is, in general, too restrictive for the situations where

the arrival period is a minimum interarrival time or the response period is

less than the arrival period. It does provide, however, an easily computed

upper bound on the ability of a timely system to process service components

with deadlines.

4

1

8

3 DEADLINE SCHEDULING

optimal scheduling to meet a

Generally the determination of

a few special cases, too slow

can however consider heuristic

of deadline scheduling have

Many recent papers discuss the question of

set of deadlines, e.g. (Liu & Layland, 731.ii
an optimal schedule is a hard problem except in

r

to be of value in a real-time system. We

i
approaches to feasible schedules. Two methods

been considered and are described below.

3.1 Earliest -Deadline -First Scheduling

The first approach is the earliest-deadline-first algorithm.	 Earliest-

deadline-first selects the task having the nearest deadline for execution,

running it to completion or until the arrival of a task with an earlier dead-

line. In the latter case the executing task is preempted in favor of the newly

arrived task. It has been shown that this algorithm can schedule a set of

tasks whenever a feasible schedule exists (if no feasible schedule exists the

tasks cannot be scheduled to meet the deadlines by any technique) [Liu & Lay-

land, 73].

3.2 Rate-Monoton ic Scheduling

The second method considered is the rate-monotonic algorithm. 	 This

approach assigns each task a static priority dependent only en the response

requirements of the task. Those tasks with short response times receive high

priority, those with longer response times obtain a lower priority. The algo-•

rithm executes the highest priority task until a task of higher priority

• i

.°
9

arrives. It has been shown that the rat

system if some feasible schedule exists,

ficiently low. The allowable processor

number of tasks but reaches a limit of

Layland, 73J. Thus processor utilization

monotonic scheduling is to be applied.

e-monotonic algorithm can schedule a

and the processor utilization is suf-

utilization is a function of the

In 2 (approx. .693), again see [Liu &

should be kept below 69% if rate-

F
t

i.

t

F	 ..

1

a

^.J

4 DEADLINE MECHANISM

4.1 Primary and Alternate Algorithms

The deadline mechanism requires each service component to have a primary

and alternate algorithm. The primary algorithm provides a service which is in

some sense more desirable. The alternate algorithm meets the specifications

for that service component but may be less desirable. A scheduling algorithm

ensures that each service request is satisfied by at ,least one of the two

algorithms.

Reliable scheduling of primaries or alternates to meet real-time con-

straints requires the calculation of the execution period of each algorithm.

This bound may be determined by a theoretical computation from the terminating

conditions of the algorithm provided that 1) the use of repetition and recur-

sion constructs that are unbounded is prohibited (for example, the "while

loop" of Pascal (see [Anderson & Witty, 781), or 2) assertions about repeti-

tion and recursion constructs are included in the algorithm and, if these

assertions are found to be incorrect at run-time, the algorithm is terminated

abnormally. In this last method, recovery blocks or a forward recovery mecha-

nism may be used to provide fault-tolerance for incorrect assertions. (Note:

the use of recovery blocks requires that the execution period include time for

the acceptance test to be executed repeatedly and every alternate to be exe-

cuted, as well as any overhead to restore variables from the recovery cache.)

The accuracy of the determination of the execution periods is critical to sys-

tem performance and reliability.

10

nt _ _

I

The deadline mechanism can schedule alternates using several basic algo-

rithms.	 The two simplest are the rate-monotonic algorithm and earliest-

deadline-first. The rate-monotonic algorithm uses a fixed priority scheme and

requires	 a	 somewhat restrictive limit on processor utilization. 	 The

earliest-deadline-first algorithm can schedule a system if condition 1 (above)

is satisfied. Execution of the primary and alternate within the service period

can then be ordered in several different ways: primary before alternate, pri-

mary after alternate, primary and alternate in parallel or primary and alter-

nate interleaved. The simulations, however, consider a single-processor sys-

tem in which the primary is run either before or after the alternate.

If the primary completes within its execution period, its results are

used in preference to those of the alternate. If the primary should fail to

complete within its execution period, because of a timing fault in the primary

or a miscalculation of the execution period, the results from the alternate

are used. If the alternate is run before the primary, a cache may be used to

hold results from the alternate until the primary either fails or completes

successfully.

When the service period exceeds the sum of primary and alternate execu-

tion periods, both algorithms can be executed on a single processor, providing

full redundancy. If the service period is greater than both execution periods

(but perhaps less than their, sum) a single processor can run either primary or

alternate, but probably not both. A multiprocessor could, however, execute

them in parallel and again provide full redundancy. Lacking an upper bound for

the primary, both single and multiprocessor systems can at best provide only

partial redundancy.

u

E
k

12

Requiring that the execution period of a primary be accurately determined

restricts the algorithms that may be used as primaries. However, there are

many applications where this requirement is overly restrictive and would

prevent the use of very desirable algorithms. P.emoving this requirement

allows primary algorithms whose average execution time is "small" but that

have execution periods which 1) are very large, 2) cannot be determined accu-

rately or 3) cannot be determined at all.

This admits primaries which have unknown execution times. The "service

period" of a component can then be set, for scheduling purposes, at any figure

that is less than the response period, but no less than the execution time of

the alternate. Since in general the system may be unable to execute both the

primary and the alternate, one must be allowed to complete.	 Since upper

bounds are assumed to exist for alternates only, the deadline mechanism is

designed to reserve a time for execution of the alternate. A primary schedul-

ing algorithm is then applied to schedule primaries in any remaining time.

This time is called slack time. 	 'Me following section describes several

approaches to scheduling primaries and alternates and indicates the conditions

under which each may be applied. Specific combinations of primary/alternate

scheduling algorithms and the resulting simulated performance (how effectively

the slack time is used to run primaries) are then discussed.

4.2 Scheduling of Alternate s

The firs t-chance scheduler selects alternates using the	 earliest-

deadline-first algorithm. 	 Alternates with deadlines closer to the current

system time have higher priority and preempt lower priority alternates. Pri-

maries are scheduled to execute in slack time after their alternates have been

r.

t

13

completed. The first-chance scheduler allows a maximum number of service com-

ponents to share a single processor. (The maximum number of service com-

ponents is determined by conditiop 1 applied to the situation where all ser-

vices are provided by alternates.) The results from the computation of the

alternate must be retained until either the primary completes successfully or

the deadline is reached. The results from the alternate could also be used as

an acceptance test of the results from the primary.

The rate-monotonic scheduler selects alternates using the response period

as a static priority, with small values having high priority. At any given

instant the alternate with the highest priority (smallest response period)

will be executing.	 One potential advantage of this method is a possible

reduction in scheduling complexity and overhead, an aspect not considered in

the simulations. Again, slack time is used for the execution of primaries.

The last-chance scheduler selects alternates using a modified earliest-

deadline-first algorithm in which alternates may not preempt each other. The

primaries are scheduled to execute in slack time, prior to their alternates.

Whenever a request for service occurs, the alternate scheduler reserves pro-

cessor time to execute the alternate. This time is scheduled at the last pos-

sible instant that the alternate can be executed to complete before the dead-

line. Waen alternate execution periods overlap, the alternate with the earli-

eet deadline is scheduled first. The alternate scheduler may need to

reschedule alternates as later service requests are received. In particular,

an alternate may be rescheduled to run earlier as a result of a new request

for a service. This occurs if the deadline for the new request causes

potential overlap of the executions of the new alternate and the original

N

S

1

14

alternate and the original alternate has the earlier deadline. An alternate

preempts a primary which is executing if the schedule of the alternate demands

that it be run.

Vie last-chance scheduler organizes the primary and alternate executions

so that if the primary succeeds, the alternate does not run. If a primary sac-

cessfully completes before its alternate is scheduled to CL,.,, the slack time

is incremented by the execution period of the alternate. Since alternates are

scheduled to run at the last instant and may not be preempted, a more

stringent requirement on system service periods (execution periods of the

alternates) is needed to guarantee the timeliness of the system:

Condition 2 •
The service periods, summed over all components, must be less

than or equal to the minimum response period of the system.

Condition 2 is demonstrated by the following argument. Suppose a system

has n components (r.l,..,cn) ordered by non-increasing response period (c n will

have the minimum response period). Further suppose that requests have arrived

for components c l , ... c n-1 so the last chance schedule completely occupies the

processor for some interval starting at time t. Finally suppose a request for

c
	 arrives at t. Now the schedule for cl,...,cn-1 is last chance, so if any

are rescheduled at a later time deadlines will be missed. Thus c cannot start
n

before any of c 1 , cn-l . If it starts immediately after cl,...,en-1 finish

it will complete only after its service period. The earliest it can complete

is t + sum of service periods of c l ,...,cn . If cn is to be timely the sum of

the service periods must be less than or equal to the response period of c
n

(which by hypothesis is the minimum). Since all components of a system raust

i

15

be timely for that system to be timely a timely system must satisfy condi-

tion 2.

4.3 Scheduling of Primaries

Either of two primary scheduling algorithms may be used with the alter-

nate scheduling strategy. The simple primary scheduler may select primaries

to run in several ways: for example, in deadline order, round robin, least

recently run, or according to the alternate scheduling strategy.	 The

importance primary scheduler provides preferential treatment to "important"

primaries. In many applications, the service provided by some service com-

ponents of the system is more important with respect to the specification of

the system than that provided by other components. For example, it may be

more important for a spacecraft to fire retro-rockets at the correct time than

to send sensor data back to earth every second. Importance may not be related

to the arrival period or response period of the service, as shown by the

spacecraft example. (The arrival rate of requests for firing the rockets may

be once a tri.p.) Tile importance primary scheduling algorithm allows the ser-

vices of a system to be given a ranking of importance. During slack time, the

algorithm schedules the primaries in order of that importance. For primaries

which have the same importance level, the scheduler may use strategies similar

to the simple primary scheduler.

In comparing the schedulers, two important measures are the fractions of

'cpu' time wasted by 1) executing alternates whose results are never used and

2) abandoning primary executions. A simple simulation model of the deadline

mechanism was developed in order to compare the scheduling algorithms.

i

5 SIMULATION MODEL

The simulations are based upon a simple model of a real-time system and

provide preliminary information about the deadline mechanism. The first simu-

lation providt..s a control for the later simulations: it measures the timeli-

ness of the system without the deadline mechanism, using primaries scheduled

in earliest-deadline-first order. The second simulation includes the deadline

mechanism and alternates to make the system timely. The last-chance schedul-

ing algorithm is used together with the simple primary scheduler. In the

third simulation, the primaries are scheduled instead by the importance pri-

mary scheduler. Another simulation compares the first-chance and last-chance

scheduling algorithms. 	 A final set of simulations compares the first-chance

and rate-monotonic schedulers for several different mixes of tasks. In each

simulation run approximately 1500 requests occurred for each service com-

ponent.

5.1 Simulation Program

The Simula programming language [Dahl et al., 68] was used to simulate

the deadline mechanism using the various scheduling algorithms. The program

was written and run on a Control Data Corporation Cyber 175. A skeletal ver-

sion of the program appears as Appendix A. The basic structure and role of

each part of the program is outlined below.

The mainline code of the program collects the run parameters from input

and initializes the appropriate number of task initiators ('taskinit'). Run

parameters consist of task descriptions including response period, request

16

F

°	 17

period, primary and alternate execution periods, and distributions to be used.

Additional system parameters include the request load and simulation period,.

The mainline code then creates the queues to be used during the simulation

The remaining duty is to wait for the simulation period to expire and report

the simulation statistics.

The 'sked' class simulates the cpu scheduler. Together 'sked' and the

queue maintenance routines ('intopriq', 'intoaltq', 'outaltq') embody the

scheduling algorithm.

The 'taskinit' class simulates the request source and accumulates statis-

tics for the report. 'taskinit' waits the request period (a random variable)

and then initiates a new 'prialg' and 'altalg' (described below). The request

period is scaled by the request load parameter to vary the request rate from 0

to 100% of maximum value. The random variables for 'prialg' and 'altalg' exe-

cution times are also computed and passed to the 'prialg' and 'altalg'.'The

newly created 'prialg' and 'altalg' are entered into the proper queues and the

simulated 'cpu' is 'interrupted' if required.

When initiating tasks certain parameters (interarrival, primary and

alternate execution time) are assigned random values according to a distribu-

tion. Four distributions are available:

1) Constant.

2) Negative exponential plus constant.

3) Uniform over a given interval.

4) Poisson distribution.

W

+	 ^	 4

18

The 'prialg' and 'altalg' represent the primary and alternate algorithms

for the service component. They are distinct processes in the simulation to

allow the possibility 61" concurrent execution. These routines also contain

the code which records statistics on primary and alternate completions.

Internal routines ('intopriq', 'intoaltq', 'outaltq') maintain the primary and

alternate queues ('priq' and 'altq') in the proper sequence for selection by

'stied'. To allow convenient keeping of statistics each 'prialg' and 	 altalg,

contains a pointer to 	 its associated alternate (or primary) and its

'taskinit'. This allows the 'taskinit' class to record the common statistics.

In addition the pointer allows an alternate algorithm to preempt (or cancel)

its associated primary when using the last-chance algorithm.

The report routine summarizes the simulation by reporting these statis-

tics for each task:

1) The fraction of idle 'cpu' time. 	 1

2) The fraction of 'cpu' time consumed by completing primary algorithms.

3) The fraction of requests satisfied by primary algorithms.

4) The fraction of 'wasted' time (that time consumed by alternates with
corresponding primary completions and consumed by uncompleted pri-
maries) .

The statistics used in the comparisons below are averages of the above quanti-

ties over all tasks in the particular run.

5.2 Scheduling Algorithms in Simulation Program

The last-chance scheduler selects alternates from the 'altq' when that

 alternate must be started in order to meet its deadline (at the "last:

chance"). Because this is the last chance, preemption could cause the dead-

r,

19

line to be missed and consequently is not allowed. The 'altq' is maintained

in deadline order by 'intoaltq' and 'outaltq' keeping scheduled start and stop

times for each alternate, and in case these times should overlap the earlier

start and stop times are adjusted to even earlier values. In a real system the

overhead of this approach may prove to be excessive, however, these simula-

tions assume scheduling is 'instantaneous'. Primaries are selected from the

'priq' (ordered by deadline time) for execution during slack time. Should the

primary complete before its deadline the alternate is removed from the 'altq',

the 'altq' may be rescheduled to use the released time, and a primary comple-

tion is recorded. When an alternate is executed, it will complete before the

deadline. At this time the uncompleted primary is removed from the ''priq' and

an alternate completion is recorded. When new requests arrive the new primary

and alternate are entered into appropriate queues, the 'altq' is rescheduled

if required, and any executing primary is preempted.

The first-chance scheduler selects and executes alternates from the

'altq' until none remain. 	 The 'altq' is maintained in deadline order, but

start and stop times are not maintained in contrast to last-chance. 	 When no

alternates remain primaries are selected from the 'priq', again maintained in

deadline order. When a primary completes before the deadline a primary com-

pletion is recorded. When the deadline arrives (only when the primary has not

completed) the primary is terminated if executing, is removed from the 'priq'

and an alternate completion is recorded. When a new request arrives the new

primary and alternate are entered into their respective queues and, if

required, the executing task is preempted.

w

20

The rate-monotonic scheduler follows the same basic algorithm as the

first-chance scheduler, the difference being that both 'priq' and 'altq' are

maintained in order of increasing response periods rather than deadline order.

Appendix R provides skeletal programs for the 'sked' class and queue

maintenance routines for each scheduling algorithm simulated.

5.3 Parameters of the Simulations

The simulations measure the change in the behavior of a simple real-

time system as the rate of requests for services varies. The request load is

defined as the minimum interarrival time (the arrival period) expressed as a

percentage of the average interarrival time. Thus, a request load of 100%

represents requests which are arriving at the maximum rate, and a. request load

of 50% represents requests which are arriving at half the maximum rate. The

actual interarrival times have exponential distributions with origin at the

arrival. period and mean given by the arrival period multiplied by 100 divided

by the request load.

Parameter	 Value
Service components	 10
Arrival period (AP)	 100 ("time units")
Pesponse period	 100	 "	 of

Average primary duration	 10,12,20 "	 it

Service period	 10	 "	 to

Request load (RL)	 10% by 5% to 100%

interarrival times have a distribution of:
AP + expdist(mean = AP * (100 / RL - 1))

Figure 2. Summary of simulation parameters

21

The parameters in the simulations were chosen so that at a request load

of 100% the processor has no idle time. The service period used for each ser-

vice component is the execution period of the alternate, and is constant. 	 At

a request load of 100%, the service periods account for all of the available

"processor" time.

The response period for each service component is a constant chosen to

allow the system to be timely (condition 1) at 100% request load (i.e., when

requests arrive at the maximum rate).

The execution periods of primaries are assumed unbounded. 	 (The pri-

maries might contain indefinite repetition or recursion.) The actual duration

	

of each primary execution is determined from an exponential distribution with
	 i

the "average execution duration" as its mean. The execution periods of the

alternates are constant.

r

In the simulation of importance levels, the model divides the primaries

into three levels of importance. Three of the services have a low level of

importance, four have an intermediate level of importance, and three have a

high level of importance.

5.4 Simulation Model Results

First, the behavior of the system without the deadline mechanism is

presented.	 Figure 3 shows the percentage of deadlines that are missed by the

system for three cases: when the average duration of primary executions

1) equals the service period, 2) exceeds the service period by 20%, and

3) exceeds the service period by 100%. In case 1, only a small fraction (less

than 5%) of the primaries fail to meet deadlines even at a request load of

1

22

0
W
N
N

N
W
2
J
O
•
W
O

./

O	 O04-
65
	

10	 75	 !0	 60	 10	 15
	

100

REQUEST LOAO

Legend: o case 1; average primary duration = 10
. case 2; average primary duration = 12
* case 3; average primary duration = 20

Figure 3. Percent deadlines missed without deadline mechanism.

95%. (When request load is reduced to 10%, approximately 2% of the deadlines

are still missed because of the exponential distribution of execution time.)

In cases 2 and 3, however, the failure rate increases significa p_tly as request

load increases.

Y? xt, the behavior of the same system is measured with the deadline mech-

s
anisrr	 nd alternates included. The last-chance algorithm is used to schedule

the alternates and the simple primary scheduler to schedule the primaries.

Even though fewer primaries are completed than in Figure 3, due to the dead-

line mechanism no deadlines have been missed. The question of interest is how

many deadlines are met by primaries, as opposed to alternates. In Figure 4,

the percentage of deadlines satisfied by primaries is plotted against request

load for cases 1, 2 and 3 above. In each case, the fraction of deadlines met

W so
c
a
i

n 60

40

NWZ
O4
o 20

►o0

23

VN
H
n

65
	

fO	 7s	 cO	 es	 so	 !S	 too
NEOUEST LOAD

Legend: o case 1; average primary duration = 10
. case 2; average primary duration = 12
* case 3; average primary duration = 20

Figure 4. Percent deadlines met by primary algorithms using a single
level of importance.

by primaries decreases as the request load increases. It is not surprising,

moving from case 1 to case 2 to case 3, that the fraction of deadlines met by

primaries decreases more rapidly as request load increases. Inspection of the

number of deadlines met by primaries for each service component reveals that

for this particular system they are "fairly" (i.e., uniformly) distributed

among the components. The percentage of "processor" time wasted on executing

primaries which are aborted is quite low. In case 1, the maximum percentage of

wasted time is less than 6% for the various request loads simulated.

Third, the behavior of the system is measured when the service components

are split among 3 levels of importance. In this simulation the average primary

duration equals the service period (i.e., is set equal to 10 time units).

Figure 5 shows the relationship between the percentage of completed primaries

24

W 6o

t

11
t

e 60

C

„ •0
N
W
2

J
O
t

0 20

Y	 o	 --o``

d

65	 To	 75	 60	 !S	 !o	 n	 loo

REQUEST LoAO

Legend: o high importance 	 . medium importance

* low importance	 + overall (average)

Figure S. Percent deadlines met by primary algorithms using 3 levels of
importance.

at each level of importance and the request load. Those components of high

importance consistently receive a large percentage of primary completions.

Those components of medium importance receive a percentage of primary comple-

tions roughly equal to the percentage of primary completions which occur using

the simple primary scheduler. Those components of lowest importance receive a

much lower percentage of primary completions. The curve of overall percent-

ages of deadlines met by primaries is somewhat lower than the comparable curve

(case 1) of Figure 4, since the simple I nary scheduler uses the more effec-

tive earlieat-deadline-first strategy.

E
F

Finally, the behavior of a system employing the first-chance algorithm is

compared with that of a system employing the last-chance algorithm. Both

25

N
W

0
0
W

N
H
N

N
W
Z
J
O

WO

0	 20	 40	 60	 00	 100
REQUEST LOAD

Legend: * last-chance; identical services
o first-chance; identical services
. first-chance; mixed services

Figure 6. Percent deadlines met by primary algorithms using first-chance
and last-chance scheduling.

systems use the simple primary scheduler with average primary durations of 10.

In Figure 6, the percentage of deadlines satisfied by primaries for each sys-

tem is displayed against increasing request load. (See curves labelled "ident-

ical services".) Vie system using the first-chance algorithm satisfies fewer

deadlines by primaries than the system using the last-chance algorithm. The

last-chance algorithm, however, requires that condition 2 must hold for the

service periods.

The behavior of a third system is also displayed in Figure 6. The third

system uses the first-chance algorithm and has eight service components with

i
arrival and response periods of 100, and one service c >onent that may be

requested at twine the rate of the other compon. 	 (i.e., arrival and

0
W
ti
M

t

W
7
r

1

,F

26

response periods of 50). This system does not satisfy condition 2, so that

the last-chance algorithm could not be employed. (Note that a last-chance

algorithm could be used if the number of components with response period 100

Is reduced from eight to four.) Comparison of the curve for this third system

with the first-chance curve for identical components suggests that the effect

on performance of one component that is twice as active is comparable to two

components of normal activity.

REQUEST LOAD

Legend: * last-chance; primary time wasted

first-chance; primary time wasted
o first-chance; total time wasted

Figure 7. Percent time wasted by abandoned primary algorithms and redun-
dant alternate algorithms.

Figure 7 displays the percentage of time wasted for the two systems of
c

Figure 6 with identical components. 	 The system employing the last-chance

y	 _
M .

f

.	 1

p

V'

?7

algorithm wastes time on primaries which are not completed. The first-chance

algorithm has wasted time for both primaries and alternates. The wasted time

for alternates occ •irs when alternate results are discarded and explains the

difference in behavior of these two systems as displayed in Figure 6. When

the alternate execution periods are small compared to the primary execution

periods (which is likely to be true for real systems) the wasted time for

alternates will be less significant and the performance of the first-chance

algorithm should be competitive with last-chance.

The first-chance and rate-monotonic schedulers were compared by a set of

four simulations. Initially a set of identical tasks was simulated, but the

results of both schedulers were exactly the same. This was explained because

with identical response times the rate-monotonic scheduler became first-in

first-out, identical with the deadline order used by the first-chance

scheduler.

Consequently the next simulations consisted of several classes of tasks.

The first simulation consisted of several tasks with differing response

requirements, but with service periods in constant proportion to response

period. This simulates a system in which small tasks have s short response

period, while longer tasks have a larger response period. The second simula-

tion held service periods constant but varied response requirements. This

might represent a system performing some fixed service to differing response

requirements (e.g., servicing interrupts for several terminals operating at

different baud rates). In the third simulation the ratio of service period to

response period decreased	 s response period increased. This parallels a

situation in which a complex computation requires a fast response and slower

s " 28

response is required by less complex computation. For example a real-time

control application may have a control function requiring fast response and

complex computation, while the logging function has simple processing (format-

ting output for a hardcopy device) with a slower response requirement.

Finally the last simulation had service period response period ratio increas-

ing as response period increased. This could represent a time-sharing system

in which the response requirement (and processing, complexity) for terminal i/o

interrupts is smaller than the response from a user program processing a line

of input.

The result of simulating each task mix using first-chance and rate-

monotonic schedulers compared quite favorably so long as the processor utili-

zation was below .69. As utilization rose above that limit the rate-monotonic

schedule began to miss deadlines. So long as the utilization limit is observed

the first-chance and rate-monotonic schedulers appear to be equally effective.

The fixed priority of the rate-monotonic scheduler is an advantage in a system

with limited processor utilization.

The simulation results have encouraged us to implement the deadline mech-

anism in an experimental version of Path Pascal [Campbell et al., 79a]. Pro-

gramming actual applications using the deadline mechanism will further test

the concept.

6 APPLICATIONS

The deadline mechanism can be used to provide completely redundant algo-

rithms in order to maintain full system service or graceful degradation of

service without producing timing failures. Fault-tolerant systems with these

properties are required in many applications where immediate human interven-

tion is impossible. Examples of such applications occur in aerospace, control

systems, process control, computer networks and telecommunications. It is

interesting to note that many hardware subsystems implement a mechanism analo-

gous to the deadline mechanism. The hardware may provide a timeout for the

receipt of the next command. Should it fail to arrive within the specified

time, the devices performs an "alternate algorithm", usually some function of

the last command received (for example, some motorized devices turn off the

motor if a command has not arrived before the timeout).

While only demand requests (those derived from asynchronous interrupts)

were simulated, the deadline mechanism can be used with periodic requests

(derived from the system clock) as wail. Many real-time systems are designed

using the periodic request technique and a fast-Loop/slow-loop/background

organization [Hecht, 76). Such systems .form the basis for a series of experi-

ments being conducted with the deadline mechanism.

The deadline mechanism also provides a structured approach to load shed-

ding during intervals of high load by attaching the concept of "importance" to

primary algorithms. (One possible use of the alternates of low-importance

primaries could be to provide a mechanism to record and notify users of ser-

29

I

30

vices which have to be curtailed because of load.) Within a time-sharing sys-

tem the alternates of primaries which are affected by load shedding could

spool requests for services which cannot be serviced immediately.

It may be extremely difficult to program a service so that a fixed upper

bound to the execution time of the service is known. Proof that an algorithm

used in the program produces the desired result within some fixed period may

require considerable effort and may not be available for a long time after the

algorithm is conceived. In fact, for some algorithms there may be no bound on

execution time that is valid for all input parameters. By allowing such algo-

rithms to be used as primaries and providing a restricted but safe service

from an alternate, such algorithms can be employed in reliable real-time sys-

tems.

Maintenance of software is an important cost in most applications where

the useful lifetime of the software extends over many years. Modification of

parts of the system which must run in real.-time is expensive and difficult and

frequently leads to timing failures. If alternates are only replaced by algo-

rithms which have been t^sted in the application over long periods of time as

primaries within the structure of the deadline mechanism, a system can grace-

fully evolve without incurring timing failures.

E

7 PATH PASCAL IMPLEMENTATION

The deadline mechanism is being implemented in an experimental version of

Path Pascal reported in (Campbell b Wei, 793. This implementation provides

each deadline process with two algorithms whose execution is controlled by the

service statement. The syntax of a typical application is shown in Figure R.

deadline process [<response>) [<interarrival>];
procedure priproc... begin ... end;
procedure altproc... begin ... end;

begin
repeat

request <synch>;
service by priproc;

else hy altproc;
until false;

.End;

Figure 8. An example of deadline mechanism syntax in Path Pascal imple-
mentation.

The reserved word deadline flags this process to be scheduled to meet

real time constraints. The <response> and <interarrival> parameters are com-

pile time constants which specify the required response time and the minimum

interarrival time respectively. These parameters and an analysis to determine

execution times can provide automatic checks of the conditions required for a

timely system. Procedures 'priproc' and 'altproc' indicate the primary and

alternate algorithms. (Note it is the appearance of 'priproc' and 'altproc'

in the service statement which indicates their role in the deadline process.)

The deadline process body is (in this case) an indefinite repeat loop, await-

31

32

!quest in the <synch> statement and servicing the request by the pri-

alternate as appropriate. The <synch> statement could be a P opera-

tion on a semaphore, some path synchronized procedure, a 'delay' statement or

a 'doio' statement.

.In the experimental version the recovery cache is implemented in software

and behaves as follows. First the alternate algorithm is executed. Upon com-

pletion the recovery cache and normal memory are exchanged. The primary algo-

rithm is then attempted using the pre-alternate values for data. Should the

primary fail the "recovery" is made by restoring the post-alternate values

from the recovery cache.

The scheduling algorithm used in the Path Pascal implementation is the

rate-monotonic scheduler.	 This fixed priority approach uses the <response>

parameter as the priority (small response time corresponding to high prior-

ity). So long as processor loading is below roughly 69% this approach can

meet all deadlines.

One facet of the Path Pascal implementation is as yet unresolved.	 This

is the issue of inhibiting a deadline process from accepting further requests

until the <interarrival> time has passed.	 Using the Path Pascal standard

function 'time' (which returns tine current system time) this might be accom-

plished:

repeat
request <synch>;
t:= time + <interarrival>;
service_ by <primary>;

else by <alternate>;
delay(t - time);

until false;

t

33

If the nature of the system is such that requests are guaranteed to meet

the lower bound on interarrival time this delay would be superfluous. If the

bound is not guaranteed, this feature would prevent the system from being

swamped with requests arriving faster than the specified maximum rate.

o	 , 	

A

r q

8 CONCLUSION

Many applications of real-time systems require the system to perform ser-

vices reliably within real-time constraints. Correctness proofs and testing

are expensive and may not detect all the residual timing faults in the imple-

mentation or hardware. Systems which are tolerant of timing faults provide'an

approach to reliable real-time systems. The deadline mechanism permits

software to be constcudted which is tolerant of many varieties of timing

faults. The mechanism may be applied in various ways to provide redundancy,

graceful degradation and load shedding. In addition, it allows (without jeop-

ardizing reliability) maintenance on time-critical software to be performed

and desirable algorithms, which may contain timing faults, to be included in

the system.

34

.tidrP„

'	 r	 ^

4
I

REFERENCES

[Anderson & Witty, 781 Anderson, T. and R. W. Witty, "Safe Programming," BIT

18, pp. 1-8, 1978.

(Campbell eL al., 79a] Campbell, R. H., I. B. Greenberg, and T. J. Miller,
"Path Pascal User Manual," Technical Report UIUCDCS-R-790-960, University
of Illinois, Urbana, 1979.

[Campbell et al., 79h] Campbell, R. H., K. Horton, and G. G. Belford, "Simu-
lations of a Fault-Tolerant Deadline Mechanism," The Ninth Annual Interna-
tionat Symposium on Fault-Tolerant Computing, June, 1979.

(Campbell & Wei, 791 Campbell., R. H. and A. Y. Wei, "Fault-tolerant Real-
time Programming in Path Pascal," in preparation.

[Dahl et al., 681 Dahl, 0. J., B. Myhrhaug, and K. Nygaard, "The Simula 67
Common Base Language," Norwegian Computer Center, Oslo, 1968.

[Hecht, 761 Hecht, H., "Fault-Tolerant Software for Real-Time Applications,"
Computing Surveys, Vol. 8, No. 4, pp. 391-407, 1976.

[Horton et al., 791 Horton, K. H., R. H. Campbell, and G. G. Belford, "Meet-
ing Real-tire Deadlines," Proceedings of Computers, Electronics and Con-
trol, 1978, ACTA Press, Calgary, 1979.

[Liu & Layland, 731 Liu, C. L., and J. W. Layland, "Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment," JACM, Vol. 20, No. 1,

t
pp. 46-61, January, 1973•

[Randell, 75] Randell, B., "System Structure for Software Fault Tolerance,"
IEEE Trans. on Software Engineering, Vol. SE-1, No. 2, pp. 220-232, 1975.

[Randell et al., 781 Randell, B., P. A. Lee, and P. C. Treleaven, "Reliabil-
ity Issues in Computing System Design," Computing Surveys, Vol. 10, No. 2,
pp. 123-165, 1978.

e'	 (Schaefges, 781 Schaefges, T. M., "Estimating Execution Times of Path Pascal
Programs," Masters Thesis, University of Illinois at Urbana-Champaign,
1978.

[Wirth, 771 Wirth, N., "Toward a Discipline of Real-Time Programming," CACM,
Vol. 20, No. F, pp. 577-583, August, 1977•

35
i"

r:

APPENDIX A: Skeletal Simula Program

simulation begin
process class prialg(imp,exec,parent,inst);

integer imp,inst;
real exec;
ref(taskinit) parent;
begin

procedure intopriq;
begin comment see Appendix B;

end *** intopriq ***;

real entry,elapsed,timeleft;
ref(altalg) assocalt;

entry:=ti.me; • timeleft:=exec;
intopriq;

passivate;

cancel(assocalt);
assocalt.outaltq;
out;
if time>assocalt.duetime then error(' missed deadline
elapsed:=time-entry;
inspect parent do

begin
pridone:=pridone+l; priexec:=priexec+exec;
priresp : =prire-p-Felapsed ;
altwaste:=altwaste+assocalt.exec-assocalt.timeleft;
if altcnt>0 then

begin altrun[altcnt]: =altrun[altcnt]-F1; altcnt:=0; end;
pricnt:= min(10,pricnt+l);

end;
end *** prialg ***;

36

p

k y,

i'

37

process class altalg(exec,resp,parent,l.nst);
integer inst;
real exec,resp;
ref(taskinit) parent;
begin

procedure intoaltq;
begin comment see Appendix B;

end *** intoaltq ***;

procedure outaltq;
begin comment see Appendix B;
...
end *** outaltq ***;

real entry,elapsed,duetime,timeleft,skedstar.t,skedstop;
ref(prialg) assocpri;

entry:=time; timeleft:=exec; duetime:=entry+resp;
skedstop:=duetime; skedstart:=skedstop-exec;
intoaltq;

passivate;

assocpri.out;
reactivate cpu;
outaltq;
if time>duetime then error(' missed deadline
elapsed:=time-entry;
inspe ct parent do

b_ e&in

altdone:=altdone+l; altexec:=altexec+exec;
altresp : =a.l t resp+elap sed ;
priwaste:=priwaste+assocpri.exec-assocpri.timeleft;
if pricnt>0 then

begin prirun[p.ricnt) : =prirun[pricnt)-I-1; pricnt:=0; end;
altcnt:= min(10,altcnt+l);	

^_

end;
end *** altar; ***;

38

process class taskinit(imp,pexec,aexec,cycle,resp,tasknumber);
integer imp,tasknumber;
real pexec,aexec,cycle,resp;
begin

real procedure dist(t,opt);
real t ;
text opt;
begin

dist:= if opt='u' then uniform(ratio*t,t,u0)
else if opt='p' then negexp(+1.0/t,u0)
else if opt='m' then t+negexp(+1.0/(regfactor*t),u0)
else t;

end *** dist ***;

integer pridone,al.tdone,init,pricnt,altcnt;
integer array pr.irunfl:10], altrun[1:10];
real priexec,priresp,priwaste,altexec,altresp,altwaste;
ref(altalg) a;
ref(prialg) p;

loop: init:=init+l;
p:- new prialg (imp ,dist(pexec,popt),this taskinit,init);
a:- new altalg (dist(aexec,aopt),resp,this taskinit,init);
p.assocalt:- a; a.assocpri:- p;
activate p; activate a;

if imp>cpu.priority then reactivate cpu;

hold(dist(cycle,copt));

if time<simperiod then go to loop;
end~*** taskinit ***;

process class stied;
b_ egin comment see Appendix B;

end *** sked ***;

procedure report;
begin ... end *** report ***;

39

ref(sked) cpu;
ref(head) array prig(1:31;
ref(head) altq,tasklist;
ref(taskini.t) t;
integer tn,ntasks,imp,i, u0;
real simperiod,cycle,resp,pexec,aexec,

cpurate,ratio,fuzz,regfreq,regfactor;
text aopt,copt,popt;

fuzz:-.005; u0:- 1;

copt:-copy(intext(1)); popt:-copy(intext(1)); aopt:-copy(intext(1));
ratio:= inint/100; regfreq:=inint/100; regfnctor:=+1.0/reqfreq-1.0;
cpurate:= inint/100; simperiod:=inint; ntasks:=inint;

cpu:- new sked;

altq:- new head;
for i:=1 s_ tep 1 until 3 do prig(il:- new head;

tasklist:- new head;
for tn:= 1 step 1 until ntasks do

begin
cycle:=inint; resp:=ini.nt; pexec:=inint;
aexec:=inint; pexec:=pexec/cpurate; aexec:=aexec/cpurate;
imp:=inint;
t:- new taskinit(imp)pexec,aexec,cycl.e,resp,tn);
t.into(tasklist);
activate t;

end ;

hold (simperiod+fuzz);

report;
end *** simulation ***;

APPENDIX B: Scheduling Algorithms

The Last-Chance Scheduler

procedure intopriq;
begin

ref(altalg) q;	 ref(prialg) p,pl;
p:- prig(impl.first;	 —
while p"/= none do

begin
q:- p.assocalt;
if assocalt.duettme<q.duetime then p:- p.suc
else begin pl:- p ; p: - none; end

end ;
if pl=/= none then precede(pl)

.__ else into(prigfimpl)
end *** intopriq ***;

procedure intoaltq;
begin

ref(altalg) a,al;	 real t;
a:- altq.£irst;
while a=/= none do

if a.duetime>duetime then begin al:- a; a:- none; end
else a:- a.suc;

ifal=/= none then_
begin

precede (a 1)
if duetime>al.skedstart then

begin
skedstop:=al.skedstart
skedstart:=skedstop-exec;

end;
end

else into(altq);
t;= skedstart;
a:- pred;
while a =/= none do

if t<n.skedstop then

— hp-Lin_
a.skedstop:=t;
t:=z.skedstart:=a.skedstop-a.exec;
a•- a.pred;

end
else a:- none;

if t<time then error(' missed deadline
reactivate cpu;

end *** intoaltq ***;

40

_"y

41

procedure outaltq;
begin

real t;	 ref(altalg) p,s,a;

p:- pred;	 s:- suc;
out;
if notaltq.empty then begin

t:= if s=/= none then s.skedsLart else p.duetime;
a:- P;
while a =/= none do

if t>a.skedstop then
begin

a.skedstop:= if a.duetime<t then a.duetime else t;
t:=a.skedstart:=a.skedstop-a.exec;
a:- a.pred;

end
else a:- none;

end
end *** outaltq ***;

42

comment this is the last-chance scheduler;
process class sked;

begin
ref(altal.g) a;	 ref(prialg) p;
real t,start;	 integer priority;
real array exectime[0:41;

loop: if not altq.empty then
begin comment alternates (and primaries) are available;

a:- altq.first;
t:= a.skedstart-time;
if t>0 then

begin comment use slack time (t) for primaries;
p:- if not priq[31.empty then priq[31.first

else if not priq[21.empty then priq[21.f irst
else priq[ll.first;

t:= if t<p.timeleft then t else p.timeleft;
priority:=p.imp; start:=time;

hold (t);

t:= time-start: p.timeleft:=p.timeleft-t;
exectime[priorityl:= exectime[priorityl+t;
if p-timeleft<fuzz then activate p

end
else

min comment no slack time, must run alternate;
priority:=4; start:=time;

hold(a.timeleft);

t:-time-start; a-timele.ft:=a.timeleft-t;
exectime[prio.rity]:= exectime[priorityl+t;
if a.timeleft<fuzz then activate a;

end
end

else
begin comment no alternates (or primaries), cpu goes idle;

priority;=0; start:=time;

passivate;

t:=time-start;
exectime[priorityl:= exectime[priorityl+t;

.n4_;
YO to loop;

end *** sked ***;

9

43

The First-Chance Scheduler

procedure intopriq;
begin

ref(altalg) q;	 Eef_(prialg) p,pl;
p:- priq[impj-first;
while p=/= none do

b S_i	
—

q:- p.assocalt;
if assocalt.duetime<q.duetime then p:• p.suc
clse begin p1:- p; p:- none; end

.end;
ifpl=/= none then precede(pt)—	

else into(priq[impj)
end *** intopriq ***;

procedure intoal.tq;
begin

ref(altal.g) a,al;
real t;
a:- al.tq-first;
while a=/= none do
if a.duetime>duetime then begin al:- a; a:- none; end
else a:- a.suc;

if al=/= none then precede(al)
else into(altq);

reactivate cpu;
end *** intoaltq ***;

procedure outaltq;
b

real t;
ref(altalg) p,s.a;

out;
end *** outaltq ***;

44

comment this is the first-chance scheduler;
process class sked;

begin
ff(altalg') a;	 ref(prialg) p;
real t,start;	 integer priority;
real array exectime[0:4];

loop: if not altq.empty then
T begin comment alternates are available, run the first;

a:-altq.first; t:=a.timeleft;
priority:=4; start:=time;

hold(t);

t:=time-start; a.timel.eft:=a.timeleft-t;
exectime[priority]:=exectime[priority]+t;
ifa.t_imeleft< fuzz then

begin a.out; activate a at a.duetime end;
end

else if not priq[3].empty then
begin comment primaries are available, run the first;

p:-priq[3].first; t:=p.timeleft;
priority:=3; start:=time;

hold(t);

t:=time-start; p.timeleft:=p.timeleft-t;
exectime[priority]:=exectime[priorityl+t;
if p.timeleft<fuzz then activate p;

end
else

begin comment no alternates or primaries, let cpu go idle;
priority:-0; start:=time;

passivate;

t:=time-start; exectime [priority]:=exec time [prio-rity]+t;
end;

go to, loop;
end *** sked ***;

E-
E

A	 f

45

Rate -Monotonic Scheduler

procedure intopriq;
begin

ref(altalg) q;	 ref (prialg) p,pl;
p:- priq [impj.f.irst;
while p=/= none do

begin
q:- p.assocalt;
if assocalt .resp<q . resp then p:- p.suc
else begin p1:- p; p:- none; end

end;
if pl=/= none then precede(pl)

else into (priq[impl)
end *** intopriq ***;

procedure intoaltq;
begin

ref(altalg) a,al;
real t;

a:- altq . first;
while a=/= none do

if a.resp>respY then begin al:- a; a:- none; end
else a:- a.suc;

if al /= none then precede(al);
else into(altq);

reactivate cpu;
end *** intoaltq ***;

procedure outaltq;
begin

real t;
ref(altalg) p,s,a;

out;
end *** outaltq ***;

^1

n
a

t

46

comment this is the rate-monotonic scheduler;

process class sked;

begin

ref(al.talg) a;	 ref(pria,lg) p;

Seal t,start;	 integer priority;

heal array exectime[0:41;

loop: if not altq.empty then

begin comment select an alternate to run;
a:-altq.first; t:=a.timeleft;

priority:=4; start:=time;

hold(t);

t:=time-start; a.timeleft:=a.timeleft-t;

exectime[priorityl:=exectime[priorityl+t;
ifa.timeleft< fuzz then

begin a.out; activate a at a.duetime end;

end

else if not priq[31.empty then

begin comment no alternates, so find a primary;

p:-priq[3].first; t:=p.timeleft;

priority:=3; start:=time;

hold(t);

t:=time-start; p.timeleft:=p.timeleft-t;
exectime[priorityl:=exectime[priorityl+t;

if. p.timeleft<fuzz then _activate p;
end

else
begin comment no primary or alternates, let cpu go idle;

priority:=0;
start:=time;

passivate;

t:=time-start;

exectime [priority] : = exectime [priority] +t ;
end ;

Z_o to loop;

end *** sked ***;

i
a.

L

fF.

F

APPENDIX C: Simulation Data Plots

This appendix contains several example data plots from , the simula-

tions. Four graphs are presented for each set of runs. The first of these

plots percentage of 'cpu' idle time versus request load. The second plots

percentage of 'cpu' time consumed by primary algorithms (ignoring those

abandoned primaries). Third we plot the percentage of deadlines met by

primary algorithms. 	 The. last graph plots time wasted by abandoned pri-

maries and total time wasted (this includes both abandoned primaries and

alternate executions whose results were never used). A brief description

of the mix of tasks and the scheduler used appears at the bottom of each

page.

47

48•

100

80

X

C 60
P
U

I 40
d
1
e

20

100
X

C
P 80
U

b
y 60

P
r
1 40
in
a
r
y 20

0 - — - - 1----i---i	 I

0	 20 40 60 80 100

% Request Load

50

X 'G
40

P T
r o
i t
m a 30
a 1
y
W

W a 20
a s
s t
t e
e	 10

0

0	 20 40 60 80 100

% Request Load

Co 40

pm

1
e 20
t
i	 •
0
n
s

0	 fi---t---t--f--- ^.

0	 20 40 60 80 100

% Request Load

100
X

P
r 80
i
m
a
r 60
y

0	 20 40 60 80 100

X Request Load

This simulation consisted of 10 identical tasks with response and request
periods of 100; primary and alternate service periods were 10. The
first-chance scheduler was used.

r

49

100

80

X

C 60
P
U	 •

I 40--•
d
1
e
20--•

0

0	 20 40 60 80 100

% Request Load

100
X

P 80
U

b
v 60

P
r
1 40
M
a
r
y 20

0 -f---t--- 	 1---f----1

0	 20 40 60 80 100

X Request Load

C
o 40

pm
1
e 20
t
i
0
n 0	 --^
s

0	 20 40 60 80 100

% Request Load

50

X X
40

P T
r o
i t
m a 30
a 1
y
W

W a 20
a s
s t
t e
e	 10

*
*

0	 20 40 60 80 100

% Request .Load

100
`X

P
r 80
i
m
a
r 60
y

This simulation consisted of 10 identical tasks with response and request
periods of 100; primary and alternate service periods were 10. The last-
chance scheduler was used.

j'J .

100
X

C
P 80
U

b
y 60

P
r
1 40
M
a
r
y 20

100

80

%

C 60
P
U

I 40
d
1
e

20

f
	

1	 w

	
' Yr

50

0

0	 20 40 60 80 100

% Request Load

0
0	 20 40 60 80 100

% Request Load

50

40
P T
r o
i t
m a 30
a 1

Y
W a 20
a s
s t
t e
e	 10

100

P
r 80
i
M
a
r 60
Y

C
o 40
M

g
e 20
t

0
n0-----^----t
s

0	 20 40 60 80 100

% Request Load

0	 20 40 60 80 100

% Request Load

This simulation had the following task mix: 1 task with response and
request periods of 50, primary and alternate service periods of 10; 8
tasks with response and request periods of 100, primary and alternate ser-
vice periods of 10. The first-chance scheduler was,used. Condition 2 is
not satisfied by this mix, and consequently the last-chance scheduler
r..OgId not be utilized.

v`

LL

J

w

51

100
X

C
P 80
U

100 -

80

r

C 60
P
U

1 40
1
e

20

0

0	 20 40 60 80 100

% Request Load

0	 20 40 60 80 100

X Request Load

b
y	 60

P
r

m
	 40--

,
a
r
y	 20 •

e 20
t
i
o	 •
n 0
S

0	 20	 40 60 80 100

% Request Load

5U

X %
40

P T
r o
i t	 f
m a 30
a 1
y W

W a 20-1•
a s
s t
t. e
e	 10

0	 20 40 60 80 100

% Request Load

100
%

P
r 80
i
m
a
r 60
y

C
o 40
m

This simulation had a task mix of 4 tasks with the ratio of alternate ser-
vice to response equal to .25. The primary service period was equal to
the alternate service period. The first—chance scheduler was used.

---W - -- -Jq^

d .► 	 t

9

52

0

100

SO

r

C 60--
P	 •
U

1 40
d
1	 .
e

20 •

0- --f---

0	 20 40 60 80 100

% Request Load

0	 20 40 60 80 100

% Request Load

100
r

C
P 80
U

b
y 60

P
r
i 40
M
a
r
y 20

C
o 40
m
p

e 20
t

o
n	 0- 1 f-----t----
s

	

0	 20 40 60 80 100

% Request Load

5A
r

40--
P T
r o
i t *
m a 30--
a 1
Y W

W a 20
a s
S t	 *	 •
t e
e	 10

0
0	 20 40 60 80 100

% Request Load

100
y

P
r 80
i
m
a
r 60
Y

This simulation had a task mix of 4 tasks with the ratio of alternate ser-
vice to response equal. to .25. The primary service period was equal to
the alternate Gervice period. The rate-monotonic scheduler was used.
Deadlines were missed at request loads above 90%.

as

i

BIBLIOGRAPHIC DATA I.	 Report Nu. 2• 3. Recipient's Accession No.
SHEET UlUCDCS-11-79-99£3
4.	 I it le and Sultitic S. Itcpart Date

December 1.979
A FAULT TOLERANT DEADLINE MECHANISM 6.

7. Author(0 8. Performing Organization Rcpt.

K.	 Horton No. UIUCDCS-R-79-998

9. Performing Orpanizatiun Name and Address 10. Ntoiect/'Task/Work Unit No.

Department of Computer Science
11. Contract/Grant No.University of Illinois U-C

Urbana, IL 61801

12. Sponsoring Organisation Namc and AddtcsS 13. Type of Itepoa R Period
Covered

14.

15. Supplementary Notes

16. Abstracts

The deadline mechanism extends Randell's recovery block concept to include
real-time systems.	 Its application can :;y id the development of fault-tolerant
real.-time systems. 	 The report develops the deadline mechanism from the
recovery block concept, proposes several scheduling strategies, and discusses
the results of simulating the mechanism using each strategy.

17. Key Words and Document Analysis. 	 170. Descriptors

real-time systems
fault-tolerant systems
fault-tolerant real-time systems
deadline scheduling
recovery blocks

17b. Idcntifir,rs/Open-Ended Term.

Ile. (OSATI V ie ld /Groan

18. Availability Staterncnt 	 —^ 19. Security Class (This	 2). No. of Pares
Report)

52unlimited ^—	 `LI. "	 :1'
L13•	 ti •.-CUrlty (..If155 (I his	 22•	 Price

Pater
(INCI-ASSIPI ED

r UnrA UTls • 35110 . 70)	 U5COMtd•OC 4U329•P71

L

	1980006533.pdf
	0002A02.tif
	0002A03.tif
	0002A04.tif
	0002A05.tif
	0002A06.tif
	0002A07.tif
	0002A08.tif
	0002A09.tif
	0002A10.tif
	0002A11.tif
	0002A12.tif
	0002A13.tif
	0002A14.tif
	0002B01.tif
	0002B02.tif
	0002B03.tif
	0002B04.tif
	0002B05.tif
	0002B06.tif
	0002B07.tif
	0002B08.tif
	0002B09.tif
	0002B10.tif
	0002B11.tif
	0002B12.tif
	0002B13.tif
	0002B14.tif
	0002C01.tif
	0002C02.tif
	0002C03.tif
	0002C04.tif
	0002C05.tif
	0002C06.tif
	0002C07.tif
	0002C08.tif
	0002C09.tif
	0002C10.tif
	0002C11.tif
	0002C12.tif
	0002C13.tif
	0002C14.tif
	0002D01.tif
	0002D02.tif
	0002D03.tif
	0002D04.tif
	0002D05.tif
	0002D06.tif
	0002D07.tif
	0002D08.tif
	0002D09.tif
	0002D10.tif
	0002D11.tif
	0002D12.tif
	0002D13.tif
	0002D14.tif
	0002E01.tif
	0002E02.tif
	0002E03.tif
	0002E04.tif
	0002E05.tif
	0002E06.tif
	0002E07.tif
	0002E08.tif
	0002E09.tif
	0002E10.tif
	0002E11.tif
	0002E12.tif
	0002E13.tif
	0002E14.tif
	0002F01.tif
	0002F02.tif
	0002F03.tif
	0002F04.tif
	0002F05.tif
	0002F06.tif
	0002F07.tif
	0002F08.tif
	0002F09.tif
	0002F10.tif
	0002F11.tif
	0002F12.tif
	0002F13.tif
	0002F14.tif
	0002G01.tif
	0002G02.tif
	0002G03.tif
	0002G04.tif
	0002G05.tif
	0002G06.tif
	0002G07.tif
	0002G08.tif
	0002G09.tif
	0002G10.tif
	0002G11.tif
	0002G12.tif
	0002G13.tif

