
!yam

JOINT INSTITUTE FOR AERONAUTICS AND ACOUSTICS

A^^
op JUNK

1	
f^^
	

I
1^1

]ZED \i

STANFORD UNIVERSITY
	

AMES RESEARCH CENTER

JIAA TR -A
(NASA-CE-162556) EFFECTS CF FRICTION AND

	 N80-14 842
HEAT CONDUCTICN CN SCUND PEOPAGATICN IN
DUCTS (Stanford Univ.) 	 159 F HC A08/MF A01

CSCL 20A	 Unclas
G3/71 44037

EFFECTS OF FRICTION AND HEAT CONDUCTION

ON SOUND PROPAGATION IN DUCTS

Patrick Huerre and K. Karamcheti

STANFORD UNIVERSITY

Department of Aeronautics and Astronautics	
2G21^ r^

Stanford, California 94305

August 1976	 68L g r;q



1
yr ...._ _	 ^-w-r.^w---.--v,Q	 _	 wrdwrrar.^s^..v,..^.^.-. «-^._	 _	 .-.-^-^---sv.^•.^.. _

4

EFFECTS OF FRICTION AND HEAT CONDUCTION

ON S000 PROPAGATION IN DUCTS

PATRICK HUERRE N@ K, KARAMCHET I

AUGUST 1976

The work here presented has been supported by the
National Aeronautics and Space Administration under Contract

NASA NGL 05-020-275, NASA 05-020-526 and 'IASA NSG 2007

I



ACKNOWLEDGEMENTS

We wish to express our gratitude to the members of the Stanford

Aeroacoustics Group for helpful suggestions and discussions throughout

the entire program. We are especially indebted to Professors Milton

Van D;,.ce and I-Dee Chang who read the manuscript and to Professor

Sotiris Koutsoyannis who made many interesting comments.

The typing of the manuscript was ably handled by Miss Patricia

Ortiz and by Mrs. Kay Sprung. Special thanks to them for their

'	 patience and skill.

We wish to express our appreciation to Cambridge University Press

for their kind permission to reproduce some material from the Journal

of Fluid Mechanics.

This research was carried out as part of the aeroacoustics program

of the Joint Institute for Aeronautics and Acoustics, Department of

Aeronautics and Astronautics, at Stanford University and was sponsored

by NASA Ames Research Center under Contracts NASA NGL 05-020-275, NASA

05-020-526 and NASA NSG 2007.

a

'i

f

ii

L



TABLE OF CONTENTS

Chapter Page

ACKNOWLEDGEMENTS ................................... ii

IINTRODUCTION ....................................... 1

1.1	 Motivation	 .................................... 1
1.2	 Review	 of	 the	 Literature	 ...................... 2
1.3	 Scope	 of This	 Study	 ........................... 6

II THEORETICAL FORMULATION OF THE SMALL AMPLITUDE
FLUCTUATING MOTIONS OF A VISCOUS, HEAT-CONDUCTING
ANDCOMPRESSIBLE	 FLUID	 ........................••••• 8

2.1	 Introduction	 ........................••••••.••• 8
2.2	 Linearized Navier-Stokes Equations and Under-

lying Assumptions	 ............................. 9
2.3	 Acoustic, Thermal, and Viscous Potentials.

Governing Equations	 ........................... 13

2.4	 Some Particular	 Cases	 . . ....................... 19

III SOUND PROPAGATION IN A TWO-DIMENSIONAL DUCT ......... 24

3 .1	 Introduction	 .................................. 24

3.2	 Formulation.	 Parameters of the Problem 	 ......• 24

3 .3	 Two-Dimensional	 Duct	 ........................•• 31

3.4	 Symmetric and Antisymmetric Antiplane Wave
Motion	 ........................................ 40

3 .5	 Conclusion	 .................................... 46
(

I^	 IV PERTURBATION STUDY OF THE INPLANE MODES 	 ......•••••• 47

4 .1	 Introduction	 .................................• 47

4.2	 Methodology-Preliminary Assumptions	 •.••••.••.• 48

4.3	 High-Frequency Wide-Tube Range 	 .•••••.••••••.•• 57

4.4	 Low-Frequency Narrow-Tube Range	 ............•.. 74

4.5	 Very-High-Frequency Very-Wide-Tube Range 	 ...... 84

4 .6	 Mode	 Shapes	 ................................... 88

4.7	 Dispersion and Attenuation 	 Characteristics .•-. 110

4.8	 Comparison with a Numerical Study .............. 114

4 .9	 Concluding Remarks	 ........................•••• 122

V CONCLUSIONS AND RECOMMENDATIONS 	 .......o....••••••.• 126

5.1	 Conclusions	 .•••.. — .......................... 126

5.2	 Recommendations	 ...... o ..............o........• 127

APPENDIX A CALCULATION OF	 (ap/aS)p ,	 (aT/ap),	 (aT/aS)p	••.••.• 129S

APPENDIX B DERIVATION OF SPLITTING THEOREM	 ... o ....... o ........ 133

.v.

iii



TABLE OF CONTENTS (Continued)

Ps ge

APPENDIX C ACOUSTIC POWER AND ENERGY TRANSPORT
VELOCITY OF HIGHER ORDER SP-MODES	 138

APPENDIX D SOLUTIONS OF SIN Z = +Z	 145

REFERENCES...................................................	 149

iv



^t

.--	 -	 -

LIST OF ILLUSTRATIONS

Figure Page

1 Duct	 configuration ................................ 25

2 Two-dimensional	 duct .....................6........ 33

3 Symmetric Antiplane Modes. 	 Attenuation rate
versus	 reduced	 frequency..• .... .... ..... 	 ......... 43

4 Symmetric Antiplane Modes. 	 Phase velocity
versus	 reduced	 frequency .......................... 44

5 High-Frequency Wide-Tube Range.	 Zeroth-order
symmetric	 inplane mode	 ehapes..................... 99

6 High -?'requency Wide -Tulle Range.	 First -order
symmetric	 inplane mode	 shapes ..................... 100

7 Low-Frequency Narrow-Tube Range. 	 Zeroth-order
symmetric	 inplane mode shapes ..................... 101

8 Low-Frequency Narrow-Tube Range. 	 First-order
symmetric	 inplane mode	 shapes ..................... 102

9 Very-High-Frequency Very-Wide-Tube Range.
SP(0) -mode	 shape .................. ................ 103

10 Very-High-Frequency Very-Wide-Tube Range.
SP(l) -mode	 shape. •• ............................... 103

11 Symmetric Inplane Modes.	 Attenuation rate
versus	 reduced	 frequency ................. ......... 111

12 Symmetric Inplane Modes.	 Phase velocity versus
reduced	 frequency ................................. 112

13 Circular Cylinder.	 Attenuation rate versus
reduced	 frequency ................................. 116

14 Circular Cylinder.	 Phase velocity versus
reduced	 frequency ................................. 117

15 Circular Cylinder.	 High-frequency mode shapes.... 118

16 Circular Cylinder.	 Low-frequency mode shapes...•. 119

17 Domain of validity of the low-, high- and
very-high-frequency approximations .............. •• 125

'	 18 SP(1)-energy transport velocity versus reduced
frequency.... o ............... o ..................... 144

19 Sketch	 of	 F(a)	 ................................... 147

v



LIST OF TABLES

Number Page

I. Symmetric Inplane Mode Shapes	 ........0........... 49

II. Antisymmetric Inplane Mode Shapes ................. 50

III. Solutions	 of	 Sin	 Z = Z	 ........................... 78

IV. Solutions	 of	 Sin Z = -Z	 .......................... 78

V. High-Frequency Wide-Tube Range.
SP-Mode	 ShaP ....%^ . ................................... 91

VI. High-Frequency Wide-Tube Range.
SS -Mode	 Shapes .................................... 92

VII. High-Frequency Wide-Tube Range.
SV-Mode	 Shapes .................................... 93

VIII. Low-Frequency Narrow-Tube Range.
SP-Mode	 Shapes .................................... 94

IX. Low-Frequency Narrow-Tube Range.
SS-Mode	 Shapes .................................... 95

X. Low-Frequency Narrow-Tube Range.
SV-Mode	 Shapes .................................... 96

XI. Very-High-Frequency Very-Wide-Tube Range.
SP(0)-Mode	 Shapes ................................. 97

XII. Very-High-Frequency Very-Wide-Tube Range.
SP(n)-Mode	 Shapes ................................. 98

vi



I. INTRODUCTION

1.1 Motivation.

The purpose of this study is to examine the theory of sound pro-

pagation in a viscous, heat-conducting fluid, initially at rest and in

a uniform state, and contained in a rigid, impermeable duct with iso-

thermal walls.

In the past ten years, research in duct acoustics has been largely

motivated by the necessity of reducing the noise level associated with

the commercial operations of modern jet aircrafts. A large portion of

this noise is internally generated in the jet engine itself, and is

primarily due to the rotating turbomachinery blades and the combustion

process. This noise then propagates in the form of acoustic modes

through the inlet and exhaust pipes. Even though, there has been a

great deal of effort devoted to the understanding of basic aerodynamic

noise generation mechanisms, one of the most efficient ways of minimi-

zing the radiated sound still consists of absorbing as much of the

acoustic energy as possible along the propagation path inside the inlet

or exhaust pipe. This is essentially achieved by treating the duct

walls with a suitable sound absorbing material. However, the viscous

and heat-conducting properties of the medium itself also contribute to

the attenuation of the radiated sound. Most aeronautical applications

fall in the high-frequency wide-tube range, i.e., the frequencies of in-

terest and the cross-sectional dimensions of the duct are such that dis-

sipation due to friction and heat conduction is restricted to a thin

acoustic boundary layer close to the duct walls, and only constitutes a

small part of the total attenuation. It is therefore not surprising

f
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that most of the current studies in duct acoustics of jet engines assume

the medium to be inviscid. Nevertheless, acoustic boundary layer atten-

ustion has to be taken into account in any systematic evaluation of the

total attenuation rate.

These effects also play a primary role in the propagation of blood

pressure pulses in human arteries and in the performance of fluid trans-

mission lines. The medium is then a liquid and heat conductivity is

usually found to be negligible. The dimensions of the tube and the char-

acteristics of the fluid are such that, in contrast to the previous in-

stance, viscous forces are dominant throughout the cross-section, and

viscous dissipation is large. This is the so-called low-frequency-nar-

row-tube range and the medium may then no longer be considered inviscid.

From a theoretical point of view, this problem may be viewed as nne

of the few instances where the basic equations pertaining to the unsteady

notion of a viscous, heat-conducting, and compressible fluid are amenable

to analytical treatment. Even though these equations are linearized, one

expects the solution to retain most of the essential features of more

complicated flow situations. The fundamental concern of this study is

to develop a systematic methodology that would be of use in analyzing

complex aerodynamic noise problems.

1.2 Review of the Literature.

In 1868, Kirchhoff published his famous study, "On the Influence of

Heat Conduction on Sound Propagation in Gases." At about the same time,

Regnault (1868) made the first measurements of sound attenuation in the

sewers of Paris. A dettjiled account of Kirchhoff's theory is given in

Lord Rayleigh's Theory of Sound (1877). Kirchhoff considered both vis-

2



cosity and heat conduction, and derived a general dispersion relation

pertaining to axisymmetric waves in cylindrical tubes. This relation

was then solved for plane waves in the high-frequency and low-frequency

approximations. Many papers on this same subject have been written

since, and it would be tedious to discuss them here in any detail. One

may, however, within the extensive literature available, distinguish a

few main trends.

A large number of investigators have sought to extend Kirchhoff's

plane mode results to the entire frequency domain. Weston (1953a), in

particular, computed additional terms in the first-order expansions

given by Kirchhoff, in both the high- and low-frequency cases, and re-

vealed the existence of an additional very-high-frequency range. Iber-

all (1950), Brown (1962), and Rott (1969), neglecting radial pressure

gradients in the governing equations, derived a solution for the plane

mode valid in the low and high frequency domains. Finally, Shields et

al. (1965), and very recently Tijdeman (1969, 1975) made a comparison

of the previous results with a numerical solution of the dispersion re-

lation. It is worth mentioning at this point that another group of re-

search workers, Sexl (1930), Womersley (1954), Lance (1955), and Uchida

(1956), concerned more specifically with the propagation of sound in non-

heat-conducting liquids, studied oscillating flows in tubes filled with

an incompressible viscous fluid. Even though there is no wave propaga-

tion in this case, the axial velocity profile bears a close resemblance

to the corresponding compressible flow result. In particular, in the

high-frequency limit, the amplitude of the axial velocity presents a

maximum close to the duct wall. This phenomenon, experimen t"aily dis-

covered by Richardson and Tyler (1929), is usually referred to as the

0J
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Richardson Annular Effect. All theoretical results pertaining to the

place or fundamental mode were abundantly checked experimentally by Fay

(1940), Kemp and Nolle (1953), Meyer and Guth (1953), and Weston (1953b).

From inviscid acoustics, however, one would expect the existence at

high frequencies, of higher-order propagating modes. A few studies have,

indeed, been devoted to the determination of their attenuation character-

istics. The first attempt seems to have been made by Hartig and Lambert

(1950), whose theoretical formulation later proved to be unsatisfactory.

Cremer (1948) suggested simulating viscous and thermal effects close to

a rigid wall by an equivalent impedance, and Beatty (1950a,b) and Morse

and Ingard (1968) then used the well-known soft-walled-duct model to com-

pute the attenuation rate of higher order modes. Shaw (1950, 1953) di-

rectly perturbed Kirchhoff's dispersion relation to recover essentially

the some results. Correpsoiaing expressions were also derived for a

purely viscous fluid by Bogert (1950), Elco and Hughes (1962), and Cohen

and Tu (1962). Nayfeh (1973) recently extended Cremer's equivalent im-

pedance concept to situations where the medium is inhomogeneous and non-

uniformly moving. Paradoxically, the full problem has not yet been

solved numerically, although the case of waves in a viscous fluid con-

tained in a cylindrical tube was treated by Gerlach and Parker (1967)

and very recently by Scarton and Rouleau (1973). Scarton and Rouleau,

in particular, used the method of eigen-valleys to show the existence of

a previously unknown family of vorticity-dominated modes. Their work

seems so far to be the most comprehensive study of the viscous effects

on sound propagation in ducts.

Even though wave propagation in tubes is the ultimate concern of

the present investigation, it is a particular case of the more general

4
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theory ot the small unsteady motions of a viscous, heat-conducting and

compressible fluid, and a significant portion of this work has been de-

voted to a new mathematical formulation of such a class of problems. It

is therefore appropriate to review here some of the studies made in this

i
wider context. Lagerstrom at al. (1949) examined the fundamental prin-

ciples underlying the linearized system of equations governing the flow

of a viscous compressible fluid. They showed the existence of two types

of waves, namely, longitudinal or pressure waves, and transversal or

vorticity waves. In particular, a proof was given for the statement

that any linearized flow may be split into a longitudinal and a trans-

versal component. Wu (1956) generalized their results to the case of a

viscous and heat-conducting fluid. Chu and Kovasznay (1958) were pri-

marily interested in the measurement of fluctuating quantities in super-

sonic turbulent flows, and introduced the concept of three main modes of

fluctuations, namely, sound, vorticity, and entropy modes. This idea

was recently expanded in the wider context of aerodynamic noise theory

by Doak (1973). Finally, two basic papers of general interest and deal-

ing mainly with sound propagation in an unbounded medium are worth men-

tioning here. Truesdell (1953) conducted an exhaustive review and cri-

tique of Kirchhoff's theory of free space sound absorption, for fluids

with different heat-conducting properties, and for different frequency

regimes. Lighthill's survey (1956) on finite-amplitude sound waves shed

further light on the physical mechanisms respon3ible for sound absorp-

tion. Both studies have interesting discussions on the controversial

issue of bulk viscosity.

A century has passed since Kirchhoff's investigation and it is ap-

parent from this brief review of the literature that a complete treat-

5



ment of the problem is yet unavailable. In the next section, we pro-

ceed to a general discussion of the scope and goals of the present work.

1.3 Scope of This Study.

This study is essentially concerned with the theory of small per-

turbations of a viscous, heat-conducting, and compressible fluid. As

such, the second chapter is devoted to an alternative mathematical for-

mulation of the problem, suggested by Doak (1973) in the general frame-

work of aerodynamic noise theory. In this approach, the fluctuating

velocity field is considered as the superposition of acoustic (related

to pressure), thermal (related to entropy), and viscous (related to

vorticity) parts. Such a decomposition reduces the linearized Navier-

Stokes equations to a system of three partial differential equations

for three basic unknown function.,: an acoustic scalar potential; a

thermal scalar potential; and, a via ous vector potential. No restric-

tive assumptions are made regarding the nature of the fluid or the mag-

nitude of the Prandtl number. The physical implications of this formu-

lation are discussed in detail, as well as particular cases where sig-

nificant simplifications may be achieved.

The previous methodology is applied in the third chapter to a study

of small-amplitude fluctuating motions in a duct of constant width with

rigid and isothermal walls. The governing system of equations is pro-

perly non-dimensionalized in terms of five non-dimensional parameters

which are functions of the cross-sectional dimension of the tube, the

frequency of the perturbation and the characteristic properties of the

fluid. The remainder of the investigation further assumes the duct to

be two-dimensional, in order to miniwize analytical complications. It

6
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is then shown that each frequency may be-associated with four distinct

types of wave motion, namely, antiplane of inplane waves of symmetric or

antisymmetric shapes with respect to the duct axis. Each family is char-

acterized '„y a specific dispersion relation between a given circular fre-

quenc .. and the corresponding complex wave numbers. The relations per-

taining to antiplane waves may readily be solved for arbitrary values of

the parameters whereas the relations characterizing inplane motions are

transcendental in nature and require the implementation either of a nu-

merical scheme or of some approximation procedure. It is found that per-

turbation methods give relatively simple mathematical expressions in

terms of the characteristic parameters of the problem, and, at the same

time provide a convenient framework for the interpretation of the main

physical phenomena occurring during the wave motion.

Consequently, Chapter IV is concerned with a perturbation study of

the inplane dispersion relations in three ranges of frequencies or equi-
i

valently three ranges of duct widths: the low-frequency-narrow-tube

range; the high-frequency-wide-tube range; and, the very-high-frequency-

very-wide-tube range. It is shown that, in addition to the usual pres-

sure-dominated modes encountered in inviscid propagation problems, two

other families of entropy- and vorticity-dominated modes have to be con-

sidered. Expansions for the attenuation rates, phase velocities, and

mode shapes are then obtained for each family in each frequency regime.

The physical implications of the results are then discussed and a quali-

tative comparison is made with the numerical solution of Scarton and

i:ut,leau (1513), in the limit of zero heat-conduction.

In the concluding remarks, we summarize the essential contributions

of the research and suggest opportunities for further study based on the

experience gained in the pre.3ent undertaking.
7
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EP__A

II. THEORETICAL FORMULATION OF THE SMALL

AMPLITUDE FLUCTUATING MOTIONS OF A VISCOUS, HEAT-CONDUCTING

AND COMPRESSIBLE FLUID

2.1 Introduction.

In problems concerned with the acoustic motions of an inviscid

fluid initially at rest and in a uniform state, it is customary to de-

rive from the basic linearized equations of Fluid Mechanics a single

wave equation for a perturbation velocity potential (%r,t)

q 2 '0= 0	 (2.1)

where
2

q 2 = V2 - 1 a
2	

(2.2)
a0 

2 

at

is the wave operator and a 0 is the isentropic speed of sound. The

other dependent variables such as the velocity perturbation V' , and

the pressure perturbation p' , are then directly related to the po-

tential 0 through the classical expressions:

V' = grad 4^	 (2.3)

p' _ - PO a0	 (2.4)

where p0 is the density of the medium.

This procedure presents the important advantage of reducing a wide

variety of acoustic problems to the determination of one scalar field

H
4^(r,t) obeying the wave equation (2.1) with appropriate initial and

boundary conditions.

In this chapter, we wish to generalize this formulation to

8



situations where the medium is viscous and heat-conducting. We will be

led to introduce, in addition to the acoustic potential defined above,

two other fields, namely,a thermal scalar potential and a viscous vec-

tor potential. Governing equations for these "auxiliary" variables will

be derived, and the physical implications will be discussed in light of

the mathematical formulation.

2.2 Linearized Navier-Stokes Equations and Underlying Assumptions.

Let us consider the small amplitude motions of a simple thermo-

dynamic fluid initially at rest and in a uniform state. Each dependent

variable such as pressure, density, velocity, ... may be written in the

form:

Q(r,t) = QO + Q'(r,t)

	 (2.5)

N
where Q  is independent of r and t and characterizes the initial

state of the fluid, and Q'(r,t) designates a fluctuating quantity. In

V
particular, since VO = 0

V(r,t) = V'(r,t)	 (2.6)

Such a decomposition is then substituted for each dependent variable

into the equations of mass, motion, entropy, and the equations of state,

pertaining to a Newtonian fluid obeying Fourier's law of heat conduction.

When all non-linear terms in the perturbation variables are neglected,

the following linearized equations result:

Equation of Mass	 a ,+ pO div V' = 0
	

(2.7)

y

Equation of Motion p  at - grad p' -µ0 curl CP+170 grad div V'	 (2.8)

9



Equation of Entropy P O
 TO at

S = k002T'

Equations of State	 p' = a02 p'+[as] I S'
P

PO'sO

T' = [ aP S l p' +[aS]P l S'
PO' SO	 PO'SO

a

(2.9)

(2.10)

(2.11)

In the above relations, u'0 is the coefficient of shear viscosity, k0

the coefficient of heat conduction, a 0 the isentropic speed of sound,

and 77
0
 is the dilatational viscosity given by

770
 = K0 +4 µ0	(2.12)

KO being the coefficient of bulk viscosity. All other symbols have

their usual significance.

The system (2.7)-(2.11) constitutes the starting point of this in-

vestigation and we discuss below the main assumptions which have been

introduced in the process of its derivation:

(a) Continuum Hypothesis: The characteristic length scales of the

particular problem at hand are assumed to be much larger than the mean-

free-path, so that the fluid may be treated as a continuum. In the case

of propagation in ducts, the wavelength and duct diameter must both be

large in comparison with the mean-free-path.

(b) Homogeneous Medium at Rest: The steady flow variables are in-

dependent of position and time and the velocity of the medium is identi-

cally zero.

(c) The fluid is assumed to satisfy the Navier-Stokes relation be-

tween stress and rate of strain as well as Fourier's law of heat con-

duction.

10



(d) Small Amplitude Motion: In other words, fluctuating and steady

quantities satisfy the following relations:

y
V^ << 1 ; ^ 

of 
<< 1 ; k << 1	 (2.13)

a0

This assumption justifies the linearization of the governing equations

and drastically simplifies the mathematical formulation of acoustic

problems.

(e) Laminar Motion. The presence of turbulent motion would at

once invalidate the linearization of the basic equations since turbu-

lence is characterized by strong non-linear interactions. Unfortunately,

very few studies on the transition of unsteady laminar flows have been

made. However, in the case of oscillatory flow in circular ducts, Ser-

geev ( 1966) and Nerem et al. (1972) determined experimentally a criter-

ion for transition of the form

iec = const.	 kRV 	when	 kRV > 4	 (2.14)

A
In the above relation, Re 	 is the critical value of the Reynolds num-

A
ber based on the peak velocity U , and k and R V are non-dimension-

alized parameters which will be introduced in Chapter 3. They are de-

fined as follows:

A

Re = Ud ; k =	 ; R = a0d
	

(2.15)
VO	 a0	 V	 VO

where d is the duct diameter, w the circular frequency of the lami-

nar flow oscillations, and Vo the kinematic viscosity.

It will be shown in Chapter IV, that for values of	 kRV larger

than four, the flow is characterized by a thin acoustic boundary layer

11
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close to the dtict wall of thickness

6	
d	

(2.16)
kRv

A crude ,justification of relation (2.14) may then be given by applying

the critical Reynolds number criterion for a steady flat plate boundary

lAyer to the unsteady boundary layer of thickness, 6 , i.e.,

A

( iA v0) - 1000	 (2.17)

C

Upon combining this relation with the estimate of 6 given by (2.16),

the dependence of the critical Reynolds number on 	
kRv may be shown

to be expressed by (2.14).

In this study, it is assumed that the peak Reynolds number is lower

than the critical Reynolds number given by (2.14) so that the unsteady

flow is laminar.

(f) Simple Thermodynamic Fluid: Nonequilibrium effects such as

vibrational relaxation are assumed to be negligible and the fluid is in

local thermodynamic equilibrium. The thermodynamic state of the fluid

at any position and time is completely described by two state variables

only, for instance, density and entropy. A'^l other state variables such

as pressure and temperature may then be expressed in terms of density

and entropy, as in the two linearized equations of state (2.10) and

(2.11). The partial derivatives in these equations may conveniently be

expressed in terms of five characteristic properties of the medium,

namely, the isentropic speed of sound a0 , the temperature TO , the

density p0 , the specific heat at constant pressure c 	 , and the
0

ratio of specific heats y0 . Equations (2.10) and (2.11) may then be

12



written in the following manner:

p'	 s0 2 p' +p0 a0 (y0
-

	S'	 (2.10)'	 +

c

a0	('Y0 -1)T0	vOTO
T' t 

p	 c	
p' + c
	

S'

0	 p0	 p0

The form of the coefficients in the above relations is derived in Appen-

dix A, by making use of the first and second law of thermodynamics. No

additional assumption regarding the nature of the fluid needs to be in-

troduced. In the case of a perfect gas, for instance, a 0 could be re-

placed by its expression as a function of T o , but this restriction

does not have to be made in order to derive (2.10)' and (2.11)'.

The linearized equations (2.7) - (2.9) and (2.10)', (2.11)' consti-

tute a system of five linear partial differential equations for five

unknown functions p' , p' , S' , T' , and V' . We now proceed to the

definition of the acoustic, thermal, and viscous potentials, and to the

derivation of a corresponding system of three partial differential equa-

tions for these three potentials.

2.3 Acoustic. Thermal. and Viscous Potentials. Governin g Equations:

According to Helmoltz' theorem, the velocity field V' can always

be written as the sum of an irrotational part grad 4^ , and a solenoidal

X
part curl 	 so that

V' = grad ^ +curl A
	

(2.18)

X
We will further assume that the so-called viscous vector potential A

satisfies the additional condition

13



H
divA - 0
	

(2.19)

From (2.10)', the density p' may be expressed as a function of p'

'	 and S' . When (2.18) and the resulting equation, for p' are substi-

tuted into the equation of mass (2.7), one obtains

1 a '' POFCO)TO )S' _	 2
2 at - a 	 at	 ' PO 0	 (2.20)

a0	 0	 p0

In order to satisfy (2.20) identically, Doak (1973) suggested in his,

"Momentum Potential Description of Unsteady Fluid Flows," to further

decompose the scalar potential (D into two parts: an acoustic poten-

tial 0 giving rise to pressure fluctuations through the relation:

at = -P0 a0 

2 
0 
2 ^	 (2.21)

and a thermal potential $ h giving rise to entropy fluctuations

through the relation:

C

a 
t

t - a 0	 (-/0-1)TO 02
 4th 
	 (2.22)

-4

The velocity field V' is now the sum of three distinct acoustic, ther-

mal, and vortical components, and is of the form:

V' = grad 0	 ^+ grad 
h 

curl A	 (2.23)

From (2.10)' and (2.11)', the other dependent variables may immediately

be related to, nth , and A in the following manner:

a= - p0 V2 (4 +nth )
	

(2.24)
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aT = a 	 TO	 02 [o -(Y -1) ]	 (2.25)
at	 0	 (y0 -1) cp	 th	 0	 a

0

Equations (2.21) - (2.25) provide the necessary relations between the

"auxiliary" dependent variables 1e , $ h and A , and the "physical"

variables, pressure, entropy, velocity, density, and temperature. In

the derivation of these relations, use has been made of the equation of

continuity and the equation of state. We now seek to obtain the partial

differential equations governing
h
 , and A , by requiring that

the remaining equations of motion and entropy be satisfied. Substitu-

tion of (2.23) and (2.22) into (2.8) and (2.9) respectively, leads to

the following system:

grad [a (^ +4 h)-p° V2 (^ +0th ) +p ]	 (2.26)
0	 0

y
(I) + curl 

[ at - v0 02 A ] _ °

v	 (Y°-1)cp

C2 
[nth a P	 T	 0 T^]	 0	 (2.27)

0 r	 0

where P is the Prandtl number of the medium:
r

c µ0P
Pr	 k=	 °	 (2.28)

0

It is very tempting to replace System (I) by the following simpler

system of three partial differential equations:

1
T (0 +$	 h) - p° V2 ($ +0 h)+ P = 0	 (2.29)

0	 0

(II) at - v° 02 A = 0	 (2.30)

v° 	 (y°-1)cP0(2.31)
th aoPr	 TO	

T	 0

15



Each solution of (II) is obviously a solution of (I). But there are

solutions of System (I) which are not solutions of System (II). In

Appendix B, we prove that, to each solution {a	 $ h A } of (I),

one may associate a solution to,  nth , A} of (II), which will give

the same values for the physical variables V', p' , and S' . It may

be concluded that Systems (I) and (II) yield the same number of possible

physical states.

Equations (2.29) and (2.31) may immediately be expressed solely in

terms of 4 and 0th by differentiating them once with respect to

time and making use of relations (2.21) and (2.25). The final results

of this section are then formulated in the following "Splitting Theorem."

Splitting Theorem: If {V' , p' , S' , P' , T'} satisfy the li-

nearized equations of Fluid Mechanics (2.7)-(2.9) and (2.10)' - (2.11)',

then there exists an acoustic potential 0 , a thermal potential IT) h

and a viscous vector potential A such that the physical variables are

represented by:

V = grad ^ +grad (
h 

+curl A	 (2.32)

a = - PO a0 2 v2 
a	

(2.33)

c
as = a0	

(YO -1)TO V2 nth	 (2.34)

a = - PO 72 (O + h )	 (2.35)

aT' 
= a	

T 
0	 E 72
	

- (Y - 1 ) 72
at	 0	 (YO-1)cp0	 th	 0	 a

	

_a0	 TO	 aoth
	Pr v

0	 (YO-1)cp	 at	
(2.36)

0

H

with	 div A = 0	 (2.37)

,	 1
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and where 0 (r,t) , ^th(r,t) and A(r,t) sati&fy the following system:

[both •n ^2o 
s ^	 12 at  at 	 pQ v- 4 ^h]	 (2.38)
a 

0

	

as 
h - pO 172 CD = -(YO - 1) 

PO 
V2 0	 (2.39)

r	 r

1

a

y	 -

t -vO V2 A=0 (2.40)

In equation (2.36), equation ( 2.39) was used to derive an alternative

expression for at in terms of nth 
only. [] 2 

in equation (2.38)

is the modified wave operator.

El
S
 = 72 - 12 a2 + ^O 2 72 at	 (2.41)

a0 at	
pOa0

The traditional wave operator as defined in (2.2), is immediately re-

cognized in the first two terms of (2.41). The last third-order term

represents attenuation brought about by the dilatational viscosity 77
0 .

The subscript S has been added to notify that the operator pertains to

the isentropic speed of sound a 0 .

Furthermore, cross differentiation of (2.38) and (2.39) leads to

the additional fourth order partial differential equations:

V

at ^S (
%
 or $ h) 

PO 
V2[]T (% or dth }	 (2.42)

r

where
Y	 2	 Y07102 = V2 - O a }  	 VZ a	

(2.43)
T	

a 
0 
2at2	

p0 
a 

0 
2	 at

The above operator is a modified wave operator similar to 
C32  

define

in (2.41), but pertaining to the isothermal speed of sound a
0/ YO

17



Discussion: Upon examination of the previous theorem, it may be

noted that the propagation problem has been reduced, as expected, to the

`	 determination of an acoustic scalar potential 	 a thermal scalar po-

tential 10th , and a viscous vector potential A

The acoustic component gives rise to pressure, density, and velocity

perturbations. It is inherently coupled to the thermal component, as

seen from (2.38) and (2.39), and therefore is bound to generate entropy

fluctuations. The thermal component gives rise to entropy fluctua-

tions and, as a result of coupling will generate the acoustic

component. Both components satisfy equation (2.42) independentll.

However, coupling is still achieved through the lower-order rela•..ons

(2.38) and (2.39). Finally, the velocity fluctuations associated with

ID 	 0 h are irrotational so that investigators have often consi-
dered these two components as one single longitudinal part. The uncoup-

X
ling of the vortical component represented by A is the most signifi-

cant feature of the splitting theorem. The vector potential is gov-

erned by a diffusion equation Lind only gives rise to rotational velocity

fluctuations. However, in the presence of solid surfaces, one expects

the vortical component to generate the other two through the no-slip

boundary conditions.

We wish to emphasize that the decomposition presented here is not

tht only possible one, and several alternative schemes have indeed been

proposed. In particular, Wu (1956) distinguished a longitudinal and a

transversal component, without any further splitting of the longitudinal

part. Chu and Kovasznay (1958) defined three modes, namely, pressure,

entropy, and vorticity modes, but the first two modes do not coincide

with the acoustic and thermal components considered in this study. In

both of these investigations, the governing equations were expressed in

4L
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H y
Ft - v0v2A - 0 (2.46)

terms of the physical variables. We can see from the results of the

splitting theorem that significant simplification results from the use

of three "auxiliary" variables,	
h 

and A , since each component

is, in the end, associated with one variable only. Finally, in previous

works, the fluid is assumed to be a perfect gas with a Prandtl number

equal to 3/4 , whereas, no such restrictions are imposed here. We now

briefly examine a few cases where simpler versions of the equations for

Ot
h , and A may be obtained.

2.4. Some Particular Cases.

2.4.1. Prandtl Number = v
0 /(770/p0 ) : When the bulk viscosity is

zero, this coincides with situations where the Prandtl number is equal

to 3/4 . Air, which has a Prandtl number equal to . 72 , closely ap-

proaches this case, as long as its bulk viscosity may be neglected. The

two diffusion operators on the right -hand side of (2.38) and the left-

hand side of (2.39) are then identical so that equation (2.39) may be

used to eliminate ^ h in Eq. (2.38). The governing equations reduce

to:
2

02^ - 1 a + y0n0 29 	 = 0	 (2.44)
a	 a 2 act
	 PO 

a 2	 ac
00

Ath
 - PO V2$ h - p0(y0-1)02	 (2.45)

0	 0

The acoustic potential satisfies the modified wave equation (2.44) with

an "effective" dilatational viscosity Y0170 /PO . The decoupling is in-

complete, however, since (2.45) still relates	 and 0th . As men-

tioned above, this is the situation considered by Wu (1956) and Chu and
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2^H
17 A- 12 2s0

c 
	 at

(2.51)

Kovasznay ( 1958).

2.4.2. Non-Heat-Conducting Viscous Fluid: The Prandtl number of

the fluid is then equal to infinity. The entropy is constant and the

thermal component is identically zero. The governing equations, there-

fore reduce to:

02 '^ = 0	 (2.47)

a. v0 C2 A - 0	 (2.48)

This case was extensively studied by Lagerstrom et al. (1949) and equa-

tions identical to (2.47) and (2.48) were derived by several authors, in

particular, Cohen and Tu (1962), Gerlach and Parker (1967), and Scarton

and Rouleau (1973).

It is interesting to note that wave phenomena in elastic solids are

governed by equations which are analogous to (2.47) and (2.48). The dis-

placement vector

U	 grad 4` + curl A	 (2.49)

is then shown to satisfy the displacement equations of motion previded

	

N	 . ti
that the Lame potentials, 10(r,t) and A(r,t), are solutions of two

wave equations with different characteristic velocities, c 	 and c 

2

V2 ,0- 12 ?m 
s 0	 (2.50)

c 
	 at

The absence of any diffusion operator or attenuation term in the above

system is a consequence of the elasticity of the medium which does not

20



allow for dissipative phenomena. A detailed account of elastodynamic

theory is given by Achenbach (1973).

2.4.3. Viscous and Perfectly Heat-Conducting Fluid_: The Prandtl

number of the fluid is assumed to be zero so that there are no tempera-

ture fluctuations. In such a situation, any wave motion is isothermal.

Equations (2.38)-(2.40) become:

IT a2q
?= 0	 (2.52)

0 h = (y0 -1A	 (2.53)

at - v0 0
2 A = 0	 (2.54)

where 
E]2  

is the isothermal wave operator defined in (2.43). As seen

from (2.52) and (2.53), plane longitudinal waves, which, in an inviscid,

non-heat-conducting medium propagate isentropically with Laplace's velo-

city a0 , propagate isothermally in a perfect conductor, with Newton's

velocity, a0/ y0

2.4.4. Barotropic Fluid: A fluid is said to be barotropic when

the ratio of its specific heats 'y0 is equal to unity.	 As mentioned

by Truesdell (1953), many liquids such as pure water may be assumed to

be barotropic with a reasonably good approximation. The linearized equa-

tions of state (2.10)' and (2.11)' now become

p' = a 0 2 p'	 (2.55)

T
T' = c 0 S'	 (2.56)

PO

More commonly, a fluid is said to be barotropic when its density is a
function only of pressure. From the expression for (ap/aS)p given in

equation (2.10)', one can immediately establish that these two defini-

tions are strictly equivalent.
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and there is no need to define a thermal potential 0 h as before since

the equation of mass and the equation of motion will not contain S'

The thermal potential is therefore identically set equal to zero ii.

(2.32-2.40), and the entropy fluctuation S' is chosen to characterize

the thermal component. The governing equations then reduce to:

V' = grad I'D + curl A	 (2.57)
a

bP' _ LL _ 
-P	

(2.58)
at	 a 2 -

0 at	 0a 2 0 20	 ^a

T
T' = co 

S.	 (2.59)

PO

div A = 0 (2.60)

0
Sa

(2.61)
=

v
a t -	 02 S' = 0PO (2.62)

r

H

at - v0 v A = 0 (2.63)

Equation (2.62) was obtained by substituting (2.56) into the equation of

entropy (2.9).

As discussed previously, the acoustic component is associated with

pressure, density and longitudinal velocity fluctuations. But in a con-

trast with the general case, it does not give rise to temperature fluctu-

ations. The acoustic potential ID is now governed by the modified wave

equation (2.61), as in paragraph 2.4.2.

The thermal component is characterized by entropy and temperature

perturbations only, and does not give rise to velocity fluctuations. It

is governed by the classical diffusion equation (2.62). Moreover,

as shown in (2.61) and (2.62), acoustic and thermal components are com-

pletely uncoupled, so that an acoustic wave will not generate entropy
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fluctuations and conversely. This feature persists even in the presence

of solid surfaces, since it is preserved in the boundary conditions on

velocity and temperature as seen from (2.57) and (2.59). The analytical

relationships between thermal and acoustic components are therefore con-

siderably simplified.

2.4.5. Inviscid, Non-Heat-Conducting Fluid: In this case it may

immediately be verified that we recover the basic results mentioned in

the introduction to this chapter. The acoustic potential is now identi-

cal to the usual velocity potential ID , and the thermal and viscous

components are identically zero. Moreover, the state of the fluid is

governed by the classical wave equation (2.1).

In the next chapter, we proceed to apply the results of Section 2.3

to the propagation of small perturbations in cylindrical tubes.

,wy

.
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III. SOUND PROPAGATION IN A

TWO-DIMENSIONAL DUCT

3.1	 Introduction.

The results of the preceding chapter provide a theoretical frame-

work for the study of the small-amplitude motions of a fluid in a cy-

lindrical duct. In this part of the investigation, we first derive the

basic equations governing sound propagation through a duct of constant

cross-section and then investigate in detail the particular case of a

two-dimensional duct.

3.2 Formulation: Parameters of the Problem.

Consider a harmonic wave of circular frequency w propagating in

an infinite tube of constant cross-section S and typical cross-sec-

tional diameter d (see Figure 1). The fluid is assumed to obey re-

strictions (a)-(f) discussed in Section 2.2, and in addition, the

walls of the duct are assumed to be rigid, impermeable, and isothermal.

The independent variables are non-dimensionalized as follows:

X1
	 ,; y' = Y ; z' = a ; t' = wt

	
(3.1)

and three non-dimensional parameters are introduced:

k = ^
	

the reduced frequency	 (3.2)
0

a d

R =	 the "Reynolds number" based on the 	 (3.3)
V	 VO	

speed of sound and the shear vis-
cosity µ0

a0d
R =	 the "Reynolds number" based on the 	 (3.4)
77 77O/p 0	 speed of sound and the dilatational

viscosity 770 .
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The problem therefore depends on the values of five parameters: Y0 ;

Pr ; R 	 ; R77 ; and k , which are functions of the state of the medium,

the dimensions of the tube, and the characteristic frequency of the

fluctuations.	 The dependent variables are kept in dimensional form.

The basic equations of Section 2.3 then take the following form:

V' = d [grad0 +grad 0 
h

+curl A] (3.5)

a	 '^	
P0a0 02 (3.6)

cat	 kd	 a

c

aS' _	 1	 p0V2
(3.7)at	 kd	 (v0-1)T0	 th

^	 P

a = - ka 0d 02( a +`D h )
0

(3.8)

aT' 	 PrRy	 TO	 4th

at	 d	 (Y0 -1)cp 	 at (3.9)

0

y
with	 div A = 0 (3.10)

and
H

where, nth , and	 A	 obey the following system:

'Oth
S e - k2 at [ at	 kR	 o2 nth] (3.11)

a$ th
	

Y0-1 v
1	 ^2 0	

_
_	

-at	 kP R	 th	 kP R	 a (3.12)

r v	 r v

y

at	 kR V A = 0 (3.13)
V

as	 S {^	 or 
nth } = kp1 R 	 p^T {	 or h } (3.14)

r v
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where

2	 2	 2 a 2 	 k 2 a

at
q S ^ -k
	

2 + R77 at

2	 2	 2 a 2	
^/
0k 2 a

q T = 0 -YOk	 }at2 g̀0, at

(3.15)

(3. 16)

In the above relations, the primes on x' , y' , z' , t' , have

been omitted for convenience. The system (3.10)-(3.14) is to be sup-

plemented with the following boundary conditions at the walls:

V'	 0
on duct boundary walls.
	

(3.17)

T' = 0

We wish to determine the potentials e(r,t) , 0 (r,t) , and A(r,t)
th

which satisfy (3.10)-(3.14) and the associated boundary conditions (3.17).

The previous considerations define an eigenvalue problem which is

more easily handled if 0 (r,t)	 h(r,t) , and A(r,t) are assumed

to be travelling waves of the form

i(t-s z)

(r, t) = cpa (x,y)e	
z	

(3.18)

i(t-Rzz)

^th (r,t) = 
cpth ( x,y)e	 (3.1.9)

i(t-R z)

A(r,t) =CL ( x,y)e	
z	

(3.20)

Note that in these relations, both z and t are non-dimensionalized.

The circular frequency w is embedded in the non-dimensional time t ,

and the complex wave number R  is non-dimensionalized with respect to

the duct width. Equations (3.18)-(3.20) physically correspond to stand-

ing waves in the cross-section of the tube and travelling waves along

the duct axis z.. The real part of iz denotes the actual propagation
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wave number, while the imaginary part represents the attenuation rate.

The complex quantity 13L 	and the Functions'ps (x,y)	 'pth (x,y) , and

CL(x,y) are to be determined as a function of the five previously de-

fined parameters. We now proceed to derive the governing equations for

N
'pa , Yth , and CZ

Substitution of (3.18) or (3.19) into the fourth order partial dif-

ferentiai equation (3.14) yields the following relation:

1+Pv00'+ik

v1a { cp or nth } - [ikP r RV 1 + ivok/R77

l+iv k/P R +ik/R
+2Sz IV1 (Ya °r yth)+[Oz4+ikPrRV

	 1+ivOk/R77 n Rz (3.21)

ik3P R
_	 r V

1 + ivOk/R77 Wa or'pth} = 0

where

a -^ a
Cl 

= ex )x + e  ay
(3.22)

Solutions of (3.21) may be obtained in the form of a combination of solu-

tions of the following Helmholtz equations:

171 1Pa0 
or cD

tho } + «o { eo or `pthoI = 0	 (3.23)

7l {dal °
r
'Pthl } +, 1 {dal 

or
^thl' - 0
	 (3.24)

where CY0 2 and 
0`12 

are the roots of the algebraic equation in O:2

obtained from (3.21) by changing 0 1 2 and v14 into 
-2 

and Ct

respectively, The acoustic potential cps will therefore be the sum of

Pao and 'pal , solutions of (3.23) and (3.24). Similarly, 9th will
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4j
'4.

be the sum of 
9tho 

and 
9thl

It is a straight-forward procedure to derive expressions for ao2

and ot1 2 from (3.21). The results are as follows:

ao2 = 
002 - g.2	 (3.25)	 oil 2 	 012 - pZ2	

(3.26)

with

2	
-ikPR	

yk
r	

0k
so ,1 2 (1+iYOk R77 L 1 + i PrRy + i i;]

T

41k	 1+i'y0k/R,^
(3.27)

rRv (1+i vok/ PrRV + ik/ R
77

) 2

where the o and 1 subscripts correspond to the - and + signs

respectively.

In addition, the acoustic and thermal potentials 
'Pa 

and tp
th are

coupled through (3.11) and (3.12). When (3.18) and (3.19) are substi-

tuted into (3.12) and use is made of (3.23) and (3.24), one easily ar-

rives at the following relations:

0 2+ ikP R
(DBO(X,Y) = 

0	 r ^ 
^tho(x'Y)
	 (3.28)

(v0 -1)00

2+ ikP R

'Pal ( x ,Y) = 1
	

r 2 cpthl(X'Y)	 (3.29)
('YO-1)01

One then may check that the second coupling relation, (3.11), is also

satisfied.

In a similar fashion, when use is made of (3.20) in (3.13) and

(3.10), one obtains the governing equation for the vector potential:
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..mss,.

v1 C+02 2 6 = 0	 (3.30)

where

cx22	
X22 - Sz2	

(3.31)

and

922	
-ikRV	(3.32)

with the following restriction on the possible solutions

O1 • -41 = i ^z Cz	 (3.33)

In the above coupling relation, the vector potential CZ has been de-

composed into an axial component d  and a component in the cross-sec-

tional plane C1 . A similar notation will subsequently be used for

H
the velocity vector V .

Finally, the boundary conditions (3.17) may be written in terms of

the auxiliary variables as follows:

dVi k
'x,Y) _ 171(`^a+'Pth)

+V1 XQz - isze z XC^ 1 	0	 (3.24)

dVZ(x,Y)= -'gz(%+tPth)ez+01X^il = 0 boundary 	 (3.35)

walls.

T(.VO-1)c

P R ` /	 T	 p0 T'(x,Y) _ nth = 0	
(3.36)

r vV	 0

Discussion: For a cylindrical duct of arbitrary cross-section and given

values of the parameters V0 , Pr , RV , R,7 , and k , the problem has

been reduced to the determination of a complex wave number 9 
z 

and three

d
unknown functions 

y  , 
`nth , and Ci . The general analytical form of

the auxiliary functions is given by equations (3.23), (3.24), and (3.30)
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which have to be supplemented with the coupling relations (3.28), (3.29),

and (3.33). Enforcement of the boundary conditions (3.34) - (3.36) then

determines the remaining unknown 
Az	

-or arbitrary cross-sectional

shapes, it is unfortunately impossible to find separable solutions of

equations (3.23), (3.24), and (3.30), compatible with the boundary con-

ditions at the walls, and leading to a dispersion relation for 
Oz 

ex-

pressible in terms of a finite number of transcendental functions. It

was shown in Section 2.4.2 that the analytical formulation of wave pro-

pagation problems in elastic solids bore a close resemblance with the

model presented in Chapter II. The same mathematical difficulties have

indeed been encountered by researchers interested in the propagation of

elastic fluctuations in solid wave guides. A review of this subject is

given by Meeker and Meitzler (1964) and Achenbach (1973). However, in

the case of a two-dimensional or a circular tube, one may arrive at an

exact dispersion relation in terms of a finite number of tabulated

functions.

We have chosen to treat here the propagation of waves between two

parallel infinite plates, i.e., through a two-dimensional duct. Many

similarities will be shown to exist between the families of modes in a

two-dimensional duct and a circular tube, and identical methods may be

used in both instances. Since we are mainly interested in bringing out

the main physical features of the problem, and wish to minimize analyti-

cal complications, we devote the major part of this study to a detailed

investigation of wave propagation in a two-dimensional duct.

3.3 Two-Dimensional Duct:

Let us consider a two-dimensional duct of width d as shown on

Figure 2 and a harmonic wave of frequency w propagating in the positive

....
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z direction, under the same assumptions as in the previous section.

In analogy with equations (3.18) - (3.20), we further restrict the

functional forms of 'a , 'Oth , and A to the following:

z)

10(r,t) c^aWe	 z	 (3.37)

i(t-flzz)

^th(r,t) = cpth (x)e	 (3.38)

i(t-Szz)
A(r,t) - G(x)e	 (3.39)

Note that '
Pa ' 

(Pth , and d are assumed to be independent of the space

coordinate y . In other words, the wave motion is the same in all planes

normal to the y-axis. However, since we allow the vector potential to

have x- and z-components, the motion is not restricted to the y-plane,

and the velocity field may admit a non-zero component along the y-axis.

The governing equations (3.23), (3.24), and (3.30) simply become:

2

dx2 {^so 
or 

^tho^ +a02{^ao 
°r 

'Ptho) - 0	
(3.40)

2

dx2 {ral 
or 

^pthl)+a1 
'{,pal  

or 9thl) - 0
	 (3.41)

2--
dx2 + a22 (I - 0	 (3.42)

so that the general form of y th (x) is-

(P th (x) - A cosaox+B sins°x+C cosa l x+D sina l x	 (3.43)

and the corresponding form of Qa (x) derived from the coupling relations

(3.28) and (3.29) is:
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Figure 2. Two-dimensional duct.
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2+ikP
A0 	 r 

R 
y [AcosotOx

.	
^a(x)

_
+B sinotOx]

(YO -1) flO

+ikP Rr+ -`	 vCC Cos a 1 x+D sinof 1 x] (3.44)
(YO-1)Pl`

Similarly, use of (3.42) and the condition (3.33) yields the following

expressions for the components of the viscous potential:

Cix (x) - E cos oc2x+F sinof 2 x (3.45)

ay (x) - G coact 2 x +H sinot2 x (3.46)

is
2az (x) - R (- F coact 2 x + E sinot2 x) (3.47)

z

Finally, the boundary conditions (3.34) - (3.36) become:

Vx(x) 
a 

dx(^a or `nth ) +i#zCLy = 0
	 (3.48)

dG

VY(x) - - dx - iAzax - 0	 (3.49)

at x-+^
dG

V'(x)	
isz(Ca + 9th) + dx	

0	 (3.50)

T'(x) « yth - 0	 (3.51)

and substitution of (3.43) - (3.47) into (3.48) - (3.51) yields the fol-

lowing set of eight homogeneous linear equations for the eight unknown

constants: A, B, C, D, E, F, G, and H:

2	
Y02+ikPR

ac 

YO PO +i - r ![ -
A sin	 +B coa 0 ] +al 0 1	 r2yO

(YO -1) go	 (YO-1)0l

[-C sin :l +D cos :l ] + i8 [G cos 2̂ + Hsin-2 ] - 0	 (3.52)2	 2	 z	 2	 2
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CY

E cos 2 = 0 (3.60)

2
+ikP R

y0^0 2
+ikPrR V 

[A sin a0 + B cos ] +CY1 v0^1_	 r 2
0	 (YO-1)go2
	 2	 (y0-1)g12

CY

[C sin —2  +D cos -2 ] + 
ipz [G 

cos a2 - 
H sin 2 ] = 0	 (3.53)

2
+ikP R	 CY	 CY	 y 2+ikP R

-i^z 
y0^0	 r2V [A cos 0 + B sin 2 ] - isz 

0 1 =^L

(y0 -1) g" 	(y0' 1)S1

oft
	 X	 a2	 !2

[C cos 
2

+D sin 211
j +CY 2 [ -G sin 2 +H cos 2 J = 0	 (3.54)

y0A02+ikPrRV	 CYO	 CYO	
7'OS12

+ikPrRV

_iP	 [A cos — - B sin — ]
z	

(y0-1)02
	 2	 2	 z	

(yO-1)12

CY

[C cos^2 - D sin —' ] +of [G sin +H+H cos 2 ] = 0	 (3.55)

CY

A cos^2 + B sina2 +C cosal + D sin ! = 0(3.56)

Acos a2 -B sinll +Ccos (X -D sinal = 0	 (3.57)

E cos«2 +F sin a2 = 0	 (3.58)

E cos 11 - F sina2 = 0	 (3.59)

By elementary manipulations such as addition or subtraction of consecu-

tive equations the above system may be immediately expanded into the four

following subsystems.

System I:
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System II:

a
Fsin2=0

System III:

(3.61)

2	 2
C1 ~090 +ikPrRvA sin

0̂ + a 
yOsl +ikPrRVC sin^

l - is H sin 2̂ = 0
0	 (yO-1)g(,2	 2	 1	 (y(,-1)412	 2	 z	 2

(3.62)

y0g0 2
+ikPrR

V
	aU	

Y0g12
+ikPrR

V
	al	 a2

-is	 A cos — - ig4	 C cos —+a H cos —= 0Z	
(YO

- 1 ) 1i0 2	 2	
z	 (Y0-1)S12	 2	 2	 2

(3.b3)

Acos a-20 +Ccos a-21 = 0	 (3.64)

System IV

yO902+ikPr V
R	 a0	 y09i2+ikPr V	

lR	 a	 a
a	 B cos — +a	 D cos —+ ig G cos 

—2 
= 0

0
	 (YO 

-1)13
(,
2 	2	 1	 (YO-^ 

)S1 2 	 2	 z	 2

(3.65)

yOS02+ikprRV	
a0

	
Yogi 2

+ikPrR
V
	al	 a2

-i^	 Bsin — - iR	 Dsin — -a Gsin — = 0Z	
(Y0-1)0(,2
	 2	

z (YO-1)1412
	 2	 2	 2

(3.66)

B sin! +D sin"l = 0	 (3.67)

In order for these subsystems to admit non-trivial solutions, the deter-

m=.nants formed with the coefficients of their respective variables must

be set equal to zero. Those conditions yield four compatibility condi-

tions or so-called dispersion relations which may be written as follows:

Dirp-rsion Relation I:

cos

t
 = 0	 (3.68)
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Dispersion Relation II:

(X
sin 2 = 0	 (3.69)

Dispersion Relation III:

a	 a	 a	 2 iy k

k2(g12 
-^12)Oz2cos 

2 
cos 

2 
in 2 +( 2̂2 - PrRV) (YOoc2

0	 1	 0

a0	 al	
a2k2 iy0k	 ao	 a1	 a2

sin 2 cos 2 cos 2 -(^2-PrRV)a1a2 cos 2 sin 2 cos 2= 0
1	 (3.70)

Dispersion Relation IV:

^	 a	 a	 2 iy k
k2 ( Rl 2 - ^12z2 sin 2 sin 2 cos 2 +( 2̂ - iyok)ae2

0	 1	 0

a0	 a 1	 a2k 2 iy0k	 ao	 a1	
pt2

cos 2 sin 2 sin 2 -(S 2 - PrRV)ala2 sin 2 cos 2 sin 2 = 0

1	 (3.71)

Discussion: As seen from equations (3.60) - (3.67), each subsystem

pertains to distinct groups of unknown constants. Consequently, if any

one of the dispersion relations (I) to (IV) is satisfied, there exists

a non-zero solution for the unknowns of the corresponding subsystem.

At the same time, since the remaining determinants then take non-zero

values, the only possible solution for the other subsystems is zero.

Hence, each set (I) to (IV) and its dispersion relation may be inves-

tigated separately, the constants associated with the other sets being

identically zero. Even though a detailed description of the four cor-

responding types of wave motion will be given in Section 3.4 and Chapter

IV, we take advantage of this mathematical feature to briefly outline

their main characteristics.
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Let us first indroduce the following definitions: A wave motion

will be called symmetric (respectively, antisymmetric) if its velocity

is symmetric (respectively, antisymmetric) with respect to the median

y-z plane. It will be referred to as inplane (respectively, antiplane)

when its velocity vector lies in (respectively, is perpendicular to) the

x-z plane. From the above discussion, and the form of equations (3.60)-

(3.61), we infer that, in sets (I) and (II), all constants are zero with

the exception of E or F . As seen from (3.43) - (3.47), the acoustic

and thermal components are then identically zero, and the vector poten-

tial lies in the x-z plane. The velocity vector is therefore purely

rotational and its only non-zero component is V  given by (3.49).

Furthermore, F is zero in System (1) so that V
Y 

is then an even

function of x . Likewise, E is zero in System (II), so that V 	 is

then an odd function of x . We may conclude that sets (I) and (II) de-

scribe the behavior of antiplane symmetric and antisymmetric velocity

fluctuations. In a similar fashion, when one considers set (III) (re-

spectively, (IV)), B, D, E, F, G, (respectively A, C, E, F, H) are zero.

Upon examination of (3.43) - (3.50), it is clear that both sets describe

inplane wave motions, and that (III) and (IV) are associated with sym-

metric and antisymmetric velocity fields respectively. However, in

contrast with the antiplane motions, acoustic, thermal, and viscous

components are now inherently coupled and lead to complicated wave con-

figurations. The initial problem of wave propagation between two infi-

nite parallel walls has thus been reduced to four simpler subproblems,

namely, inplane or antiplane, symmetric or antisymmetric wave motions,

each one being governed by one of the Systems (I) to (IV) and its cor-

responding dispersion relation.
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In equations (3.68) - (3.71), the complex quantities CY O , of 	 and

CY 2 may be expressed in terms of the complex wave number Sz through

the use of (3.25), (3.26), and (3.31). Each one of the dispersion re-

lations is then an equation for A
z 

, and its solutions are to be deter-

mined as a function of the given non-dimensional parameters YO ' Pr

Rv R,7 and k . Each solution defines a mode of propagation, char-

y
acterized by specific variations for cpa (x) , cpth (x) and G(x) . Such

characteristic variations constitute a mode shape, and they may be ob-

tained exactly by solving the appropriate subsystem (I) - (IV) for the

corresponding unknown constants. Equations (3.68) - (3.69) are trivial

and the next section will examine their solutions and associated mode

shapes. On the other hand, the dispersion relations (3.70) - (3.71)

pertaining to the inplane modes, are transcendental equations for Az

and cannot be solved exactly. In Chapter IV, we will propose a pertur-

bation scheme, whereby approximate solutions may be obtained.

We have previously pointed out the analogy between wave propagation

in viscous fluids and in elastic solids. It is indeed striking to note

that wave motion in an elastic layer is governed by equations which are

very similar to the subsystems developed here. Meeker and Meitzler

(1964), in particular, assumed the Lame potentials to have a form anal-

ogous to the expressions chosen in (3.37) - (3.39), and were thus led

to classify the possible solutions in terms of four families of waves,

namely, symmetric and antisymmetric SH (Shear-Horizontal) waves, and

longitudinal and flexural plane strain waves. The dispersion relations

describing the latter two families, or so-called Rayleigh-Lamb equations

are found to present essentially the same basic features as relations

(3.70) and (3.71) when heat flow is assumed to be zero. In such a case,
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the lastterm in relations (III) and (IV) disappears. In the next sec-

tion, we discuss the characteristics of the symmetric and antisymmetric

antiplane wave motions.

3.4 Symmetric and Antisymmetric Antiplane Wave Motion.

The solutions of dispersion relation (I) are immediately given by:

aSA = (2n+1)n
	

(3.72)

when n is a zero or positive integer. Hence, there exists an infinity

of symmetric antiplane SA-modes. Their shape in any cross-sectional

plane is characterized by a specific value of the coefficient a 2 . The

propagation wave number attached to each mode is obtained by substituting

(3.72) into (3.31). In solving the resulting equation for Sz , we se-

lect the complex root which pertains to waves attenuating in the posi-

tive z-direction, i.e. of negative imaginary part, the other root being

associated with waves attenuating in the negative z-direction. 	 Such a

choice does not restrict the scope of the study, since the propagation

characteristics are obviously independent of the direction along the

z-axis. The wave number is then given by the following relation:

pzn =	 ((2n+^)TT+(kRV)2-((2n+1)n)2

-i	 ((2n+1) TT) 4+(kRV) 2+((2n+1)n) 2	(3.73)

We have avoided here using a radiation condition based on the sign of
the phase velocity, i.e. the direction of propagation of the wavefronts,
since, in Chapter IV, we will encounter backward-propagating waves which
decay in the positive z-direction.
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As discussed in the preceding section, E is the only non -zero constant,

so that from (3.43) - (3. 47), acoustic and thermal potentials are iden-

tically zero, and the viscous potential lies in the x -z plane with the

following components:

CSAW - E cos ((2n+1)Trx) 	 (3.74)xn

Gyn(x) - 0	 (3.75)

(2n+1)n iC, zn 	 -	 ^A E sin ( ( 2n+1)rrx)	 ( 3.76)

zn

the rotational velocity field is then such that:

kRVnSA (x) 
_ _ dOSA 

E cos ((2n+1)mc)ey 	(3.77)

zn

All other physical variables are identically zero.

The velocity profile of each mode will be normalized by the follow-

ing condition

Vyn(0) - 1	 (3.78)

which determines the value of the arbitrary constant E . The final form

of the mode shape is:

VyIA(x) - cos(2n+1)rrx	 (3.79)

The characteristics of the symmetric antiplane mode have therefore been

derived in a straight -forward manner due to the extreme simplicity of

the associated dispersion relation. They are purely transversal rota-

tional waves, the velocity fluctuations being perpendicular to the plane

of propagation. An interesting interpretation of equation (3.79) follows
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'	 I

from the decomposition of the cosine function into complex exponentials. 	
I

The velocity may then be written as follows:

,SA	 1 lm'SIA z i[t+ (2n+1)17x - Re qSnV	 z]

Yn (x,z,t) = 2 e	 • e

+ 1 e	 e
zn

Im 8zn z • i[ t - (2n+1)mc - Re #SA z]

2	
(3.80)

Each mode VynA may thus be considered as the superposition of two plane

transversal waves travelling in symmetric directions with respect to the

median yz-plane and, which, upon multiple reflections at the boundaries,

give rise to a standing wave pattern in the cross-sectional plane, and

a propagating wave along the z-axis.

Analogous results may be obtained for the antisymmetric antiplane

AA-modes. Their complex wave number is then given by:

^zn =	 ..lj(2nTTT+(kRV)2-(2nrr)2
.^ 2

- i(2n 
4
+(kRV ) 2+(2nrr) 2 	(3.81)

where n is a positive integer, and the corresponding mode shape is:

VyAnA (x) = sin 2n n x	 (3.82)

The magnitude of the imaginary part of the complex wave number de-

fines the non-dimensional attenuation rate per diameter along the duct

The integer n cannot be zero, since such a value leads to a mode
shape which is identically zero.
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Figure 3. Symmetric Antiplane Modes. Attenuation rate

versus reduced frequency for Rq	 y	 V = 2.35 x 105,

d = 10-J, medium is air at 150C, 1 atm.
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Figure 4. Symmetric Antiplane Modes. Phase velocity

versus reduced frequency. Same values of the
parameters as in Figure 3.
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k
Vphn i Re zn

(3.83)

axis, whereas the real part is the actual propagation wave number. The

phase velocity non-dimens ions lized with respect to the speed of sound

may be obtained by the formula:

On Figures 3 and 4, the attenuation rate and the phase velocity of the

first three symmetric antiplane modes are represented as a function of

the reduced frequency k , for a given set of values of the other four

parameters. These curves describe the dispersive properties of the

waves, and will be used extensively in the next chapter. As seen from

these plots, one may distinguish two ranges of reduced frequencies:

the low-frequency range where both attenuation rate and phase velocity

are constant and independent of k , and the high-frequency range where

they increase as the square root of k . These two regions are sepa-

rated by a transition region. Further details on this question will be

given in Chapter IV. At any rate, it is apparent from Figure 3, that

antiplane modes are highly attenuated at all frequencies.

The antisymmetric antiplane modes have strictly similar character-

istics, and since this study focuses on the symmetric modes, we do not

need to elaborate on their properties. One may finally note that equa-

tions (3.73) and (3.81) may be merged into a single relation in terms

of a new index N , equal to 2n +1 for the symmetric modes and 2n

for the antisymmetric modes. The eigenvalues of the antiplane modes

are then given as follows:

PZN 
^1
	 V)2-(Nn)2 - i	

/„n)4+`^2+(N^)2
V^(  ^^

(3.84)
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whe re

N - 1, 3, 5, ...	 for the SA modes

and

N - 2, 4, 6 1 ...	 for the AA modes

3.5 Conclusion.

For the purpose of illustrating the basic method of solution, we

have treated in detail the simple case of the antiplane modes. In this

instance, exact solutions of the dispersion relation were immediately

obtained throughout the entire reduced frequency domain. Unfortunately,

dispersion relations (III) and (IV) are much more complicated, and re-

quire the use of some approximation scheme, if any analytical results

are to be obtained. Chapter IV is, therefore, devoted to a perturbation

study of the inplane wave motions, with particular emphasis on the sym-

metric inplane modes.

46



^os a 
0 
/2

_ 

C a	 cos Oft/2 A
(4.1)

IV. PERTURBATION STUDY OF THE INPLANE MODES

4.1 Introduction.

In was shown in Section 3.3 that the eigenvalues associated with the

symmetric (respectively, antisymmetric) inplane modes are solutions of

dispersion relation (III) (respectively, (IV)), and that the corresponding

eigenfunctions are given by (3.43) - (3.47) where the coefficients A ,

C , H (respectively, B , D , G ) satisfy System (III) (respectively, (IV)),

:Y
and E and F are zero.	 This part of the investigation will be mainly

concerned with the derivation of approximate solutions of the transcendental

dispersion relations (111) and (IV). From these solutions, a detailed pic-

ture of the possible inplane wave motions will emerge.

Before undertaking such a study, we note that, when dispersion rela-

tion (III) is satisfied for a given eigenvalue
z
 , System (III) admits

an infinity of non-zero solutions which may be obtained by solving equations

(3.62) and (3.64) for C and H . We have then the following relations:

kP	 cos CY /2

	

r  l ( 1 2	 12)ac	 cos flcz	 0/2A	 (4.2)yo 	
00	 A1	 2	 1

where A is still an arbitrary constant and will be determined later by

imposing a suitable normalization condition. Substitution of the above

,:....:,j:ion is therefore purely two-dimensional and the vector potential
reduces to a stream function A y	In an earlier report, Huerre and
Keramcheti (1975) a priori considered such a stream function, and thus
restricted their investigation to inplane motions. The slightly more
general approach used in this study presents the advantage of also re-
vealing the existence of antiplane wave motions.
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values for C and H into (3.43), (3 . 44), and (3.46) leads to the expres-

sions for cpa (x) , cpth (x) and Gy (x) . The corresponding variations of

the physical variables are then given by (3.5) - (3.9). The resulting

symmetric inplane mode shapes are shown in Table I. We must emphasize

that such mode shapes are functions of the specific wave number 14 z and

that they cannot be determined completely until the dispersion relation

has been solved. However, when the eigenvalue is known, the associated

mode shape will be obtained immediately by substitution into the relations

of Table 1. The same procedure may be used to determine the antisymmetric

mode shapes given in Table II. We now proceed to an In-depth analysis of

the inplane eigenvalues.

4.2 Methodology - Preliminary Assumptions.

In order to display the common features of the dispersion relations

pertaining to the inplane wave motions, we divide (3.70) by of 2 Cos aco/2

Cos at 1 /2 cosat 2 /2 and (3.11) by Ot 2 sinaeo /2 sinae l /2 sinat 2 /2 , and recast

them into the following single formula:

k 2
2

^z_	 k 2	to ^2 k2 "0k	'0
^coton} +

_	 an
{ cotan^(002 01 2 ) 0'2 2 (k0 2 PrRv) ^0 2

k 2	 iy0k tan

'21-	 (	 - ^i 
(
co tan)

s 0	 (4.3a,b)
2	 PrRv) 2

1

where the upper and lower trigonometric functions refer to the symmetric

(4.3a) and antisyametric (4.3b) dispersion relations, respectively. In

most instances, we will only need to consider the above expressions. How-

ever, the normalization which has just been performed may have restricted

the number of possible solutions of the initial relations (III) and (IV),

and in a few cases, we will find it more convenient to study the alternate
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^r (x)	 - A' 
r ( k 2 	-	 ik )	 cos U 0 x	 - ( k ? -	 ik)	 cos Of1x

Pr l'. V 	 /2cos CYOL So t 	
P1	

PrRv	 Cos of1/2

(Y0 -1)kcosat0 x	 cosalx

_	 I^th(x) _	
-{	

PrRI	 A	
Cos aCO /?	 cos(Y1/2^

k 2 	k2	 Sz sin Q x

S	 q	 '	 a2 coozry0	 1

P	 1N	 cOR a 	1^1L	 cos al x
d	 kPrRL	 /2 -(1	 kPrRV)cosa0 c0!^ai/2

1 
S^(x)	

-	 (Y0-/n
	 q 1

2 A.
R02 cosa0 x	 Cos alx

I
3	 To	 PrRV

_

I	 coR12	 sa0 /2	 cos al/2L	 J

2'(x)	 = A'	
kRv	 k 2	k2	 S

z
	 sina,)x

(R02y	
d2 S12)a, cos a2/2

i	 (Y0-1)T0	 ( cosa0 x	 cosaix
T	 (x)	 _	 -	

\'	 I
kAd	 `(	 c	

l	 Cos a0 /2	 Cos ai/2
PO

7	 2

P' (x) _ - ilo kA'	 iy0s0	
Cosa x	

iY0s1	
cosalx

a d (1 -	 k p rRv)	 -(1-	 )0	
I	 cosry'/2Cos ai/2kPr R V

`/ (x) _ - lA, s	 k2	 iYo k	 cos a0 x	 k2	 iy0 k	 Cosa x	 k2	 k 2	 Cosa x

(	
)z	 d	 z	 Cos a /2 - (	 ('	 —)	 2

S0 

2	 P R	 2 - P R ) Cos a 	-r V	 0	 R	 r v	 1/2	 S z	 Q 2	 cosrX2/^
1	 0

A,	k2	 iY0 k	 sina0x	
k2	 iy k	 sina x	 2	 2	 Q z 2 since x

(x) _ - —	 0	 1	 1( k 	 - k	 )
-(	 - Pd	 )a0cosa	 'a l(̂^2	 P R	 /Z2	 R	 CosCY 1 !'	 2	 2	 a^	 cos a 2 /?0	 r V	 3l	 r 	 S0	

Sl

TABLE 1. SyrTrictric Inplane Mode Shap(s. Fcr simpliciPy^	
a

the (onstant A has been rc1-laced by A' = r V A cos n
1

(,v 0-2
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k 2 	 ik	
sinac0x	k2	 ik	 sinaclx

^a(x) - 
B	 I (^ 2 - PrRV ) sina!0/2	 - ( 2̂	 PrRV) sin aI

L 0	 I

i(y0 -1)k ( sina;0 x	 sinalx 1
a th (x) - -	 PrRV	 B sin a0/2	 sin aI/ 2

( x )	 _

k 2	 k2	 ^z cos ac2x
-8 2	

2 ) (k2 sin a:2/2
0	 1

ip0a0k	
1

ig0 2 	sinot0 x	 i^9 2	 sins 1 x
p	

cx)	
_

_	 _
-	 d	 B	 (1	 kPrRV ) 	sinaf0 /2 - (1	 kPrRV) sinal/2

r(y0"
1)cp0	

812	 1102 sina:0x	 sinct1x1

`") d	 TO	 PrRV B,

	

R 2 sin a0/2	 sina:I/2
1

kR	 k 2	 k2	 Sz cos a:2x
-B' d (^ 2 -	 2 ) a: 2 -;in	 /2

8
0	 1

T (x) _ i	 (y0-1)T0	 r sinar0x	 sincYlx
-	 kBd	 c	 I	 sin(Y0 /2	 sinaC /2pJ

0	 L

p ' ( x )	 _
ip

-	 0 kB'
a 0d

iy 8 2	 sins! x	 +.y	 2 sins x(1 _ 	 0 0 )	 0 	 0 1	 1
kPrRV	 sina:0 /2	 '.SFr	 sina /2

V , (x)	 _z
iB'k2	 iy k	 2	 iy k	 sik x

-	 S ^ (— -	 0 ) 
sincY 

0x - (k -	 0 )	
n 

1	 -d	 2

2	 2	 sins x
( k - 

k )
	

2
z	 PrR V	sina0/2	 2	 PrR V	sins 1/2

0	 1
2	

8 2	 sina2/2 
10 1

v , (^)	 = '	 x	 2k 
2	 iy

0 k) a	 0	 k
cos a: x	 2	 iy0 k

	 cos a 1
	 kB	 (	 -	 _

2	 S 2 cos a 2 x_ k	 z
x d	 al	

+( R
g0 2	 PrRV	0 sina0 /2	 2	 PrRV)	 sinaL 1 /2

n
2	 8 2 ) 	a2	 sina2/2

1

TABLE II. Antisymmetric Inplane Mode Shapes. The

constant B has been replaced by
	fP R	 aB' =	 r V

(y -1)k B sin 2
0

SO
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k2 k2
2

^z	 0' a-1	 k
2 	 iy0k

cotan	 cote n

}«2 {2
0

S 
2)

1

tan	 2	 tan + (g 22	 PrRv)^0
0

y
cotan a1 cotan 0,	 k _ ly0	 cotan ^0 cotan ^2 _ 0

{ tan } 2	 tan } 2 - 	 2 PrRV) ^1 tan } 2	 tan	 2
1

	

(4.3c,d)	 P

with the same conventions for the trigonometric functions as in (4.3a,b).

This latter form of the dispersion relations results from the divisions

of (3.70) by «2 sin-2 sin Tssin 2̂ and (3.71) by 
a2 

Cos a22p cos l̂ cos 2̂ .

Together with the first normalized set, it will ensure that all possible

solutions of the original equations are examined.

Expression (4.3a) is strikingly similar to the dispersion relation

first derived by Kirchhoff (1868), and describing the axisymmetric modes

of a duct of circular cross-section. To obtain the latter, one simply

replaces the trigonometric tangent in (4.3a) by the ratio of Bessel func-

tions, J 1/J0 . We, therefore, expect the symmetric inplane modes to be

closely related to the axisymmetric modes of the circular geometry.

As mentioned in Chapter III, both equations are transcendental and

cannot be solved exactly. This constitutes the major obstacle of the

present investigation. The problem may be approached from two basically

different ways. A numerical scheme can be developed to.isolate the solu-

tions of the equations. Such a method was implemented by Shields et al.

(1965) and Tijdeman (1975) to determine the characteristics of the fun-

damental zeroth-pressure mode, and by Scarton and Rouleau (1973) to

study all the axisymmetric eigenfunctions in the case of zero heat-con-

duction. The analysis is then considerably simplified by the presence

of only two terms in the dispersion relations. In a second approach sug-
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gested by Kirchhoff (1868) and Rayleigh (1877), and adopted by a large

number of investigators to be mentioned later in the course of this

chapter, one attempts to obtain approximate solutions of the dispersion

relations analytically. Applications of this type of procedure have

traditionally been restricted to the determination of the characteristics

of the pressure modes in the acoustic boundary layer approximation. The

pressure modes, in the limit of zero boundary layer thickness, reduce to

the familiar acoustic modes encountered in inviscid propagation problems,

so that the first terms in the approximations are then readily available.

In this study, we develop a methodology whereby perturbation expansions

of the complex wave number may be extracted from the dispersion relation

for all the eigenfunctions of the problem, in as many ranges of the para-

meters as possible. The main advantage of this approach over the purely

numerical one is that it exhibits in a compact mathematical form the es-

sential physical features of the inplane modes as well as their dependence

on a few non-dimensional parameters. Before describing the details of the

method, we draw the consequences of some of the assumptions made in Chap-

ter II.

Preliminary Assumptions. Let us seek, in the particular case of a

gaseous medium, an estimate of the non-dimensional quantities R V and

k/RV , where k and RV are defined by equations (3.2) and (3.3). From

elementary kinetic theory considerations, we know that the kinematic vis-

cosity V0 is such that

VC = a01
	

(4.4)

where k is the mean free path. This relation yields the following ap-

proximation for RV and k/RV :
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RV_ A
	

(4.5); R - wk = A	
(4.6)

V	 o

where X is the wavelength associated with the circular frequency w .

Hence, RV and k/RV are respectively a measure of the ratio of duct

width to mean free path and mean free path to wavelength. In order to be

able to write the basic equations of Fluid Mechanics, we assumed in Sec-

tion 2.2 that the fluid was a continuum. Consequently, in the case of a

gaseous medium, the width of the duct and the characteristic wavelength

of the fluctuations X are both assumed to be much larger than the mean

free path, so that we have:

R >> 1	 R K 1	 (4.7a,b)V 

L'

Without any additional assumptions other that those stated in Chapter II,

we may then consider (4.7a) and (4.7b) to be satisfied. Hence, the pre-

sent investigation is restricted to values of the frequency parameter k

such that

0 < k << RV	(4.8)

For air at normal pressure and temperature, the above inequalities imply

the following limits on the duct diameter and frequency of the wave:

d >> 5x10 6 em	 (4.9) ;	 f << 10 9Hz	 (4.10)

When we examine the corresponding limits for water under the same

conditions,

d >> 8x10 -8 cm	 (4.11);	 f << 3x10 11Hz	 (4.12)

it is clear that, in all practical situations, 1/R V and k/RV may be

considered as very small quantitie s. The same conclusions may be drawn

53



for 1 /R77 and k/R 7 since the bulk viscosity is never much larger than

the shear viscosity. Furthermore, RV and R1 are of the same order of

magnitude.

As a result of this discussion, the complicated expression (3.27),

which defines 002 and 8 1 2 can be considerably simplified by expansion

in powers of k/RV to yield the following:

V

S02 = k
2[ 1 - i( ^10 - 1(

yF1 R

+ V) R ]
r	 R 77 v

(4.13)

R
^12 -ikPrRV[ 1 +i (yo -1) (P - R)	

R J	 (4.14)
r	 77 V

When such expressions are substituted into relations (4.3a,d) we obtain:

-1	 R	 2 ^2
[1+i(yP-

2

+ R	
y

V) - P (P 
_R )(R )Ja

r	 R77 V	 r	 r 77	 V	 2

tan Ce2	 1 _R k	 tan ^0
[ co an 2 + [ 1 - 

i (Pr R
7 ) RV ] ^0 cotan } 2 +

R	 of
i(y -1) k [ 1 +i(1 - V) k J	 { tan } 1 = 0	

(4.15a,b)0	 PrRV	Pr R77 RV 1 co an 2

and

y-2 R	 y -1	 R	 2 ^2
[1+i(P +R ) R	 P ( P 	 R )(R ) ] a:

r	 77 V	 r	 r	 17	 V	 2

cotan ^0 cotan	 k
{ tan } 2	 tan } 2

a1 
+ [ 1 - i (P

1
 r - ^) RVJ 0*

{ cotan j C1 1 { cotanj !2 + i (y -1) k [ 1 + i ( 1 
_R
 V) k ] .	tan 2 tan 2	 0	 P 

r 
R 
V
	 Pr 

RT7
 RV

a: 
{ cotan } CI0 .Icotanj"	 01 tan	 2	 tan	 2	 (4.15c,d)

where
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YO -1 RCi = k2[1 - i( P + v) R ] -A2
	 (4.16)

r R7 V	

Z

R
a12 = -ikPrR [1 +i(y0 -1) (p --_

V
) R ]- ^ z2 	 (4.17)

v	 r R►] v

a22 = -ikRV - 9y2
	

(4.18)

and the coefficients of each term in (4.15a,d) have been expanded to
2

order(R) included.
V

Methodology. Even thoug ; ► the previous comments have led to a sub-

stantial simplification of the dispersion relations, as shown in equations

(4.15a,d), they do not provide a method of solution. An important indi-

cation as to how to approach this problem, may be seen in a short exami-

nation of the physics of wave phenomena in viscous, heat-conducting and

compressible fluids. As mentioned briefly in Section 1.2, Chu and Ko-

vasznay (1958) distinguish three main types of fluctuations in such a

fluid: pressure fluctuations corresponding to the propagation of sound

waves in an inviscid fluid, vorticity fluctuations related to the diffu-

sion of vorticity perturbations in a viscous medium, and entropy fluctu-

ations related to the diffusion of so-called "hot spots" in a heat-con-

ducting medium. In this study, we therefore expect to encounter three

families of pressure-, entropy-, and vorticity-dominated modes, and we

are faced with the problem of finding a method which enables us to deter-

mine their respective characteristics. In inviscid wave propagation, the

first and last terms in (4.15a,b) are identically zero, and the disper-

sion relation is immediately solved for a o , to yield the pressure or

acoustic modes. In the case of a viscous and heat-conducting medium,

these terms are no longer negligible. They may be recast solely in terms
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of CYO through the use of (4.16), (4.17), and (4.18), and the resulting

relation is still to be solved for ocO , to yield the pressure-dominated

modes. Similarly, the characteristics of the entropy- (respectively,

vorticity-) dominated modes will be found by recasting the dispersion re-

lation in terms of a! 1 (respectively, a2 ) and solving for a1 (respec-

tively, act ). The main advantages of such a procedure, as compared to a

straightforward solution in terms of the complex wave number S
z 

, will.

become apparent in the next few sections.

We are still confronted with the task of expanding the dispersion

relation, and the unknown; CYo , oi l , or act , in terms of a suitable small

parameter. Three such parameters may be defined, and they correspond to

three ranges of frequencies, or equivalently three ranges of duct widths:

The High-Frequency-Wide-Tube Range.

Where the reduced frequency k is such that:

	

R << k <<	
Rv1/3	

(4.19)

V

and the small parameter is defined as:

E	 1	 (4.20)
VI kRv

This is the familiar acoustic boundary layer approximation.

The Low-Freauencv-Narrow-Tube Range.

Where the reduced frequency k is such that:

	

k << R	 (4.21)

V

and the small parameter is defined as

	

e =kRv	 (4.22)

w
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The Very-High-Frequency-Very-Wide-Tube Ra ni e.

Where the reduced frequency k is such that

RV
1/3 << k << RV 	(4.23)

and the small parameter is defined as

R 1/2

E =(k (4.24)

These ranges were first suggested, in a somewhat different form,by Weston

(1953a) in an analytical study of the zeroth-pressure mode. A full justi-

fication of such definitions will arise from the detailed analysis of the

next three sections.

The methodology which has just been outlined is now applied to the

determination of the characteristics of the pressure-, entropy-, and vor-

ticity-dominated modes in the three ranges of parameters defined above.

4.3 High Frequency - Wide Tube Ran e.

We showed in the preceding section that, in all practical situations,

1/RV is a very small parameter. It is, therefore, legitimate to seek a

formal expansion-of CY 0 (respectively, al , (X2 ) in powers of 1/R V .

The range of validity of such expansions will be examined a posteriori,

by requiring that the ratio of two successive terms be smaller than unity.

4.3.1 Pressure-Dominated Modes. We assume the unknown a0 to be

of order (1/RV)^ or of higher order, and wish to expand the dispersion

relation (4.15a,b) to order 1/RV , inclusively. From (4.16) - (4.18),

the coefficients Az2 , al , and a2 may be approximated by the follow-

ing expressions:

$z1 = (k2^xQ 2 ) ^ 1 - 2ik22 
(yP-1+R ) R ]	 (4.25)

k -a0	 r	 11 V
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1

3

	

kP R	 a 2 -k2
	
-YO -1 	 R

lX l = (1-i)	 [1+i 
UPR 

+i	 (P --) R (4.26)

	

r v	
2	

r R71 V

kR a 2-k2
a2 = (1-i)	 V [1 + i kR
	

(4.27)

v

Note that in the last two relations the first terms are very large, of

order RV Consequently, the trigonometric tangents in a 1 and a2

may be written as

tan 
2 

=tan 2
	

-i	 (4.28)

where exponentially small terms have been neglected. When equations

(4.25) - (4.28) are substituted into (4.15a,b), one obtains the follow-

ing equations in a0 :

a	 2

a0 t c tan	 2 = +	
1-i 

(k* - a0 2 )	 (4.29a,b)
2kRV

where
*2	 Y -1

k	 (1 + 0 ) k2	(4.30)

`
, r

Higher order terms on the right-hand side of (4.29a,b) are of magnitude

(1/RV) 3/2 , and have therefore been omitted. As we let the parameter RV

go to infinity, the above equations yield the solutions a0 which pert°{n

to the acoustic modes propagating in an inviscid medium. Hence, the

zeroth order terms are given by:

CiP = Nn	 (4.31)
ON

where the integer N is of the form

N=2n	 n-0, 1, 2	 ...
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for the symmetric mode of order n , described by (4.29x), and

N- 2n+1	 n- 0, 1, 2,

for the antisymmetric mode of order n , described by (4.29b). It is then

a straightforward procedure to derive a more accurate representation of

«0 by assuming that it may be expanded as:

a0N = 
NTT [ 1 + a +R ]	 (4.32)

	

RV	 V

when N is different from zero, and,

of PO= 
Re d

+ R 
^4	

(4.33)

V	 v

when N is zero. The unknown constants a and b associated with even

(respectively, odd) values of N , are determined by substituting (4.32)

and (4.33) into equation (4.29x), (respectively, (4.29b)). The resulting

expressions are expanded to order 1 /RV , and the coefficient of each

higher-order term is set equal to zero. The final solutions are then

given by:

	

_ irr	 k	 *2

CX
00	 i Te 8 k*( kR ) 

[1+(1-i)(1+12 )	 1	 ] (4.34)
V	 2kRV

P	 1-i	 *2	 2	 2	 k*4-(NTT)4 1
SON NTT[  1 -	 2 (k - (Nn) )	 kR + 4 i	

4	 kR ]

	

{Nn)	 V

	

NTT)	 V

(4.35)

Substitution of the previous results into equations (4.25) - (4.27) yields

the corresponding expressions for (Y1 , oc2 , and Pz :

kP R	 2	 2	 R

CYIN = (1-0	 [1 -2 {
k - PNrr 

+ (~0
- 1), (Jl -P 

)k 21_L]r	 ^ r	 V
(4.36)
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r-Mrw

Ck	 = (1-0[ 1 - 2 . k2kRN^ 2]

	
(4.37)2N	 vl^^ v

^.' -
1 	 Y -1

RZO = k[1+(1-i)(1+ 0 )	 1 -2i(1+	 0 )

TrPr 2kRv

*2
k	 1	 YO-1	 1	 i YO-1 

R	
k

	

{1+ 12 -4(1 +
 ^r )) kR v -Z( P r 

+^) R 
v ]
	 (4.38)

^ 

2

OP - [k2 - 
(N,n)2+2(1

-i)(k* - (Nn)2)	 kR - 412 .
V (NTT)

2	 2	 Y -1 R
(k* - (Nn) 2 )(k* +3(Nrr)^ kR - ik4( 

P 
+—L) kB ] (4.39)

V	 r ^ v

The index N may be set equal to zero in (4.36) and (4.37) but not in

(4.39). When N is an even integer:

N-2n	 n =0,1,2,...

the above results describe the symmetric pressure-dominated mode of order

n , SP(n) , and the associated mode shape is given in Table I. When N

is an odd integer:

N-2n+1	 n -0,1,2,...

they describe the antisymmetric pressure-dominated mode of order n ,

AP(n) , and the associated mode shape is given in Table II.

As already explained in Section 3.4, we select in (4.39) the complex

root which pertains to waves attenuating in the positive z-direction, i.e.

of negative imaginary part. In the course of the previous derivation we

tacitly assumed the right-hand side of (4.29a,b) to be much smaller than
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unity. Furthermore, in order for the above expansions to be valid each

term has to be smaller than the preceding one. Enforcement of these con-

ditions results in the following restrictions on the possible values of

the frequency parameter k :

R <<k<<RV /3

v
(4.40)

This double inequality may be written in two other equivalent ways as:

4 1/3

VOd2 << w << s 
d2

or	

(4.41)

UO

2

y0 1/2 << d <<	
a0

( w ) 	(w3v )1/2	

(4.42)

0

which is imme-iiately interpreted as an a posteriori justification of the

name given to the present approximation. Whereas a:0 is of order unity

(except for SP(0) ), of 	 and at 2 are complex numbers of very large

modulus. Consequently, if we examine the mode shapes of Table I, terms
cos at 1 x 	 cos at2x

such as
cosCY l /2 °r 

Cos ac2/2 may be written in the following manner:

cosh x	
- Ltii lot i (x - 1)	

l+^i	
IClI (x+2)

l 2 	
e %r2 	 + e `^ -	 (4.43)Cos a: 1

1/2
where Ia: l i is very large, of the order of (k R v)	 . Hence, they will

be of significant magnitude in only a thin layer close to the duct walls

at x —1/2 and x -1/2 . In the center of the tube, they will be expo-

*
nentially small.	 As will be clear when we discuss the mode shapes in

Identical conclusions may be reached with the corresponding expressions
in Table II.
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Section 4 . 6, such a behavior is linked with the diffusion of entropy and

vorticity in thermal and viscous boundary layers attached to the walls of

the tube. If the boundary layer thickness is defined as the distance

from the duct walls where the magnitude of these terms is a -1 of its

maximum value, the non-dimensional viscous and thermal boundary layer

thicknesses are respectively:

2 2

	

6VN ` 77	 kR.— 1 + 

	
(4.44)

2N 	 v
P_

	

V 	 2 2
6

thN 
s 

cx	 kP2R 
[

1+( NrrP 
-k _ (YO-1)-

^1N1	 r v	 r

(RV 
P 

) k2 )
 
2k 1 3	 (4.45)

r	 v

The lower bound imposed on k in equation (4.40) implies that viscous

and thermal effects are important only in layers of approximate non-

	

dimensional thicknesses 	
kR	

and	 kP2R respectively. By in-
V

	 r 
voking elementary notions of kinetic theory as used in Section 4.2, this

may be tir ,jaslated as follows:

6 "6	 vlr;
^ << 1

V 	 thN	 d
(4.46)

i.e., the dimensional boundary layer thickness is approximately equal

to the geometric mean of the wavelength and mean free path, and it is

much smaller than the duct width. The high-frequency-wide-tube regime

might just as well have been called the acoustic boundary ?eyer approx-

imation.

To the author's knowledge, all investigations to date with the ex-

ception of Scarton and Rouleau's have only been concerned with the deter-

62



. ,

mination of the complex wave number of pressure-dominated modes, and

most of them have considered the acoustic boundary layer approximation.

It is therefore interesting to compare our results with those available

in the literature.

Expression (4.38) relative to the zeroth "plane" pressure mode is

composed of:

— an inviscid term

— a second term of order (1/R V)	 proportional to the square root

of the reduced frequency, representing attenuation and disper-

sion effects brought about by the acoustic boundary layers, and

first calculated by Kirchhoff (1868) in the case of a circular

tube.

— a third term of order 1/RV , representing higher-order acoustic

boundary layer attenuation.

— a fourth term of the same order of magnitude as the preceding

one, proportional to the square of the reduced frequency, and

associated with the dilatational attenuation of longitudinal

waves in the bulk of the fluid. This last part of the complex

wave n !xmber was also derived by Kirchhoff in a study of the pro-

pagation of plane waves in an unbounded medium.

Weston (1953a), in an analytical treatment of the characteristics

of the plane mode in a circular duct, subdivides the wide-tube range

into two subranges or transition regions. In the wide-narrow tube sub-

"closer" to 1/R ,
V

E (4.38) can be ne-

is assumed to be

terms of the form

range, k is assumed to be smaller than unity and

so that terms of the form k/R 	 in the brackets o
V

glecteo. In the wide-very-wide-tube subrange, k

larger than unity and "closer" to R 1/3
1)
	, so that
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1/.r kRU or 1/kRU can be omitted. The simplified expressions re-

sulting from the manipulation of (4.38) in the above prescribed manner

are then very analogous to those obtained by Weston in these subranges.

In order to give the corresponding interpretation of the results

pertaining to the higher-order P modes, it is convenient to get rid

of the square root in (4.39) by expansion in powers of 1/R 
V, 

Since

the dominant term in the square root may be positive or negative, one

must distinguish several ranges of frequencies which are discussed below:

When k > Nn , the complex wave number is given by

RP =jk7-(NTT) 2
*2	 2

k2-(Nn) 2 T
i^R_ 

4i

 
(NTT) 

2

2	 2

k* - (NTT) 2 	 ;t2	 2	 2 k* - (NTT) 
2	

1 _ ik4

k	

,

2- (NTT) 
2	 ( k + (Nn) _

k

 2 k 2- (NTT) 
2 ) kR 

U	
2

0/ - 1) /Pr
+RU/RT► 1

k 2 - (NTT) 
2	 kRU

(4.47)

Shaw (1953) studied wave propagation between a pair of infinite paral-

lel walls and obtained identical results to order (1/R Tf)	 In the

present expression, the expansion has been carried out to higher order.

This enables us to analyze the different terms in the same manner as in

(4.38). In particular, the first term is the well-known inviscid higher-

mode wave number. The total attenuation - q te is of order (1/RU)^

and dilatational dissipation is smaller than acoustic boundary layer

dissipation as can be seen by comparing the second and last term of

(4.47). In the vicinity of the reduced frequency Nn , the denominators

of the perturbation terms in (4.47) tend to zero, so that the above ex-
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pension becomes invalid. One then evaluates the wave number directly

from (4.39) .

When the reduced frequency k is equal to the inviscid cut-off

frequent Nn , the wave number is:

_ irr YO 	Y -1

z
N = 2e 8 0	 Nn(NrrR)[1+

12i( 0 +4).
Pr	 v	

Tpr )

1 + 1_iN "r y0 -1 + RV)	 Nn)2 ]	 (4.48)
2NrrRV 8 y0 -1 ( Pr

	 ^ 2NrrRv

In contrast with duct propagation in an inviscid medium, it is not zero.

Furthermore, its real part is finite, so that a wave still propagates

along the duct axis. Even though the attenuation rate is now larger,

of order (1/R V) ` instead of (1/RV)	 Nn is not the cut-off fre-

quency of the higher-order modes.

When	
NTT	

< k < Nn , equation (4.47) is changed into:
'Y0_1

(1+	 )

Tp^

*2	 2

N
= -i	 (Nrr)2-k2 [1 	

k	 ZNrr^	 +

(Nn) -k 
	

V

4i	 , k
*2

-(NTT) 2 (k*2+(Nn)2+k2 k
*2

- Nn 2 ) 1

(NTT) 2
	

(NTT) 2 -k 2	 2 ( NTT) 
2 -k2 	 kRV

4 (Y -1)/P +R_ 
77

/R

+ ik	 0	
r2 

v	 kR	 (4.49)
(NTT) 

2
) -k	 V

'	 It is important to note that the sudden increase of the attenuation rate

shown in the above relation is not due to enhanced viscous dissipation,
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but rather to the storage of the acoustic energy in a smaller region of

space. The physical mechanism is the same as in inviscid wave motion. 	 .

However, the real part of the wave number remains finite and leads to a

positive phase velocity.

When k* = Nn or k =	
NtT	

the real part of the

complex wave number is almost zero, of order 1/R V as seen from (4.49) .

yVri

Hence, the true cut-off frequency is given by:

kkco __	 Nn	
c Nn

--N	
YO 

-1 ^

1+
P̂
r

(4.50)

This downward shift in cut-off is solely attributable to thermal effects,

and disappears when the Prandtl number goes to infinity. The practical

significance of such a phenomenon is limited, since the attenuation rate

is already very high at the inviscid cut-off.

Below Cut-off, the real part of (4.49) leads to a negative phase

velocity. Wave fronts propagate in the negative z-direction, whereas

the amplitude is attenuated in the opposite direction. It is shown in

Appendix C that, in this instance, the acoustic intensity is indeed posi-

tive, and acoustic energy is moving against the wavefronts. These so-

called backward-propagating waves were also encountered by Meitzler

(1965) in the equivalent elastic plate problem, and by Scarton and Rou-

leau (1973) in a numerical study of the axisymmetric modes in a viscous fluid.

This completes our discussion of the pressure-dominated solutions

in order for the real part of Oz to be identically zero to order 1
/RV

included, one would have to slightly perturb k" around the value NTT

This has not been done here for simplicity.
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e dispersion relations (4.15a,b) in the high-frequency-wide-tube

ximation.

4.3.2 Entropy-Dominated Modes. Following the methodology de-

ed in Section 4.2, we assume the unknown a 	
to be of order

) 0 of higher order. In this situation, it is preferable to at-

the problem from the normalized dispersion relations (4.15c,d)

ad of (4.15a,b). These equations are to be solved for ail to

(1/R_) 3/2 included. Relations (4.16) - (4.18) enable us to

ximatev 8z2 , ao , and «2 by the following expressions:

	

i (X 2	 R

Az2 = -
ikPrR_I1 kP R + i(yD -1) (R - Rv) R ]	 (4.51)

v	 r v	 r 77 v

kP R	 Cc 
2
+k2	y -1	 R

CYO = (1+i)	 2 y [
1 - 2 kP R 

+i 
2 (P - R ) R (4.52)

	

r v	 r 77	 v

k(1-P )R	 ioc 
2	

^/0 -i
a2 = (1-i)	 2r y [1+2(1-P )kR _ 1

r v

1PP 
(R Rv) R ]
r r	 77	 v

(4.53)

Since CY0 and Oct are complex numbers of very large amplitude, their

trigonometric tangents can be written as:

tan ! = -tan 22 = i
	

(4.54)

When these relations are substituted into the dispersion relations

(4.15c,d), two equations in al follow:

I
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cotan ^1 — 1-i	
(YO -1)k2	

1
tan } 2 - +
	

3/2 
o:l 	 (4.55a,b)

-V ` 1 + i
_̂ / T-Pr 

(kPrRV)
 
r

the upper (respectively, lower) expression pertaining to the symmetric

(respectively, antisymmetric) entropy -dominated modes. The solutions

of the above equations are obtained in exactly the same manner as the

P-modes of the preceding subsection. The final results are given as

follows:

S	 (YO-1)k2	
1

a1N = Nn 1 +(l-i) -V/2	3/2	 (4.56)

1+ i
Fir 

(kPrRV)

where the integer N is an odd number of the form

N = 2n+1	 n=0, 1, 2	 ...

for the symmetric mode of order n , SS(n) , and an even number of the

form

N=2n	 n=1, 2, 3	 ...

for the antisymmetric mode of order n , AS(n) . Corresponding expres-

sions for CYO , oi l , and AZ are given by:

(X S = (1+i) kPrRV 1 - i k2+ Nrr 2 + i 
YO

-1 ( 1 - R ) k (4.57)
ON	 2	 2 kPrRV	2 Pr R77 RV

S	 k(1-Pr)R
V 	 (Nn)

2
oC	 1 +i2N = ( 1 -i)	 2 	

2k (1-Pr)RV

-i 
O _

1 
1PP 

(p - RV ) R—k	 (4.58)
r	 r	 R1]	 V
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S S - (1-iF
k 	

l-
	 2+ i 

y ( 1 - RV)k (4.59)
zN = 	 2kPrRV	 2 Pr R 7 RV

At first sight, a, = 0 appears to be an exact solution of the anti-

symmetric dispersion relation (3.71) throughout the entire reduced fre-

quency domain. However, it is easily checked that the only possible

mode shape that can be associated with such a solution is identically

zero. Hence, 01 1 = 0 is not a relevant antisymmetric eigenvalue, and

as prescribed above, the index n characterizing the antisymmetric

S-modes takes positive values only.

The same reasoning as in Subsection 4.3.1 leads to the following

restrictions on values of the reduced frequency k :

R<<k<<RV	 (4.60)

V

where the upper bound is a consequence of the preliminary assumptions

made in Section 4.2. Consequently, upon comparison of (4.60) with (4.40),

it is clear that the range of validity of the S-mode expansions is wider

than the range of validity of the corresponding P-mode expansions. In

this investigation, we assume that, by definition, the high-frequency-

wide-tube approximation pertains to the reduced frequency domain

R<< k << RV1/3	 The above results are therefore valid, not only in

V
the high-frequency-wide-tube range, but also in the very-high-frequency-

very-wide-tube range which will be studied in detail in Section 4.5.

The coefficients a 	 and aS are strikingly similar in form to
ON

the coefficients a 	 and a 	 defined in the previous subsection.
IN	 2N

Correspondingly, we will show in Section 4.6 that this mathematical fea-

ture is linked with a diffusive behavior of pressure and vorticity
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fluctuations in acoustic boundary layers close to the walls of the tube.

Expressions for the thickness of these layers may also be derived as in

Subsection 4.3.1, and they may be shown to be of the same small order

of magnitude (1/kRV) k , as the viscous and thermal boundary layers as-

sociated with the P-modes.

The complex wave numbers all have large real and imaginary parts.

In contrast with the P-modes which have distinct phase velocities and

attenuation rates, the S-modes have almost identical propagation char-

ac•teristics, and are highly attenuated at all frequencies. Nevertheless,

to each value of the index N , corresponds a specific S-mode shape as

shown from (4.56).

Although researchers have been aware of the existence of entropy-

dominated modes since the earlier work of Chu and Kovasznay, we do not

know of any previous investigation of their properties for a given

boundary value problem. In the next subsection, we proceed to determine

the vorticity-dominated solutions of the dispersion relations (4.15a,b).

4.3.3 Vorticity-Dominated Modes. The dispersion relations

(4.15a,b) are to be solved for the unknown «2 to order 1/RV included.

From (4.16) - (4.18) we may write:

iLY

Sz2 = -ikR V[ 1 - kR 

2	

(4.61)
v

kR	 k2^C 2
a0 = (1+i) 2v [ 1 - 2 kR ]

	 (4.62)
V

k(1 -P )R »
	is 2

	r 	 2
oi l = (1+1)	 2	 [l - 2k(1-Pr)RV

	

-i 0-1 1PP (P - Rv ) R	
(4.63)

r	 r	 71	 v
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4^, w

so that the trigonometric tangents in CYO and CY l are approximated

by the following expression:

tan -2 = tan - = i	 (4.64)

Substitution of the above relations into the dispersion relations

(4.15a,b) leads to the two following equations in Ci 2 :

, I

	

{ tan ] ^2 = +	 l+i CY

cotan 2	 —	 2kR	 2
v

(4.65a,b)

where the upper (respectively, lower) expression corresponds to the sym-

metric (respectively, antisymmetric) vorticity-dominated modes. By

making use of the same procedure as in the previous two subsections, we

arrive at the final results:

of
 V

= Nrr[1 +(1+i)'+ 41 ]	 (4.66)
2N 	 kR

V	 V

where the integer N is of the form,

N=2n	 n= 1 , 2 , 3	 ...

for the symmetric mode of order n , SV(n) , and of the form

N = 2n+1
	

n = 0 , 1 , 2 , ...

for the antisymmetric mode of order n , AV(n) .

Expressions for CY O , CY l , and 
A  

are then obtained from (4.61) -

(4.63) as follows:

kR	 2	 2

CYAN = ( 1+i)	 ZU 
E l - 2 k kRNrr ]	 (4.67)

U
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V	 k(1-Pr)RV	 Nrr)2
a1N	

(1+i	
2	 [1 -i 2k(1-Pr)RV

y -1 P	 R

	

-i 2 P (P - R ) R

	

	 (4.68)
1- r r 7f	 V

^V (1-i)	 I - i Nn,! ]	 (4.69)
zN	 2	 M

v

The above expansions have the same domain of validity as those describ-

ing the S-modes, i.e., the reduced frequency k is such that:

1 << k << R
R	 V

V

Consequently, these results characterize the vorticity-dominated modes

in both the high-frequency-wide-tube--.,and very-high-frequency-very-wide-

tube ranges.

The large real and imaginary parts of the coefficients of V and
ON

a1N correspond to "diffusion" of pressure and entropy fluctuations in

thin layers close to the duct walls, the thickness of these layers be-

ing of the order of (1/kRV)	 As seen from a comparison of (4.69) and

(4.59), the propagation characteristics of entropy-and vorticity-domi-

nated modes are strictly analogous, and the reader is referred to the

preceding subsection for further details.

Scarton and Rouleau (1973) were the first to conduct a numerical

study of the V-modes (in their terminology, the "B baud" of eigenvalues)

in the case of a circular tube and a non-heat-conducting fluid, and,

as we shall see in our final discussion, found very similar results.

They noted that a 2 = 0 is an exact solution of the axisymmetric disper-

sion relation, just as it is an exact solution of the symmetric inplane
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dispersion relation (3.70) and numerically derived a corresponding non-

zero mode shape. However, if 01
2
 is assumed to be zero in the analysis

beginning in Section 3.3, one immediately reaches the conclusion that

the only possible mode shape is zero. Hence, a 2 = 0 cannot be consi-

dered as a relevant symmetric eigenvalue, and the index N cannot be

zero in (4.66).

We have now completed the determination of the symmetric and anti-

symmetric solutions of the inplane dispersion relations in the high-

frequency-wide-tube approximation. At this point, two additional as-

sumptions which have been implicitly made in the previous derivations

need to be carefully stated. In order for expressions of the form

kP T- to be large quantities, the Prandtl number is taken to be

larger than 1/kRV . Such a restriction is unimportant since most fluids

of interest have a Prandtl number of the order of one or larger. Further-

more, if the S- and V-expressions are to be valid, terms of the form

k(1-Pr)RV must also be large. Consequently, in these last two

families, the Prandtl number is in addition assumed to differ from unity

by a quantity larger than 1/kRV . This latter restriction could easily

be removed by examining the particular case where P r is unity.

We may now clearly appreciate the advantace of taking Ot0 ' a1

and ac 2 as respective unknowns for the P-, S-, and V-eigenvalues, in-

stead of the complex wave number. If S
z 

had been chosen as unknown

of order (1/RV) 0 or of higher order in the dispersion relations, we

would have obtained the P-eigenvalues only, since they are the only ones

A similar situation prevailed in the study of the antisymmetric anti-

plane modes and antisymmetric S-modes studied in Sections 3.4 and 4.3.2,
respectively.
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to be characterized by a wave number of order one. The other two fami-

lies would have been completely ignored, their wave number being of or-

der R V ^ as can be seen from (4.59) and (4.69).

We still have not justified the terminology used to designate the

different families of eigenfunctions. A definite explanation will be

given when we examine the characteristics of the mode shapes in Section

4.6.

4.4 Low-Frequency-Narrow-Tube Range.

The solutions in the high-frequency -wide -tube approximation were

shown to be valid as long as the frequency parameter k is much larger

than 1 /RV . For values of k or the order of 1/RV , the expansions

break down. In this section, we seek solutions of the dispersion rela-

tion (4.15a , d) for values of the reduced frequency much smaller than

1/RV . The unknown and the dispersion relations are formally expanded

in powers of k and the range of validity of the results is determined

a posteriori.

4.4.1. Pressure and Vorticity-Dominated Modes. In the high-fre-

quency-wide -tube approximation, we generally assumed one of the coeffi-

cients Oro , ar l , or Ci
2
 , to be of order unity which implies that the

other coefficients were very large quantities. In contrast with such

a situation, we expect in the low - frequency-narrow-tube region all the

coefficients Oro , Or l , and Ct
2
 to be of the same order of magnitude,

since terms of the form kRV are now very small. Hence, no real advan-

tage is gained by following the general procedure described in Section

4.2. In this subsection, we therefore solve the normalized dispersion

relations (4.15a , b) for the unknown complex wave number fiz and assume
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t 
to be of order unity. Such a procedure will yield both pressure-

and vorticity-dominated eigenvalues. The dispersion relations have to

be expanded to order k 2 inclusive in order to derive ar:curate solu-

tions to order k inclusive. From (4.16) - (4.18), otO ; al , and Ott

may be written in the form:

2
Oto = isz [ 1 - k 2 ]	 (4.70)

20z

ikP R
ra,l	 i^z [ 1 + 2 2y ]	 (4.71)
z

ikR	 (kR ) 2
of = iR [1+ -- V +	 (4.72)
2	 z	

20z2	 88z4

When these expansions are substituted into (4.15a,b) and the resulting

expressions are expanded to order k2 , terms of zeroth order cancel

out and the final equations, after division by kR V , and reordering,

are given by:

;tan
 +!(
 tan isz

sin 
isz sz4cotan ] 2 kRV

k31 sin isz+igz
+ iy0 (sin 

isz + isz ) R _ 4	 2	 kRV
V	 9z

A

+i (yP + R") ( sin 
isz +isz ) R	

0	 (4.73a,b)
r	 71 	 V

where the upper (respectively, lower) tzigonometric function and sign

correspond to the symmetric (respectively, antisymmetric) dispersion

relation. From (4.73a,b), we immediately deduce zeroth-order estimates
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of the eigenvalues of the form

z
-iz	 (4.74)

where z satisfies one of the following transcendental equations

sin z = ±z
	

(4.75a,b)

and the + and - signs correspond to symmetric and antisymmetric

eigenvalues. The solutions of the above equations are investigated in

detail in Appendix D. They both admit an infinity of non-zero complex

solutions. Furthermore, if z is a solution of (4.75a or b), so is

-z and the complex conjugate z 	 Consequently, if numerical solu-

tions of these equations are available in the fourth quadrant

(Re z > 0 , Im z < 0) of the complex z-plane, the solutions in the three

other quadrants may immediately be obtained by elementary symmetry con-

siderations.

Lot us introduce the following notations: the complex root of

(4.75a) lying in the fourth quadrant of the complex plane and such that

2n Tr < Re z < (2n+2)Tr 	n = 1 , 2 , 3	 ...	 (4.76)

will be designated z  . Correspondingly, the complex root of (4.75b)

which lies in the same quadrant and such that

(2n+1)n < Re z < (2n + 2) Tr	 n = 0 , 1 , 2	 ...	 (4.77)

will be designated z  . The first five roots of each equetion have

been computed numerically, and are displayed in Table III ane IV. For

large values of n , they have the following asymptotic farms:

zn n (2n +2) rr - i cos h -1 (2n +2) Tr as n-+ 00	(4.78)

zn = (2n +2) n-icosh -1 (2n +2)Tr as n — +-	 (4.79)
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In agreement with the "radiation condition" stated in Section 3.4, we

restrict our attention to complex numbers of negative imaginary part,

i.e., to solutions of (4.75a,b) lying in the half plane Re z > 0

Hence the only olutions of interest are 	 +,...Y	 (zl ,... zn ,...} and

(z0	
zn ,...} and their complex conjugates. The two families,

{zl ,... Z  ,...) and (z0	zn ,...} have negative imaginary parts

and therefore correspond to complex wave numbers of negative real parts.

Since higher-order P-modes were shown to have negative phase velocities

below their cut-off frequency, in the high-frequency-wide-tube range,

we naturally associate these two families of roots to symmetric (ex-

cluding n =0 ) --A antisymmetric P-eigenvalues respectively. Similarly,

since vorticity modes were shown to have positive real parts, we asso-

ciate the conjugate families (z l	z 	 ,... I and (z0	 zn ...}

lying in the first quadrant to symmetric and antisymmetric V-eigenvalues

respectively.

We do not consider the above reasoning as a rigorous proof of the

correspondence between high-frequency and low-frequency eigenvalues.

Such a proof can only be given when the expansions derived in this study

a-: compared with known numerical solutions of the dispersion relations,

which allow each eigenvalue to be followed throughout the entire fre-

quency domain, without any interruption. More specifically, the previ-

ous identifications will be fully justified when we compare our solu-

tions with the numerical investigation of Scarton and Rouleau.

When the zeroth-order or zero-frequency estimates have been deter-

mined as stated above, it is a straightforward procedure to derive a

The possibility of identifying `..ese roots with the S-eigenvalues may
at once be discarded, since such roots still exist when there is no
heat Lor'uction, whe-ec the S--modes do not.
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n +cxn +
#n

1 7.497676 2.768678

2 13.899960 3.352210

3 20.238518 3.716768

4 26.554547 3.983142

5 32.859741 4.193251

TABLE III:

Solutions zri = a - ign of sin z = z

n acn An

0 4.212392 2.250729

1 10.712537 3.103149

2 17.073365 3.551087

3 23.398355 3.858809

4 29.708120 4.0931705

TABLE IV:

Solutions z  = an - ign of sin z = -z
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more accurate representation of the complex wave number by assuming

that it may be expanded as:

z = -iz(1+ak)	 (4.80)

where a is determined by substituting (4.80) into (4.73a,b), expanding

the resulting equations to order k , and setting the coefficient of k

equal to zero. The symmetric and antisymmetric pressure-dominated wave

numbers are then respectively given by:

SP	 iz 
.f	 ikRV 

+	
iy0 	k	

(4.81)^zn = - n [ 1 +4z+2	 2 zn Rv
n sin 2

and

_	 ikR

91P = -iz [ 1 + ikR + 
iy 
0 k ]	 (4.82)F^zn	 n	 4z-2	 2 zn RVn cos 2

where z n + and z 	 are the non-zero complex solutions of

sin z = +z

which lie in the fourth quadrant of the complex z-plane.

The symmetric and antisymmetric vorticity-dominated modes are also

given by the above expansions, where z n + and z 	 have been replaced

by their complex conjugates. Substitution of the results for 	
z 

into

expressions (4.70) - (4.72) yields the following expansions for a0

U  , and 0L 2 :

ikR	 iy

CYQn = zn [ 1 + +2 +	 + R	 (4.83)
4z 	 sing n V

2
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SP	 +	
ik(1-2Pr)Rv	 iv0
	 k

aln 
= z  E l +— +

2	 +	 z+ R ]	
(4.84)

4z 
	

sing n v
2

ikR	 iy
«2n = zn [ 1 - +2 + -- + R ]	 (4.85)

4z 
	

sin  n v
2

and	 AP	 ikR	 i10 k

aOn z
n [1 + 2 +	 z- R ]	

(4.86)
4"zn	

2 n v
cos 2

AP	
(1-2Pr)RV	 iv0	 k

Uc ln = zn [ 1 + ik	 -2	 +	 z- R ]	 (4.87)
4z 
	 cos2 n v

2

ikR	 iy
ptA
2n 

= zn [ 1 - -2 +	 0 - T ]	 (4.88)
4z 
	

cos2 n v
2

The corresponding V-expressions are obtained by replacing zn and z-

by their complex conjugates.

To derive expansions for the higher-order P-modes and all the V-

modes, we have assumed the complex wave number to be of order unity.

In order to determine the characteristics of the only remaining unknown

eigenvalue, i.e., the zeroth-order SP-mode, P  is taken to be of the

form

Az 
2 = B k	 (4.89)

where the unknown constant B of order unity is found by expanding the

symmetric dispersion relation (4.15a) to order k 2 inclusive. Terms in

k cancel out and when the term in k 2 is set equal to zero, we obtain

the following equation for B :
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12  YO

B	
R
V

so that the SP(0) mode is given by:

,,,,^^P	
6y 0k	 SP	 6y 0k

Oz0 = ( 1 - i)	 R	 (4.91)	 CY00 = (1+i)	 R	 (4.92)
V

	 v

	

kP R	 12 y 	 12y
at10 (1-i)	

2 
y (1-	 2)(4.93); X20 = (1-i)J

EkRRV
Z(1- 2)(4.94)

P R	 R

	

r 	 v

Upon examination of the ratio of successive terms in the previous

expansions, one easily determines the range of validity of the low-

frequency-narrow-tube approximation:

	

k << R
	

(4.95)

V

As mentioned at the beginning of this subsection, the coefficients

CYO , Cti l , and CY 2 are now of the same order of magnitude, unity or

smaller. The associated mode shapes will therefore present smooth vari-

ations in the cross-section of the tube, and will not exhibit a boundary-

layer -like character as in the high-frequency-wide-tube regime.

In the limit of zero reduced frequency, i.e., in the case of steady

small-amplitude viscous and heat-conducting flow, V-modes and higher-

order P-modes are characterized by constant wave numbers. To each

higher-order P-eigenvalue of a given attenuation rate and negative

phase velocity, one can associate a V-eigenvalue of identical attenua-

tion rate and opposite phase velocity. Scarton and Rouleau have de-

rived similar zero-frequency eigenvalues for the circular geometry and

Fitzgerald (1972) used the corr-sponding o-igenfunctions to model the
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plasma motions in the gaps between successive red cells in narrow-capil-

lary blood flow. In the present study, additional frequency-dependent

terms have been calculated so as to extend the results to a low-frequency

-narrow-tube region.

The SP(0)-mode is the well-known unsteady Poiseuille flow analyzed

by Rayleigh. In contrast with the high-frequency-wide-tube regime, its

phase speed now varies as the square root of frequency. In the limit

of zero reduced frequency, this eigenvalue becomes identically zero and

is therefore irrelevant. Further remarks onthe physical meaning of

these results will be given in Section 4.6.

4.4.2 Entropy-Dominated Modes. In the above formulation, the dis-

persion relations were taken in the form (4.15a,b) and such an approach

failed to yield the characteristics of the S-modes. In agreement with

the procedure adopted in Subsection 4.3.2, we find it more convenient

to solve the dispersion relations in the form (4.15c,d) for the unknown

a 1 which is assumed to be of order unity. From (4.16) - (4.18), we

may write:

ikP R 0/0 -1)	 R
Sz2	

-oc 1 2 [ 1+	 2 y - 02 P r (P - —) k2 J	 (4.96)
a l 	 011	 r	 ?7

ikP R	 (y -1)	 R	 2	 (kP R )2
010 = a1[1+ 

r2 y
- 0 2 Pr (P - Rv)k2+ k 2 + r 4 ]

	2a1 	2001	 r	 17	 2x 1	 8 
a l (4.97)

ik(P -1) (y 
0- 

1)P	 R	 (k(1-P )R 
12

01 2 = al[ 1 +	
r2 -
	 2 r (P - ")k2 +	 4 v J

2C11
	 2a1	 r 

R77	 8011
	 (4.98)

As expected, the coefficients aO , a1 , and a2 are seen to be

of identical order, and values of a1 such that,
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CY 1 = NTT
	

(4.99)

where

N = 2n+1
	

n - 0 , 1 , 2 ,	 (4.100)

or

N - 2n	 n = 1 , 2 , 3 ...	 (4.101)

satisfy the dispersion relation (4.15c), or (4.15d) respectively, to

zeroth order in k . Accurate expressions to order k 3 inclusive are

needed in order to properly calculate the associated eigenfunctions.

Consequently, the coefficient CY 1 is assumed to be of the form:

U1 = Nrr + ak2 + bk3 	(4.102)

where a and b are determined by substitution of (4.102) into (4.15c)

and (4.15d), and expansion of the resulting equations to order k 3 .

Terms of zeroth order and order k cancel out and coefficients of k2

and k3 must be set equal to zero. The final results are the following:

a  = NTT 1 - (Y
0 -1) (Pr -1)k 2	ikPrRv

IN	 ^	 2	 { 1 -	 22 (NTT)	 (NTT)

(2Pr -1)y0-1 1 
R 
	 k	 y0(Pr-1)k

+ i	
P -1	 (P - R ) R +i 

P R	 ) ]	 (4.103)
r	 r T] v	 r v

where the integer N is an odd number of the form (4.100) for the sym-

metric mode of order n , SS(n) , and an even number of the form (4.101)

for the antisymmetric mode of order n , AS(n) . Corresponding expres-

sions for	 U0 , a 2 , and Oz 
are given by:

ikP R	 (YO
	 R	 2	 (kP R )2

C1	 NTT EI+	
r ^- 0	 r (1 --Y-)k 2 + k	 +	 r y ] (4.104)ON	

2 ( Nrr) 2	 2 ( NTT) 2	 R?7
	

2 ( NTT) 2	 8 ( NTT) 4
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S	
ik(P-	 V1)R	 (YO -1)Pr	R	 2 (k(1- âr)RV}2

of = NTT [ 1+	
r	

-	 (1-Ak +	 ] (4.105)
2N	

2(Nrr)2	 2(NTT)2	 R778(NTT)
4

ikP R (y -1)P	 R	 (kP R )2
-iNrr [ 1+	 r v	 0	 r (1- v) k2 +	 r y ]	 (4.106)

zN	
2(Nrr)2 - 2(Nrr)2	

R77
	 8(Nn)4

The range of validity of these expansions is the same as for the pres-

sure- and vorticity-dominated modes of the preceding subsection, i.e.,

the reduced frequency k is such that

k<<
	

(4.107)

V

In the limit of steady motions, the entropy-dominated eigenvalues are

purely imaginary and correspond to non-propagating modes of attenuation

rate NTT . We do not know of any previous study of thee; modes, with

which our present results could be compared.

We now proceed to an investigation of the dispersion relations in

the very-high-frequency-very-wide-tube approximation.

4.5 Very-High-Frequency-Verb Wide-Tube Range.

In Section 4.3 we pointed out that the expansions pertaining to

the P modes were valid for values of the frequency parameter k

lower than 
Rv

l/3 . Such a requirement is particularly evident if we

examine relations (4.29a,b) where the right-hand side has been assumed

smaller than unity. For values of k of the order of 
Rvl/3 , the

high-frequency-wide-tube results break down. Physically, dilatational

attenuation in the bulk of the fluid, and proportional to k 2 , becomes

of the same order of magnitude as acoustic boundary layer attenuation

proportional to _^k . We now reexamine the pressure-dominated modes in

the domain:
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R 1/3<<k<<R	 (4.108)
V	 v

where the upper bound on k is a consequence of the continuum hypothesis

stated in Section 4.2. As mentioned earlier, high-frequency-wide-tube

results associated with the S- and V-modes are still valid in the pre-

sent approximation. Consequently, we du not need to consider these

modes in this section.

Following a well-established procedure, we solve the dispersion

relations (4.15a,b) for the unknown CYO which is assumed to be of order

	

unity. Equeti.ons (4.15) - (4.18) yield expansions of 
sL2	 a l , and

a 2 given by:

	

Y -1	 R 	 2S2 
= k 2 [ 1- i( P	 + __Y)v) R - __-L ]	 (4.109)z

	

r	 1] V k

	

rk 

P 

R	 i -2	 R

a l = ( 1-i)	 2 y [ 1 +2( Pr - (YO-1) 
TI ) v,	

(4.110)

OC2 = (1-i) F[1 - LR ]	 (4.111)
V

The above expressions are all accurate up to order k/R V . In (4.109),

we have included a higher order term in 1/k 2 so as to establish a one-

to-one relationship between each P-mode and its complex wave number

Az . However, such a term is negligible in the current determination

of the equations for CY O . After substitution into the dispersion rela-

tions (4.15a,b) and appropriate expansion, one obtains the following

relations:
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R

{ctenn, 

C1f 

2 s +	
lv 

-1	
U	 (4.112a,b)

1 + 0
	 2k

v r

Note that the corresponding high-frequency-wide-tube equations (4.29a,b)

reduce to (4.112a,b) when the term in 11 	 kRV is neglected in com-

parison with the term in (k 3/RV)k on the right-hand side of (4.29a,b).

From (4.112a,b), it is straightforward to solve for ar 0 . The final

results are given by:

2R
at^N Nn [ 1+ 

y 
i 1	

3 ]
	 (4.113)

1+ 0	 k l

y rr

where the integer N is an odd number

N= 2n-1	 n= 1,2,3,...	 (4.114)

for the symmetric higher order mode SP(n) , and an even number

N- 2n	 n= 1,2,3,...	 (4.115)

for the antisymmetric higher order mode AP(n) . Equations (4.109) -

(4.111) then yield the expansions of aC l , aL2 , and g  :

kP R 	 1/0 -2 	R
01P . = (1-i)	 r	 [ 1+ 2 { 	-(y0-1) -y 'I -h- ] 	 (4.116)

 N 	 V	 r	 71	 V

kR

a2 	 VN = ( 1 -i)	
2 [ 

1 - 
2R ]
V

(4.117)

	

Y -1 R	 2	 2	 2R

	

= k[1- i ( 0 +R) k - Nn-	 (l+i) Nn
	 1 ^^ ]

zN	 2	 Pr	
71 RV 2k2
	

1+ 

y0 -1 k2 k3

V(-Tr
	 (4.118)
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3

a0	
(1+i)a(2R )

V

(4.119)

O

tan 2 = i (4.120)

In order to derive the expansions pertaining to the SP(0) and AP(0)

modes, the coefficient Ot 	 is assumed to be large of o der (k3/RV)

and such that:

vr'

In this case, equations (4.112a,b) are shown to still be valid. Fur-

thermore, since Of 	 is of the form (4.119), its trigonometric tangent

is:

and equations (4.112a,b) immediately yield the following expressions

for a0 :

y-1	 3
a 00=a 00 = (1+ i)(1 + 0 )(2R )	 (4.121)

V

Corresponding expansions for U  and « 2 are given by (4.116) and

(4.117), and the complex wave number is

/ y -1 2	-1 R

ASP 
= 0hp = k[	 1- 2 1 

^V

+ 0 1R	 - 2(
Y 0 +-2) R ]	 (4.122)

	

'r l V	 Pr	 V

As seen from the second term in (4.118) and the second and third term

in (4.122), all P-modes are characterized by an attenuation rate pro-

portional to the square of the reduced frequency, and Kirchhoff's

free space attenuation term is seen to be a significant part of the

total attenuation rate. The three coefficients 0:0 ,Ot l ,and 0:2 at-

tached to the SP(0) and AP(0) modes are all complex numbers of very

large imaginary part. Hence, one may consider, in addition to viscous
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and thermal boundary layer thicknesses associated with of t and oft

and defined in equations (4.44) - (4.45), a new layer of thickness of

order (RV/k3 )	 associated with oc0 , and where pressure fluctuations

are significant. Such a behavior will be clearly exhibited when we

examine the mode shapes in the next section. Zeroth order terms simi-

lar to those of (4.113) were derived by Elco and Hughes (1962) for the

higher-order P-modes in a viscous fluid contained in a cylindrical duct.

Weston (1953a) in his investigation of the characteristics of the zeroth

axisymmetric sound mode, also finds expressions which are analogous to

the present SP(0)-made results.

4.6 Mode Shapes.

In the last three sections, the eigenvalues, solutions of the in-

plane dispersion relations, were analyzed in detail in the low, high,

and very-high frequency ranges. To each eigenvalue corresponds a given

mode shape, i.e., given variations of the physical variables with dis-

tance x from the duct middle plane. Since the symmetric inplane

eigenfunctions are closely related to the axisymmetric eigenfunctions

of a cylindrical duct, we will restrict the study to the determination

of the symmetric inplane mode shapes. Furthermore, symmetric and anti-

symmetric eigenvalues were shown to exhibit similar characteristics and

a discussion of the antisymmetric eigenfunctions would not reveal any

new physical features.

The symmetric mode shapes of Table I will be normalized by re-

quiring that

p' (x=0) - 1
	

(4.123)

for the SP-modes,
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Y^

S' (x-0) = 1
	

(4.124)

for the SS-modes, and

dal
dx (x-0) = 1
	

(4.125)

for the SV-modes.

Upon enforcement of these conditions in the relations in Table I,

the unknown constant A' takes the following forms:

_	 id	 1
(4.126)

p0a0k	
is 

2	
ig 2

_	 0	 1	 1	 1
(1 kPrR V) cos a: 0 / 2 - (1- kPr R V) cos of 2

in the case of SP-modes,

A' = 
d	 TO	 PrRy	 1

(y O -1)c	 2	 2	
(4.127)

p0 S1	0()1	 _	 1

S 2 cosac0 /2	 Cos acl/2
1

in the case of SS-modes, and

d 2 	 1
	

Cos a: 2/2
A' = 

kkR 
k 2 k 2 --^---	 (4.128)

2

SO ^1 2

in the case of SV-modes.

As mentioned in Section 4.1, the SP-, SS-, and SV-mode shapes are

then obtained in the three frequency and duct-width regir,es '•v substi-

tuting the expressions for ac0 , a: 1 , a: 2 , and 0  deri,^ ^d ir, the pre-

ceding sections into the relations of Table I.

In order to exhibit in a relatively simple mathematical form the

main features of each family in each reduced frequency domain, all the
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rerms in the resulting equations can be expanded in powers of the small

parameter characterizing the frequency range under consideration, so

as to yield first approximations of the physical variables which are

uniformly valid throughout the entire cross-section -J s x s ^ . Even

though we restrict our efforts to the derivation of first-order approx-

imations, the procedure is long and tedious. Since no mathematical dif-

ficulties are involved in the derivation, only the final results are

presented as shown in the next few pages. Tables V, VI, and VII refer

to the SP-, SS-, and SV-mode shapes in the high-frequency-wide-tube

range; Tables VIII, IX, and X to the same mode shapes in the low-fre-

quency-narrow-tube range; and, Tables XI and XII to the SP(0) and higher-

order SP-mode shapes in the very-high-frequency-very-wide-tube range.

Alternatively, the complete expansions of Oe0 , (X i , a2 and 9z

can be inserted into the relations of Table I. The re-ulting expres-

sions are very complicated and do not need to be expanded. The mode

shapes are evaluated directly by computing numerically thoir variations

with distance x from the duct axis for given values of the non-u'imensional

parameters, 'yo , Pr , RV , N , snd k . The complex .mplitudcs of

pressure, entropy, vorticity, axial and transversal velocity, and tem-

perature can then be plotted for the first two modes of each family as

shown to Figures 5-10. In any figure, each row of rectangular plots is

attached to a given mode indicated at the left end of the row, and each

column to a specific physical variable indicated at the bottom of the

column. On any individual plot, the variations of the real and imagi-

nary parts of the corresponding physical variable are represented ver-

sus transversal distance x (vertical axis on the plot) from x =0 to

x -k , i.e., in the upper half of the duct cross-section only. The
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	 lower half of the mode shape would be obtained by symmetry with respect

to the duct middle plane for all physical variables except vorticity

and transversal velocity which are antisymmetric. In the following sub-

sections, we successively discuss the main results concerning the SP-,

SS-, and SV-mode shapes in the low, high, and very-high frequency re-

gimes as they are summarized in the aforementioned tables and graphs.

4.6.1 High-Frequency-Wide-Tube Mode Shapes. As it is clear from

Table V, the SP-mode shapes in the central region of the duct are, to

a first approximation, the same as the corresponding inviscid ones.

Enforcement of the boundary conditions at the walls is responsible for

the presence of diffusive terms in the form of decaying complex exponen-

tials. Such terms are negligible outside thin viscous and thermal

boundary layers of respective thickness (2/kRV)	 and (2/kPrRv)

but they play a critical role inside these layers as exemplified in

Figures 5 and 6. The viscous boundary layer is associated with dif-

fusion of vorticity of order (k/RV0 whereas the thermal boundary

layer is characterized by diffusion of entropy fluctuations of order

unity. We remarked in Section 3.4 that a standing wave form, cos 2nrrx

travelling along the positive z-direction, could be viewed as the super-

position of two travelling plane waves propagating in symmetric direc-

tions with respect to the duct axis and reflecting against the bound-

aries. Let us isolate in.the expression for p'SP(x) , the plane

pressure wave

As seen from Table V, this wave, upon reflection at the upper wall, will

give rise to two secondary waves: a highly attenuated "vorticity wave"
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of the form

kR 1	 kR

2—V (^-x)	 i[t+	 Vx -S z]

	

e	
2	

e	
2	 z	

(4.130)
y -

propagating in a direction almost perpendicular to the plane of the

boundary, and associated with axial velocity fluctuations of the same

form, and a highly attenuated "entropy wave" given by

kPrRV 1	 kPrRV

	

S' = e	 . e	 (4.131)

also propagating in a direction nearly perpendicular to the wall, and

associated with temperature and density fluctuations of the form (4.131).

The same interpretation may be given for the plane wave propagating to-

wards the lower boundary. Hence, we may conclude that an SP-mode is

nothing but the superposition of two plane pressure waves which propa-

gate in symmetric directions with respect to the middle plane, and upon

reflection at the duct walls, give rise to very attenuated secondary

vorticity and entropy waves.

We also note that SP(0) has a non-zero transversal velocity VX

of order (k/RV)^ which varies linearly with x in the central region

of the duct and rapidly drops to zero in the boundary layers under the

cancelling effect of viscous and thermal diffusive terms. In contrast

with this situation, the transversal velocity of the higher-order SP-

modes is, to a first approximation, the same as in the inviscid case.

As mentioned in the introduction to this section, the graphs con-

stitute a more accurate representation of the eigenfunctions since the

contributions of higher order terms in U O , (Xi ) 012 , and g  are

taken into account. In order to illustrate this feature, we have
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displayed in Figure 5, the non-zero imaginary part of the SP(0) pres-

sure amplitude which, according to Table V, is to a first approximation

identically zero. From a comparison of Figures 5 and 6, and Table V,

we infer that higher-order terms only bring about slight changes to the

mode shapes.

If we now turn our attention to the results of Table VI and the

graphs of Figures 5 and 6 pertaining to the SS-modes, we clearly see

that the perturbations in the central core of the duct are composed of

entropy waves of order unity associated with temperature and density

fluctuations of the same order, pressure fluctuations of order k/RV

	

and velocity fluctuations VZ and VX of order (k/R V)	 and 1/RV

respectively. As in the case of the SP modes, enforcement of the

boundary conditions leads to the diffusion of vorticity fluctuations

2of order	(k/Pr
 R
V) ^ in layers of thickness 

(k(1-P )R )	
close to

r V
the duct walls. In addition, these entropy waves give rise to diffu-

sion of pressure fluctuations in layers of thickness (2/kPrRV)l

Such a phenomenon is not directly apparent in Table VI, except through

the associated transversal velocity fluctuations, because it is of

higher order than the term shown in the expression relative to p,SS
n

on Table VI. However, it definitely occurs, as seen from the more ac-

curate variations of pressure amplitude displayed in Figures 5 and 6.

The results may be interpreted in exactly the same manner as those per-

taining to the pressure-dominated eigenfunctions: An SS-mode can be

considered as the superposition of two plane entropy waves which pro-

pagate in symmetric directions with respect to the duct middle plane,

and upon reflection at the walls of the tube, give rise to secondary

pressure and vorticity waves.

106



The vorLicity-dominated mode shapes described in Figures 5 and 6

and Table VII, can be analyzed in a strictly analogous fashion. In this

case, a vorticity wave associated with axial and transversal velocity

fluctuations of order 1/kR V and (1/kRV)	 respectively, propagates

along the axis, in the central region of the tube. In order to satisfy

the boundary conditions, such a wave has to be supplemented by two types

of boundary layers. On the one hand, entropy fluctuations of order

(1/kRV) 
3/2

associated with density and temperature fluctuations of the

same order of magnitude, are diffused away from the walls in layers of

thickness (2/k(1-Pr )RV)	 On the other hand, diffusion of pressure

fluctuations of order (1/kRV)	 occurs in layers of thickness (2/kRV) .

These fluctuations are also associated with temperature, density, and

velocity perturbations as seen in Table VII. The SV-modes can also be

interpreted in terms of two primary vorticity waves and secondary pres-

sure and entropy waves.

As seen from this detailed discussion, there is ample evidence that

the high-frequency-wide-tube range is nothing but the so-called acoustic

boundary layer approximation. The peak of the SP(0) axial velocity in

the boundary layers, or so-called "Richardson annular effect," is seen

to be the particular manifestation of a much more general phenomenon

caused by the secondary decaying waves generated at the walls of the

tube. Such a peak occurs for all higher-order SP-modes as well as for

the SV- and SS-modes. The amplitude of the SP- and SV-temperature fluc-

tuations also presents a maximum near the walls. Furthermore, in light

of the interpretation of the results given above, we have fully justi-

J^

cf Richardson and Tyler (1929).
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fied the terminology used in designating the three families of modes.

4.6.2 Low-Frequency-Narrow-Tube Mode Shapes. It is clear from

the expressions of Tables VIII-X and the graphs of Figures 7 and 8,

that the low-frequency-narrow-tube mode shapes are drastically different

from their high-frequency-wide-tube counterparts. The amplitude varia-

tions of-the physical variables are now smooth throughout the cross-

section and no boundary layers can be isolated near the duct walls.

The vorticity and entropy fluctuations of the SP-modes, for instance,

can no longer be restricted to thin diffusive layers. They are spread

throughout the tube and are of the same order of magnitude as the pres-

sure fluctuations. Similar remarks can be made about the vorticity-

dominated eigenfunctions. This feature would seem to invalidate the

argument developed in the preceding subsection regarding the terminology

used in this study. However, since most practical cases fall into the

high-frequency-wide-tube range, where the three families assume clearly

distinct features, we find it convenient to stay with the present con-

vention.

The SP- and SV-mode shapes are seen to be closely related, since

their shape factors zn are complex conjugates of each other. Further-

more, on account of the close proximity of the walls, both families are

characterized by weak temperature fluctuations of order k , so that

they may be considered as propagating almost isothermally. The para-

bolic axial velocity profile of the SP(0)-mode is easily identified as

pertaining to the classical unsteady Poiseuille flow situation.

The SS-mode shapes are characterized by entropy, temperature, and

density fluctuations of order unity. The variations of entropy, in par-

ticular, are unchanged when compared with the corresponding high-frequency-
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wide-tube results. The transversal velocity of order k 2 has not been

determined, as it would require the knowledge of terms of order k 4 in

the expansion of Ci .

We may therefore conclude that, in the low-frequency-narrow-tube

range, viscous and thermal effects are dominant in the entire cross-

section of the tube.

4.6.3 Very-High-Frequency-Very-Wide-Tube Mode Shapes. As shown

in Table XI and XII.and in Figures 9 and 10, the SP-mode shapes give

rise to entropy and vorticity diffusion in viscous and thermal layers

of the same thickness (2/kRV)^ as in the high-frequency approximation.

However, the SP(0)-mode is no longer a plane pressure wave, as it was

in the other frequency regimes. More specifically, pressure fluctua-

tions as well as all other physical quantities are exponentially large

in layers of approximate thickness (2RV/k3 )	 close to the boundaries

of the tube. Outside these layers, a more precise evaluation would

indicate that the pressure amplitude is of order unity. We also note

that such layers are thicker than their viscous and thermal counter-

parts. At very high reduced frequencies, all fluctuations of signifi-

cant magnitude are concentrated near the walls, resulting in an "annu-

lar" SP(0) eigenfunction.

The higher-order SP-mode shapes are pressure released, i.e., the

pressure amplitude is to a first approximation, equal to zero at the

walls, as seen from Table XII. Consequently, in contrast with the high-

frequency case, fluctuations in temperature and axial velocity naturally

decrease to zero at the boundaries whereas transversal velocities reach

I	 a maximum close to the walls, and require the generation of secondary-

entropy and vorticity waves. The pressure waves are associated with
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entropy fluctuations of order k/R V in the core of the tube, which may

be interpreted as increased dissipation in the bulk of the fluid, due

to the very high frequencies under consideration. The SS- and SV-mode

shapes do not have to be discussed since their characteristics are the

same as in the high-frequency-wide-tube regime.

4.7 Dispersion and Attenuation Characteristics.

The expansions of the complex wave number pertaining to the SP-,

SS-, and SV-modes were discussed in detail in Sections 4.3, 4.4, and

4.5 for high, low, and very-high values of the frequency parameter k .

From these expressions, one can determine the dimensionless attenuation

rate, i.e., the attenuation rate per unit diameter along the duct axis,

lim S z I , as well as the phase velocity non-dimensionalized with respect
to the speed of sound:

Vph 
= R k

	

	
(4.132)

z

Both of these parameters are characteristic of the dispersion and atten-

uation properties of each mode, and have been plotted versus reduced

frequency k in Figures 11 and 12 for given values of the parameters

YO , Pr , RV , and R77 . The first three symmetric modes of each family

have been represented.

All curves break down around k R , on account of the limited

V
range of validity of the low and high frequency expansions. The SP-

results present an additional breakdown around the value k — RV 1/3

which separates the high-frequency region from the very-high-frequency

region.

In the low-frequency-narrow-tube range, all modes with the exception
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of the unsteady Poiseuille mode SP(0) , have high attenuation rates in-

dependent of reduced frequency. As mentioned in Subsection 4.4.1,

higher order SP- and SV-modes are characterized by almost equal attenua-

tion rates and opposi-t phase velocities.	 Entropy-dominated eigen-

functions are non-dispersive as their decay rate and phase velocity is

independent of k . The SP(0)-mode, on the contrary, is highly dis-

persive, both its attenuation and phase velocity varying as _V^k.

Basic changes in the frequency dependence of these two parameters

take place as we Ixa+nine the high-frequency-wide-tube range. The at-

tenuation rate of all SV- and SS-modes increases with - V(k , instead of

being constant, and merges asymptotically into the SS(0) and SV(1) at-

tenuation rates respectively. The same behavior holds for their phase

velocities. As expected, SP(0) wave fronts propagate with a velocity

approaching the isentropic speed of sound a 0 , and decay at a rate pro-

portional to _
	

. The most interesting features that occur in this

frequency range are associated with the higher-order SP-modes. They

are highly attenuated waves of negative phase velocity below their

cut-off frequency and weakly attenuated waves of positive phase velo-

city above cut-off. As the reduced frequency k increases through the

value 
Rv

l/3 , the decay rate changes from a u K frequency dependence

due to dissipation in the acoustic boundary layers, to a k 2 depen-

dence due to dissipation in the bulk of the fluid. Finally, we note

that the phase velocity is infinite at cut-off, as a standing wave

pattern is formed in the transversal x-direction.

It is interesting to compare the results of the present investiga-

*Mote that the absolute value of the phase velocity is plotted in Figure 12.

This phenomenon was investigated in detail in Subsection 4.3.1 and in
Appendix C.

r
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,SP
(x)p	 = cos 2n tt x

n
(4.133)

Vh=	 k

P
k2 -4 (nn) 2

(4.135)

tion with those pertaining to the propagation of sound in an invoicid

fluid contained in a two -dimensional duct. As we let the parameters

RV , R,7 , and Pr go to infinity, the SP- and SV-families vanish alto-

gether, as their attenuation rate becomes infinite. The SP-modes then

coincide with the symmetric sound modes encountered in classical duct

acoustics, their mode shape being given by

The zeroth mode propagates unattenuated with the isentropic speed of

sound a0 . Higher -order modes are non -propagating below their cut-

off frequency 2n TT and their decay rate is

Im ^n	 ^(nv-k'
	

(4.134)

Above cut-off they propagate with no attenuation and their phase velo-

city is

As we have seen in the high-frequency-wide -tube regime, the presence of

viscosity and heat conduction results in a finite negative phase velo-

city below cut-off and a small but non-zero attenuation rate above cut-

off. It also leads to a dispersive SP(0)-mode with a finite decay rate.

Furthermore, the SP-characteristics were shown to be drastically altered

as we investigated the low- and very -high-frequency regimes. In these

two ranges, the inviscid results do not lead to meaningful predictions.

4.8 Comparison With a Numerical S tudy.

It is of interest to compare the analytical results derived in this
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chapter with those obtained by the numerical approach of Scarton and

Rouleau (1973). These investigators assume that the fluid is viscous

but non-heat-conducting, and that it is contained in a rigid cylindri-

cal duct of circular cross-section. Their work is concerned with the

determination of the characteristics of the axisymmetric modes by the

method of eigenvalleys. Since it was pointed out in Section 4.2 that

the dispersion relations pertaining to the axisymmetric and inplane

symmetric eigenvalues respectively, could be written in analogous

mathematical form, it is legitimate to seek the common features be-

tween the numerical solutions of the first relation and the analyti-

cal solutions of the st;cond relation.

For convenience, we discuss Scarton and Rouleau's results in terms

of the three non-dimensional parameters k , R V , and 
R77 

introduced

in Section 3.2, where the duct width d is replaced by the radius R

As we let the Prandtl number go to infinity, the attenuation rate of

the entropy-dominated modes becomes infinite in both geometries so that

the SS-modes and their axisymmetric counterparts are identically zero.

Hence, this section is concerned with a comparative evaluation of only

two families, namely, the pressure- and vorticity-dominated modes.

These two families are referred to by Scarton and Rouleau as the A- and

B-bands,respectively. In Figures 13 and 14, we have reproduced typical

plots of their dimensionless attenuation rate, i.e., attenuation rate

per unit radius, and dimensionless phase velocity versus reduced fre-

quency k , for a given set of values of the parameters RV and R77

In their formulation, Scarton and Rouleau prefer to use the equivalent
set k , 1/RV , and KO/p0 a0R .
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The reduced frequencies considered in these grap':s span the entire high-

frequency range and the edges of the low- and very-high-frequency re-

gions. The overall similarity between Figures 13-14 and Figures 11-12

is striking. In the low-frequency regime, the higher order A- and B-

modes have identical attenuation rates and opposite phase velocities,

in complete agreement with the observations of Section 4.7. As the re-

duced frequency k is increased through the transition region, the

propagation characteristics of the A- and B-band closely approach those

of the SP- and SV-modes in the high frequency range. This observation

confirms that in the low-frequency region, the solutions of equation

(4.75a) located in the first and fourth quadrant of the complex plane

do correspond to the SV- and SP-eigenvalues, respectively. As men-

tioned in Section 4.4, such a choice could not have been fully justi-

fied without a knowledge of the behavior of the SP- and SV-complex wave

numbers in the transition region between low ana high frequencies. In

the high-frequency region, higher-order A-modes experience in the same

manner as higher order SP-modes, a sharp decrease in decay rate and a

change of sign in phase velocity, as k crosses their cut-off frequency.

Since Scarton and Rouleau consider a purely viscous fluid, the cut-off

frequencies are the same as in the case of an inviscid medium, and no

downward shift is observed. As the reduced frequency is further in-

creased, the V K dependence of the SP-attenuation rates gradually

shifts to a k2 dependence. However, there seems to be an apparent

discrepancy between the respective magnitudes of the AO- and SP(0)-

decay rates above-the cut-off frequency of the first-order pressure-

dominated mode. Whereas the axisymmetric AO-mode is more attenuated

than the higher-order A-modes in this frequency domain, the two-dimen-

120



sional SP(0)-mode is less attenuated than the higher-order SP-modes.

Beatty (1450) used an equivalent impedance model to show that the

higher-order pressure modes were indeed the least attenuated of all

axisymmetric modes, and that the opposite situation prevailed in the

two-dimensional case. A study of the cylindrical configuration on the

same lines as the present investigation would confirm this particular

point.

In Figure 15, we have reproduced plots of the modal amplitudes per-

taining to the zeroth and first modes in the A- and B-band, as obtained

numerically by Scarton and Rouleau. The values of k and R  corre-

spond to a typical high-frequency-wide-tube situation. Since the real

and imaginary parts have been normalized by their maximum in the inter-

val 0 :!, R !!--1  , a detailed comparison is impossible. However, we note

the general similarity between Figure 15 and Figures 5 and 6 of the pre-

sent study. In both instances, pressure- and vorticity-dominated modes

are characterized by the diffusion of vorticity and pressure, respec-

tively, in thin boundary layers close to the walls. Scarton and Rouleau

note that the thickness of these layers increases as the mode index in-

creases and the frequency parameter decreases. This trend is clearly

demonstrated by the analytical expressions (4.44) and (4.45).

Even thoughthe value of the reduced frequency associated with the

mode shapes of Figure 16 is located at the edge of the low-frequency-

narrow-tube region, we note in these plots the absence of boundary layers.

Pressure and vorticity fluctuations diffuse in the entire cross-section,

a situation which is very reminiscent of the low-frequency mode shapes

displayed in Figures 7 and 8.

As is clear from the examination of Figures 13-16, Scarton and
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Rouleau claim that there exists a BO-eigenvalue associated to an eigen-

function which is not identically zero. If this were to be true, we

would have to admit that the corresponding exact solution a 2 = 0 of

the inplane symmetric dispersion relation (3.70) is a relevant eigen-

value with a non-zero SV(0)-eigenfunction. As mentioned in Section

4.3.3, if a2 is assumed to be zero in the basic equation (3.42), one

is naturally led to conclude that the only possible mode shape is iden-

tically zero. Hence, the solution a 2 = 0 and its axisymmetric counter-

part BO are not genuine eigenvalues.

4.9 Concluding Remarks.

The discussion of the last three sections was restricted to the

symmetric modes. The propagation characteristics and shapes of the

antisymmetric modes could be analyzed in an identical fashion, in light

of the solutions of the antisymmetric dispersion relation derived in

Sections 4.3 - 4.5.	 f

The determination of the inplane modes, in view of the complexity

of the basic relations describing their motion, required the implementa-

tion of perturbation procedures. We were therefore unable to obtain

analytical results in the transition regions where no small yarameter

could be defined. No such difficulties were encountered in the case of

the antiplane modes and their characteristics were determined exactly

in the entire reduced frequency domain. A simple explanation of this

difference between the two types of motion can now be given: the anti-

plane modes are solely compo,;;ed of vorticity waves, whereas the inplane

modes are the result of the coupling of primary waves and secondary

waves generated at the boundaries. In particular, the inplane vorticity-
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dominated modes, in sharp contrast with their antiplane counterparts,

give rise to pressure and entropy fluctuations.

The following question remains to be answered: given a source dis-

tribution located inside the duct, in the cross-sectional plane	 a_= 0

what is the nature of the disturbances propagating along the duct axis.

Their character will naturally depend on the modal content of the source

amplitude for each reduced frequency k . A generator of pressure fluc-

tuations, such as a piston oscillating in the axial direction, or a

pulsating sphere, will give rise to a wave pattern composed of pressure-

dominated modes. Similarly, if a heat source or a distribution of heat

sources is situated inside the tube, the wave will consist of entropy-

dominated modes. Finally, a piston oscillating in its own plane in the

x- or y-direction will give rise to a wave pattern made up of inplane

vorticity-dominated modes or antiplane vortical modes. The number of

eigenfunctions to be considered and their respective weight will be de-

termined by the modal structure of the source.

•	 We noted in Chapter II that pressure and entropy waves are inher-

ently coupled as they propagate in an unbounded medium, whereas vortical

waves are not. From the results of this chapter, we may conclude that

the presence of solid boundaries has led to additional coupling between

vortical fluctuations and the two other types of fluctuations. For in-

stance, the presence of turbulence at some station along the duct will

generate vorticity-dominated modes which include pressure and entropy

fluctuations. In the absence of boundaries, the radiation field would

solely be composed of purely vortical waves. It is important to remark

that this conclusion is not in contradiction with Lighthill's theory of

aerodynamic noise generation. The present formulation does not include
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the pressure waves generated by the non-linear fluctuating Reynolds

stresses. Hence, turbulence does not give rise to pressure disturbances

in the linear approximation, when the medium is unbounded. However,

when there are solid walls, we have shown that even in the linear ap-

proximation, pressure fluctuations are induced at the walls and propa-

gate along the axis at a very high attenuation rate.

In Figure 17, we have summarized on a k -RV diagram the ranges

of the parameters k and RV in which inplane solutions have been ob-

tained. As explained in Section 4.2, regions of the k -R 
V  

plane

located on the left of the straight lines R V = 1 and k= RV have to

be excluded on account of the continuum hypothesis. The lines k =1/R 
V  

and

k -R 
V 
1/3 separate the low- and high-, the high- and very-high-frequency

ranges, respectively. In fact, our results are not valid for points

located near these lines, and a more accurate representation would have

to separate the different domains by transition bands around the lines

k- 1/RV and k -R V1/3
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100	 102	 104	 105	 108

RV

Figure 17. Domain of validity of the low-, high-,
and very-high-frequency approximations in
the Rv-k plane.
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V. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions.

The important achievements of this study are outlined below.

1. A new mathematical formulation of the small fluctuating motions

of a viscous, heat-conducting and compressible fluid has been developed,

which reduces such problems to the determination of three unknown func-

tions, namely, the acoustic, thermal, and viscous potentials, satisfy-

ing three linear partial differential equations. As aconsequence, the

total number of unknown functions has decreased from five "physical"

variables, i.e., p' p' S' ,T' and V', to three "auxiliary" variables,

H
e 

nth 
and A

2. This model has been applied to a detailed investigation of the

propagation of sound in a two-dimensional infinite duct with rigid and

isothermal walls. It has been shown that four distinct types of wave

motions, i.e., inplane and antiplane waves of symmetric or antisymmetric

amplitude with respect to the duct middle plane, can be considered in-

dependently.

3. The characteristics of the symmetric and antisymmetric anti-

plane modes have been obtained exactly for arbitrary values of the para-

meters. They consist of purely vortical velocity fluctuations.

4. In the case of symmetric or antisymmetric inplane motions,

three families, namely, pressure-, entropy-, and vorticity-dominated

modes, respectively, have been distinguished and their characteristics

have been determined in the low-frequency-narrow-tube, high-frequency-

wide-tube, and very-high-frequency-very-wide-tube approximations.

5. The analytical results pertaining to the symmetric inplane modes

have been found to be in good agreement with those obtained in a numerical
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study of the axisymmetric modes of a cylindrical duct in the limit of

zero heat-conduction.

5.2 Recommendations.

The general features of the fluctuating field generated by an arbi-

trary source distribution were discussed qualitatively in the last sec-

tion of the preceding chapter. A mathematical treatment of this prob-

lem will require a detailed investigation of the completeness of the

modes and their orthogonality properties. A proof of their complete-

ness will ensure that any arbitrary disturbance may always be regarded

as a linear combination of the eigenfunctions. When the scalar product

of two modes is defined as the integral of their product over the cross-

section, it is immedistely verified that the modes are not orthogonal.

However, a systematic inquiry might reveal the existence of more com-

plicated orthogonality relationships. Such properties would greatly

simplify the calculation of the coefficients multiplying each eigen-

function in the linear combination mentioned above.

It would also be of interest to compare the analytical results of

the present investigation with those obtained by a numerical study of

the inplane dispersion relations. The analytical results themselves

provide excellent first guesses of the roots in a wide range of values

of the parameters, and the implementation of a standard Newton-Raphson

procedure would enable us to determine numerically the eigenvalues in

these ranges as well as in the transition regions which have been ex-

cluded in the course of the perturbation analysis.

The methodology developed in the present work and the aforementioned

suggested extensions then could be applied in a straightforward manner,
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to the determination of the characteristics of the axisymmetric and

spinning modes in a circular duct. The main difference would reside

in the introduction of Bessel functions instead of trigonometric func-

tions.

In many practical cases, such as the propagation of sound in the

atmosphere or through aircraft engine-ducts, velocity and temperature

gradients are present in the medium. It would be worthwhile to examine

possible extensions of the mathematical formulation of Chapter II to

include complex mean flow situations. Such a theory would encompass

a broad range of problems and provide a general framework to analyze the

propagation of sound in a viscous and heat-conducting fluid which is

tnhomogeneous and non-uniformly moving.
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APPENDIX A

CALCUTATION OF 4R)  , ( ap ) , ( bbas
P	 g	 p

In this Appendix we will omit the subscript 0 with the under-

standing that we are considering the state of the medium at rest. The

characteristics of the fluid are assumed to be specified in terms of:

- the temperature T

- the density p

- the isentropic speed of sound a 0 =	 (a )
pS

- the specific heat at constant pressure c
P

- the ratio of specific heats y

The partial derivatives (a ) , ( aT) , (aS)	
are to be expressed

P	 pS	 p
as a function of the five properties of the fluid mentioned above. In

the following derivation we make use of the First and Second Laws of

Thermodynamics without introducing any additional assumption such as a

particular equation of state.

From the definition of partial derivatives, we may write:

dp = a 2dp + (aS ) dS	 (A-1)
P

dT = (LT)ap  d  + (L) 
dS	 (A-2)

S	 p

Equation (A-2) is then used to express dS as follows:

dS	
IT) 

[dT - (LT ) d P	 (A-3)

(as	 s
P

The First and Second Laws of Thermodynamics reduce to the differential

form:
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aT = T
( as 

P	 cv
(A-7)

de - US + -P— dp	 ke. -4)

P

and when (A-3) is substituted into (A-4) we obtain the following

relation:

aT

de =	 dT +[ 2 - T aT S ] dp	 (A-S)

(as )	 P	 (TS-)
P	 p

The coefficient of dT in (A-S) is nothing else but the specific heat

at constant volume so that

(A-6)cv = (a- T'

P

or

which providrs an expression for (aS) as a function of T and c v .
P

In view of this result, equations (A-3) and (A-S) may be rewritten as:

dS = T [dT - (ap) do ]	 (A-8)
S

de cv dT+[- 	 cv 4a') ]dp	 (A-9)
P	 S

Since both de and dS ere exact differentials, we have from (A-8)

and (A-9):

ac	 c

T( ap ) - 2 (aQ) -T [ aT(c v (^) )]	 (A-10)
T	 T	 S	 S P

ac

( ap ) - 2 (a) - t-L	 (aT) ) ]
	

(A-11)
T p	 p aT v^ S P
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A
= 

' 42)S P2aSP (A-15)

'y n

Substitution of (A-11) into (A-10) then results into the following

simple relation:

cv (ap) = 2 (aT )	 (A-12)
S	 p	 p

where ( ) is to be expressed in terms of d?) . When (A-8) is used
P	 P

in (A-1), dp is related ti dT and dp through the equation

dp,l--v 42) dT+ const. dP
	

(A-13)

P

so that

( 2) = c  (k)	 (A-14)aT	 T as
P	 P

and, with the help of (A-14), (A-12) becomes:

The above result provides a first equation between the unknowns (LT 
)

aP S
and (aS )	 The second equation is ob o ined by expressing the First

A

and Second Laws of Thermodynamics ir- terms of the enthalpy h

dh = T dS +
P
	 (A-16)

Equations (A-1) and (A-2), together with the result (A-7), then lead

to the following relation between dS , and dp and ..T

a 2dT - ( BT ) dp

dS	 S2	 (A-1 %)

cv
	 as )p(aP b

which, after substitution into (A-16) results in:
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2
dh = 2	

a T	
dT + const.dp	 (A-18)	 •c T - ( p ) (ap)

	

v	 p	 S

The coefficient of dT in (A-18) is the specific heat at constant pres-

sure so that

2
c  = 2	 a T	

(A-19)

a v - 4)p(aP 8

which provides a second equation between the unknowns( aT) and ^)

	

ap S
	

as P

cp (aS ) ( )TTP ) 	 (Y-1)a 2T	 (A-20)

	

P	 S

aT

	

Equations (A-15) and (A-20) are immediately solved for (L
T

	
and

as
and the final results are shown below: 	 J

P

(R) = p a	 Y-1)T	 (A-21)
dS	 c

P	 P

(ap) = P
	

l^T	 (A-22)
S	 p

(T) _ Y	 (A-23)
P	 P
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APPENDIX B

DERIVATION OF SPLITTING THEOREM

Let us first introduce the following notations:

n
L (^ +'^ ) _	 (0 +0 ) - - v2 ('4 +'T? )+ P	 (B-1)
1 a	 th	 at a	 th	 PO 	a	 th	 PO

L2(A)	
at - U

O 72 A	 (B-2)

1 y0 -1	 ,
L3 (^ h)
	 th - POa0	

P TO 

kO T	 (B-3)

0

The problem considered in this Appendix may then be stated in the fol-

lowing manner:

	

Assumptions: Let the set{ x ,	 A } satisfy the following
a	 th

system:

grad [L
1 ( a* +nth)] +cur.l[L2(A )] = 0	 (B-4)

v2 
L3th ) - 0	 (B-5)

H
and V' , p'	 and S' be given by the relations:

V' = grad (^ * + IT) th
) 

+ curl A	 (B-6)

= 
p	

2 2	
(B-7)

^t - 0a0 	 a

c

)S'	 p0	 2

at = a 0	 (YO-1)TO v nth	
(B-s)

with

div A = 0	 (B-9)
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Question: Is it possible to find a new set { 0 , it
th A } which

will yield the same values of the physical variables through the rela-

tions

V' = grad (4a +45th ) + curl A	 (B-10)

^k'
-p	

(B-11)
at	 08 2 

0 
2

0	
^

c
as'	 p0	 2	

(B-12)at - a0	 (YO -1)TO 0 nth

with

div A = 0	 (B-13)

and which will satisfy the simpler system of governing equations:

Ll (4a + 0th ) = 0	 (B-14)

L2 (A) = 0	 (B-15)

L3
(tD

th) = 0	 (B-16)

Proof: Let us examine the following new setA
{ a ' nth ' 	 }

	

t	

:POOTO

1

a = 

c a,` +^b
th _ f L l (o * +4)th)dT - p a	 c 	 kOT(B-17)

	

0	 00 

1	 YO-1

nth =kOT^(B-18)
pOaOVTPTO 

0

t

A = A -f L2 (At )dT	 (B-19)

0

and verify that it complies with the requirements (B-10 ) - (B-16).
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(a) From (B-19) we have:

t
divA = divA - J div L2 (A )dT	 (B-20)

•

	

	 0

and

div L2 (A) = at div A - vo div 02A = at div A - voo2div A

(B-21)

Since (B-9) is satisfied, (B-20) and (B-21) require that

divA = 0	 (B-22)

which proves (B-13).

(b) Let us now consider

grad (^ +(bth )+ curl A = grad (^ +(Dth )+ curl A	 (B-23)

t

-f {grad Ll(	 +nth)+curl L2 (A ))dT
0

and therefore, from (B-6) and (B-4)

a
grad ((^ +(5th )+ curl A = V'	 ( B-24)

which proves (B-10).

(c) Let us calculate

y -1

02 1) = 02 a^ +V 
[nth - p a	

c O T kOT']
00	 p00

t

-J 72 L 1 (	 + h)dT	 (B-25)

0

When we take the divergence of (B-4), we have

p2 L1 ( cb * +(bth) = 0	 (B-26)
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so that (B-26) and (B-5) require that

	

02 a
= 020 *	 (B-27)

which, together with (B-7) proves (B-11).

(d) Similarly, we may write

21	 y0- 1 k 20 T0 n
	

,	
(B-28)

	

th = p 0 a 0	 cp TO 0

0

so that, from (B-5) we have

2	 2

0th = 4 cbth	 (B-29)

which together with (B-8) proves (B-12).

(e) From (B-17) - (B-18) we may write:

t

L1 (4D +(b = L1 ( * +nth)- a f L1 ( * +(b h)dT
0

t

	

+ X70 f 02 L (4 * +t * )dT	 (B-30)
^0 	1 a	 th

0

so that with the use of (B-26)

L 1 (0 +(bth ) = 0	 (B-31)

which proves (B-14).

(f) From (B-19) we have

	

_	 t
	 f

tL2(A) = L2(A'C	fitJ 
f L 2 (A)d'r+VO  V2 L2 (A )dT	 (B-32)
0	 0

When we take the curl of (B-4) and take into account (B-9), we may write:

	o2L2(A^^) 
= 0	 (B-33)
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which shows that (B-32) implies:

L2 (A) = 0	 (B-34)

(g) finally, using (B-19), we have

L3 (0th) - 0	 (B-35)

which proves (B-16).

The new set { a ' 
nth ' A I therefore meets the requirements

(B-10) - (B-16). In particular, it is governed by the system of partial

differential equations (B-14) - (B-16).
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APPENDIX C ACOUSTIC POWER AND ENERGY TRANSPORT

VELOCITY OF HIGHER -ORDER SP-MODES

•

	

	 The radiation condition used in - the present investigation requires

that waves be attenuated in the positive z-direction, i.e., that the

imaginary part of the complex wave number be negative. We showed in

Section 4 . 3.1 that such,a condition results in the existence of pres-

sure -dominated backward -propagating waves of negative phase velocity

below cut -off. In this Appendix, we prove that in spite of the change

in sign of the phase velocity through cut -off, the acoustic energy of

the higher order SP-modes always propagates in the positive z-direction.

Karamcheti (1974) showed that the classical definition of acoustic

intensity is not affected by the introduction of viscosity and heat-con-

duction effects. The acoustic power is therefore taken to be given by

k

P = Re { 2 J p'Vz'*dx }
	

(C-1)

where the duct width d has been introduced because x is a non-dimen-

sionalized coordinate. We are interested in deriving a first approxi -

mation of the acoustic power radiated by the higher -order SP-modes in

the high-frequency range. In this context, the acoustic power needs

to be evaluated to order ( 1/RV)^ inclusive. The pressure and axial

velocity amplitudes are given in Table I. After expansion of the coef-

ficients multiplying the cosine functions, p' and V'* can be written

as

ip0a0k	 Cos ac0 x	
1 R k Cos (X x	 i(t-Rzz)

P' (x , z ,t) s -	 d	
A '
 E cosat0 /2

+i(YO -1)•( Pr R^ ) RV cos a1 /2le

(C-2)
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^`	 I

*	 *	 *	 **	 ^,	 * Cos ofx	 k	 cosat l x cosot2 x -i(t-^zz)
Vz (x,z , t)	 d ^z ^Cosot* /2 - i(y0 1)PrRV cosGti / 2 - coso 2/2Ie

(C-3)

where the SP superscript and n subscript have been omitted for con-

venience. In the preceding expressions, ot0 , C91 , of  , and 
Oz 

are

given by equations (4.35), (4.36), (4.37), and (4.39), respectively,

and A' by equation (4.126). In order to evaluate the power, we need

the values of the following elementary integrals

	

r cos otOx cos a x	 2

J cosot0 2 cosot2*/2 dx	 a 
2^ *2(^0tanot0/2 -ot2*tanot2*/2)

"	 0	 2

(C-4)

and

cos ofOx cos a 
* 

x	 2Im(Of tanot0/2)

cosot0/2cosa0/2dx	
Ima! 2
	 (C-5)

-	 0

After substitution of the expansions of ot0 and a2 , these integrals

can be reduced to

*
n cos otOx cos 01 2 x	 2

- cosot0 /2 coaCt2 /2 dx = (1+i)	
kRV	

( C -6)

and

r 
cos ot0x cos ot0 x	 1	 k*2-4 (nn) 2

FkRJ cosot0 /2 cosot* /2 dx 	 - 2 ^ l
 " 4(nrt)2	

J (C-7)

where terms of order 1/RV have been neglected. Similar expressions

can be derived for the other integrals which appear in the acoustic

power. Integrals

*
pairs (010,al)

of order ( 1/RV)

into (C-1) only v

of the same form as (C-6)

*	 *
((X 1 .OL0 ) ) (01 1 A 1 ) , and

When these intermediate

ao terms need to be retain

and corresponding to the

*
(ot l ,ot2 ) are found to be

results are substituted

:d, so t , c the power P

is given by
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V = P
en a0Es (C-10)

p Oa0k ' ^*	 *	 cos a0x cos a0 x
P z 2d A A Re S

z - cosa0 / 2 cosa* /2 dx

-	 cos a x cos a x	 2Im# z

-
cosa0 /2 cosa2 /2 d 

	 e	
z	

(C-8)

The first integral represents the contribution to the acoustic power

of the irrotational part of the fluctuating motion whereas the second

integral involves coupling between the irrotational and rotational

fluctuations in the acoustic boundary layers. When the constant A'

given by (4.126) is expanded and use is made of (C-6) and (C-7), the

power finally equals

2

P	 d	 Re*	
_ k Y -4 (nrr) 2	 2

4 p 
0 

a 
0 
k	 ^z [1	 4(nn)2	

kRV

2lms z
-2(1+1)	

kR	
e	

z	
(C-9)

v

Instead of reasoning in terms of acoustic power, it is convenient to

normalize P by the acoustic energy per unit length along the duct

axis. In other words, we prefer to consider the energy transport velo-

city non-dimensionalized with respect to a 0 and defined as follows:

where	 E
s 

is the acoustic energy per unit length. Note that in the

present case of a dissipative medium, the energy transport velocity

does not necessarily coincide with the group velocity. The first ap-

proximation of E
s 

in the high-frequency range isidentical to the in-

viscid aceUstic energy. Furthermore, in the case of an inviscid medium,
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the acoustic energy is of order unity throughout the entire frequency

domain. Consequently, in order to obtain a first approximation of Ven

only the inviscid value of E a is needed. It is given by

w,

	

^	 p d
Es	

d 
2 f p' p' * dx+ 4 

J 
V'. V' * dx

	

4P0a0 -^
	 -^

(C-11)

H
where p' and V are the pressure and velocity fluctuations associ-

ated with the symmetric acoustic modes propagating in the inviscid

medium. When we use the results mentioned at the end of Section 4.7,

we find that E s is given by

E s

	

	d 2	 when k > 2nrr	 (C-12)

4p0a0

and

2 2lms z

Es = d nn 2 e
	

z	
when k 5 2nrr	 (C-13)

p0a0

From equations (C-9), (C-10), (C-12), and (C-13), and the expansions

for the complex wave number S
z 

derived in Subsection 4.3.1, one can

determine the acoustic power and the energy transport velocity, and

follow their variations as the frequency parameter k decreases.

When k > 2nn , the acoustic power is given by

P	 4	 k	 k2-4(nrr)2	 (C-14)
p 

a
0 0

and the energy transport velocity is

k2-4(nrr)2	 (C-15)
	en	 k
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These expressions do not exhibit any new features. They are identical

to the inviscid results.

When k - 2nrr , the wave number is given by equation (4.48) and the

power and energy transport velocity respectively equal

	

YO_
	 x

Y 
-1	 -8n—/ oP

	
( 2n I

 ) sin 
8 

z

P	
2pd 	 O	 ( 2nrrR ) cos 8 • e	 -	 v	 (C-16)0	 a
0 ^ 	 v

Ven	 2 	 (2n1 )k cos
^	

8	
(C-17)

V rT	 v

The energy propagates with a velocity and decay rate proportional to

( 1/R 
)
)k . In the inviscid case, both these quantities would be zero

and remain equal to zero for lower values of k .

When 2nrr < k <	
2n*t

the wave number is given by equa-
(1+(Yp-1) Vpr

Lion ( 4.49) and we have:

P s 4p
	

^2
d	 2(4(nn)2-k2) k -4(n")2 +2 ] e -2	 4(nrt) 2 -k 2 z
0a 0k	 kRV	

4 OTT) 2-k2	
(C-18)

*2

s k	 2 4 nrr 2 -k [ k -4(nrr)2 +2 ]	 (C-19)en	 4 OTT) 2	 kR?)	 4(nrr)2-k2

The first and second terms in the brackets of (C-18) represent the con-

tributions of the irrotational and rotational components of the fluc-

tuations, respectively. They are positive and of the same order of

magnitude. The total power is positive. Equation (C-19) can be inter-

preted in the same manner.

When k -	
2nTT

^-- 1	 the appropriate values of P and
( 1+(Yp-1)/ V Pr)

Ven are obtained by simply replacing the reduced frequency by its value

in (C-18) and (C-19). It is easily checked that, to this approximation,

qty
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the power is associated with the coupling of rotational and irrotational

fluctuations in the boundary layers. The purely irrotational part of

the power is of higher order. Hence, at cut-off, the energy propagates

at a high attenuation rate in the viscous boundary layers. Below cut-

off, the rotational component is W IT positive and larger in magnitude

than the negative irrotational component, as seen from equation (C-18).

In this frequency range, the rotational part of the energy propagates

in the positive s-direction in the viscous layers, whereas the irrota-

tional part propagates in the opposite direction and is distributed in

the entire cross-section. The net power io -till positive.

The results of this discussion are summarized in Figure 18. The

velocity of energy transport pertaining to the SP(1) mode is plotted

versus the reduced frequency. It is clear from the graph that the vor-

tical fluctuations play a crucial role in keeping the velocity of en-

ergy transport positive. Identical conclusions would result from an

analogous study of the antisymmetric modes.

I
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Figure 18. SP(1)-energy transport velocity versus
reduced frequency k . Same values of

the parameters as in Figure 12.
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APPENDIX D

SOLUTIONS OF SIN Z - i Z

In this Appendix, we discuss the main properties of the roots of

the transcendental equations:

sin  - fz
	

(D-la,b)

a'

and briefly describe a method of solution.

Equations (D-la,b) both admit the trivial solution zero. They

also have an infinite number of complex roots which are symmetrically

le, :-ed in each quadrant of the complex z plane. We will restrict

our attention to the roots which lie in the quarter-plane (Re z > 0,

Im z < 0) , and all others will be obtained by symmetry with respect

to the origin and the coordinate axes. Consequently, let us examine

solutions of (D-la) of the form:

z - Cx - is	 a-' o ; 0 >0	 (D-2)

Substitution of (D-2) into (D-la) leads to the following system of

coupled equations:

sinCi cosh 0 - ac	 (D-3)

cosCK Binh R - 0	 (D-4)

Since cosh S is necessarily positive for any value of S	 (D-3) implies

that sinne is also positive. Hence, possible values of a are such

that

2nn s CY S (2n+1)n	 n - 0 , 1 , 2 , ... 	 (D -5)

1	 The above system may then equivalently be written in the following

form:
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2	 •
F(cx) = cos at 	 (sin ac) -1 - cosh-1(sinat)- 0 	 (D-6)

= cosh -1(sinat)	 (D-7)

We have therefore reduced the problem to the determination of the

zeros of F((X) . Such a function is only defined in the intervals given

by (D-5). Its derivative is:

ddFF = -	 (20c -sinot 2	
0	 (D-8)

4sin3at[ 
( sin at ) -I^

Moreover:

when (X -y 2nrr+ 	and n # 0 	F((X) - + co

when a - 0+	 F (af) - 0

when a:	 (2n+1 ) rr-	 F(at)	 - co

It may be concluded from the resulting variations of F(Ot) sketched

in Figures 19 that F(at) has only one zero a:n in each interval

(2nrr , (2n+1)rr)	 Since F((2n 2) n) <0 each solution of (D-6) can

be further bounded as follows:

2nrr s a:n s (2n + 1) rr 	 n = 0 , 1 ...	 (D-9)

and the corresponding value of A is then given by (D-8) as:

S+ = cosh -1 (	 n )	 (D-10)n	 sinat +
n

With this information, one may immediately develop an iterative numer-

ical scheme which will yield the roots
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F(a

C

Figure 19. Sketch of function F(a) defined in (D6) .
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zn = CYn - isn
	

(D-11)

of the transcendental equation (D-la). The results are shown in Table

III. Finally, as n goes to infinity in (D-9) and (D-10), both real

and imaginary parts become infinite. From equations (D-3) and (D-4)

we then obtain the following limiting form of zn

zn = (2n +Z) TT - i cosh -1 (2n+ 2)rr 	 (D-12)

The transcendental equation (D-lb) may be studied in exactly the same

manner. It is found that the roots are given by

z  = CYn - ion
	

(D-13)

where

(2n +1)T1 < a S (2n+2)r7 	n = 0 , 1 , ...	 (D-14)

and

9n = cosh- 1( sin Ol-)	 (D-15)
n

The corresponding numerical results are displayed in Table IV. As the

index n goes to infinity, the asymptotic limit of the roots is:

zn = (2n +2) rr - i cosh -1 (2n+ 2)T T 	 (D-16)
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