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I. INTRODUCTION

1.1 Motivation.

The purprse of this study is to examine the theory of sound pro-
pagation in a viscous, heat-conducting fluid, initially at rest and in
a uniform state, and contained in a rigid, impermeable duct with iso-
thermal walls.

In the past ten years, research in duct acoustics has been largely
motivated by the necessity of reducing the noise level associated with
the commercial operations of modern jet aircrafts. A large portion of
this noise is internally generated in the jet engine itself, and is
primarily due to the rotating turbomachinery blades and the combustion
process. This noise then propagates in the form of acoustic modes
through the inlet and exhaust pipes. Even though, there has been a
great deal of effort devoted to the understanding of basic aerodynamic
noise generation mechanisms, one of the most efficient ways of minimi-
zing the radiated sound still consists of absorbing as much of the
acoustic energy as possible along the propagation path inside the inlet
or exhaust pipe. This is essentially achieved by treating the duct
walls with a suitable sound absorbing material. However, the viscous
and heat-conducting properties oi the medium itself also contribute to
the attenuation of the radiated sound. Most aeronautical applications
fall in the high-frequency wide-tube range, i.e., the frequencies of in-
terest and the cross-sectional dimensions of the duct are such that dis-
sipation due to friction and heat conduction is restricted to a thin

acoustic boundary layer close to the duct walls, and only constitutes a

small part of the total attenuation. It is therefore not surprising
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that most of the current studies in duct acoustics of jet engines assume
the medium to be inviscid. Nevertheless, acoustic boundary layer atten-
uation has to be taken into account in &ny systematic evaluation of the
total attenuation rate.

These effects also play a primary role in the propagation of blood
pressure pulses in human arteries and in the performance of fluid trans-
mission lines. The medium {s then a liquid and heat conductivity is
usually found to be negligible. The dimensions of the tube and the char-
acteristics of the fluid are such that, in contrast to the previous in-
stance, viscous forces are dominant throughout the cross-section, and
viscous dissipation is large. This is the so-called low-frequency-nar-
row-tube range and the medium may then no longer be considered inviscid.

From a theoretical point of view, this problem may be viewed as ~ne
of the few instances where the basic equations pertaining to the unsteady
motion of a viscous, heat-conducting, and compressible fluid are amenable
to snalytical treatment., Even though these equations are linearized, one
expects the solution to retain most of the essential features of more
complicated flow situations. The fundamentel concern of this study is
to develop a systematic methodology that would be of use in analyzing

complex aerodynamic noise problems.

1.2 Review of the Literature.

In 1868, Kirchhoff published his famous study, '"On the Influence of
Heat Conduction on Sound Propagation in Gases." At about the same time,
Regnault (1868) made the first measurements of sound attenuation in the
sewers of Paris, A detsiled account of Kirchhoff's theory is given in

Lord Rayleigh's Theory of Sound (1877). Kirchhoff considered both vis-

»
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cosity and heat conductinn, end derived a general dispersion relation
pertaining to axisymmetric waves in cylindrical tubes. This relation
was then solved for plane waves in the high-frequency and low-frequency
approximations. Many papers on this same subject have been written
since, and it would be tedious to discuss them here in sny detail. Ome
may, however, within the extensive literature available, distinguish a
few main trends,

A large number of investigators have sought to extend Kirchhoff's
plane mode results to the entire frequency domain., Weston (1953a), in
particular, computed aedditional terms in the first-order expansions
given by Kirchhoff, in both the high- and low-frequency cases, and re-
vealed the existence of an additional very-high-frequency range. Iber-
all (1950), Brown (1962), and Rott (1969), neglecting radial pressure
gradients in the governing equations, derived a solution for the plane
mode valid in the low and high frequency domains. Finally, Shields et
al, (1965), and very recently Tijdeman (1969, 1975) made a comparison
of the previous results with a numerical solution of the dispersion re-
lation. It is worth mentioning at this point that another group of re-
search workers, Sexl (1930), Womersley (1954), Lance (1955), and Uchida
(1956), concerned more specifically with the propagation of sound in non-
heat-conducting liquids, studied oscillating flows in tubes filled with

an incompressible viscous fluid. Even though there is no wave propaga-

tion in this case, the axial velocity profile beaers a close resemblance
to the corresponding compressible flow result. In particular, in the
high-frequency limit, the amplitude of the axial velocity presents a
maximum close to the duct wall. This phenomenon, experimentaily dis-

covered by Richardson and Tyler (1929), is usually referred to as the

b
4
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Richardson Annular Effect. All theoretical results pertaining to the
plar ¢ or fundamental mode were abundantly checked experimentally by Fay
(1940), Kemp end Nolle (1953), Meyer and Gath (1953), and Weston (1953b).

From inviscid acoustics, however, one would expect the existence at
high frequencies, of higher-order propageting modes. A few studies have,
indeed, been devoted to the determination of their attenuation character-
istics, The first attempt seems to have been made by Hertig and Lambert
(1950), whose theoretical formulation later proved to be unsatisfactory.
Cremer (1948) suggested simulsting viscous and thermal effects close to
a rigid well by &n equivalent impedance, and Beatty (1950a,b) and Morse
and Ingard (1968) then used the well-known soft-walled-duct model to com-
pute the attenuation rate of higher order modes. Shaw (1950, 1953) di-
rectly perturbed Kirchhoff's dispersion relation to recover essentiaslly
the same results. Correpsouding expressions were also derived for a
purely viscous fluid by Bogert (1950), Elco and Hughes (1962), and Cohen
and Tu (1962). Nayfeh (1973) recently extended Cremer's equivalent im-
pedance concept to situations where the medium i1s inhomogeneous and non-
uniformly moving. Paradoxically, the full problem has not yet been
solved numerically, although the case of waves in a viscous luid con-
teined in a cylindrical tube was treated by Gerlach and Parker (1967)
and very recently by Scarton and Rouleau (1973). Scarton and Rouleau,
in particular, used the method of eigen-valleys to show the existence of
a8 previously unknown family of vorticity-dominated modes. Their work
seems so far to be the most comprehensive study of the viscous effects
on sound propagation in ducts.

Even though wave propagstion in tubes is the ultimate concern of

the present investigation, it is & particular case of the more general

4
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theory ¢t the small unsteady motions of a viscous, heat-conducting and
compressible fluid, and a significant portion of this work has teen de-
voted to a new methomatical formulation of such & cless of problems. It
is therefore appropriate to review here some of the studies made in this
wider context, Lagerstrom ot £l, (1949) examined the fundamental prin-
ciples underlying the linearized system of cquations governing the flow
of a viscous compressible fluid, They showed the existence of two types
of waves, namely, longitudinal or pressure waves, and transversal or
vorticity waves. In particular, a proof was given for the ststement
that sny linearized flow may be split into & longitudinal snd a trans-
versal component. Wu (1956) generalized their results to the case of a
viscous and heat-conducting fluid. Chu and Kovasznay (1958) were pri-
marily interested in the measurement of fluctuating quantities in super-
sonic turbulent flows, and introduced the concept of three main modes of
fluctuations, namely, sound, vorticity, and entropy modes. This idea
was recently expanded in the wider context of aerodynsmic noise theory
by Doak (1973). Finally, two bassic papers of general interest and deal-
ing mainly with sound propagetion in en unbounded medium are worth men-
tioning here. Truesdell (1953) conducted &n exhaustive review and cri-
tique of Kirchhoff's theory of free space sound absorption, for fluids
with different heat-conducting properties, and for different frequency
regimes. Lighthill's survey (1956) on finite-amplitude sound waves shed
further light on the physicel mechanisms responsible for sound absorp-
tion. Both studies have interesting discussions on the controversial
issue of bulk viscosity,

A century has passed since Kirchhoff's investigation and it is ap-

parent from this brief review of the literature that a complete treat-
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ment of the problem is yet unavailable. 1In the next section, we pro-

ceed to a general discussion of the scope and goals of the present work.

1.3 Scope of This Study.

This study is essentially concerned with the theory of small per-
turbations of a viscous, heat-conducting, and compressible fluid, As
such, the second chapter is devoted to an alternative mathematical for-
mulation of the problem, suggested by Doak (1973) in the general frame-
work of aerodynamic noise theory. 1In this approach, the fluctuating
velocity field is considered as the superposition of acoustic (related
to pressure), thermal (related to entropy), and viscous (related to
vorticity) parts., Such a decomposition reduces the linearized Navier-
Stokes equations to a system of three partial differential equations
for three basic unknown functions: an acoustic scalar potential; a
thermal scalar po.ential; and, e vit¢ ous vector potential. No restric-
tive assumptions are made regarding the nature of the fluid or the mag-
nitude of the Prandtl number. The physical implications of this formu-
lation are discussed in deteil, as well as particular cases where sig-
nificant simplifications may be achieved.

The previous methodology is applied in the third chapter to a study
of small-amplitude fluctuating motions in a duct of constent width with
rigid and isothermal walls. The governing system of equations is pro-
perly non-dimensionalized in terms of five non-dimensional parameters
which are functions of the cross-sectional dimension of the tube, the
frequency of the perturbation and the characteristic properties of the
fluid, The remainder of the investigation further assumes the duct to

be two-dimensional, in order to miniwize analytical complications. 1t




is then shown that each frequency may be -associated with four distinct
types of wave motion, namely, antiplane oi inplane waves of symmetric or
antisymmetric shapes with respect to the duct axis. Each family is char-
acterized by a specific dispersion relation between a given circular fre-
quenc . and the corresponding complex wave numbers. The relations per-
taining to antiplane waves may readily be solved for arbitrary values of
the parameters whereas the relations characterizing inplane motioas are
transcendental in nature and require the implementation either of a nu-
merical scheme or of some approximation procedure. It is found that per-
turbation methods give relatively simple mathematical expressions in
terms of the characteristic parameters of the problem, and, at the same
time provide a convenient framework for the interpretation of the main
physical phenomena occurring during the wave motion.

Consequently, Chapter IV is concerned with a perturbation study of
the inplane dispersion relations in three ranges of frequencies or equi-
valently three ranges of duct widths: the low-frequency-narrow-tube
range; the high-frequency-wide-tube range; and, the very-high-frequency-
very-wide-tube range. It is shown that, in addition to the usual pres-
sure-dominated modes encountered in inviscid propagation problems, two
other families of entropy- and vorticity-dominsted modes have to be con-
sidered. Expansions for the attenuation rates, phase velocities, and
mode shapes are then obtained for each family in each frequency regime.
The physical implications of the results are then discussed and a quali-
tative comparison is made with the numerical solution of Scarton and
nouleau (1973), in the limit of zero heat-conduction.

In the concluding remarks, we summarize the essential contributions
of the research and suggest opportunities for further study based on the

experience gained in the present undertaking.
7
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II. THEORETICAL FORMULATION OF THE SMALL
AMPLITUDE FLUCTUATING MOTIONS OF A VISCOUS, HEAT-CONDUCTING
AND COMPRESSIBLE FLUID

2.1 Introduction.

In problems concerned with the acoustic motions of an inviscid
fluid initially at rest and in a uniform state, it is customary to de-
rive from the basic linearized equations of Fluid Mechanics a single

wave equation for a perturbation velocity potential ‘P(;,t)

D2y (2.1)
where
2
2 2 1 3
Oz_ ) (2.2)
a, dt

is the wave operator and 3, is the isentropic speed of sound. The
other dependent variables such as the velocity perturbation v , and
the pressure perturbation p' , are then directly related to the po-

tential ¥ through the classical expressions:

V' = grad ® (2.3)
- 2%
p = - PO 3t (2.4)

where is the density of the medium.

°0
This procedure presents the important advantage of reducing a wide
variety of acoustic problems to the determination of one scalar field
®(r,t) obeying the wave equation (2.1) with appropriate initial and

boundary conditions,

In this chapter, we wish to generalize this formulation to

BTSSR
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situations where the medium is viscous and heat-conducting. We will be

led to introduce, in addition to the acoustic potential defined above, .
two other fields, namely, a thermal scalar potential and a viscous vec-
tor potential. Governing equations for these '"auxiliary' variables will
be derived, and the physical implications will be discussed in light of

the mathematical formulation.

2.2 Linearized Navier-Stokes Equations and Underlying Assumptions.

Let us consider the small amplitude motions of a simple thermo-
dynamic fluid initially at rest and in a uniform state. Each dependent
variable such as pressure, density, velocity, ... may be written in the
form:

Q(T,t) = Q0+Q'('r’,c) (2.5)

where Q0 is independent of T and t and characterizes the initial
state of the fluid, and Q'(;,t) designates a fluctuating quantity. 1In

-

particular, since V0 =0

V(z,t) = V'(x,t) (2.6)

Such a decomposition is then substituted for each dependent variable
into the equations of mass, motion, entropy, and the equations of state,
pertaining to a Newtonian fluid obeying Fourier's law of heat conduction.
When all non-linear terms in the perturbation variables are neglected,

the following linearized equations result:

' —
Equation of Mass —g—% +p0div V' =0 (2.7)
. V' _ . 2, 2,
Equation of Motion p,3= =- gradp' - 4, curl { +1’)ograd divv (2.8)
9

e
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Equation of Entropy pOIIOBt = kOV T (2.9) |
Equations of State p' = a,2 p“+[%§% ! S! (2.10)

po’SO

-3
il

(27 | o +023] s (2.11)
P S
S 0
po’ S

So Po25g

In the above relations, uo is the coefficient of shear viscosity, ko

the coefficient of heat conduction, a, the isentropic speed of sound,

and no is the dilatational viscosity given by
4
770 = KO+§#0 (2.12)

KO being the coefficient of bulk viscosity. All other symbols have
their usual significance.

The system (2.7)-(2.11) constitutes the starting point of this in-
vestigation and we discuss below the main assumptions wh.ch have been

: introduced in the process of its derivation:

(a) Continuum Hypothesis: The characteristic length scales of the

particular problem at hand are assumed to be much larger than the mean-
free-path, so that the fluid may be treated as a continuum. In the case
of propagation in ducts, the wavelength and duct diameter must both be
large in comparison with the mean-free-path.

(b) Homogeneous Medium at Rest: The steady flow variables are in-

dependent of position and time and the velocity of the medium is identi-

cally zero.

(¢) The fluid is assumed to satisfy the Navier-Stokes relation be-

iween stress and rate of stxajp as well as Fourier's law of heat con-

duction.

10
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(d) Small Amplitude Motion: In other words, fluctuating and steady

quantities satisfy the following relations:

- -

!
:—- «< 1 ; {P—' «<1; «< 1 (2.13)
0 Po

This assumption justifies the linearization of the governing equations
and drastically simplifies the mathematical formulation of acoustic
problems.

(e) Lsminar Motion., The presence of turbulent motion would at

once invalidate the linearization of the basic equations since turbu-
lence is characterized by strong non-linear interactions. Unfortunately,
very few studies on the transition of unsteady laminar flows have been
made. However, in the case of oscillatory flow in circular ducts, Ser-
geev (1966) and Nerem et al. (1972) determined experimentally a criter-

ion for transition of the form

ﬁe = const.\/ kR vhen . /kR > 4 (2.14)
c vV 1%

A
In the above relation, Rec is the critical value of the Reynolds num-

A
ber based on the peak velocity U , and k and Rv are non-dimension-
alized parameters which will be introduced in Chapter 3. They are de-

fined as follows:

A

Re = ; R = — (2.15)

99 aod
40 Yo

where d 1is the duct dismeter, w the circular frequency of the lami-
nar flow oscillations, and Y the kinematic viscosity.
It will be shown in Chapter IV, that for values of ./ kRV larger

than four, the flow is characterized by a thin acoustic boundary layer

11
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close to the duct wall of thickness

(2.16)
v/ kR
k v
A crude justification of relation (2.14) may then be given by applying
the critical Reynolds number criterion for a steady flat plate boundary
layer to the unsteady boundary layer of thickuess, 0 , i.e.,
A
(EQ) ~ 1000 (2.17)
Y
c
Upon combining this relation with the estimate of 6 given by (2.16),

the dependence of the critical Reynolds number on . /kR
v may be shown

to be expressed by (2.14).

In this study, it is assumed that the peak Reynolds number is lower
than the critical Reynolds number given by (2.14) so that the unsteady
flow is laminesr.

(f) Simple Thermodynamic Fluid: Nonequilibrium effects such as

vibrational relaxation are assumed to be negligible and the fluid is in
local thermodynamic equilibrium. The thermodynamic state of the fluid
at any position and time is completely described by two state variables
only, for instance, density and entropy. Al other state variables such
as pressure and temperature may then be expressed in terms of density
and entropy, as in the two linearized equations of state (2.10) and
(2.11). The partial derivatives in these equations may conveniently be
expressed in terms of five characteristic properties of the medium,

namely, the isentropic speed of sound the temperature TO , the

ao,

dewusity , the specific heat at constant pressure ¢ , and the

p
0 P0

ratio of specific heats YO . Equations (2.10) and (2.11) may then be

12

&

FEE T R R o L A




TR LTI (U TR T

written in the following manner:

2 (v.-1T
p' =a,p'+p,a, [0 ' 0 S (2.10)"
0 0% "
Pg
a (v,-1)T v T
a2 /0 " 0,,,00 (2.11)"
[ c [
0 Py Py

The form of the coefficients in the above relations is derived in Appen-
dix A, by making use of the first and second law of thermodynamics. No
additional assumption regarding the nature of the fluid needs to be in-
could be re-

troduced. In the case of a perfect gas, for instance, a

0

placed by its expression as a function of T but this restriction

0’
does not have to be made in order to derive (2.10)' and (2.11)°'.

The linearized equations (2.7) - (2.9) and (2.10)', (2.11)' consti-
tute a system of five linear partial differential equations for five
unknown functions p' , p' , S' , T' , and v We now proceed to the
definition of the acoustic, thermal, and viscous potentials, and to the

derivation of a corresponding system of three partial differential equa-

tions for these three potentials.

2.3 Acoustic, Thermal, and Viscous Potentials, Governing Equations:

According to Helmoltz' theorem, the velocity field V' can always
be written as the sum of an irrotational part grad?® , and a solenoidal

part curlz so that
V' = grad & +curl A (2.18)

We will further assume that the so-called viscous vector potential A

satisfies the additional condition

13
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divA =0 (2.19)

From (2.10)', the density p' may be expressed as a function of p'
and S' . When (2.18) and the resulting equation for p' are substi-

tuted into the equation of mass (2.7), one obtains

1 [} P ('V '1)T a [}
kR A
a 0 Pg

In order to satisfy (2.20) identically, Doak (1973) suggested in his,
'"Momentum Potential Description of Unsteady Fluid Flows,'" to further
decompose the scalar potertial @ into two parts: an acoustic poten-

tial 4; giving rise to pressure fluctuations through the relation:
]
%' 2t e (2.21)

and a thermal potential ¢;h giving rise to entropy fluctuations

through the relation:

(2.22)

The velocity field v is now the sum of three distinct acoustic, ther-

mal, and vortical components, and is of the form:
V' = grad @a+gtad (pth 4 curl A (2.23)

From (2.10)' and (2.11)', the other dependent variables may immediately

be related to 4; s ¢2h , and A in the following manner:

14
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3! /T 2
—a-t—a ao (—'YO‘—]-S?;— v [ch-('yo-l)d’a] (2.25)

0

Equations (2.21) - (2.25) provide the necessary relations between the
"auxiliary' dependent variables 4; . ¢Eh , and A , and the "physical"
variables, pressure, entropy, velocity, density, and temperature. In

the derivation of these relations, use has been made of the equation of

continuity and the equation of state. We now seek to obtain the partial

differential equations governing ¢; ,-GEh , and A , by requiring that
the remaining equations of motion and entropy be satisfied., Substitu-
tion of (2.23) and (2.22) into (2.8) and (2.9) respectively, leads to

the following system:

( 3 My 2 p'
grad[at(¢a+4>th)--p—(-)- v (<I>a +¢th) +p0] (2.26)
A 2
(1) { +cur1[at-u0V Al =0
(2.27)
.
where Pr is the Prandtl number of the medium:
cpouo
P = ko (2.28)

It is very tempting to replace System (I) by the following simpler

system of three partisl differential equations:

(2. Mo 2 2
at(tl’a +¢th)-p0 v (@a +<I>th)+p0 0 (2.29)
an ¢ B .y PE=o0 (2.30)
v (v.-Dc
(bth-ag'/ 0 PO 4 (2.31)
T TO
~ 15
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Each solution of (II) is obviously a solution of (I)., But there are
solutions of System (I) which are not solutions of System (II). 1In

* * ek
Appendix B, we prove that, to each solution {¢; , @ A}l of (), 41

th °’ :

one may associate a solution {¢; ) ¢Eh , K} of (II), which will give fﬁ
the same values for the physical variables V', p' , and S' . It may
be concluded that Systems (I) and (II) yield the sanme number of possible
physical states. :

Equations (2,29) end (2.31) may immediately be expressed solely in :1
terms of ¢; and ¢zh by differentiating them once with respect to
time and making use of relations (2.21) and (2.25). The final results

of this section are then formuleted in the following '"Splitting Theorem."

Splitting Theorem: If {V' , p', 8" , ', T'} satisfy the 1li-

nearized ejuations of Fluid Mechanics (2.7)-(2.9) and (2.10)' - (2.11)',

then there exists an acoustic potential 4; , & thermal potentiel izh’

and a viscous vector potential A such that the physical variables are

represented by:

V' = grad 4’a+grad ¢th+curlx (2.32) |
1
%% = -p, 302 o 3 (2.33)
as ! “p 2
s' 0
0" %0
%% - -0, ‘72(@‘l +8 ) (2.35)
i A, ——?ﬂ——[v% - (y. -V @]
ot 0 (vool)c th 0 a
Po
8 T ad
0 0 th
=p — (2.36)
with div A = 0 (2.37)
16
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2 1 3 th 0
° R e—— s | ——,  w—
Os® =353 -3 ve,] (2.38)
a 0
0
2® )
th 02 0.2
St " 7 \} ‘bt:h = -(‘Yo-l) P—rv Q. (2.39)
A 2
3% ]}OV A=20 (2.40)

In equation (2.36), equation (2.39) was used to derive an alternative

expression for %%— in terms of ¢zh only. CJg in equation (2.38)

is the modified wave operator.

2 n
O -vz-%a—zﬁ» 0_ ¢? (2.41)

2
S 8 3t °0°02 At
The traditional wave operator as defined in (2.2), is immediately re-
cognized in the first two terms of (2.41). The last third-order term
represents attenuation brought about by the dileotational viscosity ﬂo .
The subscript S has been added to notify thet the operator pertsins to
the isentropic speed of sound a, -

Furthermore, cross differentiation of (2.38) and (2.39) leads to

the additional fourth order partial differentisl equations:

3 —2 Yo 2
SO or @, = 7 e or & ] (2.42)
wiiere
Yo 32 YN
02-¢ .55+ 0032 (2.43)
a, at poao

The above operator is a modified wave operator similar to EJ: defined

in (2.41), but pertaining to the isothermal speed of sound aoﬁ\/vo .

17
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Discussion: Upon examination of the previous theorem, it may be
noted that the propagation problem has been reduced, as expected, to the
determination of an acoustic scalar potentiel ¢; , 8 thermal scalar po-
tentisl Gkh , and a viscous vector potential K .

The acoustic component gives rise to pressure, density, and velocity
perturbations. It is inherently coupled to the thermal component, as
seen from (2.38) and (2.39), and therefore is bound to generate entropy
fluctuations. The thermal component gives rise to entropy fluctua-

tions and, as a result of coupling will generate the acoustic

component. Both components satisfy equation (2.42) independently.
However, coupling is still achieved through the lower-order rela-..ons
(2,38) and (2.39). Finally, the velocity fluctuations associated with
4; and ¢2h are irrotational so that investigators have often consi-
dered these two components as one single longitudinal part. The uncoup-
ling of the vortical component represented by A 1is the most signifi.
cant feature of the splitting theorem. The vector potential is gov-
erned by a diffusion equation &nd only gives rise to rotational velocity
fluctuations. However, in the presence of solid surfaces, one expects
the vortical component to generate the other two through the no-slip
boundary conditions.

We wish to emphasize that the decomposition presented here is not
the only possible one, and several alternative schemes have indeed been
proposed. 1In particular, Wu (1956) distinguished a longitudinal and a
transversal component, without any further splitting of the longitudinal
part, Chu and Kovasznay (1958) defined three modes, namely, pressure,
entropy, and vorticity modes, but the first two modes do not coincide
with the acoustic and thermal components considered in this study. 1In

both of these investigations, the governing equations were expressed in

18
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terms of the physical variables. We can see from the results of the

splitting theorem that significant simplification results from the use

th
is, in the end, associasted with one variable only. Finally, in previous

of three "auxiliary" varisbles GL ,® ,and A, since each component ) i
works, the fluid is sssumed to be a perfect gas with & Prandtl number 1
equal to 3/4 , whereas, no such restrictions are imposed here. We now
briefly examine a few cases where simpler versions of the equations for

¢; , ¢Eh , and A may be obtained.

2.4. Some Particulsr Cases,

2.4.1., Prandtl Number = UO/(ﬂO/po) : When the bulk viscosity is

zero, this coincides with situstions where the Prandtl number is equal
to 3/4 . Afir, vwhich hes a Prandtl number equal to .72 , closely ap-

proaches this case, as long as its bulk viscosity may be neglected., The

two diffusion operators on the right-hand side of (2.38) and the left-
hand side of (2.39) are then identical so that equation (2.39) may be '

used to eliminate th in Eq. (2.38). The governing equations reduce

to:
2
3¢ vy ®
Ve . 00 2 <2=0 (2.44)
a, 3t 0%
@ n
—??l .2 vzoth - . 39(70-1)&0. (2.45)
0 0
.g_t. . ”ovzx =0 (2.46)

The acoustic potential satisfies the mcdified wave equation (2.44) with
an "effective' dilatational viscosity 76”0/90 . The decoupling {s in-
complete, however, since (2.45) still relates ¢; and ékh . As men-

tioned above, this is the situstion considered by Wu (1956) and Chu and
19




Kovasznay (1958).

. 2,4,2, Non-Hest-Conducting Viscous Fluid: The Prandtl number of

the fluid is then equal to infinity. The entropy is constant and the
thermal component is identically zero. The governing equations, there-

fore reduce to:

2
Ds @. =0 (2.47)
%% - v, ®Z =0 (2.48)

This case was extensively studied by Lagerstrom et al. (1949) and equa-
tions identical to (2.47) and (2.48) were derived by several suthors, in
particular, Cohen and Tu (1962), Gerlach and Parker (1967), and Scarton
and Rouleau (1973).

It is interesting to note that wave phenomena in elastic solids are
governed by equations which are analogous to (2.47) and (2.48). The dis-

placement vector
U = grad & + curld (2.49)

is then shown to satisfy the displacement equations of motion precvided
thet the Lsmé potentials, Q(;,t) and K(;,t), are solutions of two

wave equationswith different characteristic velocities, <, and cr ¢

2
A
P —1—2 *—f =0 (2.50)
3t
‘L
2-4
va-—l—za—‘z‘-o (2.51)
CT 3t

The absence nf any diffusion operator or attenuation term in the above

system i8 a consequence of the clasticity of the medium which does not

20




allow for dissipative phenomena. A detailed account of elastodynamic
theory is given by Achenbach (1973). .

2.4.3. Viscous and Perfectly Heat-Conducting Fluid: The Prandtl : ‘

number of the fluid is assumed to be zero so that there are no tempera-
ture fluctuations. In such a situation, any wave motion is isothermal.

Equations (2.38)-(2.40) become:

[‘_']%‘f’a =0 (2.52) !
¢kh = (yo-1)¢; (2.53)
% - v, 7E =0 (2.54)

where E]% is the isothermal wave operator defined in (2.43). As seen
from (2.52) and (2.53), plane longitudinal waves, which, in an inviscid,
non-heat-conducting medium propagate isentropically with Laplace's velo-
city 8, s propagate isothermally in a perfect conductor, with Newton's |

velocity, aO/\/ Vo .

2.4.4, Barotropic Fluid: A fluid is said to be barotropic when

\
|
!
*
the ratio of its specific heats 70 is equal to unity. As menticned 1
by Truesdell (1953), many liquids such as pure water may be assumed to

be barotropic with a reasonably good epproximation. The linearized equa-

tions of state (2.10)' and (2.11)' now become

b = a%! (2.55)

T, :
=2 (2.56)
Py

"More commonly, a fluid is said to be barotropic when its density is a
function only of pressure. From the expression for (3p/3S), given in
equation (2.10)', one can immediately establish that these two defini-

tions are strictly equivalent.
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and there is no need to define a thermal potential ¢Eh as before since
the equation of mass and the equation of motion will not contain S' .,
The thermal potential is therefore identically set equal to zero iu
(2.32-2.40), and the entropy fluctuation S' 1s chosen to characterize

the thermal component. The governing equations then reduce to:

V' = grad ¢ + curl A (2.57)
B, 28 L 22
5T - % 30 - fof Y Y, (2.58)
Ty
r-2 (2.59)
Po
divA =0 (2.60)
2 3
Og® =0 (2.61)
' v
%_FQVZS- =0 (2.62)
r
%Aé - v, v2a =0 (2.63)

Equation (2.62) was obtained by substituting (2.56) into the equation of
entropy (2.9).

As discussed previously, the acoustic componment is associated with
pressure, density and longitudinal velocity fluctuations. But in a con-
trast with the general case, it does not give rise to temperature fluctu-
ations. The acoustic potential q; is now governed by the modified wave
equation (Z.61), as in paragraph 2.4.2,

The thermal component is characterized by entropy and temperature
perturbations only, and does not give rise to velocity fluctuations. It
is governed by the classical diffusion equation (2.62). Moreover,

as shown in (2.61) and (2.62), acoustic and thermal components are com-

pletely uncoupled, so that an acoustic wave will not generate entropy

22



fluctuations and conversely. This feature persists even in the presence
of solid surfaces, since it is preserved in the boundary conditions on
velocity and temperature as seen from (2.57) and (2.59). The analytical
relationships between thermal and acoustic components are therefore con-
siderably simplified.

2,4.5. Inviscid, Non-Heat-Conducting Fluid: 1In this case it may

immediately be verified that we recover the basic results mentioned in
the introduction to this chapter. The acoustic potential is now identi-
cal to the usual velocity potential @, and the thermal and viscous
components are identically zero. Moreover, the state of the fluid is
governed by the classical wave equation (2.1).

In the next chapter, we proceed to apply the results of Section 2.3

to the propagation of small perturbations in cylindrical tubes,

23
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III. SOUND PROPAGATION IN A
TWO-DIMENSIONAL DUCT

3.1 Introduction,

The results of the preceding chapter provide a theoretical frame-
work for the study of the small-amplitude motions of a fluid in a cy-
lindrical duct. In this part of the investigation, we first derive the
basic equations governing sound propagation through a duct of constant
cross-section and then investigate in detail the particular case of a

two-dimensional duct.

3.2 Formulation: Parameters of the Problem.

Consider a harmonic wave of circular frequency w propagating in
an infinite tube of constant cross-section S and typical cross-sec-
tional diameter d (see Figure 1). The fluid is assumed to obey re-
strictions (a)-(f) discussed in Section 2.2, and in addition, the
walls of the duct are assumed to be rigid, impermeable, and isothermal.

The independent variables are non-dimensionalized as follows:

x' = g s y' o= % ; z' = % ; t!' = wt (3.1)

and three non-dimensional parameters are introduced:

wd

k = P the reduced frequency (3.2)
0
aod
R = — the '""Reynolds number'" based on the (3.3)
v Yo speed of sound and the shear vis-
cosity “0 .
aod
R = /e the '"Reynolds number' based on the (3.4)
n 0’7o speed of sound and the dilatational

viscosity nO .

24
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Figure 1. Duct Configuration.
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The problem therefore depends on the values of five parameters: Yo
Pr ; Rv ; Rn ; and k , which are functions of the state of the medium,
the dimensions of the tube, and the characteristic frequency of the

fluctuations. The dependent variables are kept in dimensional form.

The basic equations of Section 2.3 then take the following form:

- 1 -
' = =
V' = d[grad¢a+grad @th+cur1A] (3.5)
3p' _ Pofo 2
T (3.6)

5 - (3.7)
3o
AT' _ ,
Y 3.9)
with divA = 0 (3.10)
and where ‘Pa s (bt:h , and X obey the following system:
2d
24 _ .23 th 1 2
Os q’a =l ot kR, v @th] (3.11)
P v -1
th 1 2 0 2
5t TRP RV %h T TieR U % (3.12)
ry T
3 1 2%
v
9 2 - 1 2
BtDS “’a or ¢th} - kPrRU vZE]’I‘{‘I)a or "bth} (3.14)
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2
O2=v . 5+ o2 (3.15)
at 7
2 vk
2 2 2k Tk
(7 = 7 -y’ 25+ 2072 (3.16)

3t n

In the above relations, the primes on x' , y' , z' , t' , have

been omitted for convenience. The system (3.10)-(3.14) is to be sup-

plemented with the following boundary conditions at the walls:

V' =0
on duct boundary walls. (3.17)

T' =0
We wish to determine the potentials ‘I’a(?,c) , ¢th(?,t) , and K(;,t)
which satisfy (3.10)-(3.14) and the associated boundary conditions (3.17).
The previous considerations define an eigenvalue problem which is
more easily handled if 4;(;,t) , ¢zh(;,t) , and A(r,t) are assumed

to be travelling waves of the form

- i(t-8 z)
® (r,t) = ¢ (x,y)e z (3.18)
a a

- i(t-Rzz)
¢Eh(r,t) = ¢th(x,y)e (3.19)
o - i(t-R z)
A(r,t) =G (x,y)e z (3.20)

Note that in these relations, both z and t are non-dimensionalized.

The circular frequency w 1is embedded in the non-dimensional time ¢t ,

and the complex wave number Rz is non-dimensionalized with respect to

the duct width, Equations (3.18)-(3.20) physically correspond to stand-
ing waves in the cross-section of the tube and travelling waves along

the duct axis z.. The real part of Bz denotes the actual propagation
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wave number, while the imaginary part represents the attenuation rate.
The complex quantity /Sz , and the functions cpa(x,y) . cpth(x,y) , and
a(x,y) are to be determined as a function of the five previously de-

fined paramecers. We now proceed to derive the governing equations for

P, s Ppp, » @nd G,

Substitution of (3.18) or (3.19) into the fourth order partial dif-

ferentiai equation (3.14) yields the following relation:

iv_k
0°, ik

1+

4 Per
Vl {wa or wth} - [ikPer 1+ i'vok/Rn

1+iv k/P R +ik/R
242 4, . 0" 'rvy N a2
+ 2Bz ]vl {cpa or (pth}+[Bz +ikPrRu ’ 1 +i‘v0k/Rn ez (3.21)
ik3PrR
T AR or gy} = 0
0"n
where
V. =e S48 = (3.22)

Solutions of (3.21) may be obtained in the form of a combination of solu-

tions of the following Helmholtz equations:

2 2
v1 {cpao ot wtho} + ao {(%oor (ptho} =0 (3.23)
v2 {o ,oro }+a2{cp oryp . .} =0 (3.24)
1" "al thl 1*7al thl :
2 2 ; . 2
where ao and al are the roots of the algebraic equation in a” ,
obtained from (3.21) by changing ¢ 2 and V¥ 4 into az and oz4 s

1 1

respectively, The acoustic potential ®, will therefore be the sum of

?0 and Py solutions of (3.23) and (3.24), Similarly, Peh will
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be the sum of Peho and Pen1
It 1s a straight-forward procedure to derive expressions for aoz

-

and alz from (3.21). The results are as follows: . i

2 2 o2 ) 2_o2 2
a " =B"-8° (3.2 ; o«f=8-8 (3.26)

with
-1kP R Y

-———}'—[1+1——+1— .
o,l 2(1+170k Rn) PR Rn

Ty

L. 4ik 1+170k/Rn_

* Py (1Hy K/ PR, +1k/R) 2 227
where the o and 1 subscripts correspond to the - and + signs
respectively,

In addition, the acoustic and thermal potentials e, and P,y ore
coupled through (3.11) and (3.12). When (3.18) and (3.19) are substi-
tuted into (3.12) end use is made of (3.23) and (3.24), one easily ar-

rives at the following relations:

,302+ ikp R
9 (x:Y) = =Xt ¢ (an) (3.28)
80 (v.-1)B 2 tho
0 0

,312+ ikp R
01 06Y) = ———=L ¢ (x,y) (3.29)

(v,-DB, 1
|
|
|
|

One then may check that the second coupling relation, (3.11), is also
satisfied.
In a similar fashion, when use is made of (3.20) in (3.13) and

(3.10), one obtains the governingequation for the vector potential:
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vfﬁ-mxzza = 0 (3.30)
2 2 2

o, = 52 -ﬁz (3.31)

8.2 = -ikr (3.32)
2 v *

with the following restriction on the possible solutions

\'71-0.1 = i,BzG.z (3.33)

In the above coupling relation, the vector potential C has been de-
composed into an exial component az and a component in the cross-sec-
tional plane 61 . A similar notation will subsequently be used for
the velocity vector v

Finally, the boundary conditions (3.17) may be written in terms of

the auxiliary variables as follows:

Cav'y = G -iBe XG. =
dVl\x,y) Vl(cpa+cpth)+leﬁz 1Bzezxcl 0 (3.24)
> - . - - on duct
de(x,y) " lﬁz(¢a+wth)ez+v1xal 0 boundary (3.35)
walls.
] /('vo-l)cp
T'(x,y) =9, =0 (3.36)
. Perv T, th

Discussion: For a cylindrical duct of arbitrary cross-section and given
values of the parameters Yo Pr , RU R RT) , and k , the problem has
been reduced to the determination of a complex wave number Bz and three

unknown functions tpa v Oy o and G . The general analytical form of

the auxiliary functions is given by equations (3.23), (3.24), and (3.30)
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which have to be supplemented with the coupling relations (3.28), (3.29),

and (3.33). Enforcement of the boundary conditions (3.34) - (3.36) then
determines the remaining unknown ﬁz . -or arbitrary cross-sectional
shapes, it is unfortunately impossible to find separable solutions of
equations (3.23), (3.24), and (3.30), compatible with the boundary con-
ditions at the walls, and leading to & dispersion relation for ﬂz ex-
pressible in terms of a finite number of transcendental functions., It
was shown in Section 2.4.2 that the analytical formulation of wave pro-
pagation problems in elastic solids bore a close resemblance with the
model presented in Chapter II. The same mathematical difficulties have
indeed been encountered by researchers interested in the propagation of
elastic fluctuations in solid wave guides. A review of this subject is
given by Meeker and Meitzler (1964) and Achenbach (1973). However, in
the case of a two-dimensional or a circular tube, one may arrive at an
exact dispersion relation in terms of a finite number of tabulated
functions.

We have chosen to treat here the propagation of waves between two
parallel infinite plates, i.e., through a two-dimensional duct. Many
similarities will be shown to exist between the families of modes in a
two-dimensional duct and a circular tube, and identical methods may be
used in both instances. Since we are meinly interested in bringing out
the main physical features of the problem, and wish to minimize analyti-
cal complications, we devote the major part of this study to a detailed

investigation of wave propagation in a two-dimensional duct,

3.3 Two-Dimensional Duct:

Let us consider a two-dimensional duct of width d as shown on
Figure 2 and & harmonic wave of frequency w propagating in the positive
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z direction, under the same assumptions as in the previous section.

In analogy with equations (3.18) - (3.20), we further restrict the

functional forms of Qa , °h , and A to the following:

t
- 1(c-B 2)
Qa(r,c) = o (x)e (3.37)
- 1(t-B z)
¢2h(r,t) = wch(x)e (3.38)
o L i(t-B z)
A(r,t) = G(x)e z (3.39)

Note that cpa , wth , and C are assumed to be independent of the space
coordinate y . In other words, the wave motion is the same ia all planes
normal to the y-axis. However, since we allow the vector potential to
have x- and z-components, the motion is not restricted to the y-plane,

and the velocity field may admit a non-zero component along the y-axis.

The governing equations (3.23), (3.24), and (3.30) simply become:

2

—3 {wao or wtho} +o, [cpao or cpcho] = 0 (3.40)
2

5 (0,0 or o ) +e o) or vy, ) =0 (3.41)

— +a, “0=0 (3.42)

so that the general form of cpth(x) is:

= + + +
coth(x) Acosaox Bsinaox Ccosalx Dsinalx (3.43)

and the corresponding form of cpa(x) derived from the coupling relations

(3.28) and (3.29) is:




Figure 2. Two-dimensional duct,




ﬁ 'H.kP R
9, (x) = ——-—E[Acoaa

x+B sina, x]
1>ﬁ 0 *

B.2+1kP R
+ —--»--—-—-—H[C cosa1x+D ina x) (3.44)

¥, 1)&‘31

Similarly, use of (3.42) and the condition (3.33) yields the following

expressions for the components of the viscous potential:

= +
Gx(x) E cosa,x Fsinazx (3.45)
Gy(x) = Gcosazx-Hl sinazx (3.46)
mZ
Gz(\c) = -R—(-Fcosazx +E sinazx) (3.47)

Z

Finally, the boundary conditions (3.34) - (3.36) become:

' d -
Vx(x) o« dx(cpa or qpth) +1ﬁsz 0 (3.48)
dCIz
Vy(x) i vl 15sz =0 (3.49)
at x=+%
<,
Vi(x) = “Bz(“’.+‘*°:h) tgp =0 (3.50)
T'(x) « cpth =0 (3.51)

and substitution of (3.43) - (3.47) into (3.48) - (3.51) yields the fol-
lowing set of eight homogeneous linear equations for the eight unknown

constants: A, B, C, D, E, F, G, and H:

2
B 241kP R « v B “+{kP R

a, ——-—-—-—2[-4&3111-29--*8 cos—]+a1 —9--1—*-—%-14 .
(7 ~1)B (‘xo-l)xﬁ1

@ o a, )
[-C sin-7-+D cos-7]+182[6cos-—+ﬂsin-2—] = Q (3.52)
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2 2
y B “+ikP R a a v B.“+ikP R
@, 00 v rzv (A si.n—-z9 +B cos—éQ] +a1 0l rzv y
oy % o, o,
[c sin-§—+D cos-?]-i'iﬁz [Gcos—z---}lsin-z—] =0 (3.53)
2
¥ B “+ikP R o yB +1kPR
-i . 00 rzv[Acos?§ +381n——] iBz *2 .
(v,-1)8 (‘V 1)5
0 0
! o, % %,
[Ccos—=+D sin— ] +a [-Gsin---i-Hcos—] =0 (3.54)
2 2 2 2 2
yoﬁozﬁkPrR a ‘)-'0312+ikP K,
-iﬁz ——————zzl:Acos—z--Bsn'l—-]-lﬁ rz .
(Vb-l)ﬁo (76-1)ﬁ1
% o) %
[c cosT-D 51n—]+a e} 31nT+H cos -—2—] =0 (3.55)
%, % oy !
— i — a— P — = [
A cos 3 +3B sin > +C cos 5 +D sin > 0 (3.56)
o a ¢4 a
0 0 1 e
Acos—-z—-B sin—2—+Ccos > -D sin > = 0 (3.57)
04 a2
Ecos-E~+Fsin-—-= 0 (3.58)
2
o 44
Ecos-z—-F sin—= = 0 (3.59)

By elementary manipulations such as addition or subtraction of consecu-

tive equations the above system may be immediately expanded into the four

following subsystems.

System 1:

Ecos— =0 (3.60)
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System II:

%,
Fsin-?z— =0 (3.61)
System III:
‘v0302+ikPrRu ao y0312+1ker o a,
@, ———5FAsin5+a ——>kc sin-- 1B Hsin- =0
(Yy-D 8B, (75-DB,
(3.62)
y B 2+ikp R o y B 24ikP R a a
0"0 ry 0 0"1 r 1 2 _
-8, 5 ACOST'IBZ—_.Z—CCOST+QZHCOST_ 0
(%,-1)B, (%,-1)B,
(3.63)
ao Cll
Acos—2-+Ccos—2-= 0 (3.64)
System IV:
‘)10,302+ikP R a v0312+1kp R a, a,
ao ————-——%—MBcos—é—+Gt1 r2 DcosT+iBZGc087= 0
(74-DAB, (¥y-DB,
(3.65)
v B 24ikP R a v B 2 4ikP R a o
. 00 r v . 0 . 01 Ty . 1 . 2
-1ﬁz-————————3—B31n?r-182————————5—D31n?r-a2G31n7;= 0
(%,-1B, ¥,-1B,
(3.66)
%, !
Bsin—2—+DsinT= 0 (3.67)

In order for these subsystems to admit non-trivial solutions, the deter-
m’.nants formed with the coefficients of their respective variables must
be set equal to zero. Those conditions yield four compatibility condi-
tions or so-called dispersion relations which may be written as follows:

Disprersion Relation I:

cos -Z- =0 (3.68)
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Dispersion Relation II:

a2 i

sin - = 0 (3.69) .
Dispersion Relation III: ' i
a o o 2 1y k
2,1 1 2 0 1 2,k 0

k™ (=3 -B z)ﬁz cos - cos >-sin +(ﬁ 3 -Per)adaz

0 1 0

a a @ 2 Yk a « @, |
sinTcos - cos = -(-ﬁ——z- -F;R—v)alaz cos 2 sin—z— cos = = 0

1 (3.70)

Dispersion Relation IV:

a o 2 iv k

2,1 1.2 . 0 . 1 2 % 0
k (R 2 -B Z)ﬁz sin—"sin > cos > +(ﬁ 5 Per)Ototl2

0 1 0

(43 o az kZ i‘yok o o C!z
cos-—z—sin-z—sin—z- -(——:,_- -—R—)ozloz2 sin—-cos—"sin—= = 0

Bl rv
(3.71)

Discussion: As seen from equations (3.60) - (3.67), each subsystem
pertains to distinct groups of unknown constants. Consequently, if any
one of the dispersion relations (I) to (IV) is satisfied, there exists
a non-zero solution for the unknowns of the corresponding subsystem.

At the same time, since the remaining determinants then take non-zero
values, the only possible solution for the other subsystems is zero.
Hence, each set (I) to (IV) and its dispersion relation may be inves-
tigated separately, the constants associated with the other sets being
identically zero. Even though a detailed description of the four cor-
responding types of wave motion will be given in Section 3.4 and Chapter
1V, we take advantage of this mathematical feature to briefly outline

their main characteristics.
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Let us first indroduce the following definitions: A wave motion
will be called symmetric (respectively, antisymmetric) if its velocity
is symmetric (respectively, antisymmetric) with respect to the median
y-z plane. It will be referred to as inplane (respectively, antiplane)
when its velocity vector lies in (respectively, is perpendicular to) the
x-z plane, From the above discussion, and the form of equations (3.60)-
(3.61), we infer that, in sets (I) and (I1), all constants are zero with
the exception of E or F . As seen from (3.43) - (3.47), the acoustic
and thermal components are then identically zero, and the vector poten-
tial lies in the x-z plane. The velocity vector is therefore purely
rotational and its only non-zero component is Vy given by (3.49).
Furthermore, F 1is zero in System (I) so that Vy is then an even
function of x . Likewise, E 1is zero in System (II), so that Vy is
then an odd function of x . We may conclude that sets (I) and (II) de-
scribe the behavior of antiplane symmetric and antisymmetric velocity
fluctuations. In a similar fashion, when one considers set (III) (re-
spectively, (IV)), B, D, E, F, G, (respectively A, C, E, F, H) are zero.
Upon examination of (3.43) - (3.50), it is clear that both sets describe
inplane wave motions, and that (III) and (IV) are associated with sym-
metric and antisymmetric velocity fields respectively. However, in
contrast with the antiplane motions, acoustic, thermal, and viscous
components are now inherently coupled and lead to complicated wave con-
figurations. The initial problem of wave propagation between two infi-
nite parallel walls has thus been reduced to four simpler subproblems,
namely, inplane or antiplane, symmetric or antisymmetric wave motionms,

each one being governed by one of the Systems (I) to (IV) and its cor-

responding dispersion relation.




s al and

az may be expressed in terms of the complex wave number ﬁz through

the use of (3.25), (3.26), and (3.31). Each one of the dispersion re-

In equations (3.68) - (3.71), the complex quantities ao

lJations is then an equation for ﬁz , and its solutions are to be deter-
mined as a function of the given non-dimensional parameters ¥, , Pr s

Rv s Rﬂ and k . Each solution defines a mode of propagation, char-
acterized by specific variations for wa(x) s ¢th(x) and a(x) . Such
characteristic variations constitute a mode shape, and they may be ob-
tained exactly by solving the appropriate subsystem (I) - (IV) for the
corresponding unknown constants. Equations (3.68) - (3.69) are trivial
and the next section will examine their solutions and associated mode
shapes. On the other hand, the dispersion relations (3.70) - (3.71)
pertaining to the inplane modes, are transcendental equations for ﬁz s
and cannot be solved exactly, 1In Chapter IV, we will propose a pertur-
bation scheme, whereby approximate solutions may be obtained.

We have previously pointed out the analogy between wave propagation
in viscous fluids and in elastic solids., It is indeed striking to note
that wave motion in an elastic layer is governed by eguations which are
very similar to the subsystems developed here. Meeker and Meitzler
(1964), in particular, assumed the Lamé poteutials to have a form anal-
ogous to the expressions chosen in (3.37) - (3.39), and were thus led
to classify the possible solutions in terms of four fanilies of waves,
namely, symmetric and antisymmetric SH (Shear-Horizontal) waves, and
longitudinal and flexural plane strain waves. The dispersion relations
describing the latter two families, or so-called Rayleigh-Lamb equations
are found to present essentislly the same basic features as relations

(3.70) and (3.71) when heat flow is assumed to be zero. 1In such a case,
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the last term in relations (III) and (IV) disappears. In the next sec-
tion, we discuss the characteristics of the symmetric and antisymmetric

entiplane wave motions.

3.4 Symmetric and Antisymmetric Antiplane Wave Motion.

The solutions of dispersion relation (I) are immediately given by:

SA .
a2n = (2n+l)m (3.72)

when n 1is a zero or positive integer. Hence, there exists an infinity
of symmetric antiplane SA-modes. Their shape in any cross-sectional
plane is characterized by a specific value of the coefficient az . The
propagation wave number attached to each mode is obtained by substituting
(3.72) into (3.31). 1In solving the resulting equation for Bz , We se-
lect the complex root which pertains to waves attenuating in the posi-
tive z-direction, i.e. of negative imaginary part, the other root being
associated with waves attenuating in the negative z-direction.* Such a
choice does not restrict the scope of the study, since the propagation
characteristics are obviously independent of the direction along the

z-axis. The wave number is then given by the following relation:

A 1 4 2 2
ﬁin = - ﬁ\/(;/2(2n+1)ﬂ) +(kRv) -((2n+1)m)

-i‘\/-,/((2n+1)ﬁ)4+(kRV)2+((2n+1)1‘r)2 (3.73)

*We have avoided here using & radiation condition based on the sign of
the phase velocity, i.e. the direction of propagation of the wavefronts,
since, in Chapter IV, we will encounter backward-propagating waves which
decay in the positive z-direction,
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As discussed in the preceding section, E 1is the only non-zero constant,
so that from (3.43) - (3.475, acoustic and thermal potentials are iden-
tically zero, and the viscous potential lies in the x-z plane with the

following components:

aiﬁ(x) = E cos ((2n+1)mx) (3.74)

SA
Gyn(x) =0 (3.75)

GSA(x) - (2n+l)mm i

- £on

the rotational velocity field is then such that:

E sin ((2n+1)mx) (3.76)

Vr'ls"‘(x) = - E cos ((2n+1)nx)2§y (3.77)

kR
A

%y

All other physical variables are identically zero.

The velocity profile of each mode will be normalized by the follow-

ing condition

V;n(O) =1 (3.78)

whichdetermines the value of the arbitrary constant E . The final form

of the mode shape is:

V}iA(") = cos(2n+l)mx (3.79)

The characteristics of the symmetric antiplane mode have therefore been
derived in a straight-forward manner due to the extreme simplicity of
the associated dispersion relation. They are purely transversal rota-
tional waves, the velocity fluctuations being perpendicular to the plane

of propagation. An interesting interpretation of equation (3.79) follows
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from the decomposition of the cosine function into complex exponentials.

The velocity may then be written as follows:

V,SA e 20,
yn

IrmBsA z i[t+ (2n+l)mx - Re oA z)
(xsz’t) = zn

N

Im Bif:z 1[t - (2n+1)Trx - Re B:A 2]

N

Each mode V;:A may thus be considered as the superposition of two plane
transversal waves travelling in symmetric directions with respect to the
median yz-plane and, which, upon multiple reflections at the boundaries,
give rise to a standing wave pattern in the cross-sectional plane, and
a propagating wave along the z-axis,

Analogous results may be obtained for the antisymmetric antiplane

AA-modes., Their complex wave number is then given by:

1 4 2 2
ﬁ’:ﬁ =‘-\—/—-,;_ _\/.\/(Znﬂ) +(kRU) -(2nm)

- _\/-,/(2nn)"+(kau)2+(znn)2 (3.81)

*
where n 1is a positive integer, and the corresponding mode shape is:

AA
] -
Vyn (x) = sin2nmx (3.82)

The magnitude of the imaginary part of the complex wave number de-

fines the non-dimensional attenuation rate per diameter along the duct

*
The integer n cannot be zero, since such a value leads to a mode
shape which is identically zero.
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ATTENUATION RATE
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108 Tokd ol loka 10° 102

REDUCED FREQUENCY k
Figure 3. Symmetric Antiplane Modes. Attenuation rate

versus reduced frequency for Ry = 2.35 x 10°,
d = 10"4, medium is air at 15°C, 1 atm.

43

0%



B i s e o

PHASE VELOCITY
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Figure 4, Symmetric Antiplane Modes. Phase velocity

versus reduced frequency, Same values of the
parameters as in Figure 3.
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axis, whereas the real part is the actual propagation wave number. The

phase velocity non-dimensionalized with respect to the speed of sound

may be obtained by the formula:

k
vphn = m— (3.83)

zZn

On Figures 3 and 4, the attenuation rate and the phase velocity of the
first three symmetric antiplane modes are represented as a function of
the reduced frequency k , for a given set of values of the other four
parameters. These curves describe the dispersive properties of the
waves, and will be used extensively in the next chapter. As seen from
these plots, one may distinguish two ranges of reduced frequencies:

the low-frequency range where both attenuation rate and phase velocity
are constant and independent of k , and the high-frequency range where
they incrcase as the square root of k . These two regions are sepa-
rated by & transition region. Further details on this question will be
given in Chapter IV, At any rate, it is apparent from Figure 3, that
antiplane modes are highly attenuated at all frequencies.

The antisymmetric antiplane modes have strictly similar character-
istics, and since this study focuses on the symmetric modes, we do not
need to elaborate on their properties. One may finally note that equa-
tions (3.73) and (3.81) may be merged into a single relation in terms
of a new index N , equal to 2n+1 for the symmetric modes and 2n
for the antisymmetric modes. The eigenvalues of the antiplane modes

are then given as follows:

1 4 2 2 4 2 2
5‘:N .\/_——2 _\/ faum iR )2 vm) 1.\/,/(Nn) (kR )% + (vm)

(3.84)
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where

N=1, 3, 5, ... for the SA modes
and

N=2, 4, 6, ... for the AA modes

3.5 Conclusion,

For the purpose of illustrating the basic method of solution, we
have treated in detail the simple case of the antiplane modes. In this
instance, exact solutions of the dispersion relation were immediately
obtained throughout the entire reduced frequency domein. Unfortunately,
dispersion relations (III) and (IV) are much more complicated, and re-
quire the use of some approximetion scheme, if any analytical results
are to be obtained. Chapter IV is, therefore, devoted to a perturbation
study of the inplane wave motions, with particular emphasis on the sym-

metric inplane modes.
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IV. PERTURBATION STUDY OF THE INPLANE MODES

4.1 Introduction.

In was shown in Section 3.3 that the eigenvelues associated with the
symmetric (respectively, antisymmetric) inplane modes are solutions of
dispersion relation (II1) (respectively, (IV)), and that the corresponding
eigenfunctions are given by (3.43) - (3.47) where the corfficients A ,

C , H (respectively, B , D , G ) satisfy System (II1) (respec.ively, (IV)),
end E and F eare zero."'r This part of the investiga.cion will be mainly
concerned with the derivation of approximate solutions of the transcendental
dispersion relations (111) and (IV). From these solutions, a detailed pic-
ture of the possible inplane wave motions will emerge.

Before undertaking such a study, we note that, when dispersion rela-
tion (III) is satisfied for a given eigenvalue Bz , System (1II1) edmits
an infinity of non-zero solutions which may be obtained by solving equations

(3.62) and (3,64) for C and H . We have then the following relations:

~08 a0/2
- a?—a—l-/—z'A (4.1)
e kPer(_l_ ) _l_)f_ cos Oto/2A .2
v -1 2 2°a, cos & /2 :
0 Bo ,81 2

where A is still an arbitrary constant and will be determined later by

imposing a suitable normalization condition. Substitution of the above

e

TLo sotlion is therefore purely two-dimensional and the vector potential
reduces to a stream function A, . In an earlier report, Huerre and
Keramcheti (1975) & priori constered such a stream function, and thus
restricted their investigation to inplene motions. The slightly more
general approach used in this study presents the advantage of also re-
vealing the existence of sntiplane wave motions.

47




RPN TR T - ST R R SN T e e v

values for C and H 1into (3.43), (3.44), and (3.46) leads to the expres-
sions for ¢;(x) ’ ¢th(x) and Gy(x) . The corresponding varistions of
the physical varisbles are then given by (3.5) - (3.9). The resulting
symmetric inplane mode shapes are shown in Table I. We must emphasize

that such mode shapes are functions of the specific wave number Rz and
that they cannot be determined completely until the dispersion relation

hes been solved., However, when the eigenvalue {8 known, the associated
mode shape will be obtsined immediately by substitution into the relations
of Teble I, The same piocedure may be used to determinethe antisymmetric
mode shapes given in Tavle 11, We now proceed to an !n-dapth analysis of

the inplane eigenvalues.

4.2 Methodolw - Preli{iminary Assumptions.

In order to displsy the common features of the dispersion relations
pertaining to the inplane wave motions, we divide (3.70) by a2 cosao/z .

cosa1/2 cosaz/2 and (3.71) by « -mao/z sinal/Z sin(xz/Z , and recast

2
them into the following single formula:

2
(.Li. - .!.2.) ﬂ_z.{ ten 4 g_2_+ (_ki - ——_i‘)/ok)a { ton }?9_
2’ & coten” 2 2 PR 0 cotan’ 2
B2 B 2 ry
0 1 0
2 iy k (7
k 0 tan 1
-7 5% Lorand 7 7 O (4.3a,b)
ﬂl ry

where the upper and lower trigonometric functions refer to the symmetric
(4.3a) and antisymmetric (4.3b) dispersion relations, respectively. 1In
most instances, we will only need to consider the above expressions. How-
ever, the normalization which has jurt been performed may have restricted

the number of possible solutions of the initial relations (II1) and (1V),

sand in a few cases, we will find it more convenient to study the alternate
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] 2
o (o - Al [:( k2 ik ) cosaox‘ (k ik ) cosalx J
Py S T} Ty (5 o) —————
A /302 PI‘LV cosaO/Q ﬁl_ PrRV cosdl/z
—
- -~
oo - o ('y0 1k . cosaox ) cosalx
Tept* Tt PR cosa, /? coste,/?
ru 0 1
‘ . 2 2 Bz sina,x
hv(t\ iA (——5 - ——30 Q. cosa 73
BO Rl 2 :
2 z
. a iB ° cosa iB cos. x
l(x) = -i 0 OkA' (1- 0 3 0 -(1- 1 ) 1
Pt d kP R cosa /2 kP R 7 cosa, /2
Ty 0 rvy 1
[ ¥y-De, g [ g2
-1ye 2 2
o 1 0 N QI A'l fy cos o x ) cosa, x
STx) = d T P R 2 cos /2 “cosa,/2
0 ry R 0 1
1 N
D - A er/ k2 kZ )ﬁ_z- s1n(!2x
al = — (s - — —
v 4l 8,)2 BIZ a, cosaz/_
Fs e
T - i \/ (')/O-I)TO A cnsaox ] cosdlx
X d c cosa, /2 cosal/2
PO - 0
g ? o B.? a
. . A . x
V) = - 20 (1. 0 0y %% P , %
erix) = -2 kP R cosq /2 kP R cos@ /2
0 L ry g rv 1
i > { [ 2 X%
) = _}.‘SB (k2 -1‘)/01»(\ cosaow _(k2 -1'ynk) —c—oealx “(kZ K ioe 2x
A z 2 PR cosa /? 2 PR “cosa. /? 2 27 cosm. /2
B rv 0 R ry 1 B 2
0 1 4] 1
[- 2 iv k sin@ x 2 iy k sintx x 2 2 B 2 sin@_x
Viix) = A'(k 0)(! (k 0, 1 _L(k k)z 2
o 2" 2 "P R’ /2 2” @ cosa_/?
d LB”O PrR Ocosao/ 312 P lcosa BO BIZ ) coqazl

TABLE 1., Symmetric Inplane Mode Shapes. Fer simph’ci%yR o
i

the constant A has been rerlaced by A =—r—v—-A cos—ﬂ-.
: (‘VO-L)k 2
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o GO = - 1(')’0-1)1( o [sinaox ) sinalx
th Per smao/Z sindl/z
2 k2 B cos @, x
Q (x) = -iB! (—— -—) B
y 30 g2 @, smOtz/Z
1
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ip a k iB sina x iB sinQ_ x
preey = - =32t L =0y 0 . Ly L
’ d kP R sina, /2 kP R 7 sina_ /2
0 ry 1
- —
1 (VO'I)Cp 8.2 B 2 sina x  sina x
Sty - b I TR it i
d T, Per 812 sinaolz sinal/
kR =~ 2 2 B cosa,x
Qlix) = -B' =¥ (= - 2y 2
v 2 2 2 a, sina /2
d B 8
0 1
. T)f -)T sin®_ x sina, x
THx) = - % 2 % kB! r sinaO/Z - sinOtl/Z]
Py l 0 17
, . 2 R 2
ip, 1‘)'030 sinaox .t.‘)’OBl sinQ, x
p'(x) = - —=kB'| (1~ ) - (1 s 7= —
aod kP R sina0/2 ! er sma1/2
v = - i-ﬁ'ﬁ (_‘i ) 1‘)/0k) smaox ) (_EZ_- 1‘)’0k) sinalx -(i ) _li) sinazx
z d Tz '302 Per s:.naO/Z 12 Per sina1/2 BOZ 8 2 sma2/2
2 iy k cos &, X 2 1Y k cos O, x 2 2 Bzcosa
V' (x) .}}.'{(.ﬁ_ - 0 ya os 0 _(_E.-_ 0 ) o 1 (L-L) z < 2 ]
d 8 2 Per Osmaolz 8 2 PrR l1sinQ /2 ﬁ 8 2 @, sma2/2
0 1 0 1
TABLIE II. Antisymmetric Inplane Mode Shapes. The
constant B has been replaced by
iP R o
B! = —LV_

B sin—2
¥, Dk 2 -
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set of relations:

2 .
k_z _.3.2_) _B_L{cotan}ig_{cotan}a-_l +(.1£E. ___iyok)a . y
7272 & ' tan 2" ten ° 2 7 "FRr % ’
8, Bl 2 ﬁo ry

{cotan}gl{cotan}gg _(Jéi_ivbk)a {cotan}gg{cotan}ez =0
tan © 2 ° tan ° 2 2 PR 1" tan ° 2 " tan ~ 2

1 (4.3c,d)

with the same conventions for the trigomometric functions as in (4.3a,b).

This latter form of the dispersion relations results from the divisions ‘i
% 49 % % % Y N
of (3.70) by o, sin—= s:m?-sin-i- and (3.71) by 0L, cOS 5~ COS 5~ cOoS 5~ .

Together with the first normalized set, it will ensure that all possible

solutions of the original equations are examined.

Expression (4.3a) is strikingly similer to the dispersion relation
first derived by Kirchhoff (1868), and describing the axisymmetric modes
of a duct of circular cross-section, To obtain the latter, one simply
replaces the trigonometric tangent in (4.3a) by the ratio of Bessel func-
tions, J,/J

closely related to the axisymmetric modes of the circular geometry.

0 ° We, therefore, expect the symmetric inplane modes to be
As mentioned in Chapter I1I, both equations are transcendental and
cannot be solved exactly. This constitutes the major obstacle of the
present investigation. The problem may be approached from two basically
different ways. A numerical scheme can be developed to. isolate the solu-
tions of the equations. Such a method was implemented by Shields et al.
(1965) and Tijdeman (1975) to determine the characteristics of the fun-
damental zeroth-pressure mode, and by Scerton and Rouleau (1973) to
study ell the axisymmetric eigenfunctions in the case of zero heat-con-
duction., The analysis is then considerably simplified by the presence

of only two terms in the dispersion relations. In a second approach sug-
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gested by Kirchhoff (1868) and Rayleigh (1877), and adopted by a large

number of investigators to be mentioned later in the course of this

chapter, one attempts to obtain approximate solutions of the dispersion . j
relations analytically. Applications of this type of procedure have

traditionally been restricted to the determination of the characteristics

of the pressure modes in the acoustic boundary layer approximation. The

pressure modes, in the limit of zero boundary layer thickness, reduce to

the familiar acoustic modes encountered in inviscid propagation problems,

so that the first terms in the approximations are then readily available.

In this study, we develop a methodology whereby perturbation expansions

of the complex wave number may be extracted from the dispersion relation

for all the eigenfunctions of the problem, in as many ranges of the para-

meters as possible. The main advantage of this approach over the purely

numerical one is that it exhibits in a compact msthematical form the es-

sential physical features of the inplane modes as well as their dependence .
on a few non-dimensional parameters. Before describing the details of the

method, we draw the consequences of some of the assumptions made in Chap-

ter II.

Preliminary Assumptions. Let us seek, in the particular case of a

gaseous medium, an estimate of the non-dimensional quantities RV and
k/Rv , where %k and RV are defined by equations (3.2) and (3.3). From
elementary kinetic theory considerations, we know that the kinematic vis-

cosity UO is such that

v, ~ a. i (4.4)

where £ is the mean free path., This relation yields the following ap-

proximation for Rv and k/RV :
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d k wi L
R ~= (4.5); T o —=~7y (4.6)
v—1 RU a, A
- . where X\ 1s the wavelength associated with the circular frequency w . i

Hence, RU and k/Rv are respectively a measure of the ratio of duct
width to mean free path and mean free path to wavelength, In order to be
able to write the basic equations of Fluid Mechanics, we assumed in Sec-
tion 2.2 that the fluid was a continuum. Consequently, in the case of a
gaseous medium, the width of the duct and the characteristic wavelength
of the fluctuations A are both assumed to be much larger than the mean

free path, so that we have:

R, >> 1 : «< 1 (4.7a,b)

FUIW‘

Ll
Without any additional assumptions other that those stated in Chapter II,
we may then consider (4.7a) and (4.7b) to be satisfied. Hence, the pre-
sent investigation 1is restricted to values of the frequency parameter k

such that

0 <k «< RU (4.8)

For air at normal pressure and temperature, the above inequalities imply

the following limits on the duct diameter and frequency of the wave:

-5
d > 5x10%em  (4.9) ; £ << 10°Hz (4.10)

When we examine the corresponding limits for water under the same

conditions,

a > 3x1o'8cm 4.11); << 3X1011Hz (4.12)

it is clear that, in all practical situstions, 1/RU and k/RV may be

considered as very small quantities. The same conclusions may be drawn
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for 1/Rn and k/Rn since the bulk viscosity is never much larger than
the shear viscosity. Furthermore, Rv and R.,7 are of the same order of
magnitude.

As a result of this discussion, the complicated expression (3.27),

which defines 302 and 312 can be considerably simplified by expansion

in powers of k/Rv to yleld the following:

¥.-1 R
Boz = k2[1-1(—§’,——-+—ﬂ)Rl] (4.13)
r B R
B.2 m —1kp R [1+1(y.-1) (L Elf)i] 4.14
p = kB RI1+i(y- (Pr'Rn R, (4.14)

When such expressions are substituted into relations (4.3a,d) we obtain:

2
Y.-2 R v.-1 R 2 B
L vk 0 1 "y ka2
[1+1(5 +Rn)R G )]
Tr vV r r

n Ry T %
tan 2 _y k tan 0 .
{cotan] 2 +1- i( t ﬂ) Jao{cotan} 2

.

a
tan
1(70-1)1, K (1+4 (—r-g)R—] @ {2 1L -0 (4.15a,b)

and 2
y.-2 R 2
0 k 0 k z
[1+i4( +¥) = . -HHI1E.
P Rn R,~ P P R17 RV a,

Y.-1 1 R

{cotan} 0 {cotan} 1

+[1 :L( Ja

i i

[1+1( EV)——] |

{cotan} l{cotan}__"+i(y0 1) X
r n v

tan P R

o o
{cotan}_il .{cotan}_g_g 0 (4.15¢,d)
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N - i s
2 -1 v k
@, =k 2l1- i( P Rn)R 1- ﬁ (4.16)
o’ = ikP R [1+1(y 1)(——-—'*)“]-/32 (4.17)
1 T .} 0 R," "2 .
2 2
a,” = -ikRv-ﬁ: (4.18)

and the coefficients of each term in (4.15a,d) have been expanded to
order (Rl-v2 included.

Methodology. EIven thougu the previous comments have led to a sub-
stantial simplification of the dispersion relations, as shown in equations
(4.15a,d), they do not provide a method of solution. An important indi-
cation as to how to approach this problem, may be seen in a short exami-
nation of the physics of wave phenomena in viscous, heat-conducting and
compressible fluids. As mentioned briefly in Section 1,2, Chu and Ko-
vasznay (1958) distinguish three main types of fluctuations in such a
fluid: pressure fluctuations corresponding to the propagation of sound
waves in an inviscid fluid, vorticity fluctuations related to the diffu-
sion of vorticity perturbations in & viscous medium, and entropy fluctu-
ations related to the diffusion of so-called '"hot spots'" in a heat-con-
ducting medium. In this study, we therefore expect to encounter three
families of pressure-, entropy-, and vorticity-dominated modes, and we
are faced with the problem of finding a method which enables us to deter-
mine their respective characteristics. 1In inviscid wave propagation, the
first and last terms in (4.158,b) are identically zero, and the disper-

sion relation is immediately solved for « to yield the pressure or

0 ?

acoustic modes. In the case of a viscous and heat-conducting medium,

these terms are no longer negligible. They may be recast solely in terms
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of ao through the use of (4.16), (4.17), and (4.18), and the resulting
relation is still to be solved for oy s to yleld the pressure-dominated
modes. Similarly, the characteristics of the entropy- (respectively,

vorticity-) dominated modes will be found by recasting the dispersion re-

lation in terms of al (respectively, a2 ) and solving for «_  (respec-

1
tively, a2 ). The main advantages of such a procedure, as compared to a
straightforward solution in terms of the complex wave number ﬁz , will
become apparent in the next few sections,

We are still confronted with the task of expanding the dispersion
in terms of a suitable small

relation, and the unknown; ao , O, , or QO

1 2
parameter, Three such parameters may be defined, and they correspond to
three ranges of frequencies, or equivalently three ranges of duct widths:

The High-Frequency-Wide-Tube Range.

Where the reduced frequency k 1is such that:

--}—<<k<<Rl/3
R v

14

(4.19)

and the small parameter is defined as:

1

/ kR
v

This is the femiliar acoustic boundary layer approximation.

€ = (4.20)

The Low-Frequency-Narrow-Tube Range.

Where the reduced frequency k 1is such that:

k << Rl (4.21)
v

and the small parameter is defined as

= kR .
€ y (4.22)
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The Very-High-Frequency-Very-Wide-Tube Rauge.

Where the reduced frequency k 1s such that

R 1/3 << k << R (4.23) . ’
v 14 , i
and the smell parameter is defined as
|
|

1/2

R
€ =(—}§) (4.24)
k

These ranges were first suggested, in a somewhat different form,by Weston
(1953a) in an analytical study of the zeroth-pressure mode. A full justi-
fication of such definitions will arise from the detailed analysis of the
next three sections.

The methodology which has just been outlined is now applied to the
determination of the characteristics of the pressure-, entropy-, and vor-

ticity-dominated modes in the three ranges of parameters defined above.

4,3 High Frequency - Wide Tube Range.

We showed in the preceding section that, in all practical situations,
1/Rv is a very small perameter. It is, therefore, legitimate to seek a
formal expansion-.of a, (respectively, o, , o, ) in powers of 1/Rv .
The range of validity of such expansions will be examined a posteriori,
by requiring that the ratio of two successive terms be smaller than unity.

4.3.1 Pressure-Dominated Modes. We assume the unknown ao to be

of order (1/RVP or of higher order, and wish to expand the dispersion
relation (4.15a,b) to order 1/Rv , inclusively. From (4.16) - (4.18),

the coefficients ﬁzz s a1 , and aZ may be approximated by the follow-

ing expressions:

2 Yool R,
-5 gD
k 410 r n

2 2

o ] (4.25)

2 k
Bz = (k" -« r
vV
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2.2
kP R a, -k v =1 R
o (1 rv 0 o L __vk
@, = (1-1) > (1+1 R i 6 R.’7)R ] (4.26)
ry r v

a, = (1-1) 3 l+1 zuv ] (4.27)

Note that in the last two relations the first terms are very large, of
order RU% . Consequently, the trigonometric tangeats in al and az
may be written as

o a

tan 2" tan ?% = -1 (4.28)

where exponentially small terms have been neglected. When equations

(4.25) - (4.28) are substituted into (4.15a,b), one obtains the follow-

ing equations in ao s
a 2
tan 0 = 1-1 * 2
ao{cotan} 7 = * (k -a, ) (4.29a,b)
2kR
v
where
x? Yoot 2
k = (1+ ) k (4.30)

P
\/ r
Higher order terms on the right-hand side of (4.29a,b) are of magnitude

9/2

(1/Rv , and have therefore been omitted. As we let the parameter Rv
go to infinity, the above equations yield the solutions ao which pertein
to the acoustic modes propagating in an inviscid medium. Hence, the

zeroth order terms are given by:

P
aON = N7 (4.31)

where the integer N 1is of the form

N = 2n n=0,1, 2, ...
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; for the symmetric mode of order n , described by (4.29a), and
N=2n+1 n=0,1, 2, ...

for the antisymmetric mode of order n , described by (4.29b). 1t is then
a straightforward procedure to derive a more accurate representation of

. by assuming that it may be expanded as:

0

af e N[l —2 2] (4.32)

ON v/"' R
R v
1 %
when N is different from zero, and,

P a b

a = —r+—07 (4.33)
00 R R3 4

1 % 1%

when N 1is zero., The unknown constants a and b associated with even
(respectively, odd) values of N , are determined by substituting (4.32)
and (4.33) into equation (4.29a), (respectively, (4.29b)). The resulting
expressions are expanded to order 1/Rv , and the coefficient of each

higher-order term is set equal to zero. The finel solutions are then

given by:
P ‘iaTT 1 X k*2 1
a =1 2 e K (=) [1+Q-1)(1+==) —= ] (4.34)
00 kR 12
v /2kR
1
P 1-i | %2 2 2 a1
Qo = N[l - ‘12 (k' -(NM5 R +41 'Lzl R ]
(Nm) v (N™) v

(4.35)
Substitution of the previous results into equations (4.25) - (4.27) yields

the corresponding expressions for a, az , and ﬁz :

kP R 2 2 R
P o_ . I Vry_ i k-(Nm" S1). (Y.l 29 1
Qg = (1-1) — [1 2{ P + (v,-1) (Rn-P)k }kR]

(4.36)
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/ kR 2 2
P . ~VYry i, k-(ND"
e (1-4) 2 [1 5 kRv ] (4.37)
v -1 Y.-1
0", 1 0, .
/p /2kR P
T v T
2

<21+ —2—
K1 Yool 1 1%

-1 R
(1+35—-7(1+ )) - 5(
12 "4 \/p: kR, 2" P "Ry R,

+-¥) X (4.38)
2
By = (KT -am®+21-1)(k” - (M) [ —25
v (Nm)

2 2 v -1 R "y
& - amd +3(Nn)2)k—]1(—-1k4(-9P—-+—v) L7 (4.39)
Vv Tr

KRy

The index N may be set equal to zero in (4.36) and (4.37) but not in

P
BzO = k[14(1-1)(1+

(4.39)., When N 1is an even integer:
N = 2n n=0,1,2,...

the above results describe the symmetric pressure-dominated mode of order
n, SP(n) , and the associated mode shape is given in Tsble I. When N

is an odd integer:
N=2n+1 n=0,1,2,...

they describe the antisymmetric pressure-dominated mode of order n ,
AP(n) , and the associated mode shape is given in Taeble II.

As already explained in Section 3.4, we select in (4.39) the complex
root which pertains to waves attenuating in the positive z-direction, i.e.
of negative imaginary part. In the course of the previous derivation we

tacitly assumed the right-hand side of (4.29a,b) to be much smaller than
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unity. Furthermore, in order for the above expansions to be valid each
term has to be smaller then the preceding one, Enforcement of these con-
ditions results in the following restrictions on the possible values of

the frequency parsmeter Kk :

R—l‘ «<k<r!/? (4.40)
v Vv

This double inequality may be written in two other equivalent ways as:

4,\1/3
v a
.% << g << [ =2 , (4.41)
d v.d
0
or
1/2 .
Qo) d < —Ls (4.42)
w (w3vb)

which is immedietely interpreted as an a posteriori justification of the

name given to the present approximation, Whereas &, 1s of order unity

0
(except for SP(0) ), @, and a2 are complex numbers of very large
modulus, Consequently, if we examine the mode shapes of Table I, terms
cosQ, X cos Q. x
such as ZSZE;7E or 23;3675 may be written in the following manner:
1+ j 1 1+ 1
cos Q. x ) l‘xll(x"2) B lall(x+2)
1 = e \/; + e 2 (4.43)
cosa172 .
1/2
wvhere |a1} is very large, of the order of OcRU) . Hence, they will

be of significant magnitude in only a thin layer close ito the duct walls
at x=-1/2 and x=1/2 . In the center of the tube, they will be expo-

*
nentially small, As will be clear when we discuss the mode shapes in

*
Identical conclusions may be reached with the corresponding expressions
in Teble 1I,
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Section 4.6, such s behavior is linked with the diffusion of entropy and
vorticity in thermal and viscous boundary layers attsched to the walls of
the tube. If the boundary layer thickness is defined as the distance
from the duct walls where the magnitude of these terms is e'1 of its
maximum value, the non-dimensionel viscous and thermal boundary layer

thicknesses are respectively:

f 2 .2

Ve el

Sy ot | o L1 2R ] (4.44)
&

/ 2.2
6., = o = fhe DAk .
ehN = Tarp KB R P 0

R
G-t 1] (6.45)
vV

The lower bound imposed on k 1in equation (4.40) implies that viscous

end thermsl effects are important only in layers of approximate non-

'
and E;:E; , respectively. By in-

voking elementary notions of kinetic theory as used in Section 4.2, this

dimensional thicknesses

d
o] LS
<

may be tiunislated as follows:

<< 1 (4.46)

i.e., the dimensiona. boundary layer thickness is approximately equal
to the geometric mean of the wavelength and mean free path, and it is
much smaller than the duct width, The high-frequency-wide-tube regime
might just as well have been called the acoustic boundary lsyer approx-
imation.

To the author's knowledge, all investigations to date with the ex-

ception of Scarton and Rouleau's have only been concerned with the deter-

62




m-mnwﬂ?ﬂ‘w? T T T

mination of the complex wave number of pressure-dominated modes, and
most of them have considered the acoustic boundary layer approximation,

. It is therefore interesting to compare our results with those availeble
in the literature.

Expression (4.38) relative to the zeroth 'plane' pressure mode is
composed of:

— an inviscid term

— a second term of order (1/Ri)%’ proportional to the square root
of the reduced frequency, representing attenuation and disper-
sion effects brought about by the acoustic boundary layers, and
first calculated by Kirchhoff (1868) in the case of a circular
tube.

— a third term of order l/Rv , representing higher-order acoustic
boundary layer attenusetion.

— a fourth term of the same order of magnitude as the preceding
one, proportional to tne square of the reduced frequency, and
associated with the dilatational attenuation of longitudinal
waves in the bulk of the fluid. This last part of the complex
wave number was also derived by Kirchhoff in a study of the pro-
pagation of plane waves in an unbounded medium.

Weston (1953a), in an analytical treatment of the characteristics
of the plane mode in a circular duct, subdivides the wide-tube range
into two subranges or transition regions. In the wide-narrow tube sub-
range, k 1is assumed to be smaller than unity and 'closer" to 1/Rv s

so that terms of the form k/Rv in the brackets of (4.38) can be ne-

glectea. In the wide-very-wide-tube subrange, k 1is assumed to be

R 1/3

larger than unity and ''closer' to v

, so that terms of the form
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1/\/f;;; or 1/kRv can be omitted. The simplified expressions re-
sulting from the manipulation of (4.38) in the above prescribed manner
are then very analogous to those obtained by Weston in these subranges.
In order to give the corresponding interpretation of the results
pertaining to the higher-order P modes, it is convenient to get rid
of the square root in (4.39) by expansion in powers of l/Rv. Since
the dominant term in the square root may be positive or negative, one
must distinguish several ranges of frequencies whichare discussed below:

When k > N1 , the complex wave number is given by

2
* 2
p_ [z 2 ko -(vm) 2 4i
Bn = K -am® [1+Q1-i) =5 R >

k -(Nn)2 (Nm)
2 2
K om? P 2 ¥ K -avmi. 1 ik’
5 T H (M-S ST R T 2
k™ - (Nm) k™ - (Nm v
(. -1)/P +R /R
0 /Ry 1 (4.47)

]
Coam? | KRy

Shaw (1953) studied wave propagation between a pair of infinite paral-
lel walls and obtained identical results to order (1/Rv)% . In the
present expression, the expansion has been carried out to higher order.
This enables us to analyze the different terms in the same manner as in
(4.38). 1In particular, the first term is the well-known inviscid higher-
mode wave number. The total attenuation v+ate is of order (l/RU)%

and dilatational dissipation is smaller than acoustic boundary layer
dissipation as can be seen by comparing the second and last term of
(4.47). 1In the vicinity of the reduced frequency Nm , the denominators

of the perturbation terms in (4.47) tend to zero, so that the above ex-
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pansion becomes invalid. One then evaluates the wave number directly
from (4.39).

When the reduced frequency k is equal to the inviscid cut-off

frequency Nm , the wave number is:

%
1
yol %

B = 2

21
il

1

/2NﬁR
v

../P_ v.,-1 R 2
-i r, 0 +-Y (N)

1
+— ( ] (4.48)
8 Y%l P Ry /ZNTTRU

In contrast with duct propagation in an inviscid medium, it is not zero.

Furthermore, its real part is finite, so that a wave still propagates

along the duct axis. Even though the attenuation rate is now larger,
3

of order (1/RU)“ instead of (I/RV)% , Nm is not the cut-off fre-

quency of the higher-order modes.
N1

X
|
(14 =2

’ Pr
B:; = sin/ am?a? [1-(1-1) ——'@1— ‘/

When < k < Nm , equation (4.47) is changed into:

(Nm )
4i k*z-@n)z " Ziml 1
7 7 g (b HAm -+ 2.2 W
(Nm) (Nm) "-k (Nm) v
4 (y.-1)/P 4R /R
e LrS (4.49)
(Nm) "~ v

It is important to note that the sudden increase of the attenuation rate

shown in the above relation is not due to enhanced viscous dissipation,
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but rather to the storage of the acoustic energy in a smaller region of
space. The physical mechanism is the same as in inviscid wave motion.
However, the real part of the wave number remains finite and leads to a . |

positive phase velocity.

*
When k = N _or k = the real part of the

Nm
[1+(‘V0-1/'\/P—r)]%

complex wave number is almost zero, of order I/RU as seen from (4.49)K.

Hence, the true cut-off frequency is given by:

ke = ———NE——JE < Nm (4.50)
y. -1

This downward shift in cut-off is solely attributable to thermal effects,

and disappears when the Prandtl number goes to infinity. The practical

significance of such a phenomenon is limited, since the attenuation rate

is already very high at the inviscid cut-off. 3

Below Cut-off, the real part of (4.49) leads to a negative phase

velocity. Wave fronts propagate in the negative z-direction, whereas

the amplitude is attenuated in the opposite direction. It is shown in
Appendix C that, in this instance, the acoustic intensity is indeed posi-
tive, and acoustic energy is moving against the wevefronts. These so-
called backward-propagating waves were also encountered by Meitzler

(1965) in the equivalent elastic plate problem, and by Scarton and Rou-
leau (1973) in a numerical study of the axisymmetric modes in a viscous fluid.

This completes our discussion of the pressure-dominated solutions

%
In order for the real part of ﬁz to be identically zero to order 1/R
included, one would have to slightly perturb k* around the value Nm .
This has not been done here for simplicity.
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of the dispersion relations (4.15a,b) in the high-frequency-wide-tube

approximation.

4,3.2 Entropy-Dominated Modes. Following the methodology de-

scribed in Section 4.2, we assume the unknown o, to be of order
(1/Rv)0 of higher order. 1In this situation, it is preferable to at-
tack the problem from the normalized dispersion relations (4.15¢,d)
instead of (4.15a,b). These equations are to be solved for o«, to

1
3/2 included. Relations (4.16) - (4.18) enable us to

order (1/RU)

g el &

approximate Rzz s ao , and &, by the following expressions:

2
2
ia R
2 _ . D ST S L

| Bz = -1kPer[1-kP = 10y, 1)(P -3 )R ] (4.51)
. r v T 7N
l
K 2 2
f kP R o, Sk v -1 R

= vrp il ; 0 1 vy k 5
; a, = (1+1) 5 (1 SR Tl (P = ) R ] (4.52)

rvy T n v
{
k(1-P )R fa,2 y -1

, - s r 'y 1 o 0
: a, = (1-1) 2 4503 5w - & 3
p r v
]
r P R
; r 1 _ v k
: 5.5 "R R ! (4.53)
; r'r n v

Since ao and az are complex numbers of very large amplitude, their

trigonometric tangents can be written as:

o (0 4
tan 7? = -tan 7% =i (4.54)

D A . DL

When these relations are substituted into the dispersion relations

(4.15¢,d), two equations in al follow:
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{cotan} % oo 1-i (70 l)k

tan 2 ,/F~
1+1

(4.55a,b) .
(kB_R )3/2 % )

the upper (respectively, lower) expression pertaining to the symmetric
(respectively, antisymmetric) entropy-dominated modes. The solutions
of the above equations are obtained in exactly the same manner as the

P-modes of the preceding subsection. The final results are given as

follows:
(v -l)k2
ad = N [1+1-0,/2 0 : (4.56)
P 3/2
1+ 4 r (kPer)
1-p
T

where the integer N 1is an odd number of the form
= 2n+1 n=0,1, 2, ...

for the symmetric mode of order n , SS(n) , and an even number of the

form
N=2n n=1,2,3, ...
for the antisymmetric mode of order n , AS(n) . Corresponding expres-

sions for ao , O

kP R y -1
S Ty i k +§Nn) 0 1 k
Aoy = (M) —; [1 7R Gy R |%5T)
r 7N v
S = (1-) KPR 1+1——-———(N"')2
2N 2 2k(1-F )R

vo-l Pr 1

RU .
A e (- ) (4.58)
2 1-P_ 'P_ Rh R,

, » and 5z are given by:

IQW

[

R
]
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kP R 2 Y.-1 R
S r v i (N1) 0 1 v, k
By = (1-1) 1- +1i (—-==)— (4.59)
zN 2 ZkPer 2 Pr Rn RV

At first sight, al = 0 appears to be an exact solution of the anti-
symmetric dispersion relation (3.71) throughout the entire reduced fre-
quency domain. However, it is easily checked that the only possible
mode shape that can be associated with such a solution is identically

zero. Hence, @, =0 1is not a relevant antisymmetric eigenvalue, and

1
as prescribed asbove, the index n characterizing the antisymmetric
S-modes takes positive values only.

The ssme reasoning as in Subsection 4.3.1 leads to the following

restrictions on values of the reduced frequency k :

1
Lo <<
R << k RU (4.60)

v

where the upper bound is a consequence of the preliminary assumptions
made in Section 4.2. Consequently, upon comparison of (4.60) with (4.40),
it is clear that the range of validity of the S-mode expansions is wider
than the range of validity of the corresponding P-mode expansions. In
this investigation, we assume that, by definition, the high-frequency-
wide-tube approximation pertains to the reduced frequency domain

§F-<< k << va/B . The above results are therefore valid, not only in

v
the high-frequency-wide-tube range, but also in the very-high-frequency-

very-wide-tube range which will be studied in detail in Section 4.5.

The coefficients aé; and a;; are strikingly similar in form to

the coefficients af; and a;; defined in the previous subsection.

| Correspondingly, we will show in Section 4.6 that this mathematical fea-

ture is linked with a diffusive behavior of pressure and vorticity
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fluctuations in acoustic boundary layers close to the walls of the tube.
Expressions for the thickness of these layers may also be derived as in
Subsection 4,3.1, and they may be shown to be of the same small order
of magnitude (l/kRU)Aj , as the viscous and thermel boundary layers as-
sociated with the P-modes.

The complex wave numbers all have large real and imaginary parts.
In contrast with the P-modes which have distinct phase velocities and
attenuation rates, the S-modes have almost identical propagation char-
acteristics, and are highly attenuated at all frequencies. Nevertheless,
to each value of the index N , corresponds a specific S-mode shape as
shown from (4.56).

Although researchers have been aware of the existence of entropy-
dominated modes since the earlier work of Chu and Kovasznay, we do not
know of any previous investigation of their properties for a given
boundary value problem. In the next subsection, we proceed to determine
the vorticity-dominated solutions of the dispersion relatiens (4.15a,b).

4.3.3 Vorticity-Dominated Modes. The dispersion relations

(4.15a,b) are to be solved for the unknown az to order 1/Rv included.

From (4.16) - (4.18) we may write:

L2
,32= -ikR[l-—uiz-—] (4.61)
2z v kR ¢
v
Yy . k2+a22 J
o) = (1+1) - ! -3 _—k_R_—] (4.62)
v
2
k(]-Pr)RV o, {
oy = (1+i) 7 (L -5a R
r v ]
v.-1 P R
0 T 1 v, k
i — = (- )] (4.63) |
2 1-p_ P Rn R, |

70 1




AR P T T

so that the trigonometric tangents in ao and al are approximated

by the following expression:
% %
tan = = tan == = i (4.64)

Substitution of the above relations into the dispersion relations

(4.15a,b) leads to the two following equations in a, :

(2
teny 2 _ 1M
{eotan? 7= F ——aq (4.65a,b)
v

where the upper (respectively, lower) expression corresponds to the sym-
metric (respectively, antisymmetric) vorticity-dominated modes. By
making use of the same procedure as in the previous two subsections, we

arrive at the final results:
vV _ A S
&,y = N[ 1+ (1+1) kRv + kRU] (4.66)

where the integer N 1is of the form,

N =2n+1 n=0,1,2, ...

for the antisymmetric mode of order n , AV(n) .

Expressions for Q) 5 0 and ﬁz are then obtained from (4.61) -

(4.63) as follows:

kR 2 2
v o_ . 1% i k7+(Nm)
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k(1-P_)R 2
o’ - (14 _—L V1.4 N .
1N 2 2Z(1-P R )

¥Y.-1 P R
L _ _r 1. v,k '
13 1-P_ 53 Rn)R] (4.68)

1%

kR 92

Vo ey [y, 8T
BzN (1-1) 5 (1 imv] (4.69)

The above expansions have the same domain of validity as those describ-

ing the S-modes, i.e.,, the reduced frequency k 1is such that:

1
— << k <<
R k RV

v |
Consequently, these results characterize the vorticity-dominated modes |
in both the high-frequency-wide-tube-, and very-high-frequency-very-wide-

v

The large real and imaginary parts of the coefficients « and

|

tube ranges. ]
|

ON |

v
a

N correspond to ''diffusion' of pressure and entropy fluctuations in

thin layers close to the duct walls, the thickness of these layers be-~
ing of the order of (l/kRv)¥ . As seen from a comparison of (4.69) and
(4.59), the propagation cheracteristics of entropy-and vorticity-domi-
nated modes are strictly analogous, and the reader is referred to the
preceding subsection for further details.

Scarton and Rouleau (1973) were the first to conduct a numerical
study of the V-modes (in their terminology, the "B band' of eigenvalues)
in the case of a circular tube and a non-heat-conducting fluid, and,
as we shall see in our final discussion, found very similar results.
They noted that &, =0 1is an exact solution of the axisymmetric disper-

2

sion relation, just as it is an exact solution of the symmetric inplane
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dispersion relation (3.70) and numerically derived a corresponding non-

zero mode shape. However, if «, 1is assumed to be zerc in the analysis

2
beginning in Section 3.3, one immediately reaches the conclusion that
the only possible mode shape is zero. Hence, a2-0 cannot be consi-
dered as @& relevant symmetric eigenvalue, and the index N cannot be
zero in (4.66).*

We have now completed the determination of the symmetric and anti-
symmetric solutions of the'inplane dispersion relations in the high-
frequency-wide-tube approximation. At this point, two additional as-
sumptions which have been implicitly made in the previous derivations
need to be carefully stated. 1In order for expressions of the form |
‘V/;;:;; to be large quantities, the Prandtl number is taken to be
larger than 1/kRv . Such a restriction is unimportant since most fluids
of interest have a Prandtl number of the order of one or larger. Further-
more, if the S- and V-expressions are to be valid, terms of the form
q/ k(l-Pr)Rv must also be large. Consequently, in these last two
families, the Prandtl number is in addition assumed to differ from unity
by & quentity larger than 1/kRV . This latter restriction could easily
be removed by examining the particular case where Pr is unity.

We may now clearly appreciate the advantage of taking aO s al .
and a2 as respective unknowns for the P-, S-, and V-eigenvalues, in-
stead of the complex wave number, If ﬂz had been chosen as unknown

of order (l/RU)0 or of higher order in the dispersion relations, we

would have obtained the P-eigenvalues only, since they are the only ones

*
A similar situation prevailed in the study of the antisymmetric anti-
plane modes and antisymmetric S-modes studied in Sections 3.4 and 4.3.2,
respectively,
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to be characterized by s wave number of order one. The other two fami-
lies would have been completely ignored, their wave number being of or-
der Rvs as can be seen from (4.59) and (4.69).

We still have not justified the terminology used to designate the
different femilies of eigenfunctions. A definite explanation will be
given when we examine the characteristics of the mode shapes in Section

4‘6'

4.4 Low-Frequency-Narrow-Tube Range.

The solutions in the high-frequency-wide-tube approximation were
shown to be valid as long as the frequency perameter k is much larger
than 1/RV . For values of k or the order of 1/Rv , the expansions
break down. In this section, we seek solutions of the dispersion rela-
tion (4.15a,d) for values of the reduced frequency much smaller than
I/RU + The unknown and the dispersion relations are formally expanded
in powers of k and the range of validity of the results is determined
a posteriori.

4,4.1, Pressure and Vorticity-Dominated Modes. 1In the high-fre-

) quency-wide-tube approximation, we generally assumed one of the coeffi-
cients ao s al , or a2 , to be of order unity which impliea that the
other coefficients were very large quantities. In contrast with such
a situation, we expect in the low-frequency-narrow-tube region all the
coefficients ao . al , and az to be of the same order of magnitude,
since terms of the fomm kRv are now very small. Hence, no real advan-
tage is gained by following the general procedure described in Section
4.2, In this subsection, we therefore solve the normalized dispersion

relations (4.15a,b) for the unknown complex wave number Bz and assume

74




ﬁz to be of order unity. Such a procedure will yield both pressure-
and vorticity-dominated eigenvelues. The dispersion relations have to
be expanded to order k2 inclusive in order to derive accurste solu-
tions to order k 1inclusive. From (4.16) - (4.18), “0 ; a1 , and «

2
may be written in the form:

B [ 5 ]
a =18 [1- (4.70)
0 z ZBzz

{kP R
a, = if [1+ —5E) 4.71)
1 4 Zp 2

- VeV

a, = i8 [1+ + 7] (4.72)
When these expansions are substituted into (4.15a,b) and the resulting
expressions are expanded to order k2 , terms of zeroth order cancel
out and the final equations, after division by kRv , and reordering,
are given by:

tan } fg_ KR
2

- i
sin i‘Bz + iﬁz + 4 l:cotan

1%

n
siniBz iﬁz

k 34
+ 17, (sin 1321 1,8!) oA 5 kR,
v B
z
Y52 R -
+1 (—g—+§2)(s1n 18, +18)) gk- =0 (4.73a,b)
n v

where the upper (respectively, lower) trigonometric function and sign
correspond to the symmetric (respectively, antisymmetric) dispersion

relation. From (4.73a,b), we immediately deduce zeroth-order estimates
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of the eigenvalues of the form

Bz = iz (4.74)

where z satisfies one of the following transcendental equations
sinz = +2 (4.75a,b)

and the + and « signs correspond to symmetric and antisymmetric
eigenvalues. The solutions of the above equations are investigated in
detail in Appendix D, They both admit an infinity of non-zero complex
solutions. Furthermore, if 2z 1s a solution of (4.75a or b), so is
-z and the complex conjugate z* . Consequently, if numerical solu-
tions of these equations are availeble in the fourth quadrant
(Rez > 0, Imz < 0) of the complex z-plane, the solutions in the three
other quadrants may immedistely be obtained by elementary symmetry con-
siderations.

iat us introduce the following notations: the complex root of

(4.758) lying in the fourth quadrant of the complex plane and such that
2nﬂ<Rez<(2n+-‘,1z)ﬂ nx=l,2,3, ... (4.76)

will be designated z;+. Correspondingly, the complex root of (4.75b)

which lies in the same quadrant and such that
{(2nt+l)n < Re z < (2n-+%)ﬂ n=0,1,2, ... 4.77)
will be designated za'. The first five roots of each equotion have

been computed numerically, and are displayed in Table III and IV, For

lerge values of n , they have the following asymptotic forms:

z: - (2n+%)ﬂ -1cosh‘1(2n+—;—)n 85 n=+o (4.78)

zn. = (2n+%)ﬂ-icosh'l(2n+%)n 88 n = +x (4.79)
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In agreement with the 'radiation condition' stated in Section 3.4, we
restrict our attention to complex numbers of negative imaginary pert,
i.e., to solutions of (4.75a,b) lying in the half pleane Rez> 0 .
Hence, the only solutions of interest are {zl+,... zn+,...} and
{zo',... zn‘,...} end their complex conjugates. The two families,
{zl+,... zn+,...} and {zo-,... zn-,...} have negative imaginary parts
and therefore correspond to complex wave numbers of negative real parts.
Since higher-order P-modes were shown to have negative phase velocities
below their cut-off frequency, in the high-frequency-wide-tube range,

we naturally associate these two families of roots to symmetric (ex-
cluding n=0) -.1 antisymmetric P-eigenvalues respectively. Cimilarly,
since vorticity modes were shown to have positive real parts, we asso-

+* + * K3
ciate the conjugate families {zl yeee Zo ,...} and {zo sees 2 coll

n
lying in the first quadrant to symmetric and antisymmetric V-eigenvalues
respectiveIV.*

We do not consider the above reasoning as a rigorous proof of the
correspondence between high-frequency and low-frequency eigenvalues.
Such 8 proof can only be given when the expansions derived in this study
&- : compared with known numerical solutions of the dispersion relationms,
which allow each eigenvalue to be followed throughout the entire fre-
quency domein, without any interruption. More specifically, the previ-
ous identifications will be fully justified when we compare our solu-
tions with the numerical investigation of Scarton and Rouleau.

When the zeroth-order or zero-frequency estimates have been deter-

mined as stated ahove, it is a straightforward procedure to derive a

A
The possibility of identifying :.ese roots with the S-eigenvalues may
at once be discarded, since such roots still exist when there is no
heat ¢np?uction, whevee the S-modes do not.
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n an+ ﬁn+
1 | 7.497676 | 2.768678
2 {13.899960 | 3.352210
3 {20.238518 | 3.716768
4 |26.554547 | 3.983142
5 132.859741 | 4.193251
TABLE I1II1:
zn+ = a: - i‘8n+ of sinz=2
n aﬂ- ﬁn-
0 | 4.212392 | 2.250729
1 [10.712537 | 3.103149
2 {17.073365 | 3.551087
3 |23.398355 | 3.858809
4 |29.708120 | 4.093705
TABLE 1IV:

z =0_-if  of sinz=-z
n n n
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more accurate representation of the complex wave number by assuming

that it may be expanded as:

Bz = -iz(1 +ak) (4.80)

where a is determined by substituting (4.80) into (4.73a,b), expanding
the resulting equations to order k , and setting the coefficient of k
equal to zero. The symmetric and antisymmetric pressure-dominated wave

numbers are then respectively given by:

SP _ . + vV 0 k 1
an = iz [1+ 2t z+ R * (4.81)
4z, .. 2°n "y
n sin” —
2
and
ikR iy
B = iz T1+ —E+ 0_ X1 (4.82)
zZn n -2 z- R
42z 2°n Ty
n cos” -~

+ - .
where z and z ~ are the non-zero complex solutions of
sinz = +2

which lie in the fourth quadrant of the complex z-plane.

The symmetric and antisymmetric vorticity-dominated modes are also
given by the above expansions, where zn+ and zn- have been replaced
by their complex conjugates. Substitution of the results for ﬁz into
expressions (4.70) - (4.72) yields the following expansions for o

al , and az :

] (4.83)
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SP + ik(l—ZPr)RV iy

0 k
%n = 2 [1+ +2 + z+ R ] (4.84)
4z 2°n v
n sin —
2
ikR iy
Sp + 1 v 0 k
%n = zn[1-42+2+ 5 RU] (4.85)
n sin 32
and
ikR iy
o e 1+ —0 Kk (4.86)
On 4 -2 2 za R
Zn cos" — V
2
(1-2P_ )R iy
AP _ - . r y 0 k .
a =z [l+ik ) + So R ] (4.87)
n cos” 5= v
kR iy
AP - Ry 0 k
2n = *n (1 -4 -2 + %5 R ] (4.88)
Zn cos” 5~ v

The corresponding V-expressions are obtained by replacing z: and z; ¢
by their complex conjugates.
To derive expansions for the higher-order P-modes and all the V-
modes, we have assumed the complex wave number to be of order unity.
In order to determine the characteristics of the only remaining unknown
eigenvalue, i.e., the zeroth-order SP-mode, ﬁz is taken to be of the

form
B =Bk (4.89)

where the unknown constant B of order unity is found by expanding the
symmetric dispersion relation (4.15a8) to order k2 inclusive. Terms in
k cancel out and when the term in k2 is set equal to zero, we obtain

the following equation for B :
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121.70
B= -~ (4.90)
1%
so that the SP(0) mode is given by:
6y k 6y .k
P 0 SP _ . 0
By = (1-1) R, (9D %= (Hn /g~ (4.92)

kP R 12y kR 12y
SP _ , r vy 0 . 5P V0
a, (1-1)\/ > (1-P - 5)(4.93); a0 = (1-1) 5= (1- - 5 (4.94)
Trv v

Upon examination of the ratio of successive terms in the previous
expansions, one easily determines the range of validity of the low-

frequency-narrow-tube approximation:

1
k << R (4.95)

v

As mentioned at the beginning of this subsection, the coefficients
ao , al , and az are now of the same order of magnitude, unity or
smaller, The associated mode shapes will therefore present smooth vari-
ations in the cross-section of the tube, and will not exhibit a boundary-
layer-like character as in the high-frequency-wide-tube regime.

In the limit of zero reduced frequency, i.e., in the case of steady
small-amplitude viscous and heat-conducting flow, V-modes and higher-
order P-modes are characterized by constant wave numbers. To each
higher-order P-eigenvalue of a given attenuation rate and negative
phase velocity, one can associate a V-eigenvalue of identical attenua-
tion rate and opposite phase velocity. Scarton and Rouleau have de-
rived similar zero-frequency eigenvalues for the circular geometry and

Fitzgerald (1972) used the corr -sponding cigenfunctions to model the
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plasma motions in the gaps between successive red cells in narrow-capil-
lary blood flow. In the present study, additional frequency-dependent
terms have been calculated so as to extend the results to a low-frequency-
narrow-tube region.

The SP(0)-mode is the well-known unsteady Poiseuille flow analyzed
by Rayleigh. 1In contrast with the high-frequency-wide-tube regime, its
phase speed now varies as the square root of frequen:y. In the limit
of zero reduced frequency, this eigenvalue becomes identically zero and
is therefore irrelevant. Further remarks on the physical meaning of
these results will be given in Section 4.6.

4.4.2 Entropy-Dominated Modes. In the above formulation, the dis-

persion relations were taken in the form (4.15a,b) and such an approach
failed to yield the characteristics of the S-modes. In agreement with
the procedure adopted in Subsection 4.3.2, we find it more convenient

to solve the dispersion relations in the form (4.1l5¢,d) for the unknown

o, which is assumed to be of order unity. From (4.16) - (4.18), we

1

may write:

ikP R (Y.-1) R
B2 .ql[1e—Lr. 20 T 1 v, 2, (4.96)
z 1 o 2 o 2 T Pr R
1 1 n
ikP R (Y. .-1) R 2 (kPR )2
a, =afl+—5L. 0 —p L Ul k Ty
0= % o’ mZ xR o sal
1 1 n 1 1 (4.97)
1k(P -1) (y.-1)P R {k(1-P )R }°
o0 =o[ld—E—r. 0 .1 _v,2, TV
2 =% 2 w? PR -

1 1 1 (4.98)

As expected, the coefficients « a1 , and @, are seen to be

0° 2

of identical order, and values of ., such that,

1
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al = Nt (4.99)
where

N=2n+l n=0,1,2, ... (4.100)
or

N = 2n n=1,2,3... (4.101)

satisfy the dispersion relation (4.15c¢), or (4.15d) respectively, to

zeroth order in k . Accurate expressions to order k3 inclusive are

needed in order to properly calculate the associated eigenfunctions.

Consequently, the coefficient o, is assumed to be of the form:

o, = N+ ak? + bk’ (4.102)

where a and b are determined by substitution of (4.102) into (4.15¢)
and (4.15d), and expansion of the resulting equations to order k3 .

Terms of zeroth order and order k cancel out and coefficients of k2

and k3 must be set equal to zero. The final results are the following:

2 .
(70-1) (Pr-l)k 1kPrRV

S
o), = Nm[1l- {1-
IN 2 (Nm)2 am)?
- - R -
+ i ————-—-——(Zpr D7 (—1—~—")-l‘—+iy——-————0(Pr Dk 11 (4.103)
P -1 P R’R P R .
T r N v rv

where the integer N 1is an odd number of the form (4.100) for the sym-

metric mode of order n , SS(n) , and an even number of the form (4.101)

for the antisymmetric mode of order n , AS(n) Corresponding expres-

sions for &, ,a,, and ﬁz are given by:

2
ikP R (Y. -1)P R 2 (kP R )
aOSN = Nn[l+ LS g- o 2r(1-§2)k2+ k 2+ I '2 1 4.104)
2(Nm) 2 (Nm) n 2(Nm) 8(Nm)
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2
ik(P_-1)R.  (¥.-1)P R {k(1-P )R}
°‘§N = N[ —E Y. 0 — (1-%)k2+————r—4——2—] (4.105)
2(Nm) 2 (Nm) n 8 (Nm)
. 2
{kP R (¥.-1)P R (kP.R)
BSN = N[+ —EY. 0 2'(1-—")k%——-’—%—] (4.106)
2 28m % 2(nm) R 8 (N)

The range of validity of these expansions is the same as for the pres-
sure- and vorticity-dominated modes of the preceding subsection, i.e.,

the reduced frequency k 1is such that

K << Ri (4.107)
v

In the limit of steady motions, the entropy-dominated eigenvalues are
purely imaginary and correspond to non-propagating modes of attenuation
rate N, We do not know of any previous study of thesc modes, with
which our present results could be compared.

We now proceed to an investigation of the dispersion relations in

the very-high-frequency-very-wide-tube approximation.

4.5 Very-High-Frequency-Ver;,-Wide-Tube Range.

In Section 4.3 we pointed out that the expansions pertaining te
the P modes were valid for values of the frequency parameter k ,
lower than va/3 . Such a requirement is particularly evident if we
examine relations (4.2%a,b) where the right-hand side has been assumed
smaller than unity. For values of k of the order of RUI/3 , the
high-frequency-wide-tube results break down. Physically, dilatational
attenuation in the bulk of the fluid, and proportional to k2 , becomes
of the same order of magnitude as acoustic boundary layer attenuation

proportional to ﬂ/q:. We novw reexamine the pressure-dominated modes in

the domain:
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R 1/3 << k << R (4.108)
v v

where the upper bound on k 1s & consequence of the continuum hypothesis
stated in Section 4.2. As mentioned earlier, high-frequency-wide-tube
results associated with the S- and V-modes are still valid in the pre-
sent approximation. Consequently, we do not need to consider these
modes in this section.

Following a well-established procedure, we solve the dispersion

relations (4.15a,b) for the unknown @, which is assumed to be of order

0
unity. Equaltions (4.16) - (4.18) vield expansions of Bz2 s &y and
a2 given by:
2
vy -1 R a
B2 ?[1-1(2— 4Bk _ 04 (4.109)
2 P R "R 2
T mn v k
kP R y_ -2 R
. i.70 Kk
o, = (1-i), /| ——L [143(=— - (v,-1)H) =
1 2 2" P 0 R,n Rv] (4.110)
’.(Rv ik
a, = (1-1) =< [1 -E] (4.111)

The above expressions are all accurate up to order k/RU . In (4.109),
we have included a higher order term in 1/k2 so as to establish a one-
to-one relationship between each P-mode and its complex wave number

ﬁz . However, such a term is negligible in the current determination

of the equations for « After substitution into the dispersion rela-

0 °
tions (4.158,b) and appropriate expansion, one obtains the following

relations:
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p R
cotamy 0 _ o 1+
{ unl > +—————<—2-3 o (4.112a,b)

Note that the corresponding high-frequency-wide-tube equations (4.29a,b)

reduce to (4.112a,b) when the term in 1/1/ kRv is neglected in come-

parison with the term in (kB/Rt)% on the right-hand side of (4.29a,b).

From (4.112a,b), it is straightforward to solve for ao . The final

results are given by:

X
/2R
agN = Nﬂ[1+—ﬁ-— —-—'4\] (4.113)
70-1 k3/
14+ ——

where the integer N 1is an odd number

1,2,3, ... (4.114)

N=2n-1 n
for the symmetric higher order mode SP(n) , and an even number
N = 2n n=1,2,3,... (4.115)

for the antisymmetric higher order mode AP(n) . Equations (4.109) -

(4.111) then yield the expansions of @, ,a,, and ﬁz :

kP 1\“‘ Y. -2 R
P. . ~IVr+if 0y Yk
@y (1-1)\/—: (14210 P 7, I)RTI}RU] (4.116)

P Vv Ak
Uy = (1-1) 5 [1-2R ] (4.117)
v
vy -1 2 2 '2R\!5
BP i 0 o k (Nm) (Nm) 1 v
on = k-3 (g - 7 - (=5 5| 7))
T v 2k 1+ 0 k \k
v.r (4.118)
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In order to derive the expansions pertaining to the SP(0) and AP(0)

modes, the coefficient @, 1is assumed to be large of o der (kBIRJﬁ‘

0
and such that:

3 %
k
a = (1+i)a(2—R;) (4.119)

In this case, equations (4.112a,b) are shown to still be valid. Fur-

thermore, since «& is of the form (4.119), its trigonometric tangent

0
is:

%,
tan > = 1 (4.120)

and equations (4.112a,b) immediately yield the following expressions

for ao :
%
Y. -1 3
SP AP _ 0 k.
aOO = aOO = (1+i)(1+:;f§:)(2R ) (4.121)
r

Corresponding expansions for al and a2 are given by (4.116) and

(4.117), and the complex wave number is

2
R
\/E_r/ v p. Ry
As seen from the second term in (4.i18) and the second and third term
in (4.122), all P-modes are characterized by an attenuation rate pro-
portional to the square of the reduced frequency, and Kirchhoff's
free space attenuation term is seen to be a significant part of the

total attenuation rate., The three coefficients «& and « at-

0% 2
tached to the SP(0) and AP(0) modes are all complex numbers of very

large imaginary part. Hence, one may consider, in addition to viscous
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and thermal boundary layer thicknesses associated with o, and a2

and defined in equations (4.44) - (4,45), a new layer of thickness of
order (Rv/k3)%f associated with ao , and where pressure fluctuations
are significant. Such a behavior will be clearly exhibited when we
examine the mode shapes in the next section. Zeroth order terms simi-
lar to those of (4.113) were derived by Elco and Hughes (1962) for the
higher-order P-modes in a viscous fluid contained in & cylindrical duct,
Weston (1953a) in his invéstigation of the characteristics of the zeroth
axisymmetric sound mode, also finds expressions which are analogous to

the present SP(0)-mode results.

4.6 Mode Shapes.

In the last three sections, the eigenvalues, solutions of the in-
plane dispersion relations, were anslyzed in detail in the low, high,
and very-high frequency ranges. To each eigenvealue corresponds a given
mode shape, i.e., given variations of the physical variasbles with dis-
tance x from the duct middle plane. Since the symmetric inplane
eigenfunctions are closely related to the axisymmetric eigenfunctions
of a cylindrical duct, we will restrict the study to the determination
of the symmetric inplane mode shapes. Furthermore, symmetric and anti-
symmetric eigenvalues were shown to exhibit similar characteristics and
a discussion of the antisymmetric eigenfunctions would not reveal any
new physical features.

The symmetric mode shapes of Table 1 will be normalized by re-

quiring that
p'(x=0) = 1 (4.123)
for the SP-modes,
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S'(x=0) = 1 (4.124)

for the SS-modes, and

—L(x=0) =
o (x=0) = 1 (4.125)

for the SV-modes.

Upen enforcement of these conditions in the relations in Table I,

the unknown constant A' takes the following forms:
id 1

Podok 18 *

0
(1-
kPR,

A' = 5 (6.126)
18
1 1

-(1- 1
cosao/Z kPrRU

cosa1/2

) )

in the case of SP-modes,

TO PrRu 1
' =
A' = d Tehe 52 37 (4.127)
Po P1 Fo 1 1

0

312 cosao/2 cosal/Z

in the case of SS-modes, and

2 cosQ_/2
d 1 2
A' = — (4.128)
kRU k2 _k2 ﬁz
2 2
BO ﬁl

in the case of SV-modes.

As mentioned in Section 4.1, the SP-, SS-, and SV-mode shapes are
then obtained in the three frequency and duct-width regires v substi-
tuting the expressions for ao s al s a2 , and ﬁz derivad irn the pre-
ceding sections into the relations of Table I.

In order to exhibit in a relatively simple mathematical form the
main features of each family in each reduced frequency domain, all the
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terms in the resulting equations can be expanded in powers of the smell
parameter characterizing the frequency range under consideration, so
as to yield first approximations of the physical variables which are
uniformly valid throughout the entire cross-section -%<x<% , Even
though we restrict our efforts to the derivation of first-order approx-
imations, the procedure 1is long and tedious. Since no mathematical dif-
ficulties are involved in the derivation, only the final results are
presented as shown in the next few pages. Tsbles V, VI, and VII refer
to the SP-, SS-, and SV-mode shapes in the high-frequency-wide-tube
range; Tables VIII, IX, and X to the same mode shapes in the low-fre-
quency-narrow-tube range; and, Tebles XI and XII to the SP(0) and higher-
order SP-mode shapes in the very-high-frequency-very-wide-tube range.
Alternstively, the complete expsnsions of ao . al s a2 and ﬂz
can be inserted into the relations of Table I. The resulting expres-
sions are very complicated and do not need to be expanded, The mode
shapes are evaluated directly by computing numerically their variations
with distance x from the duct axis for givenvalues of the non-dimensional
parameters, 70 s Pr s Ru , Rn , and k . The complex .mplitudes of
pressure, entropy, vorticity, axial sand transversal velocity, and tem-
perature can then be plotted for the first two modes of each family as
shown {n Figures 5-10. In any figure, each row of rectangular plots is
attached to & given mode indicated at the left end of the row, and each
column to a specific physical variable indicated at the bottom of the
column, On sny individual plot, the variations of the real and imagi-
nary parts of the corresponding physical variable are represented vey-
sus transversal distance x (vertical axis on the plot) from x=0 to

x=% . i,e., in the upper half of the duct cross-section only., The
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lower half of the mode shape would be obtained by symmetry with respect
to the duct middle plane for all physical variables except vorticity

and transversal velocity which are antisymmetric. In the following sub-
sections, we successively discuss the main results concerning the SP-,
§S-, and SV-mode shapes in the low, high, and very-high frequency re-
gimes as they are summarized in the aforementioned tables and graphs.

4,6.1 High-Frequency-Wide-Tube Mode Shapes. As it is clear from

Table V, the SP-mode shapés in the central region of the duct are, to

a first approximation, the same as the corresponding inviscid ones.
Enforcement of the boundary conditions at the walls is responsible for
the presence of diffusive terms in the form of decaying complex exponen-
tials. Such terms are negligible outside thin viscous and thermal
boundary layers of respective thickness (2/kRv)% and (2/k}?rRu)}5 N

but they play a critical role inside these layers as exemplified in
Figures 5 and 6. The viscous boundary layer is associated with dif-
fusion of vorticity of order (k/Rv)'% whereas the thermal bcundary
layer is characterized by diffusion of entropy fluctuations of order
unity. We remarked in Section 3.4 that a standing wave form, cos 2nTx
travelling along the positive z-direction, could be viewed as the super-
position of two travelling plane waves propagating in symmetric direc-
tions with respect to the duct axis and reflecting against the bound-
aries. Let us 1isolate in.the expression for pasp(x) , the plane

pressure wave

i(t-nmx-8 z)
p' ~e z (4.129)

As seen from Table V, this wave, upon reflection at the upper wall, will

give rise to two secondary waves: a highly attenuated 'vorticity wave"
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of the form

kR kR
oSN T @ e 56
~ @ .« e

(4.130)

propagating in a direction almost perpendicular to the plane of the
boundary, and associated with exial velocity fluctuations of the same

form, and a highly attenuated "entropy wave' given by

kPer 1 kPer
- --—2——(5-}() ift+ 5 x-ﬁzz]
S' ~e . € (4.131)

also propagating in a direction nearly perpendicular to the wall, and

associated with temperature and density fluctuations of the form (4.131).
The same interpretation may be given for the plane wave propagating to-
wards the lower boundary. Hence, we may conclude that an SP-mode is
nothing but the superposition of two plane pressure waves which propa-
gate in symmetric directions with respect to the middle plane, and upon
reflection at the duct walls, give rise to very attenuated secondary
vorticity and entropy waves,

We also note that SP(0) has a non-zero transversal velocity V;
of order (k/Rv)% which varies linearly with x in the central region
of the duct and rapidly drops to zero in the boundary layers under the
cancelling effect of viscous and thermal diffusive terms., In contrast
with this situation, the transversal valocity of the higher-order SP-
modes is, to a first approximation, the same as in the inviscid case.

As mentioned in the introduction to this section, the graphs con-
stitute a more accurate representation of the eigenfunctions since the
contributions of higher order terms in aO , ai s az , and Bz are

taken into account, In order to illustrate this feature, we have
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displayed in Figure 5, the non-zero imaginary part of the SP(0) pres-
sure amplitude which, according to Table V, is to a first approximation
identically zero. From a comparison of Figures 5 and 6, and Table V,
we infer that higher-order terms only bring sbout slight changes to the
mode shapes.

If we now turn our attention to the results of Table VI and the
graphs of Figures 5 and 6 pertaining to the SS-modes, we clearly see
that the perturbations in'the central core of the duct are composed of
entropy waves of order unity associated with temperature and density
fluctuations of the same order, pressure fluctuations of order k/RV s
and velocity fluctuations V; and V; of order (k/Rv)% and 1/Rv ,
respectively. As in the case of the SP modes, enforcement of the -
boundary conditions leads to the diffusion of vorticity fluctuations
of order (k/?rRu)% in layers of thickness (E?T:%ZB?rhé close to
the duct walls, In addition, these entropy waves giveb;ise to diffu-
sion of pressure fluctuations in layers of thickness (2/kPrRU¢ .

Such a phenomenon is not directly apparent in Table VI, except through
the associated transversal velocity fluctuations, because it is of
higher order than the term shown in the expression relative to péss

on Table VI. However, it definitely occurs, as seen from the more ac-
curate variations of pressure amplitude displayed in Figures 5 and 6.
The results may be interpreted in exactly the same manner as those per-
taining to the pressure-dominated eigenfunctions: An SS-mode can be
considered as the superposition of two plane entropy waves which pro-
pagate in symmetric directions with respect to the duct middle plane,

and upon reflection at the walls of the tube, give rise to secondary

pressure and vorticity waves.
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The vorcicity-dominated mode shapes described in Figures 5 and 6
and Table VII, can be analyzed in a strictly analogous fashion. In this
case, a vorticity wave associated with axial and transversal velocity
fluctuations of order l/kRU and (l/kRv)% , respectively, propagates
along the axis, in the central region of the tube., In order to satisfy
the boundary conditions, such a wave has to be supplemented by two types
of boundary layers. On the one hand, entropy fluctuations of order

/2

(I/RRU)3 associated with density and temperature fluctuations of the
same order of magnitude, are diffused away from the walls in layers of

thickness (2/1((1-P’:)Rv)!E . On the other hand, diffusion of pressure

fluctuations of order (1/kRu)}é occurs in layers of thickness (Z/kRv)% .

These fluctuations are also associated with temperature, density, and
velocity perturbations as seen in Table VII, The SV-modes can also be
interpreted in terms of two primary vorticity waves and secondary pres-
sure and entropy waves.

As seen irom this detailed discussion, there is ample evidence that
the high-frequency-wide-tube range is nothing but the so-called acoustic
boundary layer approximation. The peak of the SP(0) axial velocity in

*
the boundary layers, or so-called "Richardson annular effect," is seen

to be the parcicular manifestation of a much more general phenomenon
caused by the secondary decaying waves generated at the walls of the
tube. Such a peak occurs for all higher-order SP-modes as well as for
the SV- and SS-modes. The amplitude of the SP- and SV-temperature fluc-
tuations also presents a maximum near the walls, Furthermore, in light

of the interpretation of the results given above, we have fully justi-

“cf Richardson and Tyler (1929).
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fied the terminology used in designating the three families of modes.

4.6.2 Low-Frequency-Narrow-Tube Mode Shapes. It is clear from

the expressions of Tables VIII-X and the graphs of Figures 7 and 8,

that the low-frequency-narrow-tube mode shapes are drastically different
from their high-frequency-wide-tube counterparts. The amplitude varia-
tions of the physical variables are now smooth throughaut the cross-
section and no boundary layers can be isolated near the duct walls.

The vorticity and entropy‘fluctuations of the SP-modes, for instance,
can no longer be restricied to thin diffusive layers. They are spread
throughout the tube and are of the same order of magnitude as the pres-
sure fluctuations. Similar remarks can be made about the vorticity-
dominated eigenfunctions, This feature would seem to invalidate the
argument developed in the preceding subsection regarding the terminology
used in this study. However, since most practical cases fall into the
high-frequency-wide-tube range, where the three families assume clearly
distinct features, we find it convenient to stay with the present con-
vention.

The SP- and SV-mode shapes are seen to be closely related, since
their shape factors zﬁ are complex conjugates of each other. Further-
more, on account of the close proximity of the walls, both families are
characterized by weak temperature fluctuations of order k , so that
they may be considered as propagating almost isothermally. The para-
bolic axial velocity profile of the SP(0)-mode is easily identified as
pertaining to the classical unsteady Poiseuille flow situation,

The SS-mode shapes are characterized by entropy, temperature, and

density fluctuations of order unity. The variations of entropy, in par-

ticular, are unchanged when compared with the corresponding high-frequency-
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wide-tube results. The transversal velocity of order kz has not been

determined, as it would regquire the knowledge of terms of order ka in
the expansion of al .

We may therefore conclude that, in the low-frequency-narrow-tube
range, viscous and thermal effects are dominant in the entire cross-
section of the tube.

4.6.3 Very-High-Frequency-Very-Wide-Tube Mode Shapes. As shown

in Table XI and XII and in Figures 9 and 10, the SP-mode shapes give
rise to entropy and vorticity diffusion in viscous and thermal layers
of the same thickness (2/kRU)% as in the high-frequency approximation.
However, the SP(0) -mode is no longer a plane pressure wave, as it was
in the other frequency regimes. More specifically, pressure fluctua-
tions as well as all other physical quantities are exponentially large
in layers of approximate thickness (2RU/1<3)AE close to the boundaries
of the tube. Outside these layers, a more precise evaluation would
indicate that the pressure amplitude is of order unity. We also note
that such layers are thicker than their viscous and thermal counter-
parts. At very high reduced frequencies, all fluctuations of signifi-
cant magnitude are concentrated near the walls, resulting in an "annu-
lar" SP(0) eigenfunction.

The higher-order SP-mode shapes are pressure released, i.e., the
pressure amplitude is to a first approximation, equal to zero at the
walls, as seen from Table XII., Consequently, in contrast with the high-
frequency case, fluctustions in temperature and axial velocity naturally
decrease to zero at the boundaries whereas transversal velocities reach
8 maximum close to the walls, and require the generation of secondary-

entropy and vorticity waves., The pressure waves are associated with
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entropy fluctuations of order k/Rv in the core of the tube, which may
be interpreted as increased dissipation in the bulk of the fluid, due
to the very high frequencies under consideration. The SS- and SV-mode
shapes do not have to be discussed since their characteristics are the

ssme as in the high-frequency-wide-tube regime.

4,7 Dispersion and Attenuation Characteristics.

The expansions of the complex wave number pertaining to the SP-,
SS-, and SV-modes were discussed in detail in Sections 4.3, 4.4, and
4.5 for high, low, and very-high values of the frequency parameter k .
From these expressions, one can determine the dimensionless attenuation
rate, i.e., the attenuation rate per unit diameter along the duct axis,
|hnﬂzl, as well as the phase velocity non-dimensionalized with respect

to the speed of sound:

V., = LS

ph = Rep (4.132)

Both of these parameters are characteristic of the dispersion and atten-
uation properties of each mode, and have been plotted versus reduced
frequency k 1in Figures 11 and 12 for given values of the parameters
7b s Pr . Rv , and Rn . The first three symmetric modes of each family

have been represented.

All curves break down around k = é% , on account of the limited

v
range of validity of the low and high frequency expansions. The SP-

results present an additional breakdown around the value k ~ Rt}/3
which separates the high-frequency region from the very-high-frequency

region,

In the low-frequency-narrow-tube range, all modes with the exception
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of the unsteady Poiseuille mode SP(0) , have high attenuation rates in-
dependent of reduced frequency. As mentioned in Subsection 4.4.1,
higher order SP- and SV-modes are characterized by almost equal attenua-
tion rates and opposi“e phase velocities.* Entropy-dominated eigen-
functions are non-dispersive as their decay rate and phase velocity is
independent of k . The SP(0)-mode, on the contrary, is highly dis-
pergive, both its attenuation end phase velocity verying as ,Vfi’.

Basic changes in the‘frequency dependence of these two parameters
take place as we exauine the high-frequency-wide-tube range. The at-
tenuation rate of all SV- and SS-modes increases with \/I_, instead of
being constant, and merges asymptotically into the SS(0) and SV(1) at-
tenuation rates respectively. The same behavior holds for their phase
velocities. As expected, SP(0) wave fronts propagate with a velocity
approaching the isentropic speed of sound ag » and decay at a rate pro-
portional to 1/q: . The most interesting features that occur in this
frequency range are associated with the higher-order SP-modes. They
axe highly attenuated waves of negative phase velocit;ﬂ‘below their
cut-off frequency and weakly attenugted waves of positive phase velo-
clty above cut-off. As the reduced frequency k increases through the

value R 1/3
v

, the decay rate changes from a V/ih frequency dependence
due to dissipation in the acoustic boundary layers, to a k2 depen-
dence due to dissipation in the bulk of the fluid. Finally, we note
thet the phase velocity is infinite at cut-off, as a standing wave

pattern is formed in the trensversal x-direction,

It is interesting to compare the results of the present investiga-

*

xNote that the absolute value of the phase velocity is plotted in Figure 12,
This phenomenon was investigated in detail in Subsection 4.3.1 and in
Appendix C.
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tion with those pertainiag to the propagation of sound in an invsicid
fluid conteined in a two-dimensional duct. As we let the parameters
Rv , Rn , and Pr go to infinity, the SP- and SV-families veanish alto-
gether, as their attenuation rate becomes infinite. The SP-modes then
coincide with the symmetric sound modes encountered in classical duct

acoustics, their mode shape being given by

pt'lsp(x) = co8s 2n1x (4.132)

The zeroth mode propagates unattenuated with the isentropic speed of
sound a, . Higher-order modes are non-propageting below their cut-

off frequency 2nT and their decay rate is

Im = 4(nm) "<k (4.134)
AR

Above cut-off they propagate with no attenuation and their phase velo-
city is
k

V. = ——
ph 2 2
K2 <4 (nm)

As vwe have seen in the high-frequency-wide-tube regime, the presence of

(4.135)

viscosity and heat conduction results in 8 finite negative phase velo-
city below cut-off and a small but non-zero attenuation rate above cut-
off., It also leads to & dispersive SP(0)-mode with a finite decay rate.
Furthermore, the SP-characteristics were shown to be drastically altered
ss we investigeted the low- and very-high-frequency regimes. In these

two ranges, the inviscid results do not lead to meaningful predictions.

4,8 Comparison With a Numerical Study,

It is of interest to compare the analytical results derived in this
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chapter with those obtained by the numerical approach of Scarton and
Rouleau (1973). These investigators assume that the fluid is viscous
but non-heat-conducting, and that it is conteined in a rigid cylindri-
cal duct of circular cross-section, Their work is concerned with the
determination of the cheracteristics of the axisymmetric modes by the
method of eigenvalleys. Since it was pointed out in Section 4.2 that
the dispersion relations pertaining to the axisymmetric and inplane
symmetric eigenvalues respectively, could be written in anaslogous
mathematical form, it is legitimate to seek the common features be-
tween the numerical solutions of the first relation and the analyti-
cal solutions of the sucond relation.

For convenience, we discuss Scarton and Rouleau's results in terms
of the three non-dimensional parameters k , Rv , and Rﬂ introduced
in Section 3.2, where the duct width d is replaced by the radius R *
As we let the Prandtl number go to infinity, the attenuation rate of
the entropy-dominated modes becomes infinite in both geometries so that
the SS-modes and their axisymmetric counterparts are identically zero.
Hence, this section is concerned with a comparative evaluation of only
two families, namely, the pressure- and vorticity-dominated modes.
These two families are referred to by Scarton and Rouleau as the A- and

B-bands, respectively. In Figures 13 and 14, we have reproduced typical

i plots of their dimensionless attenuation rate, i.e., attenuation rate

per unit radius, and dimensionless phase velocity versus reduced fre-

quency k , for a given set of values of the parameters RU and R_ .

n

*
In their formulation, Scarton and Rouleau prefer to use the equivalent
set k , l/Rv , and KO/pOaOR .
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The reduced frequencies considered in these grap'.s span the entire high-

frequency range and the edges of the low- and very-high-frequency re-
gions. The overall similarity between Figures 13-14 and Figures 11-12
is striking. In the low-frequency regime, the higher order A- and B-
modes have identical attenuation rates and opposite phase velocities,
in complete agreement with the observations of Section 4.7. As the re-
duced frequency k 1is increased through the transition region, the
propagation characteristiés of the A- and B-band closely approach those
of the SP- and SV-modes in the high frequency range. This observation
confirms that in the low-frequency region, the solutions of equation
(4.758) located in the first and fourth quadrant of the complex plane
do correspond to the SV- and SP-eigenvalues, respectively. As men-
tioned in Section 4.4, such a choice could not have been fully justi-
fied without a knowledge of the behavior of the SP- and SV-complex wave
numbers in the treusition region between low ana high frequencies. 1In
the high-frequency region, higher-order A-modes experience in the same

manner as higher order SP-modes, a sharp decrease in decay rate anc a

change of sign in phase velocity, as k crosses their cut-off frequency.

Since Scarton and Rouleau consider a purely viscous fluid, the cut-off
frequencies are the same as in the caee of an inviscid medium, and no
downward shift is observed. As the reduced frequency is further in-
creased, the V/;— dependence of the SP-attenuation rates gradually
shifts to a kz dependence. However, there seems to be an apparent
discrepancy between the respective magnitudes of the AO- and SP(0)-
decay rates above -the cut-off frequency of the first-order pressure-
dominsted mode. Whereas the axisymmetric AO-mode is more attenuated

than the higher-order A-modes in this frequency domain, the two-dimen-
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sional SP(0)-mode is less attenuated than the higher-order SP-modes.
Beatty (1950) used an equivalent impedance model to show that the
higher-order pressure modes were indeed the least attenuated of all
axisymmetric modes, and that the opposite situation prevailed in the
two-dimensional case. A study of the cylindrical configuration on the
same lines as the present investigation would confirm this particular
point.

In Figure 15, we have reproduced plots of the modal amplitudes per-
taining to the zeroth and first modes in the A- and B-band, as obtained
numerically by Scarton and Rouleau. The values of k and RV corre-
spond to a typical high-frequency-wide-tube situation. Since the real
and imaginary parts have been normalized by their maximum in the inter-
val 0<R<1 , a detailed comparison is impossible, However, we note
the general similarity between Figure 15 and Figures 5 and 6 of the pre-
sent study. In both instances, pressure- and vorticity-dominated modes
are characterized by the diffusion of vorticity and pressure, respec-
tively, in thin boundary layers close to the walls. Scarton and Rouleau
note that the thickness of these layers increases as the mode index in-
creases and the frequency parameter decreases. This trend is clearly
demonstrated by the analytical expressions (4.44) and (4.45).

Even though the value of the reduced frequency associated with the
mode shapes of Figure 16 is located at the edge of the low-frequency-
narrow-tube region, we note in these plots the absence of boundary layers,
Pressure and vorticity fluctuations diffuse in the entire cross-section,
a situation which is very reminiscent of the low-frequency mode shapes
displayed in Figures 7 and 8.

As is clear from the examination of Figures 13-16, Scarton and
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Rouleau claim that there exists a BO-eigenvalue associated to an eigen-

function which is not identically zero. 1If thié were to be true, we
would have to admit that the corresponding exact solution a2==0 of

the inplane symmetric dispersion relation (3.70) is a relevant eigen-
value with a non-zero SV(0)-eigenfunction. As mentioned in Section
4,3.3, if az is assumed to be zero in the basic equation (3.42), one
is naturally led to conclude that the only possible mode shape is iden-
tically zero. Hence, the solution a2==0 and its axisymmetric counter-

part BO are not genuine eigenvalues.

4.9 Concluding Remarks.

The discussion of the last three sections was restricted to the
symmetric modes. The propagation characteristics and shapes of the
antisymmetric modes could be analyzed in an identical fashion, in light
of the solutions of the antisymmetric dispersion relation derived in
Sections 4.3 - 4.5,

The determination of the inplane modes, in view of the complexity
of the basic relations describing their motion, required the implementa-
tion of perturbation procedures. We were therefore unable to obtain
analytical results in the transition regions where no small parameter
could be defined. No such difficulties were encountered in the case of
the antiplane modes and their characteristics were determined exactly
in the entire reduced frequency domain. A simple explanation of this
difference between the two types of motion can now be given: the anti-
plane modes are solely composed of vorticity waves, whereas the inplane
modes are the result of the coupling of primary waves and secondary

waves generated at the boundaries. In particular, the inplane vorticity-
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dominated modes, in sharp contrast with their antiplene counterparts,
give rise to pressure and entropy fluctuations.

The following question remains to be answered: given a source dis-
tribution located inside the duct, in the cross-sectional plane z=0 ,
what is the nature of the disturbances propagating along the duct axis.
Their character will naturally depend on the modal content of the source
amplitude for each reduced frequency k . A generator of pressure fluc-
tuations, such as a piston oscillating in the axial direction, or a
pulsating sphere, will give rise to a wave pattern composed of pressure-
dominated modes. Similarly, if a heat source or a distribution of heat
sources is situated inside the tube, the wave will consist of entropy-
dominated modes., Finally, a piston oscillating in its own plane in the
x- or y-direction will give rise to a wave pattern made up of inplane
vorticity-dominated modes or antiplane vortical modes. The number of
eigenfunctions to be considered and their respective weight will be de-
termined by the modal structure of the source.

We noted in Chapter II that pressure and entropy waves are inher-
ently coupled as they propagate in an unbounded medium, whereas vortical
waves are not. From the results of this chapter, we may conclude that
the presence of solid boundaries has led to additional coupling between
vortical fluctuations and the two other types of fluctuations. For in-
stance, the presence of turbulence at some station along the duct will
generate vorticity-dominated modes which include pressure and entropy
fluctuations. In the absence of boundaries, the radiation field would
solely be composed of purely vortical waves, It is important to remark
that this conclusion is not in contradiction with Lighthill's theory of

aerodynamic noise generation. The present formulation does not include
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the pressure waves generated by the non-linear fluctuating Reynolds
stresses, Hence, turbulence does not give rise to pressure disturbances
in the linear approximation, when the medium is unbounded. However,
when there are solid walls, we have shown that even in the linear ap-
proximation, pressure fluctuations are induced at the walls and propa-
gate along the axis at a very high attenuation rate.

In Figure 17, we have summarized on a k-Rv diagram the ranges
of the parameters k and ‘RU in which inplane solutions have been ob-
tained. As explained in Section 4.2, regions of the k -Rv plane
located on the left of the straight lines RU=]. and k==Rv have to
be excluded on account of the continuum hypothesis. The lines k==1/Rv and

w=R /3
v

separate the low- and high-, the high- and very-high-frequency
ranges, respectively. In fact, our results are not valid for points
located near these lines, and a more accurate representation would have
to separate the different domains by transition bands around the lines

k=1/R and k-R1j3.
1 %4 v
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V. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions.

The important achievements of this study are outlined below.

1. A new mathematical formulation of the small fluctuating motions
of a viscous, heat-conducting and compressible fluid has been developed,
which reduces such problems to the determination of three unknown func-
tions, namely, the acoustic, thermal, and viscous potentials, satisfy-
ing three linear partial differential equations. As aconsequence, the
total number of unknown functions has decreased from five '"physical'
variables, {.e., p',p',S8',T',and V', to three "auxiliary' variables,
4; s Qkh , and A.

2, This model has been applied to a detailed investigation of the
propagation of sound in a two-dimensional infinite duct with rigid and
isothermal walls, It has been shown that four distinct types of wave
motions, i.e., inplane and antiplane waves of symmetric or antisymmetric
amplitude with respect to the duct middle plane, can be considered in-
dependently,

3. The characteristics of the symmetric and antisymmetric anti-
plane modes have been obtained exactly for arbitrary values of the para-
meters. They consist of purely vortical velocity fluctuations.

4, 1In the case of symmetric or antisymmetric inplane motions,
three families, namely, pressure-, entropy-, and vorticity-dominated
modes, respectively, have been distinguished and their characteristics
have been determined in the low-frequency-narrow-tube, high-frequency-
wide-tube, and very-high-frequency-very-wide-tube approximations.

5. The analytical results pertaining to the symmetric inplane modes

have been found to be in good agreement with those obtained in a numerical

126




study of the axisymmetric modes of a cylindrical duct in the limit of

zero heat-conduction.

5.2 Recommendations.

The general features of the fluctuating field generated by an arbi-
trary source distribution were discussed qualitatively in the last sec-
tion of the preceding chapter. A mathematical treatment of this prob-
lem will require a detailed investigation of the completeness of the
modes and their orthogonality properties. A proof of their complete-
ness will ensure that any arbitrary disturbance may always be regarded
as a linear combination of the eigenfunctions. When the scalar product
.°f two modes is defined as the integral of their product over the cross-
section, it is immediately verified that the modes are not orthogonal.
However, a systematic inquiry might reveal the existence of more com-
plicated orthogonality relationships. Such properties would greatly
simplify the calculation of the coefficients multiplying each eigen-
function in the linear combination mentioned above.

It would also be of interest to compare the analytical results of
the present investigation with those obtained by a numerical study of
the inplane dispersion relations. The analytical results themselves
provide excellent first guesses of the roots in a wide range of values
of the parameters, and the implementation of a standard Newton-Raphson
procedure would enable us to determine numerically the eigenvalues in
these ranges as well as in the transition regions which have been ex-
cluded in the course of the perturbation analysis.

The methodology developed in the present work and the aforementioned

suggested extensions then could be applied in a straightforward manner,
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to the determination of the characteristics of the axisymmetric and

spinning modes in a circular duct. The main difference would reside
in the introduction of Bessel functions instead of trigonometric func-
tions.

In meny practical cases, such as the propagation of sound in the
atmosphere or through aircreft engine-ducts, velocity and temperature
gradients are present in the medium. It would be worthwhile to examine
possible extensions of the methematical formulation of Chapter II to
include complex mean flow situations. Such a thesry would encompass
a broad range of problems and provide a general framework to analyze the
propagation of sound in a viscous and heat-conducting fluid which is

irhomogeneous and non-uniformly moving.
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APPENDIX A

CALCULATION OF (gg-) , (%E) , (-g—:)
P S p

In this Appendix we will omit the subscript O with the under-
standing that we are considering the state of the medium at rest. The
characteristics of the fluid are assumed to be specified in terms of:

- the temperature T

- the density p

- the isentropic speed of sound a = _/ §2)
0 %'g
- the specific heat at constant pressure c¢

- the ratio of specific heats ¥

The partial derivatives (%g) > (g%) ’ (%%) are to be expressed
p

S
as a function of the five properties of the fluid mentioned above. In
the following derivation we make use of the First and Second Laws of
Thermodynamics without introducing any additional assumption such as a

perticular equation of state.

From the definition of partial derivatives, we may write:

dp = azdp-+(%§) ds (A-1)
g
r L2
dT = (39)5 dp+(as)p ds (A-2)

Equation (A-2) is then used to express dS as follows:

1 AT
ds = - [dT-(S;)sdp] (A-3)

(gg)
)

The First and Second Laws of Thermodynamics reduce to the differential

form:
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de = TdS + lzdp \a-b)
] t

and when (A-3) is substituted into (A-4) we obtain the following

relation:
&
de = arr ar+( & .1 ars 1dp (A-5)
G ¢ G

The coefficient of dT 4in (A-5) is nothing else but the specific heat

at constant volume so that

(5§)
or
T
@, (A-D)
v

which provides an expression for (%g as 8 function of T and cv

In view of this result, equations (A-3) and (A-5) may be rewritten as:

ds "[dr ( )d] (A-8)

- rp _. (o .
de °vd”Lp2 °v(ap)s 1de (A-9)

Since boch de and dS are exact differentials, we have from (A-8)

snd (A-9):

Bc Cv 3T
( (5, )T T—z- ('5;) T[ aT(c (3-) )] (A-10)

(=) = ( ) - (& (A-11)
dp T BT [ (c ('5;) )]o
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Substitution of (A-11) into (A-10) then results into the following

simple relation:

(ap . ( ) (A-12)

where (%%) is to be expressed in terms of (%&) . When (A-8) {s used
p

e
in (A-1), dp 1is related to dT and dp through the equation

[

dp = ég as) dT + const. dp (A-13)
so that
c
3p, ,.¥ 3 .
(BT) T (BSL (A-14)

and, with the help of (A-14), (A-12) becomes:

ary . L
i) (A-15)

The above result provides a first equation between the unknowns (3 )
and ( ) . The second equation is obtained by expressing the First

and Second Laws of Thermodynamics ir terms of the enthalpy h :

dh = TdS + %2 (A-16)

Equations (A-1) and (A-2), together with the result (A-7), then lead

to the following relation between dS , and dp and .T :

24 - (g—'r) d
Pg
ds = (A-17)
a’T ,op, 2T
c (BS)O(BDZ

which, after substitution into (A-16) results in:
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azT

dh

L}

dT +const, dp (A-18) ]

(—9> (5
cv 0 Bps ) 1
The coefficient of dT in (A-18) is the specific heat at constant pres-

sure so that

2
c = aT (A-19)

( )(
g Bsp aps

which provides a second equation between the unknowns (g%) and (gg)
S

( )( =(y-1)a2T (A-20)

Equations (A-15) and (A-20) are immediately solved for (g%) and

(%g) , and the final results are shown below:

( ) =pa 7;1)T (A-21)
P
=2 -DT
(ap) = o c (A-ZZ)
(g%) - CE (A-23)
P P
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APPENDIX B

DERIVATION OF SPLITTING THEOREM

Let us first introduce the following notations:

5 Ui

- 2 02 Bl '
Ll(CPa +d>th) at(cba +<1>th) - » v (rba +fbth)+ o0 (B-1)
LZ(K) = g—i-vo Ty (B-2)

L3 @th) = q’th B

(B-3)

The problem considered in this Appendix may then be stated in the fol-

lowing manner:

% % -k
Assumptions: Let the set {4’8 s ﬁ?th , A"} satisfy the following
system:
* * ‘ —k
grad[Ll(’I‘a +4>th)]+cur1[L2(A =0 (B-4)
2 *
4 = -
v L3( th) 0 (B-5)

eand V' , p' , and S' be given by the relations:

- * * 2
\'A grad (‘I’a +iﬁth) +cur1K+ (B-6)

51
[
o
Y]
~No
<3
[a%)
>
b3

(B-7)

at 00 a

(8-8)

with

div A = 0 (B-9)
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Question: Is it possible to find a new set {tba , (bth R K} which

will yield the same values of the physical variables through the rela-

tions
V' o= grad (¢a+4’th) +curld (8-10)
ép_' - . 2.2 )
dt pOaO v 4; (B-11)
3s' _
3t (B-12)
with
div A = 0 (B-13)

and which will satisfy the simpler system of governing equations:

L (®, +®,) = 0 (B-14)
LZ(K) =0 (B-15)
Ly®,) =0 (B-16)

Proof: Let us examine the following new set { G} s d%h , A}

' -
kOT (B-17)

(B-18)

t
o -k -+
A=A -f L2(A ydar (B-19)
0

and verify that it complies with the requirements (B-10) - (B-16).

134




LS <k o B, CoaaniebistHERERSEE

(a) From (B-19) we have:

‘ t
- —k —k
divA = divA -J div L2(A Ydr (B-20)
0
and
. R % 2>k D —% 2 —k
d1vL2(A ) = atd:l.vA -vodivVA = BtdiVA -UOV divA
(B-21)
Since (B-9) is satisfied, (B-20) and (B-21) require that
divA = 0 (B-22)
which proves (B-13).
(b) Let us now consider
d(@ +& )+curld &+ g
grad( ; th) cur = grad ( ; + th)+cur1 (B-23)
t
* * _—
-I {grad Ll(tba +P )tcurl L (A ylar
0
and therefore, from (B-6) and (B-4)
A - —.' -
grad(¢;-+d%h)+-cur1A \ (B-24)
which proves (B-10).
(¢) Let us calculate
y X E3 Y -1
e = vie “itre . L O k1]
a a th p.a c T 0
070 P~ O
0
t
IVZ & +d d 2
- Ll( ; + th) T (B-25)
0
When we take the divergence of (B-4), we have
20 @ 10y = 0 6
v 1( a th) - (B-26)
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o

so that (B-26) and (B-5) require that

v = Vo (B-27)

B L i o
o
o

which, together with (B-7) proves (B-1l).

(d) Similarly, we may write

Y 1
vzcbth =1 K 9ET (B-28)

p.a
00 pOO
so that, from (B-5) we have

e, =V (B-29)

which together with (B-8) proves (B-12).
(e) From (B-17) - (B-18) we may write:

t
_ % 3 * *
Ll(q’a.’-d’th) B L1(‘:’a +¢th)- at £ I"1(':{?8 +‘bth)d‘r

f t
n |
0 2 %* *
+ % .([ v L1(¢a +¢th)d‘r (B-30)

so that with the use of (B-26)
d = -
L1(¢a+ th) 0 (B-31)

which proves (R-14).

(f) From (B-19) we have

t t
= -k _é- % 2 —
LZ(A) = L2(A ) "3t !; L2(A )dT+UO~(]: v LZ(A ydr (B-32)

When we take the curl of (B-4) and take into account (B-9), we may write:

2 —7c
v L2(A ) =0 (B-33)
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which shows that (B-32) implies:
. LZ(A) =0
(g) Finally, using (B-19), we have
Ly @) = 0

which proves (B-16).

(B-34)

(B-35)

The new set { d; ’dkh ,K } therefore meets the requirements

(8-10) - (B-16). 1In particular, it is governed by the system of partial

differential equations (B-14) - (B-16),
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APPENDIX C ACOUSTIC POWER AND ENERGY TRANSPORT

VELOCITY OF HIGHER-ORDER SP-MODES

The radiation condition used in.the present investigation requires
that waves be attenuated in the positive z-direction, i.e., that the
imaginary part of the complex wave number be negative. We showed in
Section 4.3,1 that such .a condition results in the existence of pres-
sure-dominated backward-propagating waves of negative phase velocity
below cut-off. In this Appendix, we prove that in spite of the change
in sign of the phase velocity through cut-off, the acoustic energy of
the higher order SP-modes always propagates in the positive z-direction.

Karamcheti (1974) showed that the classical definition of acoustic
intensity is not affected by the introduction of viscosity and heat-con-

duction effects. The acoustic power is therefore taken to be given by

3
P=R { % J' _p'V;*dx} (C-1)

where the duct width d has been introduced because x 1is a non-dimen-

sionalized coordinate. We are interested in deriving a first approxi-

mation of the acoustic power radiated by the higher-order SP-modes in
the high-frequency range. In this context, the acoustic power needs

to be evaluated to order (1/RU)!E inclusive. The pressure and axial
velocity amplitudes are given in Table I, After expansion of the coef-
ficients multiplying the cosine functions, p' and V;* can be written
as

ipoaok ' cos Q@ X cos 0, X i(t-Rzz)

p'(x,2z,t) = - [—2-+1(y -1)o(i-EH)L___1_]e
1 d cosa0/2 0 P Rn vaosal/Z

(c-2)
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* * * "
" * cos @, x cos®, x cosl, x -i(t-B z)
v! (ng;)..:"A ﬁ*[ 0 -1(y,.-1) k| 1_ . Z_e z
z ‘% d "z cosdd*/Z 0 PrRu cosaI/Z coaa‘5/2

(c-3)

where the SP superscript and n subscript have been omitted for con-
venience. In the preceding expressions, ao s al s a2 , and Bz are
given by equations (4.35), (4.36), (4.37), and (4.39), respectively,
and A' by equation (4.126). In order to evaluate the power, we need

the values of the following elementary integrals

X

*
cosX . xcosQ
.r o8 0 [+ 2x

sa,./2cosax*/2 dx = 22 *2(“0
3 %% 2 a, -a,

* *
tanCto/Z-a tanaz /2)

2

(C-4)

and

fs cosQ xcosa*x ZIm{aotanaO/Z}

0 0

dx =
Y cosao/Z cos a6/2 Ima02

(C-5)

After substitution of the expansions of ao and a2 , these integrals

can be reduced to

%

*
.r cos aox cos dz X

% cos ao/2 cos a2*/2

dx = (141) (C-6)

2
kR
v

and % *
*
J< cosaoxcosaox i - l[l _k 2-4(nﬂ)2 9 ] -
Ly cosa0/2 cos 06*/2 2 4(nﬂ)2 kRv

where terms of order 1/Rv have been neglected, Similar expressions

can be derived for the other integrals which appear in the acoustic

power., Integrals of the same form as (C-6) and corresponding to the
* * * *

paits (¢J£0,¢:!1 ) (al,ao ), (al,al ) , and (al,t)t2 ) are found to be

of order (1/Ru)% . When these intermediate results are substituted

into (C-1) only two terms need to be retained, so t: ¢ the power P

is given by
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P = 2d cosQ /2cosa*/2

a .k [ cosa xcosa x

2
cosao/Zcosa;/de (c-8)

1
*
f‘; cos @ x cosa, x ] ZImﬁzz

e

The first integral represents the contribution to the acoustic power
of the irrotational part of the fluctuating motion whereas the second
integral involves coupling between the irrotational and rotational
fluctuations in the acoustic boundary layers. When the constant A'
given by (4.126) 1is expanded and use is made of (C-6) and (C-7), the

power finally equals

d * k*z 4( )2
P=ioex Reyh, (1- sz klzi
P0%0 z 4 (nm) ,
) 2Imf z
-2(1+) wite ° (€-9)
1%

Instead of reasoning in terms of acoustic power, it is convenient to
normalize P by the acoustic energy per unit length along the duct
axis. 1In other words, we prefer to consider the energy transport velo-

city non-dimensionalized with respect to a, and defined as follows:

0
_ _P
Ven T aE (€-10)
0's
where Es is the acoustic energy per unit length. Note that in the

present case of a dissipative medium, the energy transport velocity
does not necessarily coincide with the group velocity. The first ap-
proximation of Es in the high-frequency range isidentical to the in-

viscid accustic energy. Furthermore, in the case of an inviscid medium,

140



the acoustic energy is of order unity throughout the entire frequency

domain. Consequently, in order to obtain a& first approximation of Ven s

only the inviscid value of Es is needed. 1t is given by

PR
d * po - -k
E = Py dx+ — vLv' dx (C-11)
8 2 4
4py8, -k %

where p' and v are the pressure and velocity fluctuations associe
ated with the symmetric acoustic modes propagating in the inviscid
medium. When we use the results mentioned at the end of Section 4.7,

we find that Es is given by

d

E = when k > 2nm (C-12)
s 4o a 2
°0%
and
2 2ImB z
E =d SEHLE e z when k < 2nm (C-13)
’ oo

From equations (C-9), (C-10), (C-12), &and (C-13), and the expansions
for the complex wave number ﬁz derived in Subsection 4.3.1, one can
determine the acoustic power and the energy transport velocity, and
follow their variations as the frequency parameter k decreases.

When k>2nm , the acoustic power is given by

P=—Sr A/ KEeb(am? (C-14)
Apoaok

and the energy transport velocity is

\4 kz-é(nqli

en K

(C-15)
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These expressions do not exhibit any new features. They are identical

to the inviscid results.

When k=2nm , the wave number is given by equation (4.48) and the

power and energy transport velocity respectively equal

.yO'1 : 1 % m
] -8nm ( ) sin<z
d 70-1 1 ¥ . A\/pr 2nﬂRv 8
P= 7 (ZnﬂR ) cosg e (C-16)
0% e/ B,
70'1% X C-17)
\Y = 2l —=1 ( ) cos— C-
en \/;: 2nnRU 8

The energy propagates with & velocity and decay rate proportional to
(1/R”)%. In the inviscid case, both these quantities would be zero

and remain equal to zero for lower values of k .

2n7t
R
(1+(‘V0-1)/ P)
tion (4.49) and we have: r

2
e 264 %) (K74 0n) 2afaem?al
Pn&pak kR ( 22+2]e
00 v 4 (nm) © -k

(c-18)

k 204 (nm) 2 kD W 4 (nm) 2
Ven ™ 2 R [ =50 +2] (C-19)
4 (nm) v 4(nm) "=k

The first and second terms in the brackets of (C-18) represent the con-

When 2nn<k< , the wave number is given by equa-

tributions of the irrotational and rotational components of the fluc-
tuations, respectively., They are positive and of the same order of
magnitude. The total power is positive. Equation (C-19) can be inter-

preted in the same manner.

201 Lo the appropriate values of P and
(1+(¥5-1)/ Y P,)

ven are obtained by simply replacing the reduced frequency by its value

When k=

in (C-18) and (C-19). It is easily checked that, to this approximation,
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the power is sssociated with the coupling of rotationsl and irrotational
fluctuations in the boundary layers, The purely irrotational part of
the power is of higher order. Hence, at cut-off, the energy propagates
at a high attenuation rste in thr viscous boundary layers. Below cut-
off, the rotational component is st!'l positive and larger in magnitude
than the negative irrotationsl component, as seen from equation (C-18).
In this frequency renge, the rotational part of the energy propagates

in the positive z-direction in the viscous layers, whereas the irrota-
tional part propagates in the opposite direction and is distributed in
the entire cross-section. The net power is =till positive.

The results of this discussion are summarized in Figure 18. The
velocity of energy transport pertaining to the SP(l) mode is plotted
versus the reduced frequency. It is clesr from the graph that the vor-
tical fluctustions play & crucial role in keeping the velocity of en-
ergy transport positive. Identical conclusions would result from an

analogous study of the antisymmetric modes.
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Figure 18, SP(l)-energy transport velocity versus
reduced frequency k . Seme values of
the parsmeters as in Figure 12,
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APPENDIX D

SOLUTIONS OF SIN Z = = Z

In this Appendix, we discuss the main properties of the roots of

the transcendental equations:
sinz = 2 (D-la,bd)

and briefly describe a method of solution.

Equations (D-la,b) both admit the trivial solution zero. They
also have an infinite number of complex roots which are symmetiically
ler v 7ed in each quadrant of the complex z plene. We will restrict
our attention to the roots which lie in the quarter-plene (Rez > 0,
Imz < 0) , and all others will be obtained by symmetry with respect
to the origin and the coordinate axes. Consequently, let us examine

solutions of (D-la) of the form:
z=a-18 a~0; f>0 (D-2)

Substitution of (D-2) into (D-la) leads to the following system of

coupled equations:
sina cosh 8 = & (D-3)
cosQ sinh R = 8 (D-4)

Since cosh B 1is necessarily positive for any value of B, (D-3) implies
that sina 1is also positive. Hence, possible values of & are such
that

2an s @ < (2n+l)m n=0,1,2,... (D-5)

The above system may then equivalently be written in the following

form:
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- |
F@) = cos @A /(s:m) -1 -cosh'l(siga)= 0 (D=6) ‘

o
sinQ

B = cosh™l( ) (D-7)

We have therefore reduced the problem to the determination of the
zeroc of F(&) . Suchk & function is only defined in the intervals given

by (D-5). 1ts derivative is:

- (:“‘Sinz)zz <0 (D-8)
4sin"a [ (sina) -1]
Moreover:
when @ - 2nm+ and n#0 F(@) = +
when « - 0+ F(a) = 0
when & - (2n+l)m- Fla) = - .

It may be concluded from the resulting variations of F(a) sketched
in Figures 19 that F(@) has only one zero a: in each interval
(2nm , (2n+l)mT ) . Since F((ZIH%)TT) <0 each solution of (D-6) can

be further bounded as follows:

ZnﬂSa:S(2n+%)1'r n=0,1,... (D-9)

and the corresponding value of f 1is then given by (D-8) as:

a+

n
) (D-10)
sina:

gt - cosh-l(
n

With this information, one may immediately develop an iterative numer-

ical scheme which will yield the roots
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z =a -8 (0-11)

of the transcendental equation (D-la). The results are shown in Table
II1I, Finally, as n goes to infinity in (D-9) and (D-10), both real
and imaginary parts become infinite. From equations (D-3) and (D-4)
we then obtain the following limiting form of z:

z: - (2n+%)1'r -1cosh™ (2n+ %m (D-12)

The transcendental equation (D-1b) may be studied in exactly the same

manner. It is found that the roots are given by

- -

z = o - iﬁn (D-13)
where
(n+1)m <@ s (2n+%)‘n n=0,1,... (D-14)
and ;
- -1 ‘an
ﬁn = cosh (sina;) (D-15)

The corresponding numerical results are displayed in Table IV. As the

index n goes to infinity, the asymptotic limit of the roots is:

z; = (2n-+%)n-icosh'1(2n+-%)n (D-16)

148




REFERENCES

Achenbach, J.D., (1973), Wave Propagation in Elastic Solids, North Hol-
land Publishing Co., Amsterdam,

Beatty, R.E., (1950a), '"Attenuation of (n,0)Transverse Modes in a Rec-
tangular Tube,'" J. Acoust, Soc. Amer., 22, 5, 639,

Beatty, R.E., (1950b), 'Boundary Layer Attenuation of Higher Order Modes
in Rectangular and Circular Tubes,'" J, Acoust, Soc. Amer., 22, 6, 850-854.

Bogert, B.P., (1950), 'Classical Viscosity in Tubes and Cavities of
Large Dimensions,'" J. Acoust. Soc. Amer., 22, 4, 432-437,

Brown, F.T., (1962), "The Transient Response of Fluid Lines,'" J. Basic
Eng., Trans., A,S.M,E,, Series D, 84, 547-553,

Chu, B.T., and Kovasznay, L.S.G., (1958), '"Non-Linear Interaction in a
Viscous, Heat-Conducting Compressible Gas," J. Fluid Mech., 3, 494-514,

Cohen, H., and Tu, Y.O0., (1962), "Viscosity and Boundary Effects in the
Dynemic Behavior of Hydraulic Systems,'" J. Basic Eng., Trans., A.S.M.E.,
Series D, 84, 593-601.

Cremer, L., (1948), "Uber die akustische Grenzschicht vor starren Wan-
den," Arch. elektr. Ubertragung, 2, 136-139.

Doak, P.E., (1973), "Analysis of Internally Generated Sound In Continu-
ous Materials: 3, The Momentum Potential Field Description of Fluc-
tuating Fluid Motion As a Basis For a Unified Theory of Internally Gen-
erated Sound," J. Sound and Vibration, 26(1), 91-120.

Elco, R.A., and Hughes, W.F., (1962), "Acoustic Waveguide Mode Inter-
ference and Damping in Viscous Fluids,'" 4th Int, Congr, Acoustics,
Copenhagen, K54,

Fay, R.D., (1940), "Attenuation of Sound In Tubes,'" J. Acoust. Soc.
Amer,, 12, 62-67.

Fitz-Gerald, J.M., (1972), "Plasma Motions in Narrow Capillary Flow,"
J. Fluid Mech., 51, 463-476.

Gerlach, C.R., and Parker, J.D., (1967), 'Wave Propagation in Viscous
Fluid Lines Inclding Higher Mode Effects," J. Basic Eng., Trans. A.S.
M.E., Series D, 89, 782-788.

Hertig, H.E,, and Lambert, R.F,, (1950), "Attenuation in a Rectangular
Slotted Tube of (1,0) Transverse Acoustic Waves," J. Acoust. Soc. Amer.,
22, 1, 42-47,

149

Ranchiinabh el P e e St e b e g K o g~ S TR, —Wmmm



- W R TEER AT A e e s PR
St a

e e A g
NBIF!§<[ !!

e e

Huerre, P., and Karamcheti, K., (1975), "Effects of Friction and Heat
Conduction on Sound Propagation in Ducts,' AIAA 2nd Aero-Acoustics Conf.,
Paper No. 75-520 to be published in the Proceedings of the 2nd Aero-
Acoustics Conference, Vol. II, AIAA Progress Series in Aeronautics and
Astronautics.

ment Lines,' J. Research, National Bureau of Standards, 45, 85-108.

|
4
Iberall, A.S., (1950), "Attenuation of Oscillatiug Pressures in Instru- 1
Karamcheti, K., (1974), Lecture Notes, '"Fundamentals of Acoustics,"
Stanford University, Winter 1974.

Kemp, G.T., and Nclle, A,W., (1953), "The Attenuation of Sound in Small
Tubes,' J. Acoust. Soc, Amer., 25, 6, 1033-1086,

Kirchhoff, G., (1868), '"Ueber den Einfluss der Warmeleitung in einem
Gase auf die Schallbewegung,'" Ann. Phys. Lpz., 134, 177-193.

Lagerstrom, P.A., Cole, J.D., and Trilling, L., (1949), "Problems in
the Theory of Viscous Compressible Fluids,' Monograph, Calif. Inst. of
Tech.

Lighthill, M.J., (1956), '"Viscosity Effects in Sound Waves of Finite
Amplitude,"” in Survey in Mechanics, Batchelor, G.K., and Davies, R.M.,
ed., Cambridge Univ, Press, N.Y.

Lance, G.N., (1956), '"Motion of a Viscous Fluid In a Tube Which Is Sub-
jected To a Series of Pulses,' Quart, Appl, Math., 14, 312-350,

Meeker, T.R,, and Meitzler, A.H,, (1964), '"Guided Wave Propagation In
Elongated Cylinders and Plates,' in Physical Acoustics, Vol, 1, Part 4,
Mason, W.P., (ed.), Academic Press, N.Y,.

Meitzler, A.H., (1965), "Backward-Wave Transmission of Stress Pulses in
Elastic Cylinders and Plates," J, Acous. Soc. Amer., 38, 835-842.

Meyer, E., and Guth, W., (1953), "Zur Akustischen Zahigkeitsgrenz-
schicht," Acustica, 3, 185-187.

Nayfeh, A.H., (1973), "Effect of the Acoustic Boundary Layer On the
Wave Propagation In Ducts,'" J. Acoust, Soc., Amer., 54, 6, 1737-1742,

Nerem, R.M., Seed, W.A,, and Wood, N.B., (1972), "An Experimental Study
of the Velocity Distribution and Transition To Turbulence in the Aorta,"
J. Fluid Mech., 52, 137-160.

Rayleigh, J.W.S., (1877), The Theory of Sound, Dover, New York, Vol, II,
pp. 312-328.

Regnault, V,, (1868), "Sur la vitesse de propagation des ondes dans les
milieux gazeux,'" C.R. Acad. Sci. Paris, 66, 209-220.

150




R "«‘.‘{IW}’ Lt R

e d o it o £ S et A B A Sl e et

Richardson, E.G., and Tyler, E., (1929), '"The Transverse Velocity Gra-
dient Near the Mouths of Pipes in Which an Alternating or Continuous
Flow of Air 1s Established,' Proc. Phys. Soc., 42, 1, 1-15,

Rott, N., (1969), 'Dampened and Thermally Driven Acoustic Oscillations In
Wide and Narrow Tubes,' ZAMP, 20, 230-243,

Scarton, H.A,, and Rouleau, W.T., (1973), "Axisymmetric Waves In Com-
pressible Newtonian Liquids Contained In Rigid Tubes: Steady-Periodic
Mode Shapes and Dispersion By the Method of Eigenvalleys," J. Fluid
Mech., 58, 595-621.

Sergeev, S.I., (1966), '"Fluid Oscillations In Pipes At Moderate Reynolds
Numbers," Fluid Dyn., 1, 1, 121-122,

Sexl, T., (1930), "Uber den von E.G. Richardscn entdeckten 'Annular-
effekt,"" Z, Physik, 61, 349-362.

Shaw, E.A.G., (1950), "Attenuation of (1,0) "Transverse' Acoustic Waves
In a Rectangular Tube,'" J. Acoust. Soc. Amer., 22, 512-513.

Shaw, E.A.G., (1953), '"The Attenuation of the Higher Modes of Acoustic
Waves In a Rectangular Tube,'" Acustica, 3, 87-95,

Shields, F.D., Lee, K.P., and Wiley, W.J., (1965), "Numerical Solution
for Sound Velocity and Absorption In Cylindrical Tubes," J. Acoust,
Soc. Amer., 37, 4, 724-729.

Ti jdeman, H., (1969), '"Remarks On the Frequency Response of Pneumatic
Lines,'" J. Basic Eng., Trans. A,S.M,E., Series D, 91, 325-327.

Tijdeman, H.,(1975), '"On the Propagation of Sound Waves In Cylindrical
Tubes," J. Sound and Vib., 39, (1), 1-33.

Truesdell, C., (1953), '"Precise Theory of the Absorption and Dispersion
of Forced Plane Infinitesimal Waves According to the Navier-Stokes Equa-
tions,'" J, Rat. Mech. An., 2, 643-741.

Uchida, S., (1956), "The Pulsating Viscous Flow Superposed On the Steady
Laminar Motion of Incompressible Fluid In a Circular Pipe," ZAMP, 7,
403-422.

Weston, D.E., (1953a), "The Theory of the Propagation of Plane Sound
Waves In Tubes,'" Proc. Phys. Soc., B66, 695-709,

Weston, D.E., (1953b), "Experiments on the Propagation of Plane Sound
Waves In Tubes. I: The Adiabatic Region. II: The Transition Region.,'
Proc, Phys. Soc., B66, 762-774.

Womersley, J.R., (1955), "Oscillatory Motion Of a Viscous Liquid In a
Thin-Walled Elastic Tube. I: The Linear Approximation For Long Waves,

Phil, Mag., 7, 46, 199-221.

151

&




Wu, T.Y., (1956), '"Small Perturbations In the Unsteady Flow 0f a Com-
pressible Viscous and Heat-Conducting Fluid," J, Math, Phys., 35, 13- .
27. s

152



	1980006584.pdf
	0014A02.JPG
	0014A03.JPG
	0014A04.TIF
	0014A05.TIF
	0014A06.TIF
	0014A07.TIF
	0014A08.TIF
	0014A09.TIF
	0014A10.TIF
	0014A11.TIF
	0014A12.TIF
	0014A13.TIF
	0014A14.TIF
	0014B01.TIF
	0014B02.TIF
	0014B03.TIF
	0014B04.TIF
	0014B05.TIF
	0014B06.TIF
	0014B07.TIF
	0014B08.TIF
	0014B09.TIF
	0014B10.TIF
	0014B11.TIF
	0014B12.TIF
	0014B13.TIF
	0014B14.TIF
	0014C01.TIF
	0014C02.TIF
	0014C03.TIF
	0014C04.TIF
	0014C05.TIF
	0014C06.TIF
	0014C07.TIF
	0014C08.TIF
	0014C09.TIF
	0014C10.TIF
	0014C11.TIF
	0014C12.TIF
	0014C13.TIF
	0014C14.TIF
	0014D01.TIF
	0014D02.TIF
	0014D03.TIF
	0014D04.TIF
	0014D05.TIF
	0014D06.TIF
	0014D07.TIF
	0014D08.TIF
	0014D09.TIF
	0014D10.TIF
	0014D11.TIF
	0014D12.TIF
	0014D13.TIF
	0014D14.TIF
	0014E01.TIF
	0014E02.TIF
	0014E03.TIF
	0014E04.TIF
	0014E05.TIF
	0014E06.TIF
	0014E07.TIF
	0014E08.TIF
	0014E09.TIF
	0014E10.TIF
	0014E11.TIF
	0014E12.TIF
	0014E13.TIF
	0014E14.TIF
	0014F01.TIF
	0014F02.TIF
	0014F03.TIF
	0014F04.TIF
	0014F05.TIF
	0014F06.TIF
	0014F07.TIF
	0014F08.TIF
	0014F09.TIF
	0014F10.TIF
	0014F11.TIF
	0014F12.TIF
	0014F13.TIF
	0014F14.TIF
	0014G01.TIF
	0014G02.TIF
	0014G03.TIF
	0014G04.TIF
	0014G05.TIF
	0014G06.TIF
	0014G07.TIF
	0014G08.TIF
	0014G09.TIF
	0014G10.TIF
	0014G11.TIF
	0014G12.TIF
	0014G13.TIF
	0014G14.TIF
	0015A02.TIF
	0015A03.TIF
	0015A04.TIF
	0015A05.TIF
	0015A06.TIF
	0015A07.TIF
	0015A08.TIF
	0015A09.TIF
	0015A10.TIF
	0015A11.TIF
	0015A12.TIF
	0015A13.TIF
	0015A14.TIF
	0015B01.TIF
	0015B02.TIF
	0015B03.TIF
	0015B04.TIF
	0015B05.TIF
	0015B06.TIF
	0015B07.TIF
	0015B08.TIF
	0015B09.TIF
	0015B10.TIF
	0015B11.TIF
	0015B12.TIF
	0015B13.TIF
	0015B14.TIF
	0015C01.TIF
	0015C02.TIF
	0015C03.TIF
	0015C04.TIF
	0015C05.TIF
	0015C06.TIF
	0015C07.TIF
	0015C08.TIF
	0015C09.TIF
	0015C10.TIF
	0015C11.TIF
	0015C12.TIF
	0015C13.TIF
	0015C14.TIF
	0015D01.TIF
	0015D02.TIF
	0015D03.TIF
	0015D04.TIF
	0015D05.TIF
	0015D06.TIF
	0015D07.TIF
	0015D08.TIF
	0015D09.TIF
	0015D10.TIF
	0015D11.TIF
	0015D12.TIF
	0015D13.TIF
	0015D14.TIF
	0015E01.TIF
	0015E02.TIF
	0015E03.TIF
	0015E04.TIF
	0015E05.TIF
	0015E06.TIF
	0015E07.TIF


