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Introduction

The lunar breccias represent perhaps the most complex and challeng-
ing suite of lunar materials presently under study by lunar scientists.
The combined efforts of scores of investigators in the fields of geol-
ogy, geochronology, geophysics and geochemistry have produced an over-
whelming collection of data, the evaluation of which has lead to
impnrtant observations and conclusions bearing on such pertinent issues
as cratering processes, petrogenesis of the breccias and fractionation
of the early lunar crust.

The purpose of this catalogue is to introduce a representative
suite of lunar breccias to students and potential lunar sample investi-
gators who have an interest in lunar rocks and the geology of the wmoon.
The emphasis, as with the companion volume dealing with lunar igneous
rocks, is on sample description and data presentation. Although some
attempt is made to briefly familiarize the reader with the variety of
existing petrogenetic models and the controversies related to each, the
interpretive aspects of lunar breccias receive a secondary emphasis.
This approach is intended to provide the basic petrographic, chemical
and age data for a representative suite of these complex rocks while
encouraging individual readers to seek additional, perhaps more detailed,
sources of information (referenced throughout the catalogue) and
ultimately to pursue their own investigation and evaluation of the
existing data.

The samples chosen as representative were selected from a wide
variety of chemical, petrographic and isotopic groupings. An attempt
was made to choose samples which have undergone extensive scientific
investigation,but data sets (especially geochemical) for some samples
are embarrasingly small or nonexistent. Representative samples are
listed in Table 1, together with a classification scheme based on matrix
texture and mineralogy and the nature and abundance of glass present
both in the matrix and as clasts. A calculus of the classification
scheme (section II) which follows Table 1, describes the characteristic
features of each of the breccia groups. In that section, the reader is
made aware of alternative nomenclature and is urged to consult the
referenced sources to aveid confusion which might result from differ-
ences in terminology.

Following the classification scheme is a discussion of the crater-
ing process (section III) which describes the sequence of events
immediately following an impact event, especially the thermal and
material transport processes affecting the two major compcnents of
Tunar breccias (i.e. clastic debris and fused material).



The section dealing with the cratering process is followed by a
discussion of the two-component thermal model (section IV) of Simonds
(1975) and Simonds et al. (1976) which describes the turbulent flow of
impact melt and associated incorporation of clastic debris, the
reaction of clasts with the melt, and the final equilibration of the
clast-melt mixture. The model represents an important concept in the
understanding of lunar breccias because it explains many of their
observed petrographic and chemical features.

A discussion of pristine lunar crustal compositions (section V)
has been included to emphasize the relationship between proposed crust-
al rock types and related rock types present as clasts in the lunar
breccias.

A section dealing with the chemical systematics of highland
breccias (section VI) serves to explain the chemical features of the
breccias in terms of the compositional groupings established in the
previous section.

Following the discussion of breccia chemistry, a brief discussion
dealing with the process of regolith formation and modification
(section VII) has been included to: 1) emphasize the significance of
meteorite impact (both micrometeorite impact and large-scale basin
forming impacts) as the single most important constructional and
destructional process affecting the lunar surface and, 2) describe the
major impact products which are common to all regolith samples and
which have important implications relating to the problems of breccia
petrogenesis. This section also contains a petrographic description of
Apollo 11 regolith sample 10084, together with photomicrographs of the
most commonly occurring constituents present in the sample.

A section dealing with breccia petrogenesis (section VIII) follows
the discussion of the lunar regolith and represents perhaps the most
important and certainly the most complex and controversial section.
Although the purpose of this catalogue is hasically descriptive in
nature, it is important to introduce interested readers to the extremely
numerous, infinitely complex, and commonly conflicting interpretations
and evaluations which result from extensive studies of this suite of
samples. Thus, this discussion attempts to relate the features (mainly
descriptive) of each breccia group to presently existing petrogenetic
models.

Following the section on petrogenesis is a brief outline of lunar
evolution (section IX) based on interpretations of geological, geo-
chronological, geophysical and geochemical data.
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The main body of the catalogue (section X) contains the petro-
graphic descriptions and descriptive data for individual breccia
samples; sample numbers are listed in numerical order. Except for cases
in which pertinent data is lacking, the format for each of the breccias
is consistent and is presented in six categories:

1. A macroscopic description emphasizing such features as color,
cohesiveness, porosity and extent of fracturing. This descrip-
tion is accompanied by "mug" shots (photographs of samples
prior to cutting or chipping) of each sample and slab shots
(photographs of the sawn surface) when they are available.

2. Lunar surface data which describes where and how the sample was
collected and its orientation on the lunar surface (data of
this type for the early Apolio missions [11 and 12] is
typically nonexistent or, at best, highly speculative due to
incompiete documentation during sampling on the lunar surface).
A lunar map of the nearside of the moon (Figure 1) locates the
landing sites for the Apollo missions and for the unmanned
Ranger, Surveyor, Luna, and Lunokhod missions. Locations of
described samples are shown on Figures 2, 3, 4, 5 and 6 which
are detailed landing site maps for all Apollo missions except
Apollo 11.

3. A new petrographic description of the important features of
each breccia sample, including matrix characteristics and
descriptions of included mineral and lithic clasts. Photo-
micrographs accompany the descriptions and serve to illustrate
specific features of each breccia sample.

4. Graphical plots of mineralogical analyses including pyroxene
quadrilaterals, Ab-An plots, and Fo-Fa plots for both matrix
minerals and included clasts. A table containing modal data
for each sample is also present. Mineralogical analyses and
modal data are taken from the literature when such data are
available and are referenced to the original work. Plots which
contain no reference represent new data collected by the
senior author.

5. Radiometric age data include crystallization ages determined
by the Rb-Sr internal isochron method and the associated
initial Sr isotope data. Ar#0-Ar39 plateau ages are included
where such data are available. A1l age dat» re referenced to
the original work.

6. A general reference list which refers readers to additional,
perhaps more detailed sources of information, relating to
various aspects of each particular sample. The Tist is not
intended to be complete.




Following the petrographic descriptions and data is a table con-
taining chemical analyses (section XI) of every breccia sample for which
data are available. The table is divided into three sections which
contain:

1) Major element chemistry based on X-ray fluorescence and gravi-

metric analyses.

2) Minor and trace element abundances for lithophile elements
collected by isotope dilution mass spectrometry and neutron
activation analyses.

3) Minor and trace e:=2ment abundances for siderophile and chalco-
phile elements collected largely by radiochemical neutron
activation analyses.

A11 analyses contained in the table are identified by a number which
refers to the master reference list at the end of the catalogue.

A lengthy bibliography (section XII) represents the final section
of the breccia catalogue. Bibliographic details are listed for all
information referenced by number throughout the catalogue, including
sources referenced (1) as additional reading in the section containing
petrographic descriptions and data, (2) for graphical plots of mineral
analyses and modal data, (3) for age data, and finally (4) for
geochemistry.

Acknowledgements — We wish to thank J.A. Wood and J.T. Wasson for provi-
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ful assistance in the search for age data. D.P. Blanchard offered
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A. Simmons, and S. Dorsett for typing the text and to G. Rvder and

A. Cochran for helpful comments and advice. Work performec by

P.E. McGee was supported by contract NAS 9-15800 between the Johnson
Space Center and Lockheed Electronics Company, Inc. Work performed by
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Curatorial Laboratory.
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Table 1. Classitication of Lunar Breccias

FRAGMENTAL BRECCIAS

o Dark-Matrix
10060 15086
12034 60255
14301 79135

o Light-Matrix
14063
14082
67015

CRYSTALLINE BRECCIAS
o Impact-Melt Breccias

o Clast-Free
14310
68415

o Clast-Bearing

15405 76315
61016 76295
62235
62295
65015
72315
76215

o Clast=-Rich
14304 14312
143N 14321

o Granulitic Impactites
77017
79215

BLACK AND WHITE BRECCIAS
12013
15445
61015

n
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Classification of Lunar Breccias

Lunar breccias are lithified aggregates of clastic debris and melt
generated by meteoritic impact. One, or possibly all, ¢f the following
criteria are used to distinguish this group of rocks from endogenically
produced (i.e. truly volcanic or plutonic) igneous rocks: (1) a clast-
matrix texture (or a relatively clast-free texture with at least some
vestiges of clasts, e.g. 68415); (2) a polymict clast assemblage (i.e.
clasts of many types and compositions suggesting mixtures of several
parental rock types); (3) an enrichment of trace siderophile elements
relative to mare basalts and coarse-grained "pristine" rocks (suggesting
contamination of pristine lunar naterial with meteoritic debris) and
(4) a high metallic iron content relative to mare basalts and "pristine"
rocks.

The breccia samples included in Table 1 have been studied petro-
graphically with special emphasis on mineralogy and texture of the
matrix and the extent of devitrification of glassy clasts. On the basis
of these observations the breccias have been divided into three major
groups: (1) Fragmental, (2) Crystalline, and (3) Black and White.
Characteristic features of each breccia group (and subgroup) are dis-
cussed in the following section.

0 Fragmental breccias - Fragmental breccias are friable rocks
which typically display a detrital texture, contain glass, and
display a wide range of pyroxene and plagioclase compositions.
The size distribution of fragments is typically seriate, rang-
ing upward from less than 0.5 microns (observable with the SEM).
Where a distinction between clast and matrix is not clear an
arbitrary boundary is set at 39 microns for convenient manipu-
lation of microscopic measurements. This also coincides with
a natural clast-matrix break observed in crystalline breccias.
Fragmental breccias are divided into two subgroups:

o Dark-matrix breccias - Dark-matrix breccias (alternatively
referred to as regolith or soil breccias), which include the
vitric-matrix breccias described by Waters et al. (1571),
are dark to medium-dark brown-grey, friable to coherent
rocks. They are the dominant rock type in the fragmental
group and occur at all Apollo landing sites both on mare
basalt flows and in the highlands. Dark-matrix breccias
are fine-grained and typically porous, with micron-size
intergranular voids which can best be viewed in reflected
light or at magnifications of 300-3000X using a scanning
electron microscope (Phinney et al. 1976). They are charac-
terized by a detrital (i.e. minerals display a wide range
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of chemical compositions) assemblage of mineral, lithic and
glass clasts in a complex matrix of various types of mineral
and lithic debris together with varying amounts (up to 50%)
of brown glass as fragments or small interstitial patches.
Agglutinate clasts are present in minor amounts. The vola-
tile element content is typically high. Chemical composi-
tions of dark-matrix breccias are similar to the composition
of the local regolith at the site where the breccia was
collected (Drake and Klein, 1973).

o Light matrix breccias - Light-matrix breccias, described by
Delano et al. (1973) and illustrated by the Apollo 14
"white rocks" and several samples from the Apollo 16 North
Ray Crater, are light grey to tan, friable rocks. They are
typically porous and are characterized by mineral and lithic
clasts, together with rare orange-brown glass clasts in a
detrital matrix of plagioclase, pyroxene, opaque minerals,
rare orange-brown glass fragments and 1-3% colorless glass
fragments. The light-matrix breccias are compositionally
distinct from other breccias at both the Apollo 14 and 16
sites.

0 Crystalline breccias - Crystalline breccias are tough coherent

0

rocks with textures which suggest both igneous (e.g. poikilitic,
ophitic and subophitic) and subsolidus metamorphic (e.g. granu-
litic) origins. Plagioclase and pyroxene in breccias with
igneous textured matrices display narrower compositional ranges
than those observed in fragmental breccias but wider than those
observed in breccias with granulitic textured matrices (Figures
7 and 8). Crystalline breccias are divided into two subgroups:
(2a) Impact-melt breccias and (2b) Granulitic impactites.
Impact-melt breccias may be further subdivided on the basis of
total clast content and correlated variations in the morphology
of matrix feldspar into clast-free, clast-bearing and clast-rich
impact-melts.

Impact-melt breccias

o Clast-free impact-melts - Clast-free impact-melts, described
by Simonds et al. (1977), are fine to medium-grained
(feldspar laths 1 mm in length or more), subophitic rocks
with igneous textures which contain complexly zoned feldspar
megacrysts suggesting the presence of digested clasts. The
matrices display isolated patches ot finer-grained material.

o Clast-bearing impact-melts - Clast-bearing impact-melts,
described by Simonds et al. (1977), are characterized by
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very fine-grained poikilitic, suhophitic, and ophitic tex-
tured matrices which contain 1-15% clasts. ~ fractory sili-
cate minerals are the most comuon type of clast; glassy
clasts are rare to nonexistent.

o Clast-rich impact-melts - Clast-rich impact melts, including
the Fra Mauro breccias described by Chao et al. (1972), are
medium to dark grey, moderately coherent to coherent breccias
which display anhedral matrix textures varying on a scale of
a few millimeters; they contain 15% to 50% clasts. Mineral
clast populations are less biased towards refractory minerals
than in the clast-bearing melts. Lithic clasts are common.
Glass clasts are rare.

0 Granulitic impactites - Granulitic impactites, described by
Warner et al. (1977), are typically characterized by grano-
blastic or poikiloblastic textures that display smooth crystal
boundaries between anhedral and equant grains of piagioclase,
pyroxene, and olivine meeting at 120° triple junctions. Relict
grains of these same minerals occur as monocrystalline and poly-
crystalline fragments which are coarser grained than the
surrounding matrix. Their bulk compositions typically approxi-
mate anorthositic norites or troctolites.

0 Black and White breccias - Black and white breccias (found only at

the Apollo 15 and 16 landing sites), described by Wilshire et al.
(1973), typically contain two distinct lithologies: (1) anorthosite
or anorthositic troctolite and (2) clast-bearing impact-melt. The
impact-melt 1ithology (black) is typically interpreted as intrusive
into the anorthositic 1ithology; rare samples contain three distinct
lithologies and display obscure clast-host relationships. Unique
sample 12013, a granitic breccia, is included in this group although
it differs from other members of the group in texture, composition,
and the relationship between 1ight and dark 1ithologies.
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The Cratering Process

Lunar breccias are aggregates of fragmental debris and melt gene-
rated by meteorite impact and consolidated in the ejecta and fall-back
blankets of Tunar craters. As most of the features unique to impact-
Tithified rocks may be explained in terms of processes occurring after
the passage of a shock wave when various materials are intimately
mixed, it is important to review the sequence of events immediately
following the impact to better understand the thermal and material
transport processes affecting the various components. The cratering
process can be divided into four phases as suggested by Shoemaker (1963),
Gauit (1964), Dence et al. (19€8) and Simonds et al. (1978):

(1) Meteorite collision and passage of compressive shock wave:

The compressional shock wave expands radially outward from the point of
impact. Peak shock pressures are over 3 megabars at the point of impact
and decay exponentially outward as r=3.5 (Dence et al. 1977) (estimates
range from r-2 to r-5.5) where r is the distance from the point of
impact (Grieve et al., 1977). The compressive phase lasts until the
shock wave is reflected off the upper edge of the impacting projectile.

i The wave propagates at velocities up to about 8 km/sec in the highly

E compressed region near the point of impact, falling off to the acoustic
b velocity of the rocks (5-6 km/sec) when shock pressures decay below

; 100 kb.
3

(2) Rarefaction: A rarefaction wave follows the compressional

wave with essentially the same velocities. The highly inelastic com-

pression is followed by a sudden release of pressure which generates

internal friction raising the temperature of the rocks. Rocks subjected

| to peak pressures over 600 kb begin to melt and those over 1 megabar are

totally melted. Some, subjected to very high pressures (~2 megabars),

will be vaporized. Rocks subjected to peak compressional pressures cf

: 200-400 kb will have their feldspar vitrified to maskelynite (less

‘ compressible pyroxene and olivine will show only fracturing) and will
be heated to temperatures of a few hundred degrees centigrade. Rocks
subjected to pressures less than 100 kb will be fractured and planar
deformation features will be produced in the feldspar and quartz.

, Although the volume of rock melted is only a few percent of the volume

; excavated, the heat of the melt (originally melt and vapor) represents

: about 1/3 of the total kinetic energy of the impacting meteorite

? (0'Keefe and Ahrens, 1975).

(3) Excavation: The momentum of the meteorite is transmitted to
the target rocks; melt generated near the point of impact is accelerated
to over 2 km/sec and the fragments at the periphary of the excavation
. are accelerated to a few tens of meters/sec. The motion of material
k in the crater is generally downward and outward. The downward and out-
ward motions are deflected as excavation proceeds to form a parabolic
cavity. Flow is stagnant directly under the impact; rocks immediately
below the cavity contain maskelynite (200-400 kb peak shock pressure).
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Figure 9.

Melt Fractured target

[7372) Broken rock Untractured target

Melt- free breccia .4 Rock vapor

Monomict breccia-10m blocks € ©] Gas bubbles

L7 Monomict breccia —e 1 km /sec velocity vector
Ciast - laden melt < Crater modification low vector

Melt bearing polymict breccia

Cross section of model impact into a hard rock target showing:
a) meteorite collision and passage of shock wave; b) ejection
of debris; c) formation of parabolic cavity; d) small-scale
impact and mixing by debris excavated during primary impact
event; d) final stragraphy of crater prior to erosion.
(Adapted from Kieffer and Simonds, 1979).
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Detailed discussions of the flow directions are given by 0'Keefe and
Ahrens, (1975). Relatively unshocked materials from the surface and
near the edge of the excavation are the first deposits on the rim.
These materials are then overlain by more highly shocked materials from
deeper in the excavation to form an inverted stratigraphy (Shoemaker,
1963). Melt from the center of the crater near the point of impact
overruns and pushes the less shocked materials so that eventually the
melt and included debris 1ines the excavated cavity as a thin sheet and
spills out over the edge of the excavation. The melt is so hot that it
is superheated; the excess energy is dissipated by the digestion of much
of the incorporated debris.

(4) Readjustments: The final phase of cratering involves the
collapse of the rim and movements of the basement rocks such as the
uplift of a central block. Melosh (1976) has argued that the relatively
shallow slopes of the excavation should be stable if the rocks have
typical values for the coefficient eof internal friction. Seismic
shaking is one of the possible mechanisms suggested to lower the rocks'
effective coefficients of internal friction to the point that the slopes
are not stable. Such shaking would last only a few minutes even for the
larger impacts. Another possible mechanism involves excess ground water
pressures due to the rapid unloading of the crust. This mechanism is of
little importance on the moon (due to the absence of water) but may be
significant on Mars and the Earth. Presently, no data exists to
uniquely support either of the suggested mechanisms and resolution of
the problem awaits future experimental work. The occurrence of the melt
sheet over collapse features is a further indication that the readjust-
ments take place within minutes of the crater's formation because the
melt becomes quite viscous within minutes of emplacement. For a more
complete discussion of cratering physics, the reader is referred to the
volume Impact and Explosion Cratering (1977), particularly the summaries
by Dence et al. (1977), Grieve et al. (1977) and Cooper and Sauer (1977).
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Two-Component Thermal Model for Impact Breccia Lithification

During the excavation phase of the cratering process, the mixture
of melt and fragmental debris is in turbulent motion due to 1) the
acceleration of the melt by the shock wave to velocities higher than
those of the less shocked, slower moving debris which is overrun and
mixed with the melt and 2) local velocity gradients in both the melt
and fragmental debris due to different proportions of different minerals
and diffraction of waves around local heterogeneities. Petrographic and
chemical interpretations of the breccias formed as a result of this
complex and turbulent flow, suggest that the two-component thermal model
of Simonds (1975) and Simonds et al. (1976) closely approximates actual
conditions. The model is characterized by a two-stage cooling history
involving (1) a rapid first-stage thermal equilibration between small
clasts and the surrounding melt, and (2) a second-stage of slow heat
loss from the melt to the surroundings. The thermal model can be
divided into four stages as follows:

1) Production of a superheated silicate melt formed near the point
of impact and cold, unshocked, fragmental debris formed some distance
from the point of impact. Several lines of evidence suggest that the
melt was initially superheated. Systematic variations in the abundance
and populations of various clast types, together with the biasing of
clast populations to refractory materials,can be explained by the fusion
of lower-melting point phases into an initially superheated melt.
Studies of glasses from the Ries impact crater (Horz, 1965; E1 Goresy,
1965) suggest several hundred degrees of superheat. The inferred
temperature of the clasts is based on the lack of feitures in feldspar
clasts indicative of shock pressures over 100 kbar. Maximum post-shock
temperatures associated with such pressures are about 200-300° (Ahrens
and 0'Keefe, 1972).

2) Rapid mixing of the melt-clast mixture. Observations of impact-
melt samples show that clasts and melt are mixed on a submillimeter
scale so that no 1mmZ of a thin section is free of clasts. Chemical analyses
show that of impact-melt samples are essentially homogeneous and free of
the compositional variations present in the target rocks. Calculations
by Onorato et al. (1977) suggest that for clasts with a median grain
size of 0.10 mm, thermal equilibration of the clast-melt mixture will
occur in times on the order of 100 seconds. Thus, the process of mixing
clasts must not only be extremely violent and efficient (as suggested
by observations of clast distributions discussed above), but must occur
relatively rapidly (i.e., before thermal aquilibration of the clast-
matrix mixture initiates crystallization).

3) Rapid thermal equilibration of the clast-melt mixture and
digestion of low-melting point clasts. The finely comminuted (<1 mm)
and evenly distributed clasts absorb large quantities of heat from the
surrounding melt in seconds. This rapid quenching of the melt produces
a flood of small subhedral to euhedral feldspar nuclei (as observed in
most impact-melts). Feldspar crystallization releases sufficient latent
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heat %o both raise the temperature of enclosed clasts and buffer the
melt's temperature to the range between the 1iquidus and the solidus.

As the clasts approach chemical equilibrium the smaller, lower melting
point clasts are preferentially digested, altering the melt's composition.

4) Matrix crystallization and loss of heat to the surroundings.
When the temperature of the melt falls below the 1iquidus, feldspar
begins to crystallize releasing latent heat to slow or stop the tempera-
ture decrease and digest much of the lower-melting point clastic aebris.
Thus, for all but extremely high clast abundances (e.g., the Apollo 14
clast-rich impact-melt breccias) the drop in temperature will cease
slightly below the liquidus. Experimental crystallization of plagio-
clase melts at near liquidus temperatures (Lofgren, 1974) produced the
subhedral and euhedral plagioclase tablets observed in the Apollo 16
and 17 poikilitic and subophitic impact-melt breccias. The clast-rich
Apollo 14 impact-melts are inferred to have crystallized at sub-solidus
temperatures. Loss of heat to the surroundings begins after the melt
reaches a thermal-equilibration and crystallization begins. Due to the
dimensions involved this heat transfer is orders of magnitude slower
relative to the melt-clast transfer.
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A Discussion of Pristine Lunar Crustal Compositions

Petrogenetic studies of lunar breccias focus on two broad cate-
gories of problems: 1) studies of the cratering process and its sub-
sequent modification of the lunar crust and 2) studies seeking evidence
relating to the early fractionation of the moon. Cratering process
studies are matrix-oriented with an emphasis on clast-matrix inter-
actions and the degree to which chemical variations in the target are
homogenized ir the breccias. Lunar fractionation studies are clast-
oriented and c~ek to identify pristine lunar materials (i.e., materials
with low sideropiiile element abundances, low incompatible element con-
centrations, "cumulate" textures, >4.2 b.y. ages, low 87Sr/86Sr). These
pristine materials occur in breccias either as 1) ancient clasts which
represent direct remnants of the lunar crust (e.g., plutonic rocks) or
as 2) relatively young clasts (3.95 AE, Nyquist 1977) with pristine
chemical compositions suggesting that they are late differentiates of
the lunar crust (e.g., non-brecciated KREEP materials). KREEP is a
basaltic chemical composition characterized by an enrichment in
potassium (K), rare-earth elements (REE), ana phosphorus (P).

Estimates concerning the types and relative abundances of pristine
Tunar crustal compositions have been estabiished by the compilation of
analyses of bulk rocks together with clasts and 1ithic fragments from
regolith samples (Wood, 1975; Warren and Wasson, 1977; Bickel and
Warners 1978). Table 2 presents the composition of proposed pristine
samples established by these studies which are believed to define the
compositions of major portions of the highland crust.

The plutonic rocks (anorthosite, troctolite and dunite) are charac-
terized by cumulate textures and chemically homogeneous minerals suggest-
ing Tong annealing times at a depth of several kilometers in the lunar
crust. Age determination studies of the dunite and troctolite samples
placed them at over 4.2 billion years; this age is believed to reflect
a period of crushing and annealing between 4.0-4.3 b.y. whigh followed
the init12% crystallization at 4.3-4.6 b.y. The primitive 8/Sr/86sr
(0.6990) of the lunar anorthosites suggest that they are also products
of the early lunar differentiation. Samples of non-brecciated pristine
KREEP are characterized by basaltic textures (Dowty et al., 1976;
Irving, 1977) with peritectic compositions suggesting that they are
either partial melts from the lunar interior (Irving, 1977) or a late
stage fractionation product (Shih, 1977). The 3.95 b.y. age for these
samples represents either an extrusion age or an age of impact-melting.
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Chemical Systematics of Highland Brecciac

To adequately constrain and better understand models of breccia
petrogenesis it is necessary to study the chemical systematics of the
highland breccias in relation to the compositionai groupings established
in the previous discussion. Investigations of this nature have demon-
strated that the chemical composition of highland breccias plot along
a trend which joins an aluminous basalt or "KREEP" composition (Ca0 =
10-12 wt. %; A1203 = 17 wt. %) to an anorthositic composition (Ca0 =
19-20 wt. %; A1203 = 35-36 wt. %). A plot of the breccias included in
this study is shown on Ca0 vs. A1203 diagram (Figure 10). The data
closely approximates the above trend (with the exception of several
dark-matrix breccias and a clast-rich Apollo 14 sample). Figure 11,
shows these same compositions plotted in terms of the normative percen-
tages of silica, plagioclase and olivine. The trend is equivalent to
the one displayed in the previous Ca0/A1203 diagram. Figure 12, illus-
trates the variations in the Fe0/Mg0 ratio among the breccias included
in this study and serves to illustrate that a simple KREEP-anorthosite
mixing cannot explain all of the observed compositions. A chondrite
normalized plot for the rare earth and several additional large ion
Tithophile (LIL) elements for breccias from this study are shown in
Figures 13 and 14. The consistent slope displayed by all of the non-
mare breccias (lighter REE's enriched over heavier REE's) suggests a
probable genetic correlation. The abundances of LIL elements in the
breccias is inversely related to the A1203 content so that basaltic
breccias (17-20 wt. percent A1203) have high LIL element concentrations
and anorthositic breccias (30-36 wt. percent A1203) have low LIL element
concentrations., Systematic fractionation of the LIL elements and nega-
tive Sr and Eu anomalies suggests that the LIL concentrations are con-
trolled by plagioclase-liquid equilibria. The high concentrations of
volatile siderophile elements in the lunar breccias relative to the
mare basalts or coarse-grained plutonic rocks (1 to 3 orders of magni-
tude) is illustrated by the gold histogram plot in Figure 15. These
concentrations are interpreted as evidence of meteoritic contamination
(Anders et al., 1973); inversely, low siderophile element concentrations
suggest pristine, uncontaminated compositions.

Interpretations of the chemical systematics of the highland
breccias include the following alternatives.

1) Anorthosite and KREEP compositions represent two of the major
"primary" rock types in the highlands and chemically diverse breccias
are the result of various amounts of mixing of the end members. Varia-
tions of this model include one or more additional end members (e.g.
dunite and/or spinel-bearing anorthositic troctolite) (Schonfeld, 1974).

2) Repetitive impacts should have homogenized the bulk chemistry
of the breccias to that of the local average highlands (anorthositic
gabbro plus KREEP) composition, the partial melting of which corresponds
to a peritectic liquid with a KREEP composition. The range of breccia
chemistry is explained by impact-generated partial melting with some
subsequent separation of melt and residue (Warner et al., 1974).
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DARK MATRIX BRECCIA
LIGHT MATRIX BRECGIA
GRANULITIC  IMPACTITE
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Figure 10, CaO-AlZ’)3 plot for representative lunar breccias. Anorthosite,

troctolite, dunite, high and low-Ti mare basalt and KREEP (K)
samples are plotted for reference.
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Figure 11. Plot of representative lunar breccias and reference samples on
the O0livine-Silica-Anorthite pseudoternary liquidus diagram.
KREEP sample 15382 is represented by the symbol K.
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DARK MATRIX BRECCIA
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Fe0-Mg0 plot of representative lunar breccias and reference
KREEP sample 15382 is represented by the symbol K.
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3) The bulk chemistry of most breccias reflects a “fossil" igneous
rock chemistry essentially undisturbed by the brecciation process
(Haskin et al., 1973; Hubbard and Gast, 1971; Hubbard et al., 1972;
Lindstrom et al., 1972).

The first alternative is generally the most accepted interpretation
of the highland breccia chemistry; readers are urged to consult the
referenced sources for detailed discussions relating to additional
interpretations.
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The Lunar Regolith

This discussion of the lunar regolith emphasizes the role of
impacts in modifying the lunar crust and illustrates the components
formed by impacts (common to all regolith samples) which have major
implications for the problems of breccia petrogenesis, particularly for
the dark-matrix fragmental breccias.

Lunar regolith is the term applied to the layer of weakly coherent,
fragmental, impact-generated debris which overlies the bedrock on the
lunar surface. It is composed of poorly sorted material ranging in size
from the finest dust particles to blocks which may be several tens or
hundreds of meters across. The thickness of the regolith generally
increases with the age of the underlying bedrock ranging from 2-5 meters
at Apollo 12 and 15 (~3.2 AE) to 3-6 meters at Apollo 11 (~3.6 AE). 1In
the non-mare regions, the thickness is even greater because the base of
the regolith grades into breccias produced by intense meteorite bombard-
ment that affected the rocks to a depth of several kilometers. Thick-
nesses of the least consolidated regolith at non-mare sites range from
8.5 meters to 12 meters at Apollo 14 and 16 (~3.85 AE) to 10 to 15
meters at Apollo 17 (~3.65 AE).

The dominant processes of regolith formation are the comminution
of coherent rock masses by repetitive impacts (yielding destructional
fragments) and the reaggregation of small particles by bonding with
glass (yielding constructional fragments). Debris initially excavated
by one crater-forming impact is subsequently crushed, fused, mixed, and
transported by additional impacts which range in magnitude from frequent,
small-scale micrometeorite events producing pits microns to millimeters
across to rare, large-scale impact events, producing craters 10's to
100's of kilometers across.

Destructional fragments include glass, lithic, and individual
mineral fragments derived from pre-existing rocks by impact comminution.
The absence of chemical weathering on the Moon leaves the fragments
fresh and unaltered, angular to sub-rounded and relatively equant.

Constructional fragments, called agglutinates, form as a result of
the mixing of splashes of impact melt (produced by micrometeorite impact)
with previously deposited regolith material. Studies by Hartung et al.,
(1972) have shown that much of the material impacting the lunar surface
is in the form of micrometeorites which erode exposed rocks and form
millimeter-size craters in the regolith that produce splashes of melt.
The splashes of melt thus produced solidify with included destructional
fragments producing agglutinates. These agglutinates are characterized
by heterogeneous mixtures of comminuted glass, mineral and lithic debris
bonded by vesicular, flow-banded, heterogeneous glass. The bonding
glass typically makes up over half of the volume of each agglutinate
particle and contains vesicles ranging upward in size to several centi-
meters; most agglutinate fragments are less than 1 millimeter in dia-
meter. The flow-banded glass contains trails of immiscible iron metal
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particles ranging in size from .002 ym to 1 um. The included metal
particles distinguish agglutinitic fragments from comminuted dark-matrix
breccia fragments, which appear similar to the untrained observer.
Morphologically, the agglutinates range from simple, irregular, ameboid
shapes to complex branching forms. Lunar regolith samples contain from
0 to 60 percent of agglutinate fragments. The agglutinate content in
regolith samples decreases rapidly with depth; at 20 cm below the sur-
face agglutinate abundances rarely exceed 10%.

Most regolith samples contain a small percentage (1 percent or
less) of fragments of both clear and devitrified glasses as spheres,
\ fragments of spheres, and dumbbell-shaperi forms which are interpreted
‘ as volcanic in origin. The Apolio 15 green glass (15426) and Apollo 17
orange glass (74220) described in the companion volume are two such
1 examples. The homogeneity of the glass and uniformity of the chemical
composition, together with the lack of shock features and included rock
fragments argues against an impact origin for these fragments and
supports the generally accepted belief that the fragments are the result
of lava fountaining (Heiken et al., 1974).

: The enriched siderophile trace element abundances of regolith

samples suggest that up to several percent of most samples consist of

meteoritic material, although an unambiguous identification of fragments

ultimately derived from an impacting meteorite is difficult. Iron metal

fragments, the regolith components most 1ikely to represent meteoritic

r derivatives, have chemical compositions comparable to those of metal
grains within breccia samples. Consequently, interpretations of their
immediate source remain speculative.

& An important concept of regolith formation is that of maturity, the
3 measure of regolith exposure time at the immediate lunar surface..

f Heiken (1975) has shown that the agglutinate content of the regolith

: increases with surface exposure time and can therefore be used as a

measure of regolith maturity. Immature soils are characterized by
recently comminuted, fresh ejecta or volcanic deposits. Mature soils
are characterized by comminuted material together with abundant agglu-
tinates. Submature soils are intermediate between immature and mature
soils. Agglutinates in different horizons of core samples can be used
to determine the extent of reworking of regolith components; most cores
show a progressive decrease in agglutinate content downward for the
first half meter below the lunar surface. In addition to the increase
in agglutinate content with age, the soil also 1) adsorbs a layer of
the solar wind gases H and He, 2) becomes finer-grained (materials

>1 mm are systematically eliminated, 3) increases its content of

: metallic iron, and 4) sustains damage to the outer few tens of microns
[ of more and more o the individual grains due to energetic atoms ejected
by the sun during solar flares.
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Regolith samples returned from the Apollo 11 site are basically
similar to soils at other Apollo sites and typically reflect the make-up
of the local bedrock. The soils are composed of the following types of
particles: 1) agglutinates; 2) 1ithic fragments; 3) mineral fragments
and 4) various glasses. Studies of the Apollo 11 regolith samples have
shown them to be composed predominantly of basaltic debris derived from
the excavation of local high Ti basaltic bedrock together with a small

. but significant amount of chemically and mineralogically exotic compo-

’ nents possibly derived from material under the flood basalts or from
distant sites (possibly the highlands to the south). A petrographic
description of Apollo 11 regolith sample 10084 follows and serves to
illustrate the common constituents of lunar surface soils.

e R dente e ML S
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Sample 10084 consists of fine-grained, poorly sorted, medium dark gray
g portion of the Apollo 11 soil less than 1 mm in diameter (Figure a).
! The sample was collected by the Apollo 11 astronauts in the last few
! minutes of lunar surface activity near the lunar module. It is charac-
terized by mineral fragments of plagioclase and augite, together with
lesser amounts of olivine, ilmenite and Fe-Ni metal blebs. Homogeneous
' glass fragments in a variety of colors are present as well as hetero-
| geneous fragments decorated with schlieren and mineral fragments. ine-
grained to coarse-grained basaltic fragments are abundant, together
with significant members of micro-breccia fragments and agglutinates.
Several anorthositic rock fragments were observed (Wood et al., 1970)
but are not common. The major constituents of 10084 are shown in
Figures 16A through 16F. Table 3 gives the modal composition of grain
size)fractions of Apollo 11 soil 10084,106 (von Engelhardt et al.,
1971).
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Petrogenesis of Lunar Breccias

The major objective of this catalogue, a general introduction to
the 1lunar breccias, depends upon interpretations of chemical, petro-
graphic, and mineralogic features of the breccias. The following sec-
tions of text attempt to relate these features to presently existing
models of breccia petrogenesis.

Dark-matrix breccias

The dark-matrix breccias are an extremely heterogeneous suite of
lunar breccias with physical and chemical characteristics that suggest
mixing of components from diverse sources. They contain abundant frag-
mental material and shock-melted glasses, together with minor amounts
of relatively large (up to 1 mm), nickel-enriched iron blebs. Collec-
tively these features indicate that the fragmental material was gene-
rated by meteoritic impact.

Several lines of evidence suggest that dark-matrix breccias are the
lithified equivalent of the lunar soil. Similarities in the bulk
chemical composition, as illustrated in Table 4, and in the types and
relative proportions of fragments between the dark matrix breccias and
the lunar regolith at each respective site support this interpretation.
Also the incorporation of agglutinates (common constituents of the
regolith) into the dark-matrix breccias suggest that these breccias
contain at least some lunar soil. The low abundance of agglutinates
(0-3%) in the dark-matrix breccias at each of the Apollo landing sites
relative to the regolith (up to 58% for a mature regolith, Heiken, 1974),
suggests the following alternatives: (1) that soil making up the dark-
matrix breccias was very immature; (2) that only a small portion of the
incorporated regolith was agglutinate-rich; (3) that agglutinates are
destroyed or obscured by breccia-making processes; (4) that the proto-
1ith of the breccias was not regolith. The exact mechanics of dark-
matrix breccia lithification are uncertain but probably a number of
processes are operative. Chao et al., (1972), Christie et al., (1973),
and Kieffer (1975) have proposed models for the lithification of soil
by shock waves, arguing that the interaction of shock waves and grain
boundaries in porous aggregates results in the formation of glass at
these boundaries, a feature which has in fact been observed by Christie
et al. (1973). Other investigators (McKay and Morrison, 1971; Waters
et al., 1971; Simonds, 1973; Uhlmann et al., 1975; Phinney et al., 1976)
argue that the lithification involves thermal welding or 4intering
either between grains or by small impact-produced glass fragments formed
near the point of impact. The SEM investigation of matrices of very
friable glass-poor soil clods (Phinney et al., 1976) revealed filaments,
1-3 um films of glass and apparent sintering between the clastic debris.
The fact that these features are not associated with any clearly recog-
nizable glass suggests lithification by shock (as discussed by Kieffer,
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1975). Moderately coherent microbreccias to tough vitric-matrix breccias

,display 10-100 um glassy patches to continuous glassy matrices with

KREEP-enriched composition which do not appear to originate from shock
melting of the clastic debris. Correlated gradations in coherence,
porosity, glass content, glass texture, apparent sintering, grain size,
and grain shape in matrices from friable soil clods through coherent
microbreccias and tough vitric breccias to tough crystalline breccias
are compatible with Simonds et al. (1976) two-component trermal model for
breccia lithification. Thus, if shock lithification is a viable process

it must be important only for the very friable soil clods and micro-breccias.

Light-matrix breccias

The physical and chemical characteristics of light-matrix breccias
(as in the case of dark-matrix breccias) indicate a complex formational
history characterized by the mixing.of both local and foreign components.
The breccias are characterized by a detrital matrix which ho.ts single
mineral grains (predominantly plagioclase), lithic clasts representative
of the anorthosite-troctolite-norite (ANT) suite, and rare orange-brown
glass. The unrecrystallized nature of the matrix suggests that these
breccias are not annealed, yet they lack characteristic features of the
dark-matrix regolith breccias such as glassy or devitrified spheres and
brown glass in the matrix. The Apollo 14 light-matrix breccias are
plagioclase-rich and KREEP-poor suvggesting that they are possibly
derived from pre-existing crustal rocks uncontaminated by KREEP. Un-
ambiguous identification of the precursor of the light-matrix breccias
or the processes involved in their formation is not possible at this
time.

Crystalline Matrix Breccias

The impact-melt crystalline-matrix breccias, were initially thought
to be made by simply metamorphosing the dark matrix breccias (Warner,
1972; Warner et al., 1973, 1974; Phinney et al., 1972). Later investi-
gations, including SEM petrography (Phinney et al., 1976) and thermal
models (Simonds, 1975; Simonds et al., 1976) suggest that the
crystalline-matrix breccias were not made in this manner. For example,
at the Apollo 14 site, Simonds et al., (1977) pointed out that the dark-
matrix breccias are systematically depleted in Mg0 and enriched in A1203
when compared with the Apollo 14 crystalline-matrix breccias. Stoffler
et al., (1976) used clast population data (for Apollo 14 breccias) to
show that the dar'-matrix breccias are not the protoliths of the
crystalline-matrin breccias because the former contain less than 6%
mineral clasts whereas the crystalline-matrix breccias contain 10-20%
mineral clasts; thus, to produce crystalline-matrix breccias from dark-
matrix breccias it would be necessary to create clasts. Similar
patterns exist for the dark-matrix and crystalline-matrix breccias at
both the Apollo 16 and 17 sites.
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Comparison of clast-rich impact-melt breccias from the Apollo 14
site with clast-bearing impact-melt breccias from the Ap~11o 16 and 17
sites (Simonds et al., 1977) revealed correlated variations in matrix
texture, volume fraction of matrix, and abundances of clast types and
refractory mineral clasts. These correlations between suites of impact-
melt breccias from widely separated sites suggest that: 1) similar
formational processes are responsible for both the clast-bearing and
clast-rich impact-melts and 2) systematic characteristics exist between
impact-melt breccias produced by different impact events. The observed
correlations are compatible with the two-component thermal model of
Simonds (1975) and Simonds et al., (1976). Thermal calculations by
Onorato et al., (1977) suggest that the degree of clast-digestioun
(resulting in the biasing of clast populations to refractory minerals)
is a function of the initial equilibration temperature of the clast-melt
mixture. The observed textural sequence from clast-rich impact-melts
(Apollo 14) through clast-bearing impact melts (Apollo 16 and 17) to
clast-free impact-melts can be explained in terms of a progressive
increase in the amount of superheated melt relative to incorporated
debris, resulting in variations in the temperature of the clast-melt
mixture following the initial thermal equilibration; thus, plagioclase
morphology is indirectly related to the equilibration temperature of the
clast-melt mixture. Subhedral and euhedral plagioclase tablets observed
in the Apollo 16 and 17 subophitic and poikilitic impact-melt brercias
have been experimentally reproduced by Lofgren (1974) at near-liquidus
temperatures. Anhedral matrix textures observed in several Apollo 14
clast-rich impact-melt breccias a~- inferred to have crystallized at
temperatures below the solidus due to greater amounts of cold clastic
debris resulting in subsolidus equilibration temperatures.

Granulitic impactites

Based on criteria outlined in a previous section (enriched sidero-
phile element abundances, presence of vestigal clasts) this suite of _
granulitic samples is interpreted to have an impact origin (Warner et
al., 1977). Although an unambiguous identification of some criteria
is difficult due to the subsequent thermal metamorphic event experienced
by these samples, the following features of individual granulitic
samples serves as evidence to support an impact origin.

The investigation of sample 79215 (Bickel et al., 1976; Morgan et
al., 1975; McGee et al., 1978) revealed a clast-matrix texture with
polymict clast assemblages and an enrichment in trace siderophile ele-
ments, satisfying two criteria for an impact interpretation. Isolated
regions with textures and modes which differ from the matrix (see petro-
graphic description) are interpreted as lithic clasts although the
mineral compositions have been homogenized.
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Sample 77017 has been interpreted by Ashwal (1975) as an igneous
rock, however, Morgan et al., (1974b) report an enrichment in trace
siderophile element abundances corresponding to a group associated with
the final lunar bombardment (Higuchi and Morgan, 1975). Also a detailed
petrographic study by McCallum et al., (1974? describes the rock as a
breccia which contains anorthositic and troctolitic lithic clasts,
together with single mineral clasts of rounded olivine and plagioclase.

Sample 78155 described by Bickel (1977) satisfies all of the cri-
teria for an impact produced rock. It displays a clast-matrix texture,
is polymict and is characterized by an enrichment in trace siderophile
element abundances corresponding to a poorly defined siderophile group
of Higuchi and Morgan (1975).

Granulitic clasts present in sample 73215 (James and Hammarstrom,
1977; Blanchard et al., 1977) also display enriched trace siderophile
element abundances and are interpreted as granulitic impactites.

Black and White breccias

Because many of the samples from this group are composed of lithol-
ogies other than those described in the classification section (i.e.
anorthositic and impact-melt), a discussion of the petrogenesis of indi-
vidual samples will be included with the petrographic description.
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Lunar Evolution

The combined geological, geochronological, geophysical and geo-
chemical evidence gained from the investigation of the lunar rocks
(both mare and highland) has resulted in the following scenario of lunar
history:

a) Formation of the moon at 4.6 AE (1AE = 109 years) closely
followed by almost total melting of the outer 200-300 km with subsequent
fractionation to produce a crust and mantle. A well-established 4.55 AE
age for a single dunite sample 72417, apparently represents an early
lunar differentiation (Figure 17). Although unequivocal ages for lunar
anorthositic rocks are hard to establish due to their low radioisotope
content, results *uggest that they crystallized 4.3-4.6 AE ago and that
their pr1m1tive 5r87/5r86 ratios (10.6990) are compatible with formation
during early lunar differentiation. Residual 1i u1ds KREEP) from the
early fractionation period have evolved initial 7sr/86sr values of
0.701 wnich suggests separation of this material or of a parental
material at approximately the same time as the anorthosites.

b) A period of intense lunar bombardment by planetary debris from
~4,2 AE until 3.84 AE producing the large mare basins. This bombardment
ended between 4.05-3.84 AE, a period referred to as a terminal lunar

cataclysm (Tera and Wasserburg, 1974) (note the frequent occurrence of ages
during that time frame, Figure 18). The crystalline age at 3 95+ AE

for the pristine KREEP sample (15382) possibly represents remelting
although it is unclear whether the KREEP composition existed in a lower
crustal layer formed during the early differentiation or whether it
represents a partial melt from the lunar interior present on the surface
as an early basaltic flow (Gast 1972, Weill et al., 1974). '

c) A period of mare flooding occurring ~3.9-3.2 AE. High-Ti mare
basalts (Apollo 11 and 17) range in age from 3.9-3.6 AE while most other
basalts have ages ~.ss than 3.4 AE. Differences in 875 /86Sr values
for mare basalts suggest a two-stage history for most systems with
distinct sources varying in Rb/Sr by a factor of ~4-5.

d) A period of quiescence from ~3.2 AE ago until the present with
only sporadic small crater forming impacts.
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30+

NUMBER

3.6 3.8 4.0 4.2 4.4 4.6

AGE (b.y.)

Figure 18. Distribution of highland ages as determined from 8-/'Rb/87Sr
isochrons and the 39Ar-40Ar plateaus, using data from the
lTiterature. Some ages in the 3.6-3.8 range may be younger
igreous mare rocks transported to the highlands by distant
impacts. A few ages >4.2 b.y. appear to have survived the
intense rate heavy bombardment. Adapted from Wetherill (1975).
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10060- A typical "soil" breccia from Apollo 11.

R, WA

Sample 10060 is a medium-grey rounded to subrounded rock (5x5x4.5 cm) believed
to have been collected 10 to 15 meters away from the lunar module near the rim
of the Targe double crater.



r AR TV TR T

| 10060 46

; 10060 DARK-MATRIX BRECCIA

Sample 10060 is a porous, fragmental-matrix breccia characterized by a detri-

i tal assemblage of mineral, 1ithic and glass clasts contained in an opaque

B brown matrix of mineral and lithic debris with minor brown glass (Figure a).

“ The overall texture is seriate with grain sizes ranging from less than a
micron to several millimeters. The matrix (material 39 microns and less)
consists of a complex mixture of brown glass fragments (+5%) in various
stages of devitrification, abundant micron-size mineral fragments, and various
types of lithic debris. Sample 10060 is porous, with micron-size inter-
granular voids which can best be viewed in reflected light. Probably the most
complete description of the glassy and porous nature of the matrix of frag-

t mental-matrix breccias is given by Phinney et al. (1976).

The glass-clast population is characterized by abundant homogeneous orange-
glass clasts and spheres or parts of'spheres, with angular clasts being more
abundant than spheres. Both clasts and spheres are commonly fractured. Some
of the orange-glass clasts have compositions which resemble that of the Apollo
17 orange glass 74220 described in the companion volume. Other homogeneous
glass clasts may be yellow, green or colorless. Green glass occurs most
commonly as spheres and represents a small proportion of the total glass

‘ content. The spheres are compositionally similar to Apollo 15 green glass

: 15426 described in the companion volume. Colorless glass is present as indi-

i vidual clasts and commonly as a coating on mineral and lithic clasts or on

: other glass clasts. Heterogeneous glass in a variety of colors, occurs most

1 commonly as irregularly shaped clasts which commonly contain schlieren formed

{ by trains of sub-micron size debris. The glass may be vesicular or non-
vesicular and contains mineral fragments and Fe-Ni blebs (Figure b).

b

| Pink sub-calcic augites and pigeonites derived mostly from local mare basalts

% are the most common mineral clasts, occurring as angular grains which rarely
display shock features. Angular plagioclase clasts are common, some with
flame textures; rare maskelynite clasts are also present.

Basaltic fragments (up to 1.5 mm) are the predominant 1ithic clast type in
10060 (Figure c). Ophitic and subophitic textures similar to basalts 10020
and 10044 respectively are most common, followed by fine and medium-grained
intersertal textures similar to basalts 10049 and 10017. The basaltic clasts
often contain pore spaces in the form of angular voids enclosed by silicate
minerals. Anorthositic clasts, generally less than 0.6 mm across, are
observed but are not a common constituent. They are characterized by sub-
rounded plagioclase grains which meet at 120° angles. Clasts (from 0.2 mm

to 1.0 mm across) of poikilitic, impact-melt rock similar to 76015 are observed
in section 10060,39 (Figure d). They are characterized by matrices of inter-
; Yocking pigeonite oikocrysts hosting plagioclase grains. Clasts similar

b to the granulitic impactite 79215 were observed by Wood et al. (1970) but are
not observed in section 10060,39.

s ey T T T T

References: Agrell et al. (1970); Wood et al. (1970); Cameron (1970); Chao
et al. (1971); Phinney et al. (1976).
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Figure 100560a.

Figure 10060b.

Figure 10060c.

Fi gure 10060d.

Typical view of 10060; transmitted light.

Debris-laden heterogeneous glass clast; transmitted light.
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Basalt clast; transmitted light.

+

Poikilitic, impact-melt rock clast; transmitt
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12013- A unique lunar breccia with a "granitic" composition. Several hypotheses
including 1iquid immiscibility have been suggested for the differentiation
of the two main 1ithologies (1igh§ and gark grey breccias). The rock

7sr/8

contains the most highly evolved Sr of any lunar material.

‘:;'I;HH:HH ||||,m| |||||||||
4 'S 6 7 8

Sample 12013 is a light-grey angular rock (4x3x2 cm) with dark patches. Neither
its location or orientation on the lunar surface is known.

" nu'nu un||m nm'uu un'uw
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12013 BLACK AND WHITE BRECCIA

Sample 12013 is a black and white breccia characterized by three distinct
lithologies: 1) light-grey breccia, 2) dark-grey breccia and 3) felsite
(Figure a). The black and white appearance of the breccia is the result of
different mineral assemblages in each of the three lithologies: the light-
grey breccia is dominated by pyroxene and plagioclase and encloses rare
patches and stringers of felsite; the dark-grey lithology is also composed
of plagioclase and pyroxene but contains abundant opaque mineral grains; the
felsite consists of intergrowths of quartz and potassium feldspar. Vesicles
(0.05-0.15 nm) and vugs (up to 0.5 mm) occur in the dark-grey breccia and in
the felsite, Only rare, irregularly shaped vugs (0.15 mmg are observed in
the 1ight-grey breccia.

It is evident from the photograph of the cut slab of sample 12013 that
boundary relationships between the three lithclogies are complex. In hand
specimen the felsite occurs as almost equidimensional patches distributed
throughout the 1ight-grey breccia. The combination of these two lithologies
(1ight-grey breccia and felsite) comprises the largest percentage of the rock
and encloses irregularly shaped patches and streaks or schlieren of dark-grey
breccia. In some areas,however, patches of felsite occur within the dark-grey
breccia. Characteristics of each lithology are presented below.

Light-grey breccia

The 1ight-grey breccia is characterized by a granoblastic matrix displaying
equigranular grains of plagioclase and pyroxene; interstices are filled with
potassium feldspar (Figure b). The matrix is heterogeneous with variations in
grain size and mineral proportions occurring throughout the sample. Rounded
plagioclase and pyroxene grains typically do not exceed 0.05 mm across and

the average size is 0,02 and 0.03 mm across. Rare oikocrysts of pyroxene

(0.1 mm) enclose plagioclase grains. Irregularly shaped blebs (up to 0.2 mm)
azd blades (0.05-0,10 mm) of ilmenite are randomly distributed throughout

the matrix.

The mineral clast population is seriate and is dominated by plagioclase and
pyroxene with less commonly occurring ilmenite. Clasts of olivine, described
by Drake et al. (1970), were not observed in section 12013,6. Plagioclase
clasts (up to 0.4 mm in length) are subangular to angular and typically lack
deformation or recrystallization features. Some grains appear clouded due to
minute inclusions of opaque minerals. Rare clasts of plagioclase display
recrystallization features; several clasts display undulatory extinctien.
Clasts of pyroxene are typically subangular (up to 0.2 mm) and clouded by
sub-micron size opaque mineral inclusions. Opaque mineral clasts are rounded
and irregularly shaped and do not exceed 0.2 mm in section 12013,6. Ilmenite
is the most common opaque phase; troilite occurs rarely throughout the sample.
Lithic clasts in section 12013,6 are typically basaltic and display ophitic
and subophitic textures. Rare anorthositic lithic clasts are also observed,
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12013,6 Lt-grey breccia
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12013 .20mm.
Figure 12013a. Typical view of 12013; transmitted light.

Figure 12013b. Typical matrix of light-grey breccia; reflected light, dark-
grey, plagioclase; light-grey, mafic; white, Fe-Ni metal;
black, vugs and plucked areas.

Figure 12013c. Typical matrix of dark-grey breccia; reflected 1ight. Color
key same as (b).

Figure 12013d. Tridymite grain in vug; transmitted light.



r‘ TR WY TV TR T

12013 53

Dark-grey breccia

The dark-grey breccia is characterized by a fine-grained granoblastic matrix
of plagioclase, pyroxene and ilmenite which hosts mineral and lithic clasts
(Figure c). The size distribution of matrix minerals and mineral and lithic
clasts is distinctly bimodal. Matrix plagioclase and pyroxene grains are
typically 6 to 10 um and ilmenite rarely exceeds 2 um, Mineral ard lithic
clasts range from 0.05 to 0.6 mm. Vesicles up to 0.5 mm are common in the
dark-grey lithology. The visicles are commonly partially or completely
surrounded by patches of felsite. The mineral clast population is dominated
by subangular tn angular plagioclase (as in the light-grey breccia) but the
porportion of plagioclase to pyroxene is much higher than in the light-grey
breccia. Plagioclase clasts in the dark-grey breccia are also larger (up to
0.6 mm) than in the light-grey breccia. They are typically unfractured and
undeformed although rare clasts display fine recrystallization features.
; Clasts of angular pyroxene do not exceed 0.2 mm and are also undeformed.

; Rare pyroxene clasts consist of aggregates of recrystallized grains. Fine

| exsolution lamellae are common in most pyroxene clasts. Irregularly shaped

clasts of ilmenite (up to 0.2 mm) are present but are relatively uncommon,

One large subrounded grain of tridymite 0.4 mm across was observed in section

12013,6 (Figure d); minerals present in trace abundances include apatite,

whitlockite and zircon (Drake et al. 1970).

Lithic fragments in the dark breccia 1ithology in section 12013,6 are typically
; granoblastic and have mineral assemblages which resemble the light-grey
breccia. The patches occur at the edge of section 12013,6 making it impossible
to determine if the patches are clasts or portions of the light-grey breccia.
Anorthositic fragments reported by Drake et al. (1970)are not present in

section 12013,6,

Felsite

The felsite lithology is characterized by intergrowths of quartz and potassium
feldspar; quartz typically occurs as acicular needles (up to 0.3 mm long)
forming a network of interconnected crystals (Figure e). Iterstices are
filled with potassium feldspar. Both the quartz and potassium feldspar are
clouded with numerous opaque inclusions. Pyroxene is randomly distributed
throughout the felsite as irregularly shaped grains (0.1-0.2 mm) or as
elongated blades up to 1.0 mm in length, Ilmenite typically occurs as blades
0.1 mm long although some irregularly shaped grains (0.1-0.2 mm) are present.
Troilite is relatively common, occurring as 10-20 um blebs scattered throughout
the felsite; Fe-Ni metal is rarely found in association with the troilite.
Minerals present in trace amounts include apatite, whitlockite, zircon and
chromian ulvospinel,
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Figure 12013e. Felsite; transmitted light (crossed polarizers).
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Discussion

Textural relationships in sample 12013 suggest that the felsite and the dark-
grey breccia matrix crystallized from co-existing immiscible melts. High

REE and P concentrations in the dark-grey breccia matrix and high K, Ba and

Rb concentrations in the felsite are possibly due to silicate liquid
immiscibility (Quick et al. 1977). However, although the major element
chemistry data for both lithologies is compatible with a silicate Tiquid
immiscibility relationship, some aspects of the REE chemistry are inconsistent
with that relationship.

Quick et al, (1977) propose the following 2 models to explain the origin of
sample 12013: 1) The dark-grey breccia melt and the felsite melt were
preduced by an impact event which completely melted genetically-related

rocks and mixed them with ciastic debris to form the 1ight-grey breccia and
the dark-grey breccia. (Quick et al. suggest an impact into a differentiated
basaltic intrusion with late-stage granophyres). 2) The felsite melt and the
dark-grey breccia melt were produced in an impact event which partially
melted two genetically-unrelated rocks.

References: Drake et al., (1970); James (1970); Quick et al. (1977).

Age Data: Light-1ithology
Rb-Sr isochron - 3.99:+0.05; Ig, - 0.7085 (Lunatic Asylum, 1970)
Dark-1ithology
Model Igy - 0.7001 at 4.0 AE (Lunatic Asylum, 1970)
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Sample 12034 was collected on the northwest rim of Head Crater from the bottom
of a 15 cm trench dug by astronauts Conrad and Bean.
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12034 DARK-MATRIX BRECCIA

Sample 12034 is a fragmental matrix breccia similar in appearance to the
Apollo 11 fragmental matrix breccias but with a much lower porosity. It
consists of a variety of glass, mineral and lTithic clasts contained in a
matrix of brown glass fragments and comminuted debris (Figure a). The texture
is seriate with fragments ranging in size from the Timit of resolution up to
2.0 millimeters. Brown glass fragments dominate the less than 0,05 millimeter
size fraction. Waters et al. (1971) noted the stratified nature of sample
12034 which can best be observed at lTow magnifications in reflected light
(Figure b).

The glass-clast population in sample 12034 is extremely diverse, ranging from
colorless, pale green, yellow or orange homogeneous glass to partially to
completely devitrified glass clasts, some with included mineral grains.
Orange glass is characteristically devitrified and, except for the smaller
clasts (<0.20 mm), commonly contains mineral debris. Subrounded to rounded
fragments of maskelynite and devitrified maskelynite occur commonly as
inclusions in the large (>0.60 mm) devitrified glass clasts. Devitrification
features in glass clasts take the form of variolitic clusters of plagioclase
needles and more commonly axiolitic intergrowths of tightly packed plagio-
clase and pyroxene crystals.

Lithic clasts display a more restricted range of types; the most commonly
occurring are basalts and dark-matrix breccias. Several clasts of ophitic
basalt were observed together with clasts which display vitrophyric textures.
Clasts of cataclastic anorthosite (similar to 60025) are relatively common;
many contain grains that are partially or completely maskelynitized. Clasts
of dark-matrix breccia are relatively common; they are most easily observed in
reflected 1ight where very subtle differences between the clast itself and
the host breccia are apparent. Waters et al. (1971) note the presence of
lithic clasts of anorthositic gabbro although none were observed in section
12034,33 which was studied here.

References: Waters et al. (1971); Chao et al. (1971); Phinney et al. (1976).
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Figure 12034a.

Typical view of 12034; transmitted light.

Figure 12034b.

Same view as (a); reflected light.
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14063- One of a small number of highly feldspathic breccias from Apollo 14.

Sample 14063 is a very light-grey subangular to subrounded rock (1.5x1.7x1.2 cm)
collected at Station C1.

Figure 14063a. Typical view of 14063; transmitted light.

Figure 14063b. O0livine breccia; transmitted light.
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14063 LIGHT-MATRIX BRECCIA

Sample 14063 is a complex light-matrix breccia characterized by several dis-
tinct 1ithologic units, each differing in texture and/or composition (Figure
a). Steele and Smith (1976) describe six units in section 14063,14, four of
which are recognized in section 14063,13 used in this study. The four units
include 1) medium-grained olivine breccia (Figure b), 2) noritic breccia con-
taining lithic clasts with approximately 70% lath-shaped plagioclase (0.05 mm)
and 30% poikilitic pyroxene (Figure c), 3) a glassy unit which appears to be
intrusive into the noritic breccia (Figure d) and 4) a polymict breccia
(Figure e).

The polymict breccia comprises the largest area in section 14063,13 and is
characterized by mineral clasts of plagioclase, pyroxene, spinel, olivine and
opaques together with lithic clasts of dark-matrix breccia and noritic breccia
(equivalent to clasts in unit 2); several devitrified glass clasts are
observed. The matrix consists of <39um mineral and lithic debris with only
minor amounts of glass. The unit has a seriate texture with components
ranging in size from the 1imit of resolution up to 1.30 mm. Pore space occurs
as irregularly shaped vugs up to 2.0 mm across and as small intergranular
voids which are most easily observed in reflected light at high magnification.
Plagioclase, the most common mineral clast type, is characterized by subrounded
to angular clasts which commonly display fracturing; rare clasts display
undulatory extinction. Pyroxene clasts (up to 0.40 mm) are typically angular,
display fracturing and some have exsolution lamellae. Spinel clasts, up to
0.15 mm, are relatively uncommon although their size and pink color make them
very conspicuous. Ilmenite occurs randomly as angular grains (up to 0.10 mm)
and Fe-Ni metal occurs as 5-10 um blebs scattered throughout the matrix.
Clasts of dark matrix breccia up to 0.5 mm occur commonly in this unit and
typically display rounded or ovoid shapes. Noritic breccia clasts (up to

0.5 mm) are also present but occur less commonly than the dark-matrix clasts.
Finally, clasts of partially to completely devitrified orarnge-brown glass
(0.50 mm) are relatively common. Most glass clasts contain mineral debris.

The noritic breccia is the second most dominant 1ithology in section 14063,13.
It is characterized by abundant lithic clasts of noritic breccia (up to 2.5

mm across) together with rare clasts of dark-matrix breccia in a matrix
dominated by single mineral clasts and lithic debris derived from the noritic
breccias. Boundary relationships between the noritic breccia and the polymict
breccia are locally sharp but may also be gradational (Figure f).

The glassy unit (which appears to be intrusive into the noritic breccia) is
compositionally indistinct from the noritic breccia. It is fine grained and
glassy, contains few clasts >0.03 mm and at higher magnification (400X) is
observed to contain abundant 5 um blebs of ilmenite. One large (0.50 mm)
shocked and partially melted clast of plagioclase (Figure d) is enclosed
within the unit.

The olivine breccia is characterized by an almost monomict assembiage of
angular olivine grains (up to 0.40 mm across). The largest grains are crushed
and many grains in the 0.10 mm size range display fractures. Angular plagio-
clase grains (typically 0.10 mm and less with rare 0.30 mm grains)
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Figure 14063c. Poikilitic noritic breccia; reflected 1ight. Dark-grey,

plagioclase; light-grey, mafic; white, ilmenite.

Figure 14063d. Vitric intrusive unit with enclosed partially melted

Figure 14063e.

Figure 14063f.
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plagioclase clast; transmitted 1ight.

Typical polymict breccia with enclosed dark matrix breccia
clasts; transmitted light.

Gradational bhoundary between noritic breccia and polymict
breccia: tr: smitted 1ight.
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comprise approximately 5% of the breccia; most grains are fractured. Rare
grains of chromite (0.05 mm) occur randomly throughout the breccia.

References: Warner (1972); Quaide and Wrigley (1972); Steele and Smith (1976).
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14082- A highly feldspathic Apollo 14 breccia.

AARARRARAANANNNGANE

Sample 14082 is a very light-grey blocky to slightly slabby rock (6.0x3.6x2.0 cm

collected at Station (1.

Figure 14082a.

Figure 14082b.

1 Rl SRS
ATy '

14082 owv ¢ a

Typical view of 14082; transmitted light.

Same view as (a); reflected light.
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14082 LIGHT-MATRIX BRECCIA

Sample 14082 is a light-matrix breccia with a relatively well-mixed matrix,
although some sections appear to consist of monomict zones. In general the
breccia is polymict and porous, and consists mainly of mineral clasts and
small 1ithic clasts (Figure a). Two sections, 14082,7 and 14082,12 were
investigated to illustrate the somewhat variable nature of the sample.

Section 14082,7 displays the most homogeneous matrix and widest variety of
ciasts. It is characterized by a seriate texture, with materials ranging in
size from the 1imit of resolution up to 0.3 mm. The matrix (material <39 um)
consists of plagioclase, pyroxene, olivine and opaque mineral grains, together
with patches of colorless glass. The extremely porous nature of the matrix

-is best illustrated by a reflected 1ight photomicrograph (Figure b).

Plagioclase, the most common mineral clast type, is present as subangular to
subrounded <lasts (up to 0.30 mm). Fracturing is uncommon and only rare

clasts display undulatory extinction. Pyroxene and olivine clasts are sub-
angular to subrounded (up to 0.3 mm). Rare clasts display lamellae; however,
none of the spectacular exsolution features described by Ryder and Bower (1976)
were observed in the sections investigated by the author. Rare, irregularly
shaped clasts of ilmenite (up to 0.1 mm) are present. Micron-size blebs of
Mg-c~inel and Fe-Ni metal are present in the matrix.

A variety of 1ithic clasts are present in section 14082,7. Several vitric
matrix breccias (up to 1.0 mm) are characterized by mineral and lithic debris
in a dark brown glassy matrix (Figure c). Two impact-melt breccias with
poikilitic textures (Figure d) and several clasts with basaltic textures
similar to the high-alumina mare basalt clasts described by Ryder and Bower
(1976a) were also observed.

Section 14082,12 is distinguishable from 14082,7 in that it is nearly monomict
and contains a much more restricted lithic clast population. The texture is
seriate with material ranging in size from the 1imit of resolution up to 2.0
mm. The section is dominated by angular plagionlase grains, most of which

are fractured; rare clasts display undulatory extinction. Clasts of angular,
fractured pyroxene are present but are much less abundant than the plagioclase.

The 1ithic clast population is dominated by poikilitic textured impactites
which contain plagioclase laths (.05-.10 mm) enclosed in pyroxene oikocrysts
together with clasts of angular plagioclase (up to 0.3 mm). Two clasts of
vitric-matrix breccia are present (0.15 mm) and are characterized by mineral
and lithic debris in a dark brown glassy matrix.

References: Ryder and Rower (1976a}.
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Figure 14082c. Vitric matrix breccia clast; transmitted 1ight.
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Figure 14082d. Poikilitic impact-melt clast in 14082; transmitted light.
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14301- A typical Apolio 14 "soil" breccia.

Sample 14301 is a medium grey subrounied rock (12.5x12.0x8.0 cm) collected
at Station GI.
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14301 DARK-MATRIX BRECCIA

Sample 14301 is a fragmental-matrix breccia characterized by abundant lithic
clasts (v50%), many of which are larger than one millimeter (Figure a). The
matrix consists of a complex mixture of mineral and lithic fragments together
with fragments of homogeneous and heterogeneous brown glass (Figure b). The
texture of the sample is seriate with fragments ranging in size from the

limit of resolution up to 5 millimeters. SEM studies by Phinney et al. (1976)
show that the matrix of sample 14301 contains approximately 10% porosity
which typically exists as intergranular pore space.

The glass clast population in 14301,78 is dominated by heterogeneous orange-
brown glass which contains mineral debris. The clasts are

typically angular and range in size from 0.04 millimeters to 1.5 millimeters,
Clasts of partially to completely devitrified orange-brown glass are relatively
common but they rarely exceed 0.1 millimeter in size, Homogeneous angular
clasts of colorless and orange-brown glass also occur throughout the matrix.

The mineral clast population in 14301,78 consists of approximately equal
percentages of plagioclase and pyroxene, together with randomly occurring
opaque mineral clasts. Plagioclase clasts (up to 0.25 mm) are subangular to
angular and are typically unfractured. Rare clasts display devitrification
features. Clasts of pyroxene (up to 0.20 mm) typically display a more
fractured appearance than plagioclase and range in shape from angular to
sub-rounded. Opaque mineral clasts are rounded or ovoid in shape (up to
oéls‘mmg and are typically ilmenite although rare clasts of troilite are also
observed.,

The Tithic clast population in section 14301,78 is extremely diverse consisting
of both crystalline and fragmental breccia clast types as well as basaltic and
granulitic textures. Crystalline matrix breccias are the most abundant clast
type and typically display matrices characterized by granular to lath-shaped
plagioclase, anhedral to subhedral pyroxene and scattered ilmenite (Figure c);
vesicles "r vugs are typically present. . less abundant crystalline breccia
type (equivalent to the equant-textured group 5 of Warner, 1972) is
characterized by a matrix of interlockins equant grains of plagioclase and
pyroxene (6-10 microns) with scattered disseminated blebs of ilmenite
microns). Granulitic clasts are the second most abundant lithic type in
section 14301,78. One large (4.5 mm) dunite clast (Figure d) consists of
polygonalized olivine; a second, possibly related clast (2.6 mm), consists

of polygonalized olivine and devitrified plagioclase. Several smaller (0.25
mm) clasts of cataclastic anorthosite are also observed in section 14301,78.
Fragmental-matrix breccia clasts are relatively uncommon although one iu.rge
(0.20 mm) fragmental-matrix clast is observed. The clast was coated by
orange-brown debris-laden glass, similar to the heterogeneous orange-brown
glass found as discrete clasts. Finally, basaltic clasts constitute a
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Figure 14301c.

Figure 14301d.

Figure 14301a. Typical view of 14301; transmitted light.

Figure 14301b. Typical view of matrix; reflected light.

o
R

Crysta1ling matrix breccia clast; reflected light. Dark-
grey, plagiolcase; light-grey, pyroxene; white, ilmenite.

Dunite clast with polygonalized olivine; transmitted 1ight
(crossed polarizers).
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small percentage of the lithic clast population irn 14301,78. The clasts are
typically mare basalts with ophitic textures, although one small (0.3 mm)
vitrophyric basalt is also present.

References: Warner (1972); King et al., (1972); Simonds et al. (1977).
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14304- A clast-rich, KREEP-rich, impact-melt breccia from Apollo 14 which

is texturally and compositionally unique from rocks collected at
other landing sites.

Sample 14304 is a 1light-grey subangular rock (20x11x10 cm) with clasts which
was collected near Station h during the firs. extra-vehicular activity (EVA)
period.

14304 20mv, BERa

Figure 14304a. Tynical view of 14304; transmitted 1ight.

Figure 14304b. Typical view of matrix; reflected Tight.
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14304 CLAST-RICH IMPACT-MELT BRECCIA

Sample 14204 is a clast-richi impact-melt breccia characterized by a wide range

of mineral and 1ithic clast types in a recrystallized matrix (Figure a).

Warner (1972) describes the rock as a high-grade group 6 breccia with an

"equant to euhedral” matrix texture (Figure b). At low magnification (in
transmitted 1ight) the matrix displays irreqularly shaped patches of lighter

and darker areas (Figure a), the result of fewer and larger 1lmenite grains in the
coarser-grained lighter areas as compared with more abundant and smalqer

ilmenite grains in the finer-grained darker areas. Pore space is present in

the form of micron-size intergranular voids and irregularly-shaped vugs up to
0.75 mm across. No glass clasts are present.

The mineral clast population in section 14304,14 is dominated by subangular to
subrounded clasts of plagioclase (up to 0.70 mm) which commonly display frac-
turing, undulatory extinction and granulation along fractures. Several
plagioclase clasts display devitrification features; rare plagioclase clasts
display overgrowth rims. Mafic mineral clasts, predominantly pyroxene
together with minor olivine, occur as angular to rounded clasts (up to 0.30
mm? which are typically highly fractured and may rarely contain abuncant
opaque mineral inclusions. Opaque mineral clasts include irregularly shaped
grains of ilmenite (0.10 mm and less), amoeboid-shaped troilite grains (0.10
mm and less) and micron-size blebs of Fe-Ni metal scattered randomly through-
out the matrix.

Lithic clasts in section 14304,14 are commonly the crystalline matrix breccia
type with equant and euhedral textures similar to the matrix in which they
are enclosed; the crystalline breccia clasts may be more easily observed in
reflected 1ight (Figuresc & d). Both highland and mare basalt types are
present as clasts (up to 1.0 mm) in section 14304,14 and are typically char-
acterized by ophitic textures. One clast (0.80 mm) consisting of poikilitic
pyroxene enclosing lath (.05-.10 mm) and tablet-shaped (.03 mm) plagioclase
grains was also observed (Figuve e).

References: Chao et al. (1972); Warner (1972); Simonds et al. (1977).
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Figure 14304c. Crystalline matrix breccia clast; reflected light.

Figure 14304d. Crystalline matrix breccia clast; reflected light.

Figure 14304e. Poikilitic pyroxene clast enclosing lath- and tablet-shaped
plagioclase; transmitted light (crossed polarizers)

.
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14310- A clast-free, KREEP-rich impact-melt breccia from Apollo 14 charac-
terized by a higher A1203 content than most other Apollo 14 breccias.

Sample 14310 is a medium grey blocky rock (19x14x11 cm) collected at Station G
during the second extravehicular activity period.
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14310 CLAST-FREE IMPACT-MELT BRECCIA

Sample 14310 is a clast-free impact-melt breccia characterized by subophitic
intergrowths of lath-shaped plagioclase and anhedral to subhedral pyroxene

rains with interstitial glassy mesvostasis (Figure a). Relatively large
?0.5-1.0 mm), blocky subhedral crystals of plagioclase are randomly scattered
throughout the sample and are interpreted as clasts. Local finer-grained
patches of needle-like plagioclase laths are intergrown with the surrounding
igneous-textured matrix and possibly represent thermal, compositional or
nucleation heterogeneities. Pore space is present as angular voids enclosed
by silicate minerals.

Plagioclase is the dominant mineral phase in sample 14310 and occurs in

several forms. Lath-shaped plagioclase (.05x1.0 mm), intergrown with pyroxene,
rarely displays albite or carlsbad twinning. The laths commonly project into
the cuter rims of pyroxene crystals and smaller plagioclase laths (.015x2.0mm)
may be pirtially enclosed within them. Needle-1ike plagioclase crystals
(0.1-0.2 mm) occur in clusters with interstitial anhedral pyroxene (0.1 mm)

and complex mesostasis in the local finer-grained areas. Finally, blocky,
nearly equant crystals of plagioclase (0.5-1.0 mm) (Figure b) are randomly
scattered throughout the sample. The crystals, interpreted as clasts, lack
twinning and commonly have smaller plagioclase laths projecting into them.

The mesostasis is a complex mixture of pale brown to colorless glass, skeletal
or fibrous ilmenite crystals (Figure c), fine-grained pyroxenes, chromian
ulvospinel, troilite, apatite, whitlockite and schreibersite. Rare plates of
tranquillityite are also observed in the mesostasis.

References: James (1973); Bence and Papike (1972); Ridley et al. (1972);
Meyer (1977); Simcnds et al. (1977).

Age Data: Rb-Sr isochron -3.93:.04; Ispr -.70035 (Compston et al. 1971)
-3.94+.03; Igp -.70041 (Mark et al. 1974).
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Figure 14310a. Typical view of 14310; transmitted 1light.

Figure 14310b. Plagioclase clast in 14310; transmitted light
(crossed polarizers).

Figure 14310c. Mesostasis in 14310; reflected light.
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14311- A clast-rich impact-melt breccia with a composition (KREEP) and texture
unique to breccias at the Apollo 14 site. The rock contains abundant

post crystallization fractures due to a post formational cratering
event.

Sample 14311 is a grey stibrounded rock (20.0x12.5x5.1 cm) collected at
Station Dg during the second EVA-period.
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14311 CLAST-RICH IMPACT-MELT BRECCIA

. Sample 14311 is a clast-rich impact-melt breccia characterized by a wide

| range of mineral and lithic clast types in an annealed crystalline matrix
(Figure a). The matrix, (Group 5 of Warner 1972) which is composed of equant
grains of plagioclase, pyroxene and ilmenite (5-10 um) (Figure b), contains
lighter colored regions (when viewed at low magnification in transmitted 1ight)
also composed of equant grains of the same mineral types except with a coarser
grain size (10-15 um) and fewer grains of ilmenite. Pore space is common and
typically occurs as irregularly shaped vugs scattered throughout the sample;
intergranular pore space is extremely rare. No glass clasts are observed.

Mineral clasts in sample 14311 include plagioclase, pyroxene, olivine and il-
menite. Pink spinel clasts discussed by Warner (1972) are not observed in
section 14311,94, Plagioclase clasts are subangular to subrounded with a ser-
jate size distribution and typically display rims characterized by a hicher
concentration of ilmenite grains than the surrounding matrix (Figure c). Many
clasts are highly fractured and display twin lamellae offset by the fractures.
Some clasts are recrystallized and consist of aggregates of plagioclase grains.
Unfractured clasts may be inclusion-free or may appear clouded due to micron-
. size bilebs of opaque minerals. Pyroxene clasts are typically angular and are
also clouded due to minute opaque minerals. Rare clasts display fine exso-

; lution lamellae. Olivine clasts in sample 14311 are most commonly subrounded
; and display complex reaction rims as described by Cameron and rFisher (1974).

! The rims commonly consist of a mantle of elongate pyroxene grains, blebs of
ilmenite and interstitial plagioclase surrounded by the equigranular matrix
texture (Figure d).

e e o

« Lithic clasts in sample 14311 are predominantly anorthositic and basaltic.

| Basalt clasts are typically fractured and may display signs of recrystalliza-
i tion. Clasts of anorthosite may be either unfractured or cataclastic. Rare
clasts (1.0 mm) of a subophitic-poikilitic impact melt breccia similar to the
Ago]]o 17 Station 6 boulder samples are observed in section 14311,94 (Figure
e).

References: Warner (1972); Cameron and Fisher (1974); Simonds et al. (1977).
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Figure 14311a.
Figure 14311b.

Figure 14311c.

Figure 14311d.

Typical view of 14311; transmitted light.

Typical matrix of 14311; reflected light. Dark-grey,
plagioclase; light-grey, pyroxene: white. ilmenite.

.- o . ..‘
Lo

o

14311 o.1omm
Plagioclase clast with reaction rim; note higher concen-
tration of ilmenite (whit | in rim as compared to

surrounding matrix; reflectec 1ight  Dark-grey,
plagioclase; light-grey, pyroxene; white, ilmenite.

Olivine clast with reaction rim; transmitted light.
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Figure 14317e. Poikilitic impact-melt clast; reflected light.
: Color key as in (c).
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14312- A clast-rich, KREEP-rich impact-melt breccia from Apollo 14 which is
texturally and compositionally unique from rocks collected at other
landing sites; the breccia has a smaller proportion of clasts than
similar Apollo 14 breccias.

Sample 14312 is a medium-grey rock (9x6x4 cm), partially coated with glass,
which was collected from the top of "Turtle Rock at Station H.

Figure 14312a. Typical view of 14312; transmitted Tight.

Figure 14312b. Typical matrix in 14312; reflected 1ight. Dark-grey,
plagioclase; light-grey, pyroxene; white, ilmenite.
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14312 CLAST-RICH IMPACT-MELT BRECCIA

Sample 14312 is a clast-rich impact-melt breccia characterized by a fine-
grained heterogeneous matrix which contains a wide variety of mineral and
lithic clasts ?Fi ure a). No glass clasts are observed. The matrix, des-
cribed by Warner ?1972) as a high grade, Group 7-type texture, displays equant
to euhedral grains of plagioclase, mafic minerals and ilmenite (Figure b).
The grain size of the matrix varies from 5 to 30 um throughout the sample.
Several regions of the matrix display an igneous sheath-l1ike texture (similar
to Warner's Group 8) which consist of plagioclase laths (30 um) and mafic
minerals (20-30 um) (Figure c). Ryder and Bower (1976d) have interpreted the
igneous matrix texture as a melt phase which is intrusive into the more
commonly occurring euhedral tuxture. Alternatively it may represent a zone
which is less clast-rich than the surrounding matrix. In section 14312,15
(the only section available to us which contained both the igneous and the
euhedral matrix textures) boundary relationships between the two textures

are not distinct. In some cases where boundary relationships are more
distinct, the igneous texture appear as isolated blob-1ike patches within
the euhedral matrix and do not display intrusive relationships. Ryder and

; Bower (1976d), noting the circular patches of igneous matrix in section

; 14312,14, suggest that they possibly represent molten globules which were in-
corporated into the breccia during assembly and subsequently injected into

; other regions of the matrix.

; Mineral clasts in sample 14312 are abundant and consist dominantly of plagio-

: clase with minor pyroxene, olivine, pink spinel, ilmenite and Fe-Ni metal.
Most clasts display interdigitating contacts with the matrix; fracturing is
common among all of the mineral clast types. Plagioclase clasts are typically

» subrounded and subangular (.04-2.0 mm) and commonly display undulatory extinc-

‘ tion. Several clasts display partial maskelynitization and rare grains of

| maskelynite are observed in section 14312,15. Clasts of devitrified maskelyv-

! nite are common throughout the sample. Aggregates of polygonal plagioclase

! grains are also observed in section 14312,15. High and low-calcium pyroxene
clasts are subangutar (up to 1.5 mm) and are also typically fractured.
Pyroxene clasts with exsolution 1lamellae and/or twin lamellae are observed

; in section 14312,17 but are relatively rare. Olivine clasts are subangular

1 to subrounded and commonly display overgrowth rims. Other olivine clasts

} occur as fractured, polygonalized aggregates. Ilmenite occurs as irregularly
shaped clasts typically less than 0.2 mm. Troilite also occurs as irregularly

shaped and rounded grains up to 0.1 mm; blebs of Fe-Ni metal occur in asso-

ciation with the troilite clasts.

Dark-colored crystalline matrix breccias, with matrix textures similar to the
euhedral matrix of 14312, are the most common 1lithic clast type in section

: 14312,15 (Figure d). Because the breccias have a texture similar to the

{ matrix, boundary relationships are often indistinct and may best be viewed in
reflected light. One large (3.5 mm across) ophitic textured basalt clast is
present in section 1431Z,15 and is characterized (in order of abundance) by
plagioclase, clinopyroxene, olivine and opaques. Several small basalt clasts
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14312 0.05MM ,

Figure 14312c.

Figure 14312d.

Matrix with igneous sheath-like texture; reflected 1ight.
Color key same as in (b).

Crystalline matrix breccia clast in 14312; transmitted light.

Figure 14312e.

Figure 14312f.

Poikilitic pyroxene clast enclosing plagioclase tablets;
transmitted 1ight.

"Light-matrix" breccia clast in 14312; transmitted 1ight.
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Figure 14312g.

?0

Coarse grained lithic troctolite clast in 14312; transmitted

light.
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(with ophitic textures) are observed in section 14312,15. Poikilitic norite
clasts are a relatively common clast type in sample 14312 and consist of
stubby (.05-.1 mm) plagioclase grains enclosed within poikilitic pyroxene
grains (Figure e). Several clasts which resemble the Apollo 14 "white rocks"
are observed in section 14312,17 (Figure f). They are characteristically
coarser-grainged than the dark-matrix crystalline breccias discusced earlier
and contain colorless glass in the matrix. Coarse-grained ANT (anorthosite-
troctolite-norite) clasts are common in sample 14312. Anorthosite clasts
are characterized by plagioclase grains meeting at 120° triple junctions.
Troctolie clasts display plagioclase and olivine grains with smooth boundary
relationships (Figure g).

References: Warner (1972); Ryder and Bower (1976d); Simonds et al. (1977).
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14321- A clast-rich, impact-melt breccia from Apollo 14 which contains

abundant aluminous mare basalt clasts. It is the third largest rock
returned by the Apollo missions.

ot

Sample 14321 is a light-grey subrounded rock (23x23x17 cm) with clasts which
was collected at Station C1 from the hummocky ejecta blanket of Cone crater.
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0 14321 CLAST-RICH IMPACT-MELT BHECCIA

Sample 14321 is a complex impact-melt breccia consisting of dark-grey micro-
breccia clasts (microbreccia III of Grieve et al. 1975) and basaltic clasts
bonded together by a 1ight matrix which also hosts single mineral clasts of
plagioclase, pyroxene, olivine, ilmenite spinel, Fe-metal, and troilite (Fig-
ure a). The 1ight matrix displays a detrital texture (Figure b) although
isolated patches in the matrix display an equant to euhedral texture suggest-
ing at least some annealing. SEM studies by Phinney et al. (1976) show that
sample 14321 contains about 15-20% porosity in the form of 10-20 um vugs.

.The dark-grey microbreccia constitutes the largest proportion of clastic
material in the light-matrix and displays a matrix with a sail and pepper
appearance characterized by equant to euhedral laths of plagioclase, pyiroxene
and ilmenite (Figure c).

Single crystal clasts in the dark-grey breccia include plagioclase, pyroxene,
olivine, ilmenite and Fe-metal together with trace abundances of troilite,
apatite, whitlockite and zircon. Plagioclase and pyroxene are typically sub-
angular to rounded and display & seriate size distribution; pyroxene clasts
up to 2.0 mm and plagioclase clasts up to 3.5 mm are observed. Pyroxene
clasts commcnly display exsolution lamellae and reaction rims. Reaction rims
are also present on many of the piagioclase clasis and twin-lamellae are often
offset by fractures. Clasts of devitrified plagioclase glass are relatively
g common. Rounded clasts of olivine (up to 1.6 mm) are observed and are
relatively common, many are zoned. Clasts of ilmenite (up to 1.0 mm) are the
4 most typical opaque mineral type and are commonly angular or irregularly
shaped. Anhedral troilite grains occur randomly in the dark-grey microbreccia
and typically are 0.05 mm or less. Fe-Ni metal as micron size blebs may occur
in association with troilite; discrete metal blebs also occur scattered
throughout the microbreccia and as inclusions in olivine clasts.

Lithic clasts in the dark-grey microbreccia ar: dominated by noritic micro-
breccias and by rounded clasts (typically 1.5 mm) of norite which dispiay
granulitic and poikilitic textures (Figure d). The noritic microbreccias are
characterized by plagioclase and pyroxene clasts in a matrix of plagioclase
b and pyroxene with minor amounts of olivine, ilmenite, Fe-metal and troilite;
| some clasts display a crystallized matrix with poikilitic pyroxene (Figure e).
These noritic microbreccias are typically enclosed within clast-poor micro-
breccia unit (microbreccia 2 of Grieve et al. 1975) which is mineralogically
and chemically identical to the dark-grey breccia except for the lower clast
content. The clast-poor rims are interpreted as accretionary structures by
Grieve et al. 1975 and frequently rim both mineral clasts as well as lithic
clasts in 14321 (Figure f). The rounded norite clasts are probably the un-
fractured equivalent of the noritic microbreccias. Other lithic clasts in
the dark microbreccia include devitrified brown glass fragments with rhyolitic
compositions.
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Figure 14321a. Typical view of 14321; transmitted light.

Figure 14321b. Detrital textured light matrix; reflected 1ight._ Darg-
grey, plagioclase; light-grey, pyroxene; white, ilmenite.

»' ,é e 5 .
sg' \
75 - -r“ i
R
L i S .L}
o § 3
PYX
L3
R, )
PLAG
.‘#w ‘ "’" ‘zj ::‘ ;*0. B g

1

g
4321 o0.05Mwm, ety C

14321 o.10mm

| SR

Figure 14321c. Dark-grey microbreccia clast; reflected 1ight. Color key

as in (b).

Figure 14321d. Poikilitic norite clast; transmitted light.



Figure 14321e. Poikilitic noritic microbreccia; transmitted Tght.

Figure 14321f. Devitrified maskelynite clast with clast-poor rim;
transmitted light.
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14321 osom, 55 6.8 14321 psoun
Figure 14321g. Basalt clast; transmitted light.

Figure 14321h. Basalt clast; transmitted light.
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Mare-1ike basaltic clasts are present both in the Tight matrix and the dark
microbreccia clasts of 14321. They display a variety of textures ranging
from glassy and vitrophyric to fine to medium grained ophitic basalts (Fig-
ures gandh). Clasts up to 3.0 mm in size are observed. Pyroxene grains
are typically strongly zoned with pigeonite cores and augite rims.

??fer?nces: Duncan et al. (1975b); Grieve et al. (1975). Phinney et aJ.
976



15086- A typical Apollo 15 "soil" breccia.

98



15086 99

15086 DARK-MATRIX BRECCIA

Sample 15086 is a fragmental-matrix breccia characterized by diverse popula-
tions of mineral, glass and lithic clasts set in a matrix of 1ight to dark
brown glass fragments and comminuted mineral and Tithic debris (Figures a and
b). The texture is seriate with material ranging in size from the limit of
resolution up to 3.0 millimeters. Pore space is common and occurs in the
form of irregularly shaped vugs 0.4 to 2.5 millimeters across.

One of the most striking features of 15086 is the abundance of homogeneous
glass spheres (0.05-0.2 mm), most of which are pale green in color and have
compositions comparable to the Apollo 15 green glasses (Drake and Klein,
1973). Spheres of colorless and yellow glass are present, together with
spheres of devitrified glass which appear hrown to opaque in transmitted
Tight. Angular clasts of homogeneous glass are also common and include pale
green, yeillow, orange and colorless types. As with the spheres, compositions
of pale green fragments are similar to the Apollo 15 sample 15426 while
colorless glasses typically have an anorthositic composition (Drake and Klein,
1973). Devitrified angular fragments are common and occur as brown to opaque
clasts composed of clusters of tightly intergrown pyroxene needles and glass
(Figure c). Heterogeneous glass clasty, i 2. fragments containing schlieren
and/or mineral and lithic debris, are relatively uncommon but constitute

some of the larger glass clasts (0.60-1.60 mm) in section 15086,39 (Figure d).

Mineral clasts include pyroxene, plagioclase and minor occurrences of olivine.
Most clasts display some evidence of shock; fracturing of the clasts is common
and many clasts display undulatory extinction. Rare clasts of ilmenite and
troilite are observec although pyroxene and plagioclase constitute the largest
percentage of mineral clasts.

Lithic clasts in sample 15086 are dominated by basaltic rocks with a variety
of textures. Vitrophyric varieties are present and consist of euhedral
phenocrysts of pyroxene (up to 2.0 mm) set in an opaque matrix of brown glass
(Figure e). A second type of basalt is characterized by subhedral to anhedral
pyroxene grains and subhedral plagioclase laths with interstitial brown glass
(Figure f). A third texture consists of euhedral phe~ncrysts of pyroxene
(2.0x0.4 mm) with complex zoning trends in a matrix .i acicular intergrowths
of plagioclase and pyroxene with minor ilmenite. Many clasts are totally
recrystallized and consist of plumose intergrowths of plagioclase, pyroxene
and ilmenite. Drake and Klein (1973) reported textures of this type with
KREEP compositions. Less commonly occurring fragments in 15086,39 include
one poikilitic plagioclase basalt and rare anorthositic gabbros. No breccia
fragments were observed in section 15086,39.

References: Drake and Klein (1973).
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Figure 15086a. Typical view of 15086; transmitted 1ight.

Figure 15086b. Same view as (a); reflected light.
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1508 0. 1MM w.\;,&'j- »C 15086
Figure 15086c. Devitrified glass clast; transmitted light.

Figure 15086d. Heterogeneous glass clast with schlieren;
transmitted 1ight.
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Figure 15086e. Vitrophyric basalt clast; transmitted light.

Figure 15086f. Basalt clast; transmitted light.
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15405~ A clast-bearing impact-melt breccia from Apollo 15 which contains
several granite-like clasts.

Sample 15405 is a dark-grey angular rock with light-grey clasts which was
chipped from a 3 meter boulder at Station 6A.
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156405 CLAST-BEARING IMPACT-MELT BRECCIA

Sample 15405 is a clast-bearing impact-melt rock characterized by an igneous-
textured matrix of tightly intergrown plagioclase, pyroxene and ilmenite laths
(Figure a). Mineral clasts of plagioclase and pyroxene, together with lithic
clasts of granite, KREEP-rich quartz-monzodiorite and KREEP-basalts occur
throughout the sample (Figure b). No glass clasts are observed. Irregularly
shaped vugs (up to 0.15 mm) and curving, sometimes interconnecting fractures
(up to 0.2 mm wide) are relatively common.

Plagirzlase and pyroxene are the dominant mineral clast types, ranging in size
from 0.05 mm up to 0.35 mm; clasts less than 0.05 mm are rare. Plagioclase
clasts are angular and typically display fracturing and/or undulatory
extinction. Several plagioclase clasts display twin lamellae; in some cases
the lamellae are offset by the fractures. Pyroxene clasts are also angular
and fractured and are less abundant than plagioclase clasts.

The 1ithic clast populaiion is characterized by the conspicuous absence of
breccia fragments and rocks representative of the ANT-suite. It is restricted
to granites, lithophile trace element rich quartz monzodiorites, and Apollo 15
type KREEP basalts. Granitic clasts are coarse-grained (>1.0 mm) and are
typically extensively crushed (Figure c). They consist dominantly of untwinned
plagioclase, clinopyroxene, a silica mineral (cristcbalite?), and K-Feldspar.
[Tmenite, Fe-metal, trcilite, chromite and phosphate are present in minor
amounts. Plagioclase grains commonly enclose opaques and irregular patches of
silica glass. Discrete grains of silica (cristobalite?) display perlitic
fractures and also occur intimately intergrown with K-Feldspar. Ilmenite is
present as irregular grains and angular forms (up to 1.0 mm). Irregular’y
shaped grains typically occur in association with a Si-K-rich glassy mesosta-
sis containing both euhedral pyroxenes and phosphate. Fe-metal and troilite
occur in the mesostasis and as blebs enclosed within pyroxene. Chromite is
rare as are phosphate phases which typically occur only in association with
ilmenite.

Clasts of lithophile trace element rich quartz monzodicrite (up to 1.0 cm)
are characterized by coarse-grained (>1.0 mm) basaltic textures which lack
mesostasis and are typically fractured. Plagioclase grains are typically
lath-shaped and twinned; pyroxene grains are typically subrounded to rounded,
unzoned and display exsolution lamellae. The clasts also contain a silica
mineral, possibly cristobalite, together with K-~“eldspar, ilmenite and whit-
lockite. K-Feldspar and silica are typically intergrown; silica may occur as
discreet grains although individual grains of K-Feldspar are rare. Ilmenite
is present as relatively large grains which sometimes display wormy inter-
growths with K-Feldspar and silica. Fe-metal blebs, probably with a Tow Ni
content, occur enclosed within pyroxene grains.

Basaltic-textured KREEP-rich clasts are abundant in sample 15405 and commonly
display subophitic textures ranging in grain size from coarse (plagioclase
and pyroxene grains (>1.0 mm) (Figure d) to fine grains (less than 100 um).
Plagioclase occurs as twinned laths and blocky grains; some laths are slightly
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Figure 15405a. Typ1ca1 matrix in 15405; reflected light. Dark-grey,
p'agioclase; light-grey, pyroxene, white, ilmenite.

Figure 15405b. Typical view of 15405; transmitted light.

1 5405 o.50mm,

Figure 15405c. Fractured granitic clast in 15405; transmitted 1ight

Figure 15405d. Basaltic KREEP clast; transmitted light.
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curved. Pyroxenes are consistently zoned from Enggq Wo2 through pigeonites to
augites; some grains contain optically identifiable orthopyroxene cores.
Interstitial phases include cristobalite(?), ilmenite and a phosphate mineral
and brown glass. Fe-metal and troilite blebs are extremely rare.

Fragments of olivine vitrophyre described by Ryder and Bower (1976b) were not
observed in the sections studied by the author.

References: Ryder and Bower (1976b and c); Ryder (1976).
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15445- A clast-rich melt breccia enclosing a unique suite of pristine
products of early lunar fractionation.

Sample 15445 is a dark-grey to black angular rock with white clasts which was
collected inside the rim of Spur crater at Station 7.
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15445 BLACK AND WHITE BRECCIA

Sample 15445 is a black and white breccia characterized by a matrix (black)

of anhedral interlocking grains of plagioclase and mafic minerals which hosts

mineral clasts and a variety of crushed lithic clasts (white). Interfingering
zones of matrix material and lithic clasts give the sample an overall foliated
appearance (Figure a), the result of differences in mineralogical and chemical
composition and porosity. Porosity occurs in the matrix as rare vesicles and

in some 1ithic clasts as sub-micron size intergranular voids.

At high magnification (400X) in reflected light the matrix is observed to
contain 10-20 um size anhedral grains of plagioclase, olivine, and pink spinel
(Figure b). Ilmenite and Fe-metal occur as irregularly shaped grains or blebs
typically less than 10 um in size. Subhedral olivine grains (up to 60 um in
Tength) (Figure c) occur randomly throughout the matrix and suggest the
presence of at least some silicate melt.

Mineral clasts in sample 15445 consist predominantly of subangular to sub-
rounded grains of plagioclase and olivine. Many clasts display overgrowth
rims (up to 20 um) and have interdigitating contacts with the matrix. Rela-
tively large blebs of Fe-Ni metal (up to 0.15 mm) occur randomly throughout
the matrix.

Sample 15445 contains a wide variety of lithic clasts, all of which are not
represented in any single thin section. Section 15445,135 contains a spinel
troctolite clast together with a brecciated norite clast. The spinel trocto-
lite clast (Figure d) is extremely crushed and porous relative to the
enclosing matrix. The texture is seriate with constituents ranging in size
up to 0.20 mm. The clast is characterized by subangular and subrounded grains
of olivine (50%), plagioclase (30%) and pink spinel (20%). Spinel is present
as aggregates of grains (0.20 mm and less) which occur as stringers through-
out the clast. The brecciated norite clast also displays a seriate texture
with constituents ranging in size up to 0.40 mm (Figure e). The clast is
more porous than the matrix but has been annzaled to some extent. The clast
contains angular to subrounded grains of plagioclase (65%)and orthopyroxene
(35%) with only trace amounts of silica and Fe-metal. Fe-metal forms a
continuous vein-like network around some pyroxene clasts. Other clasts in
section 15445,135 include a 1.0 mm dunite clast composed of polygonal olivine
grains (0.05-0.08 mm) and a 3.5 mm cataclastic anorthosite clast.

Section 15445,139 is composed entirely of a brecciated anorthosite clast
(Figure f) similar to that observed in the previous section {135). The grain
size is seriate with some uncrushed plagioclase grains up to 0.25 mm in size.
The Targest grains display twinning and offset twin lamellae; many of the
grains display undulatory extinction. The clast is composed predominantly of
plagioclase (95%) but contains pyroxene (5%) in isolated regions. Opaque
minerals and Fe-Ni metal occur in trace amounts only.
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Figure 15445a. Typical view of 15445; transmitted light.

Figure 15445b, Typigal matrix in 15445; reflected 1ight. Dark-grey,
plagioclase; light-grey, olivine; white, ilmenite.

: R \n,.igl" !gj‘Q
15445 p.05mv, 15445 oz, d

Figure 15445c. Euhedral olivine grains in matrix; reflected light.
Color key same as in (b).

Figure 15445d. Spinel-troctolite clast; transmitted light.



Figure 15445e. Brecciated norite clast; transmitted 1ight.

Figure 15445f. Brecciated anorthosite clast; transmitted light.
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Finally, section 15445,144 consists of a spinel-troctolite clast petro-
graphically similar to clast A in section 15445,135. It consists of a seriate
size assemblage of olivine. plagioclase, and pink-spinel minerals up to 0.10
mm. Fe-Ni metal is present as micron-size blebs. The clast is crushed and
intimately mixed with matrix material.

Ryder and Bower (1977) propose that sample 15445 is a fragment of an impact-
melt sheet produced by the Imbrium impact event.

References: Ryder and Bower (1977); Ridley et al. (1973).
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60255- A

typical Apollo 16 "soil" breccia.

Sample 60255 is a 1i
collected near the lunar
of the Tunar-module-Y foo

ght-grey subangular rock (12x9x7 cm)

module approximately
tpad.

believed to have been
30 to 40 meters south to southwest
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60255 DARK-MATRIX BRECCIA

Sample 60255 is a fragmental matrix breccia characterized by distinct differ-
ences between thin sections including variations in clast size, content of
matrix glass, and degree of fracturing. The most extreme variations can be
illustrated by the sections 60255,71 and 60255,14 (Figures a and b respec-
tively). Section 60255,71 is characterized by a dense matrix of dark brown
glass which is almost totally unresolvable at high power (400X). The size
distribution of clasts is seriate. In contrast, section 60255,14 is charac-
terized by light brown glass in the matrix, fragments of which are resolv ble
at high power. The clast size distribution is also seriate, but clasts
smaller than 100 ym are most abundant. Clasts in this section display more
pervasive fracturing than those in 60255,71.

Porosity in both sections is limited to micron to millimeter-size fractures
which may best be viewed in reflected tight. Rare irregularly shaped vugs
occur along some fractures. Section 60255,71 displays a more extensive frac-
pure pattern than 60255,14; rare veinlets are filled with debris and
schlieren-streaked glass.

Glass clasts are common to both sections and are typically angular, colorless
to pale-green, homogeneous and schlieren-free. Both sections display rare
colorless glass spheres (up to 1.5 mm), several divitrified spheres (typically
.10 mm in diameter) and debris-filled orange glass clasts (typically less

than 0.2 mm). Homogeneous orange glass clasts are rare; one clast 0.35 mm
Tong was observed in section 60255,14.

Plagioclase is the mcst common mineral clast in both sections. Most clasts
are subangular or equant and display fracturing, undulatory extinction, and
partial to complete maskelynitization; devitrification features are rare.
Pyroxene is the second most abundant mineral clast and typically occupies

a more restricted size range in both sections. Clasts in section 60255,71
are commonly 0.2 mm and less and in section 60255,14 are typically 0.1 mm
and less. A1l clasts show fracturing to some extent; clasts in section
60255,14 are more extensively fractured. Subangular to equant morphologies
are common to both sections. Opaque grains account for less than 1 percent
of the clast population in each section. Fe-Ni metal and troilite occur as
rounded and irregular blebs up to 0.20 mm ranging downward in size to sub-
micron size blebs. ITmenite and ulvospinel occur as rounded clasts which
are typically micron sized although rare clasts up to 0.15 mm are present.
Both sections display rare Fe-Ni metal grains with "rust" stains on adjacent
silicate minerals.

Lithic clasts dominate the clast population, accounting for at least 5C percent
of the clasts in each of the two sections. Crushed gabbroic anorthosites
(Figure c) and poikilitic textured impact melt rocks (Figure d) are the most
common types; section 60255,14 displays an 8.0 mm clast of poikilitic impact-
melt rock. Anorthositic clasts are common to both sections and are similar to

il
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Figure 60255a. Typical view of 60255,71; transmitted light.
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Figure 60255b. Typical view of 60255,14; transmitted light.
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Figure 60255c. Crushed gabbroic anorthosite clast; transmitted light.

Figure 60255d. Poikilitic impact-melt clast; transmitted light.
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cataclastic anorthosite 60025 described in the companion volume. Some of the
anorthosite clasts may represent shocked plagioclase clasts. Basalt clasts,
with vitrophyric, poikilitic and ophitic textures are present ranging in size
up to 1.3 mm; section 60255,71 contains a 4.5 mm basaltic clast with a sub-
ophitic texture.
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61015- An Apollo 16 black and white breccia which consists of cataclastic,
chemically pristine anorthosite which has been invaded by a
pyroxene-rich impact-melt.

Sample 61015 is a medium-grey, angular to subrounded vock (15x12x10 cm) which
was collected at Station 1, on the rim of Flag crater, 10 meters south of

Plum crater.
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61015 BLACK AND WHITE BRECCIA

Sample 61015 is a black and white breccia characterized by cataclastic
anorthosite and clast-bearing impact melt; the impact melt 1ithology appears

to have intruded the anorthositic lithology (Figure a). The igneous-textured
impact melt Tithology is characterized by clusters of tightly intergrown
plagioclase laths (.025-.075 mm) and subhedral to anhedral pyroxene crystals
(up to 0.5 mm) in a dark glassy mesostasis (Figure b). Plagioclase is the
most common mineral clast type in the impact melt lithology and occurs as
subbangular clasts up to 0,15 mm across. Pyroxene is present as angular clasts
up to 0.15 mm across but occurs only as & minor clast type (<10% of mineral
clast population).

The cataclastic lithology is composed of cataclastic anorthosite displaying
extremely fractured and deforied plagioclase grains. The largest grains are
up to 1.0 mm across but most grains octupy the 0.3 to 0.5 mm size range.

Rare anhedral mafic grains (up to 0.5 mm) occur interstitial to plagioclase
grains.

A glass coating of flow-banded brown glass (in transmitted light) covers a
portion of sample 61015, Figure c shows a glass vein which intersects both
the anorthositic and the impact melt 1ithology.
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Figure 61015a. Typical view of 61015; transmitted light.

Figure 61015b. Impact-melt matrix; transmitted light.
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Figure 61015c. Flow-banded brown glass; transmitted light.
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61016- A clast-bearing impact-melt breccia consisting of a large clast of
cataclastic, chemically pristine anorthosite in a highly feldspathic
impact-melt. The rock is the largest single lunar sample returned
by the Apollo missions.
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Sample 61016 is a medium to dark-grey rounded rock (28x18x16) cm) with white
clasts which was collected at Station 1, 1400 meters west of the lunar module
near the rim of Plum crater.
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61016 CLAST-BEARING IMPACT-MELT BRECCIA

Sample 61016 is a clast-bearing impact-melt breccia characterized by a 15 cm
diameter, fractured, almost totally maskelynitized clast of anorthosite en-
closed by a fine-grained impact-melt breccia (Figure a). Both lithologies
are present in section 61016,218 which was selected for this study. The
anorthositic clast comprises approximately 1/3 of the area of the thin sec-
tion. Although the clast is highly fractured individual grains remain in
their original orientations. The fracture pattern consists of parallel frac-
tures. Except for isolated anisotropic patches, the clast is completely
maskelynitized.

The impact-melt lithology (which comprises the final 2/3 of tie section) is
characterized by subangular to rounded clasts of partially to completely
maskelynitized plagioclase (up to 2.0 mm across) together with glassy and
partially devitrified lithic clasts (Figure b) contained in a subophitic
matrix of tabular (.10-.20 mm) and lath-shaped (2.0x0.05 mm) maskelynite in-
tergrown with subhedral to euhedral (0.10 mm) olivine crystals (Figure c). A
dark-brown glassy mesostasis fills interstices and at higher magnification
(400x) in reflected light is observed to contain needles of ilmenite (.015-
.026 mm) (Figure d).

A coating of vesicular glass with an anorthositic-noritic composition forms a
crust around a portion of sample 61016 (see labeled "mug" photograph). In
thin section the glass is light brown and displays devitrification features
(Figure e). Veins of brown and black glass extend from the melt crust and
penetrate into the impact melt.

References: Steele and Smith (1973); Stoffler et al. (1975)
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Figure 61016a. Typical view of 61016; transmitted light.

Figure 61016b. Devitrified 1ithic clast; transmitted light.

RV AN
Figure 61016c. Impact-melt lithology; transmitted 1light.
Figure 61016d. Ilmenite needles in mesostasis of impact-melt lithology;

reflected 1ight. Dark-grey, plagioclase; light-grey,
olivine; white, ilmenite.
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Figure 61016e. Devitrified brown glass melt crust; transmitted light.
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62235- A clast-bearing impact-melt breccia of noritic composition (often
called low K KREEP). The rock has a poikilitic texture which is
characteristic of many clast-bearing melt rocks of the same compo-
sition from all landing sites.

Sample 62235 is a grey angular rock (8x7x5.5 cm) collected at Station 2,
550 meters west of the lunar module, just north of Spook crater.
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62235 CLAST-BEARING IMPACT-MELT BRECCIA

Sample 62235 is a clast-bearing impact-melt breccia characterized predominantly
by coalescing oikocrysts of orthopyroxene enclosing laths of plagioclase.
Poikilitic ilmenite (with included plagioclase tablets) and small amounts of
phosphate, Fe-Ni metal, troilite and K-spar are concentracted between the
oikocrysts (Figure a). Mineral clasts, dominantly plagioclase, together with
less commonly occurring lithic clasts wre scattered randomly thrcughout the
sample. Irregularly shaped vugs (up to 0.6 mm across) are relatively common;
spherical vesicles (typically 0.25 mm and less) are also present but are

less abundant.

Orthopyroxene oikocrysts typically display rectangular outlines (up to 2.0 mm
in length) although rounded and irregular shapes are also present (Figure b),
Oikocrysts are commonly observed to have grown around spherical vesicles.
Plagioclase is present as anhedral or tablet-shaped crystals (.01-.05 mm) and
as lath-shaped crystals (.05-.10 mm) both enclosed within orthopyroxene
oikocrysts and located between the o‘kocrysts (Figure c).

ITmenitc is the dominant opaque phase, occurring as poikilitic crystals (up

to 0.4 mm),typically with silicate inclusions, which occur interstitial to
orthopyroxene oikocrysts. Rare, needle-like laths of ilmenite (.025-.05 mm)
are presenl and occur in association with poikilitic ilmenite grains. Troilite
and Fe-Ni metal occur as micron size blebs or irregularly shaped crystals

also in association with poililitic ilmenite. Irregularly shaped troilite
grains may be as large as 0.25 mm.

Plagioclase clasts are present as subangular to subrounded grains (up to 0.6 mm)
enclosed within and interstitial to orthopyroxene oikocrysts. The clasts are
typically unfractured and rarely display twinning.

Lithic clasts constitute a small percentage (typically <10%) of the total
clast population in sample 62235, Basaltic clasts are present and typically
display ophitic textures. One small (0.40 mm across) anorthositic clast was
observed in section 62235,39 (Figure d); no breccia clasts were observed.

References: Warner et al. (1973); Crawford and Hollister (1974).
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Figure 62235a. Typical view of 62235; transmitted 1ight.

Figure 6223°h. Pyroxene oikocrysts; transmitted 1ight (crossed polarizers).

PYROXENE

1,;“%

y
62235 0.10MM (K
Figure 62235c. Plagioclase chadacrysts (dark-grey) enclosed within

pyroxene oikocrysts (light-grey); reflected light.

62235 0.05MM

Figure 62235d. Anorthosite clast in 62235; transmitted light (crossed
polarizers).
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62295- A clast-free impact-melt breccia of unique composition and mode
which is enriched in spinel and olivine relative to most highland
rocks.

Sample 62295 is a grey angular rock (8.5x6.5x4 cm) collected at Station 2.
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62295 CLAST-BEARING IMPACT-MELT BRECCIA

Sample 62295 is a clast-hearing impact-melt breccia characterized by randomly
oriented plagioclase laths (up to 0.8 mm) intergrown with skeletal olivine
crystals resulting in a variolitic texture (Figure a); interstices are filled
with a complex mesostasis. Relict clasts of plagioclase (up to 1.0 mm), rare
lithic clasts and conspicuous barred olivine-l1ike bodies are scattered random-
1y throughout the section. Octahedra of colorless spinel (.03-.05 mm) commonly
occur within plagioclase laths. Pore space is relatively common, occurring

as irregularly shaped vugs (up to 0.8 mm), as angular voids enclosed by sili-
cate minerals, and as spherical vesicles up to 0.4 mm in diameter.

Mesostasis areas in sample 62295 are characterized by complex intergrowths of
feathery to acicular crystals of plagioclase, olivine and ilmenite together
with brown glass (Figure b). Sub-micron size blebs of Fe-metal and troilite
occur randomly in the mesostasis. Mesostasis material commonly occurs as
cores within skeletal olivine and plagioclase crystals.

The chondrule —1ike bodies (up to 1.2 mm in diameter in 62295,75) are charac-
terized by crystals of barred olivine with interstitial stringers of plagio-
clase separating the individual bars (Figure c). The plagioclase stringers
rarely penetrate into the outer 20 um of the chondrule, giving the appearance
of a narrow olivine rim around the outer edge of the sphere. The entire
crystal of olivine goes to extinction at the same time and several adjoining
stringers of plagioclase also go to extinction simultaneously.

Relict clasts of plagioclase (up to 1.0 mm) occur only rarely in sample 62295.
They are typically subangular and fractured; lamellae are present and possibly
represent some episode of shock.

One lithic clast, a partially annealed breccia clast, was observed in section
62295,75. It is characterized by a seriate texture with clasts of plagioclase
up to 0.45 mm. The clast lacks distinct boundary relations with the matrix.

References: Brown et al. (1973); Weiblen and Roedder (1973); Hodges and
Kushiro (1973); Agrell et al. (1973).
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Figure 62295a. Typical view of 62295; transmitted light.

Figure 62295b. Mesostasis in 62295; reflected light. Dark-grey,
plagioclase; light-grey, olivine; white, ilmenite.
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Figure 62295c. Olivine chondrule in 62295; transmitted light.
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65015- A clast-bearing impact-melt breccia with a noritic (low K KREEP)
composition and a poikilitic texture.

Sampie 65015 is a grey angular rock (19x9x10 cm) collected at Station 5,

probably within 15 meters of the Lunar Roving Vehicle during station activities.
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65015 CLAST-BEARING IMPACT-MELT BRECCIA

Sample 65015 is a clast-bearing impact-melt breccia characterized by pigeonite
oikocrysts (up to 0.6 mm) which enclose numerous chadacrysts of feldspar, to-
gether with less commonly occurring chadacrysts of mafic silicates (Figure a).
The inter-oikocryst region is characterized by mineral relics of feldspar,
olivine, spinel and opaques together with K-rich feldspar, silica and phos-
phate phases. Vugs also tend to be concentrated in the inter-oikocryst re-
gions.

Interlocking oikocrysts of pigeonite dominate section 65015,91. They typical-
ly display rounded outlines although some are distinctly rectangular in shape.
Plagioclase is the most common type of chadacryst enclosed within the oiko-
crysts and occurs as euhedral equant crystals.04-.05 mm in size (Figure b).
Chadacrysts of mafic minerals are rare; when present they occur as subrounded
to rounded grains less than .05 mm across.

Inter-oikocryst regions are characterized by lath-shaped plagioclase (up to
0.06 mm.), granular olivine (up to .06 mm) and accessory ilmenite, Fe-Ni
metal,troilite, phosphates and K-bearing phases. The ilmenite (0.05-0.2 mm)
typically occurs as discontinuous chains composed of poikilitic plates of
ilmenite (Figure c); most grains display rutile and ulvospinel lamellae. Fe-
Ni metal and troilite occur as rounded and irregular blebs scattered through-
out the inter-oikocryst regions. Round pores and irregular shaped vugs

(0.4 to 1.0 mm) occur in the inter-oikecryst area, although the pores

are not restricted to this region. Several oikocrysts were observed

to have grown.around the pores.

Subrounded grains of plagioclase (up to 1.5 mm) are the most abundant relic
clast type in sample 65015,91. Many grains display twin lamellae and several
grains are characterized by devitrification features. Overgrowth rims with
compositions closely matching the matrix typically surround each plagioclase
clast. Rare relics of plagioclase are enclosed within the pigeonite oiko-
crysts. Relics of angular olivine occur exclusively in the inter-oikocryst
regions. Grains of pink-spinel are also observed in the inter-oikocrysts
region and are possibly relict.

Several lithic clasts are observed in section 65015,91. One was character-

ized by lath-shaped plagioclase with only rare equant olivine grains.Another

clast was anorthositic and displayed rounded grains of plagioclase meeting at
1200 triple junctions.

References : Simonds et al. (1973); Albee et al. (1973); Warner et al.(1973).

Age Data: Rb-Sr isechron - 3.93+.02; I.. - .69920%3 (Papanastassiou and

Wasserburg, 1972b) >
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Figure 65015a. Typical view of 65015; transmitted light.

Figure 65015b. Plagioclase chadacrysts (dark-grey) in pyroxene oikocrysts
(1ight-grey); reflected 1ight.

65015

Figure 65015c. Poikilitic ilmenite (white) in 65015; reflected light;
color key same as in (b).

0.05 MM,



67015- One of a number
matrix found in

TR R R R R T R IR TR TR
B R R R R R TR T IT—————=~,

139

of friable polymict breccias with a highly fe1dspa2h1c
abundance on the rim of North Ray crater. Ar39/Ar40

analyses of these rocks suggest that they may be older than other

Sample 67015 is a whi
at Station 11, probab
Y footpad.

Figure 67015a. Typic

Figure 67015b. Same

te to light grey sub-angular rock (13x10x8 cm) collected
1y 30 to 40 meters south-southwest of the lunar module
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al view of 67015; transmitted light.

view as (a); reflected light.
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67015 LIGHT-MATRIX BRECCIA

Sample 67015 is a light-matrix brectia characterized by mineral, lithic and
glass clasts contained ir an unrecrystallized matrix of mineral grains,

( predominantly plagioclase, with minor mafic and opaque minerals) and orange-
brown glass (Figures a and b); spinel grains are observed in the matrix of
67015,74 but are relatively rare. The texture of 67015 is seriate with com-
ponents ranging in size from the limit of resolution up to 1.5 mm. Sample
67015 is porous, with micron-size intergranular voids which may be viewed in
reflected 1ight at a high (400X) magnification. Pore space is also present

as non-connecting veinlets (10-25 um wide) and as rare,irregularly shaped vugs.

Glass clasts in section 67015,74 are rare and are typically orange-brown in
color and partially to completely devitrified. One large (0.45 mm across)
round clast was observed which contained anhedral crystals of plagioclase and
pyroxene (Figure c).

The mineral clast population is dominated by plagioclase clasts (95%). They
range from rounded to angular in outline (up to 0.6 mm) and are typically un-
fractured and lack mineral inclusions. No overgrowths are observed around
clasts. Rare clasts display interdigitating contacts with the matrix but the
majority of clasts display sharp contacts. Mafic clasts are commonly rounded
in outline and rarely exceed 0.50 mm in size; they are typically unfractured.
ITmenite is the most commonly occurring opaque mineral clast and is present
as irregularly shaped grains typically less than 25 um in size. Two small
(Tess than 30 um) pink spinel grains were observed in section 67015,74.

The most commen 1ithic clast type in section 67015,74 is a crystalline matrix
breccia characterized by mineral clasts (mainly plagioclase) and only rare
lithic clasts in a matrix of plagioclase and pyroxene grains (Figure d).
Vitric matrix breccia clasts are also common and typically occur as rounded

or ovoid shapes (Figure e) up to 1.4 mm across. Clasts of anorthosite (0.3 mm)
are present and are characterized by polygonal grains of plagioclase which
meet at 120° triple junctions. Several large (0.9 mm) clasts of cataclastic
anorthosite and gabbroic anorthosite are also present. One clast in section
67015,74 with 0.20 mm plagioclase and minor interstitial mafic grains and
mesostasis is similar to sample 68415 (described in this volume). A unique
clast in section 67015,74 is composed of plagioclase and opaque mineral laths,
together with anhedral mafic grains contained in a brown glassy matrix.

References: Warner et al. (1973); Delano et al. (1973).
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Figure 67015c.

Figure 67015d.

Glass clast with enclosed plagioclase and pyroxene grains;
transmitted light.

Crystalline matrix breccia in 67015; transmitted 1ight.

Figure 67015e. Vitric matrix breccia clast; transmitted light.
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68415- A clast-free impact-melt breccia with a more feldspathic composition
than most impact melts. The 3.84 AE crystallization age is one cof
the youngest for impact-melt rocks from the highlands.

Sample 68415 is a 1ight-grey to white subrounded rock (10x2x3.5 cm) collected
at Station 8 on a bright-ray from South Ray crater. The rock was collected
near two 15 to 20 meter craters, 2.8 kilometers south-southwest of the lunar

module.
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68415 CLAST-FREE IMPACT-MELT BRECCIA

Sample 68415 is a clast-free impact melt breccia with an igneous texture
characterized by randomly oriented plagioclase laths with interstitial olivine
and pyroxene and minor occurrences of opaques, phosphates and granitic glass
(Figure a). Discrete grains of anhedral plagioclase (0.4-1.5 mm) and poly-
crystalline aggregates of anhedral plagioclase grains (up to several milli-
meters occur rarely throughout the sample and are interpreted as xenocrysts).
Pore space is rare; when present it occurs as irregularly shaped voids bounded
by plagioclase grains.

Lath-shaped plagioclase dominates the sample and accounts for approximately
75% of the mode. It is characteristically highly twinned and occurs as sub-
hedral to euhedral laths ranging from 0.10 millimeters to several milli-
meters in length (Figure b); average plagioclase lengths range from 0.20 to
0.40 millimeters. Plagioclase laths are typically normally zoned with com-
positions ranging from Angg to Ans; (Helz and Appleman, 1973). The larger
laths (several mi11imeters§rare]y display reverse zoning. Smaller laths
(0.20-0.40 mm) may be strongly zoned (Angg - Ans7) or may have sodic com-
positions throughouyt.

The large anhedral xenocrysts display poorly-developed twinning which is
commonly distorted or offset by fracturing; many grains display undulatory
extinction. The Xenocrysts have calcic compositions and are virtually un-
zoned.

Interstitial minerals include olivine and pyroxene which occur as anhedral,
irregular grains (0.1 up to 1.0 mm) between plagioclase laths. The grains are
typically discrete with pyroxene and olivine rarely intergrown. Olivine is
never found in association with potassic granitic residual glass. Pyroxene
crystals display complex zoning trends and commonly have orthopyroxene cores
and pigeonite rims. The crystals lack exsolution Tamellae and are typically
fractured.

ITmenite is the most abundant opaque phase in sample 68415 and occurs as irreg-
ularly-shaped grains in association with the residual glass phase. Other
opaques include troilite and Fe-Ni metal which occur intergrown together or as
discrete micron-size blebs in association with the glassy mesostasis. Patches
of residual granitic glass (Figure c) are common and occur interstitial to
plagioclase laths. The glassy patches commonly contain the opaque phases dis-
cussed above together with apatite and Fe-rich pigeonites.

References: Helz and Appleman (1973); Walker et al. (1973); Meyer et al.(1974);
Gancarz et al. (1972)

Age Data: Rb-Sr isochron - 3.84t.qy; I¢.- 7003% 2(Papanastassiou and Wasser-
barg, 1972a)
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68415 _os50mm

Figure 68415a. Typical view of 68415; transmitted 1ight (crossed polarizers).

Figure 68415b. Plagioclase laths in 68415; transmitted 1ight
(crossed polarizers).

Figure 68415c. Mesostasis in matrix; reflected light.
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72315- A clast-bearing impact-melt breccia which is compositionally similar
to rocks from both the North and South Massif at Apollo 17 but which
displays a slightly different texture from other rocks in the suite.
The rocks may have been produced by the Serenitatis impact.

Sample 72315 is a light-grey angular rock (10x5.5x2 cm) collected from a
2 meter boulder on the Tower slopes of South Massif.
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72315 CLAST-BEARING IMPACT-MELT BRECCIA

Sample 72315 is a clast-bearing impact-melt breccia texturally transitional
between the Apollo 17 clast-bearing impact-melts and the Apollo 14 clast-
rich impact-melts. Although plagioclase in the matrix occurs rarely as lath-
shaped grains which may be intergrown with pyroxene to form ophitic-textur-
ed zones, the grains commonly display an anhedral morphology so that an
ophitic texture does not persist throughout the matrix. The matrix texture
is more commonly characterized by a mosaic of anhedral interlocking grains
of plagioclase, pyroxene, and olivine with randomly occurring pooriy-develop-
ed pyroxene oikocrysts (Figure a). Pyroxene oikocrysts rarely exceed 0.2 mm
in length and enclose plagioclase tablets .015-.025 mm in size. Ilmenite is
the dominant opaque phase in the matrix and occurs as irregularly shaped,
embayed crystals (0.1-0.5 mm) with sieve texture (Figure b?. Rutile and ul-
vospinel lamellae and rounded inclusions of armalcolite are commonly observ-
ed in the ilmenite grains. Troilite and native iron occur as aggregates of
micron size blebs in the matrix. Pore space is common in sample 72315 and
occurs as irregularly-shaped vugs (up to 0.6 mm) some of which outlire large
lithic clasts. Isolated areas in the matrix appear to display an alignment
of vugs but the overall sample displays no such alignment.

Mineral clasts in 72315 include plagioclase, olivine, pyroxene, opaques and
rare pink spinel clasts. Plagioclase clasts are typically subangular (up to
0.6 mm) and commonly display features indicative of shock including fractures,
undulatory extinction and anisotropy. Several grains display a flame texture,
possibly the result of maskelynite devitrification. Overgrowth rims (15-

20 um) occur on many of the clasts and may or may not be associated with an
olivine "necklace". 0livine clasts are both angular and rounded ( up to

0.5 mm) and many display zoning. Although most olivine grains are inclusion
free, several display a clouded appearance due to sub-micron size inclusions
of opaques. Clasts of pyroxene are rounded to subrounded (up to 0.2 mm) and
many display rims composed of intergrowths of plagioclase and pyroxene. Many
pyroxene clasts are clouded by sub-micron size inclusions of opaque phases,
typically native iron. Ilmenite occurs as ameboid-shaped grains ( up to

0.4 mm) which may be mineral clasts.

Lithic clasts in sample 72315 are representative of the DANT suite (described
by Benze et al. 1974§ which include dunites, anorthosites, norites and troc-
tolites. Small clasts (0.1-0.2 mm) of anorthosite are relatively common (Fig-
ure ¢) and display subhedral grains of plagioclase which meet at 1200 triple
junctions. One igneous-textured spinel troctolite clast (1.5 mm long) was
observed in section 72315,78. It consists of subhedral to anhedral olivine
grains intergrown with laths of plagioclase. Spinel occurs as aggregates of
pink grains %5-20 um) enclosed within plagioclase grains. The largest lithic
clast in section 72315,78 is a 4.0 mm feldspathic norite with poikilitic py-
roxene (Figure d).

References: Simonds et al. (1978);Wilshire (LPSET,1973); Dymek et al. (1976)
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Figure 72315a. Typical view of 72315; transmitted light.

Figure 72315b. Ilmenite grain with sieve toxture; reflected light.
Dark-grey, plagioclase; light-grey, mafics; white, ilmenite.

o WL
R HL %
P, :

Figure 72315c. Recrystallized plagioclase clast; transmitted light.

Figure 72315d. Feldspathic nortie clast; transmitted light.



151

Sample 76215 is a light-grey angular rock (10.5x8x6 cm) broken from a block
adjacent to and probably spalled from a boulder at Station 6. The boulder
was fourth downhill in a group of five boulders located 10 meters east of the
lunar roving vehicle.
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76215 CLAST-BEARING IMPACT-MELT BRECCIA

Sample 76215 is a clast-bearing impact-melt breccia characterized by two dis-
tinct matrix textures — both poikilitic and ophitic — which display sharp
boundary relationships (Figure a). Over 90% of the matrix is poikilitic
(Figure b) and consists of a network of coalescing pigeonite and augite
oikocrysts (0.5-2.0 mm) which enclose abundant tabular feldspar chadacrysts
(10-30 um). Isolated regions with ophitic textures, similar to but finer-
grained than sample 14310 (included in this publication) occur less commonly
and are interpreted as textural variations within the matrix and not as clasts.
They are characterized by ophitic intergrowths of euhedral plagioclase (0.25-
0.35 mm) and anhedral to subhedral pyroxene (0.20-0.80 mm) (Figure c). Compo-
sitionally the two regions are the same and the mineral chemistries are approx-
imately equivalent. Round, smooth walled vesicles (0.5 mm up to several milli-
meters) are common in the poikilitic regions; vugs with irregular outlines
(typically bounded by feldspar grains) occur between the oikocrysts.

Mineral and lithic clast populations differ between the two textural regions
with the majority of clasts concentrated in the poikilitic region. Plagio-
clase clasts in the poikilitic region are typically unshocked and display 10
um-wide overgrowths (Figure d) with chemical compositions which match matrix
plagioclase grains and differ from the core.

Plagioclase clasts in the ophitic regions are also shock free and have over-
growths up to 30 um thick. In these clasts however the cores of the grains
have compositions which match that of the matrix grains. The only mafic
clasts present in the ophitic region are rare olivine clasts (100 um) with
nearly equant morphologies. Both pyroxene and olivine are present in the
poikilitic regions but pyroxene is rare. O0livine occurs as anhedral grains
typically less than 100 um across although some grains may be as large as
0.45 mm.

Lithic clasts were not observed in the ophitic textured Tithology of sample
76215. Lithic clasts in the poikilitic region include a cm-size anorthosite
clast in section 76215,70 (Figure e) displaying polygonal feldspar grains up
to 2.0 mm across and a smaller (0.3 mm) anorthosite clast with 120° triple
junctions. The dunite clast described by Simonds (1975) was not observed
in any sections of 76215 described by the author.

References: Simonds et al. (1974); Simonds (1975); Onorato et al. (1976).
Age Data: 40Ar-39Ar plateau - 3.94:+.04 (Cadogen and Turner, 1976).
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Figure 76215a. Typical view of 76215 showing two lithologies: poikilitic
(lower left) and subophitic ?upper right); transmitted light.

Figure 76215b. Poikilitic lithology; reflected light. Dark-grey, plagioclase;
light-grey, pyroxene; white, ilmenite.

Figure 76215c. Ophitic lithology; reflected 1ight. Color key same as in (b)

Figure 76215d. Plagioclase clast with overgrowth rim; transmitted light.




Figure 76215e.

Anorthosite clast; transmitted 1ight (crossed polarizers).
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76295- A clast-bearing impact-melt breccia which is compositionally similar
to the other clast-bearing rocks from Apollo 17 believed to be
derived from the Serenitatis impact. The rock comes from the finest-
grained most clast-rich part of Station 6 boulder which forms part
of a cross section through the melt sheet.

Sample 76295 is a light to medium bluish-grey, wedge-shaped rock (10x6x3.5 cm)

which was chipped from the boulder farthest upslope in a group of five boulders
at Station 6.
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76295 CLAST-BEARING IMPACT-MELT BRECCIA

Sample 76295 is a clast-bearing impact-melt breccia distinct from the Apollo
14 clast-rich breccias by its unique matrix texture yet more clast-rich than
Apollo 17 impact-melts with similar matrix textures. It is characterized by
two distinct types of matrix , a blue-grey subophitic region and a tan clast-
rich region which forms discontinuous vein-like masses in the subophitic
matrix ?Figure a). The blue-grey subophitic matrix dominates the sample and
is characterized by subophitic intergrowths of plagioclase (15 um) and mafic
minerals (10-25 um) which include low-calcium pyroxene, augite and olivine
(Figure b). Mafic grains may also completely enclose plagioclase grains.

The tan vein-like regions are typically extremely porous with irregularly
shaped pore spaces enclosed by silicate minerals. Clast abundances for the
vein-Tike regions are about twice as great as for the subophitic matrix
regions (Figure c). Both matrix types contain about equal amounts of plagio-
clase (n50%) but the clast-rich veins lack olivine and contain abundant
augite while the subophitic matrix contains abundant olivine and only minor
augite.

Most mineral clasts in sample 76295 lack shock features although several large
plagioclase clasts (up to 1.2 mm) in the blue-grey subophitic matrix display
devitrification features. Plagioclase mineral clasts in both regions are
typically subrounded to subangular (0.05-1.5 mm) and unfractured; rare plagio-
clase grains contain rounded inclusions of olivine (Figure d). Mafic minerals
include olivine and pyroxene; olivine clasts are restricted to regions of
subophitic matrix. Pyroxene clasts (up to 0.4 mm) are typically angular and
lack zoning. Several large ilmenite grains (up to 0.45 mm) with irregular
shapes are present in the sample and are possibly clasts. Rare rounded clasts
{50 um) of pink spinel occur in the blue-grey subophitic matrix of sample
76295,

Lithic clasts in section 76295,91 examined here included a feldspathic olivine
norite clast at least one centimeter across (Figure e). The clast is charac-
terized by abundant rounded plagioclase grains (0.1-0.8 mm) which have been
shocked and recrystallized. Several smaller clasts (0.3-0.5 mm) of feldspathic
norite with poikilitic pyroxene were also observed.

References: Simonds et al. (1974); Simonds (1975); Onorato et al. (1976).
Age Data: 40Ar-39Ar plateau - 3.95:.04 (Cadogan and Turner, 1976).
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Figure 762935a. Typical view of 76295 showing clast-rich vein; transmitted
light.

Figure 76295b. Typical view of matrix; reflected 1ight. Dark-grey,
plagioclase; light-grey, pyroxene; white, ilmenite.

Figure 76295c. Close up view of clast-rich vein; transmitted light.

Figure 76295d. O0liv. Tusions in plagioclase clast; transmitted light.



Figure 76295e.

Feldspathic olivine norite clast; transmitted light.
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76315~ One of the clast-bearing impact-melt breccias of low K KREEP compo-
sition which is part of the Apollo 17, Station 6 boulcder. It is
intermediate between 76215 and 76295 in clast content and texture.

Sample 76315 is a light-greenish grey and dark grey (two lithologies) rock
(10x12x4.5 cm) which was originaily an inclusion in a vesicular "anorthositic
gabbro" in the second boulder downslope at Station 6.

TR

LIGHT-GREY
CLAST
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76315 CLAST-BEARING IMPACT-MELT BRECCIA

Sample 76315 is a clast-bearing impact-melt breccia (Figure a) characterized
by a micro-poikilitic matrix (Figure b) with pyroxene oikocrysts (up to 100 um)
grading into a fine-grained subophitic matrix (Figure c) which occurs in
isolated patchy regions up to several millimeters in length. Clast abundances
appear to be evenly distributed between the two types of matrix although
several of the subophitic zones are slightly more clast-rich and porous than
the rest and resemble the clast-rich tan veins in sample 76295. Pore space

in sample 76315 takes the form of smooth-walled, round vesicles typically

0.10 mm or less in diameter and as interstitial vugs <.01 mm across.

The mineral clast population is characterized by unshocked grains of plagio-
clase, pyroxene, olivine, and rare grains of pink spinel. Plagioclase clasts
are subrourded to subangular (0.50-0.4 mm) and rare plagioclase clasts display
inclusions of rounded olivine. Pyroxene clasts are angular and anhedral and
commonly fractured; olivine clasts (up to 0.2 mm, are angular and rarely dis-
play zoning. Simonds (1975) reports the occurrence of pink spinel but no
spinel was observed in sections 76315,95 or 76315,97.

The lithic clast population in section 76315,95 is dominated by a portion of
the light-grey clast described by Simonds (1975) whick is characterized by a
seri:t2 size distribution of subangular and subrounded plagioclase grains
witn less abundant pyroxene and olivine. The largest plagioclase grains
(0.8-1.0 mm) typically display olivine necklaces (Figure d) and 50 to 60 um
overgrowths.

Smaller plagioclase grains (0.2-0.4 mm) are commonly characterized by olivine
inclusions. Pyroxene and olivine oikocrysts (up to 1.0 mm) are present.
Troilite and Fe-Ni metal blebs occur throughout the clast. A 1 mm basalt
clast with acicular plagioclase and subhedral olivine was also cbserved in
section 76315,95. Section 76315,97 contains a 2 mm dunite clast

with polygonal olivine grains and a symplectite between several of the grains.
Other lithic clast types noted by Simonds (1975) but not observed in the sec-

tions discussed above include spinel troctolites, crushed troctolites and
crushed anorthosites.

References: Simonds et al. (1974); Simonds (1975); Onorato et al. (1976).

Age Data: 40Ar-39Ar plateau - 3.98+.04 (Turner and Cadogan, 1975;.
Cadogan and Turner, 1976
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76315

Figure 76315a. Typical view of 76315; transmitted light.

Figure 76315b. Micro-poikilitic matrix in 76315; reflected 1light. Dark-
grey plagioclase; 1t-grey, pyroxene; white, ilmenite.

w

Figure 76315c. Fine-grained subophitic matrix; reflected 1ight. Color key
same as (b).

Figure 76315d. Plagioclase clast with olivine necklace; transmitted light
(crossed polarizers).
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77017- One of a group of high grade metamorphosed impact breccias. The

meta-impactite has been subsequently invaded by black vesicular
glass.

Sample 77017 is a light-grey to greenish-grey subrounded rock (17x12.5x9 cm)

collected at Station 7 near the base of North Massif approximately 70 meters
southwest of the Tunar roving vehicle.
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77017 GRANULITIC IMPACTITE

Sample 77017 is a coarse-grained granulitic impactite characterized by plates
of poikilitic augite and pigeonite (up to millimeters across) which enclose
large (up to 1.0 mm) subhedral to euhedral plagioclase grains and subhedral
to rounded grains of olivine (Figure a); rounded olivine grains (.02-.20 mm)
also commonly occur as inclusions within plagioclase grains. Lithic clasts
of anorthosite and troctolite described by McCallum et al. (1974) were not
observed by the author. Numerous zones of more finely comminuted material
occur throughout the sample and are compositionally indistinct from the un-
crushed areas. Section 77017,66 is partially surrounded by a rind (0.10-
0.40 mm wide) of 1ight-brown debris-laden vesicular glass (Figure b). In
Section 77017,72 the brown glass veins also penetrate into the center of the
sample.

Plagioclase grains in 77017 are characteristically highly fractured and dis-
play offset twinning, undulatory extinction and mosaicism. Pyroxene and
olivine are also highly fractured; augite oikocrysts commonly display close-
ly-spaced lamellae of Tow-Ca-pyroxene.

Troilite and Fe-Ni metal are commaun constituents of sample 77017 occurring
both as discreet grains (up to 0.08 mm) as well as in association.

Ilmenite is also quite common and occurs as poikilitic grains (up to 0.8 mm)
which enclose plagioclase and mafic minerals (Figure c).

References: McCallum et al. (1974)
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Figure 77017a. Typical view of 77017; transmitted 1ight.

Figure 77017b. Debris-laden vesicular glass rind; transmitted light.
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Figure 77017c. Poikilitic ilmenite grain; reflected 1ight.
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79135- A typical Apollo 17 "soil" breccia. The restricted locale and
established age of many of its constituents suggest that the
crater associated with its formation is <lkm across.

RAE - g ’
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Sample 79135 is a medium to dark grey angular rock (20x12x10 cm) collected at
Station 9 from a boulder on the southeast rim of Van Serg crater.
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79135 DARK-MATRIX BRECCIA

Sample 79135 is a fragmental matrix breccia characterized by diverse popula-
tions of mineral, lithic and glass clasts in a homogeneous matrix of mineral
debris and partially to completely devitrified opaque glass (Figure a). The
texture is seriate with fragments ranging in size from the limit of resolution
up to 2.0 mm. Porosity in the section is limited to rare fractures and irre-
gularly shaped vugs which account for less than 5 percent of the section.

As with most fragmental matrix breccias, plagioclase dominates the mineral
clast population and is present as subangular and angular clasts (up to 0.5
mm) which display fracturing and undulatory extinction. Mafic mineral clasts
are less abundant than plagioclase clasts. Clinopyroxene is most ccmmon and
occurs as angular fractured clasts up te 0.5 mm; olivine is present only 1in
minor amounts. Opaque mineral clasts are relatively abundant and consist of
a variety of phases. Ilmenite occurs as angular clasts up to 0.25 mm and as
feathery intergrowths in devitrified glasses. Armalcolite is present as
angular clasts up to 0.1 mm. Fe-Ni metal and troilite are present as angular
fragments (0,15 mm) and as biebs in the matri,; ulvospinel is rare.

Glass clasts are the most abundant constituent in sample 79135. Spheres,
fragments of spheres and shards uf homogeneous, undevitrified orange glass up
to 0.3 mm are a conspicuous feature of section 79135,102 (Figure b). Par-
tially devitrified orange glass clasts are abundant and form a gradational
sequence between the undevitrified clasts and the opaque, completely devitri-
fied glass clasts. Schlieren and debris-filled glass "bombs" are common,some
as large as 2.0 mm. Colorless glass spheres and shards (up to 0.4 mm) are
also abundant. A distinctive feature of section 79135,102 is the presence of
"ropy" glasses (Figure c¢) in a variety of culors which commonly contain micro-
1ites and mineral debris.

Basalt clasts (up to 2.0 mm) are quite common and display a variety of tex-
tures including porphyritic, subophitic and ophitic textures (illustrated in
the companion volume). Several clasts of annealed breccia are present
(Figure d). Anorthosite fragments are relatively common, occurring as clasts
up to 1.5 mm; some of the clasts are polygonalized plagioclase.
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79135

Typical view of 79135; transmitted light.

Figure 79135a.

Tvpical view of matrix; reflected 1ight.

Figure 79135b.

"Ropy" glass in 79135; transmitted 1ight.

Figure 79135c.

Annealed crystalline matrix breccia clast; transmitted light.

Figure 79135d.
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79215- A feldspathic impact breccia subjected tu prolenged very high
grade metamorphism.

Sample 79215 is a medium light-grey blocky rock (9x8x7.5 cm) collected at
Station 9 near the southeast flank of the Van Serg crater ejecta blanket.




PR

79215 a4

79215 GRANULITIC IMPACTITE

Sample 79215 is a granulitic impactite, most of which is characterized by a
granoblastic matrix composed of equant anorthite grains (.03-0.1 mm) which
meet at 120° triple junctions with smaller (.01-.02 mm) interstitial grains
of olivine, pyroxene and opaque minerals (Figure a). Local coarser-grained
aggregates of mono- and polycrystalline anorthite, olivine and pyroxene relics
are present together with apatite megacrysts up to 1.5 mm across; rare poly-
mineralic relics are also present.

Single grains of anorthite or aggregates of polygonal grains are the most
abundant reiics. Ancrthite grains (up to 1.5 mm long) typically display twin
! nellae and have distinct boundaries with the matrix. Many grains display
olivine or pyroxene "necklaces" (Figure b) similar to those noted in other
Tunar highland rocks. Polycrystalline relics are characterized by 20-30
micron grains of anorthite which meet at 120° triple junctions. They are
typically larger (up to 3.5 mm) than the monocrystalline varieties and lack
mafic silicate minerals, a feature which easily distinguishes them from the
matrix.

Fine-grained concentrations of polygonalized olivine are rarely observed (Fig-
ure c¢) and display distinct boundaries with the matrix. The clusters range
from rounded shapes 0.7 mm across to elongated shapes up to 1.2 mm long and
are associated with anorthite relics. Discreet grains of olivine (up to 0.8
mm) are more common, are typically rounded and have irregular contacts with
the surrounding matrix. Several grains contain coloriess, less refractory
inclusions, probably anorthite. Curious aggregates 0.1-0.2 mm in diameter,
consisting of Cr-spinel and ilmenite surrounded by anorthite rims (Figure d),
dare observed in the ma.rix. Ilmenite crystals, rarely intergrown with
troilite, metal, and rutile, surround the central core of Cr-spinel and
radially project into the anorthite rims. Blebs and irregular grains of
troilite and Fe-Ni-Co metal occur both intergrown and as discreet grains
randomly distributed in the matrix. Ilmenite, with exsolved rutile, is also
present. Together, these opaque phases make up less than 1% of the sample.

Rare polymineralic relics are less commonly occurring than the mono-mineralic
varieties. Most display rounded or elongate shapes and consist of polygonal
grains of anorthite and clivine which are coarser-grained than the matrix.
One such relic, in section 79215,67, is characterized by equal proportions of
anorthite and olivine, together with Tath-shaped ilmenite (Figure e) and is
possibly a lithic clast.

Megacrysts of subhedral apatite (up to 1.5 mm) are oubserved in many of the
sections; they enclose surrounding matrix minerals and are believed to have
formed during annealing.

References: Bickel et al. (1976); Higuchi and Morgan (1975).
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Figure 79215a. Typical view of 79215; transmitted light.

Figure 79215b. Plagioclase clast with olivine "necklace;" transmitted light.
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Figure 79215c. Olivine "cluster” in 79215; transmitted light.

Figure 79215d. Cr-spinel aggregate in 79215; reflected light.
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Figure 79215e.

Polymineralic relic in 79215; transmitted licht.
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