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ANNOTATION

The quasistationary eddy current of protons relative to electrons

in the superconductir.g mantle of a neutron star, resulting from the

internal magnetic field, generates radio emission by the Josephson

effect, which, propagating in the magnetically active medium, goes from

the thin layer of the "optically thick" mantle to the magnetosphere

through breaks in the crust. "Hot radio spots" form on the surface of

the star as a result, and a radiation pattern forms near the magnetic

poles, the cross section of which gives the observed pulse structure.

Due to the specific proper,..^es of the mechanism, variations of the quasi-

stationary current are converted into amplitude-frequency variations of

the radiation spectrum. Variations of the fine structure of the spectrum,

pulse amplitude and spectral index, as well as their correlation in this

model, result from this.
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POSSIBLE RADIO EMISSION MECHANISM FOR PULSARS
Yu. A. Kovalev

USSR Academy of Sciences, Institute of Space Research, Moscow

1. Introduction

Extensive observation material and theories of pulsars have now 	 /3*

been obtained. However, as before, the question of the mechanism of

their radio emission remains open. All previously proposed mechanisms

can be classified as antenna or maser mechanisms [1]. They connect

the generation of the radio emission with regions located near the light

cylinder or surface of a neutron star in space. A radio emission mech-

anism is proposed in this study, which is intermediate in this classi-

fication, and it is generated inside the neutron star, i.e., it is

determined by its structure. Based on present ideas of the structure

of neutron stars and with some additional hypotheses, practically all

the basic features of the radio emission of pulsars can be explained

from the unique viewpoint of the proposed model.

2. Initial Assumptions

According to the current model, a typical neutron star consists of

[1-4]: 1. a core (at least, in some stars of density p, greater than

some critical density P. ) ; 2. a mantle, made up of a neutron-proton-

electron fluid (2 . 10 14 g • cm-3,^p <p c , neutrons and protons most likely

superfluid, electrons normal); 3. a solid metal type crust, with a 	 /4

lattice of "bare" nuclei and an electron gas, with which superfluid

neutrons are "mixed" in the inner part of the crust; 4. a solid surface

p<10 6 g • cm-3 , the structure of which is strongly dependent on the

magnetic fields and, possibly, is close to a "quasipolymer metal's

structure, with the complete (or nearly complete) absence of free elec-

trons. The development of cracks and fractures can be expected in the

crust, because of starquakes (see, for example, [51)) which apparently

seal and harden rapidly. Besides, it turns out that the superfluid

*Numbers in the marc,in indicate pagination in the foreign text.
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neutron component .is energetically favorable in the rotating star, to

the formation of a periodic space lattice of vortex filaments (parallel

to the axis of rotation of the star), with nonsuperfluid cores and, with

the superconducting proton component in the inner magnetic field,

B x 10 16_10 17G. formation of a state like the mixed state in type II su-

perconductors or the intermediate state in type I superconductors. The

magnetic field then permeates the mantle through the normal regions

which alternate with the superconducting regions, and it is maintained

by the currents flowing in a thin layer along the region boundaries.

To be definite, we

component is in a state

field is directed basic

vortex filaments ., which

star. l As a result, we

will consider hereafter that the superconducting

similar to the mixed state, and that the magnetic

ally normal to the cores of the superconducting

are parallel to the axis of rotation of the

have the model presented in Fig. 1.

We replace the actual distribution of the magnetic field in the

filaments by B=const within its core and a layer, the thickness of which

is on the order of the penetration depth a of the magnetic field from

the normal core to the superconducting shell of the filament, and B=0

in the remaining region. As was noted above, this field should be	 /5

maintained by the charged component current of the X layer, i.e., by

the eddy current of protons (superconducting and normal, since the tem-

perature differs from zero) relative to the electrons (normal), in a

quasicylindrical layer of the shell, of thickness	 where C is
the proton pair coherence length.

The presence of nonsuperconducting "interspersed particles" permits

the shell of the vortex filament to be considered a superconductor with

microscale discontinuities, which form a "spongy" microstructure of

coupled superconducting sections. Since the cohei ,ence length is greater

than the average distance between particles, and the minimum sizes of

1 However, subsequent reasoning is equally applicable, both to other

orientations of the field in the mixed state, and to the intermediate

superconductor state.
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the interspersed particles are comparable to it, it can be expected

that elements of this microstructure are "weakly coupled" structures,

of the laboratory "microbridge," Josephson junction type. 2 Then, the

current of protons relative to the interspersed electrons is a current

through the branched chains of "proton microbridges."

3. Emission of Microstructure Element

We construct the following model of anisolated proton microbridge 	 16

from available analogies [6, 71. In accordance with the aforementioned,
current I through it is made up of the normal I N and superconducting

IS proton currents, in which Iticonst. Let normal componentI N obey

Ohm's law. By using the phenomenological approach developed by Feynman

[8] for description of weakly coupled quantum systems, it can be shown

that expressions I S completely coincide, in the case of proton and elec-

tron superconductivity. As a result, for the proton bridge under con-

sideration, we reach those Josephson relationships, which frequently are

used (see, for example, [61) in description of the electrodynamics of

weakly coupled laboratory structures w--',.h electron superconductivity:

wr

2 This type of Josephson junction is a variety of "weakly coupled"

structure [6], since it is considered that the superconducting properties

in the junction region are "weakened," by microscopic constriction of the

superconductor (in distinction, for example, from the dielectric layer

between superconductors in "classical" Josephson tunnel junctions). De-

spite the fact that the entire group of phenomena occurring in weakly

coupled structures is still far from completely understood, their basic

propertie ,-  in laboratory experiments, as well as in tunnel junctions,

are described well by the Josephson equations. Theory [F] gives a cri-

ter-ion of sufficiency of a "weak coupling." The estimates obtained below

satisfy this criterion by a wide margin, which is a strong additional

argument in favor of the weakly coupled nature of elements of the spongy

microstructure.
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= I^ •s;r, ^,^ OV , ^ ^ .^' ^e2 ^o w cans 	 (3 )

Here, a M is the bridge conductivity for the normal component of the

current, V is the potential di#ference (which arises in the junction in

flow of current I >I m ), I  and T M are the critical Josephson currents

at B=0 and f3#0, respectively, ^ is the magnetic flux which permeates the

bridge,0 0 is the magnetic flux quantum, 0 0=he/2e, a is the electron

charge, h is the Planck constant,-f=h/2 7 . The dependence (3) on the

magnetic field immediately is incorporated in Eq. (1), with allowance

for the sufficiently small (relative to X) dimensions of the bridge 	 /7

(for simplicity in this case, the existing differences in the specific

relationships of the current to the magnetic field for various types of

weak couplings are not taken into account). By solving (1), (2), with
ti

I  <I = const and $=const,,l we have [7] 
y+

o
Mwi f

where V  is the time average potential difference, w o=2eVo/Ti is the

Josephson frequency,(,A ..-^ 	Y	 ry',	 I.T
roll

Vo m	 ^^?/^^	 By means of these relationships, the power

spectrum of the radiation P  from an isolated proton microbridge, at

frequency w=nw o , can be obtained in the following form

P ^ ", W /wa

where n  is the power propagation ratio to the surrounding medium at

frequency w, normalized to unity, with possible error taken into account;

G"'l
^

^ ^
	 in which p always <1 (see above).

,^^ _,. f`1 Gal ® .^ '	 d
4-^ /^

We note the basic features of this radiation. Spectrum (F) is

linear ; with n w= const, exponential, decreasing towards high frequencies. y
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it consists. of' 11ries at the Josephson frequency and its harmonics, the

number of which is determined by the value of y (the closery<l to unity,

the "richer" the spectrum) and the width of the spectrum. The ;spectrum

is bounded below by Josephson frequency w o and above, by some limiting

frequency w np , which characterizes the energy of the quantum which

destroys a Cooper pair

W .w ,d It?
rap (6)

	

where A i-o the energy gap of the superconductor. Since pn..0.1MeV in	 /8

this case [2, 43 in the radio range, spectrum (5) is only b^,Lunded
below. Because of the specific nature of the Josephson mechanism, the

spectral lines are strictly monochromatic, and the radiation is coher-

ent. 3 Actually, however, small, wu.* finite broadening can be expected,

which is connected, for example, with fluctuations of V o and, conse-
quently, nano . Besides, it can be expected that the radiation will have

directivity and linear polarization, similar to the radiation of an

elementary oscil--tor, since it is connected with the flow of current

through the junction.

We estimate the Josephson frequency, on consideration that Vo-\,I/aM

the current in the X layer is determined by the magnetic field through

the solenoidal. relationship, and all elements of the spongy microstructure

are weakly coupled. 'Then, it is easy to obtain

We .^.

	

	 (7 )
^.^ t^ A C

where L is the dimension of the element in the direction of flow of

j There are many features similar to those of maser radiation, since the

Josephson mechanism also is of a quantum nature, coupled to energy

transitions, but superconducting particles during their movement through

the "weak" coupling region, when V oF(O. Since all the superconducting

particles behave completely identically, because of their Bose ccnden-

cation, the radiation is monochromatic and coherent (for , greater detail,

see, for example, [61).
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the uvrrent, v is the conductivity of the mantle (for the normal com-
ponent). On the assumption that BN10 12a. 0n̂ ,10 3o see - 1', LNn-1/3 , where

nn,10 36cm-3 is the concentration of the electron .-proton component of the
mant le, and with the use of the London Expression for X,

^$	 11?C&I#.NI'►t 8 , we obtain from (7), Vo ti4 . 10`^V, i.e.,

4io/2W,%,2.107Hz.

Thus, radio emission can be generated in the X layer at the

Josephson frequency and its harmonics.

4. Star Radiation

A further problem is the analysis of radio emission 5ransport in a

neutron star and obtaining the observable characteristics of the out-

going radiation. In this case, both radio Have absorption by the degen-

erate plasma of the neutron star, and self absorption of radiation by

the Josephson mechanism, as well as the amplification and transformation

of the initial spectrum, unavoidable consequences of the interaction of

the Josephson junctions with the radiation field, evidently must be

taken into account. Thus, it would be desirable to obtain coefficients

of emission and absorption.: with allowance for these processes, and to

solve the transport, e quations of the radio emission in the mantle and
crurt of a neutron star. A self consistent problem apparently is too

complex ever to be completely solved. Additional l.ir,.O t:i.ng assumptions
are required. However, it now is difficult to prefer a given limitation

of this problem for pu-pose—c- of argument. Therefore, as before, we will
use a highly s_npl.3fied pattern.

We estimate the possibility of the propagation of slightly damped

We test whether the criterion of sufficiency of the "weak" coupling,

which. is valid for couplings cf any type, is satisfied [63:
I m<2,6 • Q m/e. Since I m/o rs, <I/aytiVo , and Ati0.1 MeV, it is evident that, in
th'.s case, I M /a is many orders of magnitude less than 2A/e, i.e., the
coupling actually is "weak."
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radio wave modes in the crust and the X layer of the mantle of the

star, with consideration that the basic effect of these regicrs on the

propagation of radiation is scattering of the wave energy by particle

collisions. 5 The basic particles which react with the waves then are

electrons (in the X layer, because of the low concentration of normal

protons) and, by using the results of the theory of radio wave propaga-

tion in a magnetically active, degenerate plasma 19, 10] 0 it can be

shown that the propagation of spiral waves (along the magnetic field),

with a coefficient of refraction n+ , is possible in the a layer and the

crust:

a	 a

Here, eL =1 for, the ). layer, and e L>1 is the dielectric constant of the

nuclear lattice for the crust, v is the electron collision frequency,

w  and w e are the plasma and cyclotron frequencies, respectively.

Damping for the a layer can be obtained from (8),  by assuming

pti 2'10 14g • cm-3 , ne=npti10 36 em-3 , np=nps +npn , npn=np (T/T a ) 4 S v=vo.npn/ne,

where P is the density of the medium, n e , nps and npn are the concen-

trations of electrons, superconducting and normal protons, respectively,

T is the mantle temperature, T  is the proton transition temperature

to the superconducting state, v  is the electron-proton collision

frequency, with ne=np=npn [3]:

sp a 	 $ T.(f
VC

T  is the proton Ferri temperature, k  and kFT are the Fermi and Fermi- /11

Thomas wave numbers, respectively. In this case, at frequencies

w/27rti 10 a Hz, the h layer turns out to be transparent (the wave, amplitude
ti

is attenuated "e" times in distance L. e+>10 cm) for the n+ mode, at

5A more rigorous examination also requires account to be taken of the

inertia of proton pairs (see footnote 14, p. 22).
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12 0, T c^ 1.0 K, TSa 10	 1G7 K. which does no` contradict the expected

values of B, T  and T in a neutron star. AL the same time, this wave
undergoes total Internal reflection from the quasicyl.indrical boundaries

of the X layer, since Sr ,0 outside the % layer and trio: cor-fficient of

refraction n  turns out to be quite small on the inside (n A=c/vA , where
V  is the Alfven velocity ., since the plasma in the core of the filament
has two components). Thus, the spiral wave, dhich scarcely penetrates

the boundary regions, propagates in the X layer as in a coaxial wave-

guide channel.

In a similar way, for attenuation in the crust, by assuming E:L^I,
12	 8	 -3	 23-1	 31 -3Bn,10 

16 
pn,10 	g • cm	 and (J^„10 sec	 (which gives ne^.:3 . 10 cm

v^,6 . 10 see- '), from (b) we obtain

L^f ^^• 
sf/? • ^^•^P•^^^Z^'^^ ^^

3s^t^ 41•x'!`, yJ ' CM.	 (10)

It is seen from this that the region of the r.ru.st outside the cracks is

opaque to radio waves. It also follows from (10) that radio tran:;parency

of the crust in the cracks is only possible, in the event the matter

which fills them differs from the matter outside the cracks, at least in

free electron concentration n e , a.?.1 else being equal (for example, the
larger portion of the el.ectrcns is in the bound state). Then, with
ne<10 cn^ -3 , both modes ( n+ and n- ), with opposite polarizations, can
propagate: and, from (8), we have L e+>10 5cm for both modes.

Besides the absorption described, interaction of the propagating;	 /12

waves with the medium in the n layer evidently results, both in variations

of the configuration of the spongy microstructure elements (and, con-

sequently, variations of a M , I, V, I,n of each microbridge), and to
"induct!.cri t ' of an additional variable potential difference v(t), because
of irradiation of the Josephson Junction by the outward prop" a.gating radi-
ation. The presence cf v(t) results, in frequenc y modulation of the funda-
mental spectrum of t .c -Iunction and, as a conse q uence, the development
of numerous combination harmonies in the resulting spectrum. With the
use c. f equa.t ion (1) and (2' , it can be shown that , cvcn i n the s	 ec•t
case, when, in addition to (4), induced v(t)=v c. • co,, SQ,t `.irnr.t;.cns, during
frequency transformation, an Infinite set of harmonic components appears

E



at frequencies i-430±mn 0 , where n and m, are intcgern. In this case, under
certain conditions, I -,cause: o!' t y.c. "pumping" of enargy from some oscil-
lations to others, cmtj;lification of some sections of the resulting spec-

trum, both vt the frequencies of the initial spectra ,, and at other c om-

bination frequencies [11] . We note that transformation to zero combina-
tion frequencies (detection.) results in complete absorption of the

corresponding fraction of the incident radiation, while the development

of other combination fre quencies results only in rera.diatfcn of the
energy.

For this reason, it seems more natural 	 to consider that, because

of the Josephson Effect of frequency 	 the interaction
of the a layer with tho propagating radiation lead: to partial absorption
and "smearing" of the energy of the fundamental. linear radiation spectra

over the entire range, in such a way that the basic %;cntribution to the

outgoing radiation is made by a thin subcrustal layE:r of the mantle, of

thickness z<Le+
, in which the optical thickness is on the order of	 /13

unity. 6 'Therefore, the resulting radiatior of the X 1.*.y(;.r c,t.i; contain
the "individualit•y" of the linear, E,pertrun; f `.Y., c 1;tEr regions of the
mantle, against the quasicontinuct-.,> r-adiation background of the deeper
medium.

By represent tigf, the radiation of elements of the spongy micros t:ruc:-
tu:C: of the thin suberustal layer of the mant1E: (of thi.cknes.; " ^,r,a area
S) escaping thc-ovE;h breaks in the crust as t's_c; radiation of a lattice of
N coherent ' r poi_rt oscillators with ide-:zticrl spectra (5), for the
spectral density of the flux F  at distance R f:•, om the-	 we+ will have

6 i.e., this effect- results . in the X 1,ayer probab.1,, being "optically thick"
at radio frequencies. Since the value of z remains undetermined, below

(so as nct to overstate the estimates), the minimum possfb _^^ t•al .e is
used, on the order of the average d1ot-ancE between particles, although

z can be cans-"JLc ra.bly ^.._:der•.
' Tn t.:,c: sense of constancy of the fundamental phaoz;es which,
s,—cakir.&;, are d.ifferer.t: for different osci.11atcrs.
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tail

Here , coef'f'icj.ent rW al es Q , D..c:. I he. :oi^.:,es during; propagation of the
radiation i.r t lIx'L-ar z.r,d tr-e magnetosphere, Aa is the effective lire
Width at frequency w ,, and f'(w ,9 ,^) Air is the beam pattern of the

a random ampl:ttu.de-phase distribution of the radiation fieJd, ner-
rialized in such a way that the maximur:: value of the pattern Factor
f(w, e ,fl equals one and is reached, in particul,,P, with a uniform ampli-

tude and in phase distributions of the f'_.c:1ci, with the same polarization
on the inner and ouzer bcur.e'. _ ° ; ; cf the cracks, if the anisotropy of
the magnetospher ic: absorption within the zone of format.*I c:n of tho
l.obf: of the pattern is disregarded.

Radio lurr.i.no:;lty^ 6^.'^,.(t,,^4, ^o . Fie .•	 ^-^ _.^^	 canbe
r

obtained from this, where the fJrst three cofactors are frequency aver-

aged; eo, 0 p are angles which	 `he- c.l»Ection to the ob-.
server; Nti( z .7•a.2 •n) •(B /60) •S.	 It fol.lcwus from a comparison of the
radio luminosity of the pulc;4y' T'radio4'1030 erg/sec and L  that the energy
requirements With the turrx-.° parameters of the med',.)ru and (1 -p)1-10-',
which gives P oti10 -g erg/sec, are satisfied, even with z on the order of
the average di.:,tance between particles, i.e., Vti i ­ 1' `^^, and the area of
the "Josephson radio spot" S ti 10

-E 
of the area of the d--sk of the star.

In thj.;	 the coefficients which allow for the difference of "A-c"

conditions from idea.]. (when they equal one) , can be very

•	 (	 1	 I0`I9rd r°w	 Ri o, ^o !	 (with noncoherent radiation,
it should be supposed, at least, f'(w) v 1.0 -28  .

We estimate the losses ef' ir_terrial magnetic: energy F ,. ^f the star
to this radiation, in the abser.c;e of other "Outlets" ai,l `sources" of

	

With account takon o;' th. C 	 n Et ( i t	 1 e r1 c ww-jndcrr" (forr.cCi
t.	 ; r:, lines of Toro• ov-t c ice,	l.	 't _. ;ht c : _ r 	 .,;

10
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magnetic energy, with the a ,; oumr t,ic:n that E m =B 2. r3 /6,  dE r /dt=!
(2r /B)(d.B/dt)=..F P O O N/(1-1.*const, B'L 1.0 12 G, rti10 6 cm. Then, (dE /dt)/
2E NIO `0 sec -1 . The currents in the mantle will. fade, as a result of

a decrease in Em . From this, the tirie T.r
b , 

yr. whi ch current I =B decreases
to I  (on consider. •ati.cr. t:,^ Im/I=IIm/B), for (1-p)<1/2, will equal

r
	 I K	 112	

p)	 •
	 (12)

ti 131Fcr the e ;''.m ttes of the parameters in (12) presented. above, T 9 
>10 se c,

since nw<1.

5. Basic Properties of Model

If this reasoning is vall.d, as a result, we obtain the following	 /15
s

piUsa radio emission scheme. The current of protons relative to elec .
-trcns results in the generation of Josephson ?:-ad'.c: emission in the X

layer. Circularly polarized waves, which propagate , along the magnetic
field in the X layer as in a coaxial wavegui.de, are "cut out" of the
generated radiation.. In '_rr cadii:,`Ing cracks in the crust, they are

transformed into waves, the polarization of which basically is determined

by the configuration and dimensions of the cracks. Waves w1th the new

polarization propagate in the crack, distributed in two slightly- damped
modes ,f opposite polarizations (on the assumption of a sufficiently

low free electron_ concentration in the crack.), and they escape from it

to the magnetosphere. Because of the different conditions of propagation,

the dt gre.. of linear polarization and the position angle c i' the cutgo'ng
waves in different cracks or even in different sect.icrs of one crack can

differ. As a result, "hot radio spo-.s" form or: the surface of the star
(postulated in a "beacon" model), and they form the resulting radiation

pattern at the maE;n(^tic. poles. The spatial form of this pattern is

deterrrfned by the beam pattern of the. "spots" and the "angular windct,"
of the m-nneti_c pole. Its cross section gives the observed p,ul::e. struc-
ture of the pulsar.

It is app,,r-ont that, in the simplest case, line s^; 	 (11),
formed by the harmonics of nw o of one bal-ic frequenc,, w 	 :;e

11



observed against a continuous	 (if, of course, Aw<wo ; we do
not study astrophysical broadening mechanisms here), It is heavily

covered ut- at h'gh frequencles rind, at finite frequencies in the range,

it permit:e. apprc,:lr^.'^'.•jcn of a broken line, made up of a small cumber
of segments. The spectrum can appear quasi cont inuous, if tul>w C 0 or if	 ;' f
there is a set of nonidentical groups of "spots" (or groups in one

"spot"), with "their ov;n" spectrum (11) and a:o . in the latter case,
against a rackground of aL "cont:inu,::us" spectrum, made up of harmonics

rR1w.,., n G wo2 ,	 . , the sit of basic frequencies wol , wo g, . . ., peri-
odic "brig:,hc:ning" can be observed, the result of the developme:r.t of the
fundamental spectrum of stronger spots.

"ijioe tY , c outgoing emission of the star is equivalent to the erri: --
slc,n of a slit antenna, it is understandable that high direc t ivity a.r.d
ILE;Eee o f'. _o larizati.on theoretically are possible (in the ide cal case,
100 percent linear polarization). In t;h, e: ca:.: , the amplitude-phase
distribution of the racl ti.on f'inlul over tho ac1AN— e region of tt,. e mantle
and surface: of the star- evidently play a. died sf ve role (in oti-:er •^rordc,
1, . ^^:c.^riditions of irradiation of the aperture of a u1 it ^^r^t.E:nna") .

Within the framework of the model. under oonsideraticn (it is evide. from
(1)-(3) that, in the mantle, it depends cn the f.r:ternal magnetic field
and the microstructure of the X layer, which can be considered static,

only on the average.

The presence of microstructure variations (regular and irregular)

unavoidably will be reflected in ':x •:e : r;:NJ1..'.tude-phase distrfbut.irn and,
as a consequence of the variations, both the form and the spatial ori-
entation of t he beam_Eat tern results in inst abilit, of the redlat.lon
(i.e., in variations of ariplitud.e, sl-a*p e and even structure of the,
pulses in strong flu.etuatior:.s of the X layer microstructure 10 ) .

9 1f each filament	 only one quantum of magnetic flux, the con
tribu.t•. =.c:ri clue to 0/0 0 is small .

1.0 Nevertheless, it should be- rote-d that the-su fluctuations, although they

al'e riot .:'C?:l? (.'10c:'r.., are	 tEC tc the ' t or'derliness" of motion of the
pert:i^lc:.,, I-,.-.cause: of their strong- degeneracy, since T/T f«l.

Or THE
POOR
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Variat ? on„	 ;:r, individual pulses wil' be observed under "steady %t 7
;^.^.• t condit9ons," if several. lines of the steady st ut.e spectrum under
study enter the radiometer transmission band. This situation can lead

to pulse modulation, because of beating of the oscillations from differ-

ent spots with similar fundamental frequencies, and to drift of

subpulses within a "window" when the beat frequency is not a multiple

of the pulse recurrence frequency (see Fig. 2a).

However, the clearest and most specific transient effect which

can develop in observations is the following. For simplicity, we assume

that quite slow variations of the microstructure are reflected only in

variations of current I through elements with spectrum (11). It then

follows from (1), (4), (5) that through the dependence of F. on I:

(13)

^Cj -•^„ ^Ld "^ rid

this results in amplitude-frequency variations of spectrum (11), i.e.,

in correlated variations of the spectral index, pulse amplitude and

fine structure of the spectrum (FSS).

If there are a few spots with characteristic spectra (11) and their

relative contribution to the spatial structure of the general beam

pattern is unequal, the spectral index and FSS over the pattern cross

section (i.e., over the observed pulse profile) can differ at a fixed

frequency. With substantial change in frequency, the observations can

change both the spatial distribution of these characteristics (i.e.,

their distribution over the pulse profile), and the pulse structure,

reflecting the frequency dependency of the beam pattern within the magnet-

	

ospheric window. A characteristic transient spot, for example of type	 /18

(13), complicates the picture still more.

We illustrate what has been stated with three simple qualitative

examples (Pig. 2). It should be emphasized that variations are shown

I> Pool?
	 13
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in the figure, which are due only to two "elementary" processes: specific

effect (13) with period of varir.ticn of T (curve 1) and beats (curve 2),

which develop on the difference frequency w6M(n2wo2-nlwol)/2 (in which,

in Fig. 2c, w a jOconst). It is seen that, even in these examples, the

observed pulse train structure can be considerably more complicated than

that emitted and depend both on the width and orientation of the ob-

servation frequency band pn relative to FSS, and on the ratio of w  to

the pulse recurrence frequency 2n/PS (pw ab in the figure designates Ow

between points a and b in the FSS; similarly, for other noted points of

the FSS).

It also is clear from Fig. 2 that variations of all the pulse

emission characteristics can appear in the observations (with char-

acteristic, anticoincidence and, generally speaking, few -- see, for

example, Fig. 2c -- variation periods): spectral index, FSS, pulse

recurrence amplitude, structure and period. In this case, shown in

Fig. 2c, it can occur as sporadic amplitude-frequency bursts against a

background of more or less slow variations), which abruptly change the

observed pattern.

A distinctive feature of the examples in Fig. 2b and 2c is the

}p resence of correlated variations (with the same period T) of the spec-

tral index, FSS and pulse amplitude. Here, a brief increase in frequency

in variations of FSS corresponds to an increase or constancy (within the

measurement accuracy) of the amplitude in the low frequency region of

the spectrum and a simultaneous decrease of it in the far high frequency

region (see upper Fig. 2b), and the opposite relationship with a de- 	 /19

crease in frequency. However, the patterns of variation of these

parameters, generally speaking, are not the same, even in the absence of

beats, since they are coupled by a nonlinear relationship (see (13),

(11), (5)), but "adjustment" to the observed model of the initial vari-

ations of current I can be established, in accordance with scheme (13).

For a detailed verification of the mechanism under discussion (and

others besides), it would be very important to have individual "portraits"

of some pulsars, obtained by simulataneous actual observations of the

pulse train, FSS and structure of individual pulses at several fixed

14



frequencies. This primarily concerns pulsars with subpulse drift. Two

or more lines can be expected in their FSS, which possibly can be dis-
tinguished, even if in unresolved form. In this case, pulsars with
variable drift rates also are the most likely candidates for the detection
of the correlated variations noted.11

If slowing of the rotation of a star determines slowing of the
relative vortex motion of the particles in the filaments, i.e., a decrease

in the current of protons relative to electrons, according to (13),
(11), (5), all else being equal, this would lead to a secular decrease
in the flux at the primary frequency w o , flattening of spectrum (11)

with its simultaneous "movement" towards low frequencies (because of a

decrease of w o ) and broadening of it (because of an increase in p),
until the condition I>I m is satisfied. At I=I m , a "break" in genera-

tion occurs (see ((l)) and, with further slowing of the star, the
Josephson radiation is "switched off," if strong fluctuations do not lead 120

to disruption of the new state, in which I<Ir.. It'is possible that the

absence of long period pulsars is explained by just such an evolutionary	 i

effect.

It is evident that the rotation of the star, which is coupled to

the internal magnetic field through the vortex motion of the charged
particles of the filaments, becomes the primary source of radiation

energy in such a scheme. 
12 

Since the radio luminosity of known pulsars

usually is much less than the rate of loss of energy of rotation [5],

the mechanism under discussion does not contradict known hypotheses

that the basic fraction of the roational energy is consumed in magnetic

dipole radiation or in interaction with the plasma around the pulsar.

If the basic source of energy is the relict magnetic field frozen

11Such an interpretation does not negate other drift mechancisms (for

example, because of star precession), which can operate ,jointly.

12From this point of view, the interesting self consistent generation

mechanism of the internal magnetic field due to star rotation has been

discussed in [121.
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into the matter of the star (.e., without "makeup" of the rotational

energy), the scheme of evolution is as before, and the lifetime of a

radiating pulsar is determined by relationship (12). Then, the absence

of long period pulsars possibly is connected with th- . fact that the

magnetic field captured by a nascent long period star is too weak from
the very start to ensure emission condition I>Im.

It is easy to determine that the described properties of the model

contain all (or nearly all) the basic properties [51 of pulsar radio
emission.

Generally speaking, this fact appears less strange, if the diffi-

culty of adequate description of complex phenomena inside the star is

taken into account, especially the possibility of the appearance in
the mantle of, besides those discussed, some other processes of ab-

sorption of the energy of strongly slowed radio waves. 13	 121

Fortunately, one possible cause of the weak dependence of the

model on a specific absorption mechanism in the mantle is in the Joseph-
son generation mechanism itself, since the energy of dissipation of

radio waves, which changes into the kinetic energy of particles, can

again be transformed into radiation energy by the Josephson effect.

Another cause is that.it is energetically sufficient to consider the

X layer as an optically thick medium.

13For example, it is possible that one such process is "inertial ab-

sorption" by proton pairs. Thus, it is easy to obtain the variance ratio
s
by a standard method, with account taken of the pair current in the

London approximation (it will be published separately), from which, for

the mantle, L' etiX (i.e., L'e «Le+, but the condition z<L' e , of course,

as before, is satisfied and all the conclusions remain valid). However,

the competence of such an approach for the . X layer is not completely

clear. In general, conditions in a neutron star prove to be very much
closer to the laboratory conditions of radio wave propagation in metals
than to typical astrophysical conditions. Radio waves in metals have

been studied for a little more than fifteen years. Therefore, of course,

many surprises can be expected here.

16



6. G0. c1us1on

It is difficult to say how close the model under consideration is
to reality. However, the correlation of its properties with the prop-

erties of pulsar radio emission is too remarkable to be random. 14

It should be noted that the approach used to description of the

superconducting mantle, as a medium with a "weakly coupled" micro-

structure, is not the only possible approach which leads to radiation at
Josephson frequencies. Acutally, Josephson oscillations can be expect-

ed in consideration of the filaments as fine superconducting channels

with a longitudinal current, or in analysis of filament motion, when 	 /22

pinning is absent and there is a transverse transport current (see, for

example, [6, 137). The approach used was selected basically for two
reasons. First, it requires a minimum number of sup plementary assumptions.

Second, it is the most highly developed and tested in weakly coupled

laboratory structures.

There also is interest in "combination mechanisms;" when elastic
oscillations of the filaments and magnetic lines of force, excited by a

Josephson wave, result in 1. oscillations of the total magnetic moment

of the star and, further, to magnetic dipole radiation, in which the

characteristic Josephson frequency spectrum is present, or 2. elastic

oscillations of the lines of force of the magnetosphere and the emission

of energy by particles moving in this variable magnetic field.i5

An attempt to explain the optical and X-ray emission of pulsars in

a similar manner (or with "combination mechanisms") is highly tempting,

since the mechanism considered can generate frequencies up to

14 If pulsars (at least some) actually radiate approximately as presented

in this model, there is a basis for hoping that this will permit a better

understanding of similar processes in "terrestrial" superconductors and,

possibly, the development of a laboratory analog of a radio emitting pulsar.

15The author first heard of the first possibility from D.M. Sedrakyan

(see also [121) and of the second, from V.I. Slysh.
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(s(.-e (6)). Nevertheless, such an interpretation requires
np

special substantiation and comparison with observations in these ranges.

I thank N.S. Kardashev, F. Dyson, I.S. Shklovskiy, Ya.B. Zel'do-	 "I
vich, V.L. Ginzburg, D.M. Serdakyan, Yu.M. Bruk and I.O. Kulik for

discussion of various questions of this model and for critical remarks,

as well as Z.S. Kovalev, A.Ye. Andryevskiy and V.N. P'yavchenko for

assistance in the work.
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Fig. 2. Connection of observed variations of amplitude, structure, recurrence
period PS of pulses (3-6) with spectral characteristics (1) and FSS (2) vs.
observation frequency band ©Q and ratio of beat fre quency w6to w2z/P for the
followin cases of radiation (see text): a. two "spots" with steadysate
spectra (11); b. one "spot" with transient (13) spectrum (11); C. two "spots,"
one of which has steady state spectrum from a., the other, transient from b.
Square pulses are emitted. Effect of interstellar medium not reflected. Re-
corded pulse is blackened. Curves l due to transient nature (13), curves 2
to beats. Sections noted by circles, as well as corresponding FSS, coincide:
b. (3) with (6); c. (3) with (4) and (5) with (6).
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