The Mechanism of Fluld Resistance.'
By 1. v. Kirvin and !I. RusacH.

The resistance of a solid body moving with a uniforni velocity in an unlimited fuid can be caleulated theoretically
only in the limiting cases of very slow 1otion of small badies or of very high fiuid viscosity. We are brought in such
cases to a resistance proportional to the first power of the velocity, to the viscosity constant, and, for geometrically
similar systems, to the linear dimensions of the body. o the domain of this = linear resistance " —-which has aroused
much interest, especially within recent vears, on aceount of some irportant esperimental applications - has to be
opposed the limiting domain of comparatively large velocities. for which the so-called “velocity square law” holds
with very good approximation. In this Lutter domain. which emibraces nearly all the important technical applications,
the resistance is nearly independent of fluid viscosity, und is proportional 1o the fiuid density, the square of the
velocity, and - -again for geometrically similir systems o a snifuce dimension of the body. In this domain of the
“square law " iy included the importunt caxe of air resixtunce, beeause it is casy to veriiv, by the calculation of the
largest density variations which can occur for the »peeds we uieet in aeronautics and airscrews, that the air compression
can be neglected withont any sensible error. t'he inihience of the comypression first hecomes inportaunt for velocitics
of the order of the velocity ol sound. b fuct, experiments show that the air resistance, in a broad range from the siall
speeds at which the vizcority plays a rale up to the large spewds comparable to the velacity of sound, is proportional
to the square of the velocity with very good approximation.” In general, fluid resistance depends upon the form and
the orientation of the body in such a complicated way that it is extraordinarily difticult to predetermine the flow to a
degree suflicient for the evaluution of the resistance of a body of riven form, by a process of pure calculation, us can be
done by aid of the Stokes formula in the case of very slow motions.  We also will not sneceed in this paper in reaching
such a solution, but will still mmake the attempt to give o ceneral view of the mechariam of fluid re.istance within the
(il of the square law.

We can state the problem of fluid resistance in the following somewhat more exact way.

Since the time of the fundumentul considerations of Osborie Zeynolds on the mechanical similitude of flow
phenomena of incompressible viscous tlnids of dilferent density and viscosity aud - under geometrical similitude - for
different sizes of the system considered, it is known that the resistance phenomenon depends upon a single parameter
which is a certain ratio of the abuve-mentioned quantities. "Fhus the fluid resistance of a body moving with the uniform
velocity U in an incompressible unlimited tiuid may be expressed by a formula of the form *

where

13 the viscosity constant

p the fluid density

! a definite but arbitrarily chosen linear dimension of the body. and f([fi”) a function of the single variable
m

Opl . . . . . .
R=~u~p~- We will call ** Reynolds’ parameter” the quantity R which has a zero dimension.

Theory and experiment show that for very small values of £+ that i<, for low veloeitios, or small bodies, or great
viscosity- the function f£1725 is very nearly constant; the resisthyice cociiiciiont of the Sokes formula corresponds to the
limiting ease of /1 22 for R=0).  The square law corresponds to the limiting case of '==w. We approach this latter case
the more nearly the smalier the wity . so that in the Hiiting casc of t=e, the fluid can be considered as
frictionless.  And wo can ask ourselves, 1o whet Lmiting confignrtion docs the Sior of the viseous fluid around a solid
borly tend when we pass to the Hindting ease of u pecfoet fuid?  This is, according to onr view. the fundamental point of
the registance problemn.

The fact that we obtain in this casc a resistance nearly independent of the viscosity constant --since according
to formula () this corresponds to the square law - allows us to coujecture that in this limiting case the resistance is
determined by flow types such as can oceur in a perfect fluid.

"Translation of the paper of Th. v. Karman and H. Rubach published in *‘Physikalische Zeitschrift,” Jan. 15, 1912,
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AN INTRODUCTION TO THE LAWS OF AIR RESISTANCE OF AEROFOILS.

It is now certain that neither the so-called ‘‘continuous” potential flow, nor the ‘““discontinuous” potential flow
discovered by Kirchhoff and v. ITelinholtz, can express properly this limiting case. Continuous potential flow does not
cause any resistance in the case of uniform motion of a body, as may be shown dircetly by aid of the general momentum
theorem; the theory of the discontinuous potential flow, which, in relation to the resistance problem has heen dis-
cussed principally by T.ord Rayleigh,! leads to a resistance which is proportional to the square of the velocity; the cal-
culated values do not, however, agree with the observed ones.  And, independent of the insufficient agreement between
the numerical values, the hypothesis of the ““dead water,” which, according to this theory ought to move with the
body, is in contradiction to nearly all obscrvations. 1t is easy to sce by aid of the simplest experiments that the flow,
when referred to a system of coordinates moving with the body, is not stationary. as assumed in this theory. Further-
more, in the theory of discontinuous potential motion, the suction effect behind the body is totally missing, while in
the dead water, which extends to intinity, we have everywhere the same pressure asin the undisturbed fluid at a great
distance from the body. But according to recent measurements, in many cases the suction effect is of first importance
for the resistance, and in any case contributes a sensible part of the last.

The reason why ina periect fluid the discontinuous potential flow, although hydrod ynamically possible, is not realized
is without any doubt the instability of the surfaces of discontinuity, as hag already been recognized by v. Helmholtz
and specially mentioned by Lord Kelvin.? A surface of discontinuity can be considered as a vortex sheet; and it can
be shown in a quite general way that such a sheet is always unstable. This can also be observed directly; observation
shows that vortex sheets have a tendency to roll themselves up; that is, we see the concentration around some points
of the vortex intensity of the sheet originally between them. This observation leads to the question: Can there exist
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stable arrangements of isolated vortex filaments, which can be considered as the final product of decomposed vortex
sheets? This question forms the starting point of the following investigations; it will, in fact, appear that at least for
the simplest case of uniplanar flow, to which we will limit ourselves, we will be led to a ‘‘flow picture” which in all
respects corresponds quite well to reality.

THE INVESTIGATION OF STABILITY.

We will investigate the question whether or not two parallel rows of rectilinear infinite vortices, of equal strength
but of inverse senses, can be so arranged that the whole system, while maintaining an invariable configuration, will
have a uniform translation and be stable at the same time. It is easy to see that there exist two kinds of arrangements
for which two parallel vortex rows can move with a uniform and rectilinear velocity. The vortices may be placed
one opposite the other (arrangement a, fig. 1), or the vortices of one row may be placed opposite the middle points
of the spacing of the vortices of the other row (arrangement b). In the case of equality of spacing of the vortices in
both rows, as a consequence of symmetry for the iwo arrangements a and b, it appears that each vortex has the same
velocity in the sense of the X axis, and that the velocity in the sense of the Yaxisis equal to zero. We have to answer
the question, which of these two arrangements is stable?

To illustrate first by a simple example the method of the investigation of stability, we will start with the con-
sideration of an infinite row of infinite vortices disposed at equal distances ! and having the intensity ¢, and will study

1 On the resistance of fluids, Mathernatical and Physical Papers, Vol. I, p. 287.
$ Mathematical and Physical Papers, Vol. 1V, p. 215. This paper contains a detailed critique of the theory of discontinuous metion.
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the stability of such a system. If we designate by z, y,, the coordinates of the p—th vortex, and by x,, y, the
coordinates of the g— th the velocity impressed on the latter vortex by the former is given by the formule

Upq= Yo Yq
27" (xp—zq) +(yp yq)’
qu:_}' - Tp—2Zg

2—1; (I —zq) +(1}p Jq)

These formule express the fact that each vortex communicates to the other a velocity which is normal to the line
joining them and is inversely proportional to their distance apart. Therefore the resultant velocity of the g—th vortex
due to all the vortices is equal to

dz, _ r 1 Yo—¥a

dt p (IL' _’xq) +(1II yq)

do__t Ty,

dt (@ — T+ (¥ —¥o)*
p-—w

where p=q is excluded from the summation. 1f now the vortices are disturbed from their equilibrium position, the
small displacements being ¢, 7,, the vortex velocities can be developed in terms of these quantities, and we will
be brought to a system of differential equations for the disturbances &, 1,, i. e., for small oscillations of the system.
Let us accordingly put
zy=pl+é,
="

and, neglecting the small quantities of higher orders, we will get

oL
dt (p— q)‘l’

Do — B

dn_ ¢ NV 64
dt " 2xrf_J(p—q)*P

p=—=

The differential equations so obtained, which are infinite in number, are reduced to two equations by the sub.
stitution
ta=t.etPe; no=nelpe
These two equations are

0
d, ¢ elpe—1
at -~ Me2x p*

p=—w

@
dn,_, ¢ efipe—1
a2 ) PP
p=—w

with ps>o

The physical meaning of this substitution is easy to see: we consider a disturbance in which each vortex undergoeg
the same motion only with a different phase ¢. Under such conditions we have to do with a wave disturbance and the
system will be called stable, when for any value of ¢, that is, for any phase difference between two consecutive vortices,
the amplitude of the disturbance does not increase with the time.

Let us introduce the notation
¢ipe —1 1_ cos 1
()= 3 E : § ;_(7;1’;)___

p=—w

The foregoing equations then take the form
dt
5 =x(eMmo
dne
it —K(w)fo
Let us put ¢, and 5, proportional to er; we will then find for each value of ¢ two values for X, that is

A= 1x(y)
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1t follows that the vortex system considered is unstable for any periodic disturbance, because there is always
present a positive real value of X\, that is, the disturbance is of increasing amplitude.

Applying this method in the case of two vortex rows we will find that the arrangement a, that is, the symmetrical
arrangement, is likewise unstable, but that for the arrangement b there exists a value of the ratio A/l (k is the distance
between the two rows, [ is the distance between the vortices in the row) for which the system is stable.

In both cases X can be brought to the form

fr—x= +i(B 4+ O A)

where A, B, Care functions of the phase difference ¢. The system will be stable if (C? - A?) is positive for any value of ¢.
For the symmetrical arrangement q, the functions 4, B, Care expressed by the formulz:

o m‘

1 32 —R? 1— .
A(“’)=W‘2czﬁl’+h’>=+ S
= P=1

) 202 — ]2
B(e)= )Y B2 _sin(py)
e
p_,(p +4%)
2l2_h2
C(io)-—ﬁ (plglf;"?‘)‘gcos(l’w)
P=X\

But for p=n we get
Alr)y=[ ctere () et (i%)]
om=g[etane () e (%) ]

so that this arrangement is unstable for any values of 4 and [.
For the unsymmetrical arrangement b we find

®
A(¢)=- (p+H22—~ 1—co8 (pe)
p+&)’l’+F’ e

N oty
Bler= 2{(p+§>m+h’r°m P+

Clo)= 2[ (:;_-"__:))2 l:+ hz s cos (p+4)e

We see now that C(x)=o0, so that in the place where ¢=x, 4 must also be equal to zero, because, on account of the
double sign,  takes a positive real value. This brings us to the condition

2 (p+3)?P—H o2
(P HPFERT <. G5t 7T
But
[(p+§2212 ...2
LAGHIPHRT o o
and
S\t
SEp+17E
p-

so that, as the necessary condition of stability we find the relation

cosh’—ll1—r=‘/ z

and for the ratio A/l we find the value
hf1=0,283....
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For a certain value of the wave length of the disturhance, corresponding to ¢==, we get A==0, that is, the system
is in a neutral state. But it can he shown by calculation that our system is stable for all other disturbances. This
unique disturbance has to be tested by further investigations. It can, however, he seen that a zero value for A must
appear, because only one stable configuration exists. If this were not so, we would find for I/A a finite domain of sta-
bility.!

THE ‘‘FLOW PICTURE.”

The consideration of the question of stability has brought us to the result that there exists a particular config-
uration of two vortex rows which is stable. The vortices of both rows have then such an arrangement that the
vortices of one row are placed opposite the middle of the interval between the vortices of the other row, and the
ratio of the distance & between the two rows to the distance ! between the vortices of the same row has the value

A1 —
=5 arc cosh /30,283
The whole system has the velocity

~£> vk

YR L _ (R
p=o

which can also be written

or, introducing the value of A/l found by the stability investigation, we get

S
s
The flow is given by the complex potential (¢ potential, ¢ flow function)

. ™
x=¢+i¢=;—§ lg S—Ln————(ZO_Z)E
sin (zo+z)—l
where .
z°=£+%t~

By aid of this formula we have calculated the corresponding streamlines and have represented them in Fig. 2.
We see that some of the streamlines are closed curves around the vortices, while the others run between the vortices.
On the other hand, we have tried to make visible the flow picture behind
a body, e. g., a flat plate or circular cylinder, moved through immobile
water, by aid of lycopodium powder sifted on the surface of the water, and
to fix these pictures photographically (exposure one-tenth of a second).

The regularly alternated arrangement of the vortices can not be
doubted. In most cases the vortex centers can also be well determined;
gometimes the picture is disturbed by small ‘“‘accidental vortices” pro-
duced in all probability by small vibrations of the body, which in our pro-
visional experiments could not be avoided. We had a narrow tank whose
floor was formed by a band running on two rolls, and the bodies tested
were simply put on the moving band and carried by it. Itis to be expected
that by aid of an arrangement especially made for the purpose much more regular flow pictures could be obtained,
while in the actual experiments the flow was disturbed on the one hand by the vibrations of the body and on the
other by the water flow produced by the moving band itself.

The alternated arrangement of the vortices rotating to the right and to the left can only be obtained when the
vortices periodically run off first from one eide of the body, then from the other, and so on, go that behind the body
there appears a periodic motion, oscillating from one side to the other, but with such a regularity, however, that the
frequency of this oscillation can be estimated with sufficient exactness. The periodic character of the motion in the
so-called ‘‘vortex wake” has often been observed. Thus, Bernard 2 has remarked that the flow picture behind a
narrow obstacle can be decomposed into vortex fields with alternated rotations. Also for the flow of water around
balloon models the oscillation of the vortex field has been observed.® Finally, v. d. Borne 4 has ohserved and pho-
tographed recently the alternated formation of vortices in the case of air flowing around different obstacles. The

1! From a mathematical standpoint our stability investigation may be considered as a direct application of the theorems of Mr. O. Toplitz on
Cyclanten with an infinite number of elements, which he has in part published in two papers (Gottingen Nachrichten, 1907, p. 110; Math. Annalen
1911. p. 351), and in part been so kind as to communicate personally to us.

2 Comptes Rendus, Paris, 148, 8319, 1908.

3 Technical report of the Advisory Committee for Acronauties (British), 1910-11.

¢ Undertaken on the initiative of the representatives of acronautical science in Gottingen, November, 1311.
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phenomenon could not be explained until now; according to our stability investigation the periodic variations appear
as a natural consequence of the instability of the symmetrical Mlow.!

It is also very intercsting to observe how the stable configuration is established. When, for example, a body is
get in motion from rest (or conversely, the stream is directed onto the body) some kind of “separation layer’’ is first
formed, which gradually rolls itself up, at first symmetrically on both sides of the body, till some small disturbance
destroys the symmetry, alter which the periodic motion starts. The oscillatory motion is then maintained corresponding
to the regular formation of léft hand and right hand vortices.

We have also made a second series of photographs for the case of a body placed at rest in a uniform stream of
water. For this case the flow picture can be obtained from Fig. 2 by the superposition of a uniform horizontal velocity.
We will then sec on the lines drawn through the vortex centers perpendicular to the stream direction, some ebbing
point where the stream lines intersect and the velocity is equal to zero. However, in the same way as the motion 38
affected by the vibrations of the experimental body in the case of the motion of a body in the fluid, so in this case the
turbulence of the water stream vives rise to disturbances.

As to the quantitative agrecment attained by the theory, it must be noted that our stability conditions refer to
infinite vortex rows, so that an azrcement of the ratio A/l with the measured values is to be expected only at a certain
distance from the body. The measurements on the photographs show that the distance [ between vortices in a row is
very regular, $o that / may be measured satisfactorily, but per contra the distance k is much more variable, because
the disturbance of the vortices takes place principally in the direction normal to the rows, that is, the latter undergo
in the main transverse oscillations. The hest way to determine the mean positions of the centers of the vortices would
be by aid of cinematography, but we can also, without any special difficulty, find by comparison the mean direction
of each vortex row directly froin photographs. Soin the case of the photograph of a circular cylinder 1.5 cm. in diameter,
when making measurements beyond the first two or three vortex pairs we have found the following mean values for
hand !

h=1.8 cm.; I=6.4 cm.
So that for the ratio A/l we obtain the value

hf1=0.28.

For the flow around a plate of 1.75 cm. breadth we found

h=3 cm.; {=9.8 cm.
Accordingly

hj1=0.305.

The agreement with the theoretical value 0.283 is entirely satisfactory.

For the first vortex pair behind the body, A/l comes out sensibly larger, somewhere near /1=0.35. But in the first
investigation of K4rmén, mentioned at the beginning of this paper, the stability of the vortex system was investigated
in such a way that all the vortices with the exception of one pair were maintained at rest and the free vortex pair con-
sidered oscillating in the velocily field of the others. Under such assumptionsit was found that A/l=1/r arc cosh V3=
0.36. We therefore think that the conclusion can be drawn, that in the neighborhood of the body, where the vortices
are even more limited in their displacements, the ratio k/ is greater than 0.283 and approaches rather the value of 0.36.

APPLICATION OF THE MOMENTUM THEOREM TO THE CALCULATION OF FLUID RESISTANCE.

Let us assume that at a certain distance behind the body there exists a flow differing but slightly from the one
of stable configuration which we have established theoretically in the foregoing, but that at a distance in front of the
body, which is great in comparison with the size of the body, the fluid is at rest—as it is quite natural to assume.
We will then be brought by the application of the momentum theorem to a quite definite expression for the resistance
which a body moving with a uniform velocity in a fluid must experience. Practically, by such a calculation for the
uniplanar problem, we will obtain the resistance of a unit of length of an infinite body placed normally to the plane
of the flow.

We will use a system of coordinates moving with the same speed w as the vortex system behind the body. In
this coordinate system, according to our assumptions, at 2 sufficient distance from the body the vortex motion behind
the body as well as the fluid state in front of the body will be steady, and we will have, when referred to this system
of coordinates, a uniform flow of speed —u in front of the body, but behind the body the velocity components will
be expressed by

T3y and ox
where y is the real part of the complex potential

.4 ein (zo+z)’%
x=¢+W=5_1g 0
8in (z,—z) 1

1 The tone that is cwitted by a stick rapidly displaced in air is 1xed by this periodicity, to which Prof. C. Runge has already drawn our
~stantion.
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The body itself has, relative to this system of coordinates, the velocity U—wu, where U is the absolute velocity of the
body. 1f we designate by [ the distance between the vortices of one row, there must take place, as a consequence
of the displacement of the hody, in the time T'=0/( I/--), the formation of a vortex on each side of the body. We
will caleunlate the increment of the momentum, along the X axis, in this time interval T (that is, between two instants
ol time of identical fMlow state) and for a part of the flow plane, which we define in the following way (see fiz. 3). On
the sides the plane portion considered is limited by the two parallel straight lines y==+£=»; in front and behind, by
two straight lines z=Const disposed at distances from the body which are great in comparison with the size of the
body, the line behind the body being drawn so as to pass through the point hall way between two vortices having
inverse rotation. When the boundary lines are =ufliciently far from the body we can consider the fluid velocities at
those Jines as having the values indicated in the foreguing.

For a space with the boundaries indicated above the relation must exist that the momentum imparted to the

body fﬂW(lt (where ¥ is the resultant fluid resistance) is equal to the difference between the momentum contained

in the space considered at the times t=-7 and t-=r+4 7 and the sum of the inflow momentum and the time integral
of the pressure along tlie boundary lines. If we thus consider as exterior forces the force — 11" and the pressure, which
act on the whole system of fluid and solid, they must then correspond to the increment of the momentum—that is,
to the excess of momentum after the time 7 less the inflow momentum.

b4
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Fig. 3.

We will calculate these momentum parts separately. The excess of momentum after the time 7T is equal to the

difference of the values that the double integral pff u (2, ) dx dy takes at the times t=7 and t=74 7. DBut the

time interval has been chosen in such a way that the state of flow is identical, with the difference that tlie body has
been displaced through the distance I=(U—u) 7. The double integral reduces thus to the difference of the integrals
taken over the strips ABCD and A’B’C’D’ both of breadth I. For the strip A’B/(”D’ the fluid speed can be taken

equal to —u for the strip ABCD equal to—u+g_‘f, so that we get

! na
L=p oo dy
0 -7

1f we pass to side boundaries having y=, Wwe obtain [or I, the very simple expression
I=pth

which can also be obtained directly by the application of the general momentum theorem to vortex systems.

We will unite in one single term the inflow momentum ard the time integral of the pressure, heecanse in such a
way we will be led to more simple resnlts. If we consider a uniplanar steady fluid motion with the velocity com-
ponents u (z, y) and v (z, ) and consider a fixed contour in the plane, the inflow momentum in a unit of time in the

direction of X is expressed by the closed integral pf(?ﬁ([y—’lﬁ-’ft) where u, v are the velocitics on the contour.  The

pressure gives the resultant fﬁdy along the X axis, but since for a steady flow the relation

w2
p=Const— pEi;_l'

must hold, we thus obtain for the sum of both integrals, mnltiplied by T'

L=T [ o(w2dy — uodr)+ T f p A

u? —2? _
= Tpf (u 3 Y dy —m)dz)
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Or, introducing the complex quantity, .
- Ofetiy)_Ox

WEU—W= S T iy) Oz

L=pIm | (wdz)

where Im is to he understond as the complex part of the integral.
If we put for the contour

we get

u=—utu’
o
then the terms in u? will at once be eliminated, and also the terms in u on account of the equality of the inflow and

outflow; and there will remain only the terms in v’? and w/+/. The latter will give a finite value only for the boundary
line passing through the vortex system (AD in fig. 3). Passing to =0, we get

{0
F
Iy=ToIm (%) d
—~{®
and integrating along AD we get
x({oo )
I,= ToIm g—;:dx
x(—fm
But

i cos 2xx
i cosh _1’5

so that, integrating and introducing the values
h
x(he) =7{1’ -t 2%

x(—tu)=—S 428

uh 1
L= TP[%“%:
. . ¢ ~h
where u again has been written for—ﬁ tghT~

Thus the total momentum imparted to the body is

T 3
f Wat=pth— Ty (fll"_z_‘ﬂ)

If for the mean value of ’/Tdet we write W (as the time mean value of the resistance) we will obtain with
o
T=1/( U~u) the final formula

h e
(I1) W=pi7(U-2u)+r 5

The fluid resistance appears here expressed by the three characteristic constants ¢, &, I of the vortex configuration
(a8 u is expressed by the last). In the deduction of this last formula we did not take account of the stability condi-
tions, so that this formula applies to any value of the ratio h/l. If we assume the vortices in the row to be brought
all close together so that they are uniformly distributed along the row, but in such a way that the vortex intensity per
unit of length remains finite, we thus pass to the case of continuous vortex sheets. In this cage {/l="U, but {3/I=0

and u=g , 8o that the fluid resistance disappears. The discontinuous potential flow of v. Helmholtz thus does not
give any resistance when the depth of the dead water remains finite, as can also be shown from general theorems.
THE FORMULAE FOR FLUID RESISTANCE.

Let us now apply to our special case the general formula we have just found, introducing the relations between
¢and u,and k and [ according to the stability conditions. For the speed » we have
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further,
/1=0,283
so that we get

W=pl[0,2834§.u (U—-2u) +£u’]

1f we introduce, as is ordinarily done, the resistance coefficient according to the formula
W=yypd U*

where d is a chosen characteristic climension of the body, to which we refer the resistance, we will obtain {, expressed
by the two ratios /U and !/d in the following way

u AE I/
(111 V= [0,7997—0,323(7) ]E

We have thus obtained the resistance coefficient—which before could be observed only by resistance measurements—
expressed by two quantities which can be taken directly from the flow phenomenon, viz, the ratio

u _ Velocity of the vortex system

T~ Velocity of the body
and
{__Distances apart of the vortices in one row

d Reference dimension of the body

Both quantities, corresponding to the similitude of the phenomenon, within the limits of validity of the square law
can depend only upon the dimension of the body.

These two quantities can be observed very easily experimentally. The ratio l/d can be taken directly from photo-
graphs, while the ratio u/ U can be found easily by counting the number of vortices formed. If we designate by T the
time between two identical flow states we can then introduce the quantity I,=UT, which is the distance the body
moves in the period 7. This quantity must be independent of velocity for the same body, and the ratio {l, for similar
bodies must also be independent of the dimensions of the body but determined by the shape of the body. Remember-
ing that T=1[/( U—u), we then find between u/ U and /I, the simple relation

u 1
7=,

By some provisional measurements we have proved the similitude rule and afterwards calculated the resistance
coefficient for a flat plate and a cylinder disposed normal to the stream, for the purpose of seeing if the calculated values
agreed with the air resistance measurements, at least in order of magnitude.

Our measurements were made first on two plates of width 1.75 and 2.70 cm. and 25 cm. length, and we have meas-
ured the period T and calculated the quantity [,=UT for two different velocities. We have used a chronograph
for time measurements and the period was observed for each vortex row independently. Thus was found for the
narrower plate

U=10.0 cm/sec 15.1 em/fsec
T=1.26 sec 0.805 sec
UT=12.6 cm 12.1 em
for the wider plate
U=9.6 cm/sec 15.5 cm/sec
T=1.99 sec. 1.20 sec.
UT=19.1 sec. 18.6 sec.

Mean value UT=18.8 em

The ratio of the plate width is equal to
2. 70__1 54
1,75

and the ratio of the quantities l,= UT is equal to
18. 8
m=l.52
So that the similitude rule is in any case confirmed.
A circular cylinder of 1.5 cm. diameter was also teasted at two speeds. We found the values

U=11.0 cm/sec 15.8 em/fsec
T=0.66 sec. 0.48 sec.
UT=73cm 7.5em

Mean value UT=7.4 cm
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Kuowing the values of l,= UT we can calculate for the plate and the cylinder the speed ratio »/U. Thus,

for the plate uf U=0.20.
for the cylinder u/ U=0.14

and with the values of { indicated before we have

for the plate l[/d=5.5
for the cylinder I/d=4.3

where d is the plate width or cylinder diameter. We thus find the resistance coeflicients

for the plate y,=0.80
for the cylinder ¥, =0.46

The resistance measurements of Foppl! have given for a plate with an aspect ratio of 10:1 the resistance coefficient
¥»==0.72 and the Eiffel? measurements, for an aspect ratio of 50:1; that is, for a nearly plane flow, the value y_,=0.78.
Further, Foppl has found for a long circular cylinder ¢, =0.45, so that the agreement between the calculated and meas-
ured resistance coefficients must be considered as fully satisfactory.

The theoretical investigations here developed ought to be extended and completed in two directions. First,
we have limited oursclves to the uniplanar problem; that is, to the limiting care of a body of great length in the direc-
tion normal to the flow. It is to be expected that by the investigation of stable vortex configurations in space we will
also be brought to a better understanding of the mechanism of fluid resistance. However, the problem is rendered
difficult by the fact that the translation velocity of curved vortex filaments is not any longer independent of the size
of the vortex section, because to an infinitely thin filament would correspond an infinitely great velocity. Never-
theless, it must not be considered that the extension of the theory to the case of space would bring unsurmountable
difficulties.

Much more difficult appears the extension of the theory in another direction, which really would first lead to a
complete understanding of the theory of fluid resistance, namely, the evaluation by pure calculation of the ratios
l/d and »/U, which wc have found from flow observations, and which determine the fluid resistance. This problem
can not be solved without investigation of the process of vortex formation. An apparent contradiction is brought out
by the fact that we have used only the theorems established for perfect fluids, which in such a fluid (frictionless fluid)
no vortices can be formed. This contradiction is explained by the fact that we can everywhere neglect friction except
at the surface of the body. It can be shown that the friction forces tend to zero when the friction coefficient decreases,
but the vortex intensity remains finite. 'If we thus consider the perfect fluid as the limiting case of a viscous fluid,
then the law of vortex formation must be limited by the condition that only those fluid particles can receive rotation
which have been in contact with the surface of the body.

This idea appear first, in a perfectly clear way, in the Prandtl theory of fluids having small friction. The Prandtl
theory investigates those phenomena which take place in a layer at the surface of the body, and the way in which the
separation of the flow from the surface of the body occurs. It we could succeed in bringing into relation these inves-
tigations on the method of separation of the stream from the wall with the calculation of stable configuration of vortex
films formed in any way whatever, as has been explained in the foregoing pages, then this would evidently mean
great progress. Whether or not this would meet with great difficulties can not at the present time be stated.

1 See the work of O. Foppl already mentioned.
? G. Eiffel, ““ La Resistance de I’Air et I’ Aviation,” p. 47, Paris, 1910.
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