
The Mechanism of Fluid Resistance. l

By 'i'm v. K.,;rm.;,n and {I. Ru_acH.

The resistance oia solid I),My movin!_ with a unif,_rm vel_city in an unlimile<l [!uid can be calculatod theoretically

only in the limiting cases of very slow ,a,)tim_ (,f small hc_dio+ (,r ,)f very high fiui<t viscosity. We are brought in such

cases to a resistance proportional to the tirst l_ow_,r ,,f th,. \el, wily, t,> Ihe _iscosity constant, and, for geometrically

similar systems, to the linear dimcnsians _,r the body. 1'o lhc do',:i dn _[ thi_ "linear resistance"- which has aroused

much interest, especially within recent years, on :/<,',,/lut of some impoltant experimental applications -has to he

opposed the limiting domain of compar:tti':el_ large x eh,citics, f,)r which the s,_-called _'velocily square law" hohts

with very good approximation. In this latt(_r ,t,,main. which ¢,mbr_ees nearl 5- all the important technical applications,

the resistance is nearly independent of fluid \ iscc,sily, and is Im,porti(,nal 1_) the fluid density, the square of the

velocity, and again for geometrically simil:tr systems 1o a surface dimension of the hody. In this donlain of the

•' square law" is included the iml)_wtant ,:asp ,jr air resistance, because it is eas t" to veriiy, by the calculation of tile

largest density variations whi,,h can occur for thf_ speeds we meet in aeronautics aml airscrews, that the air compression

can be neglected without any sensible error, lhe inihmnce _,i tim compression lirst becomes important for velocities

of the order of the velocity or sound, fn fact, experimenls show that the air resistance, in a broad range from the small

speeds at which the visco:-'ily plays a rnlc up Io the large :peuds co:nparable to the vel,_city of sound, is proportional

to the square of the velocity wilh very good approximation.' In general, ltuid resi:(ance depends upon the form and

the orientation o[ the body in such a complicated way that it is extraordinarily difficult to predetermine the flow to a

degree sullicien! for the evaluation of lhe resistance of a body :ff :iven form, by a process of pure calculation, as can be

done by aid of tile Stokes formula in the ca:_e of very slow moli,,ns. \\% als_J will not succeed in this paper in reaching

sm'h a scdution, but will still make the atlempt to give a ,Teneral view of the .t,cho_,i_,_ ofjl.id rei,,ta.ce _ithL_ ghe
limit _( th,' ,q_zarc la_.

We can state the problem of fluid resi-:tance in the followin_ somewhat more exact way.

Since the time of the fundamental considerations of O,:bo:_e ibynold,; on the mechanical similitude o[ tlow

phenomena of incompressihle viscous fluid_ (A"different density and viscosity and under geometrical similitude -for

different sizes of the system consid(,re(l, it is known that the resistance plmnomenon deimnds upon a single parameter

which is a certain ratio of tile abuve-me:ltione,1 quantities. Thus the fluid re:istance (,t a body moving with the uniform

velocity U in an incompressible unlimited lluid may be expressed by a formula of tim form '

where

is the viscosity constant

o the fluid density,

t a definite but arbitrarily eh,)sen linear dimension of the body, andf(g-i:_?)afimction of the single variable

R =-UZ'-/. We will call " Roynohls' parameter" {he quantity R which has a zero dimension.

Tlmorv a_,l ext,,,rim_,t_t sh_,,,_ th..l, b)r v,,ry ::mail valu.s of If !h:t i,-, i,w l(vv _,'l,),'ili,,_, or.-mall bodies, or great

viseosily th,, f,mcti(_,_f, i,'_ i: v(>r.c r;_ :trl 3- c,,;,:tan{; th_ r_,.i,-:));)(.,: c _ci]i,'i,,),t _,f the >;l',:)ke'_ f<)rmula corresponds to the

limiting c:ts_ off, R, for L' O. The s,!uar:, Iaw corresponds to the [imiti_>g case of 1,':= m. We al)proaeh this latter case

the more nearly the smaller the ,,iscosit3 ,,, so that in the limitir_g case of *¢=m, the fluid can be considered as

frictionh,ss. And w,_, can ask oursr,l,.(,s, tv ,,h_ t h'.eit/.:/ ,'_)..:i,l.r,_lie_¢t does tl, c.fi,)/," of the _;_'c:m.; fluid ,rlfol_?td (l solid

body te:_d ,._,ea .,: t._s /,_ the /i,a,;/i.,l c,_,, ,-)j'.,_ ]a ,f :.t fl_t,,l? This is, according to our view, the iundamental point of
the resistance prol,h:m.

The fact that _;e obtain in this case a resistance nearly independent of the viscosity constant -since according

to formula tl: this corresponds Io th(_ square law allows us t(_ conjecture that in this limitin_ ease the resistance is

determined by flow types mn,h as can occur in a perfect fluid.

ITranslation of the paper of Th. 7K;'rt_n and n-Ru_;h p_lished in_'PhysiLli_hezeitschr;et, '' Jan. 15, 1912.
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AN INTRODUCTION TO THE LAWS OF AIR RESISTANCE OF AEROFOILS.

It is now certain that neither the so-called "continuous" potential flow, nor the "discontinuous" potential flow

discovered by Kirchhq[fand _,. Hclmholtz, can express properly this limiting case. Continuous potential flow does not

cause any resistance in the case of uniform motion of a body, as may be shown directly by aid of the general momentum

theorem; the theory of the discontinuous potential flow, which, in relation to the resistance problem has been dis-

cussed principally by l,or(l Rayh,igh, 1 leads to a re_sistance which is proportional to the square of the velocity; the cal-

culated values do not, h.wever, agree with the observed ones. And, i_dependent of the insu/_cient agreement between

the numerical values, the hypothesis of the "dead water," whip,h, aceordb_g t() this theory ought to move with the

body, is in contradiction to nearly all observations. It is e_y to see [,y aid c,f the simplest experiments that the flow,

when referred to a system of coordieat(_s moving with the body, is n_t stationary, as assumed in this theory. Further-

more, in the theory of disco,_tinuous potential motion, the suction effect behb,)d the body is totally missing, while in

the dead water, which extemis t,, intinity, we have ex'erywhere the same pressure as in the undisturbed tluid at a great

distance from the body. But according to recent measurements, in many cas,,s the suction effect is of first importance

for the resistance, and io any case eoutributes a sensible part of the last.

The reason why in a perfect fluid the d i.scoutinuous potential flow, although hydrodynamically poa¢iblc, is not realized

is without any doubt the instability of the surfaces of discontinuity, as has already been recognized by v. IIelmholtz

and specially mentioned by Lord Kelvin. z A surface of discontinuity can be considered as a vortex sheet; and it can

be shown in a quite general way that such a sheet is always unstable. This can also be observed directly; observation

shows that vortex sheets have a tendency to roll themselves up; that is, wc see the concentration around some points

of the vortex intensity of the sheet ori_nally between them. This observation leads to the question: Can there exist

l
\

Fro. 1.

stable arrangements of isolated vortex filaments, which can be considered as the final product of decomposed vortex

aheets? This question forms the starting point of the following investigations; it will, in fact, appear that at least for

the simplest case of uniplanar flow, to which we will limit ourselves, we will be led to a "flow picture" which in all

respects corresponds quite well to reality.

THE INVESTIGATION OF STABILITY.

We will investigate the question whether or not two parallel rows of rectilinear infinite vortices, of equal strength

but of inverse senses, can be so arranged that the whole system, while maintaining an invariable configuration, will

have a uniform translation and be stable at the _mo time. It is easy to see that there exist two kinds of arraugement_

for which two parallel vortex rows can move with a uniform and rectilinear ve[ecity. The vortices may be placed

one opposite the other (arrangement a, fig. 1), or the vortices of one row may be placed opposite the middle points

of the spacing of the vortices of the other row (arrangement b). In the ca_e of equality of spacing of the vortices in

both rows, as a consequence of symmetry for the two arrangements a and b, it appears that each vortex has the same

velocity in the sense of the X axis, and that the velocity in the sense of the ]"axis is equal to zero. We have to answer

the question, which of these two arrangements is stable?

To illustrate first by a _mple example the method of the investigation of stability, we will start with the con-

sideration of an infinite row of infinite vortices disposed at equal distances I and having the intensity _-, and will study

On the resistance of fluids, Mathematical and Physical Papers, Vol. I, p. 287.

w .Mathematical and Physical Pap(_r_, Vol. IV, p. 215. Thtg paper contains a detaitecl critique of the theory of discontinuous motion.
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the stability oi such a system. If we designate by xp, y_, the coordinates of the p-th vortex, and by xq, yq the

coordinates of the q-th the velocity impressed on the latter vortex by the former is given by the formulae

=_ . Yp-- yq
Ulpq

(xp-Xq)2q-(yp--yq) 2

xp- x_
Vpq_--_-- •

2_ (Xp--Xq)2T(yp--y,) 2

These formulae express the fact that each vortex communicates to the other a velocity which is normal to the line

joining them and is inversely proportional to their distance apart. Therefore the resultant velocity of the q-th vortex

due to all the vertices is equal to

dxq _ _ _ yp-yq

dt --2_'A...'(zp- z_p-yq) _

dy._ __-a _- _
dt 2_r___d(Xp-Xq)2-l-(y_-yq) 2

where p=q is excluded from the summation. If now the vortices are disturbed from their equilibrium position, the

small displacements being _'p, vp, the vortex velocities can be developed in terms of these quantities, and we will

be brought to a system of differential equations [or the disturbances _p, vp, i. e., for small oscillations of the system.

Let us accordingly put

xp=pl +_,

Yp=%

and, neglecting the small quantities of higher ordol_, we will get

The differential equations so obtained, which are infinite in number, are reduced to two equations by the sub.

stitution

These two equations are

with p_o

The physical meaning of this substitution is easy to see: we consider a disturbance in which each vortex undergoes

the same motion only with a different phase _. Under such conditions we have to do with a wave disturbance and the

system will be called stable, when for any value of _, that is, for any phase difference between two consecutive vortices,

the amplitude of the disturbance does not increase with the time.

Let us introduce the notation

. .= _ _-'3,_p_- 1 _ _"_cos(p_)- 1

The foregoing equations then take the form

d_o _

dno , x.

Let us put _o and _o proportional to ex_; we will then find for each value of _ two values for _, that is

x= a:.(_) 59
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It follows that the vortex system considered is unstable for any periodic disturbance, because there is always

present a positive real value of _, that is, the disturbance is of increasing amplitude.

Applying this method in the case of two vortex rows we will find that the arrangement a, that is, the symmetrical

arrangement, is likewise unstable, but that for the arrangement b there exists a value of the ratio h/l (h is the distance

between the two rows, 1 is the distance between the vortices in the row) for which the system is stable.

In both cases X can be brought to the form

-( _= ± _( B :I=_/ C'2-- A )

where A, B, Care functions of the phase difference _. The system will 'be stable if (C _- A s) is positive for any val Lie of ¢.

For the symmetrical arrangement a, the functions A, B, C are expressed by the formq]ae :

But for _=_ we get

... 1 _ p21*-h2 . _,-ll-cosp_.o.

_LJa/_)=_- p_- if-y_-)' v-1

oO

-- _ p_F-h 2 .
B(_)-- _(_2 sm (p_)

p--I

c_

C" " 1 _ p212-h2 cos" "

so that this arrangement is unstable for any values of h and I.

For the unsymmetrical arrangement b we find

A" '-- _ (p+_)U'-h' __--_1-cos(p_)
t_--_jt(p+t),_+h,],+ / r p,t,

p--o p--I

ccJ

B =_-_ (P+_)'t2-h' "
(_) / j[(pT½)2_+h_ sm (P+_)_

p--o

p--O

We see now that C(_)=o, so that in the place where m=_, A must also be equal to zero, because, on account of the

double mgn, X takes a positive real value. This brings us to the condition

/..J[(p+½)_+h,] _= _.. (_p_ _)_
p--O p--O

But

and

oO

_ [(p+])_l_-h _ _r_

(_+_=_
p-O

so that, as the necessary condition of stability we find the relation

cosh_=4_

and for the ratio h/l we find the value
h/I=0,_83 ....
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For a certain value of the wave length of the disturbance, corresponding to ¢=_r, we get X=o, that is, the system

is in a neutral state. But it can be shown by calculation that our system is stable for all other disturbances. This

unique disturbance has to 1)e tested by further investig_ations. It can, however, be seen that a zero value for h must

appear, because only one stable configuration exists. If this were not so, we would find for l/h a finite domain of sta-
bility2

THE _tFL()W PICTURE. ))

The consideration of the question of stability has brought us to the result that there exists a particular config-

uration of two vortex rows which is stab]e. The vorticc,_ of both rows have then such an arrangement that the

vortices of one row are placed opposite the middle of the interval betwecn the vortices of the other row, and the

ratio of the distance h between the two rows to the distance l between the vortices of the same row has the value

h 1

-1 =_r arc cosh _/2%-0,283
The whole system has the velocity

which can also be written

_. ° 7rh

u=_tgh_-

or, introducing the value of h/1 found by the stability investigation, we get

The flow is given by the complex potential (_ potential, ¢ flow function)

where

7V

sin (Zo-Z)T
x=_cq-i¢=i,_r lg

sin (Zo+Z)_

I . hi

zo=_+_ -

By aid of this formula we have calculated the corresponding streamlines and have represented them in Fig. 2.

We see that some of the streamlines are closed curves around the vortices, while the others run between the vortices.

/ _-_ \ _/. .., _ ,"_.-_ \

--,//_ -.y: -.. ;:. '. --....."

FTO. 2.

On the other hand, we have tried to make visible the flow picture behind

a body, e. g., a flat plate or circular cylinder, moved through immobile

water, by aid of lycopodium powder sifted on the surface of the water, and

to fix these pictures photographically (exposure one-tenth of a seeondL

The regularly alternated arrangement of the vortices can not be

doubted. In most cases the vortex centers can also be well determined;

sometimes the picture is disturbed by small "accidental vo',rtices" pro-

duced in all probability by small vibrations of the body, which in our pro-

visional experiments could not be avoided. We had a narrow tank whose

floor was formed by a band running on two rolls, and the bodies tested

were simply put on the moving band and carried by it. It is to be expected

that by aid of an arrangement especially made for the purpose much more regular flow pictures could be obtained,

while in the actual experiments the flow was disturbed on the one hand by the vibrations of the body and on the

other by the water flow produced by the moving band itself.

The alternated arrangement of the vortices rotating to the right and to the left can only be obtained when the

vortices periodically run off first from one side of the body, then from the other, and so on, so that behind the body

there appears a periodic motion, oscillating from one side to the other, but with such a regularity, however, that the

frequency of this oscillation can be estimated with sufficient exactness. The periodic character of the motion in the

so-called "vortex wake" has often been observed. Thus, Bernard _ has remarked that the flow picture behind a

narrow obstacle can be decomposed into vortex fields with alternated rotations. Also for the flow of water around

balloon models the oscillation of the vortex field has been observed. 3 Finally, v. d. Borne 4 has observed and pho-

to_aphed recently the alternated formation of vortices in the case of air flowing around different obstacles. The

I From a mathematical standpoint our stability investigation may be considered as a direct application of the theorems of Mr. O. Toplitz on

Cyelanten with an infinite number of elements, which he has in part published in two papers (Gottingen Nachrichten, 1907, p. 110; Math. Annalon

tgll. p. 351), and in part been so kind as to communicate personally to us.

s Comptes Rendus, Paris, 14S, _9, 1908.

a Technical report of the Advisory Committee for Aeronautics (British), 1910-1l.

Undertaken on the initiative of the representatives of aeronautical science in Gottingen, November, 1911.
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phenomenon cmtht not be explained until now; accordhag to our stal)ility investigation the periodic variations appear

as a natural consequence, of the inst:tbility of the symmetrical flow. 1

It is also very interesting to observe how the stable configuration is established. When, for example, a body is

set in motion from rest (or conversely, the stream is directed onto the body) some kind of "separation layer" is first

formed, which gradually rolls itself up, at first symmetrically on both sides of the body, till some small disturbance

destroys the symmet ry, after which the periodic motion starts. The oscillatory motion is then maintained corresponding

to the regular formation of left hand and right hand vortices.
We have also made a second series of photographs for the case of a body placed at rest in a uniform stream of

water. For this case the flow picture can be obtained from Fig. 2 by the superposition of a uniform horizontal velocity.

We will then see on the lines drawn through the vortex centers perpendicular to the stream direction, some ebbing

point where the stream lines intersect and the velocity is equal to zero. IIowever, in the same way as the motion is

affected by the vibrations of the experimental body in the case of the motion of a body in the fluid, so in this case the

turbulence of the water stream gives rise to disturbances.

As to the quantitative agreement attained by the theory, it must be noted that our stability conditions refer to

infinite vortex rows, so that an a_reement of the ratio h/l with the measured values is to be expected only at a certain

distance from the body. Tim m(+asurements on the photo_aphs show that the distance l between vortices in a row is

very regular, s:) that I may be measulcd satisfactorily, but per contra the distance h is much more variable, because

the disturbance of the vortices takes place principally in the direction normal to the rows, that is, the latter undergo

in the main transverse oscillations. The best way to determine the mean positions of the centers of the vortices would

be by aid of cinematoxraphy, but we can also, without any special difficulty, find by comparison the mean direction

of each vortex row directly from photographs. So in the case of the photograph of a circular cylinder 1.5 cm. in diameter,

when making me'_surements beyond the iirst two or three vortex pairs we have found the following mean values for

h and l

h=l.8 cm.; /=6.4 cm.

So that for the ratio h/l we obtain the value

h/l=0.28.

For the flow around a plate of 1.75 cm. breadth we found

h=3 era.; /=9.8 cm.

Accordingly

hfl=0.305.

The agreement with the theoretical value 0.283 is entirely satisfactory.

For the first vortex pair behind the body, h/l comes out sensibly larger, somewhere near h/l=0.35. But in the first

investi_tion of K_rm£u, mentioned at the beginning of this paper, the stability of the vortex system was investigated

in such a way that all the vortices with the exception of one pair were maintained at rest and the free vortex pair con-

sidered oscill:_ting in the velociLy field of the others. Under such assumptions it was found that h/l=l/r arc cosh _f3"=

0.36. We therefore think that the conclusion can be drawn, that in the neighborhood of the body, where the vortices

are even more limited in their displacements, the ratio h/l is greater than 0.283 and approaches rather the value of 0.36.

APPLICATION OF THE MOMENTUM THEOREM TO THE CALCULATION OF FLUID RESISTANCE.

Let us assume that at a certain distance behind the body there exists a flow differing but slightly from the one

of stable configuration which we have established theoretically in the foregoing, but that at a distance in front of the

body, which is great in comparison with the size of the body, the fluid is at rest--as it is quite natural to assume.

We will then be brought by the application of the momentum theorem to a quite definite expression for the resistance

which a body moving with a uniform velocity in a fluid must experience. Practically, by such a calculation for the

uniplauar problem, we will obtain the resistance of a unit of length of an infinite body placed normally to the plane

of the flow.

We will use a system of c_,ordinates moving with the same speed u as the vortex system behind the body. In

this coordinate system, according to our assumptions, at a sttfftcicnt distance from the body the vortex motion behind

the body as well as the fluid state in front of the body will be steady, and we will have, when referred to this system

of coordinates, a uniform flow of speed -u in front ef the body, but behind the body the velocity components will

be expressed by

--u+_ and i3x

where _b is the real part of the complex potential

sin (zoTz) 1• i¢

sin (zo-z) 1

1 The tone that is emitted by a _'tiek rapidly displaced in air is fixed by this periodicity, to which Prof• C. Runge has already drawn otlr

_"^ntion.
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The body itself has, relative to this system of c(),)rdinates, the veh)city U-u, where U is the abs()h,.te veb)city of the

body. If we designate by 1 the distance between the vortices of (_ne row, there must take place, as a c_)nsequence

_f the displacement of the h(,dy, in t l_e time T--l/( U- u), the formati(m of a w_rtex [)n each side (,f the h(,dy. We

will calclfiate the increment ef the m(_mentllm, al,_ng the X axis, in this time interval T (that is, between two instants

of time of identical flow state) and [()r a part of the fl(Jw 1)lane, which we de_ine in the foll,)wing way (see fig. 3). On

O_e sides the plane p_)rti(m considered is limited by the tw,, parallel straight lines y_ _:,7: in front and behind, by

tw,, straight lines x=(_()nst disl)_,sed at distances fr,)m the body which are great in c,mlparis,,n with the size of the

body, tbe line behind the h_dy being drawn so as t() pass through the point half way hctween two w)rtices having

inverse r_)tati,,n. When the boundary lines _re sufficiently far frc_m the hody we can consider the fluid veh)cities at

these lines as having the values indicated in the foreg()ing.

For a space with the b,Jnndaries indicated above the relati,)n must exist tl_at the momentum imparted to the

.,[ oWdt (where W is the resnltant fluid re:'isttnce) is equal to the difference l)etween the m(,mentum eont_finedbody

in the space considered at the times t=:r .rod t=r_- T and the sum ,,f the infl(,w momentum ._nd the time integral

of the pre_snre along the boundary lines. ]f we thus c¢)nsider as exteri_r forces the force - lVand the pressure, which

act on the whole system of fluid and solid, they m_Jst then correspond te the increment _)f the momentum--that is,

to the excess of momentum after the time T less the infl¢)w momentum.

Y

.... c i N-- -
_l_

Y'? fl 8 _" _"

FzQ. 3.

We will calculate these momentum parts separately. The excess of momentum after the time T is equal to the

values that the deuble inte_al p.[.[ u (a', y) dz dy takes at the times t=r and t=r-_ T. Bnt thedifference of the

time interval has been chosen in such a way that the state of flow is identical, with the difference that the body has

been displaced thr, mgh the distance l=(U-u) T. The douhle integral reduces thus to the difference of the integrals

taken over the strips ABCD and A_BtCtD _ beth of breadth I. For the strip AtB_(!tD _ the fluid speed can be taken

1 u " 6_b
equal to -u for the strip ABCD equa to- +_)_ so that we get

If we pa_ to side boundaries having ,_=_, we obtain for Y, the very simple expression

I, =p_h

which can also be obtained directly by the application of the general moinentum theorem to vortex systems.

We will unite in one single term the inflow moment_m_ a_.d the time integral ()f the pre,,sure, heca_e in such a

way we will be led to more simple results. If we c, msider a uniphmar st_'adv fluid m_)tion with the veh,eity c,,m-

portents u (x, y) and v (_, y) and consider a fixed cont_mr in the plane, the in[h_v m _ment_m in a unit _f time in the

direction of X is expressed by the Closed integral ,f(u_dy-u_4_) where u, v are the velocities on the contour. The

gives the resultant fpd!l al_)ng the X axis, but since fera steady flow the relationpressure

lz_-_-v _
p = t.onst -, --2-

must hold, we thus obtain fi)r the sum ,)f both integrals multiplied by 7'

_ -- V _
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Or, introducing the complex quantity,
_- .- 0(,,+i_) i)x
w=u-_v= _)(z T iy)-- _)z

we get

where fin is to be underst.od as the complex part of the integral.

If we put for the contour

V_V r

then the terms in u 2 will at once be eliminated, and also the terms in u on account of the equality of the inflow and

outflow; and there will remain only the terms in u _2 and u% t. The latter will give a finite value only for the boundary

line passing through the vortex system (AD in fig. 3). Passing to ,1=_, we get

and integrating along AD we get

But

r pxO®)-!

I_J x(-i= _l

w--dx t..h_

so that, integrating and introducing the values

I cosh

h_

x(-tw) =--X+t2--t

i_ _. ['tuh t*-]

where u again has been written for-_/tgh_.

Thus the total momentum imparted to the body i_

If for the mean value of */T] Wdtwe
write

T=l/(U-u) the final formula

(II)

W (as the time mean value of the resistance) we will obtain with

h 2

W=p_--_( U-2u)+p

The fluid resistance appears here expressed by the three characteristic constants i', h, l of the vortex configuration

(as u is expressed by the last). In the deduction of this last formula we did not take account of the stability condi-

tions, so that this formula applies to any value of the ratio hi1. If we assume the vortices in the row to be brought

all close together so that they are uniformly distributed along the row, but in such a way that the vortex intensity per

nnit of length remains finite, we thus pass to the case of continuous vortex sheets. In this case f/l= U, but _2/l=0

U, so that the fluid resistance disappears. The discontinuous potential flow of v. Helmholtz thus does notand u

give any resistance when the depth of the dead water remains finite, as can also be shown from general theorems.

THE FORMULAE FOR FLUID RESISTANCE.

Let us now apply to our special case the general formula we have just found, introducing the relations between

l'and u, and h and l according to the stability conditions. For the speed u we have

u=14 _
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further,

so that we get

hfl=0,283

W=#l[O,283_/8.u ( U-- 2u) T 4u 2]

If we introduce, as is ordinarily done, the resistance coefficient according to the formula

W=ffw p d U 2

where d is a chosen characteristic dimension of the body, to which we refer the resistance, we will obtain Cw expressed

by the two ratios u[ U and lid in the following way

U U 2

(III) _I% = [0,799-_- 0,323 (_)]_

We have thus obtained the resistance coefficient--which before could be observed only by resistance measurements--

expressed by two quantities which can be taken directly from the flow phenomenon, viz, the ratio

u Velocity of the vortex system

_:= Velod_y of th_ body
and

l Distances apart of the vortices in one row

-d= Reference dimension of the body

Both quantities, corresponding to the similitude of the phenomenon, within the limits of validity of the square law

can depend only upon the dimension of the body.

These two quantities can be observed very easily experimentally. The ratio lid can be taken directly from photo-

graphs, while the ratio u/U can be found easily by counting the number of vortices formed. If we designate by T the

time between two identical flow states we can then introduce the quantity lo= UT, which is the distance the body

moves in the period T. This quantity must be independent of velocity for the same body, and the ratio l/lo for similar

bodies must also be independent of the dimensions of the body but determined by the shape of the body. Remember-

ing that T=l/(U-u), we then find between u/Uand l/lo the simple relation

u l

By some provisional measurements we have proved the similitude rule and afterwards calculated the resistance

coefficient for a fiat plate and a cylinder disposed normal to the stream, for the purpose of seeing if the calculated values

agreed with the air resistance measurements, at least in order of magnitude.
Our measurements were made first on two plates of width 1.75 and 2.70 cm. and 25 cm. length, and we have meas-

ured the period T and calculated the quantity lo=UT for two different velocities. We have used a chronograph

for time measurements and the period was observed for each vortex row independently. Thus wa_ found for the

narrower plate
U=IO.O cm/sec 15.1 era/see

T=1.26 sec 0.805 see

UT--12.6 cm 12.1 ern

for the wider plate

The ratio of the plate width is equal to

U=9.6 cm/sec 15.5 cm/sec
T=1.99 see. 1.20 see.

UT=19.1 see. 18.6 sec.

Mean value UT----18.8 era

and the ratio of the quantities loft UT is equal to

18.8=1.52
12.3

So that the similitude rule is in any case confirmed.

A circular cylinder of 1.5 era. diameter was also teasted at two speeds.

U=ll.O era/see

T----0.66 see.

UT=7.3 on

We found the values

15.8 cm#ec

0.48 see.

7.5 cm

Mean value UT=7.4 on
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Knowing the values of Io= UT we can calculate for the plate and the cylinder the speed ratiou/U. Thus,

for the plate u/U=0.20.

for the cylinder u/U=0.14

and with the values of I indicated before we have

for the plate 1/d_5.5

for the cylinder l/d=4.3

where d is the plate width or cylinder diameter. We thus find the resistance coefficient_

for the plate _w--_0.80

for the cylinder _bw=0.46

The resistance measurements of FoppP have given for a plate with an aspect ratio oI 10:1 the resistance coefficient

tw =0.72 and the Eiffel-' measurements, for an aspect ratio of 50:1 ; that is, for a nearly plane flow, the value ¢/w=0.78.

Further, Foppl has found for a long circular cylinder ¢w=0.45, so that the agreement between the calculated and meas-

ured resistance coefficients must be considered as fully satisfactory.

The theoretical investigations here developed ought to be extended and compleled in two directions. First,

we have limited ourselves to the uniplanar problem; that is, to the limiting ca_e of a body of great length in the direc-

tion normal to the flow. It is to be expected that by the investigation of stable vortex configurations in space we will

also be brought to a better understanding of the mechanism of fluid resistance, ttowever, the problem is rendered

difficult by the fact that the translation velocity of curved vortex filaments is not any longer independent of the size

of the vortex section, because to an infinitely thin filament would correspond an infinitely great velocity. Never-

theless, it must not be considered that the extension of the theory to the case of space would bring unsurmountable

difficulties.

Much more difiicult appears the extension of the theory in another direction, which really would first lead to a

complete understanding of the theory of fluid resistance, namely, the evaluation by pure calculation of the ratios

lid and u/U, which we have found from flow observations, and which determine the fluid resistance. This problem

can not be solved without investigation of the process of vortex formation. An apparent contradiction is brought out

by the fact that we ha_e used only the theorems established for perfect fluids, which in such a fluid (frictionle_ fluid)

no vortices can be formed. This contradiction is explained by the fact that we can everywhere neglect friction except

at the surface of the body. It can be shown that the friction forces tend to zero when the friction coefficient decreases,

but the vortex intensity remains finite. "If we thus consider the perfect fluid as the limiting case of a viscous fluid,

then the law of vortex formation must be limited by the condition that only those fluid particles can receive rotation

which have been in contact with the surface of the body.

This idea appear first, in a perfectly clear way, in the Prandtl theory of fluids having small friction. The Prandtl

theory investigates those phenomena which take place in a layer at the surface of the body, and the way in which the

separation of the flow from the surface of the body occurs. It we could succeed in bringing into relation these inves-

tigations on the method of separation of the stream from the wall with the calculation of stable configuration of vortex

films formed in any way whatever, as has been explained in the foregoing pages, then this would e_idently mean

great progress. Whether or not this would meet with great difficulties can not at the present time be stated.

See the work of O. Foppl already mentioned.
'G. Eiffel, "La Resistance de PAir et l'Aviation," p. 47, Paris, 1910.
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