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1.0 SUMMARY

An part of the Quiet Clean Short-haul Experimental Engine (QCSEE)
Program sponsored by NASA Lewis Research Center, a series of acoustic tests
were conducted on the Over-the-Wing (OTW) engine. These tests evaluated
the fully suppressed noise levels in forward and reverse thrust operation
and provided insight into the component noise sources of the engine plus
the suppression achieved by various components.

System noise levels using the contract specified calculation procedure
indicate that the in-flight noise level on a 152m (500 foot) sideline at
takeoff and approach are 97.2 and 94.6 EPNdB, respectively, compared to a
goal of 95.0 EPNdB. In reverse thrust, the system noise level was 106.1
PNdB compared to a goal of 100 PNdB.

Baseline source noise levels alireed very well with pretest predictions.
Inlet-radiated noise suppression of 14 PNdB was demonstrated with the high
throat Mach number inlet at 0.79 throat Mach number.



2.0 INTRODUCTI0N

The General Electric Company is currently engaged in the Quiet Clean
Short-haul Experimental Engine Program (QC8EE) under Contract NA83-18021 to
the NASA Lewis Research Center. The Over-the-Wing (OTW) experimental engine
was designed and built under the program to develop and demonstrate technology
applicable to engines for future commercial short-haul turbofan aircraft. The
initial buildup of the OTW engine and boilerplate nacelle was tested at
General Electric's Peebles, Ohio, Outdoor Test Site 4D during the period from
March 31, 1977 through June 9, 1977.

Initial testing included a mechanical and systems checkout with hard wall
acouata.c panels and a bellmouth inlet. Performance data were taken over a
range of fan speeds and at three exhaust nozzle areas (aide door angles).
This phase of testing provided data in the range of takeoff and approach
operating conditions to explore "uninstalled" perfo nuance with maximum inlet
total pressure recovery. Fan performance characteristics were sapped over a
range of fan speeds and operating lines. An acoustic baseline was also run in
the unsuppressed forward thrust configuration.

The inlet was then changed to the boilerplate high throat Mach number
design to investigate installed performance with real inlet total pressure
recovery. Points were repeated at takeoff and approach operating conditions.
teverse thrust testing included 105 0 and 115 0 blocker angles with a 0.6 lip
length ratio. A reingestion shield, 3.66m (12 ft) in diameter and 9.14=
(10 ft) long, was used to reduce Teingestion of hot exhaust gases during re-
verse thrust testing, and the effect of this shield on thrust measurements
was calibrated in the forward thrust mode.

Following reverse thrust performance testing, all hard wall ; panels were

replaced with acoustically treated panels and an acoustic splitter was added
in the fan duct. Fully suppressed acoustic data were taken in the reverse
and forward thrust mods. Additional acoustic tests in forward thrust were
then conducted to evaluate the contribution of inlet treatment and the
combined effect of the splitter and core exhaust nozzle treatment.

Following the completion of acoustic testing, additional tests were
conducted to evaluate control characteristics and engine throttle response
in the forward thrust mode.

The engine was inspected refurbished, and delivered to NASA Lewis
Research Laboratory on June 30, 1917 for further planned testing adjacent
to a wing section.

This volume of the propulsion syRtert test report includes results of
the analysis of internal and far field acoustic measurements and the adjust-
stnt of this data to reflect the specified four engine, 66700 kg (147000 lb)
OTW aircraft for comparison with sideline noise goals. These adjustments
include the addition of jet/flap interaction noise levels to the engine alone
noise levels measured during the test program. Detailed acoustic data used
in this analysis may be found in a separate vol eae, Appendix S.

2
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3.0 TEST CONFIGURATIONS

The QCSER OIV engine was tested on pad IV-D at the General Electric
Company Peebles Test Operation near Peebles, Ohio. Acoustic testing occurred
between April 29 and June 9, 1977. This section documents the configurations
tested and the data acquisition and reduction processes.

The engine incorporated many low noise design features as indicated
in Figure 1 and in Table I. Included are wide rotor-stator spacing, frame
treatment and treated vanes, stacked treatment in the core to attenuate both
high frequency turbine noise and low frequency core noise, removable treated
fan exhaust wall panels and splitter, and a hybrid inlet which combined high
throat Mach number acceleration suppression with inlet wall treatment.

Details of tht OTW acoustic design are available in References 1, 2, 3
and 4.

Five configurations were tested as part of the acoustic investigation on
this engine. An overview of the five configurations is given in Table II and
indicates the general set-up of each. Tables III through VII present the
specific data points acquired for each test and the corresponding engine
operating parameters.

3.1 FORWARD THRUST

Of the five configurations tested, four were in the forward thrust mode,
Figure 2 is a photograph of the fully suppressed configuration. The inlet
is the hybrid inlet or high-throat Mach number inlet with treatment. Nate in
Figure 3 that this Oi41 engine has i "D" shaped nozzle with variable side
doors for varying discharge nozzle area. The engine was mounted inverted from
what it would be when installed over a wing on an aircraft.

A schematic of the baseline engine is shown in Fi gure 4. It was tested
w• ':th a hard wall bellmouth, no fan exhaust duct treatment, and no core trcat-
ment. The fan frame treatment and the treatment on the pressure side of the
vanes was not removable and was therefore included in the baseline engine test
configuration.

The fully suppressed engine schematic is presented in Figure S. This
configuration is the one used to determine the system noise levels. Its
suppression features include high throat Mach number treated inlet, fan aft
duct and core wall suppression, and an acoustic splitter. These are in addi-
tion to the fan frame treatment mentioned above.

Inlet acoustic performance with a high-throat Mach number inlet without
treatment was given by the configuration in Figure 6. The treatment panels in
the inlet were replaced with hardwall panels to allow separate determination

3
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Table 1. Acoustic Design Paris#tare.

• 41 m/sac (80 knots) Aircraft Speed
e 61 m (200 ft) Altitude

Ntnmber of Fan Blades

Fan Diameter

FAn Pressure Ratio

Fan rpm (takeoff)

Fan rpm (design, 100 percent)

Fan Tip Speed

Number of 0GV's

Fan Weight Flow (4orrr:ted)

Inlet Mach Number (throat)

Rotor/MV Spacing

Treated Inlet Length to Fan Di motor Ratio

fthaust Area ("D" nossle)

Gross Thrust (Uninstat ted)

Ala.la Pawning Frequency (Fan)

vauN/Matte (tat io

28

180.4 cm (71 in.)

1.34

3779 rpm

3743 rpm

350.5 m/sec (1150 ft/sec)

33

405.5 kg/sec (844 lb/sec)

0.74

1.93

0.74

1.747 m2 0708 in.2)

43.4 kN 01.000 lb)

1760 Ns

1.18

;t
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Table III. Test 6 - Baseline Data Points.

Side
(Door Aig

Acoustic 2 Physical Angle
in.21

NIP(	

KCReading N41 (Degrees) m2 Type Data Taken (1) Comments

1 0 0	 I 0 11.5 2666 1.72 (	 M,	 A,	 K Background noise facility off
2 0	 j 0	 1 0 11.5 2666 1.72 M. A. K Slave Tube pimp
3 0 0 0 11.5 2666 1.72 H. A. K Digital control cooling air
4 0 0 0 11.5 2666 1.72 M. A. K Undercowl cooling (500 counts)
5 0	 ( 0 0 11.5 2666 1.72 N. A. K Undercowl cooling (1000 counts)
6 0 0	 j 0 11.5 2666 1.72 M. A. K Vortex destroyer fans
7 0	 I 0 0 11.5 2666 1.72 M. A, K All facility items
8 44.5( 1696 1 108801 11.5 2666 1.72 M. A, K
9 75.6 2879 12360 11.5 2666 1.72 M. A. K

10 81.4 3100 1 126771 11.5 2666 1.72 M. A. K Vortex destroyer fans on
11 81.4 3099. 12650 11.5 2666 1.72 M. A, K
12 85.4 3252 12860 11.5 2666 1.72 M, A, K Vortex destroyer fans on
13 85.4 3252 12860 1i.5 2666 1_72 M, A, K
14 93.4 3556 13259 11.5 2666 1.72 M, A, K Vortex destroyer fans on
15 933 3551 1	 13258 11.5 2666 1.72 M, A, K
16 95.2 3622 136401 11.5 2666 1.72 M. A. K Vortex destroyer fans on
17 ---- --- ----- 11.5 2666 1.72 M, A, K No signal on tape
18 45.0 1713 10929 25 2947 1.90 M. A, K
19 75.4 2867 12580 25 2947 1.90 N, A, K
20 81.4 3090 112580 25 2947 1.90 M. A. K
21 93.3 3540 13130 25 2947 1.90 M, A, K
22 95.31 3596 13279 25 2947 1.90 M, A, K
23 98.5 3712 13460 25 2947 1.90 M, A. K
24 81.5 3078 125951 25 2947 1.90 M. A, K
25 95.4 3597 13425 0 2444 1.58 M, A. K
26 97.1 3652 13313 11.5 2666 1.72 DA 120' from inlet
27 97.1 3652 13313 11.5 2666 1.72 DA 110' from inlet
28 97.1 3652 13313 11.5 2666 1.72 DA 100' from inlet
29 97.1 3652 13313 11,5 2666 1.72 DA 80' from inlet
30 97.1 3652 13313 11.5 2666 1.72 DA 60' from inlet

31 80.7 3032 12470 25 2947 1.90 DA 60' from inlet
32 80.7 3032 124701 25 2947 1.90 DA 80' from inlet
33 80.7' 3052 12470 1 25 2947 1.90 DA 100' from inlet
34 80.71 3052 12470 1,	 25 2947 1.90 DA lln' from inlet

35 80.71 3052 124701 25 2947 1.90 DA 120' from inlet
63 (2) 81.4 3110 1275, 1 1 25 2947 1.90 P-F", P-N 3 immersions at position 1 for

P-N and 6	 immersions for P-T
64 81.7 3126 12770! 25 2947 1.90 P-0 15 immersions
67 95.4 3646 113600 11.5 2666 1.72 P-FF, P-N 6 immersions for r-T,	 3 immer-

*ions at Pusi^ion 1 for P-N
68 95.51 3656 13520 11.5 2666 1.72 P-0 15	 immer.+tons
69 95.3 3656 134901 11.5 2666 1.72 P-N 3 immersions at Position 2
70 81.5! 3131 12780! 25 2957 1.90 P-N 3 immersions at Position 2
70 98.01 -- --1 11.5 2666 1.72 M,	 A, 30 second of data
71 81.01 3109 12700, 2.5 29471 P-N 3 immersions at Position 3
72 j	 a1.4! 3622 135801 11.5 26661 1.72 I	 P-N (	 3 immersions at Position 3
73 !	 94.41 3622 j	 13580 11.5 2666 1.7i P-N l immersion at Position 4

(1) M 	 Far field microphones, near field microphones and ground plane microphones
A	 Asymmetry microphones
K	 Mall Kulites
DA	 Directional array
P-T	 Throat probe
P-FF	 Fan Pace probe
P-0	 OGV probe
P-N	 Core probe

(See Figure 12 for Kulite and probe locations)

(2) Number sequence changed to agree with engine log system.
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Table V. Test 12 - Fully Suppressed Forward Thrust Data Points.

Acoustic
Needing

2
N106 F Mp I PC I pill

Side
Vast!
Aagl's

(Degrees)

A

Type Oat's Tatea(l) 0mmmestois. 1 ss2

1 0 0 0 0 11.5 2666 1.71 M. A, t Sac6growed mstae facility off
2 0 0 0 0 11.5 1666 1.72 M. 44 t All facility w
3 0 0 0 0 11.3 2661 1.72 N. A, It All facility oa ancept wAerce-

cooliag
♦ 0 0 0 0 11.5 2166 1.71 V. A. It All facility oa
3 42.! 1656 10481 0.210

3 1"6
1.12 M. A, t

6 73.1 2572 12313 --- 11.3 2666 1.72 N. A,.t
7 50.0 3018 12729 0.536 It.3 2666 1.72 H. A, t
4 SS.• 1241 11070 0.5" 11.5 2666 1.12 N. 4, t
! 96.9 3631 13493 0.720 11.5 2666 1.12 M. A, t

10 16.1 3611 13614 0.759 11.3 2666 1.72 N. A. t
I1 96.3 3691 13803 0.160 11.3 2666 1.72 N. A..t
12 42.1 1608 10873 -- 23 2947 1.90 N. A. t
13 13.6 26% 12465 0.500 23 2947 1.90 M. A..9

14
so .S 3114 12115 0.361 25 2947 1.90 M, A..t

it 80.3 3104 12961 0461 23 2141 1." M. A..t Core staters clot" S' (cam
nominal

16 80.2 3101 11100 0.561 25 2%7 1.90 N. A. t tore Kates closed 10' from
nosiest

17 66.3 3170 1290! 0.613 23 1"? 1." M, A	 t
18 93.3 3689 13483 0.78! ?S 1067 1.10 N, A. tto

80.1 3100 12683 0.557 23 2941 1.90 9, A. t
20 41.9 1603 10480 -- 0 2444 L.54 N, A. t
It ?S.t 2910 12563 0.45S 0 2444 I.St N. A. t
12 74.1 3029 12141 0.452 0 2644 1.54 M. A. t
23 66.! 1211 13146 0.352 0 2444 1.35 W. A. It
14 79.3 3030 12763 ^- 0 2"4 1.$& M, A. t
25 66.7 3631 13411 0.191 23 2947 1.90 M. A. t
26 94.5 3672 13463 0.718 23 2947 1.10 N. A. t
21 go.8 30" 12651 --- 23 2947 1.10 FT 6 immersiome
24 41.2 31+2 12746 -- 1S 2947 1." Frr 6 immersiaas
it 63.2 3143 11736 -- 35 2"1 1.10 FO IS immeralana
30 82.2 3144 12748 -- 25 2"1 1.90 f-M 3 immersions at position 1
31 41.7 1594 10663 --- 23 2"? 1." FO 6 immarsiaas
31 41.9 1603 10872 -- IS 194? 1.90 FN 3 immersions at Position 1
33 04.7 5667 ISM -- 11.5 7666 1.72 DA 60' from inlec
34 WI 166? 13382 -- it's 2466 1.72 DA 80' (tom inlet
3S 94.7 3661 135" -- 11.5 2666 1.72 DA 100' from Inlet
36 94.1 3667 US" - 11.5 2666 1.72 DA 110' from Inlet
37 14.7 3667 13"1 -- 11.3 2666 1.72 AA 1:0' from Inlet
3S 40.6 3122 12156 --- 23 2941 1.90 DA 1:0' from inlet
31 40.6 3122 12736 -- 25 2941 1.10 04 110'	 from inlet
40 s0.• 3122 12156 --- 25 2947 1.90 M 120'. Ramat aiming points 1.2,3
41 so.6 3122 12?56 -- is 2947 1.90 OA 100' tray inlet
42 80.6 3122 12756 --- 2S 2947 1.10 DA s0' from tole%
43 60.6 1172 12156 --- 25 2947 1.10 D6 60' from Inlet
44 13.6 3633 15640 --- 11.S 2666 1.72 p-T 6 immersions
45 93.6 3633 13640 --- 11.5 2666 1.72 r-Ip 6 immertloas
46 93.) 3637 13620 --- 11.5 2666 1.72 f-0 13 ismereloas

MN	 for field microphones, aear field microphone* and ground plant microphones
A	 Asymmetry •icrephosee
It	 wall tulitea
DA	 Directional array
FT	 throat probe
p-rr	 Fen pace probe
48-0	 ow probe
p-N	 Care probe (ate figure 13)
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Table VI. Test 13 - Hard Wall Accelerating Inlet Data Points.

Acoustic
Reading

X
NNE

PA sic al
7M1 ►

side
Door
Angle

(Degrees)

A18
i

Type Data Taken(l) Comments
- N

F	NC in. 2	m2

l 0 0 0 0 11.5 2666	 1.72 N. A. K Background noise - all facility
off

2 0 0 0 0 11.5 2666	 1.72 M, A. K Full undercorl cooling air
3 41.8 1625 10889 0.252 11.5 2666	 1.72 N, A, K Reading no good
4 41.8 1625 10889 0.252 11.5 2666	 1.72 M. A, K
5 75.3 2908 12513 0.487 11.5 2666	 1.72 M, A. K
6 80.3 3115 12785 0.540 11.5 2666	 1.72 M. A, K
7 85.3 3289 13005 --- 1115 2666	 1.72 M, A. K
8 % .3 3640 13475 0.715 11.5 2666	 1.72 N, A, K
9 9518 3696 13590 0.741 11.5 2666	 1.72 H. A. K

10 95.6 3689 13592 0.741 11.5 2666	 1.72 M. A. K
it 75.5 2911 12527 0.499 25 2947	 1.90 N, A, K
12 81.0 3145 12802 --- 25 2947	 1.90 H. A, K
13 85.5 3290 12990 0.611 25 2947	 1.90 M, A. K
14 --- ---- --- --- 25 2947	 1.90 M, A,	 K No good
15 % .3 3704 13533 0.779 25 2947	 1.90 M. A. K
16 81.6 3140 12750 0.563 25 2947	 1.90 M, A. K
17 42.1 1619 10876 0.253 25 2947	 1.90 M. A.,K
1s 80.8 3100 12755 -- 25 2947	 1.90 DA 60' from inlet
19 80.6 3100 12755 --- 25 2947	 1.90 DA 60' from inlet
20 80.8 3100 12755 --- 25 2947	 1.90 DA 100' from inlet
21 95.6 3665 13533 --- 11.5 2666	 1.72 DA 100' from inlet
22 95.6 3665 13533 -- 11.5 2666	 1.72 M 80' from inlet
23 95.6 3665 13533 -- 11.5 2666	 1.72 DA 60' from inlet
24 95.6 3662 13513 --- 11.5 2666	 1.72 P-T 6 ismsersions
25 95.6 3662 13513 --- 11.5 2666	 1.72 P-FF 6 immersions
26 95.6 3662 13513 --- 11.5 2666	 1.72 P-N 3 immersions at Position 4
27 90.6 3471 13183 0.663 11.5 2666	 1.72 M. A. K
28 80.9 3100 12728 -- 25 2946	 1.90 P•T 6 immersions
29 80.9 3100 12728 --- 75 3946	 1.90 P-FF 6 immersions
30 80.9 3100 12728 --- 25 2946	 1190 P-N ;: immersions at Position 4
31 40.9 1568 10875 --- 15 2946	 1.90 P-N 3 immersions at Position 4
32 46.3 1775 11220 -- 25 2946	 1.90 P-N 3 immersions at Position 3
33 80.0 3064 12800 -- 25 29446	 1.90 P-N 3 ismersions at Position 3
34 95.1 3638 13506 -- 11.5 2667	 1.72 P-N 3 immersions at Position 3
35 94.6 3619 13368 --- 11.5 2667	 1.72 P-N 3 immersions at Position 1
36 41.0 1570 10870 -- 25 2946	 1.90 P-N 3 immersions at Position 1
37 80.0 3076 12682 -- 25 2946	 1.90 P-N 3 immersions at Position 1
38	 I X1.9 1602 10880 --- 25 2946	 1.90 P-N 3 immersions at Position 2
39	 { 80.6 3082 12694 25 2946	 1_90 P-N 3 immersions at Position 2
40	 I 95.1 3637 13453 __ 11.5 P-N 3 immersions st Position 2

(OM	 Far field microphones, near field microphones and ground plane micoophones
A	 Asymmetry microphones
K	 Wall Kulites
DA	 Directional array
P-T	 Throat probe
P-FF	 Fan Face probe
P-0	 OGV probe
P-N	 Core probe

(See Figure 12 for Kulite and probe locntions)
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Table VII. Test 14 - Partial Exhaust Suppression Data Points.

Acoustic
Beath NA r Bill

Kid*
Co.,
Angle
0@8re*0

AlK

Type Date Taken(1) CommentsNip PC in. 2 m7

l 0 0 0 0 11.5 2666 1.72 W. A. K Background noise - slave
lobo pump on

2 0 0 0 0 11.5 2666 1.72 H. A, K Undercowl cooling, full on
3 42.1 1620 10880 0.249 11.3 2666 1.72 K. A, K
4 85.6 3297 13064 0.611 11.5 2666 1.72 H. A. K
S 93.9 3611 13527 0.729 11.5 2666 1.72 M, A, K
6 94.5 3631 13490 0.738 11.5 2666 1.72 M, A, K
7 90.7 3485 13326 0.678 1115 2666 1.72 M, A, K
8 94.6 3636 13515 0.734 11.5 2666 1.72 M, A, K
9 92.9 3567 13509 0.710 11.5 2666 1.72 P-0 6 immersions

10 93.3 3582 13509 -- 11.5 2666 1.72 P-N 3 immersions at Position 2
12 41.3 1584 10883 -- 25 I	 2947 1.90 P-N 3 immersions at Position 2
13 41.3 1584 10883 -- 25 2947 1.90 H. A, K
14 7518 2905 12407 0.501 25 2947 1.90 M, A, K
15 81.9 3138 12726 0_564 25 2947 1.90 M, A, K
16 84.9 --- --- -- 25 2947 1.90 M, A, K
17 82.1 3148 12756 0.567 25 2947 1.90 M. A, K
t8 81.6 --- -- -- 25 2947 1.90 P-N 3 im	 mines at Position 2
19 8115 --- --- --- 25 2947 1.90 P-0 6 immers	 +-ns
20 41.5 --- -- -- 25 2947 1.90 P-0 6 immers .one
21 80.9 --- --- --- 25 2947 1.90 DA 100' frva Inlet
22 60.9 --- --- -- 25 2947 1.90 DA 110' fr,m inlet
23 80.9 --- --- --- 25 2947 1.90 DA 120' from inlet
24 80.9 --- --- --- 25 2947 1190 P-N 3 immersions at Position 1
25 42.0 --- -- --- 25 2%7 '.90 P-N 3 i -morninns a: Position 1
26 94.0 --- --- --- 11.5 2666 1.72 DA 120' from inlet
27 94.0 --- --- -- 11.5 2666 1.72 DA 110'	 from Inlet
28 94.0 --- --- -- 11.5 20666 1.72 DA 100'	 from inle-
29 92.3 --- --- -- 11.5 2666 1.72 P-N

199 (2) 95.7 --- --- --- 25 2947 1.90 P-FF 6 immersions
200 95.' -- --- --- 25 I	 2947 t.90 P-T 6 immersions

(0M	 Far field microphones, near field microphones and ground microphones
A	 Asymmetry microphones
K	 Wall Bullies
DA	 Directional array
P-T	 Throut probe
P-FF	 ran Face probe
P-0	 OCV probe
P-N	 Core probe

(See Figure 12 for Kulite end probe locations)

(2) Number sequence changed to agree with engine log system
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of the acceleration effect and treatment on inlet radiated noise. Exhaust
radiated noise remain fully treated.

The final forward thrust configuration was designed to determine effect
of reduced exhaust suppression on system noise. For example, an aircraft
which was powered by 0111 engines and which was designed to operate out of
longer runways than the QCSEE design criteria would require less suppression
to most the noise goals (see Reference 1). Reduced suppression was achieved
by removing the splitter and the stacked core treatment as ihown schematically
in Figure 7.

3.2 REVERSE TRUST

For reverse thrust operation of this engine, the roof of the "D" nozzle
was positioned to forts a target thrust reverser. The exhaust nozzle was run
in the inverted position so that the exhaust gases would be directed downward
rather than into the test facility and instrumentation lines. To prevent
hot gas reingestion, a reingestion shield 3.66m (12 ft) in diameter and 9.14m
(30 ft) long was mounted ahead of the inlet as shown in Figure S. The engine
was fully suppressed for this test and had the blocker door positioned at 105*
with a 0.6 lip length. fie variable-position side doors were at 0 degrees or
closed during reverse thrust operation.
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4.0 ACOUSTIC INSTRUMENTATION

4.1 DATA ACQUISITION

Acoustic data were acquired on this engine using a variety of instrumen-
tation including the usual for field microphones, near field microphones,
ground plane microphones, a directional acoustic array, in-duct wall kulites,
and in-duct sound separation probes.

4.1.1 Sound Field MicroFttones

The test arena, shown on Figure 9, consists of a leveled semicircle of
approximately 76 meters (250 ft) radius with a crushed rock surface composed
of rock sizes of approximately 2.5 - 7.5 cm (1 in. - 3 in.) diameter. The
standard far field microphones setup for forward thrust tests consisted of
microphones located at acoustic angles of 10' through 160' at 10' increments,
on permanently fixed towers located on a 45.7 meter (150 ft) arc centered
near the fan rotcir plane. Standard microphone height was 12.2 meters (40 ft)
above ground Iry„>1, or 8.2 meters (27 ft) above engine centerline height of
4.0 meters (13.0 ft), with a distance from the arc center to microphone
location of 46.5 meters (152.4 ft). The 12.2 meter (40 ft) microphone
height was chosen in the early 1970's to simulate the ground reflection
effects experienced during flyover testing with a 1.22 meter (4 ft) microphone
height. For reverse thrust testing the microphones were mounted on the
towers at engine centerline height of 4.0 m (13.0 ft) at angles of 30'
through 150'.

Ground plane microphones were located at acoustic angles of 60', 90',
and 120' fur all tests to allow determination of ground reflection corrections
at these selected angles.

Additional far field microphones were utilized during forward thrust
testing to monitor "D” nozzle asymmetry effects. Three microphones were
located ern the 90 0 , 120', and 150' poles at engine centerline height. A
fourth woes located on the 150' pole at a height of 7.8 m (25.6 ft). Figure
10 shows the location of these microphones.

Five near field microphones were located on a 3 m (10 €t) sideline.
These microphones are shown schematicall y in Figures 9 and 10 and were used
to aid in evaluation of engine sourer noise characteristics by correlation
with the t'ar livid microphotu •s .

A di rec t ionnl acoustic broadside arra y (Reference 5) was used in the
sound field to separate sources of noise at select angles. The array was
poait ioned on a 10 m ( lilt) ft) are at W. tilt' , 100' , and 120' acoustic
angles an.l aimed at seven points on the engine. Postrun analysis then was
performed to determine the relative contribution from each aiming paint on
the engine at each acoust it angle,
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A schematic of the far field acoustic data acquisition system used
is shown on Figure 11. The system is used for obtaining data from 50 Hz
through the 20 kHz 1/3-octave center frequency band.

The microphone types utilized for far field data acquisition are the
Bruel and Kjaer (UK) 4133 and UK 4134 1.27 cm (1/2 inch) condenser micro-
phones with the 4134 microphones utilized for the ground plane measurements.
For near field measurements, UK 4136 0.64 cm (1/4 inch) microphones, with
grid cap installation, were used. Microphone orientation for the 4133's was
0' incidence and 90' incidence for the 4134's and 4136's.

All microphone systems utilized the UK 2615 cathode follower and UK
2801 power supply with the 50 ohm output option to provide a flat response
through the 20 kHz region of interest.

All data were recorded using two Sangamo Sabre IV FW tape systems operated
at a tape speed of 76 cm/sec (30 ips).

The overall frequency response of the acquisition and reduction system
was determined for each channel by recording a pink noise signal through
the cathode follower with playback and processing through the data reduction
system. These corrections were then included in the data processing to
account for flatness deviations in system response.

4.1.2 In-Duct Kulites

Internal acoustic instrumentation for these tests consisted of Kulites
y	 flush-mounted on the flowpath walls and probe-mounted Kulites.which could

be immersed into the flow. All in-duct instrumentation are shown in Figure
12. A schematic of the Kulite data acquisition system is given in Figure 13.

The probes used in the fan duct had either two or three flush-mounted
Kulite sensors on them. The probe used in the "D" nozzle surveys had two
elements and was water-cooled to permit immersion in the hot exhaust. These
multiple-element probes, as reported previously in Reference 6, are known
as sound separation probes and permit discrimination between broadband sound
from turbulence in duct probe measurements. All probes were traversible
radially to provide data across the duct.

4.2 REDUCTION

Off-line reduction of the recorded data was performed using an automated
1/3-octave reduction system, shown schematically on Figure 14. The recorded
data were played back on a CEC 3700B, 28-track system.

All 1/3-octave analyses were performed using a General Radio 1921 1/3-
octave analyzer. A normal integration time of 32 seconds was used to provide
adequate sampling of the low frequency portion of the data signal. The data
frequency range for the QCSEE OTW test series was 50 Hz through 20 kHz.
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Microphone	 Cathode Follower	 Power Supply

f

{

B&K 4133 1 4134, 4136	 Beds 2615	 B^K 2801 (505,1

^- Trunk Line to Control Room dQ

Vernier Attenuator
-10 dB Range

ape Gain = - 10 to +60 dB
Variable Amp 2% Flat to 100 KRz

Gain

0 0

Sangano SABER IV

Vu Data	
Intermediate

Monitoring	 Band FM

Oscilloscopes	 28 Channel

28 Channels
Simultaneously

Single Channel Selector Switch

GR 1921
1/3 - Octave

Real Time
Analyzer

Master Oscilloscope

XY Plot

EMR 1510
Schlumberger

Real Time
Narrow Band
Analyzer

Figure ll. Acoustic Microphone Data Acquisition System.
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Pneumatic pressure
calibration system

Field Amplifier

Control Room

Differential Tape

If
	 Amplifier (ac/dc)

Monitor Oscilloscope

Figure 13. Kulite Data Acquisition.
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• Time Code Comparator Starts Integration on G.R. Analyzer

• Tape Automatically Shuttles to Restart on Each Recording Channel

0	 O	 Shuttle	 G.R•

Analog	
CEC	

Control	 1/3 O.B.

Data	 Analyzer

Tape	 (	 370002.5Hz to
I	 ape Dec	 FM	 100 kHz

Reproduce

OTHER CAPABILITIES
• Narrow Band FED Scien. UA6 EMR 1510
• Time Series Analysis (Correlation, PSD, Coherence)

G.R. FFT Analysis
• XY Plotter A/D Converter

"Quick look"Interface	 Interf
Printout

Gr.PAC 30
ComputerrCorrects for System

`Frequency Response

T/N 300

HONEYWELL 6000
Computer

• Mere Fi l

FSDR PROGRAM
• Calculates PWL, PNL, OASPI.

Punched	 • Scales Data
Paper Tape	 VYtrAnn1A*sam hA*A fn ninfn

Detailed
Printout

igh Speed
Terminal

Ma g.
Digital

Tape

CALCOMP Plotter

Figure 14. general Electric Acoustic Data Reduction System.
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Each data channel is passed through an interface to the GEPAC 30 computer,
where data are corrected for frequency response of the acquisition and reduc-
tion system and for microphone-head response. A "quick-look" display of
results is provided by means of a Terminet 300 console with data transferred
and stored in the Honeywell 6000 system via a direct time sharing link.
An alternate to this method priwides these data on punched paper tape for
subsequent input to the 6000 system, allowing 1/3-octave processing during
periods when the 6000 system is inaccessible. Processing in the 6000 system
is performed via the Full-Scale Data Reduction (FSDR) program, where calcula-
tions are performed correcting data for atmospheric attenuation in accordance
with Reference 7 and extra ground attenuation as prescribed in Appendix of
Reference 1 with all data output corrected to 298 K (77° F)/70% relative
humidity standard day. Additional calculations, including data scaling,
extrapolations, perceived noise level (PNL), overall sound pressure level
(OASPL), and sound power level (PWL) also are performed. As an option,
the output of FSDR is written to digital magnetic tape for subsequent proces-
sing or data plotting via Calcomp plotter routines.

Other data reduction techniques also are available. Constant bandwidth
narow band spectra were reduced on the Federal Scientific UA6. Complex
time series analysis such as cross correlation, cross power spectral density
(PSD), coherence functions and probability density can be processed through
the General Padio/Time Data System, a computer-based system incorporating
analysis techniques in both the time and frequency domains.
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5.0 FORWARD THRUST ACOUSTIC RESULTS

The bulk of the testing on the OTW engine was devoted to measuring and

understaAding forward thrust noise levels. Approximately 160 data points
were taker on the four forward thrust configurations. Inlet radiated and
exhaust radiat*d noise will be considered first. Then engine noise levels

and their relationship to the QCSEE noise goals will be discussed.

Analysis of the data in the inlet- and exhaust-radiated components moans

that the measured jet noise levels must be removed in some instances to see

a true component effect. The reader is referred to Appendix A of this
volume where the removal of jet noise is discussed in some detail. It will

be noted in the text where jet noise has been removed.

5.1 INLET-RADIATED NOISE LEVELS

Analysis of the inlet-radiated noise is divided into two main categories -

source noise levels and the suppression achieved.

5.1.1 Baseline Source noise Levels

The baseline inlet configuration for the OTW engine utilized a hard wall

bellmouth. The 28-bladed, fixed-pitch fan had a vane blade ratio of 1.18 and

a rotor-stator spacing of 1.93 true rotor tip chords. Its design tip speed
was 350 m/sec (1150 ft/sec). There were fan frame treatment and treated

vanes installed on this configuration.

5.1.1.1 Source noise Characteristics

As part of this engine design procedure, prior to testing the M engines,
estimates (Reference 2) were made of the noise levels for all the engine
constituents, not just inlet radiated noise. These estimates utilized
model test data and empirical correlations from previous engine tests.
Figures 15 and 16 compare the actual measured levels of 60' to predicted

total levels at takeoff and approach conditions. Predicted constituents are
shown for reference. At takeoff, the measured engine data at 60' indicates
the presence of multiple pure tones (MPT's) in the spectra at 1000 Hz. In
the lower frequencies, the measured engine data differs from the predicted
spectra because of ground reflection nulls and reinforcements. The pre-
dicted spectra levels are free field. With these exceptions there is very
good agreement between measured and predicted engine data at 60%

Inlet-radiated MPT's at takeoff are clearly evident in the 30% 600,
and 80' narrow band spectra, as shown in Figure 17.
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31



10 dB

10 dB

10 dB

e Baseline Bellmouth
e Reading 6-22
e 46.5 m (152 Ft.) Arc
e Takeoff Power
e 20 Hz Bandwidth

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10
Frequency, kHz

Figure 17. Baseline Narrow Band ,nlet Spectra at Takeoff.

32



A directivity plot of the 1/3-octave band which contains the blade passing

frequency (BPF) is shown in Figure 18 for takeoff and approach. These curves

indicate that the inlet radiated noise levels are higher than the exhaust-

radiated noise. Figures 19 and 20 compare the relative levels of engine
constituents at takeoff and approach, respectively, using directional array
results. These clearly indicate that at 60' and 80' in the forward quadrant,

the BPF baseline noise SPL's are inlet radiated and are at loast 10 dB above

exhaust-radiated noise for the 60' angle.

To further understand the source noise characteristics of the OTW engine,
a probability density analysis (using digital fast Fourier transform analysis)
was performed on the BPF signal received in the far field. Figure 21 indicates

that the takeoff BPF tone signal at 60' and 80' has a random amplitude proba-
bility distribution. The approach noise BPF tone signal as shown in Figure 22

shows the same characteristics. This analysis indicates that a random meehar

nism such as rotor-turbulence-generated noise may be the source of the inlet-

radiated BPF tone noise on the OTW engine.

5.1.1.2 Ground Vortex Destroyer

Model tests have indicated that the ground vortex associated with static

tests of engines can raise the noise levels as much as 5 PNdB (Reference 8).

To simulate in-flight conditions where turbulence from a ground vortex would
not be present, the ground vortex should be suppressed during static tests.

One means of suppressing the ground vortex during static tests is to

create an artificial headwind which prevents the stagnation streamline from
touching the ground. This concept was tested on the QCSEE OTW engine during
testing of the baseline configuration. A bank of three fans shown schemati-

cally in Figure 23 was used to create an artificial head wind of approximately
12 m/sec (40 ft/sec).

In order to visualize the ground vortex and the effect of the fans upon
it, the pad in front of the engine was flooded with water. Observations were
made at several engine speeds. The ground vortex was observed to dissipate

when the fans were blowing. However, acoustic results indicated no change

in the far field noise signature of the engine. Results for 30' and 60' are
presented in Figure 24 at a speed near approach power. The probability den-

sity analysis in the preceding section indicates that the inlet-radiated fan

noise may be controlled by a rotor-turbulence interaction mechanism. The
turbulence is caused by not only the ground vortex but also atmospheric tur-
bulence associated with the earth's boundary layer. It appears that the
latter type of turbulence is the controlling mechanism. Accordingly, the
vortex fans were not used in subsequent tests.

5.1.1.3 Comparison to Other Engines

Fan inlet-radiated noise comparisons between different fans can be made

as a function of tip speed. A comparison of design tip speeds from several
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fans of approximately the same diameter is made in Figure 25. Included in
these comparisons are Quiet Engine Fans A and C (References 9 and 10) and
several of the NASA Quiet Fans. The OTW's tip speed is higher than all the
fans except QEP C. A comparison of engine PHL's from these fans is presented
in Figure 26. All fans are approximately the same diameter so no size correc-
tion was used. The OTW is quieter than QEP C as expected since QEP C has a
much higher tip speed. QEP A and the OTW have about the same levels while
the OTW is quieter than QF1, QF3, and QF5 which have about the same tip speed.
Both the QF6 and QF9 fans are quieter than the QT'W; however, this is expected
because their tip speed is considerably less.

It appears that the OTW engine inlet-radiated noise levels compare favor-
ably with other fans having about the same tip speed.

5.1.2 Inlet Suppression

OTW design studies (References 2 and 3) indicated that inlet suppression
levels of 13.5 and 10.4 PNdB, respectively, were required at takeoff and
approach to meet the system noise goals.

Acoustic suppression for the OTW inlet at approach was achieved with bulk
absorber treatment on the wall. At takeoff, both wall treatment and high
throat Mach number acceleration effect were used to provide suppression. De-
tails of the inlet treatment selection and design are discussed in References
2 and 3. A schematic of the inlet is presented in Figure 27 along with the
in-duct acoustic instrumentation.

5.1.2.1 Far Field Results

The overall performance of the inlet is shown in Figure 28, which com-
pares far fi,sld PNL's at three acoustic angles 00', 60', and 80 0 ) as a
function of throat Mach number. At 0.79 throat Mach number for which the
inlet was designed, the suppression achieved at 30', 60', and 80' is 12, 10,
and 7.5 PNdB, respectively. These suppressions are for the measured engine
data. At 60', calculating the inlet suppression with the jet noise removed
results in 14 PNdB inlet suppression.

Although it would appear from Figure 28 that there is less suppression
at 80', it may be that exhaust-radiated noise is contributing to the spectra
seen in the far field at 80'.

Comparison plots of the BPF SPL as a function of throat Mach number are
shown in Figure 29. Here at 0.79 throat Mach number, 30' and 60' data in-
dicate about 19 dB suppression while at 80' the suppression is only about 14
dB. Directional array results for the BPF at takeoff are presented in
Figure 30. At 60' the exhaust components are at least 10 dB below the com-
ponents from the inlet. However, at 80 0 , the exhaust-radiated BPF is less
than 3 dB below the inlet radiated signal. Therefore, at 80', inlet sup-
pression will be masked by exhaust radiated noise.
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It is evident from Figure 28 that the treatment in the inlet did not

produce any significant suppression on a PNL basis at high-throat Mach numbers.

Figure 31 shows the engine takeoff spectra at 60'. The inlet treatment re-
sulted in about 1 dB increase in suppression at high frequencies. The sup-
pression spectra at takeoff due to the accelerating or high-throat Mach number

inlet is shown in Figure 32. It is compared to acceleration suppression spec-

tra acquired during tests of a scale model fan (Reference 11). The scale

model fan had a BPF of 1000 Ha and its suppression spectra with the hard wall

accelerating inlet was shifted so that the BPF suppression occurred at the

OTW BPF of approximately 1600 He. Higher BPF suppression is evident with the
OTW inlet as is suppression of MPT's at 1000 Ha. Similar suppression results
are presented in Figure 33 for the hybrid inlet. It also is compared to
suppression results from the model tests of Reference 11. BPF multiple pure
tone (MPT) suppressions are evident. This engine spectra results in inlet

suppression of 14 PNdB which is slighly higher than the 13.5 PNdB estimated
prior to the engine test (Reference 2).

At approach in Figure 28 where the throat Mach number is about 0.56, PNL
suppression for the engine data is 2 to 5 PNdB. At 60% with the jet noise
removed from the spectra, inlet suppression is approximately 7 PNdB. This is
less than predicted by 3.5 PNdB. Spectral comparison of the 60' SPL's at
approach are presented in Figure 34. At frequencies near the BPF and above,
the hard wall accelerating inlet SPL's are the same as the baseline bellmouth.

This is not unexpected since there is no acceleration effect at this low
throat Ma.h number.

An interesting observation can be made iron. Figure 34. At frequencies
below the HPF from about 250 Hz to 1000 Ha, the hard wall accelerating inlet
SPL's and the hybrid inlet SPL's are the same. If the noise in this region

were inlet radiated, then one would expect the hard wall accelerating inlet

SPL's to be the same level as the baseline bellmouth. If the noise from 250

to 1000 Hr were exhaust radiated, then one might expect the hard wall accelera-

ting and hybrid inlet configurations to be identical since they both have
the same full exhaust suppression. This means that the baseline levels in
these frequencies are core-related, not fan, noise.

5.1.2.2 In-Duct Instrumentation Results

Instrumentation in the inlet included wall hulites and immersible Kulite
probes. These are shown schematically in Figure 27. Probe data were taken at
approach and near takeoff conditions.

At approach in Figure 35, the BPF SPL profiles are skewed at both the

throat and fan face with higher levels near the outer wall.

The BPF PWL change due to the treatment is 5 to 7 dB. This difference
is about what is seen in Figure 29 at the BPF.

At high power, near takeoff, the probe profiles for the BPF are presented

in Figure 36. The profile at the throat is very flat. At the throat, the
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hard wall accelerating inlet at about 0.74 throat Mach number has higher

levels than the hybrid at nearly the same throat Mach number. This indicates
suppression due to treatment. At 0.79 throat Mach number, the hybrid inlet
has even lower levels. The PWL difference between the fan face and throat
probe at 0.79 throat Mach number is 15.5 dB. This value compares favorably
with the SPL difference observed in Figure 29 in the far field.

The decay pattern of the BPF SPL. along the outer wall is shown in
Figure 37 as indicated by the wall Kulites. Both takeoff and approach are
shown here. At approach the hard wall accelerating-inlet SPL's do not decay
significantly; however, the hybrid inlet BPF gets attenuated by the treatment.
At a throat Mach number of 0.7 to 0.73, the decay seen is about the sae for
both the hard wall accelerating inlet and the hybrid inlet.

5.2 EXHAUST-RADIATED NOISE

The ON engine has a "D"-shaped exhaust nozzle, through which exhaust
radiated fan noise, combustor noise, turbine noise, and jet noise passes.
The test program investigating exhaust-radiated noise was structured to
evaluate suppression of fan, core, and turbine noise. Baseline levels were
measured on a configuration which hart hard walls in the fan and core flow-
paths; however, the fan frame was treated as were the outlet guide vanes.
Suppression of all sources was measured on the fully suppressed configuration.
A partial level of suppression was achieved by removing the fan duct splitter

and by replacing the core/turbine treatment with hard panels.

This section of the report will analyze and report on the results
achieved with the exhaust suppression.

5.2.1 Baseline Source Noise Levels

5.2.1.1 Source Noise Characteristics

Prior to testing of the OTW engine, estimates were made of the exhaust-
radiated baseline levels for takeoff and approach. Figures 38 and 39 compare
the measured levels with pretest total noise predictions at both takeoff
and approach. The measured levels at frequencies above the BPF are lower
than predicted. At frequencies below the BPF there is good agreement.
There is an apparent disagreement at 100 and 125 Hz; however, that is attrib-
uted to a ground reflection reinforcement which has not been removed from
the measured data. The jet noise levels used in the prediction are free
field.

The OTW engine has a rotor-OGV spacing of 1.93 true rotor tip chords.
This -ride spacing was chosen to lower rotor-stator interaction noise. The
probability density plots of the BPF tone in Figure 40 for both takeoff and
approach at the maximum aft angle, indicate that the BPF fan noise amplitude
distribution is primarily random. This means that the rotor-turbulence
interaction noise source is probably controlling the far field levels rather
than the cut-on rotor-stator tone!
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Directional array results for the BPF of the baseline configuration,
in Figure 41, indicate that takeoff inlet-radiated noise is about equal to
exhaust-radiated noise at 100'. At 110' and 120' the BPF is dominated by
exhaust-radiated noise. Similar results are shown for approach in Figure 42.
Here the inlet-radiated BPF component at 100' and 110' is down about 5 dB
from the exhaust-radiated BPF, while at 120' the BPF is clearly from exhaust-
radiated noise.

5.2.1.2 Comparison to Other Engines

Aft-radiated fan noise comparisons can he made as a function of fan
pressure ratio. Figure 43 compares takeoff fan pressure ratios of fans of
similar diameters and thrust levels such as Quiet Engine Fans A and C and
the NASA Quiet Fans. Such a comparison is roughly a comparison of fan load-
ing and shows that fans such as QF6 and QF9 are more lightly loaded than QF5.

The OTW aft noise levels are compared to other fans (without adjusting
for size or fan pressure ratio) in Figure 44. On such a basis the OTW noise
levels are higher than QF6 and QF9 as one would expect from fan pressure
ratio or loading consideration. OTW levels are lower than the other higher
pressure ratio fans. This indicates that the OTW exhaust-radiated baseline
fan levels are generally as one would expect when compared to other fans of
about the same diameter and thrust.

5.2.2 Exhaust Suppression

A schematic of the fan treatment is shown in Figure 45. The core ex-
haust treatment design shown in Figure 46 consisted of a stacked treatment
design which incorporated high frequency turbine ..eatment and low frequency
core suppression. On the fully suppressed configuration (test number 12)
all of the fan and core suppression was installed. On the partially suppressed
configuration (test number 14), the core was hard wall and the 1.02 m (40 in.)
acoustic splitter was removed.

5.2.2.1 Far Field Results

Far field PNL's at three aft angles are compared as a function of fan
speed in Figure 47. The indicated suppression of the fully suppressed
engine compared to the baseline is on the order of 3 to 4 PNdB. However,
at takeoff and approach, where jet noise has been removed, the PNL suppres-
sions are 5 and 6 PNdB, respectively. These observed suppressions are about
half of the anticipated total exhaust suppressions (Reference 2) of 11 and
11.6 PNdB. Figures 48 to 50 compare 120' SPL spectra for the baseline and
fully suppressed engine at approach, takeoff, and at 95 percent fan speed
with 11.5' side door. Superimpossd on these spectra are jet noise spectra
scaled from Reference 12. These comparisons indicate that suppression levels
at low frequencies are masked by jet noise and therefore unknown. At the BPF,
jet noise does not completely mask the fully suppressed BPF. At high fre-
quencies of 4 to 10 kHz there is little or no suppression observed.
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Section 2	 2.54 cm 0 in.)	 15.5%	 0.1589 em	 0.1016 cm	 2000 Hz
(0.0625 in.) (0.040 in.)

Section 3	 1.90 cm (0.75 in.)	 15.5%	 0.1589 cm	 0.1016 cm	 2500 Hz
(O.OG25 tn.) (0.040 in.)

Section 4	 1.27 cm (0.5 in.)	 11.5%	 0.198 cm	 0.2032 cm	 2500 Hz
(0.078 tn.)	 (0.080 in.)

Section 5	 2.54 cm ll in.)	 15.3%	 0.1589 Cz	 0.1016 cm	 1600 Hz
(0.0625 in.) (0.040 in.)

Figure 45. Fan Exhaust Duct Treatment Design.
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315 Bs	 Soo Bs	 630 - 1604 Hs

143  Es	 500 Hz	 404

Combustor
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Neck Length,	 em 6.99	 5.72 4.45 6.99 4.45 3-56- 2.54
(Faceplate Thick.. )(in 2. 75)(2.25)(1.75) (2.75)(1.75)(1.4)41.0)

Cavity Depth,cm 10.2	 8.89 7.62 7.62 4.32 4.o6- .51
(in) (4.0)(3.5) ( 3 .0 ) (3.0) 16.08 (1.6)-(.2)
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(in)

Bole Diameter, cm
(in )

10%
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(24.0)
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Figure 46. Core Exhaust Treatment Design.
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Figure 48. Approach Spectre at 1200.
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Figure 49. Takeoff Spectra at 1200.
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Warrowband spectra as presented in Figure 51 show that the fully suppressed
spectra still has a BPF and harmonics which have not been completely sup-
pres sed .

Figure 52 comperes the measured suppression spectra (corrected for jet
noise) to predicted exhaust suppression. Measured suppression was obtained
from both 11.5' and 25' side door positions at near 95 percent corrected fan
speed. The 25' side door data begin at 1600 Hz due to jet noise masking engine
noise at lower frequencies. The measured suppression from 640 Hs to 1600 Hz
from the 11.5' side door data is nearly as predicted. Above 2000 Ha the
suppression is 0 to 4 dB in the for field and much lower than predicted.

As a check to see if noise was reaching the far field from other sources
such as the inlet or casing, directional array results were analyed for
the fully suppressed configuration. At 120' in the far field, Figure 53
compares BPF and second harmonic levels from the various aiming points on the
engine. The noise at the far field is exhaust radiated for these two frequency
bands. The directional array could not be used for higher frequency bands
because the angular separation between aiming points on the engine correspond
to side lobes in the array and prevented discrimination of sources. This
means that the lack of BPF and second harmonic suppression in the exhaust is
not due to fan noise reaching the far field via a flanking path external to
the engine. However, there might be an internal flanking path which bypasses
the treatment. At this point the existence of a flanking path for the fan
tones is conjecture and cannot be substantiated.

As was noted in Figure 52 there is an apparent lack of suppression
evident at the high frequencies of 4000 Hz and above. Although early design
studies (References 1 and 3) had indicated that treatment regenerated flow
noise would not contribute significantly to engine noise levels, a reevalu-
ation of those studies uncovered several errors in those early analyses
(see Appendix 8 for details). Figure 54 presents calculated flow noise
sound power levels (PWL) and compares them to engine PWL's. A series of
Mach numbers was considered in the duct to bracket the estimated fan duct
Mach number of 0.38 from Reference 4. It is apparent that treatment re-
generated flow noise is of sufficient magnitude to mask the suppressed fan
exhaust noise and thus the level of fan exhaust suppression achieved.

The engine tests included a configuration which had a partially sup-

pressed exhaust. This was achieved by removing the splitter from the fully
suppressed fan duct and by replacing the stacked core treatment with hard
wall panels. A comparison of measured and predicted suppression at 95 per-
c.-nt fan speed and 11.5' side door angle is given in Figure 55. Up to 2500
Hz, there is good agreement between measured and predicted suppression.
However, above 2500 Hz, the suppression falls off and is well below pre-
dicted. The splitter when comparing Figures 52 and 55, does account for
some fan noise suppression.

Most of tho suppression discussed has been in the frequency regions
associated with ton noise. As shown in the schematic in Figure 46, much of
the stacked treatment in the core is tuned to low frequencies near 400 Hz.
Figure 56 compares spectra measured at approach up to 800 Hz. Jet noise
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Figure 51. Exhaust Narrow Band Spectra at Takeoff.
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levels are a floor below which suppressed core noise levels cannot be de-

termined; however, the fact that low frequency suppression is observed from
250 to 800 Hz indicates that the core suppression is attenuating low

frequency noise.

5.2.2.2 In-Duct Results

The in-duct kulite results were analysed to determine if the trends
in the duct agreed with the far field results. Attenuation down the duct

from the vane trailing edge is shown in Figure 57. At takeoff speed, the
BPF and fan second harmonic attenuation is 12 to 15 dB for both configurations.

BPF suppression is about the same as that observed in the far field (see
Figure 52); however, the second harmonic attenuation is more than that ob-

served in the far field. Note that the hard wall levels of the second har-
monic apparently increase down the duct. Why this happens is not understood;

it may be due to some kind of standing wave phenomena in the duct. At
approach, the fully suppressed attenuations are slightly less than the takeoff

speed case; while the partially suppressed BPF tone suppression values are
4 to 5 dB less than the fully suppressed values. Also at approach, the hard

wall configuration shows an apparent attenuation down the duct for the
second harmonic.

Probe surveys were taken at the exit of the "D" nozzle in two vertical
planes (see Figure 12). The BPF results are shown in Figure 58 for the

three exhaust configurations: baseline, fully suppressed, and partially

suppressed. At survey plane number II, which is farthest from the core
flow, there is about a 10 dB decrease in the BPF at both high speed and

approach power. The partially suppressed levels show a decrease in suppres-
sion as one would expect and generally fall between the baseline and fully
suppressed levels.

5.2.2.3 Modal Analysis and Suppression Predictior

During the OTW test program, in-duct radial modal measurements were

performed for selected vehicle configurations in the exhaust duct of the
engine. These modal measurements were then used to provide modal source

characteristic definition for subsequent prediction of suppression.

Data discusses in this section are at 95 percent corrected :fan speed
with the 11.5° side door nozzle position and are representative of takeoff

conditions.

5.2.2.3.1 Exhaust Duct Radial Modal Measurements

Figure 45 shows the location of the modal measurement probe in the ex-

haust duct of the QCSEE OTW vehicle. The modal measurement probe centerline
was located just downstream of the OGV exit plane, and Element C, as shown
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in Figure 45 was used for the modal measurement. The wall reference Kulite
was located 33.7 cm (13.25 inches) downstream of the probe sensor with an

aximuthal separation of 97°.

The modal measurement data were reduced in 160 Hz narrow bands using

400 averages. The frequency bands of primary concern are 1760 Hz (blade

passing), and 3360 Hz (second harmonic). Plots of the complex pressure
profiles for the treated and hard wall configurations are shown in Figures

59 and 60 comparisons of the modal content are made in Figures 61 and 62
for the BPF and second harmonic.

Note the gap in the measured pressure profile from an immersion of

about x/H = 0.34 to x/H - 0.56. This was due to a required vibration
avoidance band for the probe. It is suspected that the lack of data in

this region causes some error in the modal measurement.

The comparison of modal content for the downstream treated and hard

wall cases shows very little difference in mode levels. Thus, the down-
stream treatment had only a small effect on the source characteristics.

Based on this result, the modal content measured in the hard wall duct
was used as the input to the suppression prediction program.

Figures 63 and 64 show the modal spectra (i.e., modal content measured

as a function of frequency) for the hard wall and treated configurations.

Note the dominance of the second order mode for both cases at blade passing

frequency and the strong contributions of very high order modes at the
second harmonic. In the broadband regions, the modes seem to mix with no
recognizable pattern. The theoretical cut-on frequency for each mode is

noted at the bottom of the plot, and a slight tendency for each mode to

"blossom" in relative participation just above its cut-on point can be
noted. It should be noted that the measurement is performed in the near

field region of the OGV's so that one would expect to see participation of

cut-off modes in the measurement even below their cut-off frequencies.

5.2.2.3.2 Suppression Prediction

PWL suppression predictions using the analytical techniques of Refer-
ence 13 were made for the OTW configuration which had fan exhaust wall

treatment only (Configuration 14). Limitations in the prediction program

prevented predicting suppression for the case with a splitter in the flow-
path. For the prediction, the exhaust duct was modeled as a rectangular
duct of unit width and height of 45.7 cm (18 inches).

Two series of prediction calculations were made. The first utilized
the measured in-duct modal source characteristics for the first six odes

while the second series assumed that only the lowest order mode was present.
Treatment panel impedances were obtained from standard perforated face-

plate/honeycomb single-degree-of-freedom impedance models (Reference 14)
including the effect of mean flow. Results are shown in Figure 65. As-
suming only lower modes are present in the duct lowers the peak suppression

and results in less suppression bandwidth. The lowest order mode predicted
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Figure 65. Predicted and Measured Fan Exhaust Suppression.
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PW'L suppression agrees fairly well with the measured tone PWL suppressions

from 20 Ha bandwidth narrowbands. Figure 66 shows the EPF and second har-

monic narrowband SPL directivities used to calculate the PWL's.

5.3 SPECIAL STUDIES

5.3.1 Compressor Stator Variation

The OTW engine has a nominal compressor stator schedule which varies as

a function of compressor speed. One of the investigations on the fully

suppressed engine included determination of the effect of compressor stator
angle on noise at approach power. The need for this comes about when an

aircraft has to execute a missed approach. If the compressor could be at
high speed (stators closed from the nominal schedule) and generating approach

power, then the response time to go to takeoff power would be. decreased.

Tests were conducted at approach power with the stators at nominal, +5,

and +10 degrees closed from nominal. Corresponding compressor speeds were

12,685, 12,967, and 12,400 rpm, respectively.

Acoustically, there was no significant change in noise at any of the

three stator positions. Figures 67 and 68 are typical spectral comparisons
at 40' and 120'. This means that the selection of compressor stator angle

(nominal to 10' closed) at approach power can be based upon control response

criteria with no acoustic penalty.

5.3.2 Ground Reflections

When microphones are placed above a reflecting surface as they were

for this test, the sound measured at the microphone is the sum of the direct

radiated noise and the indirect noise or sound reflected off the surface.
These two signals arrive at the microphone with a frequency dependent phase
difference and create a series of nulls and reinforcements in the total

spectra.

Part of the acoustic instrumentation in the far field sound field in-
cluded three ground plane microphones at 60', 90', and 120'. These micro-
phones were intended to provide information which would allow correction of

the 12 m (40 ft) high microphone data to free field. The reader is referred
to References 15 and 16 for more extensive discussion of ground reflection
theory.

The ground plane microphones, which wero placed on a 1.9 cm (0.75 in.)

thick sheet of plywood on a pea-gravel base, were used to obtain 6dB or
pressure doubling over the lower frequencies. Figure 69 presents ground
plane and high microphone baseline levels for takeoff and approach at 60'.

6 dB doubling is evident for only the first four ground plane microphone 1/3-
octave bands. Correction of the high microphone data required determination

of the phase factor, +, and the reflection coefficient, Q. The phase factor
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was determined by ratioing the observed first reflection frequency for the
high microphones to the predicted or ideal first reflection frequency for
the geometry at the test site. The reflection coefficient was selected
initially based upon previous engine tests on this test site and adjustments
were made to obtain reasonable agreement with the ground plane microphone data
in the first four 1/3-octave bands and to provide a reasonably smooth free
field spectrum. The resulting high microphone free field spectra are shown
in Figure 69. The corrections for the high microphone are tabulated in
Table VIII.

The above high microphone corrections provided reasonable free field
spectra for 90' and 120' and were used in subsequent forward thrust system
noise calculations.

5.3.3 Side Door Variation

The OTW engine had side doors which could be varied to achieve different
operating lines on the fan map. Such variability would allow selection of
the proper area for flow and high throat Mach number at takeoff and for in-
creased fan pressure ratio at cruise. A convenient standard for side door
position was the side door angle. Acoustically, side door angle. of 0', 11.5',
and 25' were tested at select speeds to evaluate various takeoff thrust opera-
ing lines. These angles corresponded to exhaust areas of 1.58m2 (2444 in.2),
1.72m2 (2666 in. 2 ), and 1.90m 2 (2947 in. 2 ), respectively.

Side door variation was tested at 95 percent fan speed on the baseline
configuration. A spectral comparison of the three door angles is presented in
Figure 70. There are significant changes in the low frequencies which are due
to differences in jet noise levels. The 25 degree side door configuration had
the lowest jet velocity and therefore the lowest low frequency noise. This 4
to 5 dB change from 0' door to 25' door in the low frequencies represents a
16 to 19 percent change in velocity assuming an SPL variation of 60 times
the logarithm of the velocity ratio. Such a velocity change is consistent with
the effective velocity change on the engine using core and fan flow velocities
based on measured data and acoustically weighted using the velocity to the
6 power.

There are spectral variations of 2 to 3 dB evident at high frequencies.
The fan pressure ratio varies from about 1.37 to 1.32 for 0' and 25' side
door angles. This would account for only about 1 dB change in fan noise.
(Appendix B of Reference 1). The possibility of more jet noise in these high
frequencies than the scale model tests would indicate, as well as fan noise
directivity variation with side door angle may account for some of the high
frequency differences.

5.3.4 "D" Nozzle Asymmetry

The OTW engine has a "D"-shaped nozzle with an aspect ratio of approxi-
mately 1.8 (see Figures 3 and 12). Such a nozzle might be expected to exhibit
asymmetric noise radiation characteristics (Reference 17).
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Table VIII. 12.2 m (40 ft) High Microphone
Ground Reflection Corrections.

• Corrections are to be added
to measured spectra

Frequency Correction
(Hz) (dB)

•	 50 +3.0
63 +5.1
80 +2.3

100 -1.4
125 -3.1
160 -0.8
200 +2.7
250 -2.6
315 +1.3
400 -1.4
500 -0.9
630 -0.3
800 -0.7

1000 -0.6
1250 -0.7
1600 -0.6
2000 -0.7
2500 -0.4
3150 -0.6
4000 -0.6
5000 -0.5
6300 -0.6
8000 -0.5

10000 -C.6

I
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Figure 70. Effect of Side Door Angle on 130 0 Spectra.
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Microphones were positioned in the far field to determine if any signi-
cant asymmetry over the range of azimuth angles was evident. As was dise.ussed
in Section 4.1.1 and shown in Figures 9 and 10, the far field tower at 150'
had three -sicrophones on it. The microphones were at 12.2 m (40 ft), 7.8 m
(25.6 ft) and 4 m (13 ft) which correspond to azimuthal angles of 20', 10',
and 0' respectively.

Figure 71 presents free field spectra for the baseline configuration at
takeoff and approach. There appears to be no significant low frequency
asymmetry over the range of azimuthal angles monitored. At high frequencies,
there does appear to be a trend toward lower levels at the engine centerline
height (0 degrees azimuth angle).

5.4 FORWARD THRUST SYSTEM NOISE LEVELS

The noise requirements for the OTW engine are specified as a total system
or aircraft noise level at the operating conditions associated with takeoff
and approach operation. These are shown graphically on Figure 72. Specific
requirements are given in Table IX.

The takeoff noise goal is 95 EPNdP maximum on a 152.4 m (500 ft) sideline
with the aircraft at 61 m (200 ft) altitude and the engines at takeoff thrust.
Takeoff flap angle and aircraft speed are giver. in Table IX. Also shown in
Table IX are inlet angle of attack and upwash angles which must be accounted
for with regard to fan inlet noise generation and high Mach number inlet, inlet
suppression.

At approach, the noise goal is the same as takeoff but the engine is
operated at 65% thrust. Flap angles, defined in Table IX; howevor, are in-
creased for the powered-lift approach.

Since the engine noise levels are to be measured during static testing,
a procedure for determining inflight noise levels from static data has been
established as part of the co ►►tract. This procedure, see Appendix A of
Reference 1, establishes the following:

1. Jet/flap noise calculation procedure

2. Extrapolation procedures including air attenuation and extra ground
attenuation

3. Doppler shift correction

4. Dynamic effect correction

5. Size correction

6. In-flight cleanup and upwash angle correction

7. Number of engine correction

S.	 Relative velocity correction for jet/flap noise

9.	 Fuselage shielding
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e 4 Engines
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Figure 72. QCSEE Acoustic Requirements.
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Table IX. OTW Engine and Aircraft Flight Characteristics
For Acoustic Calculations.

Flight Conditions

Aircraft Speed, w/sec (knots)

Flap Angle, degrees

Climb or Glide Angle, degrees

Angle or Attack, degrees

Upwash Angle, degrees

Installed Net Thrust, percent

Takeoff	 Landing

41 (80)	 41 (80)

30	 60

12.5	 6

6	 2

15	 11

100	 65
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10. ON wing shielding

11. PNL to EPNL calculation

12. Dirt/grass ground absorption correction

These calculations are performed on the peak forward and peak aft angles.

5.4.1 Takeoff Noise Levels

Using the contract specified procedure from Appendix A of Reference 1,
the takeoff noise level for the QCSEE OTW engine at 61 m (200 ft) altitude and
152 m (500 ft) sideline is 97.2 EPNdB. Table X presents the results for the
maximum forward and aft angles. Jet/flap noise levels contribute significantly
to the in-flight--noise level; thus, any reduction to the 95 EPNdB level must
include additional jet/flap noise reduction. Figure 73 illustrates this point
by pointing out the effect of increased inlet, fan exhaust, and jet/flap noise
reduction required to meet 95 EPNdB. For example, with jet/flap noise decreased
by 2 PNdB, inlet and fan exhaust suppression of 1 and 6, 2 and 2.7, or 3 and 2,
respectively, would lower the noise to 95 EPNdB.

5.4.2 Approach Noise Levels

Using the procedure spelled out in the contract, with the aircraft con-
figured for approach at the 61 m (200 ft) altitude, the 152 m (500 ft) sideline
EPNL is 94.6 EPNdB or 0.4 EPNdB below the goal of 95.0 EPNdB. The forward and
aft constituents are given in Table XI. In this case, the jet/flap levels are
down, primarily due to the lower exhaust velocities.
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Table X. Takeoff System Noise.

a 93.3% N110—
a 0.79 Throat Mach Number
9.25' Door Angle (12-18)
e 152 m (500 ft) sideline
9 61 m (200 ft) altitude

Maximum Forward	 Maximum Aft
eased	 Engine Jet/Flap	 Engine Jet/Flap

94.8	 95.8	 96.8	 93.2

99.0	 99.1

97.2 EPNdB
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Table XI. Approach System Noise.

• 812 N/ r
• 25Z Door Angle (12-19)
• 152 m (500 ft) Sideline
• 61 m (200 ft) Altitude

Maximum Forward
	

Maximum Aft
Fully Suppressed
	

Engine Jet /Flap Engine Jet /Flap

PNL
	

95.4	 89.9
	

90.8	 87.2

Total PNL
	

97.1
	

93.1

EPNL
	

94.6 EPNd B
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6.0 REVERSE THRUST ACOUSTIC RESULTS

6.1 FAR FIELD DATA

The fully suppressed OTW engine was tested in reverse thrust mode with

target reverser deployed. To prevent damage to the overhead support struc-

ture and instrumentation lines it was deployed so that the flow exhausted
downward onto the test pad,. A reingestion shield as shown in Figure 8 was

used to prevent hot exhaust gases from entering the inlet.

Data were taken at a series of reverse thrust levels. All reverse thrust

levels were referenced to takeoff static thrust of 90.3 kN (20,300 lb).

Measured engine PNL directivities are presented in Figure 74 for reverse
thrust operation. It is a very flat directivity. Spectral shapes are given in
Figures 75 and 76 at 70' and 110 * for the reverse thrust data. The dip at 200

to 250 Hz is a ground reflection null. Otherwise, the data appears to be pri-
marily jet noise in shape. Fan noise at the 3PF is rarely visible in the
spectra.

One of the questions concerning the data is whether the inlet-radiated
noise constituent would contribute to far field levels if the reingestion
shield were not present.

Spectral comparisons are made in Figures 77 and 78 at 60° and 70' at
about 78 percent corrected fan speed which is near 35 percent reverse thrust
for both reverse and forward thrust noise levels. These two figures indicate
that up to 2500 Hz, inlet-radiated noise without the shield is lower than the
reverse thrust mode. At frequencies above 3150, inlet-radiated noise from the
forward thrust configuration is 2 to 3 dB higher than the reverse thrust levels.
However, if one would add 2 to 3 dB to the reverse thrust levels in these fre-

quencies to account for inlet-radiated noise, there would be little effect
(less than 0.5 PNdB) on the PNL since the spectra are controlled by the low

frequency jet noise levels of the target reverser.

6.2 SYSTEM NOISE LEVEL

The noise goal for the OTW engine in reverse thrust is a peak noise

level of 100 PNdB or less on a 152 m (500 ft) sideline with the engine

generating a reverse thrust level which is 35 percent of takeoff thrust.

PNL's as a function of fan speed and percent reverse thrust are shown in

Figure 79 for 50° to 140' on a 152 m (500 ft) sideline. These values have

been adjusted for atmospheric attenuation and extra ground attenuation as
prescribed in Appendix A of Reference 1. These curves were entered at 35
percent reverse thrust with the resulting PNI. directivity shown in Figure 80.
Peak PNL is 101.5 PNdB and occurs at 110 degrees. Adjustments to this peak
PNL as specified in Appendix A of Reference 1 include the following
corrections:

Engine size	 + 0.3 PNdB

Number of Engines	 + 6.0 PNdB
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Fuselage/Shielding	 - 1.2 PNdB

Dirt/Grass Ground	 - 0.5 PNdB

Total Correction	 * 4.6 PNdB

Applying this correction means that a short-haul aircraft with QCSEE OTW
engines would achieve a peak 152 m (500 ft) sideline noise level of 106.1 PNdB
when operating at a reverse thrust which is 352 of takeoff thrust.

The above reverse thrust level is based on the OTUI engine mounted on
the static test stand with the flow exhausting down onto the pad. During
model tests of the OTW thrust reverser as reported in Reference 12, configura-
tions were run with the target reverser exhausting upward as it would be on an
aircraft and exhausting downward onto a simulated ground plane as mounted for
the engine test. Comparison of the two orientations indicated that noise
levels for the downward exhaust configuration increased 1 to 2 PNdB at forward
acoustic angles as one would expect assuming that there is a second source of
noise, namely, ground impingement noise. However, aft noise levels indicated
a decrease of 1 to 3 PNdB depending on pressure ratio and angle. if such
directivity differences from the model test are applied to the QCSEE OTW engine
data, the reverse thrust level would increase from 106.1 to 107.8 PNdB or 7.8
PNdB above the goal of 100 PNdB.

The contract goal in reverse thrust as mentioned above was 100 PNdB at a
reverse thrust level of 35 percent of takeoff thrust. The criterion of
100 PNdB on a 152 m (500 ft) sideline could be met (Figure 78) if the reverse
thrust requirement were only 24 percent of takeoff thrust. Since aircraft are
not as yet required to use thrust reversers to certify for a given runway
length, a lowered level of thrust would still be "icing on the cake" and the
noise would meet 100 PNdB. Analytical aircraft stopping distance/noise trade
studies (Reference 18) conducted concurrently with flowp ath design have shown
that high efficiency reverser concepts can be employed aL substantially
reduced power settings to meet the same sideline noise goals and landing
runway length requirements as currently in the QCSEE program.
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7.0 CONCLUSIONS AND EECOM ENDATIONS

7.1 CONCLUSIONS

This report has documented and analysed acoustic data taken on five con-
figurations of the QCSEE engine: The observations and conclusions from these
tests are ioc umented below.

7.1.1 Program Goals

At approach the OTN engine achieved a system noise level of 94.6 EPNd3 on
a 152 m (500 foot) sideline which is 0.4 EPNd3 below the goal of 95.0 EPNd3.
At takeoff, the system noise level was 97.2 EPNd3 or 2.2 EPNd3 over the goal
of 95 RPM, also on a 152 m (500 foot) sideline. in reverse thrust, the
maximum 152 m (500 foot) sideline level was 106.1 PNd3 or 6.1 PNd3 over the
objective of 100 PO43. Achieving 100 PNd3 can be accomplished at a reverse
thrust which is equal to 24 percent of takeoff thrust.

7.1.2 Basic Source Noise

e	 Good agreement was seen between measured and predicted total
engine baseline noise - both forward and aft radiated. The OTW
engine noise levels show good agreement with fans of about the
same asise when compared on the basis of tip speed (for inlet-
radiated noise) and pressure ratio (for exhaust-radiated noise).

e	 Probability density analysis o pt the blade-passing frequency (BPF)
tone indicates that a random source mechanism such as rotor-
turbulence noise is controlling at both forward and aft angles.

e	 A bank of fans near the inlet was able to dissipate the ground
vortex; however, no significant change in noise was observed
indicating inflow turbulence not the ground vortex to be a more
dominant source noise generator.

e	 Fan exhaust radial node measurements indicated strong second
order mode dominance at the SPY and higher order modes for the
second harmonic.

e	 Variation of core stator angle at approach power from nominal
to 10' closed had no significant effect on noise; therefore,
the selection of core stator angle at approach can be based
upon control response time.

e	 Noise changes in the low frequency region were observed with
different side door angles. These differences seemed to cor-
relate with 60 times the logarithm of the velocity ratio.
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•	 No significant low frequency asymmetry was observed in the "D"
nozzle over the range of azimuth angles monitored.

7.1.3 Suppression

•	 14 PNdB inlet suppression was achieved with the hybrid inlet at
0.79 throat Mach number.

o	 PWL changes between the fan face and throat probes show a BPF SPL
decrease of 15 dB at 0.79 throat Mach number.

•	 Exhaust suppression for the fully suppressed configuration was
about 6 PNdB compared with a predicted level of 11 PNdB. An
apparent lack of attenuation above the peak tuning frequency
caused the loss in suppression. This lack of high frequency
suppression may be due to treatment regenerated flow noise
which is of sufficient magnitude to prevent determination of
the fan exhaust suppression.

0	 A complete evaluation of core suppression in the low frequencies
was masked by jet noise: however, some suppression was evident
in the data.

7.2 RECOMMENDATIONS

Based upon the above discussion, there are areas which could be explored
in more depth in future test programs. A series of potential tests is
listed below:

1.	 A test of the fully suppressed engine without the acoustic splitter
would determine the effect of the splitter on suppression. Use of
a probe just downstream of the treatment in the fan exhaust would
provide for measurement of transmission loss in the fan duct.

2 A test of the fully suppressed engine with splitter and with a
probe installed downstream of the splitter and treatment would
provide transmission loss data.

3. A fully suppressed fan duct but with hard wall core would isolate
the effect of the stacked core treatment. This test should include
a more complete survey of the "D" nozzle, both acoustically and
aerodynamically. The acoustic results should be correlated with
far field microphones.

4. An alternate test for recommendation 3 would be to replace the "D"
nozzle with a separate flow conical nozzle. This would allow
separate surveys of the fan and core flows to separate the two
noise sources.

115



8.0 NOMENCLATURE

Symbol or
Abbreviation Definition Units

A Asymmetry microphone data -

A Treated surface area m2 (ft2)

BPF Blade passing frequency Hz

d Characteristic dimension m(ft)

D Fan diameter m(ft)

DA Directional array data -

EPNL Effective perceived noise level EPNdB

f Frequency Hz

fc 1/3 octave band center frequency Hz

fo Peak flow noise frequency Hz

H Duct height m(ft)

K Wall Kulite data -

L Effective treatment length m(ft)

M Far field, near field, ground plane
microphone data

M Mach number -

N Fan speed rpm

N Faceplate holes per unit area e2 (ft-2)

M Physical fan speed rpm

N 
Physical compressor speed rpm

OASPL Overall sound pressure level
re 0.0002 microbar dB

OASPL 1/3-Octave Band Sound Pressure Level dB

P(f, d(x) Flow noise power per unit length watt/Hz/m

P-ff Fan face probe data -

P-flow noise Sound power of flow noise watts/Hz

PNL Perceived noise level PNdB

P-N "D" nozzle probe data -

P-0 OCV probe data

P-T Throat probe data

PWL Sound power level, re 10-13 watts dB

Q Reflection coefficient -
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8.0 Ntk1RNCIATURR (Concluded)

!e

Svmbol or
Abbreviation Definition Units

Rx Reynold's number per foot ft-1

SFL Sound pressure level, re p 0.0002 microbar dB

TL Broadband transmission loss dB

U Flow velocity m/sec (ft/sec)

V Velocity m/sec (ft/sec)

x Immersion depth Win)

x Treatment length M(ft)

Q Attenuation constant nepera/m

d Boundary layer thickness m(ft)

8 Ratio of ambient to reference temperature -

0 Density Kg/m3 (lbm/ft3)

4 Phase factor -
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APPENDIX A

OTW JET NOISE

1.0 INTRODUCTION

Noise levels as measured on the engine during this static test include
turbomachinery noise sources and jet noise. In practice, an OTW engine
would be used with a sophisticated wing and flap system to achieve powered
lift. Therefore, fur system noise levels simulating the engine in flight
the static jet noise must be replaced by the jet/flap noise level. Appendix
A of Reference 1 specifies the procedures to be used to extrapolate measured
engine data to in-flight conditions.

Prior to OTW engine testing, a scale model test (Reference 12) of the
OTW "D" nozzle exhaust system was conducted to provide static jet noise
levels which could be scaled to full size and used to remove jet noise from
measured engine spectra.

This appendix is intended to document the measured engine velocity pro-
file, compare scaled model jet noise levels with engine data, provide nor-
malized curves of the model spectra shapes, and to briefly describe how jet
noise was removed from measured engine spectra.

2.0 MEASURED ENGINE VELOCITY PROFILES

A total pressure/total temperature survey was made in the "D" nozzle
discharge plane with engine operating conditions of91 percent corrected fan
speed and 11.5' side door angle of 1.72 m2 (2666 in. 2 ) exhaust nozzle
area. Subsequent analysis of the data resulted in the engine velocity pro-
files shown in Figure 81. The core and fan velocities agree very well with
the velocities predicted by the cycle for the engine operating conditions.

An effective exhaust velocity using acoustic weighting of V 8 on the
core and fan ideal velocities results in 265 m/sec (870 ft/sec).

3.0 MODEL AND ENGINE JET NOISE COMPARISONS

Acoustic data for the engine were taken at the same conditions as the
exhaust survey discussed in the preceeding section. Model data (Reference
12) were available at a velocity of 261 m/sec (855 ft/sec). The model was a
single flow system with a relatively flat velocity profile. Spectra from
the model and engine are compared in Figures 82, 83, 84, and 85 at acoustic
angles of 40', 90', 110' and 150'. The model data have been corrected to
free field using the corrections established in Reference 16. Engine data
are as measured - not free field; however, the model data generally fairs
through the reinforcement and ground null patterns and shows very good agree-
ment.
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Figure 81. QCSEE OTW Engine Exit Velocity Profiles. 	 121
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Figure 82. Measured Engine Noise and Scaled Jet Noise at 40°.
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Figure 83. Measured Engine Noise and Scaled Jet Noise at 800.
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Figure 84. Measured Engine Noise and Scaled Jet Noise at 1100.
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Figure 85. Measured Engine Noise and Scaled Jet Noise at 1400.
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4.0 NORMALIZED SPECTRUM SHAPE

Exhaust velocity surveys were available on the engine only at the one
operating condition discussed above. It was decided to use the model spectrum
shape and simply slide it up or down to match the low frequency portion of the
engine spectra. However, before this method could be used, a check was made on
the model data to determine if it did have the same spectrum shape at all
velocities.

The model data were normalized by plotting OASPL minus 3PL as a function
of Strouhal parameter (frequency times effective nozzle diameter divided by
velocity). Figures 86 and 87 present the normalized spectra at 80' and 110',
respectively. Figure 86 also includes 90' data from a second model test of
the QCSEE OTW exhaust geometry (References 19, 20, 21, and 22.) This second
set of model data also normalizes very well.

For reference, both sets of model OASPk.'s are compared to predicted coni-
cal jet noise in accordance with the procedure outlined in Reference 23. In
Figure 88, this comparison indicates that the "D" nozzle exhaust OASPL's are
4 to 5 dB above the conical nozzle.

5.0 STATIC JET NOISE REMOVAL FROM ENGINE SPECTRA

In order to determine the noise of an OTW engine under flight conditions
with jet-.lap noise, the static jet noise must first be removed from the static
engine spectra. The procedure for doing this for the fully suppressed engine
spectra at 110' is used as an example. Figure 89 shows engine spectra for both
baseline and fully suppressed configurations plus the assumed jet noise spec-

I 	 trum shape.

At frequencies of 1600, 2000 Hz, and above 3150 Hz. antilogarithmetic
subtraction of jet noise is straight forward and yields jet-less engine
levels. At low frequencies where jet noise and measured engine noise are
equal or within a couple dB of each other, engineering judgment must be used.
The procedure for the 07W was to assume that the core suppression was as
predicted. For example, at 500 Hz the predicted core suppression is 11 dB.
Applying this to the baseline level results in engine spectra of 72 dB.
Similarily at 800 Hz, 7 dB core suppression puts the level at 73 d8. Below
500 Hz, since the engine spectra is all jet noise (no difference between base-
line and fully suppressed) a ramp off of 6 dB per octave of low frequency
noise from the 500 Hz level was assumed. For situations such as that at 2500
Hz where the fully suppressed engine and assumed jet are equal, engine noise
was assia,,.ed to be down 3 dB.

This procedure was repeated for all angles at takeoff and approach power
to determine jet-less fully suppressed static OTW engine spectra for system
noise calculations.
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Figure 88. Comparison of Model OASPL and Predicted Conical Jet Noise.
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Figure 89. Example of Jet Noise Removal from Engine Spectra.
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TREATMENT REGENERATED FLOW NOISE ESTIMATES

1.	 INTRODUCTION

The OTW engine acoustic test results exhibited an apparent lack of high
frequency suppression as was shown in Figure 52. Early estimates as part

of the QCSEE preliminary design in References I and 3 indicated that flow
noise would not be a major contributor to the engine noise levels. However,

a review of those early estimates revealed errors which resulted in under-
predicting the flow noise by at least 13 dB.

This appendix reviews those earlier errors and presents the equations

used to re-predict flow noise on the OTW engine using actual engine perfor-

mance data.

2.0 CALCULATION PROCEDURE

A detailed derivation of the flow noise equations is available in
Reference 24. Treatment regenerated flow sound power is given by

Pflow noise - P(f, d(x)) 1-e
-BL	 watts	 -1-

.	 2 B	 hz

where

P(f, d(x)) - 1.6 M3 U 3 P A * 10 -2	watts	 -2-
N d L	 Hz m

0.23 * TL
B
	

L
	

-3-

L - treatment length

TL - predicted broadband transmission loss

M - Mach number

U - flow velocity

p - density

A - treated surface area

N - number of holes per unit: area

d - boundary layer thickness
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The PWL re 10-13 watts is given by

PWLflow noise = 10 log (Pflow noise) + 10 log rf
c 0.231 +130	 -4-

where	 fc = 1/3 octave band center frequency	 1

The above equation applies for flow noise below the peak frequency (fo)

which is found by

f = U
	 -5-

0	 6

For frequencies greater than fo , the flow noise power is reduced by

the ratio	 (f,,) 3	 or the PWL is less by 30 loo(fo/f).

f

Boundary layer thickness was calculated using the following empirical

expression

a - 0.37 L
0.8 R-0.2	 -6-

x

where Rx is the Reynold's number per foot.. This equation is

similar to the expression for boundary layer thickness given in Reference 25

which is

a- 0.37 L R
-0.2	

-7-
x

j

	

	 For the outer and inner walls the boundary layer thickness grows to about

2.3 cm (0.9 inch) by the end of the treatment. On the splitter, it grows to
about 1.27 cm (0.5 inch). For the calculations, a value of 1.78 cm (0.7 inch)

was assumed.

At takeoff on the OTW, aerodynamic conditions (based on measured engine
data) at the OGV exit are:

M = 0.501

Total Temperature - 322° K (580 0 R)

Total Pressure = 1.289 x 102 U. (18.7 psi)

As is apparent from Figure 45, the fan bypass duct area was increased

through the splitter region to lower the duct Mach number to 0.38 at takeoff
(Reference 4). Flow noise estimates were made at Mach numbers of 0.35, 0.40,
and 0.45 to bracket the estimated duct Mach number in the splitter region.
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The OTW treated surfaces had variable porosity sections in the duct. The

number of hales per unit area were calculated for each section and area
weighted to give an average value for the holes per unit area needed in the
equation 7. This value for the OTW is 62,900 holes	 5840 holes

M2	 —f—t—r_ } .

Results of the flow noise PWL calculations were presented and discussed earlier
in the text. Figure 54 shows that calculated flow noise over the range of duct

Mach numbers expected for the QCSEE OTW is indeed a major contributor to the

engine noise and becomes a floor which precludes determination of aft fan
suppression levels.

3.0 PREVIOUS QCSEE ESTIMATES

Examination of the previous QCSEE flow noise estimates in Reference 1 and
3 revealed that incorrect values were used for both the number of holes per

unit area and the treated surface area. The holes per unit area were too high
by a factor of ten and since this parameter is in the denominator of equations

2 the flow noise would be underestimated by 10 db.

The totP treated area of the OTW fan bypass duct including te splitter
is about 23m (247 ft ). Early calculations used a value of 10.8M 2 (116 ft 2)

which results in underpredicting by 3 dB.

Accordingly, the early estimates were at least 13 dB too low and failed

to recognize a potential problem area.
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