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1.0 SUMMARY

This document presents closed-form solutions for a two-burn orbit insertion,
AOA, and ATO maneuver targets, and for time of ignition of a one-burn deorbit.
Based on the assumption that the orbits involved deviate only to the first order
about a reference circular orbit, these solutions are nearly fuel-minimum. They
are expressed in terms of linear terminal velocity constraint (LTVC) Shuttle
guidance targets and, thus, are readily applicable to both ground and onboard
software use. In addition to potential application to real-time targeting,
the equations may be used as a mission design aid in preliminary definition
of target loads and definition of abort mode boundaries.
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2.0 INTRODUCTION

Guidance targets for the post-MECO orbit insertion, AOA, and ATO maneuvers are
currently determined premission and loaded into the onboard and ground computers
as constants.

A simple numerical scheme for solving the impulsive two-burn problem, assuming
tangency of the ^Ocond burn to the final orbit, is presented in reference 1.
Using this scheme, which requires iterating until a necessary condition of
optimality is satisfied, suitable guidance targets are obtained. Still lacking,
however, is a scheme to determine optimum ignition time for a single deorbit
burn to cover late AOA aborts.

Although the scheme presented in reference 1 satisfies the two-burn require-
ments, a closed-form solution requiring less computations and no iterations is
presented in this document. A consequence of the derivation, which is obtained
by assuming near-circular orbit transfers, implies that the second burn of the
optimum two burns is a horizontal maneuver, which verifies the assumption used
in reference 1. Additionally, using a similar near circular orbit transfer as-
sumption, a closed-form solution for optimum ignition of a single deorbit burn
is derived.
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3.0 SYMBOLS AND ACRONYMS

AOA abort-once-around

ATO abort-to-orbit

11 Earth gravitational constant

re reference circular orbit radius

Vc reference circular orbit velocity

o	 0 orbit transfer angle

W cotangent of half-e

M sensitivity matrix of state deviations about a reference circular
orbit

LTVC linear terminal velocity constraint

spp initial radial difference divided by 	 rc

aft initial horizontal velocity difference divided by 	 Vc

sap initial radial velocity difference divided by	 Vc

rip initial orbit radius at initial location

Vh iO initial orbit horizontal velocity at initial location

rip initial orbit radial velocity at initial location

rfp final orbit radius at initial location

VhfO final orbit horizontal velocity at initial location

r£p final orbit radial velocity at initial location

* 6P2 radial difference divided by 	 rc	 after second impulse

sat horizontal velocity difference divided by	 Vc	 after second impulse

sae radial velocity difference, divided by	 Vc	 after second impulse

6P2 radial difference divided by 	 rc	 before second impulse

6s2 horizontal velocity difference divided by	 Vc	 before second impulse

dal radial velocity difference divided by 	 Vc	before second impulse

U 1 horizontal component of first velocity impulse divided by	 Vc
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radial component of first velocity impulse divided by Vc

horizontal component of second velocity impulse divided by Vt

radial component of second velocity impulse divided by Vc

total velocity impulse divided by Vc

magnitude of first maneuver impulse

magnitude of second maneuver impulse

horizontal component of velocity impulse 	
0

radial component of velocity impulse

horizontal velocity

radial velocity

linear terminal velocity constraint, target line intercept

linear terminal velocity constraint target line slope

initial orbit radius at target location

initial orbit horizontal velocity a, target location

initial orbit radial velocity at target location

final orbit radius at target location

final orbit horizontal velocity at target location

final orbit radial velocity at target location

radial difference at target location divided by re

horizontal velocity difference at target location divided by Vc

radial velocity difference at target location divided by Vc

4

F.

Aa1

A^2

Aa2

AV

AV1

pV2

A^

Aa

Vh

r

01

02

riT

VhiT

riT

rfT

VhfT

rfT

SpT

SfT

SaT
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4.0 NEAR-OPTIMUM TWO-BURN SOLUTION

To derive the closed-form solution for the near-optimum two-burn targets, the
differences between the final and initial orbits are considered as first-order
deviations about an arbitrary reference circular orbit. This requires that the
initial states of both orbits be located at the first-burn ignition point, which
is fixed in this application. Because the terminal orbits of nominal and ATO
trajectories are constrained only by desired apsis radius, the final orbit state
at the first-burn ignition may be determined directly. However, because the ter-
minal constraints for an AOA are des ,-red radius, velocity and flightpath angle
(functions of velocity versus flightpath angle target relationship) at a de-
sired entry angle, these element, mus'c be fi;°Gt mapped from entry interface to
the first-burn ignition point.

The approximate state sensitivity matrix that relates state perturbations of
radius, horizontal and radial velocity after transfer through a central angle

:	 to initial state perturbations of the same elements about a reference circular
orbit is given as follows (see appendix A):

W2 + 3	 4	 2W

W2 +1	 W2+1	 W2+ 1

M =	 -2	
W2 - 3	 -2W	

(1)
W2 + 1	 W2+ 1	 W2+ 1

2W	 4W	 W2 - 1

W2 + 1	 W2 + 1	 W2 + 1

where W is the cotangent of half of the transfer angle

Hence,

	

( SP, 6s, 6a) T = M( 6po, 6s0, 6a0 ) T	(2)

By defining ( SPO, 6R0, 6a0) T as the difference in the state between the terminal
'	 and initial orbits at the first impulse, then

(SP2, 8^2, Sa2) T = M( SPO, sRO, 8a0)T
	

(3)
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where	 6PO = (rf0 - riO)/rc

6SO = (VhfO - VhiO)/Vc

dap = (rf0 - riO)/Vc

After the first impluse is applied, the state differences at the second impulse
location as a result of the first impulse is

(6p2' 
6p 2 , 6a2 )T = M(O, AS 1 , Aa1)T	 (4)

F
By definition, at the second impulse

Sp 2 = Sp2

M2 6S2 - 02-
	 (5)

Aa2 = 64 - 6a2

Combining equations (3), (4), and (5) leads to the following:

(0, AS 2 , Aa2)'r = M* (Sp O , 6^0 - AS 1 , AaO - Aa1)T	 (6)

By defining tan ^2 = Aa 2 /As 2 , and thus Aa2 = A^ 2 tan ^2, and solving equation
(6) simultaneously for AS 2 , A^ 1 , and Aa 1 , the following is obtained.

U2 = 6p0(W2 + 1)/2(2 -- W tan ^2)

AS 1 = -A^ 2 + 00 + 6p0	
(7)

Aa 1 = AS 2 tan ^2 + WSpO + Sap

The minimum of the sum of the two impulses must be found. This is function-
ally expressed as

AV = AV 1 + AV2

1

Where	 AV 1 = (A^1 + Aa1)2

(8)

(9)

6
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1

QV2 = ( Q^2 + Qa2) 2 (10)

Differentiating equation (8) with respect to tan ^2	 and W	 yields:

dQV Q^2 Q^2Q1 Qa2

d tan ^2 ^ (2 - W tan 4`2)	 QV2 	QV1 
W (A(Xi1r 2	 VV1+

QV2	
(11)

dQV Qa2 + WSp O a2	 Q5 1 Qa1 Qa2

dW
a

(2 - W tan ^ 2 )
+ tan

QV2	
QV 1

^2	 +

QV1
QV2

Qa1
+ SPO

QV 1

(12)

Equation (8) is minimum when equations (11) and (12) are simultaneously zero.
By performing the indicated operation, the following necessary condition of
optimality is obtained.

Qa2 Qa
1- Sap = 0
	 (13)

QV 1 	QV

Except for when 
Q

Q

a

V

1	 Sao
= QV , the second maneuver is horizontal (i.e., Qa2 = 0).

1
Results presented in reference 1 indicate that a tangent (near-horizontal) sec-
ond maneuver is very nearly optimal.

Substituting this result (Qa2 = 0) into equations (7) and (11) yields the
following:

Q^2 = Sp 0 (W2 + 1)/4

Q^1 = U0 + SPO (3 - W2 )/4	 (14)

Qa 1 = Sap + W Sp0

and

QS1 W - 2 Qa 1 = QV 1 sgn (SP O ) W	 (15)

7
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Squaring both sides of equation (15) and factoring yields the following:

Aa 1 (Aa 1 W2 + 4051 W - 46a 1 ) = 0	 (16)

Either Aa1 = 0, or (Aa1 W2 + 4A51 W - 4Aa1) = 0

If Aa 1 = 0, then the two-impulse transfer trajectory is near tangent at both
impulses. This, of course, occurs for the special case in which a gravity turn
maneuver is optimal. For this case,

W = -6ao/6p o

(Note: Equation (17) is an approximate form of the exact equation derived in
appendix B for a, gravity turn maneuver to achieve a desired apsis magnitude).

If	 Aa1W2 + 4A5 1 W - 4Aa 1 = 0, then the solution for W is

W = Mao/ (4550 - 6p 0 ) - sgn(6p0)

1

(465 0 - 6p 0 1 2 + 166ap) 2	 (18)

that was originally derived in reference 2.

Hence, the location of the second impulse from the first impulse is given as

6 = ff + tan- 1 ((2W/(W2 - 1))

G

(17)

for the first maneuver, the
:)cation is extrapolated through
motion (e.g., equations (A-1),
target radius is defined as the
The target velocity line,

To obtain the near-optimum LTVC guidance targets
state of the final orbit at the first ignition 1
the angle e using Kepler equations of elliptic
(A-2), and (A-3) of appendix A). The first-burn
final orbit radius at the second-burn location.
defined as

r = c1 + c2Vh

8
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is chosen to ensure optimality of the resulting solution by defining 0 1 (target
line intercept) as the final orbit radial velocii;y ac the second-impulse loca-
tion and c2 (target line slope) as zero.

The second-burn ignition time is obtained by first using the LTVC powered flight
guidance (ref. 3) to determine the finite burn effects of the first maneuver. A.
resulting transfer angle from the predicted cutoff state to the target is then
determined. Using an appropriate set of Kepler equations for time of flight
such as presented in reference 4, the second-burn ignition time can be defined.

9
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5.0 NEAR-OPTIMAL IGNITION FOR A SINGLE-BURN DEORBIT

For the analysis of the min,lmum-impulse solution to the single-impulse deorbit
problem, first consider the difference between the terminal orbit and the ini-
tial orbit at the entry interface location.

Sp T = (r fT - riT)/rc	 (19)

SO T = (VhfT - Vhi'T)/Vc	 (20)

SaT = (rfT - riT)/Vc	 (21)

For the deorbit problem, the linear terminal velocity constraint is applied to
express rT as a linear function of VhT as follows:

rfT = 01 + c2VhfT	 (22)

Thus, equation (21) becomes a linear function of equation (20) as foliows:

SaT = K + c2SST	 (23)

where	 K = (c1 + e2VhiT - riT)/Vc

The minimum impulse on the initial orbit that satisfies the terminal orbit
constraints of Sp T , SST , SaT , must be located. They are considered as state
perturbations about a reference circular orbit. Using the approximate state
sensitivity matrix that relates final state perturbations of radius, horizontal,
and radial velocity to initial state perturbations of the sam ra elements at
a central angle 0 about a reference circular orbit; the following is obtained:

(Sp T , SST , K + 0 26ST) T = M(0, OS, Aa) T	(24)

where AS, Aa are the impulsive velocity components.

Solving equation (24) for SST, AS, Aa yields the following equations:

SS T = [ 2WK + (W2 + 3) SA
TJ
 /2(c2W - 2)	 (25)

10
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As = SBT + SPT 	(26)

Aa = - K - c266T + WSPT	 (27)

The impulse is defl ,d as follows:

1

AV = (662 + da2 ) 2 	(28)

The derivative of AV with respect to W requires the derivative of OT with
respect to W, which is obtained by differentiating equation. (25) as follows:

d

d6h	 Aa
(29)

dW	 c2W - 2 

Then,

dAv	 Da_ -
^S6T(1 + C2) + C2K - SPT] /AV (30)

dW	 C2 W - 2

Therefore, for	 AV to be minimum,	 Aa	 must be zero.

After substituting this result into equation (24),	 the following equations
are obtained.

SPT =	
4

A6 (31)

W2+1

O T = W2 - 3	
A6 (32)

W2 + 1

K + c266T =	 4W	 AS (33)
W2+1
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After combining equations (31), (32), and (33), a quadratic equation in
W is obtained as follows:

2 
c2 W2 - 2W + 2K/SAT - 2 c2 = 0	 (34)

Solving this quadratic equation yields the following:

1

W = 2 1 - C1 - c2 ( K/Sp T - ^c2)] 2 /c2	 (35)

Hence, the approximate location of the minimum impulse from entry interface is
given by

6 _ n + tan- 1 [2W /(W2 - 1)]	 (36)

and the approximate AV is given by

AV = Vc I 6 PT (W2 + 1) /4 1	 (37)

The deorbit maneuver ignition time is obtained by first determining the range
angle from the current vehicle state to the maneuver location. It is given as

Otig OT - 0

where O T is the range angle from the current state to the deorbit maneuver tar-
get location. Then, using the current state and the resulting angle as inputs
to the Kepler equations for time of flight, the -time of ignition may be deter-
miz,ed.

12
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6.0 CONCLUDING REMARKS

By expressing the initial conditions of the initial and final orbits at a common
location and assuming that their state differences are deviations about a
reference circular orbit, simple near-optimum solutions for the guidance
targets for ascent and abort maneuvers are obtained. This simplicity, in
addition to the current availability of analytic J2 compensation in the on-
board program, make these solutions attractive for targeting and may aid
in mission design. The way that the analytic J2 compensation scheme can
be used to bias the,-^% targets so that the vehicle can fly through the actual
targets will be the subject of a forthcoming memorandum.

r

A

13



p

80FM3

7.0 REFERENCES

1. McHenry, R. L.; and Long, A. D.: Optimum Two-Impulse .Solution for Shuttle
Trajectories. "' Cu IN 79-FM--3, January 1979. 

2. McDermott, A. M.: Shuttle OMS Burn Targeting Improvement Studies. Rockwell
International Internal Letter IGNCV /79-019, March 21, 1979.

3. McHenry, R. L., et al.: Space Shuttle Ascent Guidance, Navigation, and
Control. The Journal of the Astronautical Sciences, Vol. XXVII, No. 1,
pp. 1 through 38, Jars-Mar. 1979.

b. Shepperd, Stanley W.: Suggested Coding Improvements for the Time-Angle Com-
putation Routine (TTAOFT) of Rendezvous Targeting. CSDL Shuttle Memo
IO E-77 -26 , May 3, 1977. 

14



80FM3

APPENDIX A

SENSITIVITY MATRIX FOR STATE PERTURBATIONS
ABOUT A CIRCULAR ORBIT

The sensitivity matrix derived herein for extrapolating state deviations about
a circular orbit has been widely used in orbit perturbation analyses. It is
presented here as an easy reference for the applications of this document.

The approach taken is to first express the basic Kepler equations for elliptical
orbits in terms of radius, horizontal, and radial velocities, and cotangent of
half of the transfer angle; second, differentiate them with respect to the ini-
tial conditions; and finally, apply circular orbit conditions to the derivatives
to obtain the desired result.

The basic Kepler equations for elliptical orbits may be expressed as follows:

Vh = C(W2 - 1) Vho - 2Wr 0 + 211/ro Vhol /(W2 + 1)	 (A-1)

P = C2W(Vho - P/ro Vho) + ( W2 - 1) rA /(W2 + 1)	 (A-2)

r = roVho/Vh	 (A-3)

where ro, Vho, ro are the initial radius and horizontal and radial velocities,
respectively, and W is the cotangent of one-half of the transfer angle.	 1

Let rc be an arbitrary reference circular orbit radius. Then Vc = (fit/rc)2
is the reference circular orbit velocity. Define as follows:

^ = Vh/Vc

a = r/Vc	 (A-4)

P = r/rc

Equations (A-1), (A-2), and (A-3) then become

S = L(W2 - 1 A C) - 2Wao + 2 /PoRc l /(W2 + 1)	 (A-5)

a = [2W (So - 1/Poso) + (W2 - 1) ao]/(W2 + 1)	 (A-G)

r
A = Polo /R	 ( A-7)

A-1
rr
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In order to determine the sensitivity of g, a, p to $o , ao, po, the
derivatives of equations (A-5), (A-6), and (A-7) are required. Then, deviations
in $, a, p can be functionally related to deviations in Ro, ao , Po as
follows:

Sp dp dp dp
spo 

dpo dpo dao

S^ = d^ 0 d^ 6^0
dp o dso dao

6a, da da da 6a 0dpo
d$o

dao

The required derivatives are expressed as follows:

d^ 2/_ (pol)

dp o W2 + 1

dpi W2- 1	 - 2/ (
ds o W2 + 1

a	 2W

dao	 W2 + 1

da	 2W/ (p olo)

Woo W2 + 1

da	 2W (1 + 1/ (polo))
60	 W2+1

da	W2-1
dao 	 W2 + 1

(A-8)

(A-9)

(A-10)

(A-11)

(A-12)

(A-13)

(A-14)

A-2
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dp (1 -	
d^

 Po/0) Son (A-15)
dp v dp o

dds =	 (1	 -	 ^o/S) Ao/s (A-16)
0

ds 

o

dA 2W P o s0/02
_ (A-17)

dot o W2 + 1E,

If the initial conditions of equations (A--1), (A-2),	 and	 (A-3);	 i.e.,	 rot

n	 rho, and	 Po, represent a circular orbit and rc	is arbitrarily defined

as	 ro ,	 then

Ao = A	 =	 1

1

(A-18)

^o = Po 2 = S = 1 (A-19)

ao =

k

a = 0 (A-20)

The required derivatives then become

&
=	 -	

2
(A-21)

'	 dp o W2 + 1

dO W2 - 3 (A-22)
d^ o W2 + 1

R

da
= -	 2 

W
(A -23 )

o W2 	 1

da	 2 W	 (A-24)
dA o	 W2 + 1

A-3

r

k
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da	 =	 4 WW	 (A-25)
&0	 W2 + 1

da = W2-11	 (A-26)
da o	 W2 + 1

dP	 =	 W2 + 3	 (A-27)
dP o	 W2 + 1	

t

dP	 =	 4	 (A-28)
60	 W2 + 1

dP	 =	 2W	 (A-29)
ciao	W2 + 1

Define as M the matrix in equation (A-8), Then

	

W2 +3	 4	 2W

	W2 +1	 W2+ 1	 W2+1

M = -	 2	 W2 - 3	 -	 2W	 (A-30)

	

W2 +1	 W2+1	 W2+1

2W	 4W	 W2 - 1

L W2 +1	 W2+1	 W2+1

A-4

J
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M is a nonsingular matrix whose inverse is as follows:

W2 + 3	 4	 _ 2W

W2 +1	 W2+ 1	 W2+1

2	 W2-3	 2W

W2 +1	 W2+1	 W2+1

_	 2W _	 4W W2 -	 1

W2 +1 W2+ 1 W2+ 1

Therefore, since

(Sp , S^, Sa) T = M(Spo, SRo, Sao)T

then

(Spo, Sso, Sao) T = M-1(6p, SR, Sa)T

A

A-5
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APPENDIX B

TRANSFER ANGLE SOLUTION FOR A MINIMUM IMPULSE
TO A DESIRED APSIS RADIUS

A solution, originally derived by Tim Brand, CSDL, for the transfer angle from
.mpulse to target for a minimum-impulse trajectory to achieve a desired apsis ra-
dius is developed in this appendix. Application of optimal control theory to
tr:is problem shows that the minimum impulse control vector is parallel to the ve-
locity vector at the impulse. Hence, flightpath angle Y is unchanged by the
impulse. In terms of horizontal and radial velocity components after the im-
pulse

Vh = V+ cos Y+ = V+ cos Y	
(B- 1)

r+	 = V+ sin Y+ = Vh tan Y

where the superscript + indicates postimpulse elements.

The basic transfer equation from impulse to target relates the postimpulse hori-
zontal velocity to the transfer angle 0 and the target radius rT as follows:

VhI - 1 (W2 + 1) Sp + 1 + tan Y Wl = u	 (B-2)
\ 2	 /	 rVh

where W = cot ^
2

and Sp = 1 - r/rT

Likewise, the velocity at the target V T is expressed as

VT	
2 (W

2 + 1) Sp + 1	 = --^ V	 (B-3)

T T

V
Since rVh=	 rT VT ,	

T 
= r	 (B-4}

	Vh 	 rT

Substituting this re^.ult into equations (B-2) and (B-3) and solving for W
yields

W = tan Y /Sp	 (B-5)

B-1
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from which

0 = fr + tan - 1 E2W/ (W2 - 1)]

	
(B-6)

NASA- ISr

B-2

F,


	1980006926.pdf
	0001A01.tif
	0001A02.tif
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif
	0001B06.tif
	0001B07.tif
	0001B08.tif
	0001B09.tif
	0001B10.tif

	notice_poor quality MF.pdf
	0001A04.JPG
	0001A04.TIF
	0001A05.JPG
	0001A05.TIF
	0001A06.JPG
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A12a.JPG
	0001A12a.TIF
	0001B02.JPG
	0001B03.TIF
	0001B04.JPG
	0001B04.TIF
	0001B05.JPG
	0001B06.JPG
	0001B07.JPG
	0001B08.JPG
	0001B09.JPG
	0001B10.JPG
	0001B11.JPG
	0001B12.JPG
	0001B12a.JPG
	0001C02.JPG
	0001C03.JPG
	0001C04.JPG
	0001C05.JPG
	0001C06.JPG
	0001C07.JPG
	0001C08.JPG
	0001C09.JPG
	0001C10.JPG
	0001C11.JPG
	0001C12.JPG
	0001C12a.JPG
	0001E02.JPG
	0001E03.JPG
	0001E04.JPG
	0001E05.JPG
	0001E06.JPG




