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SUMMARY

The objective of this program was to provide the analysis, design, fabrication

,_ and test of a iii N (25 pound) thrust, integrated auxiliary propulsion system

(IAPS) thruster in which cryogenic propellants (LH2/LO2) are supplied at the

valve inlets; specifically, hydrogen at a temperature from 22 K to 33 K (40 R to

60 R) and oxygen from 89 K to 122 K (160 R to 220 R). The thruster assembly

included a propellant injection system, an igniter, two propellant valves, and

a thrust chamber. The thruster was required to operate in both pulse and

steady-state modes for vehicle attitude control, space maneuvering, and as an

abort backup in the event of main propulsion system failure.

Propellant injection systems representing increasing levels of design complexity

were evaluated for their performance capability, manifolding, and cooling

requirements. A propellant injection system consisting of a dual-sleeve, tri-

axial injection/combustor design was selected because of its performance

potential, development flexibility, and inherent compatibility with the com-

bustor/thrust chamber walls. The dual-sleeve, triaxial injection system

utilizes a primary injector/combustor where all of the oxygen and 8% of the

hydrogen is introduced, a secondary injector/combustor where 45% of the hydrogen

is injected through an annulus to mix and react with the oxygen-rich hot gas

from the primary combustor, and a boundary layer coolant injector where the

remaining 45% of the hydrogen is introduced through an annulus to cool the

thrust chamber throat/nozzle region. The resulting stepdown in propellant

mixture ratio from 50:1 (primary combustor) to 7.5:1 (secondary combustor) to

L 4:1 at the boundary layer coolant injector was determined from combustion model

analyses to provide the maximum combustion performance capability with this
injection/combustor system.

_' A spark-torch igniter, which was a direct outgrowth of the unit used on the

Advanced Space Engine (ASE), was selected for the thruster. However, several

design modifications were implemented to minimize trapped propellant volume and

facilitate producibility. The spark plug consisted of a 0.254-cm (O.10-in.)

diameter electrode with an 0.063-cm (0.025-in.) annular spark gap. An inductive

discharge exciter was utilized because of its favorable discharge wave form and
overall system simplicity.

A propellant valve trade study identified a direct acting solenoid, poppet-type

valve unit as the most favorable valve/actuation concept. This valve configura-

tion, which utilized a flat metal-to-metal seat closure, was employed. Actuation

of the valves with a driver circuit was employed to impress a larger-than-normal

voltage at valve opening and thus provide increased pulloff force to ensure rap_d
and repeatable opening.

Performance and.thermal analyses indicated that minimum performance requirements.

could be attained with a thrust chamber wall temperature of approximately 2000 F.
This temperature fell within the acceptable range for austenitic materials which

maintain ductility at cryogenic temperatures, exhibit good oxidiation resistance,

and are readily fabricable. Therefore, L-605 alloy was selected as one of the

thrust chamber materials. For increased performance potential, a refractory
. metal chamber also was fabricated. A review of candidate thrust chamber



materials capable of operation at wall temperatures up to 1644 K (2500 F) in an

oxygen/hydrogen environment was performed. Based on this study, unalloyed, low-

carbon molybdenum was selected as the alternate high-temperature thrust chamber
material.

The initial area of experimental investigation was the demonstration of reliable

thruster ignition over a range of spark energy levels, propellant/hardware tem-
perature, and starting valve sequence. While ignition was demonstrated at the

i0 mJ level, 25 mJ _as selected as a safe nominal value. All ignition char-

acterization testing was conducted under simulated altitude conditions of 30,800
meters (i01,000 feet).

Steady-state performance and heat transfer testing was conducted with the

nominal mixture ratio stepdown values of 50:1, 7.5:1, 4:1 for the primary com-
bustor, secondary combustor, and overall thruster, respectively. A range of
boundary layer coolant (BLC) injection distances above the throat from 1.52 cm

to 3.43 cm (0.60 in. to 1.36 in.) were evaluated. The results performance and
chamber wall heat transfer trends indicated a limiting performance level of

approximately 3% below the program minimum specific impulse requirement of

390 sec, while maintaining compatible thrust chamber throat temperatures.

Incomplete mixing of the secondary combustor hydrogen with the oxygen-rich pri-

mary combustor gas was identified as the most probable cause of the noted per-

formance deficiency. An impingement injection concept to promote mixing of the

secondary combustor hydrogen with the oxygen-rich hot gas from the primary com-

bustor was therefore designed and fabricated. This was accomplished by injec-

tion of the secondary hydrogen radially into the oxygen-rich hot-gas stream

through discrete orifices, rather than coaxially as with the baseline design.
Hot-fire evaluation of the injection system with a BLC injection distance of

2.79 cm (i.i0 in.) indicated that a specific impulse value of 390 sec can be

attained with this injection system using the high temperature molybdenum thrust
chamber.

Subsequent pulse mode characterization testing was conducted consisting of six

initial 75-msec pulses, followed by a 30-sec burn, followed by a 60-sec thermal
soak period, and then a final series of six pulses. These pulse mode tests
indicated that rapid pressure buildup (48 msec to 90% thrust) can be achieved

with a small cryogenic thruster. Facility bleeds and thermal management pro-

visions within the thruster manifolding ensured the presence of good quality

(liquid) propellants at the thruster injector, and thus the rapid thrust

response. However, it appears that higher spark energy levels will be required.

(>100 mJ) if reliable ignition is to be achieved under these "cold" propellant

conditions. Random ignition failures were encountered at a spark energy level

of i00 mJ, thus indicating a marginal condition for formation of a plasma within
a truly liquid oxygen flow stream.

This program has demonstrated the practicality of a liquid hydrogen/liquid
oxygen thruster down to a thrust level of iii N (25 pounds) for use in advanced

space applications. The problem areas encountered during this program were pri-
mary test stand related and were aggravated by measures to maintain very low

propellant temperatures in the facility supply systems and the difficulty in
measurement of small cryogenic propellant flowrates.

2



INTRODUCTION

System studies (Contract NAS3-18913) conducted to determine if a liquid oxygen/

liquid hydrogen Auxiliary Propulsion System (APS) is advantageous for future

" high-energy cryogenic fueled vehicles have identified an integrated design that

uses the main propulsion system tanks as the propellant source to be the best

liquid/liquid concept as opposed to dedicated designs which use separate tanks.

When compared with dedicated cryogenic and storable propellant systems, the

integrated concept was found to have superior mission payload performance. More

significantly, the inherent interchangeability of main and auxiliary propellants

permits the Integrated Auxiliary Propulsion System (IAPS) to provide abort

backup capability in the event of a main engine failure. These capabilities
result in projected overall program cost savings that more than offset the

higher development cost for a liquid oxygen/liquid hydrogen APS.

A critical technology area that required evaluation for the purpose of proving

the viability of such a liquid oxygen/liquid hydrogen IAPS was the development

of a small thruster capable of accepting propellants in the liquid state with-

out the need for gasification as an intermediate step. Since no previous test

experience existed in the thrust range of interest, i.e., iii to 444 N (25 to

i00 pounds), the subject program was initiated to provide the required technology
base for a small cryogenic liquid propellant thruster. The thrust level selec-

ted for this feasibility demonstration program was at the lower end of the range

of interest because the anticipated major problem area of propellant thermal

management would be more acute at this lower level. Other design requirements

and operating conditions selected for the thruster investigation program are
- contained in Table i .

The report presents the analyses, design, fabrication, and test activities

associated with the development of a iii N (25-pound) thrust, hydrogen-oxygen

IAPS-type thruster in which cryogenic propellants were supplied at the propel-
lant inlet valves; specifically, hydrogen at a temperature from 22 to 33 K

(40 to 60 R) and oxygen from 89 to 122 K (160 to 220 R).



_. TABLE i THRUST CHAMBER DESIGN SPECIFICATIONS AND OPERATION CONDITIONS

Parameter Nominal Operating Abort
Mode Range Mode

Thrust, newton (Ib) Ill (25) --- 133 (30)

Chamber Pressure, N/cm 2 (psi) abs IO3 (150) --- 124 (180)

Overall Mixture Ratio 4 3 to 6 5.6
Nozzle Expansion Area Ratio 50 ......

Hydrogen Inlet Temp., K (R) 28 (50) 20 to 30 (37 to 55) 28 (50)
Hydrogen Injector Manifold Temp. K (R) 71 (128) 71 to 126 (128 to 227) ---

Hydrogen Inlet Pressure_ N_m 2 (psi) abs 152 (220) 134 to 169 (195 to 245) 146 (212)
Oxygen Inlet Temp. K (R) 92 (165) 91 to Ill (163 to 200) 92 (165)

Oxygen Injector Manifold Temp., K (R) 141 (254) 127 to 159 (228 to 286) ---

Oxygen Inlet Pressure, N/cm 2 (psi)abs 152 (220) 134 to 169 (195 to 245) 146 (212)

Specific Impulse-Steady State, sec. 410 (goal) --- 410 (goal)
Specific Impulse-Steady State, sec. 390 --- 382

(minimum acceptable)

Specific Impulse-Pulsing, sec. 330 (goal_ ......

Response to 90% Thrust, msec 75 (goall ......
Response to 90%'Thrust, msec lO0 ......

(maximum time acceptable)

Minimum Impulse Bit, kg-sec (Ib-se¢).2268-.4536 (.5-I.0) (goal)

Maximum Firing Duration, Design, Hr. 0.25 --- 0.75
Design life, cycles lOO,O00 ......
Design Operating Life, hours 80 ......

Reliability goal 0.9993 ......

Heat load to LOX system, Joule/min (Btu/hr) 2.64 (.15) (goal) ---
Heat load to LH2 system, Joule/min (Btu/hr) 5.28 (.30) (goal) ---

Maximum Test Duration, sec. 300 300



DISCUSSION

The basic approach for the investigation was to use a baseline thruster con-

figuration that was a direct outgrowth of earlier spark-torch igniter technol-

_ ogy. This design concept (Fig. 1 ) featured a central spark igniter, an inte-

gral oxygen/hydrogen injector, and a combustor tube. All of the oxygen is

injected from an annular gap surrounding the spark plug electrode. A small

quantity of hydrogen is injected into the igniter combustor tube where it mixes

with the oxygen immediately downstream of the electrode producing an oxidizing-

rich hot-gas core (MR 50:1). The remainder of the hydrogen is injected at a

downstream annulus andboth reacts with oxygen-rich core gases and provides film

cooling of the downstream thrust chamber wall.

This baseline configuration served as a point of departure for the establishment

of improved design concepts to meet the thruster pulse-mode and steady-state

operating requirements specified in Table 1 .

DESIGN ANALYSIS

This section addresses the critical technology associated with the design, fab-

rication, and test of a small cryogenic propellant thruster. Design analyses

were conducted for all of the major subcomponents within the thruster assembly.

These included the propellant injection system, ignition system, thrust chamber,

and propellant valves. The results of these analyses served as guidelines for

the subsequent hardware design, fabrication, and hot-fire test phases.

Propellant Injection System

The primary function of an injector is to introduce propellants within a com-

bustor in a manner that will provide stable, high combustion efficiency without

" having any deleterious effects on the injector face or thrust chamber wall.

These goals are generally attained by adhering to established design principles

involving injection element geometry, feed system dynamics, and manifolding.

However, in addition to these basic injector principles, several special con-

siderations were addressed in the design of an injector for the small cryogenic

thruster. These additional considerations stemed from the minimum impulse bit

goals and the introduction of cryogenic 02/H 2 propellant to the thruster. These
additional considerations stemed from the-miNimum impulse bit goals and the

introduction of cryogenic 02/H 2 propellant to the thruster. Minimum impulse bit
size and high-performance goals necessitated efficient, low-volume propellant

manifolding and feed Systems, particularly on the liquid oxygen side. The

propellants within these small feed system passages are consequently highly

susceptible to freezing and/or boiling. The effects of propellants (liquid-

oxygen) freezing within the injector are obvious; however, propellant boiling

(two-phase flow) within the injector body also is detrimental because of flow

instability caused by thermal choking. Thermal control of propellants within

the injector body and feed system, therefore, received as much attention as the
conventional injector design practices.

Propellant injection/combustor configurations representing increasing levels of

" design complexity were evaluated for their performance capability, manifolding,

5
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and cooling requirements. These injection/combustor configurations included a

single-sleeve coaxial design, a dual-sleeve triaxial design, and a dual-sleeve

hybrid injection design. Conceptual configuration layouts reflecting these

injection/combustor designs were prepared to identify the most favorable

arrangement for the thruster assembly components and to provide immediate

design/ fabrication related feedback to complement the analyses effort,

particularly in the areas of propellant injection systems, and pulse-mode

operating characteristics. These preliminary design layouts for the single-

sleeve, dual-sleeve triaxial and dualsleeve hybrid injection concepts are

illustrated in Fig. 2 through 4 .

As stated earlier, the single-sleeve, coaxial design (Fig. 2 ) was a direct out-

growth of earlier spark-torch igniter technology, and features an oxygen-rich,

hot-gas core surrounded by a hydrogen annulus that both reacts with the oxygen-
rich, hot-gas core surrounded by a hydrogen annulus that both reacts with the

oxygen-rich core gases and provides film cooling of the downstream thrust

chamber wall. The primary advantage of the single-sleeve, coaxial configuration

is its design simplicity; however, parametric performance and heat transfer

analyses conducted indicated that the large sleeve recess depth required to meet

the minimum program performance requirements resulted in excessive wall tem-
peratures at the chamber throat.

The dual-sleeve, triaxial injection/combustor configuration (Fig. 3 ) incorpora-

tes design features that tend to correct the performance and chamber cooling

problems associated with the single-sleeve injection concept, at the cost of

greater design complexity. This is achieved by first injecting a portion of the

hydrogen from a short inner sleeve where it mixes and reacts with the oxygen-

rich core gases and then injecting the remainder of the hydrogen from a longer
outer sleeve immediately upstream of the convergent nozzle section where it can

effectively film cool the thrust chamber throat. Parametric performance and
heat transfer analyses, conducted to define the most favorable combination or

core mixture ratio and sleeve length, indicated that both satisfactory com-

bustion performance and chamber cooling could be realized with this injection/

combustion configuration. A satisfactory performance and chamber cooling condi-

tion also is indicated with the dual-sleeve hybrid injection/combustor config-

uration (Fig. 4 ) in which a portion of the fuel is injected into the oxygen-

rich core gases through individual impinging orifices, instead of through a
concentric annulus as with the triaxial design. This configuration has the

added potential for reducing the combustor length; however, because of the

discrete location of the hydrogen injection orifices, the risk of a chamber wall

compatibility problem is greater than with the dual-sleeve, triaxial injection
concept.

Combustion Performance. Design analyses were performed relative to the char-

acterization of key performance parameters for the candidate thruster propellant
injection systems. Both the primary injection pattern involving the impingement

of individual hydrogen jets on a single oxygen annulus (Fig. 5 ) and the second-

ary injection pattern involving an oxygen-rich hot-gas core (MR = 50) surrounded

by a hydrogen annulus (Fig. 5 ) were evaluated from a mixing efficiency stand-
point. For impinging injection streams, i.e., the primary injection pattern,

- optimum mixing is realized when the momentum of the hydrogen and oxygen streams
are proportioned to result in mutual penetration within one another. If the
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impinging hydrogen stream momentum is substantially greater than the axial

oxygen stream, the hydrogen will penetrate through the oxygen shroud and enter

the core region where further mixing can take place only by turbulent transport.

If the impinging hydrogen stream momentum is insufficient to penetrate the axial

oxygen stream, poor propellant mixing is again realized and the relatively slow

turbulent transport becomes the primary mixing mechanism. The oxygen injection

momentum was primarily dictated by spark plug gap geometry since this gap serves

as the injection orifice for the liquid oxygen. Design analysis discussed in

the Ignition System Analysis section resulted in the selection of a spark plug
electrode geometry consisting of a 0.254-cm (0.100-in.) diameter electrode and

a 0.063-cm (0.025-in.) spark gap. Because optimum mixing with impinging propel-
lant streams is realized when the momentum of the fuel and oxidizer streams are

proportioned to give mutual penetration within one another, the four impinging
hydrogen orifices were therefore sized to best effect this condition. Under

nominal operating conditions,a hydrogen orifice diameter of 0.063 cm (0.025 in.)

appears to satisfy the desired penetration criteria. The penetration profile
represented as Case II in Fig. 6 depicts the nominal operating point for the

primary injection system. Also included in Fig. 6 , as Cases I and III, are

penetration profiles for the propellant temperature operating range indicated in
Table 1 . Based on these results, no significant change in behavior was indica-

ted over the planned thruster operating range.

The candidate secondary injection systems consists of concentric tube designs
and, consequently, performance characteristics are governed by shear-type mix-

ing criteria. Unlike the primary impingement injection pattern, mixing is

enhanced by large injection momentum difference between the propellants. Con-

ventional concentric tube injection systems utilize a low-velocity core stream

(oxidizer) and a high-velocity outer annular stream (fuel) to attain the desired

shear-type mixing. However, because of the nearly equal injection gas densities

at the thruster secondary injector, an extremely unfavorable geometric relation-
ship (i.e., large-diameter core stream and small annulus gap) existed when shear

mixing was attempted by means of a low-velocity core and a high-velocity sur-

rounding annulus. Consequently, the alternative of utilizing a high-velocity

core stream and a low-velocity surrounding annular stream was employed. Figure
7 illustrates the geometric relationship between an earlier IR&D, sleeve injec-

tion system that had a hot-fire shear AV of approximately 30.5 m/sec (i00 ft/sec)

and an alternate high-shear, single-sleeve injection system with a AV of ap-

proximately 213 m/sec (700 ft/sec). The more favorable geometric relationship

between the oxygen and hydrogen streams for improved mixing is apparent with the
"alternate design" configuration.

To characterize the performance behavior of the secondary injection system, a
gas-gas combustion model was formulated based on criteria established in Ref. 1.

This model describes the turbulent diffusion of a flame in a duct and empiri-
cally accounts (earlier IR&D thruster test results) for the effect of turbulent

and viscous-shear mixing. The model is capable of providing composition, tem-

perature, and velocity profiles of the combustion products anywhere inside the

combustion chamber and was baselined to the hot fire combustion performance
results from an earlier IR&D thruster program.
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As illustrated in Fig. 8 (heavy lines), the combustion model results appear to
indicate less of a performance sensitivity with core mixture ratio than was

originally inferred from the IR&D hot-fire test data.

Inputing the propellant injection/geometry parameters for the single-sleeve IR&D

and alternate high shear injection configurations illustrated in Fig. 7 into

the combustion model, resulted in the predicted combustion performance values
shown in Fig. 9 • These data indicated that even with the improved mixing

characteristics of the high shear design, the combustion efficiency of the

single-sleeve injection system still fell short of the required minimum value of

91%, particularly since this injection configuration is limited by thrust

chamber wall heat transfer considerations to sleeve recess depths of approxi-
mately 3.8 cm (1.5 inch). Thrust chamber wall cooling considerations for all of

the candidate injection/combustor concepts are discussed in the Chamber Cooling
section.

Parametric combustion performance analyses were also performed tor the dual-

sleeve, triaxial injection configuration (Fig. 3 ). Because this configuration

involved the injection of hydrogen at two separate axial locations along the

length of the thrust chamber, the combustion performance trends at each location

were established. The combustion performance trends with core mixture ratio

and combustor length at the first hydrogen injection location are illustrated in

Fig. i0 . The injected hydrogen at this location mixes and reacts with the

oxygen-rich hot gas (MR = 50) from the plasma-torch igniter. The combustor

efficiency values represented in Fig. i0 are based on the theoretical performance

for the respective core mixture ratio over the range of 15 to 5. The physical
significance of the noted trend is that, as the core mixture ratio is decreased,

a larger quantity of hydrogen must mix and react with the oxygen-rich hot gas

and, therefore, a greater combustor length is necessary for a given combustion

-" efficiency. With a combustor length of 6.35 cm (2.5 in.), combustion efficiency

values ranged from 100% for a core mixture ratio of 15 to 96% for a core mixture
ratio of 5.

Similar parametric combustion performance analyses were performed at the second

hydrogen injection location. The injected hydrogen at this location mixes and

reacts with the hot gas from the core chamber and also serves as boundary layer
coolant (BLC) for the chamber throat and nozzle. The combustion performance

trends with core mixture ratio and combustor length at the second hydrogen

injection location are illustrated in Fig. Ii . The combustion efficiency

values represented in Fig. ii are based on the theoretical performance for the

overall thruster mixture or 4.0, and show an increasing efficiency trend with a

decrease in core mixture ratio over the range of 20 to 5. The physcial signi-
ficance of this trend is that, as the core mixture ratio is decreased, a smaller

quantity of hydrogen must mix and react with the core hot gas and, therefore, a

shorter combustor length is possible for a given combustion efficiency. With a
combustor length of 2.54 cm (i.0 in.), combustion efficiency values ranged from
95.5% for a core mixture ratio of 5 to a value of 86% for a core mixture ratio

- of 20.

15
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A comparison of the combustion efficiency characteristics of both the first

injection point (Fig. i0) and the second injection point (Fig. ii), shows a

countering trend with core mixture ratio. Therefore, a composite combustion

efficiency plot of the results from both the first and second injection points

was generated and is depicted in Fig. 12. This composite performance plot in-
dicates that the combustion performance efficiency with the dual-sleeve, tri-

axial injection system is maximized at a core mixture ratio of approximately 7.5.

The predicted combustion efficiency utilizing an igniter mixture ratio of 50, a
core mixture ratio of 7.5, and a throat or overall thruster mixture of 4 is

greater than 92%, which exceeded the value necessary to meet the program minimum
requirement.

Based on the combustion performance analyses discussed above, the relative per-

formance capability of the three candidate injection/combustor concepts was
determined and is presented in Fig. 13. For this comparative assessment, a

maximum chamber throat temperature of 1644 K (2960 R) was established. As

noted earlier, the large sleeve recess depth required to meet the program mini-

mum performance requirement results in excessive wall temperatures at the cham-

ber throat with the single-sleeve injection concept.

A maximum sleeve recess depth of 3.81 cm (1.5 in.) is indicated for a throat

temperature of 1644 K (2960 R). Corresponding combustion performance values

for this recess depth are 82 and 85% for a core mixture ratio of 50:1 and 30:1,

respectively. This large performance deficiency relative to program minimum

requirements, together with a lack of design flexibility for improving its per-

formance capability during development testing, made the single-sleeve injection

concept a high risk and, therefore, was not considered a viable configuration
for this program.

A review of the performance and chamber wall cooling capabilities of the dual-
sleeve (triaxial) design showed that the predicted performance level was within

the range of program minimum performance requirements. Furthermore, design
flexibility with this concept enabled propellant flows within the thruster to

be varied for optimization of performance and cooling characteristics during
development testing. The predicted effect of such flow variations on combustion

efficiency within the secondary combustor is illustrated in Fig. 14.

The predicted combustion performance level of the dual-sleeve (hybrid) design

also was within the range of program minimum requirements. A slightly higher
capability is indicated with this hybrid dual-sleeve injection concept over

that of the triaxial dual-sleeve concept because impingement of the secondary
hydrogen with the primary core hot gases would result in improved mixing char-

acteristics within the secondary combustor. However, because of the discrete

location of the hydrogen injection orifices, the risk of chamber wall compati-

bility problems is greater than with the dual-sleeve, triaxial injection concept.

Based on the above combustion performance and chamber wall cooling considera-

tions, the dual-sleeve, triaxial injection/combustor concept (Fig. 3 ) offered
the best opportunity for meeting the overall program objectives and, therefore,

was selected at the baseline injection'combustor configuration.

Propellant Thermal Control. Thermal control of the propellants within a cryo-
genic thruster is a key design consideration if pulse-mode minimum impulse bit

20
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goals are to be realized. Therefore, parametric analysis were conducte_ for

several candidate propellant manifolding thermal insulation systems.

Five thermal liner/insulator configurations for the propellant inlet manifold

were evaluated and are shown in Fig. 15. For the configuration with the thin
metallic liners, a two-dimensional thermal model was constructed and the thermal

standoffs were assumed to be in intimate contact with 10% of the body area. For
the other configurations, a one-dimensional model was used. The results of

these analyses for the hydrogen manifold are presented in Fig. 16 through 20.

The magnitude of the heat flux is a direct measure of the heat input to the

propellant. The heat fluxes at 5 msec (Fig.16) are high for all liner/insulator

configurations. Only the thin-steel liner configuration resulted in a heat flux

being a factor of 2 lower than the other configurations. After 5 msec, the wall

material cools down and the heat flux correspondingly decays. Comparing the
all-plastic and all-steel configurations, the hydrogen-side surface of the

plastic responded more rapidly (low diffusivity), although a major portion (90%
of the thickness) of the plastic remained essentially at the fnitial temperature.

At i00 msec (Fig. 16), the 0.013-cm (0.005-inch) steel liner with thermal stand-

offs in a plastic body resulted in a lower heat flux than the same liner in a

steel body. This trend is due to the low thermal conductivity of the plastic
retarding the conduction of the residual heat.

The heat flux distributions (shown in Fig. 16) were translated into hydrogen

enthalpy increases for an assumed manifolding surface area of 1.29 cm2 (0.2
in.2), Fig. 17. The enthalpy increase profiles are similar to the heat flux

profiles since the two parameters are directly proportional. Also, assuming a
hydrogen outlet pressure of 138 N/cm2a (200 psia), the ratio of the outlet-to-

inlet hydrogen density was computed, as shown on the right side of Fig. 17.

The initially high heat flux resulted in approximately a 75% density change for

all configurations except the 0.013-cm (0.005-in.) steel liner configurations,

where the density change is 40%. A large initial density change will tend to

reduce the propellant flowrate and retard the thermal response. After i00 msec,
all configurations resulted in a density change of 10% or less.

Parametric data of allowable propellant manifold surface area for a given pro-

pellant enthalpy increase or density ratio were developed for the heat fluxes

corresponding to the 5-msec time slice (Fig. 18). These data show that to
maintain a hydrogen density change of 20%, a surface area less than 0.690 cm2

(0.107 in. 2) must be used for the assumed conditions.

Variations in heat input to the hydrogen with changes in propellant mass ve-

locity and initial manifold temperature also were evaluated. As shown in
Fig. 19, a 50% reduction in hydrogen mass velocity resulted _n a 23% reduction

in the peak enthalpy gain and a change in peak density change of 40 to 30% for

the 0.013-cm (0.O05-in.) steel liner configuration. For an all plastic confi-

guration, a 50% reduction in mass velocity resulted in a 43% change in the peak

enthalpy change which translated into a change in peak density change of 74 to
48%. After approximately i0 msec, the influence of the different mass veloci-

ties is negligible.
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The influence of the initial hardware temperature is presented in Fig. 20. For

the thin metallic liner configuration, an increase in initial hardware tem-

perature from 289 to 422 K (520 to 760 R) resulted in a 50% increase in peak

enthalpy gain and a change in peak density change from 40 to 56%. The all-

- plastic configuration resulted in a 50% increase in peak enthalpy gain and a

change in peak density change from 75 to 85%.

A similar propellant thermal analysis was performed on the oxidizer side. The

enthalpy gain and resulting density change are shown in Fig. 21. With all-

steel or plastic body, the analysis indicated two-phase oxidizer flow during

the first 7 to 8 milliseconds, and with the 0.013-cm (0.005-in.) steel liner,

an all-liquid condition with only a 3.5% density change.

These parametric thermal analyses indicate that a propellant manifold thermal

insulation system that utilizes a thin-walled O.013-cm (0.005-in.) metallic

liner is relatively insensitive to variations in propellant mass velocity and

initial hardware temperature, and has superior insulative characteristics, which

results in minimum heat input to the propellant during the critical initial flow

period. Therefore, this system was selected as being most favorable for small

cryogenic thruster application. In addition, as illustrated in Fig. 22 , crit-
ical propellant/coolant flows are metered at a location within the hardware

which results in a common pressure/thermal environment, thus further desensiti-

zing the thruster to any thermally induced flow unbalance caused by variable
mission duty cycles.

Combustion Stability

The dual-sleeve injection/combustor configuration was evaluated for the purpose

of identifying any potentially hazardous combustion instability modes. Feed

system-coupled stability problems occur when one or more of the propellant

feed systems couple with the combustion process. For a system to be unstable,

the closed-loop gain must be greater than 1 and have positive feedback. The
closed-loop gain is the product of the gains of combustion chamber pressure to

feed system flowrate and feed system flowrate to combustion chamber pressure.
The phase shift is generated by system responses and the combustion burning

rate. Therefore, when analyzing a system, the feed system gain, the combustion
process gain, and the combustion burning rate all need to be evaluated to deter-

mine if all three may occur at a specific frequency to generate an instability.

The dual-sleeve thruster configuration has three locations where propellant is

injected. All of the oxidizer is injected at the inlet end where it is burned

with a small amount of fuel at a mixture ratio of 50. About half way down the

combustor, additional fuel is injected, reducing the mixture ratio to 7.5.
Near the throat, additional fuel is injected as boundary layer coolant for the

throat and nozzle regions. Each of these injection regions was assessed rel-
ative to their potential for feed system-coupled stability problems.

Primary InSector. At this location, all of the oxidizer and sufficient fuel is
injected to react with only 16% of the oxidizer (MR = 50). This results in a

gain from the oxidizer reaction which is substantially lower than for a com-

bustion process having a mixture ratio near stoichiometr_c, and has a stabilizing

influence relative to feed system-combustion process coupling.

31



2.5 150 .

_02 = 0.02327 kg/sec (0.0513 lb/sec)

INITIAL TEMPERATURE = 288.9 K (60 F)

= 2
GO2 1.4413 kg!¢m2-sec (20.5 Ib/in.-sec)

2.0 SURFACE AREA = 1.29 cm2 (0.2 in. 2)
--40

Pi INLET HYDROGEN DENSITY

P - OUTLET HYDROGENDENSITY _m

1.5 TWO-PHASEr

o I -30 =_
x p/pi

0.873 m
< 0.88 <

0.90 oz LINER OR z

1,0 SLEEVE
(ALL STEEL) 0.92 --20 _

= 0.94 =
Z

PLASTIC 0.96 w
BODY

0,98
0.5 -0

_./0.127mm\ (.0,005 in.) STEEL LINER
%

IN STEEL OR PLASTIC BODY

0 I I
0 0,02 0.04 0.06 0.08 O. 0

TIME, SECOND

Figure 21. Oxygen Enthalpy and Density Variation in The Propellant
Manifold With Test Duration

32



LH2 METERING ORIFICES (3)
AND THERMAL LINERS

/LH 2 VALVE

H2 FILM COOLANT
HYBRID SECONDARY H2 INJECTION ANNULUS
INJECTION SYSTEM

SPARK
IGNITER

SECONDARY

' I H2 INJECTION ANNULUS

_L ! _ INSULATOR

LO2 THERMALLINERS

SECTION A-A

E r'_L02 VALVE

Figure 22 Dual-Sleeve/Hybrid Thruster Configuration



At the nominal mainstage operating conditions, the primary injector presusre
drops are approximately 25% of chamber pressure; this value has been shown to

provide adequate margin against feed system coupling in previous combustors.

In addition, the system response characteristics between the valves and the

chamber are very fast due to the small injector volumes and liquid propellants °

(over 10,000 Hz "break" frequencies). Consequently, the injector flowrate

cannot oscillate without the valve flowrate oscillating for frequencies below

i0,000 Hz. The valve pressure drop, therefore, adds damping to the system in
the same manner as injector pressure drop, and can be considered equally effec-

tive. This results in a total effective system pressure drop of 47% of chamber
pressure for frequencies up to i0,000 Hz.

To determine the frequency range in which coupling could occur, an estimate of

the oxidizer injection time delay was made. Using an impingement distance of

0.23 cm (0.09 in) and injection velocity of 3.66 m/sec (12 ft/sec), the time to

impingement is 6.25 x 10-4 seconds. Since burning cannot occur until impinge-

ment occurs, a typical range of potential time delays is from one to three

times the time to impingement. In addition, to provide the positive feedback

necessary for a feed system-coupled instability, the injection time delay needs

to contribute approximately 180 degrees of phase sh_ft. Therefore, the highest

frequency at which the oxidizer side could couple is 800 Hz [1/(2 x 6.25 x 10-4)]

and the lowest frequency is approximately 270 Hz. Over this frequency range,

the injector valve pressure drop provides effective damping. On the fuel side,

the range of frequency over which coupling could occurs is 800 to 2400 Hz.

Because these frequencies are well below the injector break frequency of I0,000

Hz, the injection/valve pressure drop also will provide effective damping on

the fuel side. Therefore, there is a high margin against any feed system-

coupled instability with the primary injector for liquid/liquid propellant

injection.

Under two-phase propellant flow conditions, a lower system response would

exist because the acoustic velocity can decrease by an order of magnitude,

thus reducing the injector "break" frequency below i000 Hz. This could remove
the valve pressure drop as an effective damping source to the system. However,

the density of propellants under two-phase flow conditions would be decreased

and result in an increased injector pressure drop for improved system damping.

This effect, together with the fact that only a small portion of the oxidizer

is actually reacting in the primary combustor, virtually ensures that coupling

at the primary injector will not occur even under two-phase propellants flow
conditions.

Similarly, acoustic instability modes are unlikely with the primary injector

because the resonant frequencies of the tangential and radial modes are suf-
ficiently high to preclude the burning rate from sustaining unstable operation.

The first longitudinal mode has the lowest resonant frequency of approximately

7500 Hz. HOwerver, the main injector mixture ratio of 50:1 results in only a

small portion of the primary injector flowrate actually reacting and, con-
sequently, an equivalent reduction in the amount of energy release available

to support any unstable operation. °

Secondary Injector. At this location, enough fuel is injected (2.633 g/sec;
0.0058 ib/sec) to reduce the overall mixture ratio from 50:1 to 7.5:1. Because
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the thrust chamber first longitudinal mode has a pressure node near the second-

ary fuel injector, significant coupling cannot occur with this longitudinal

mode. Potential coupling could occur with the thrust chamber second longitu-

dinal mode (frequency about 15,000 Hz). However, for coupling to occur at this

- frequency, a combustion time delay of 3.3 x 10-5 seconds is required. Because

this time delay represents only the first 0.05 cm (0.02 in.) of the secondary
chamber, only a small quantity of fuel will react with the oxidizer-rich hot gas

. at this rate. Therefore, coupling with the thrust chamber second longitudinal

mode should not occur because of the inability of the secondary injector com-

bustion process to support such a high frequency.

Boundary Layer Coolant Injector. The remaining fuel (2.724 g/sec; 0.0060 ib/

sec) is injected a short distance upstream of the thrust chamber throat for

boundary layer cooling of the throat/nozzle regions and to reduce the overall

mixture ratio from 7.5:1 to 4.0:1. Because the hot gas from the secondary
combustion chamber is at a mixture ratio below stoichiometric, no additional

reaction with the fuel boundary layer coolant occurs. Therefore, combustion

process responses which are necessary to support a feed system instability do

not exist at the boundary layer coolant injector.

Based on the above assessment, a considerable feed system and acoustic stability

margin was projected for the baseline dual-sleeve injection/combustion

configuration.

Isnition System

A study to establish design guidelines for a spark ignition system which is

applicable to small cryogenic O2/H2 propellant thrusters was conducted. The

spark plug/gap geometry is a key design issue because it has a direct influence
on the hydraulic behavior of the primary injection system, spark plug energy

level, and electrode life. The Advanced Space Engine (ASE), oxygen-rich,

spark-torch igniter configuration, which demonstrated satisfactory ignition

during an earlier company sponsored iii N (25 pound) thruster program was

utilized as a design baseline for this study. Several design deficiencies were
identified relative to the adaptation of the baseline ASE igniter configuration

for a small cryogenic thruster. Figure 23 illustrates both the baseline ASE

igniter and a candidate igniter configuration for the current IAPS thruster

development program. A major design deficiency which was corrected with the

candidate igniter configuration involved a large trapped propellant volume and

electrode geometry. The candidate configuration results in a reduction in
oxidizer trapped volume from 1.392 cm3 to 0.213 cm3 (0.085 in. 3 to 0.013 in. 3)

over that of the ASE baseline configuration. In addition, the electrode di--
ameter was reduced from 0.51 cm to 0.25 cm (0.20 in. to 0.i0 in.).

An ignition system having_he following design features was selected:

Spark Type - Inductive
Spark Energy - i0 MJ (nominal)

Spark Rate - i00 Hz (nominal)
Electrode Material - Nickel 200

Electrode Spacing - 0.062 cm (0.025 in.)

35



T I

_-.

5.o8mm ]
(_. 20 Inch)Diamete: i _,<:
Electrode

Trapped
Propellant ,7.

2.54 mm

(_0.10 Incl_Dia_eter
Electrode

1/11 !_
Candidate APS Thruster

Igniter
Baseline ASE
Igniter

Figure 23. Spark Igniter Configurations



Rationale for selection of these design features is presented below:

Spark Type. Two types of spark exciters are in common use, capacitive discharge

. and inductive discharge. The electrical systems for these two spark types are
illustrated by the block diagram in Fig. 24. The capacitive system requires

four to five power-conditioning functions, whereas the inductive system requires

only two. Thus, from a circuit complexity standpoint, the inductive type is

more attractive. Second, the high-voltage transformation/energy storage func-
tion can usually be performed with a single transformer in the inductive system,

whereas several discrete components are required for the same function in the

capacitive system. This both reduces component count, and narrows the areas

where intermediate or high voltages must be handled.

When the above circuit advantages of the inductive system are combined with

the potential for reduced spark energy levels, the capability for compact

exciter packaging can be realized. In practice, the induetive exciter condi-

tioning electronics and high-voltage transformer can readily be packaged with

the spark plug as an integral unit.

An additional advantage of an inductive spark type over a capacitive spark type

is illustrated in Fig. 25, and lies in its inherent spark wave form. The sus-

tained nature of the inductive spark wave form provides for a greater period

for ignition than with the arc-type nature of the capacitive spark wave form.

This inductive spark characteristic is a decided advantage for pulse-mode
thruster application.

" Spark Energy. A limited data base existed relative to the definition of the

minimum spark energy level for oxygen plasma generation. Ignition tests on

the SSME program have demonstrated 02/H 2 ignition at energy levels as low as
0.5 to i0 mJ. From these tests, it was decided to operate the SSME integral

exciter at i0 mJ. Test on the ASE program and on an IR&D small thruster devel-

opment program have demonstrated oxygen plasma ignition at I00 mJ. During an

earlier extended temperature range ACPS thruster investigation (Contract

NAS3-16775), successful ignition with a plasma-torch igniter was reported at
an energy level down to i0 mJ.

To provide further information in this area, and to evaluate other ignition

system parameters, an in-house test program was conducted. A series of ambient

temperature and cryogenic temperature tests with variable energy settings were

performed in a GN2/LN _ environment over the operating conditions typical of a
small crogenic thrustgr. These data substantiated the i0 mJ base for the

"optimum" spark energy. Final verification of the minimum igniter spark energy

level was established under actual hot-fire conditions during the experi-

mental phase of this program.

Spark Rate. The minimum repeatable impulse goals of a thruster dictate that

ignition delay must be minimized. For pulse widths of 50 ms, this implies that

the minimum time between sparks should be less than 5 ms to avoid significant

ignition delay. This, in turn, implies that, for the typical inductive current

and voltage wave form of Fig. 25, the spark frequency should be in the range of
. i00 to 200 Hz.
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Electrode Material. With inductive-type spark discharge systems having a spark

current in the range of 1 to i00 mA, electrode materials have only a slight
influence on the gap current and voltage characteristics. Because most common

electrode metals exhibit an electrode drop on the order of 20 to 50 V, this

potential variation is not significant in comparison to a typical gap sustaining
voltage of 500 V. Thus, electrode materials can be selected on the basis of

material compatibility, cost, life, or mechanical properties rahter than for

their electrical characteristics. Because both the gap current and projections

of electrode temperatures are low, Nickel 200, 304 CRES, and Inco 625 all were

candidate materials for this application. However, because of the substantial

experience with Nickel 200 electrode material, this was selected as the baseline

material for the thruster assembly.

Electrode Spacing. Some general guidelines were established to assist in the

selection of gap spacing. A small gap is desirable in that the voltage required

to break the gap down varies directly with the spacing. Thus, the problems of

generating and handling high voltages is lessened. Unfortunately, excessively

small gaps introduce machining tolerance difficulties and are subject to conta-
mination and fouling. Considering that radial tolerance control of 0.005 cm

(0.002 in.) is readily attainable, a nominal minimum gap aof 0.063 cm (0.025

in.) appeared reasonable. This will result in a tolerable variation in gap

dimension of [8%. At a nominal pressure of 2 atm, 140 V per 0.0025 cm (0.001

in.) is required for gap breakdown. Thus a gap of 0.062 cm (0.025 in.) would

require 3.5 kV to break down. Assuming that voltages over approximately i0 kV

begin to introduce conditioning difficulties, it appears that the nominal gap
spacing of 0.062 cm (0.025 in.) is favorable for end-item thruster application.

In addition to the establishment of the above ignition system hardware design
guidelines, an analysis was conducted to determine the acceptable propellant

inlet temperature range to ensure both satisfactory ignition and preclude hard-

ware overheating. A conservative upper mixture ratio (o/f) limit for satis-

factory cryogenic propellant ignition was selected to be approximately i00,
based on a review of the literature and earlier IR&D thruster results. The

lower mixture ratio limit, which is dictated by hardware heat load considera-

tions, was selected at 30. Igniter mixture ratio behavior with propellant inlet

temperature variation is illustrated in Fig. 26. Both the oxygen and hydrogen
propellant flowrates to the igniter decrease as the temperature of the pro-

pellants increase. An increase in oxygen temperature, therefore, decreases the

igniter mixture ratio and, in the limit, would result in hardware overheating.

As illustrated in Fig. 26, a significant shift in igniter mixture occurs as the

oxygen temperature approaches the two-phase regime. A design goal, therefore,

was to limit the heat input to the oxygen propellant to approximately 46.5 J/g
(20 Btu/ib) to avoid the two-phase flow regime. However, a heat input of twice

this value still resulted in an igniter mixture ratio of 30 with a liquid oxygen

quality of 75%. While this provides a degree of margin, operation in the two-
phase regime is somewhat unpredictable and should be avoided.

A shift in igniter mixture also occurs due to hydrogen temperature variations;

however, as illustrated in Fig. 26, an increase in hydrogen temperature in-

creases the igniter mixture and, in the limit, would result in a nonignitable
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condition. A design goal, therefore, was to limit the heat input to the hydro-

gen propellant to less than 419 J/g (180 Btu/Ib) during all anticipated mission

duty cycles mixes. Thermal control insulation systems within the thruster

propellant manifolds were therefore selected to preclude start transient pro-

pellant temperature rises that exceed these limits to ensure satisfactory pro-

pellant ignition and minimize the risk of hardware overheating.

Chamber/Injector Cooling

The three basic cooling techniques employed for each of the candidate thruster

injection systems are illustrated in Fig. 27. The major portion of the cylin-
drical portion of the fuel with one (single-sleeve design) or two (dual-sleeve

and hybrid design) sleeves. The remaining portion of the combustion chamber

and nozzle is cooled using a combination of film and radiation cooling.

The gas-side heat transfer coefficient for the cylindrical portion of the com-

bustion chamber was calculated using the Bartz relationship and applying a
20% safety factor. The coefficient 8.978 x 10-6 kcal/cm2-sec-K (0.001277 Btu/

in. 2 -sec-R) was assumed constant along the length of the combustor. For all

candidate thruster configurations, the full core mixture ratio combustion gas

temperature was used and, for the second sleeve of the dual-sleeve design, the

film-cooling influence of the injected fuel was neglected to provide conserva-
tive heat transfer results.

The gas-side heat transfer coefficient distribution (Fig. 28) for the remaining

portion of the combustion chamber and the nozzle was determined using the

Rocketdyne boundary layer computer program that utilizes an integral solution

of the momentum and energy equations.

Single-Sleeve In_ection Design. A detailed thermal analysis of the convectively
cooled inner sleeve for the single-sleeve injection design (Fig. 2 ) was per-

formed. A slotted nickel sleeve with a 0.076-cm (0.03-in.) wall thickness was
evaluated. For the 50-to-i core mixture ratio, gas-side wall temperature

distributions were obtained for coolant slot depths varying from 0.i0 to 0.25 cm

(0.04 to 0.i0 in.) with a 0.10-cm (0.04-in.) slot width and sleeve lengths up to
7.6 cm (3.0 in.), Fig. 29. The sharp transition in the axial wall temperature

distribution is the result of suddenly changing from the liquid to the gaseous

hydrogen coolant correlation at a fixed value of coolant temperature. In

reality, this transition will occur over a range of temperature and the wall

temperature variation would be more gradual. Sleeve coolant pressure drops with

variation in sleeve length and coolant slot depths are presented in Fig. 30.
These data indicate that wall temperatures of less than 700 K (800 F) are

readily obtainable with coolant pressure drops below 3.45 N/cm 2 (5 psi). The

influence of core mixture ratio on sleeve cooling for the single-sleeve design

is discussed in the dual-sleeve cooling analysis.

Film cooling thermal analyses were performed for the chamber wall region
immediately downstream from the exit of the inner core sleeve. Wail temperature

distributions for various film coolant injection locations were obtained,

assuming a 0.25-cm (0.10-in.) coolant slot height, a core mixture ratio of 50 to

i, an overall mixture ratio of 4 to i, a 2.2 to 1 chamber contraction ratio,

and a 85% film-coolant efficiency. In these analyses, the gas-side conditions

42



! s i 6 ! •

CONVECTIVELY _ # /'

H2A ,,,;--

SINGLE SLEEVE DESIGN

CONVECTIVELY FILM/RADIAT ION J

COOLED "+ _ COOLED ## 1_

H2 _Z TJJJ2i"2................... "_

DUAL SLEEVE AND HYBRID DESIGNS

Figure 27. Thrust Chamber Cooling Approach



0.001
m

02/H 2

THROAT Pc: 103 N/cm2(150 PSIA) _,J u
u I MR: 4

-- I

E
u --0.003 =

--0.002
o

_. 0.0001

_ 0.0010
g 0.0009 U
- 0.000_0.0007

0.0006
o --0.0005

--0.0004

--0.0003
Z

z
< --0.0002

0.00001
€ =50 <

m -- 0.0001

0.000001 I I I I I I
-2 0 2 4 6 8 10 12

AXIAL DISTANCE FROM THROAT, CM
I I I I I I I I I I I

-0.5 0 0.5 I.0 I.5 2.0 2.5 3.0 3.5 4.0

AXIAL DISTANCE FROM THROAT, INCHES

Figure 28. Typical Gas-Side Heat Coefficient Distribution



1000

PROPELLANT: 02/H 2

Pc = 103 N/cm 2 (150 psia) -1200

MRcoRE: 50: SLOT

800 - _D_nD: 0.0237 kg/sec (0.0523 lb/sec) DEPTH, - 1000
..... CM

HOT-GAS DIAMETER: 0.762 cm (0.3 in.) (INCH)

SLOT WIDTH; 0.1016 cm (0.0_ in.)r,,_ , -800

f__ /0.254 (0.10)600

,_ - /_'__0"2032(0"08)- 600__

_.__z_..=__i___f_ _ _ _ - - 400
400-- ___"_ J 0.1524 (0.06)

_/_- \0.1016 (0.04) - 200

o
200 --

---200

-- -400o I I I I I I I
o I 2 3 4 5 6 7 8

SLEEVE LENGTH, CM

I I I I I I I
0 0.5 I.0 1.5 2.0 2.5 3.0

SLEEVE LENGTH, INCHES

Figure 29. Primary Sleeve Wall Temperature Distribution (MR = 50-to-l)core



(3",

PROPELLANT: O^/H2 SLOT DEPTH, CM
P : I_)3N/cm2 (150 PSIA) (INCH)c

MRcoRE: 50: 0.0254E

m<. 11

-.-r AS I E
'o -- I0 u"
,,-- ,",

x 9 n
c,. 6 o
o
" 8 _

"' 7 -"

(,,r)

"_ 4 --6"'I.I.I

,'," / 0.2032

_ 4 o
o o

o 6-- .2

2 (0.06) -- 3 _

I

0 i" i 1 I (O.O4) 0
0 I 2 3 4 5 6 7 8

SLEEVE LENGTH, CM

I I I I I I I
0 0.5 1.0 1.5 2.0 2.5 3.0

SLEEVE LENGTH, INCHES

Figure 30. Primary Sleeve Coolant Pressure Drop Variation With Sleeve Length and

Slot Depth (MR = 50:1)
core



were determined assuming a completely mixed combustion gas (mixture ratio of 4

to i). With these assumptions, the predicted results (Fig. 31) indicated that

the film coolant must be injected 3.8 cm (1.5 in.) or less from the chamber

. throat for L605 as the chamber material. If the chamber material is capable of

withstanding temperatures approaching 1644 K (2500 F), the film-coolant injec-
tion location may be further upstream.

Dual-Sleeve Injection Designs. A similar chamber wall thermal analysis was

conducted for the dual-sleeve injection designs (Fig. 3 ). As mentioned pre-
viously, the conservative assumption was made that completed mixing occurred
instantaneously between the film coolant from the first fuel sleeve and the 50

to 1 mixture ratio core gas. Also, theheat transfer coefficient calculated was

assumed constant along the length of the sleeve. Therefore, the thermal results

apply equally well for both the annular and hybrid secondary injection systems.

Variables that were evaluated relative to the secondary combustor sleeve

included the wall material, coolant slot configuration (number, width, and

dpeth), and mixture ratio. The mixture ratio of the combustor gas contained

within the second sleeve influences both the combustion gas temperature and
sleeve coolant flow. The variation in coolant flow for both sleeves with core

mixture ratio of the second sleeve is presented in Fig. 32. As the secondary
combustor core mixture ratio is decreased, the available coolant flow for the

second sleeve decreases and that for the first sleeve increases. Low secondary
combustor core mixture ratios are desirable for high combustion performance, but

are undesirable from a cooling standpoint because of the resulting increase in
hot-gas temperature and reduction in available coolant flow. The coolant flow

- curve for the second sleeve in Fig. 32 also represents the influence of core

mixture ratio on coolant flow for the single-sleeve design.

Thermal analysis results relative to the convectively cooled first and second

sleeve for the dual-sleeve injection design are presented in Fig. 33 through 36.
Nickel secondary sleeve configurations employing a coolant slot width of

0.102 cm (0.04 in.), and coolant slot depths of 0.102 and 0.203 cm (0.04 and
0.08 in.) were evaluated over a range of hot-gas mixture ratio from i0 to 25.

As shown in Fig. 33, these thermal results indicate that the mixture ratio with-

in the secondary combustor sleeve should be greater than i0 to 1 for a nickel

sleeve. Further analysis indicated that smaller slot dimensions of 0.076 by

0.051 cm (0.03 by 0.020 in.) resulted in a 422 K (300 F) lower wall temperature
with the nickel sleeve at a second combuster sleeve mixture ratio of i0 to 1

(Fig. 34 ).

The variation in maximum wall temperature for the first sleeve with second

sleeve core mixture ratio and slot geometry are presented in Fig. 35 As shown
earlier in Fig. 32 , the first sleeve coolant flow decreases with an increase

in mixture ratio. As such, the maximum wall temperature increases.

Combining the first and second sleeve thermal results (Fig. 36), a second

sleeve core mixture ratio of 12 to 1 results in approximately the same maximum
wall temperature, 867 K (ii00 F), for both fuel sleeves. The increase in second

combustor sleeve core mixture ratio is the result of decreased coolant flow and

. increased combustion gas temperature. As shown in Fig. 37 , coolant pressure
drops of less than 6.9 N/cm 2 (i0 psi) can be achieved for both sleeves.
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Figure 34. Influence of Coolant Slot Geometry and Second Sleeve Core Mixture Ratio

of the Maximum Wall Temperature (First Sleeve)
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Figure 37. Coolant Pressure Drop Variations for First and Second

Sleeves (dual sleeve and hybrid designs)



As mentioned previously, a low second sleeve core mixture ratio is desirable

from a performance standpoint. Therefore, further analysis to achieve a second
sleeve design capable of operation at a second sleeve core mixture ratio of 7.5

to 1 was performed. The influence of smaller land widths, smaller slots, and a

copper sleeve were analyzed. As shown in Fig. 38 , for a 0.076-cm (0.03-in.)

slot width and a minimum slot depth of 0.051 cm (0.02 in.), the smaller land

widths resulted in only slightly lower wall temperatures. Decreasing the slot

width, land width, and minimum slot depth further resulted in a second sleeve

design having a 1058 K (1445 F) maximum wall temperature. This was achieved

with a nickel sleeve utilizing a 0.051-cm (0.02-in.) slot and land width and a

minimum slot depth of 0.051 cm (0.02 in.), (Fig. 39). Changing the sleeve

material to copper resulted in a 56 to iii K (i00 to 200 F) lower wall tem-

perature (Fig. 40), but the allowable operational temperature of copper is 222

to 333 K (400 to 600 F) lower than that of nickel and, consequently, nickel
provides a better cooling margin.

Assuming a 0.091-cm (0.036-in.) film coolant slot height, an overall thruster

mixture ratio of 4 to i, a 3.6 to 1 contraction ratio, an 85% film-coolant

efficiency, and a 5.08-cm (2-in.) second sleeve length, curves of maximum wall
temperature versus second sleeve core mixture ratio were obtained for various

axial film-coolant injection locations (Fig. 41). As for the single-sleeve

design, the gas-side conditons were determined assuming a completely mixed com-
bustion gas (mixture ratio of 4 to i) which would result in conservative wall

temperature predictions. For a 1644 K (2500 F) maximum wall temperature, a
film-coolant injection location less than 2.54 cm (i.0 in.) upstream of the
throat, resulted. The injection location decreased to less than 1.27 cm

. (0.5 in.) for a 1367 K (2000 F) maximum wall temperature.

Thermal analysis for abort mode operation (124 N/cm 2, 180 psia) chamber pressure

and 5.6 to 1 overall mixture ratio) with the dual-sleeve configuration was per-
formed. For this operating mode, a 71.7 primary sleeve core mixture ratio and

a 10.4 secondary sleeve core mixture ratio resulted, assuming the nominal opera-

ting condition hydrogen flow split. This condition results in an increase in

the maximum gas-side wall temperature Of the convectively cooled secondary
sleeve from 1058 K to 1083 K (1445 to 1489 F), because of the resulting 10.5%

decrease in coolant flow. Assuming the combustion gas temperature for a 100%
combustion efficiency, the film-cooled throat region of the thrust chamber

resulted in a maximum wall temperature change from 1458 K to 1748 K (2164 to

2687 F) for a 1.90-cm (0.75-in.) film-coolant injection distance, because of the
16% increase in heat flux and a 10.5% reduction in film-coolant flow.

Detail analyses were conducted to evaluate the three-dimensional axial heat con-

duction effect at the secondary combustor sleeve exit. The coolant channel con-

figuration at the secondary combustor sleeve exit is dictated by the require-

ments for cooling the sleeve and the desirability of having a developed annular
stream flow for film-cooling the thrust chamber throat. The three candidate

sleeve exit configurations evaluated are shown in Fig. 42 . Configuration No. 1
was designed to provide a gradual transition from discrete channel flow to

complete annular film-cooling flow. Configuration No. 2 permits some distance

(approximately 4 diameters) for the coolant to form the desired annular injec-

tion stream, while still attempting to maintain a high sleeve coolant velocity

55



•PROPELLANT: 02/H 2 1. d
P : 103 Nlcm 2 (150 PSIA) ,:_Y//7--T
C

(MRcoRE) : 7.5:I -"-Iw 14-
2ND SLEEVE

_SLEEVE MATERIAL: NICKEL -2000

1350

1950

w _w=0 0762 cm (0.03" i] 1900
• in

_<_ 1300 ___ dMIN. =. 0.0508 cm (0102.in.) :, <_1850
........................................... i ........

......................... _... _..

1800:
- IZbU .. : ..
X X

-1750 :_

700- 1200 t , i _ t I _I.... J_

0.07 o.08," 0.09, 0.10. 0.II ,0.12 O. 3

LAND WIDTH, cm

,, I ' li , ," I , li i I

0.030 °0.035 .... 0.040 0.045 0.050 "

.............. LAND wIDTHI in. :

Figure 38. Second Sleeve Maximum Wall Temperature Variation With Land Width for Second

Sleeve Core Mixture Ratio of 7.5 [0.762 mm (0.03 inch) Slot Width and 0.508 mm

(0.02 inch) Minimum Slot Depth]
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for cooling. Convective cooling of the secondary combustor sleeve is the pri-
mary consideration of Configuration No. 3. Three-dimensional models of the

first two configurations were developed and analyzed for a nominal secondary
combustor core mixture ratio of 7.5.

As shown in Fig. 43 and 44, the first and second configurations resulted in

maximum combustor sleeve wall temperatures exceeding 1367 K (2000 F), which is
excessive for a nickel sleeve. The top left corners of Fig. 43 and 44 reflect

the sleeve exit which is exposed to the hot-gas stream. The temperature profile

for Configuration No. 3 is presented in Fig. 45 and results in a maximum wall

temperature at the sleeve exit of 987 K (1316 F).

These analyses indicate that elimination of the coolant lands for the purpose
of developing an annular injection stream had a significant effect on maximum

sleeve wall temperatures. This is largely due to the loss of two-dimensional

heat conduction and the reduction in coolant mass velocity. Therefore, exit

Configuration No. 1 will be utilized only when the secondary combustor sleeve

is terminated within the convergent portion of the thrust chamber, i.e., throat

to secondary sleeve recess depths of 1.40 to 1.9 cm (0.55 to 0.75 in.). Ter-

mination of the secondary sleeve within the cylindrical portion of the thrust

chamber will require the use of exit configuration No. 3. The small channel

land widths of the selected secondary combustor sleeve design 0.051 cm (0.020

in.) and the fact that the coolant at the sleeve exit is in a gaseous state
will enhance the formation of an annular film-coolant stream within a rela-

tively short distance from the point of injection. Assuming a 7-degree flow
expansion angle, the 48 discrete streams (48 coolant channels) should coalesce
into an annulus in approximately 0.20 cm (0.08 in.).

The variation in the maximum wall temperature with film-coolant injection loca-

tion is presented in Fig. 46 for both the abort mode and nominal operating con-
ditions, assuming a secondary combustor sleeve core mixture ratio of 7.5 to 1

at nominal operating conditions. When the reduction in combustion gas tem-

perature associated with a 90% combustion efficiency is applied, the maximum

chamber throat wall temperature is reduced from 1748 to 1546 K (2687 to 2323 F).

The parametric thermal analysis discussed above defined design criteria for the

candidate thruster configurations and provided design guidelines relative to

the key thrust chamber cooling parameters, i.e., second sleeve core mixture

ratio, slot geometry for the convectively cooled sleeves, and film-coolant

injection location. Detailed design and analysis of the convectively cooled

sleeve and the film/radiation-cooled portion of the portion of the selected

thruster configuration are discussed in the Hardware Design and Fabrication
section.

Injector Cooling. The cooling of the primary injector face by the fuel and
oxidizer flowing within the injector was analyzed for a core mixture ratio of
50 to 1 utilizing the calculated gas-side heat transfer coefficient for the

first sleeve. A two-dimensional model with 0.063 cm (0.025 in.) fuel injection
orifices and a 0.063-cm (0.025-in.) annulus gap for the oxidizer was evaluated.

At the combustion gas temperature for a core mixture ratio of 50 to i, the
influence of varying the gas-side heat transfer coefficient from the full

" reference value do_,n to 25% of the full value was determined (Fig. 47).
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Typically, _he injector end heat transfer coefficient is approximately 50% of
the chamber value (full reference value); at this value, a maximum wall tem-

perature of 746 K (883 F) was obtained as shown in Fig. 48. This maximum tem-

perature occurs on the gas-side surface furthest removed from the fuel injec-

tor passage. This temperature is acceptable for the injector body and, in

actuality, this temperature would be lower since the convective cooling within
the fuel sleeve will influence this region.

Structural/Life Assessment. Stress/strain analyses were conducted to identify
any serious chamber fatigue or creep rupture problem areas associated with the

candidate propellant injection/cooling configuration, which might preclude

attainment of the high cyclic life and duration goals. These analysis indica-

ted that the injector and thrust chamber (L-605) are structurally adequate at

the operating chamber pressure of 124 N/cm 2 (180 psia) and a temperature of
1367 K (2000 F). The minimum safety factors at these conditions are 8.6 on

yield and 14.0 on ultimate and occur at the chamber throat. These analyses

also showed that a minimum safety factor of 4.0 existed on creep rupture for
the required 80 hours of operation.

Propellant Valves

A propellant valve design trade study was performed to define the most favor-

able valve/actuation concept for the thruster feasibility demonstration pro-

gram. In addition, attention was directed toward identifying any design con-

cepts that may not be desirable for support of the existing thruster develop-
ment program, but may be more suitable for planned end-item usage.

Salient design requirements which were utilized for this trade study are
included in Table 2 Valve/actuation concepts which were evaluated relative

to these design requirements were:

1 Rotary Valves, (ball, butterfly, and plug types)

2 Bellow-Disk Valves

3 Pinch Valves

4 Flexible-Tube Valves

5 Poppet Valves

6 Pneumatic Actuation

7 Electrical Actuation

Both single and bipropellant valves were addressed. In general, any of the
single valve concepts can be incorporated into a bipropellant configuration.

Some are more readily adaptable than others for reasons of size, complexity,

propellant isolation, etc. Usually, a common actuator is a feature of a bi-

propellant valve. With mechanical linkage of both propellant valving elements
to a common actuator, the effects of variations in propellant conditions on

response matching in opening and closing the two propellant elements are mini-

mized. Mechanical coupling of the elements minimizes the potential for out-

of-tolerance oxidizer/fuel mixture ratios. Axial clearance in the valving

" element linkage can be minimized for essentially coincident opening and closing
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TABLE 2. SALIENT PROPELLANT VALVE TRADE STUDY DESIGN REQUIREMENT

Hydrogen
1. Propellants Oxygen

2. Operating Temperature Range 20 - 422K (37 to 760R)

3. Propellant Temperature Range
ttydrogen 20 - 31K (37 to 55R)
Oxygen 90 - lllK (163 to 200R)

4. Propellant pressures at Valve Inlet
Hydrogen 134 - 193 N/cm_ (195 to 280 psia)
Oxygen 134 - 193 N/cm L (195 to 280 psia)

S. Pressure Drop (_laximums): o

llydrogen 17.0 N/cm_ (25 psid)
Oxygen 17.0 N/cm _ (25 psid)

6. Actuation Requirements

a. Pneumatic To be determine
b. Electrical To be determined
c. Hydraulic Not available

7. Opening and Closing Response {Goal) Total time (delay + Travel) from signal
to end of motion = I0 milliseconds

maximum. Travel (motion) = 5 _se_ max

8. Internal Leakage (Goal) i00 sccm/hr with Gaseous Helium at

operating pressure and temperature
per items 3 and 4

9. External Leakage i X 10-6 sccm/sec with Gaseous Helium
at operating pressures and temperature
per items 3 and 4

I0. Operating Life (Goal) 1,000,000 Cycles

II. Failure Criteria - The valve shall fail safe closed upon loss of actuation power.
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of both propellant elements. Also, the axial clearance can be designed to per-
mit partial opening of the fuel element prior to cracking of the oxidizer ele-

ment from its seat. A fuel-lead opening will be accompanied by a fuel-lag

closing. These conclusions are valid for actual mechanical linkage of the valv-

ing elements. A disadvantage of this approach is the need for seals to prevent
propellant mixing within the bipropellant valve.

While end-item operational and failure mode considerations appeared to favor
the use of a bipropellant concept, the single valve approach provides more

flexibility for a development demonstration program in which parametric

relationships involving start-shutdown sequencing will be evaluated. The basic
valve design concepts were therefore assessed relative to both their merits as

single valves and on their potential for incorporation into bipropellant valve
assemblies.

Rotary Valves. A typical concept for a rotary valve would employ a linear

motion actuator, a rotary shaft seal, and a stationary valve closure seal. The

valving element could be of the ball, butterfly, or plug type. Linear actuator

motion is converted to rotary motion either by rack and pinion gearing or by an

articulated linkage arrangement. Opening and closing of the valve is controlled

by the linear actuator in response to its power mode.

Conventional rotary valves require sliding or scrubbing relative motion, especi-
ally in valves with fast response andhigh velocities, and impose limitations

on cycle-life endurance capabilities.

The required 20 to 422 K (37 to 760 R) operating temperature range restricted

the use of elastomer or plastic seals. The program design leakage goals impose

closure seal leakage limits beyond the demonstrated capabilities of metal-to-
metal valve seals with relative rotary motion.

Use of a linear-displacement metal bellows seal to prevent shaft external leak-

age is a design alternate to the use of rotary shaft face seals or lip seals.

The bellows seal complied with program design requirements for essentially zero
external leakage. The use of a flexing seal, however, compromised reliable

attainment of the design goal of 1,000,000 open-close valve cycles.

A variation of the rotary valve design concept is one in which a flat plate, or
blade, is rotated to block or to open the valve flow path. Compressible cir-

cumferential seals at the upstream and downstream port interface with the blade

cavity to effect a closure seal. Blade valves require the shortest axial dis-

tance between the inlet and outlet blade and stationary seals. The cryogenic

temperature operating range limited the selection of pliable materials for tight

sealing. Flexible metal seals, compatible with the temperature range, have the

inherent disadvantage of scrubbing contact at high velocities accompanying fast
valve response.

The two basic power modes available for valve actuation are pneumatic or elec-

trical. A pneumatic actuator requires the use of a pilot solenoid to initiate

valve action opening or closing. The delay required for a pilot valve plus

pneumatic charging, travel, and venting times would make meeting the desired
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response time impractical. The speeds required would require large pilot

valves, and the actuator would undoubtedly incur impact and rebound problems at
each end of the stroke.

The primary disadvantages of electric-motor valve actuators, for direct actua-

tion of valves with significant force levels and fast response, are space

vehicle limitations on electric power demands, high weight-to-power ratios, and

low torque-to-inertia ratios. Capability for acceleration to the motor running

speed required for full valve stroke within 0.010 second results in a large

motor inertia, as reflected at the gear train output shaft, and would introduce

impact and rebound problems similar to those encountered with high-speed pneu-
matic actuators. In addition, no convenient method of fail-safe closing is
available.

A final item that precludes the rotary valve from being a viable concept

involves valve sizing. The equivalent orifice diameter for this application

was 0.193 cm (0.076 in.). This size lies below the practical manufacturing

limit for ball, butterfly, and plug-type rotary valve components.

Miscellaneous Valves. There are several miscellaneous valve concepts ranging
from bellows-disk valves, diaphragm seals, pinch valves, flexible-tube valves,

etc., to the linear displacement equivalent of the angular displacement blade
valve discussed earlier.

These valves were all rejected upon close examination by some of the problems
that beset rotary valves. The environmental temperature range of 20 to 422 K

" (37 to 760 R) precluded the use of conventional flexing material for effecting

valve actuation. Bellows-diaphragms of metal have not exhibited the life-cycle

capability required for this application. Thus, none of these concepts were

serious contenders for the intended application.

Poppet Valves. When evaluating poppet valves, the primary difference lies in
the actuation method. A poppet valve may be pneumatically actuated using an

electrical pilot valve for event initiation or use direct electric actuation,
such as a solenoid valve.

There are many applications where the flow capacity of the valve and/or ultra-
low AP performance requires the use of a relatively large flow diameter. The

attendant result is a large seating diameter and, correspondingly, a large

seating area. The inlet propellant prressure thereby produces a large un-

balanced force that must be overcome to initiate and accomplisN valve opening.

This is the typical application for a pneumatically (or, in some cases, hydrau-

lically) actuated valve using an electrical pilot involving only small forces

to initiate action. Because flow requirements for this application indicate a

valve equivalent orifice diameter of only 0.193 cm (0.076 in.), the use of such

a pilot-operated poppet valve is not warranted. The maximum initiation force

for poppet movement was Calculated to be less than 8.9 N (2.0 pounds). There-

" fore, the simplest, most direct approach to valve actuation is to utilize a

direct solenoid-actuated poppet valve. This design concept also offered the

advantage of eliminating critical dynamic seals other than the main poppet-seat

closure seal, which contributes to extended cycle-life endurance capability.
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Basic approaches to poppet-seat closures are to use either soft- or hard-seat-

ing elements. In a poppet valve, the use of a soft-seating element could result

in stroke variations as a result of material cold-flow and/or multiple impacts.
This would be especially critical for small thruster valves where the total

valve stroke is only a few millimeters. Soft valve seating would, therefore,

be detrimental to minimum impulse repeatibility and potentially to steady-state
performance.

Hard valve seating, conversely, ensures repeatable stroke and outlet diameter

dimensions for the total life of the component. Experience at Rocketdyne has
resulted in a method for overcoming scuffing normally associated with hard

poppet-seat interfaces. This involves the use of a flat-faced, metal-to-metal

poppet and seat with two concentric seat lands. Contact between the poppet
and the inner land provides the closure seal. When the poppet is seated on
the inner land, there are a few thousandths of a millimeter clearance between

the poppet and the outer land. When the valve is open and is stroking to the

closed position, angularity between the plane of the poppet sealing surface and

the plane of the inner seat land sealing surface results in impact at the seat

outer land. The potential for sealing surface impact deformation or abrasion

is thereby minimized. This poppet and seat concept places the design emphasis
on poppet guiding to minimize scuffing of the poppet against the seat as
seating occurs. In addition, the poppet is carried within a lifter which

allows the poppet to be fully independent of the armature mass to reduce impact
and to eliminate poppet rebounding.

Based on the results of this trade study, a direct solenoid-actuated, poppet-

type valve with metal-to-metal seating was selected. Since fast response and
repeatability are important, an existing valve was ideally suited for this

application. A sectional view of the valve is presented in the Hardware Design
and Fabrication section. The valve utilizes a metal-to-metal seat design and a

solenoid coil construction which lends itself to thermal isolation techniques.

This feature is important since the flowrates are small, and excess heat input
to the incoming propellants is undesirable for pulse mode operation. Actuation

of the valve with a driver circuit will be utilized to impress a larger-than-
normal voltage at valve opening, and thus provide the increased pulloff force
to ensure rapid and repeatable opening. As soon as the valve motion is under-

way, the voltage will be dropped to the hold-open valve. This will then allow

rapid and repeatable closing since the lowered voltage will result in a lower
flux field for collapse time within the coil.
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HARDWARE DESIGN AND FABRICATION

Based on the previously described analyses, a propellant injection system con-

sisting of a dual-sleeve, triaxial injection/combustor design was selected

because of its performance potential, development flexibility, and inherent

compatibility with the combustor/thrust chamber walls (Fig. 49 ). The dual-
sleeve, triaxial injection system utilizes a primary injector/combustor where

all of the oxygen and 8% of the hydrogen is introduced, a secondary injector/
combustor where 45% of the hydrogen is injected through an annulus to mix and

react with the oxygen-rich hot gas from the primary combustor, and a boundary

layer coolant injector where the remaining 47% of the hydrogen is introduced

through an annulus to cool the thrust chamber throat/nozzle region. The re-

suiting stepdown in propellant mixture ratio from 50:1 (primary combustor) to

7.5:1 (secondary combustor) to 4:1 at the boundary layer coolant injector was

determined from previously described analyses to provide the maximum combustion

performance capability with this injection/combustor system.

Ignition system design criteria developed during the Design Analysis portion of

the program defined an igniter spark plug configuration for the thruster assem-

bly. The selected spark plug geometry is illustrated in Fig. 49 and consists

of a 0.25-cm (0.10-in.) diameter electrode with a 0.063-cm (0.025-1n.) annular

spark gap. An inductive discharge exciter with a spark energy of i0 mJ was
selected for the baseline ignition system.

A previously described propellant valve trade study identified a direct-acting

- solenoid, poppet-type valve unit as the most favorable valve/actuation concept
for a small thruster assembly. Integration of such a valve configuration within

the thruster assembly on both the oxygen and hydrogen propellant sides is illus-
trated in Fig. 49.

Performance and thermal analyses also indicated that program minimum performance

requirements could be attained with a thrust chamber wall temperature of approx-

imately 1367 K (2000 F). This temperature falls within the acceptable range
for austenitic materials that maintain ductility at cryogenic temperatures,

exhibit good oxidation resistance, and are readily fabricable. Because of

these favorable physical characteristics, and the potential for meeting program

performance requirements with a maximum thrust chamber wall temperature of 1367
K (2000 F), L-605 alloy was selected as one of the thrust chamber materials. A

refractory metal is necessary if chamber wall temperatures in excess of 1367 K

(2000 F) are to be tolerated for the sake of increased performance potential.

Therefore, a review of candidate thrust chamber materials capable of operation

at wall temperatures up to 1644 K (2500 F) in an oxygen/hydrogen environment

was performed. Based on this study, unalloyed, low-carbon molybdenum was
selected as the alternate high-temperature thrust chamber chamber material.

This section describes the detail design and fabrication of the major subcom-
. ponents within the thruster assembly. These include the injector/combustor

system, ignition system, propellant valve, and thrust chamber.
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Injector/Combustor System

A detail drawing of the dual-sleeve, triaxial injection system is included as
Fig. 50. The injection system was designed to permit parallel fabrication of

two separate parts to minimize manufacturing flow time. One part, the forward

housing, is fabricated from 304L stainless-steel material and includes mounting

cavities for both the oxygen valve and spark plug igniter. The other part
consists of an aft sleeve assembly that is fabricated from nickel material and

incorporates both the sleeve/combustor coolant passages and the separate hydro-
gen injection elements spaced along the length of the combustion chamber.

Sequential fabrication of the aft sleeve assembly was initiated by machining

eighteen 0.i01 x 0.i01 cm (0.040 by 040 in.) coolant slots within the primary

combustor (_ = 50) sleeve (Fig. 51 ). Previous thermal analysis has indicated

that this coolant channel configuration would result in a maximum primary

sleeve wall temperature of approximately 478 K (400 F) and a pressure drop of
less than 3.5 N/cm 2 (5 psi). The low combustor head-end wall temperature and

low pressure drop are favorable both from a heat soakback and propellant flow
control standpoint.

Following machining of the four primary injector hydrogen orifices at the
forward end of the sleeve, an internal mandrel was installed and the coolant

channels were filled with "rigidax" preparatory to nickel electrodeposition

closeout of the channels (Fig. 52). Sufficient nickel was deposited to both

closeout the primary combustor coolant channels and form the secondary com-

bustor sleeve on the aluminum mandrel. Sixteen channels approximately 0.254
cm (O.100 in.) wide and 0.091 cm (0.036 in.) deep were then machined into the

forward end of the sleeve assembly to transfer hydrogen to the forty eight

0.051 cm (0.020 in.) wide and 0.091 cm (0.036 in.) deep secondary combustor

coolant channels which were machined into the aft end of the sleeve assembly

(Fig. 53). Two-dimensional heat transfer analyses indicated that because of

hydrogen coolant property variations and a change from liquid to gaseous cool-

ing correlations at approximately 83 K (150 R), a sharp peak in secondary

sleeve wall temperature occurred approximately 0.76 cm (0.3 in.) downstream

from the secondary injection point (Fig.54). Because this large temperature

gradient can result in axial heat conduction along the sleeve length, which
would tend to reduce the peak value, a three-dimensional thermal model was

constructed having 780 nodes and capable of handling the axial variation of

coolant bulk temperature and coolant-side film coefficient. A typical compari-
son of two-dimensional and three-dimensional maximum wall temperatures is illus-

trated in Fig. 54 . The actual maximum wall temperature of 982 K (1308 F) was
314 K (566 F) lower than the two-dimensional value. Because of this substan-

tial reduction in temperature, the possibility of utilizing larger channel
sizes and land widths was investigated. However, as shown in Fig. 45 , to

maintain a coolant pressure drop of less than 5.5 N/cm 2 (8 psi) for flow con-
trol, the larger channel sizes resulted in higher wall temperatures, even with

the axial conduction influence. Therefore, a 0.051 cm (0.020 in.) by 0.091 cm
(0.036 in.) channel size was selected for the secondary combustor sleeve. For

improved indexing during machining, the number of coolant channels was increased
from 46 to 48, which resulted in a land width of 0.051 cm (0.020 in.).
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Figure 51. Primary Combustor Sleeves

lxz42-3/1/77-C1C
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Figure 52. Primary Combustor Sleeves With Channels Rigidcxed and
Installed on Electroform Mandrel
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Figure 53. Secondary Combustor Sleeve on Electroform Tooling



Figure 54. Comparison of Two-and Three-Dimensional Wall Temperatures for

the Secondary Sleeve



To minimize coolant system parasitic pressure losses, the number of coolant

channels in the forward section of the secondary sleeve was selected to be 16.

This results in a 1.7 times increase in flow area over that of the aft coolant

channels. The approach of utilizing an even multiple reduction in the number of

channels allows visual and mechanical inspection to ensure obstruction-free
coolant channels.

Following a final electrodeposition process to close out the secondary sleeve
coolant channels (Fig. 55), the aft sleeve was final machined and electron-beam

welded to the forward housing to complete the injection system assembly. The

completed injector/combustor system assembly is shown in Fig. 56. An internal

view showing the three hydrogen injection locations within the injector/combus-

tor system assembly is shown in Fig. 57. At the first location, approximately
8% of the hydrogen is injected through four primary combustor orifices where it

reacts with all of the oxygen which is injected through a central annular spark
gap (MR = 50). At the second location, which is located 3.8 cm (1.5 in.) down-

stream of the primary injection orifices, approximately 45% of the hydrogen is

injected through 18 orifices where it reacts with the oxygen-rich hot gas from
•the primary combustor. And finally, at the third location, which is located

5.8 cm (2.3 in.) downstream from the secondary injection orifices, the remaining
47% of the hydrogen is introduced through 48 orifices to both react with the

secondary combustor hot gases and cool the thrust chamber throat/nozzle region.
Two injector/combustor system assemblies were fabricated.

Isnition System

The fabrication drawing of the selected spark-torch igniter is illustrated in
Fig. 58. This igniter design is a direct outgrowth of the unit used on the

Advanced Space Engine (ASE). However, several design modifications which were

discussed earlier, were implemented to minimize trapped propellant volume and

facilitate producibility. The spark-torch igniter consists of a nickel elec-

trode, an alumina ceramic insulator, and an outer 321 CRES housing. The elec-
trode and outer housing are sealed to the insulator with nickel brazed seals.

An external electrical connector was designed for attachment with an existing

cable to an inductive exciter unit. The igniter is capable of sustaining a
maximum voltage of i0 kV. A Teflon insert was placed over the forward end of

the ceramic prior to installation to protect the insulator from thermal/

mechanical shock and improve oxygen flow distribution at the electrode injection
annulus.

Eight igniter spark plugs (Fig. 59) were procured from Simmonds Precision In-

dustries, Inc.

Propellant Valves

An earlier trade study (Design Analysis section) resulted in the selection of a

solenoid-actuated poppet valve with a flat metal-to-metal seat closure. The

selected valve concept matched the size, operational capability, and detailed

design features of a qualified three-way solenoid valve from the Saturn program

(NA5-27273). Therefore, design analysis was directed toward defining the

necessary rework to meet current program design/operational requirements. The

reworked propellant valve design is illustrated in Fig. 60.
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Figure 55. Combustor Sleeve Assembly After Final
Coolant Channel Closeout
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Figure 56. Injector/Combustor System Assembly (External View)
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Figure 57. Injector/Combustor System Assembly (internal view)
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Figure 59. Igniter Spark Plug
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Figure 60. 11.3 kg (25 lb) Thrust
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Valve
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The existing NA5-27273 solenoid valve utilized a push-type action which was not

favorable for this application because, to minimize propellant trapped volume,

the coil-valve unit must be integrated with the thruster assembly. The solenoid

was therefore converted to a pull-type action by soldering a pole piece into the

bore and fabricating a new armature unit. The armature unit includes a poppet,

compression spring, and a retainer. The retainer provides a positive stop for

the armature and thus absorbs the impact force resulting from the armature mass

and velocity during closure. An axial clearance between the retainer and poppet
permits self-alignment of the poppet for compliance with the seat. The poppet

spring provides a small bias force for seating at low supply pressures. The

armature spring has approximately twice the force of the poppet spring to en-

sure positive contact between the armature retainer and the seat. The pole
piece and armature are fabricated from solenoid quality 430 stainless steel,

both for its high electrical resistivity, which enhances rapid response by

minimizing eddy currents during low-temperature operation, and for its satura-

tion flux density. A thin, dense chrome plate was applied to the armature for
wear resistance.

The poppet and seat are a flat seal design and were fabricated from fine grain
tungsten carbide, which provides wear resistance and a favorable surface tex-

ture. The seat has an inner and an outer land. The outer land, which is

slightly below the plane of the inner.land, acts as an alignment bumper for the
poppet, while the inner land provides the seal. The seat member includes a

thermal liner to minimize transient heat input to the propellant.

A valve seat diameter of 0.208 cm (0.082 in.) and a minimum valve stroke of

0.048 cm (0.019 in.) are required to meet the valve pressure drop allocation

of 13.8 N/cm 2 (20 psi). At the maximum propellant inlet pressure, the combina-

tion of armature spring and propellant pressure unbalance forces is approxi-

mately 8.9 N (2 pounds). This value was determined from a series of force-

stroke-current tests to be well within the valve actuation capability for the
selected coil-armature arrangement.

Details for three propellant valve assemblies (one spare) were fabricated and

are illustrated in Fig. 61. The valves were assembled and subjected to a

series of dimensional and functional checks including:

i. Stroke Measurement

2. Proof-Testing and External Leakage

3. Internal Leakage
4. Cyclic Actuation

5. Response Time
6. Pull-in/Dropout Current
7. Flow Resistance

Based on'the results of these bench tests, it was concluded that the valve

assemblies were functionally suitable for thruster installation. A valve

opening and closing response time of less than 5 and 3 msec, respectively, at

an inlet pressure of 275 N/cm 2 (400 psig) was demonstrated during these bench
checkout tests.
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Thrust Chamber

Detailed design analysis was conducted relative to a thrust chamber configura-

tion which was compatible with the selected dual-sleeve, triaxial injection

system. Earlier performance analyses indicated that program minimum perform-

ance requirements could be attained with a thrust chamber wall temperature of

approximately 1367 K (2000 F). This temperature falls within the acceptable

range for austenitic materials such as Haynes 188, L-605, and Hastelloy X.
These materials maintain ductility at cryogenic temperatures, exhibit good

oxidization resistance, and are readily fabricable. Because of these favor-

able physical characteristics and the potential for meeting the program per-

formance requirements with a maximum thrust chamber wall temperature of 1367 K

(2000 F), L-605 was selected as one of the thrust chamber materials.

If thrust chamber wall temperatures in excess of 1367 K (2000 F) are to be

tolerated, the use of refractory metals are necessary. While these alloys are

expensive, difficult to fabricate, and require coatings to prevent oxidation

and/or hydrogen embrittlement, refractory metals were considered because of the

increased performance potential resulting from their use. Therefore, a study

of candidate refractory materials capable of operation at wall temperatures up

to 1644 K (2500 F) in an oxygen/hydrogen environment was initiated. The

rationale leading to the selection of a refractory material for the high-

temperature capability thrust chamber is presented in the following paragraphs.

Refractory Material Selection. The elements commonly referred to as refractory

metals, i.e., tungsten, molybdenum, columbium, and tantalum, are characterized

by several physical properties that particularly suit them for high-temperature

thrust chamber application. These properties are presented in Table 3 along
with similar properties for L-605 for comparison. Most importantly, refractory

metals have high melting points and high temperature strengths. In addition,

the high thermal conductivities and low thermal expansion coefficients,

particularly for molybdenum and tungsten, tend to decrease their suscepti-

bility to thermal shock and thermal fatigue.

However, refractory metals exhibit several deleterious properties that must
be addressed in their application. As shown in Fig. 62 , the refractory metals

oxidize rapidly when exposed to air at elevated temperatures. Significant dif-
ferrences exist in the rates of oxidation which are related to the volatility

of the respective metal oxides. Molybdenum and tungsten oxides are the most
volatile. However, none of the refractory metal oxides are protective and,

consequently, require coating for protection from oxidation.

Refractory metals als0 are embrittled by the interstitial elements: carbon,

nitrogen, and oxygen, with oxygen having the greatest effect for a given con-
centration and carbon the least. Molybdenum and tungsten are the most sensi-

tive to these elements; columbium and tantalum will accept considerably more
contamination without excessive embrittlement. The embrittling effects of the

interstitial elements are obviously more important at low temperatures than

high temperatures.
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TABLE 3. PROPERTIES OF REFRACTORY METALS (UNALLOYED)

Thermal

Melting Conductivity Coefficient of Ultimate Tensile

Point W/m/m2_K Thermal Expansion Strength @ 1644 K
Metal K (F) (Btu/ft/ftL/hr/F) _ m/m/F (2500 F)

(I_-in./in./F) N/cm2 (ksi)

W 3684 (6170) 167.2 4.5 31000 (45)
(96.6) (2.5)

Mo 2883 (4730) 146.2 4.9

(84.5) (2.7) 5511 (8)

Cb 2519 (4474) 54.5 6.8 4133 (6)
(31.5) (3.8)

Ta 3269 (5425) 54.5 6.5 6889 (lO)
(31.5) (3.6)

L-605 1603 (2425) 22.7 16.9

(13.1) (9.4) 0

I

_0
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Hydrogen has little effect on the mechanical properties of molybdenum and tung-

sten (Ref. 2). In these metals, hydrogen is difficult to introduce, is soluble

in only a small degree, evolves relatively easily, and hydrides are not formed_
Thus, molybdenum and tungsten can be used in hydrogen environments without de-
trimental effects. In contrast to molybdenum and tungsten, columbium and tan-

talum are greatly affected by hydrogen, even catastrophically under certain

conditions at lower temperatures. The solubility of hydrogen in these metals

decreases as the temperature increases. The tantalum-hydrogen system is very

similar. At lower temperatures, columbium is embrittled by the formation of a

stable hydride (B) and, under certain conditions, this embrittlement can be

catastrophic, leading to fragmentation of the columbium. Although the forma-

tion of the hydride results in the greatest embrittlement of columbium, sig-

nificant embrittlement of columbium by hydrogen still occurs at temperatures

above which the hydride is stable. Above the hydride region, the greatest em-

brittlement occurs at moderately elevated temperatures at which hydrogen solu-

bility and hydrogen absorption rates are high. The above discussion of hydrogen

embrittlement pertains to columbium alloys, tantalum and its alloys, as well

as pure columbium. Since the thrust chamber material will be exposed to

hydrogen at temperatures from 367 K (200 F) and up, columbium and tantalum and

their alloys were eliminated from consideration for this application because

of the potential for severe hydrogen embrittlement.

Refractory metals all have an atomic arrangement designated as body-centered
cubic (BCC). Metals having such a structure undergo a transition in behavior

from ductile to brittle with decreasing temperature. In most BCC metals, this

transition occurs at cryogenic temperatures and is not troublesome. Transition

temperatures among the refractory metals vary greatly, as shown in Fig. 63,

and these transition temperatures are influenced by many variables. The

transition temperature is higher for recrystallized material than for cold-
worked (and stress-relieved) material, and it is increased by increased inter-

- stitial element content, increased strain rate, and usually by alloying. It
is preferable that the ductile-brittle transition temperature is below room

temperature for ease in fabrication and below the service temperature to
minimize the potential for fracturing.

Since the thrust chamber material will be subject to temperatures as low as

200 K (360 R), tungsten and tungsten alloys were eliminated from consideration

for the application because of high ductile-brittle transition temperatures.

Molybdenum was therefore selected as the high-temperature material for the

backup thrust chamber. Pure molybdenum was selected over molybdenum alloys
because of its lower ductile-brittle transition temperature and because it has

adequate strength at 1655 K (2500 F). Figure 63 shows that the ductile-

brittle transition temperature is below room temperature for recrystallized

molybdenum. The ductile-brittle transition temperature is lower for stress-

relieved, cold-worked molybdenum, and it is further decreased by maintaining
low interstitial element contents. Table 4 shows the interstitial content of

vacuum arc-cast, low-carbon unalloyed molbdenum and unalloyed powder metallurgy
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TABLE 4. INTERSTITIAL ELEMENT VENDOR-GUARANTEED ANALYSIS FOR MOLYBDENUM

Vacuum Arc-Cast, Unalloyed

Element Low Carbon, Unalloyed Powder Metallurgy
Molybdenum Molybdenum

weight % weight %

Oxygen 0.0015 Max. 0.005 Max.

Nitrogen 0.002 Max. O.OOl Max.

Carbon 0.005 Max. 0.003 Max.

Hydrogen 0.0005 Max. 0.002 Max.

Molybdenum 99.97 Min. 99.30 Min.

molybdenum (vendor-guaranteed analyses). Of the interstitial elements, oxygen

has by far the greatest effect in increasing the ductile-brittle transition

temperature followed by nitrogen, then carbon, and finally hydrogen, with a

negligible effect. Thus, the vacuum arc-cast, low-carbon unalloyed molybdenum
was selected because of its lower oxygen content and higher overall purity over
that of power metallurgy molybdenum.

Coolin$ Considerations

- A detailed evaluation of the film-cooled convergent, throat, and nozzle section
was conducted for the 4.18 contraction area ratio chamber and the nominal 7.5

secondary combustor core mixture ratio. Assuming an 85% film-cooling effi-

ciency, the wall temperature distributions for various film-coolant injection

locations are presented in Fig. 64 for i00 and 90% combustion performance

efficiencies. At an axial injection location of 1.90 cm (0.75 in.), the max-

imum wall temperatures are 1485 K (2214 F) and 1312 K (1902 F) for the two
respective combustion efficiencies.

From Fig. 64, it was apparent that a significant axial temperature gradient

811 K (i000 F) exists from the throat to a location 2.54 cm (i in.) upstream
of the throat. This temperature gradient would result in substantial axial

heat conduction, which would decrease the peak wall temperature values. Futher-

more, this axial heat conduction can be enhanced by increasing the thickness
of the convergent and throat sections of the thrust chamber, as shown in
Fig. 65. A three-dimensional thermal model was therefore constructed for the
film-cooled convergent and throat section, and these results indicate that a

reduction in maximum wall temperature of approximately 298 K (75 F) can be
realized.
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Figure 65. Axial Heat Conduction Influence of Film-Cooled
Chamber Throat Section

Nozzle Contour Design

Attainment of the high specific impulse performance requirement necessitates

an efficient thrust chamber expansion nozzle. For the specified expansion

area ratio of 50:1, a highly efficient parabolic bell nozzle contour of 100%

length (based on a 15-degree half-angle cone) has been selected. Table 5

presents the overall nominal operating conditions and pertinent design para-

meters of the selected nozzle. The optimum parabolic contour was defined

using a bell nozzle contour computer program that used a starting transonic

line flow computer program. The nozzle geometric efficiency was determined

to be 0.9945. The resulting nozzle contour and the design wall pressure pro-

file for the nominal operating conditions is presented in Fig. 66 and 67,

respectively. The nozzle exit pressure is 0.02 N/cm 2 (0.29 psia).

- TABLE 5. NOZZLE DESIGN PARAMETERS

Chamber Pressure, N/cm 2 (psia) I03 (150

Mixture Ratio 4.0

Nozzle Area Ratio 50

Throat Diameter, cm (in.) 0.984 (0.352)

Exit Diameter, cm (in.) 6.322 (2.489)

Throat Upstream Radius, cm (in.) 0.670 (0.264)

Throat Downstream Radius, cm (in.) 0.178 (0.070)

Throat-Nozzle Half-Angle, degrees 29

Nozzle Exit Half-Angle, degrees 5

Nozzle Length, cm (in.) I0.152 (3.997)

Nozzle Percent Length, % lO0
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A photograph of the L-605 thrust chamber is shown in Fig. 68 , and the detail

fabrication drawing and photograph of the high-temperature molybdenum thrust

chamber is shown in Fig. 69 and 70 , respectively.

Thruster Assembly

After completion of the major hardware components, final assembly per Fig. 71

was accomplished. Figure 72 illustrates the several components within the

thruster assembly and Fig. 73 shows the assembled thruster. Major components

included within Fig. 72 in a right to left order are: the thrust chamber, a

development spacer for combustor length variation, the KeI-F insulator to im-

pede heat flow from the thrust chamber to the valve area, the fuel valve/

housing assembly, the propellant injection/combustor system assembly, and the

igniter spark plug.

Following assembly of the thruster hardware, the propellant valves were sub-

jected to a final leak check with gaseous helium at a pressure of 275N/cm 2

(400 psia), and zero leakage was detected during a 3-minute hold period which
followed 50 valve actuation cycles.

Water flow calibration of the injector/combustor propellant injection system

was subsequently performed to verify that the desired three-way hydrogen flow
split existed within the thruster assembly, i.e., primary combustor hydrogen

circuit, secondary combustor hydrogen circuit, and boundary layer coolant

hydrogen circuit. Flow distribution of these circuits is controlled by means
of metering orifices which are located immediately downstream of the thruster

propellant valve. By changing these orifices, the mixture ratio distribution

within the thruster can be altered to enhance cooling or combustion perform-

ance. The original set, which was installed within the thruster assembly, was

designed to give a mixture ratio distribution of 50:1 in the primary combustor

and 12:1 in the secondary combustor, when operating at an overall thruster
mixture ratio of 4:1. While combustion model results indicate that the optimum

mixture ratio distribution for combustion performance was 30:1 (primary com-

bustor) and 7.5.1 (secondary combustor), a 50:1 and 12:1 mixture ratio distri-
bution within the primary and secondary combustor, respectively, represented a

reasonable compromise between cooling and performance considerations and, was
therefore, selected for the initial thruster configuration.

The desired mixture ratio distribution was achieved with the following metering
orifice sizes:

Primary Combustor Hydrogen - 0.035 cm (0.014 in.)

Secondary Combustor Hydrogen - 0.056 cm (0.022 in.)

Boundary Layer Coolant Hydrogen - 0.084 cm (0.033 in.)

Primary Combustor Oxygen - 0.102 cm (0.040 in.)

The lines in Fig. 74 represent the desired hydraulic behavior of the various

flow circuits within the thruster, and the symbols represent the data from
water-flow calibration. These cold-flow results indicated that the desired

mixture ratio distribution within the initial thruster assembly was achieved

with the calculated metering orifice sizes.

Following vacuum drying, the thruster assembly was shipped to the Rockwell B-I
Division for hot-fire evaluation.
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Figure 68. L605 Workhorse Thrust Chamber
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Figure 70. Thrust Chamber Assembly
(Molybdenum)
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Figure 72. Thruster Components
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Figure 73. Thruster Assembly
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HOT-FIRE TESTING

All hot-fire test activities were conducted in cell 107 of the Thermodynamics

Laboratory, Los Angeles Division, Rockwell International Corporation, E1

Segundo, California. An overall view of the test facility is shown in Fig. 75.

The major details of the propellant supply systems are shown in Fig. 76. The

various test facility systems are discussed in detail below.

The initial tests of the hot-firing program were conducted on 23 June 1977, and

continued through March 1979.

TEST FACILITY AND OPERATING PROCEDURES

Liquid Hydroge n Supply System

The21iquid hydrogen tank shown in Fig. 76 is a 0.246 m3 (65 gallon), 6.21 x 104
N/m (900 psig), triwall, stainless-steel vessel. In use, a vacuum was main-

tained in the inner jacket, and the outer jacket was kept filled with liquid

nitrogen. All tank connections were made through a top flange. The liquid

hydrogen was drawn up from the bottom of the tank by means of a "dip-leg" tube.

Helium gas was used to pressurize the tank and to purge LH 2 systems.

Tanking of liquid hydrogen was done using a 7.57 m3 (200 gallon) ca_acit_
portable dewar. This dewar was pressurized to a level of 5.86 x i0_ N/m _

(85 psig) for propellant transfer operations.

The LH 2 propellant supply lines leading from the tank to the thruster were of
a triwall construction. The inner line was stainless-steel tubing with an 0.64

cm (0.25 in.) outside diameter and an 0.089 cm (0.035 in.) wall thickness. A

liquid hydrogen refrigerant flow was maintained through the inner jacket, and a
vacuum was maintained in the outer jacket. The propellant line jacketing was

terminated shortly before reaching the thruster. The final run of unjacketed

line was approximately 46 cm (18 in.) long, as shown in Fig. 77. A "hair pin"

loop was used in the line from the venturi mounting block to the thruster mount
to minimize line stiffness changes and to minimize thrust cell side-loading

effects due to line temperature changes. For later tests, which evaluated

thruster pulsing performance, these line sections were modified to extend the

jacketed lines to within about 5 cm (2 in.) of the thruster. This improved

the ability to maintain the liquid hydrogen quality in these line sections dur-

ing the OFF portion of each pulse cycle.

The LH2 refrigerant flowrate and flow configuration was adjusted to result in

hydrogen temperatures equal to or below 27.8 K being delivered to the LH 2 ven-
turi meter. The refrigerant flowrates were adjusted by varying the sizes of

fixed orifices in various subsystems, and by breaking up the overall flow sys-

tem into a number of parallel flow circuits (rather than flowing all sections

in a series hookup). A bypass of flow system also was provided that tapped

off the LH 2 propellant supply system just downstream of the venturi meter. The

bypass control valve was automatically sequenced off just prior to the actuation
of the engine mounted main fuel valve.
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Figure 75. Overall View of 25-pound Thruster Test Facility
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A 50-micron (nominal rating) stainless-steel filter was used in the LH 2 system.
This filter precluded the possibility of allowing the passage of particles that

might be of sufficient size to affect the proper operation of the various
thruster components.

Liquid Oxygen Supply System

As shown in Fig. 76, the liquid oxygen supply system used a stainless-steel,

9.46 x 102 m3 (25 gallon) capacity tank with a maximum working pressure rating

of 6.21 x 104 N/m 2 (900 psig). This tank has an external jacket that was kept

full of liquid nitrogen. A 9.46 m3 (2500 gallon) storage capacity liquid nitro-

gen vessel, with a maximum working pressure rating of 1.72 x 104 N/m 2 (250 psig),
was used as the refrigerant flow supply tank. As shown in Fig. , it was

possible, by selective actuation of isolation valves, to flow LN2 through both

the LO2 supply system and the line jackets for preliminary system chilldown.

The LO 2 propellant supply lines from the tank to the thruster were furnished

with a single jacket. The inner line was stainless-steel tubing with an 0.64

cm (0.25 in.) outside diameter and a 0.089 cm (0.035 in.) wall thickness. A

liquid nitrogen refrigerant flow was maintained through the jacket passages. As

in the case of the LH 2 system, a final run of approximately 46 cm (18 in.)
line leading to the htruster was unjacketed. This section was provided with

foam insulation and, during chilldown and test, was in a vacuum environment.

The unjacketed run length was used to maximize thrust measurement accuracy. As

in the case of the LH 2 system, the system was reworked to provide jacketing to

within approximately 13 cm of the thruster for pulse mode operations.

The LN2.refrigerant flowrate was controlled by varying the supply pressure and
by varylng the sizes of fixed system orifices to allow delivery of liquid
oxygen to the LO 2 venturi meter at temperatures as low as 91.7 K (165 R).

A bypass flow system was provided which tapped off the LO 2 propellant supply
system immediately downstream of the venturi meter. The bypass control valve

maintained a continuous flow through that portion of the system until just

prior to actuation of the engine-mounted, main oxidizer valve. The programmed
closing of the bypass system valve and opening of the oxidizer main valve

were controlled by a sequencer.

Gaseous helium was used for the oxidizer tank pressurization system and for all
line purges.

Environmental System

All firings were conducted in an evacuated capsule to allow for full expansion

of the thruster exhaust gases and to minimize propellant supply system heat

leaks. To accommodate the 50:1 expansion area ratio of the thruster nozzle,
the pressure environment was targeted to be 1.034 x 103 N/m 2 (0.15 psia) or

less. This corresponded to a pressure altitude of approximately 30,800 m
(i01, 000 ft).
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The altitude capsule is shown in Fig. 78. This was a 1.52 m (5 ft) ID vessel,
2.44 m (8 ft) long. A number of view ports existed, which permitted visual

examinations of the hardware and also of continuous monitoring of firings by

means of a television camera. Additional ports were provided for propellant
supply system entries, instrumentation, and control system wires.

The altitude capsule vacuum pressure level was maintained by means of a bank of

five Kinney Model KD 850 vacuum pumps. The altitude capsule was connected

to the existing 0.76 m (30 in.) diameter duct permanently installed on the
roof of the test cell building (see Fig. 75). The connecting duct was a 0.30 m

(12 in.) diameter pipe, approximately 9.14 m (25 ft) long, equipped with flex-
ible bellows to allow free thermal expansion.

The rated capacity of the vacuum system was 101.9 m3/min (3600 cfm) at the
required suction pressure level. Since the volumetric flowrate of the thruster

at an assumed temperature of 367 K (660 R) was calculated to be approximately

510 m3/min (18,000 cfm), an auxiliary system was required to allow this flow

level to be accommodated. A self-powered diffuser (shown in Fig. 78) was

therefore provided to allow suitable recompression of the thruster exhaust

gases to accommodate the vacuum pump volumetri_ flowrate limitations.

This diffuser had an approximate 6.35 cm (2.5 in.) internal diameter, an exit
diameter of 12.1 cm (4.75 in.), and an overall length of 1.14 m (45 in.). A

water-cooled jacket was provided to limit the temperature rise of the mild

steel diffuser. An assortment of spacers was available to interpose between
the diffuser mounting flange and the altitude capsule. This allowed the accom-

modation of various thruster body lengths resulting from addition or removal

of thruster body spacers. Smaller adjustments, as would result in a typical

thruster nozzle to diffuser gap of 0.48 cm (0.19 in.), were obtained by
loosening the attachment bolts and moving the thrust structure.

A 4.58 cm (2 in.) valve was used to allow atmospheric air to enter the capsule
when it was necessary to remove the vacuum. Since the connecting series of

large piping does not have remotely actuated vacuum valves, this also pres-
surized those parts of the system.

Thruster Installation Details

Details of the thruster installation may be seen in Fig. 77 and 78. The thrust-
absorbing structure was a buildup box section made of 1.27 cm (0.5 in.) thick

steel plates welded together. A large cavity existed in the structure, open

at the top, which was filled with lead shot to create a seismic mass with strong
internal damping.

Two steel flexures, located 90 degrees ap_rt, were used to permit axial motion

of the thruster, while supporting the weight of the hardware and absorbing side

loads. The thruster was bolted to a thrust mount that threaded into the body
of the load cell. The mount was partially relieved (see Fig. 77) to provide
access to the igniter plug and to accommodate the thrust calibration fixture.

This calibration fixture was a ball,bearing mounted, right-angled lever system
which permitted hanging weights on the horizontal arm.
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To provide an igniter cable pressurization capability, the hollowed out portion

of the thrust mount was covered by means of two saddle pieces. The upper cover

plate was made from aluminum and the lower cover piece was made from commercial
PVC piping. Both pieces were sealed to the thrust mount with a two-component

silicone rubber casting compound (RTV 511), and held in place by means of hose

clamps. A polyethylene tube encased the igniter cable and penetrated the

altitude capsule wall. This polyethylene tube was sealed around the igniter
cable by means of a close-fitting rubber stopper at the outside end of the

tube. A regulated supply of GN2, maintained at an approximate 1.08 x 106 N/m2

(15.7 psia) pressure level, was connected to the polyethylene tube to increase

resistance to high-voltage breakdown of the igniter cable assembly.

Instrumentation and Controls

Instrumentation. The instrumentation complement for this experimental program

is shown in Table 6. The pressure transducers used were mainly Taber, bonded

strain gage-type instruments of the ranges shown in Table 6. For the venturi

pressure measurements, Taber transducers were used interchangeably with Entran

EPS-1032 type transducers. These Entran transducers were miniaturized, high-

response, semiconductor instruments used primarily to obtain high-response
measurements.

Two different load cells were used to make thrust measurements. The initial

installation is shown in Fig. 79. This used a Kulite-Bytrex semiconductor

load cell with a 2.224 x 104 N (5000 ib) load capacity. This load cell was

selected to provide a high stiffness and, thus, to result in, a high response.

The load cell was calibrated over the range of 0 to 2.224 x 102 N (50 ib).

A second load cell was employed during the latter portion of the test program.

This substitution was made to investigate the possibility that some loss of

thrust measurement accuracy was resulting because only 0.5% of the rated capa-

city of the load cell was being used. The second load cell may be seen in Fig.
80. This was a Baldwin-Lima-Hamilton bonded strain-type transducer with a

444.8 N (i00 ib) rating. This load cell was calibrated over the range of 0 to
1.334 x 102 N (30 ib).

Temperature measurements made used either thermocouples or temperature bulbs,

as shown in Table 6. Rosemont temperature bulbs were used to measure the inlet

temperatures of the propellant as delivered to the venturi meters. The cryo-

genic range temperature measurements were made with copper/constantan

thermocouples.

Elevated temperatures, such as exhibited by the thruster surfaces during firing,

were monitored with chromel/alumel thermocouples welded directly to the moni-
tored surface.

The locations of most of the Table 6 listed temperature measurements are shown

in Fig. 81.
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TABLE 6. INSTRUMENTATION LIST

ua

SYSTEM PARAMETER ID PID RANGE '-" _- m u

J _ _- _ LOCATION COMHENTS

LO× ILoxTankPr. IP(_TK J O-5001_Siolo-3.45x'O6N/m2Ix i××ILo×T_,_ I
ILOXTank Te=o. [TCTK I !-320 to -180F J 78-156K IX " JLOXTA_'v ITh_r.......to,Cu/Cn
j LU,_Ventur_
Uostream Pr. JPUV{_ I IO - 250 osi IO-I 72xlO6N/m 2 I Y I X[ [Venturi JEntrano . EPS-IO'_2-2_0

I LUA Venturt
U.nstream Tomp, iTUV_ l 1-320 to O°F j 78-256 K IX I XJ I [Fmc. ['me Ipmmo-rnn_-L,,,,_

I LOX Venturl JThroated. I_ I I0-_50o_i_Io-,.7_x,O6_/m2I× xl i l_o_ur_ I_ntr°nI i
• FDS-Iq?_-2Fp

[LOXinlet Pr. IP'N_ I Io-250 psio IO-,.72×106Nlm2 IX X Ira,. '_ne I

I I Fac. line IThe_oco_o,e,Cu/CnlI LOX inlet temp. JTIN0 J 1-320 to O°F l 78-256K IX __ X. I 'l,ox ,nj. mr. IP'0 [ IO-25Op_ig. 10-,.72xIO6N/m2 IX lThro_ter
I LOX Bleed Temp. JTflB l 1-320 to O°F ! 78-256K [__X._I I I X lFac. llne JTbe_ocou_)le,Cu/Cn

J'ILVLOX Cavlty. Te_!_TVL0 I j-320 to O°F [ 78-256K IX l J "[Thruster lThermocouole,Cu/Cn

I I I I I I I I
Hydrogen LH2 Tank Pr. ! PHTK l [0-500 psig lO-3.45×'06N/m2IxI IxIx ILH; Tank I

LH2 Tank T_mp ITHTK j [-424 to-324F l 20-76K IX J J I LH2 Tank ThermoeouDletCu/Cn
Lm2 Venturl Entran
Upstream Pr. IPUVF l ]O - 250 _)siq JO-1"72xlO6 N/m2 IX I X[ I llte_furi EPS-1032-250Ln2 Venturl " '

Upstream TemP. [TUVF I 1-424 to -324.F. ! 20-76K I XIX[ I i Fac" line lRosemont bulb

I_H7 V_nruri _ IX l ! I Venturi I r'n t ranhroa[ Pr. I PFT I Io - 250 psig 10-1.72x106 N/m2 X . ED$-1032-250

L,_,n,e__r. I_'N_t IO-_0P_'_t0-'.'_'0_'_ i× iXl I_a_-,,he [
LH2 Inlet Temp. I TI"F l 1-424 tO-324F [ 20-76K X IX i ! I Fac. line IThermocouple, Cu/Cn

LH? 'nj. Pr. IPIF I O-250p_19 Io-,.72x,O6Nlm2 IX _Ixl JTh_uster I
I LH2 Bleed Temp" I THB l I -424 tO-324F ' 20-76K JX j jXJFac, line jThermozouple, Cu/Cn

I -324 1 IThe rmocou pIe,Cu/CnTemp.MFVLH2Cavity ITvLH ! J-424to F 20-76K Ixl I I ]Thruster



TABLE 6. (CONTINUED)

=: -J

_ _i u _ LOCATION COMMENTSSYSTEM PARAHETER ID PID RANGE _ < _

Thrust -_| I TCI 0 - 200QF "_ X Ylr_-_o. Tend 256-1367K TC throat 0 ° Thermoco,JDle, Cr/A

I Te'_o-_'2 I TC2 I o - 2OOOF I x l xI-xl Tel+ 90° I I
I { memo#'3 I TC3 I 1o- 2oooF i xl xl xl I TC| . 180° i

I me._a-"a I mc4 I 10-2000_ /xlxlx, I mc,+27O° '
IT_o_S TCS I jo 2000_ I t xl I I 0°.,-3 I
! memo #6 JTC6 I 0- 2000F I I xl I !90°, ,= 3 I

! I Te_ #7 I TC7 I I0 - 2000F I I xl E 0°. '--5.75 !

I memo#8 I TC8 0- i i I xt--I 900.. II memo,'9 ITC9 I i0-2000_ I I XJ 0°, ,=SO I
JT_o_#|0 I Tc|° I 0-_000_ ! xl I 0o, ,= 50 I
I Ternp #ll ITC'I ! I0 - 2000F I JXI ! " °°' _ = |z'7zl
J T_,_p#',Z "1TC,2 I O- 2000F j X I 90°' (= 12"7Zl
I me=p#|3 I TC,3 I I.O-2000F I Ixi I 0°. _=29.1I
I Temp#14 I TCl4 ! !0 - _oooF I ix I ! 9oo,_=_9.,I

Temp #15 I T_lS I o 2OOOF x I I." •- 0°, € = 41 1

ITemp #16 TCI6 I o-2OOOF I ix I 9°°''=4,.I
I T_p#;7 I Tc;7 I o- 2000F I ! x I 0°' ×:-'72
l Temp #18 I TCI8 I 0 - 2000F I X 90°,X= -.72 I

I me.rap#19 { TCl9 O- 2000F I I x o°, ×°-.3s I
_e=_#_O _O I O-_000_ _S6-,367_ I Xl! I 90",×=-.35
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o_ TABLE 6. (CONCLUDED)

w <
z

_ _ _ _ LOCATION COMMENTSSYSTEM PARAMETER ID PID RANGE _ < o

General IChamberPr. PC I0 to 200 pslg O-,.379xlO6N/m 2 X XIX X X Thruster
X By Trex A-60927,Thrust F 10 to 50 lb O-222 n X' X X Load cell Jp_OOO-lO n.OO_

I Capsule Pr PCAP IO to 15 Dsia 0-I.O34x105 N/m2 I X XI XI X Capsule

{ Diffuser Inlet m_ PDIF IO to 20 psia O-1.379 xlO5 N/m2 I XI ! Diffuser I

{ Vacuum System "' { IS.ctlon Pr PV#.C 0 to 20 ps_a O-1"379x105 N/m2 { X I FAC

I Ha,n LOX Valve i PIPr..... I ¢;nm_l MLV PIP I I X FAC On-off

I;_a'n_uelValve , I FAC On-offControl siqnal MFV I PiP PiP I I X ,

! Start Slqnal START { PIP PIP I { I X x l FAC On-off

I Spark Monitor I SPARK ! I PIP PiP I I I X i FAC On-off

LOX Bleed Valve PIP i I X FAC On-offControl siana! OX BLD I PIP

I ControlLH2 BleedsianalValveiH2BLD I PIP PIP I I I X I FAC On-off

i LOX Manifold I { ThrusterSkin Temp. TLM -320 to +IOOF 78-311 K X LOX Manifold Thermocouple,Cu/Cr

-- i [hrusterI Lr'_2Manifold { TH,_I -424 to *lOOF 20-311 K J_Ktn T_m_ t X LH? Manifold Thermocounl_.Cu/Cr

I Exhaust Duct_kin Temp. I TEXH 0 to 2000F 256-1367 K I.XI X X Xl E×H. Duc_: Th(Trmocou_le.Cr/ml

IVacuu Xl • Ther o ouole. r/A!Inlet Telno TVAC I O to 60OF 256-589 K I X I X X Exh Duct



Figure 79. Thruster Installation With Provisions for Pressurization
of High-Voltage Spark Plug Cable
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Figure 80. Installation of Durak "B" Coated Molybdenum Thrust
Chamber With the BLH Load Cell
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Figure 81. LO2/LH 2 Thruster Surface Temperature Measurements



The propellant flowrates were measured using Rocketdyne designed subcritical

venturi meters. Details of their construction are shown in Fig. 82. A tri-
wall stainless-steel construction was used which permitted a continuous flow

of LH2 (in case of the LH2 venturi) through the inner annular passage, while
a vacuum was maintained in the outer annulus. In the case of the LOX venturi

meter, an LN2 flow was maintained in the inner annulus, since subcooled LOX

conditions were normally desired. A photograph of a completed venturi meter

assembly is shown in Fig. 83.

All transducers were periodically calibrated. Precision pressure gages were

used as the reference standards for the pressure transducer calibrations, and

the load cell calibrations were performed using_weights. These standards were,

in turn, kept in calibration by reference to secondary standards maintained by
the Los Angeles Division Metrology Laboratory. The Rocketdyne-designed venturi

meters were calibrated against turbine flowmeters, and these calibrations were

checked by use of a "catch and weigh" procedure.

Recording Systems. The primary data recording system used in all of the tests
was a lO0-channel Astrodata digital data acquisition system. This recorder

produced a digitized data tape which was later reduced to scaled parameters
and printed out as numerical data by an IBM 7090 computer.

A selected group of data signals was "Y" patched at the output end of the

Astrodata system amplifiers and furnished to graphical recorders. A Honeywell

oscillograph recorded pertinent thruster parameters (see Table 6) to provide

quick-look data and to monitor thruster transients. This oscillograph normally
was operated at a paper speed of 25.4 cm/sec (i0 in./sec) and used a self-

developing photographic paper.

For continuous monitoring of venturi pressure and temperature measurements, and

also of the chamber pressure and thrust parameters, Brush direct-inking strip
recorders were used.

In addition to the recorders used, various visible readouts were employed, such
as pressure gages and digital readouts.

A remote (black and white) television camera was used to monitor the thruster

visually at all times. The firings were recorded on FM tape so that it was
possible to replay the firings afterwards.

Test Procedures

Initial operations performed, prior to initiation of system chilldown, involved

long purges with gaseous helium. This eliminated the possibility of the pres-

ence of condensible gases in any part of the flow systems. Periodically, the

line systems were leak checked with pressurized helium and the main propellant

valves and system bypass valves were checked for seat and/or stem leakage. In

addition, periodic leak checks of the systems also were performed under cryo-
genic conditions; for these checks, liquid nitrogen was flowed through the
systems.
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Venturi Assembly
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Figure 83. View of Tri-Wall Subcritical Venturi Used for Flowrate Determination



After completion of the above operations, the altitude chamber door was closed

and the vacuum environment was created. Intermittent helium purges of the

thruster were made through the main propellant valves. This procedure was

designed to eliminate any water that might have accumulated in the thruster

channels, resulting from condensation and freezing of combustion-generated

water during the purgeless engine firing shutdown sequence.

Chilldown of the propellant supply systems was always done in the vacuum envi-

ronment. The cryogenic propellant flows were initiated in the various line

jackets, liquid hydrogen was allowed to flow through the fuel bypass system,

and liquid nitrogen was flowed into the thruster via the oxidizer supply line.

After the hardware was conditioned to the desired temperature range, some LH 2
and LO2 wer_ permitted to separately flow through the propellant main valves

and into the thruster. When the venturi upstream temperature sensors indicated

that the propellant temperatures were in the desired range, the firings were

initiated by arming all circuits and engaging the automatic sequence.

The firing sequence maintained propellant flows through their respective venturi

meters until approximately 350 msec before the firing, by means of the propel-

lant bypass systems. These flows were shutoff automatically, and the igniter
system was then activated. The spark was initiated about i00 msec before main

propellant valve actuation and was maintained for about i00 msec afterwards.

The valve drive circuit (see Fig. 84 and 85) opened the main propellant valves

with the desired relative leads and lags, as per its settings.

The firings were performed with a continuous monitoring of five parameters,

using the comparator circuits to institute an immediate test termination if the

redline values were exceeded (see Table 6). The fuel inlet temperature was

monitored so that an automatic shutdown occurred if the LH 2 supply depleted.
This would be evidenced by a rise in the inlet temperature. The four throat

thermocouples (attached to the outer surface of the L-605 chambers) were set to

avoid continued operations if temperatures were encountered that would result

in possible chamber damage.

Observer monitoring of the brush recorder thrust recording and of the television

monitor resulted in manual run aborts if ignition did not occur or if an abnor-

mal heat pattern was noted.

The shutdown of the firing was always programmed to result in an approximate

8 msec fuel valve lag. Immediately after conclusion of the firing, a post-

test astrodata record was made of all transducer readings. These data were

used to determine whether any bias existed between the venturi upstream and

venturi throat pressure measurements under the pressurized, nonflow conditions.

The venturi AP's computed during run conditions were corrected to eliminate any

noted bias effects. Additionally, these venturi transducer pressure measure-

ments also could be compared to the tank pressure transducer reading to discern

whether any pressure measurement anomalies existed.
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Figure 84. Propellant Valve Driver Circuit Module



Figure 85. Propellant Valve Driver Circuit Module



DATA AND RESULTS

The hot-firing program was performed over a period of 18 months, and consisted
of i00 tests. These tests are summarized in Table 7.

Ignition Tests

The initial area of investigation was the demonstration of reliable ignition

of the thruster at various ignition energy levels, with a target objective of
achieving ignition at the i0 mJ level. This block of tests included Runs No.

001 through 020 (Table 7). The range of variables encompassed during these
tests were:

• LH2 Temperature 27 K (49 R) to 31 K (55 R)

• LOX Temperature 89 K (160 R) to 102 K (184 R)

• Hardware Temperature (TH-2) 36 K (65 R) to 95 K (171 R)

• Igniter Energy Level i0 to i00 mJ

• Valve Sequencing i0 msec lead/lag of MOV

All of these tests used an inductive discharge energy source (Fig. 86) operating
at an output frequency of i00 Hz. This was the maximum frequency obtainable

with this exciter. This discharge rate presented the possibility of a maximum

i0 msec ignition lag penalty if the opening of the lagging propellant valve
was out of phase with the peak plasma flow. For this reason, most tests dur-
ing the entire program used the i00 Hz discharge rate.

Ability to ignite consistently at the i00 mJ level was demonstrated during the
Run No. 001 to 020 test series. The Table 7 data show some ignition problems

encountered in the course of these tests and sporadically throughout the pro-

gram. These failures were usually identified to be due to test stand problems
which would not be encountered in the actual flight installation. A discussion
of these various problems is presented in a following section.

TestsNo. 021 through 037 extended the ignition investigation to cover a range
of propellant temperatures, preconditioned hardware temperatures, and establish-

ment Of optimum propellant entry sequencing to maximize chamber pressure rise
rate. The range of variables for these tests were:

• LH2 Temperature 27 K (49 R) to 31 K (56 R)

• LOX Temperature 89 K (161 R) to 103 K (185 R)

• Hardware Temperature (TH-2) 63 K (113 R) to 263 K (473 R)

• Ignition Energy Level i0 to 25 mJ

• Propellant Valve Sequencing Simultaneous openings and i0 msec
lead/lag of MOV

• Mixture ratio 1.9 to 6.9 (4.0 nominal)
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TABLE 7. INTEGRATED AUXILIARY PROPULSION SYSTEM 25-POUND LOX!LH2 THRUSTER TEST HISTORY

138

THRrSTER SEOUENCING PURGf. SYSTEM TA.'n< PRESSUR£ THRUSTER PERFO~~.~~Cf.

TYPE LEAD TYPE LAG PRESS X 10-5 ABC LOCKUP TEMPERA11JRES - K
Pc X10-:> OVERALL OXIDIZER HYDROCEN SPECIFIC TIME TOTEST DURATION SPAlU< SYSTEM LEAD TIME LAG TIHE LOX LH LOX LHZ LOX LHZ HARDWARE N/m2 THRUST MlXTUllE nOWRATE FLOWRATE IMPULSE 90% Pc:"rEST No. DATE OIlJECTIVF. TYPE Hz N/m/ Nlm2 N/m2 RATIO IlEMARKSsec. mj msec lOBec N/m2 (TH2) abs. NEl'ITON g/sec g/sec aeca (sec)

87-001 ~/23/77 0.5 Irnit inn ~heckoul InJlh"t ive 50 100 LOX 10 J.H 2 8 3.45 3.45 17.24 17.24 99 28 71 2.07 n/m 4.6 44.2 9.66 -- - tlQition not achieved at vacu~
n02 6/23/77 0.5 100 50 LH 2 I 99 28 69 2.07 4.7 44.0 9.39 - ~ l003 7/1/77 0:J LOX

1
89 29 53 6.83 7.1 35.4 4.99 - Ignition achieved capsule PIl • atmoaphericI

22.0 6.31004 7/1/77 0.5 89 29 • 1.17 3.5 Ignition not achieved at vacuUlll-005 7/11/77 l.0 100 I 16.54 ·18.82 97 29 37 1.54 4.2 32.2 7.71 I 1- ,OCJ6 7/11/77
16.41 18.96 99 31 36 1.19 5.3 28.6 5.44 Iln1tion at ahutdown capaule PR • atmoJpheri(-007 7/15/77 LH 2 18.06 18.27 96 29 56 1.05 2.4 20.4 8.62 Ignition not achieved at vacuUlll-008 7/15/7,

3.1 .107 Ignition achieved capsule PR • atmoapheric18.34 1a.55 94 28 57 8.41 23.5 7.62009 7/25/77 50 1.8 Ignition not achieved capsule at vacuum111.00 18.68 89 28 69 o·t 15.9 8.98 -010 7/25/77 l 2.2 I
~

Characterize 18.13 89 31 91 17.2 7.80 - ,011 7/28/77 . Ignition
2.9 .091 capsule at vacuum18.06 16.48 96 29 73 7.52 24.2 8.44 Ignition achieved012 7/29/77 25 3.0 .112 ,18.27 18.68 91 28 71 8.55
I

24.3 8.12
I

013 10
18.13

11·
a6

.
91 28 78. 6.48 24.0 7.94 .085 I014

I17.93 92 28 95 ,'r 2.8 23.7 8.39 .110 I015 I
3.1 .041** I.18.06 94 28 65 9.31 24.7 7.89 •016 t 17.79 95 27 82 1.17 3.4 31.2 9.12 - Ignition not achieved capsule at vacu~017
2.7

I i18.62 17.65 102 28 84 0.94 23.8 8.75 -018
3.6 I18.34 17.93 99 29 76 1.11 30.0 8.26 -019 25 f !18.20 99 28 81 r.

" * 8.80 - ,020 8/3/77 10 •18.13 15.89 98 28 70 1.32 31.1 * - Ignition not achieved - low energy level021 8/4/77

I 3.2l 18.06 18.06 93 28 71 7.24 25.0 7.80 .120 Ignition achieved072
3.518.27 20.13 93 28 68 1.37 32.2 9.21 - Iinition not achieved - low energy level023
3.517.93 17.17 92 28 66 9.24 25.7 7.39 .0951 Ignition achieved024 8/~/77 25 t3.24 • 16.7 • .09315.65 91 28 72 7.45 Ignition achieved025
4.215.58 13.31 89 29 81 7.45 22.4 5.31 - DelAV i~nition; aprrox. 0.5 lI~e.026

14.62 89 3.6 23.7 6.6218.27 28 72 8.48 .092 Ignition achieved027
3.6 .110 I18.55 1.4.62 90 28 84 8.55 23.5 6.62

1
028

4.124.68 16.20 89 28 63 9.79 29.2 7.17 .110079 8/11 /77

!
0 19.44 14.69 97 30 212 9.38 5.4 26.8 4.99 .585 Ignition achieved - unconditioned hardware030

! 17.93 14.75 4.0 22.8 5.72 ! l
99 29 217 9.51 , .470031

• *15.51 18.00 97 27 221 7.10 19.7 .385

• Pressure transducer malfunction. .
•• Pe rii~ initiated, before power to lagiing value



TABLE 7. (CONTINUED)

I .

THRUSTER SEOUE~CING PL:P.GE SYSTEM ,
TA.'IK PRESSURESnn LEAD TYPE LAG PRESS X 10-5 ABS v 1 n-5 "". TEMPERATURES - K eX 10-5 OVERALL OXIDIZER HYDROGEN SPECIFIC TI~E TeTEST DURATION SPARK SYSTfJ1 LEAD TIME LAG TIME LOX LH LOX LH2 N/ m2 TIIRUST MIXTUPJ: FLOWRATE fLOWRATE IMPULSE 907, P

Nrm2 LOX LH 2 HARDWARE cTEST No. DATE seC8 OBJECTIVE TYPE lIIj Hz msec msec Wm2 tim2 tim2 (TH2) abs. NEl{fON RATIO g/sec g/sec secs (sec) REMARKS
I

8/12/77 1.0 Characterize Inductive 25 100 L

I2

10 LH 2
8 3.45 0 15.72 18.27 102 31 224 5.65 n/m 1.9 11.4 5.90 -- .418 Ignition achieved unconditioned

032
I - hardware

, I Ignition

I I I I I J

033

I I
I

19.37 14.75 95 30 263 7.65 6.9 26.2 3.81 .720n34

~ I 15.53 18.41 103 29 88 8.20

I
19.5 - .374,n35 I I ,

22.82 13.44 92 30 113 9.03 6.2 30.0 4.85 Je1ayed Ignition; apprex. 0.7 aec.~ -nlli I I LOX
i

18.96 15.31 97 28 87 8.96 3.9 25.8 6.62 .047 Ig~ition achievedn17 t
1

0 0

~
18.89 15.44 94 29 84 0.94 3.9 28.7 7.35 - Ignition not achieved - unpressurized cable038 8/16/77

.05 0:-1
LOX 10 19.24 15.03 96 29 137 4.62 "-4.01.00 OFF - - - Eight 50ms pulses

Performance/ LOX 10 I a 18.82 15.93 90 27 89 4.96 4.6 34.2 7.44 - So Ignition
039 9/19/77 5.0

I
~

Heat Transfer
I

LH 2 ! 18.68 15.93 91 29 99 9.58 114.8 4.7 28.7 6.12 336 • ~ 35 Satisfactory Ignition
040

I
18.75 15.93 89 28 82 1.45 - 4.8 33.6 7.03

I - - ~o ignition
041 10.0

f L X 18.82 16.00 89 30 61 10.07 121.4 4.7 29.2 6.26 349 - Ig~ition delayed approximately 0.7 sec.
042

17.79 17.51 91 28 51 6.34 67.6 3.1 29.7 9.66 - - .g~ition delayed approximately 1.1 sec.
043 9/22/77 0.3

I18.27 17.58 93 32 77 1.03 - 5.7 25.4 4.45 - - ~o ignition044 11/1/77 1.0

! 18.48 17.58 94 27 109 8.48 95.2 3.2 I 19.5 6.08 - .097 Satisfactory ignit ion045 1.0

I ..18.75 16.82 98 28 100 8.55 98.8 2.9 20.5 6.99 367 .073 ..046 5.0
22.06 16.62 96 26 42 1.38 - 3.6 I 28.8 8.03 - - ~o ignition - Ignitor not armed047 11/2/77 11. 3

I~ 22.13 16.69 96 26 III 9.38 113.4 3.5

I
24.0 6.89 374 .096 ;Satisfactory ignition048 15.0

21. 72 23.61 91 28 100 - - 4.1 29.5 7.12 - - ~o ignition049 11/3/77 3.8

! 100 21. 72 22.55 90 27 120 9.31 105.9 3.4 23.4 6.94 356 .072 ~atisfactory ignition050 15.0

I
~o ignition-ignition ca~le not pressuriza:121.58 16.75 102 25 78 - - 2.4 18.8 7.98 - -051 11/9/77 3.0

21.65 15.17 95 26 86 9.10 113.0 3.9 24.1 6.26 379 .117 ~atisfactory ignition052 13.6 I
I

18.41 17.44 3.4 ~o ignition2.8 ! 98 27 97 - - 25.9 7.53 - -053
I

3.2 366 ~atisfactory i~nitionI 21.24 17.44 94 26 84 9.45 109.l. 23.2 7.30 -054 29.9

I
20.62 15.24 92 27 94 8.48 99.2 3.6 22.2 6.17 357 .078055 12/2/77 4.9

21. 65 16.13 96 27 111 8.55 103.2 3.1 23.0 7.44 346 .126056 12/3/77 9.5 I
I 28.6 23.17 15:31 95 28 96 8.55 97.9 3.8 24.9 6.53 318 .155057

20.82 15.86 38 25 114 8.89 108.5 3.5 22.8 6.53 378 .182058 12/5/77 28.6

t 23.30 14.20 88 25 112 9.10 105.9 4.1 24.9 6.08 348 .117059 16.2

060 12/14/77 8.6 I 23.17 15.44 91 27 104 8.69 - 4.3 25.1 5.90 - .197
061 l 5.6 23.24 15.44 91 28 79 - - 4.4 I 25.6 5.81 - .197 SiN L-60S Chamber - Throat Erosion
062 12/16/77 5.0 21.72 15.86 88 26 42 8.55 106.3 3.6 23.9 6.58 356 .130 ~/~ 2 L-605 Chamber installedI01-3

1
5.0 21.86 15.93 87 26 42 - 103.6 3.9 23.9 6.17 352 - I !CJ64 5.0 21. 79 15.86 87 26 43 - 107.2 3.7

I 23.8 6.35 363 - , t065 1/6/78 5.0 171.58 15.44 98 25 91 7.93 100.5 3.5
I

23.1 6.53 .086 Trip ring installed
066 1/18/78

j
170.75 23.17 90 26 91 97.9 - - 7.12 - - I I-

067

l
0.75 23.17 89 27 78 - 97.4 - I 6.44 - --20.55 22.82 89 27 91 - 3.8 27.7 7.21 - - Non-ignition - Igniter circuit disarmed

068 -
--_.
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TABLE 7. (CONCLUDED)
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n USTER EOUE:<CINC PURCE SYSTE:'\ 'I.'...';K PRESSURE THRUS1ER PERfOR.'I.AS CESPARX SYSTDf TYPE LEAD TYPE U.C PRESS X 10 5 AB~ x 10-5 AilS
_ v Pc X 10- OVERALL, OXIDIZER HYDROGEN SPECIfIC TIME TOTEST DURATION LEAD TL'lE LAC TIME LOX.

N~:2
~ux. ~lt2 LOX LH2 HARDWARE N/IIIL THRUST MIX1URE FLU.1\ATE FLOI.1\A'IE IMPULSE 90% PcDATE sees OBJECTIVE tyPE mJ Hz m~er. msec N/m2 N/::l2 N/m 2 (!Jl2 ) ahs. 1\t:\,TL':~ RATIO g/sec g/sec sees Sees /IDWU(S

TEST No.

Inductive 25 100 LOX 10 LH2 8 0 0 18.34 16.13 '" 93 r. 28 - I", 9.03 "'104.1 '" 3.6 '" 24.9 '" 6.80 - 0.230 No digital acquisition system data
069 8-16-78 1.0 Performance and

Heat Transfer

I 18.34 16.13 94 27 95 9.27 107.8 3.9 26.1 6.67 - 0.126 Suspect LH 2. Leakage
070 8-16-i8 1.0

5.0 17.10 15.86 95 27 71 9.29 116.7 4.3 29.0 6.71 - 0.228 Chamber and throat erosion occurred
011 8-18-78

(suspect LHZ leak)16.41 16.75 89 26 8: 9.44 '\J.07.6 4.1 26.7 6.58 -072 9-28-78 1.0 50 -- Pre-run thrust zero data lostlOP 16.69 15.93 94 27 93 - 103.4 3.3 "- 20.7 6.35 - -- LOX bypass flow on during
073 9-29-78 3.6

run16.89 16.20 92 26 95 9.94 117.5 4.3 25.9 6.03 - -- Suspect LH 2 Leakage
074 9-3(}-78 5.0

16.2C 16.34 91 27 95 9.92 112.8 4.2 25.6 6.17 - Suspect LH
2
' Leakage

075 " 5.0
--16.55 16.41 91 26 97 9.74 113.9 4.3 25.9 6.03 - Suspect LH

2 Leakage
076 " 5.0

-077 10-16-78 4.2 15.31 16.75 98 27 86 9.42 113.2 3.5 22.5 6.44 391 - Ave. lock-up pressure correction assumed10.3 16.48 16.69 97 27 - 9.94 116.4 4.0 25.4 6.40 - - Suspect LOX bypass valve leakage
078 10-30-78

17.51 15.93 96 26 86 9.24 107.2 -- - 6.44 -
079 11-1-78 10.3

-- LOX bypass flow on dUring run16.27 16.69 96 26 90 9.77 110.3 3.9 25.6 6.58 -
Lox bypass

080 11-1-78 9.7

-- flow on during run18.34 16.06 90 27 85 9.69 111.9 -- - 6.12 -081 11-2-78 11.0

-- Lox bypass flow on during run082 11-3-78 12.0 17.72 16.34 89 28 93 9.43 106.3 -- - 6.31 -
Lox bypass flow on during- run083 11-7-78 32.5 15.58 16.96 95 26 78 9.48 111.9 3.4 23.3 6.76 380 - Lox bypass system blanked off during run084 11-9-78 33.6

16.62 16.82 96 26 68 9.89 117.2 3.9 25.2 6.44 378 -- Lox bypass system blanked off dUring run085 11-10-78 33.3
16.82 16.89 96 26 74 - 118.9 4.0 25.5 6.44 379 -- Lox bypass system blanked off during run086 11-14-78 13.6
15.44 16.75 97 30 III 8.69 97.3 4.8 25.4 5.31 - - Suspect hydrogen leakage087 11-3(}-78 5.7 16.48 16.82 I 101 26 122 - 100.0 3.8 25.8 6.80 - -- Moly chamber, hydrogen leakage088 12-1-78 10.5 16.48 16.69 I 93 25 93 10.89 108.9 3.9 24.9 6.40 - -- Moly chamber, hydrogen leakage089 1-17-79 5.0
16.34 16.69 100 26 126 - 101. 7 3.3 23.1 6.99 - -- loly chamber hydrogen leakage090 1-17..,79 5.0
17.03 16.69 100 23 1Hl - 107.2 3.5 24.0 6.76 - -- t'loly chamber hydrogen leakage

1

16.89 16.69 92 26 97 104.5 3.5 23.9 6.89 -
091 1-18-79 33.6

- -- ~oly chamber hydrogen leakage092 2-26-79 1.0 Stand Checkout
16.29 16.10 95 24 124 7.96 90.9 - - - - 0.048 L-605 heavy wall chamber - Checkout firins;;093 2-26-79 Pulsed Pulsing PerformancE W
17.64 17.75 96 26 125 - - - - - - - 18 pu1,e,. 4 igni<1on, oonc,p",]094 3-21-79 50 17.85 17.42 91 25 105 - - - - - - - 21 pulses, 12 ignitions cont,spark 0.065 sec ON

,
1.000 sec OFF

095 3-21-79 100
1

17
•
86 17.41 98 25 110 - - - - - - - 7 pulses, 4 ignitions cant, spark

pulses
096 3-23-79 capTiv, 250 LH2 17.79 17.71 89 28 126 - - - - - - - 8 pulses, 2 ignitions pulsed spark097 3-23-79

!! 117.68 17.51 90 26 126 - - - - - - - 7 pulses, 7 ignitions pulsed spark'"098 3-23-79 It
17.66 17.53 89 27 124 - - - - - - - 6 pulses, 6 ignitions pulsed spark**099 3-26-79 29.2

It , 17.91 17.54 88 25 99 10.99 126.2 - - - - - 6 pulses + 30 sec burn + 1 min soak + 6 pulses"'*
W

100 3-26-79 28.6
17.90 17.57 87 24 103 10.94 128.3 - - - - - 6 pulses''!- 30 sec burn + 1 min soak + 6 pulses*-.

*0.065 sec ON, 3.00 sec OFF
:~:~O. 065 sec ON, 2.00 sec OFF



Figure 86. Variable Energy Power Supply and Control Panel
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Successful ignition was obtained under most conditions, but some failures and

several cases of delayed ignition were noted. The ignition failures were

assumed to have possibly been due to a marginal ignition energy level (i0 mJ),

so subsequent tests were conducted with a 25 mJ energy level. Later experiences

with the igniter system (discussed in a following section) tend to indicate

the possibility that a deterioration of the ignition cable assembly may have

reduced the amount of the exciter-generated energy actually delivered to the

igniter. This would have resulted because of increased cable leakages.

The delayed ignition occurrences may have been due to poor quality of the liquid

hydrogen as delivered to the thruster. The propellant supply system configura-

tions required to accommodate flow and pressure measurements, and to maximize

the accuracy of the thrust measurement system, had the tendency to reduce the

ability to deliver high quality propellants to the thruster. In addition, the

existing data were not capable of defining the propellant conditions as injected

into the ignition zone.

Initial ignition problems encountered (runs 001 through 008, Table 7) resulted

because the ignition cable was being exposed to the capsule pressure environment.

This low pressure was in a range that seriously reduced the breakdown voltage

of the air and encouraged leakage from the igniter input terminal to the igniter

steel body. This problem was eliminated by°maintaining a pressure slightly above

atmospheric for the igniter cable and input end of the igniter (see Fig. 79).

A second area of ignition cable problems encountered was with the igniter ter-
minal end of the cable. Existing high-tension cables, as used in the J-2S

engine, were used, but required addition of terminals at both ends to suit the

requirements of this thruster installation. The igniter end terminal was (for

most of the tests) molded under on-site conditions by casting RTV 511 silicone

rubber around a terminal socket pin soldered to the stripped end of the cable.

An igniter body, combined with a two-piece cylindrical mold was used to retain

the molding compound until the rubber hardened.

The general experience with this molded product was that ignition problems
gradually were encountered after a period of use. The physical strength and

tear resistance of this silicone rubber are rather low and some ignition cable

failures were encountered because the rubber occasionally developed a crack.

The fairly sharp bend required to lead the cable out of the thrust mount adap-

ter resulted in some highly localized stresses. The second problem area en-

countered was that it was not possible to eliminate fine bubbles from being
trapped within the rubber. These bubbles appeared to encourage current leakage

paths (perhaps by surface conduction) which gradually developed through them.

These leakage paths would not result in a severe localized breakdown, but would

gradually reduce the amount of energy actually delivered to the igniter. Typi-

cally, a small amount of discoloration would develop on the surface of the

molded terminal where an underlying bubble was close to the surface. As a

confirmation of this hypothesis, it was noted that ignition problems usually

developed only after a series of tests were performed, and that remolding a new

terminal usually resulted in the disappearance of these ignition problems.
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In an effort to eliminate the problems encountered with the "on-site" molded

connectors, a revised configuration was designed and fabricated. This connec-

tor is shown in Fig. 87. This terminal was machined from KeI-F stock, to which

was then added a molded RTV 511 silicone rubber section that incorporated a

preformed right-angle bend. The RTV rubber was molded under partial vacuum

conditions to minimize air bubble retention. While the right-angle bend eli-

minated the bending stresses otherwise encountered in the test installation, it
made the central location of the conductor wires within the insulation diffi-

cult to assure. This terminal still required an on-site molding of RTV 511

rubber to cover the splice between the prefabricated terminal and the igniter
cable.

The KeI-F connector was installed and used for Runs No. 39 through 42. Most

of these tests encountered some form of ignition problem. Removal and inspec-
tion of the ignition cable shows that a failure of the RTV 511 rubber had

occurred. A small black line, approximately 0.15-cm long, with a puncture mark

at its center, was found located at the center of the 90-degree bend. The
insulation was nominally 0.30-cm thick, but the presence of some small subsur-

face air bubbles and the possibility that the conductor wire may have shifted
in the mold could have reduced the local insulation thickness. No further

tests were conducted with this version of the igniter terminal.

Tests No. 043 through 068 were conducted using the previously removed igniter

cable assembly. At the 50 mJ energy level, some further ignition failure_ were
noted. The cable was removed again, questionable RTV rubber areas were sliced

out of the surface, and additional rubber was cast over the entire surface

external to the igniter. At the same time, the ignition energy level was

raised to i00 mJ on the assumption that current leakages would have to be ex-

pected and that a higher initial input would have a greater tolerance for
losses.

A new igniter cable assembly was procedured and used for the remainder of the

program, i.e., Runs No. 069 through i00. This cable was considerably thinner,
with an approximate 0.41 cm outside diameter, and an insulation* thickness of

0.ii cm. The flexibility of this reduced diameter minimized possibility of

surface stresses due to the routing path of the cable. An RTV 511 igniter
terminal end was molded on one end of the cable using a partial vacuum to mini-

mize retention of air bubbles. Ignition with this small-diameter cable seemed

to require use of the i00 mJ power level. This was interpreted to mean that

higher corona losses were being encountered, reducing the effective power

actually delivered to the igniter. Since ignition phenomena were no longer being
specifically evaluated during this series of runs, this situation was tolerated

so that attention could be concentrated on the performance evaluation of the
thruster.

*MIL-W-16878 Type FF white silicone rubber
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Figure 87. Spark Plug High-Voltage
Cable Connector
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Performance Tests and Heat Transfer

The evaluation of the thruster performance and investigation of the heat trans-

fer phenomena were the objectives of Runs No. 039 through 091 (Table 7 ). These

tests encompassed variations in the distribution of the relative percentage of

the hydrogen flow between the 3 flow circuits, several design modifications of

a portion of the thruster, and a systematic variation of the distance upstream

of the chamber throat that the boundary layer hydrogen was allowed to exit. The

computed specific impulse for these tests ranged from 313 to 391 seconds (390

seconds minimum acceptable, 410 seconds contract goal).

The instances of low apparent performance noted were usually identified to be

the results of propellant leakages which constituted part of the measured pro-
pellant flows. The engine performance in such cases was necessarily based on

a higher flowrate than that which was delivered to the thruster. Tests affected

by such problems also tended to show considerable data scatter between similar

runs and significant changes in the thruster wall temperature measurements.

As discussed in a later section, it is believed that the thruster did meet the

target performance objective, even though many of the tests performed with the

final hardware configuration tended to indicate a lower performance level.

Table 8 lists the various changes in the thruster configuration evaluated in

the course of the firing program. In summary, the range of variations tested

and changes in hardware/stand configuration were:

i. Thruster internal mixture ratios (primary or core flow, with addi-

tion of secondary fuel flow, and with addition of boundary layer
fuel flow):

From 50-12-4 to 24-6-4

2. Boundary layer fuel exit plane (distance upstream of thrust chamber

throat plane):

From 1.52 to 3.43 cm (0.6°to 1.35 in.)

3. Overall thruster mixture ratio:

From 2.4 to 5.7

4. Addition of a boundary layer trip ring to increase mixing of secondary

hydrogen flow with the core flow

5. Addition of a mixing ring to inject the secondary hydrogen flow
radially into the core flow stream

6. Substitution of a 445 N (i00 ib) BLH load cell for the initially
used 22240 N (5000 ib) Bytrex load cell
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TABLE 8. HYDROGEN FLOW DISTRIBUTIONS INVESTIGATED

RUN *BLC
NO. MIXTURE RATIOS ORIFICE DIA. -lllII1 Injection

PRIMARY SECONDARY OVERALL LOX PRIM. LH2 SEC. LH2 BLC LH2 Distancecm

1-35 50 12 4 1.00 0.356 0.559 0.838 I .52

39-42 50 7.5 4 l.O0 0.356 0.711 0.742 2.16

43 50 7.5 4 1.00 0.356 0.711 0.742" 2.79

44-48 30 7.5 4 l.O0 0.406 0.660 0.762 2.79

49-54 30 7.5 4 1.00 0.406 0.660 0.762 3.43

55-57 24 6 4 I.00 0.406 0.660 0.559 3.43

58-64 24 6 4 i.DO 0.406 0.660 0.559 2.79

"65-68 24 6 4 l.O0 0.406 0.660 0.559 2.79

...._9-71 30 7.5 4 1.02 0.417 0.805 0.747 2.79

....72-76 30 7.5 4 1.02 0.417 0.805 0.747 2.16

....77-32 30 7.5 4 1.02 0.417 0.805 0.747 2.79

....83-86 50 7.5 4 1.02 0.417 0.805 0.747 2.16

"'_7-I00 30 7.5 4 1.02 0:417 0.805 0.747 3.05

* Distance upstream of chamber throat that BLC coolant flow was channeled into combustion
gas flow.

_:_ Boundary layer trip ring installed

*** Radial injection ring for secondary hydrogen flow installed (8-0.940 mm dia. holes)
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The final hardware configuration, which was used from Tests No. 069 through i00,

is believed to represent a reasonably optimized configuration. The internal

orificing resulted in a nominal mixture ratio of 30 in the core flow, 7.5 with
the addition of the secondary fuel flow, and an overall 4.0 ratio. The second-

ary fuel flow was directed into the core flow stream through eight 0.940 mm

(0.037 in.) short tube orifices to promote mixing. A boundary layer fuel injec-
tion distance 3.05 cm (1.20 in.) upstream of the throat plan appeared to be
optimum.

Figure 88 shows the baseline thruster configuration. In this configuration,
both the secondary fuel flow and the boundary layer fuel flow were injected
coaxially, and turbulent mixing to arrive at a uniform mixture ratio was assumed

to occur. Since the thruster performance could be seriously affected if the

length of the available flow path did not result in good mixing of the secondary
fuel flow with the core flow, two modifications were tried. The first revision

tested was the addition of a boundary layer trip ring immediately downstream
of the entry point of the secondary hydrogen. This configuration is shown in

Fig. 89 , and details of the trip ring are shown in Fig. 90. Test results did

not indicate that this change in the thruster internal geometry had the effect

of significantly increasing the performance level; however, the spontaneously
induced high level chamber pressure and thrust oscillations encountered with

the "trip" ring configuration may have masked any real performance changes. In

general, these oscillations did not exhibit a fixed frequency; however, portions

of the data appeared to show a characteristic frequency of approximately 30 Hz.
The thrust and chamber pressure oscillations were in the range of +15% to -25%
of nominal. Because the computed flow variation showed that the oxidizer flow

varied by _5%, while the fuel flow varied from +1% to -23%, it was speculated

that the secondary hydrogen flow was responsible for the oscillation phenomena.

It is possible that the flow of the secondary combustor hydrogen over the trip
- ring may have constituted a pseudo-secondary throat that varied in size as the

thickness of the hydrogen film over the trip ring fluctuated with hydrogen
flowrate.

The final modification tried was retained for the remainder of the program.
This consisted of the addition of a machined ring that closed off the end of

the sleeve conducting the secondary hydrogen (Fig. 91). This flow was injected
through eight short tube orifices inclined 15 degrees from the radial direction

in the downstream direction. Details of this mixing ring are shown in Fig. 92.
The rationale for the addition of this feature was to attain a significant

degree of radial penetration of the core flow stream as shown in Fig. 93. Such

penetration would be expected to result in a more rapid and more thorough mixing
than could be expected with a coaxial injection.

Heat Transfer Data. A majority of the tests performed during this program were

of a relatively short duration to allow a multiplicity of tests before retanking
was necessary. Run durations on the order of 30 seconds were periodically con-

ducted to obtain reasonably well-stabilized temperature data. Figure 94 shows a

typical plot of the external surface temperatures measured at the throat plan
location, for the thick-walled L-605 thrust (run No. 083).
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Figure 89. Thruster Configuration With Turbulence "Trip Ring"
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It should be noted that the performance of the thruster during this run (Is) was
380 seconds. This was a near approach to the actual 390-to-400-second perfor-

mance level that was believed to actually exist. Under these conditions, the
visible heat pattern and the temperature measurements indicate less severe heat

transfer conditions than were encountered during some other runs.

The extreme example was run No. 071, which resulted in a considerable degree

of melting and erosion of the throat of the thick-wall L-605 chamber. Figure

95 shows the external surface discoloration pattern which is noteworthy in that

it indicates high temperatures extending back to the point where the boundary
layer hydrogen was released into the stream. Data from runs 084 and 085 show

average temperatures of approximately 535 and 558 K (504 and 544 F) at this

location. This would be expected since the cool hydrogen gas exiting along the

wall at that point would be expected to keep the wall locally cool. Figure 96

shows the damage to the throat region of the thrust chamber resulting from the
high temperature operation.

Posttest, it was found that the LH2 system bypass valve had a serious seat leak-

age. This would have resulted in an increase in the overall design mixture
ratio of 4.0 (with a concomittant increase in combustion gas temperature) and an

accompanying decrease in the amount of boundary layer film coolant. This test

and others that exhibited abnormal heat zone patterns and abnormally high exter-

nal surface throat temperatures tend to indicate that apparent losses in indica-

ted performance probably were due to the thruster being credited with the

measured hydrogen flowrate, while actually some portion of it was diverted or
lost.

Pulse Mode Tests

A number of tests were conducted during this program to characterize pulse mode
performance. These consisted of run No. 038 and runs 093 through i00.

Test 038 programmed eight pulses with an 0.050 second ON time and 1.00 second

OFF time. Six of the eight pulses ignited. Pulse repeatability appeared to

be poor; however, since the propellant supply systems did not realistically
reproduce the actual flight system, these results are of minimal interest.

The later series of tests removed the flow instrumentation, extended the jacketed

lines much closer to the engine, and maintained a continuous bleed from a point

within 5 to 8 cm (2 to 3 in.) of the thruster. The bleed flow was limited by
0.152 cm (0.060 in.) diameter orifices at the bleed line exits.

As shown in Table 7 , some tests did not show ignition for every pulse. The

final two firings (runs 099 and i00) simulated a duty cycle consisting of

six pulses, a steady 30-second burn, a 1-minute heat soakback period, and then

a final series of six pulses. To overcome some of the problems that had arisen,

. control of these tests was partially automatically sequenced and partially
manually sequenced. A 0.075-second ON time was programmed with the OFF time

extended to approximately 2 seconds (run 099) and 3 seconds (run i00) to accom-

modate the manual operations. For these tests, a capacitive discharge exciter
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Figure 95. External Surface Heat Discoloration Pattern Shown Posttest 071



Figure 96. Thrust Chamber Throat Erosion Viewed From Exit

End of Nozzle (Posttest 071)

157



unit was used, operating at a i00 mJ power level and a frequency of 200 Hz.

The igniter energy was programmed to start about i0 msec before actuation of

the lagging valve opening (LOX valve).

The conversion from an inductive discharge to a capacitive discharge exciter

was implemented at this time to evaluate whether a more intense spark discharge,

which is characteristic of a capacitive unit, would provide more reliable ioni-

zation of the subcooled liquid oxygen.

Run No. 099 ignited three of the initial set of six pulses and two of the final

set of six pulses. The initial lead of the spark was advanced slightly for run
No. i00. This test ignited all six of the initial pulses, but failed to ignite

two of the post-heat soakback set of six pulses. Therefore, evidence of

increased difficulty of ignition during pulse mode operation under the super-

cold propellant delivery conditions created with the use of the revised pro-

pellant supply systems continued, as discussed later.

The major operational problems that plagued this series of tests was a serious
ignition noise problem that affected the operation of the main fuel valve and

the oscillator circuit in the sequencer that normally would have initiated each

pulse cycle. The effect of this noise on the fuel valve was that it was subject

to unprogrammed openings. This precluded operation with either a continuous

spark or with a spark activated well in advance (i00 msec) of the start of the

pulse. Previous experience indicated that either of these two modes of opera-
tion was more desirable than the one actually used by necessity. The ignition

noise feedback into the timer oscillator led to erratic changes in timing

between pulses. It should be noted that the ignition noise-fuel valve inter-

action problem would not be expected to exist in an actual flight installation.

The source of the problem was pickup of ignition system noise by the unshielded

control cables for the propellant valves. This problem did not exist with the

lower exciter energy levels used during most of the program. When the problem

did develop, there was insufficient time available to procure shielded cables
and reinstall the long wiring runs. Various other "fixes" were tried, but

usually showed some apparent promise, which later proved to be rather marginal

improvements.

The pulse data analyses for Runs No. 099 and I00 are shown in Table 9 . The

peak pulse pressure and the impulse bit determination were made from the

oscillograph recordings of the chamber pressure. The oscillograph was operated

at a paper speed of approximately 50.8 cm/sec. The chamber pressure pulses
were integrated with a planimeter and the results converted to the scale values

shown. No initial chamber pressure records were obtained during run i00 because

water from the products of combustion froze and shut off the pressure tap. The
ice plug melted out during the course of the following 30-second burn, so that

the chamber pressure recordings do exist for the last series of six pulses.

The pulse performance characteristics are discussed in greater detail in a

following section of this report.
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TABLE 9. PULSE MODE PERFORMANCE CHARACTERISTICS

r,[ I
Run Pulse Pulse peak Pre_soro Impulse

No. Series No. N/m2 X 10 -5 Psia N/m2-sec Psia-sec Comments

099 Initial 1 6.52 i 94.5 46,990 6.815 Data corrected for post-run
2 7.09 102.8 44,620 6.472 spontaneous activations of

] 5 6.83 I 99.0 46,990 6.815 LH2 valve.
Final 1 11.38 165.0 48,820 7.081 I

2 10.03 145.5 55,390 8. 033
i

100 , Final 1 10.86 157.5 41,730 6.053 Chamber pressure traces had

2 11.6c_ ' 169.5 45,670 6.624 I "spiky" characteristic.

Ii S 9.00 130.5 52,940 6.776 ] Data corrected for post-run

J 6 9.98 144.8 49,080 7. 119 spontaneous activations of

Ltl2 valve.

Steady-state chamber pressure noted at end of 10 seconds of operation:

Run 099 -,10.76 N/m2 X 105 (156.1Psia)

Run 100 - 10.69 N/m2 X 105 (155.0 Psia)

k.n



DISCUSSION OF RESULTS

lsnition

The results of the initial block of tests performed during this program showed

that reliable ignition could be obtained at a i0 mJ spark energy level. An

inductive discharge energy source operating at i00 Hz output frequency was

normally used.

The ignition experience during the remainder of the program, indicated, in

general, that a wide range of hardware and propellant temperatures could be

successfully accommodated. Periodic ignition failures were encountered, but

were normally attributable to deterioration of the ignition cable or its pres-

surization system. Repair of the faulty cable area invariably resulted in the

disappearance of the ignition problem.

A final ignition problem area was encountered during pulse mode operation of
the thruster. This resulted in the failure to ignite some of the pulses of the

pulse trains. The ignition failures did not follow any discernible pattern or
trend and were therefore typical of marginal ignition conditions. The available

data are not sufficient to definitely prove existence of an ignition problem

area or to indicate its cause. The changes in operating conditions or cir-

cumstances that could have a bearing on the pulse ignition failures are:

1. The propellants were delivered to the thruster at a lower temperature
than during the preceding program phases. This resulted because the

propellant supply systems were modified to remove the flow instru-
mentation sections, extend the cryogenic jacketing much closer to the

thruster, and provide for a continuous propellant bypass flow from a

point within 6 to i0 cm of the thruster. The propellant temperatures,

as measured by the temperature bulbs located well upstream in the

system, did not indicate temperatures much lower than previously
encountered during various tests. However, it is felt that the supply

system revision resulted in significantly lower temperature of the
propellants as delivered to the ignition region of the thruster.

2. During pulse tests, the spark°was initiated only about i0 msec before

the start of propellant flows. Normally, an approximate i00 msec
spark lead had been employed. However, since severe ignition system

noise feedback was affecting the main fuel valve (resulting in

unscheduled openings), such an ignition time lead was not possible.
Efforts to eliminate the high-frequency noise disturbances were made

but, within the available time constraints, were not effective.

3. The ignition cable used during the pulse mode tests had less insula-

tion than the one used in the majority of the earlier tests. There is

a possibility that the energy delivered to the igniter might have
been below the i0 mJ level, even though the exciter was operated at a

i00 mJ output level.

Ignition Transients. At various times during the course of the program, the

chamber pressure rise time was characterized. For these tests, an attempt was
made to fill in all extra thruster volumes, such an injection pressure and
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injection temperature parts, to minimize propellant fill times. The chamber

pressure rise time was computed from the oscillograph records, and was defined

as the time from the opening of the lagging propellant valve to the time for

attainment of 90% of the full chamber pressure value.

As may be seen in Table 7, attainment of 90% steady-state chamber pressure

ranged in time from 0.048 second to some value in excess of 0.5 second. The

long time constants were usually related to unconditioned (warm) hardware,

where the characterizing temperature (TH-2) was in excess of 200 K. Long rise

times characteristically showed gentle chamber pressure ramps, indicating a

gradual increase in the propellant mass flowrates. These flowrate changes

would result from the higher quality propellants arriving at the injection

orifices because of the progressive chilling of the flow passages.

The effect of the other variables investigated for their influence on ignition

transients was found to be relatively minor. Propellant leads were investiga-
ted over a range of 0 to i0 msec. An oxidizer valve lead of i0 msec was noted

to result in a somewhat smaller ignition lag time than either a simultaneous

valve opening or fuel valve lead sequence.

Within the i0 to i00 mJ spark energy level investigated, no apparent effect on
the ignition transients was noted. Problems were encountered at times with

ignition failures attributable to spark plug cable deterioration but, for these

cases, the level of the delivered energy to the spark plug was unknown. For

example, runs No. 035, 042, and 043 did not ignite until the run had progressed
for times ranging from 0.7 to i.i seconds. Such occurrences, or the failure

to obtain ignition, were usually traced to.an ignition cable problem which,

when corrected, resulted in a disappearance of the ignition difficulty.

" The analytical engine start model designed for this thruster predicted time

intervals of 28 or 38 msec, depending on whether an oxidizer lead or fuel lead

was used, from the time that the leading valve started to open until the 90%

chamber pressure level was attained. A plot of the analytical model results

for a i0 msec oxidizer lead is shown in Fig. 97. The start transient chamber

pressure histories noted in actual tests took somewhat longer times. A typical
start transient with the thruster in its final configuration, and with the

propellant supply systems modified to closely approximate the flight system

propellant supply conditions, is shown in Fig. 98. The propellant supply

system modifications were made to guarantee that the propellants would exit as
high-quality liquids to within 5 cm (2 in.) of the thruster a_ the time

thruster flows were initiated. The chamber pressure reached the approximate
90% level in 48 msec.

It is probable that the model did not adequately model heat transfer phenomena,

which is the most likely cause of the increased delay times under actual hot-
fire conditions. Additionally, since the pressure measurement was made with a

Taber transducer, its response rate could effect a P rise time longer than the

" actual time. The response lag would result because The transducer cavity has

an appreciable volume of approximately 1.64 cc (0.i0 in. 3) which has to be

filled through a length of 0.31 cm (0.12 in.) tubing. The response delay
associated with the flow dynamics depends on the particular gas species in-

volved, but may be on the order of I0 to 15 msec.
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It may be noted that the thrust trace and one of the chamber pressure traces
show extensive fluctuations. These are not interpreted as being indications

of rough combustion. The thrust cell oscillations (approximately 120 Hz)

represent load cell "ringing," which appeared to be easily excited by small

disturbances. The oscillations of the chamber pressure record appearing in

the middle of Fig. 98 are typical of results obtained with the chamber pres-

sure tap penetrating the chamber wall slightly downstream of the BLC hydrogen

exit plane. The high-velocity hydrogen gas blowing across the entrance to the

pressure measurement port evidently produced closed-end tube resonance, as in

an organ pipe.

Thruster Steady-State Performance. The thruster configuration employed from
Runs No. 069 through i00 appeared to be reasonably optimum from a combustion

performance standpoint. This resulted in a core mixture ratio of 30, a 7.5

mixture ratio after addition of the secondary hydrogen flow, and an overall

mixture ratio of 4 after addition of the boundary layer coolant hydrogen flow.

During these tests, the boundary layer coolant flow exit plane varied from

2.16 to 3.05 cm upstream of the throat of the thrust chamber. All of these

runs used the "hybrid" thruster configuration (Fig. 91). The secondary hydro-

gen f_ow was injected into the core flow by means of eight 0.940-mm diameter,

radially directed orifices to secure good mixing.

The computed average specific impulse efficiency for runs with this configura-
tion are shown in Fig. 99, and compared to the results for other thruster con-

figurations. The data used to construct this figure exclude runs where test
stand problems were known to exist; these problems are discussed below.

Figure 99 shows that with a boundary layer coolant recess distance of 2.79 cm

(i.i0 in.), a performance level approximately 1% above the minimum program

requirement was demonstrated. The data obtained when the recess distance was
deereased to 2.16 cm (0.85 in.) show a performance level approximately 3% below

the minimum target level. This trend is in accordance with the results
obtained for tests conducted with the baseline thruster configuration (Fig. 88).

Because of the nature of the test stand operational problems experienced

throughout the program, it is probable that these results are somewhat
conservative.

The desirability to operate with a boundary layer coolant recess depth of

approximately 2.79 cm (I.i0 in.) is indicated to allow reasonable mixing of the

boundary layer flow with the total hot-gas stream.

The test stand operational problems alluded to above consisted of: (i) the

difficulty in accurately measuring the small'propellant flowrates, and (2) the
inability to guarantee that the measured flowrates were actually delivered to
the thruster.

The most likely appreciable measurement error would be in the liquid hydrogen
flowrate. Since this was a 0.635 cm (0.25 in.) system, the propellant tempera-

ture had to be monitored approximately 1.5 meters upstream of the venturi meter.

The size of the temperature bulb necessitated its location in the larger size

upstream plumbing. The sensitivity of the liquid hydrogen density to small
temperature changes could result in computations of higher than actual flowrates. "
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The second problem was probably more significant and direct evidences of it

were noted on several occasions. The propellant bypass systems (Fig. 76 ) were

used to maintain propellant flows through as much of the propellant supply

systems as possible until immediately before the firing initiation. This was

necessary to ensure the desired propellant temperature conditioning. These

bypass systems were automatically shut off just prior to the start of the

firing. However, since any flows through these systems were part of the
venturi monitored flows, any valve leakages (or other line leaks downstream of
the venturi meters) would constitute a flow measurement error insofar as the
thruster was concerned.

In the case of the LH 2 system, the bypass valve was a Vacco cryogenic solenoid
valve located within the capsule. Potentially, it had both stem and seat

leakages possible when it was in the closed condition. In one instance, run
071, extensive throat erosion of the L-605 chamber was noted after a 5-second

duration run. The chamber showed the high heat zone extended to the boundary
layer coolant injection station, which normally does not exceed temperatures of

about 600 K (620 F). Postrun investigations revealed that the hydrogen system
bypass valve had developed a sizeable seat leak that did not exist at ambient

temperatures, but became readily apparent at liquid nitrogen temperatures.

Because of the nature of the valve, stem leakages were difficult to detect, and

no direct study was possible with the LH2 flows because of safety
considerations.

Secondary evidence of the probable existenca of some LH2 system leakages down-
stream of the venturi meter were:

i. A large amount of data scatter, for example, and average Is* of
379 seconds (for runs 083, 084, and 085), with no appreciable data

scatter, followed by the run No. 086 Is* of 324 seconds. This was a
14% performance decrease.

2. Increases in outer wall temperature measurements and heatup into the
cooled boundary layer exit area for the same nominal operating con-
ditions that did not show this phenomenon. A decrease in the actual

hydrogen flowrate would reduce the amount of the boundary layer
coolant flow, while at the same time resulting in an increase in the

mixture ratio. Since the nominal operation mixture ratio was 4.0, a

considerable increase in the chamber combustion gas temperatures
was possible.

3. Finally, it may be noted that the available procedures for making run-

to-run checks for system propellant leakages could not detect the

relatively small magnitude leaks that could produce the noted effects
on the thruster performance computations. Since venturi meter calcu-

lations involve a square root relationship, a leakage of 10% of the

design flowrate would produce only 1% of the flow venturi design AP.
Therefore, prerun monitoring of the venturi APs, to subtract that

flow from the measured flowrate during the firing, would require a

*Specific impulse (pound force x seconds/pound mass propellant)
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a higher degree of precision in the measurements of the venturi pressures than

was possible. The other test performed was to close the propellant tank valves
(with all systems pressurized and all other valves closed), and to monitor the

decay of the line pressures. Unfortunately, with cryogenic systems, heat leaks

into the system could generate pressure rapidly enough to compensate for small
leaks.

Thrust Chamber Equilibrium Temperatures. A major portion of the test firings

were made using L-605 alloy thrust chambers. In addition, a molybdenum thrust

chamber was evaluated in a brief test series (runs 087 through 091).

The long runs performed during this program were on the order of 33 seconds

duration. At the end of this time, the throat outer wall temperatures were
still changing slightly (see Fig. 94 and i00), but it was computed that

stabilization had been obtained on the inner wall. Analytic estimates are that

the hot-gas surface temperature, at this time, was approximately 36 K (65 R)

degrees hotter than the outer skin temperature. As may be seen in Fig. 94 and

i00, some nonuniformity of surface temperature distribution was normally

observed. This probably resulted because of a certain amount of nonuniformity
in the distribution of the boundary layer hydrogen coolant flow.

Figurel00 presents the throat temperature histories for 33.3-second duration

run No. 085, which had a 2.16 cm (0.85 in.) BLC injection distance. The test
was conducted at the nominal design conditions: mixture ratio of 4.0 and a

thrust level of 118.9 N (26.7 ib). These temperature data agree reasonably

. well with the analytical predictions shown in Fig. for the noted operating
conditions.

Figure 46 predicts a maximum hot-gas wall temperature of 1500 K (2240 F) if a

100% c* efficiency is assumed. If this value is reduced to correspond to a 90%

c* efficiency (which is a more realistic value for the tested thruster), then

an approximate 1280 K (1844 F) temperature would be predicted.

The actual maximum outside wall temperature noted for run 085 was I156K

(1621 F). However, this temperature does not appear to be completely stabi-
lized. The extrapolated steady-state temperature would appear to be approxi-

mately 1200 K (1700 F) and, if the analytically computed wall AT of 36 K (65 F)
is applied, a hot-gas-side wall temperature of 1236 K (1765 F) results. This

is somewhat lower than the predicted 1280 K (1844 F) value, but is reasonably
close.

A comparison of outer wall throat temperature measurements, at a corresponding
firing time of 32 seconds (for funs 083, 084, and 085) is tabulated below:

Run No. I. 083 084 085

I Mixture Ratio 3.4 3.9 4.0 1

! Average Throat Temperature, K(F) 911(I179 I044(1420) IIO5(1529)

- I Maximum _ Between Throat Temperature, K(F) 138(248) 229(412) 97(174)

I BLC (in.) 2.16(0.85) 2.16(0.85) 2.16(0.85 I

I

Injection Distance, cm

I
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Figure i00. External Surface Temperatures at Throat Plane for L-605

Thruster During Run No. 085



These data show that increased throat temperatures are encountered with in-

creases in the operating mixture ratio. This results from two factors: (i)

the increased chamber gas temperature, since the stoichiometric mixture ratio

is being approached, and (2) the mass flow of hydrogen (and, therefore, the

BLC flowrate) also is being reduced. Extrapolations of these data indicate

equilibrium hot-gas surface temperatures of 1756 K (2700 F) at the throat for

the 5.6 mixture ratio (abort mode). This temperature exceeds the capabilities

of the L-605 alloy; however, the disilicide-coated molybdenum thrust chamber

would be satisfactory.

The molybdenum chamber firings were limited to nominal mixture ratio operations

(4.0) since problems in making direct surface temperature measurements could

not be resolved within the time available. In particular, the lack of such
measurements precluded the use of automatic redline cuts used to terminate the

test if excessive temperatures were to be encountered because of system
malfunctions.

The molybdenum chamber firings were visually monitored by means of a black and

white television camera. Color temperatures could not, of course, be per-

ceived, but it was noted that the heatup pattern differed significantly from
that of the L-605 chamber. The highly luminous areas included almost the

entire chamber, instead of being limited to approximately the BLC injection
plane and about the first 50% of the exhaust nozzle exit bell. This heat

redistribution from the maximum heat flux region (throat) was experienced

because of the approximately 250% higher thermal conductivity of molybdenum.

Examination of the thrust chamber after the 33.6-second firing did not indicate
- any coating degradation.

Control Valves. The fast-acting solenoid valves used for both propellants were

demonstrated to be satisfactory. Valve seat leakage were periodically checked

by pressurizing the valve with gaseous helium at a pressure of 2.76 x 106 N/m 2

(400 psig) and collecting any flow into the chamber. Noted seat leakage ranged
from zero leakage in a 3-minute period to about 5 standard cc in 1 minute.

Pulse Mode Operations. Nine pulse mode tests were made, runs 038 and 093

through i00. The most obvious characteristic of these pulse trains was an

intermittent failure to attain ignition with some pulses. The apparent random

nature of the igntiion failures tended to favor a marginal ignition energy

level hypothesis, due to the low propellant temperatures in the ignition region
and/or the inability of the ignition cable to deliver the full level of the

generated spark energy. The revised propellant supply systems used for the

pulse mode operations were designed to guarantee delivery of liquid propellants
to within a few cm of the thruster.

Figure 101shows the brush chart record of the thrust measurements for a series

of six pulses performed with a timing of 0.065 second ON and approximately 2.0
seconds OFF. The length of the OFF period (and the variation therein) resulted

because each pulse was initiated manually to overcome spark noise interference

with the automatic sequencer timing circuit. Once a pulse was initiated, all

spark and valve actuations were performed by the sequencer.
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Figure i01. Brush Record of Thrust for Pulse Mode Operation of the 25-Pound Thruster
With an 0.065-Second ON Time and 2.00-Second OFF Time (Run 098)



In the traces shown, the initial spike was due to the opening of the lead

propellant (fuel) valve. The sensitivity of the load cell resulted in a pro-

nounced "ringing" noticeable with even fairly minor events. It would also be

noted that most of the pulses show a secondary "burst" of activity during the

tailoff portion of the pulse. This was due to the unprogrammed momentary

reopening of the already closed fuel valve. This was induced by high-voltage
spark noise signals picked up by the valve control cable.

The corresponding oscillograph record for run 098 was subjected to a computing
machine integration program to derive impulse values for each pulse. The

oscillograph was operated at approximately 50 cm/sec for these tests, and a
photograph enlargement was used for the data analyses.

Two different analyses were performed; (i) the entire pulse cycle was integra-

ted, without attempting to eliminate portions of the wave train that might

have resulted because of extraneous fuel valve activities, and (2) integrating
only that portion of thepulse wave corresponding to the time that the oxidizer
valve was open. The initial computations were of use to characterize the

magnitude of the total impulse generated. The second type of calculation was
more suitable for repeatability comparisons since the extra valve actuations
wereexcluded. These calculations showed:

Pulse No. Computed Impulse

N/sec ib/sec

1 5.38 1.21

2 4.24 0.95

3 5.05 1.13

. 4 4.58 1.03

5 4.56 1.03

6 4.69 1.06

+13% N/sec (1.07 +13%
The average value and range for these impulses are 4.75 -11% -11%ib/sec).

A complete integration of the pulse No. 5 thrust record was performed to include

the impulse-bit contribution of the initial fuel lead and final tailoff portions

of the pulse cycle. This was possible because no unprogrammedJreopenings of

either propellant valve occurred during this pulse. The integration, therefore,
produced a total impulse-bit value, as compared to the restricted integration
interval performed, to produce the comparative repeatability values shown in

the table above. A total impulse-bit of 7.39 N/sec (1.66 lb/sec) was computed
for pulse No. 5. This is approximately 62% greater than the 4.56 N/sec (1.03

ib/sec) value derived for pulse No. 5 when integrated only over the time
interval where the oxidizer main valve was open.

Figurel02 shows the shape of the pulse No. 5 thrust trace as reconstructed from

the oscillograph record to remove the load cell "ringing." A least-squares

. routine was used to generate points which were then curve-fitted by means of a
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Figure 102. Computer Reconstruction of the Thrust Curve for Pulse No. 5 of Run No. 098



third-order equation. As can be seen, a considerable impulse-bit contribution
exists after the time the oxidizer main valve closes.

It was not possible to characterize the pulse performance during the pulse test

series, since the propellant flowrates were not measured. The propellant

supply plumbing systems were modified to ensure that good quality propellants

would be available at the thruster. The system revisions included the removal

of the flow measurement components (venturis). However, it is possible to cal-

culate an approximate performance level from consideration of the Fig. pulse
profile.

A steady-state thrust level of 124 N (27.85 ib) was assumed to act for the

65 msec pulse duration. This was the indicated thrust at the end of i0 seconds

of the run 098 30-second burn. This results in a nominal 8.05 N/sec (1.81 ib/

sec) impulse-bit that would be expected under steady-state conditions. The

planimeter integration of the area under the Fig. f02 curve resulted in an

indicated 6.83 N/sec (1.75 ib/sec) impulse-bit. This impulse-bit has to be

reduced by 6% to account for the additional propellant flow during the i0 msec

interval before and after the actual pulse because of thepropellant lead/lag

shutdown sequence employed. With this correction, the indicated pulse effici-
ency (relative to steady-state operation) is 7.63 N/sec/8.05 N/sec x 100% = 91%.

Now, if the thruster specific performance efficiency during steady-state opera-
tion is assumed to be on the order of 85%, the resultant pulse efficiency would
be approximately of 0.91 x 85 = 77%.

A study of the chamber pressure oscillograph records for runs No. 099 and i00

shows no discernible time lag between the opening of the lagging valve, and the
start of a sharp chamber pressure rise. The 65 msec pulse duration was not

sufficiently long, in general, to attain the steady-state (I0 seconds) chamber

. pressure level. Table shows a significant difference in the peak chamber
pressure levels obtained in pulses performed before the 30-second burn and the

pulses that followed the long burn. The pulse series designated "final"

followed the long burn, and tended to approach or exceed the steady-state

chamber pressure value. By contrast, the "initial" pulses preceding the long
burn peaked out below the referenced steady-state values. These results are

undoubtedly due to different thruster internal hardware temperature conditions
existing because of the long burn.
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CONCLUSIONS AND RECOMMENDATIONS

The Liquid Oxygen/Liquid Hydrogen Auxiliary Propulsion System Thruster Investi-

gation Program was conducted both to develop design criteria for, and provide a

feasibility demonstration of, a small cryogenic thruster. The following con-

clusions and recommendations are made based on the results of this design,
. fabrication, and test effort:

i. The feasibility of a small cryogenic thruster in the size range of
iii to 444 N (25 to i00 ib) was demonstrated. However, the iii N
(25 ib) level would appear to be near the lower flowrate limit based

on propellant thermal management and propellant flowrate measurement
considerations.

2. Steady-state specific impulse values in excess of 390 seconds are

possible with a film/radiation-cooled thrust chamber concept.

3. Rapid thrust buildup is possible with a small cryogenic thruster

when proper attention is given to propellant thermal management with-
in the thruster body. Buildup rates from 0 to 90% were demonstrated
in 48 msec.

4. The use of a disilicide-coated molybdenum thruster chamber with a

liquid oxygen/liquid hydrogen propulsion system was successfully
demonstrated.

5. Facility problems were encountered in maintaining the very low tem-

peratures in the propellant supply systems; however, these were

primarily associated with, and accentuated by, special instrumenta-

tion requirements. When these provisions were removed during pulse
mode demonstration testing, the supply of good quality propellants

to the thruster was no problem. This latter configuration would be
more typical of the end-item space application.

6. Due to development flexibility features on both the test hardware and

facility, the susceptibility for leakage of unknown magnitude was

present at several seal joints. Because the thruster propellant

flowrates were extremely small, any leakage had a pronounced effect
on the measured performance. Therefore, it is recommended that on

any future small cryogenic thruster development programs, the use of

welded rather than flanged seal joints be employed at the expense of
less development flexibility.

7. During the pulse demonstration test phase, when extremely cold

propellants were delivered to the thruster, random nonignitions were

encountered. These results tend to indicate a marginal condition
relative to spark energy, even at a i00 mJ level, where earlier test-

ing during the performance characterization phase resulted in ignition
down to energy levels of I0 mJ. The primary operational difference

in these test phases was propellant inlet temperature. Cold propel-
" lants did exist during the performance test phase,but they did not

approach a subcooled condition as during the pulse mode test phase.

It appears that ionization of the "cold" liquid oxygen requires a

- larger amount of energy than was necessary during earlier development
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programs that utilized a similar plasma ignition concept. While

these programs utilized cold propellants in the supply system to the

igniter, the lack of internal thermal insulative devices within the
manifolding system precluded liquid oxygen at the spark gap.

Based on these observations, it is recommended that additional

igniter characterization teting, specifically designed to explore

the effect of liquid oxygen at the spark plug during ignition, be
conducted during future plasma igniter technology programs.

8. The overall design criteria and an injection/combustion system have

now been sufficiently defined and demonstrated to warrant incorpora-

tion of this thruster concept into a breadboard propulsion system.

Therefore, it is recommended that when the other major system com-

ponents reach a similar level of development, a breadboard system

demonstration program be initiated.
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