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4.

1.0 Statement of the Problem

The hot corrosion of alloys generally occurs in two

stages;

1. An initiation stage which leads to the breakdown
of the protective scale,

3. A propogation stave involving rapid reaction between
the alloy and the salt or atmosphere. ,

The critical step in hot Corrosion is the destruction of the

normally protective oxide layer which separates the fused salt

from the substrate, It appears that prevention of hot corrosion

must be attained by the prevention of the initiation stage of the

reaction, Therefore, an understanding of those processes leading to

initiation of hot corrosion should indicate methods of preventing

or minimizing alloy degradation.

In the previous report l it was concluded that the oxidation

rate of Na 2 SO4-coated IN-738 between 900 and 100000 shows an

incubation period which is strongly dependent of temperature and

salt composition followed by breakaway corrosion originating at

sites associated with the presence of carbides in the alloy

surface. The present report describes a more detailed study

of this phenomenon and the effect of alloy composition, carbide

composition and morphology, and alloy heat treatment on the

hot corrosion of IN-738 and simpler toodel alloys,

2,0 Experimental

The alloys studied include the commercial Ni-base alloy

IN-938 and high purity laboratory alloys prepared to simulate
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the effects of the major elements in IN-738, The actual composition of

these alloys are:

Ni - 16Cr - 3.4Ti
Ni - 16Cr - 3,4A1
Ni - 16Cr - 3,4A1 - 3,4Ti
Ni - 16Cr - 3.4A1 - 1,7Mo
Ni - 16Cr - 3,4A1 - 2,6W
Ni - 16Cr -- 3,4A1 - 1.7Ta

#8 Ni - 16Cr - 3.4A1 - 1,7Mo - 2.6W
#9 Ni - 16Cr - 3.4A1 - 3.4Ti - 1.7Mo
#10 Ni - 16Cr - 3.4A1 - 3.4Ti - 2,6W
#11 Ni - 16Cr - 3,4A1 - 3,4Ti - 1.7Ta
#12 Ni - 16Cr - 3:.4A1 - 3.4Ti - 2.6W - 1.7 Mo
#13 Ni - 16Cr	 "'AAl - 3,4Ti - 1.7Mo- 2.6 W - l.7Ta

AC #13 Ni - 16Cr - 3,4A1 - 3.4Ti - 1,7Mo- 2.6 W - 1,7Ta -0,17C
AC #14 Ni - 16Cr - 3.4A1 - 3,4Ti - 1.7Mo- 2.6 W - 1.7Ta -8.5Co-1.00b-

and	 0.1.70
AC #15 Ni - 16Cr - 3.4A1 - 3.4Ti - 1.7Mo- 2.6 W - 8.5Co -1.0 Cb -0.17C

The laboratory alloys were tungsten arc melted under an argon

atmosphere, remelted several times, and drop-cast into a water cooled

copper chill. The alloys were homogenized for 72 hours in evacuated

quartz capsules at 10500C. The commercial alloy IN-738 was supplied

by INCO as 2 3/4 inch diameter bar in the as-vacuum cast condition.

Portions of the commercial alloy were remelted and chill cast to refine

the carbide size. Specimen coupons were cut from the alloys,

polished through 600 grit silicon carbide and cleaned ultrasonically.

The salt coatings were supplied by spraying with their aqueous

solutions while the coupons were heated using a hot plate and a

heat lamp. Coating weights were generally 1 mg/cm2.

A continuous reading Cahn microbalance was used to record weight

changes at temperatures between 900 and 10000C at 1 atmosphere

pressure of slowly flowing oxygen. The reaction was initiated by

raising a preheated furnace around the quartz furnace tube in

which the specimen was supported with oxygen flowing, The furnace
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was raised in a time period of ten seconds, At 900 0C the system

and specimen came to thermal equilibrium in less than one minute,

Oxidized specimens were studied using optical and scanning electron

metallogrsaphy and x-ray diffraction. The composition of the

'salt remaining on the specimens was studied by dissolving the salt

in boiling water and analyzing the solutions using atomic absorption.

spectroscopy..

3.0 Experimental Results and Discussion

3.1 Commercial IN-738

As reported previously the kinetic curve for the oxidation of

Na2SO4- coated IN-738 can be characterized by three stages.

Stage I is an incubation period where e. parabolic
curve characterizes the reaction rate,

Stage II is a period of accelerated reaction.

Stage III is a breakaway reaction period during which a
linear reaction rate obtains, Typical rate curves
for several of the alloys studied are presented in
Figure 1. The time of breakaway for alloy A has
been shown to be temperature dependent with a
minimum at about 970 0C and longer times at both
higher and lower temperatures.

In order to study the hot corrosion reaction of IN-738, and hope-

fully describe its temperature dependence, a series of specimens were

exposed in 1 atm 0 2 at high temperatures with 1 mg/cm 2 Na2SO4

coatings, and the reaction was interrupted at different times.

One group of specimens was dipped into boiling distilled water to

wash away the salt remaining on the surface. The water soluble

components were subsequently analyzed by means of atomic absorption

analysis. The results are presented in Table I. The results show:

I,
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(1) Na SO4 remains on the surface of the alloy at least 9
hoars at this temperature

(2) Significant amounts of chromium were detected in the leaching
water, which indicates the following reaction occurs,

—7— 0 2 + Cr 203 + 20^ = 2Cr0 4R	 (l)

(3) No significant amount of nickel, aluminum or molybdenum was
detected.

The water-washed specimens were examined by X-ray diffraction

and subsequently sectioned for metallography, Another group of

specimens was also sectioned and carefully polished with kerosene

to preserve the salt for metallographic examination, The results

of optical and scanning electron metallography are as follows:
.

Stage I;

Figure 2 shows the scale on a specimen, coated with Na 2 SO4 (1 mg/cm2^

and oxidized at 9500C for 1 hour, It is clear that the scale was

broken down locally allowing the molten salt to penetrate to the

scale/metal interface. Figure 2 (b) and (c) are higher magnifications

of portions A and B. Figure 2 (d) shoes a region where the salt

has penetrated through the scale in a local region. Sulfides are

observed in the scale and at the scale/metal interface, Edax

examination has shown that the break in the scale in Figure 2 c

has occurred at the site where an alloy carbide was incorporated

into the scale•

Figure 3 shows the salt in the scale. The EDAX results indicate

Al203 and Cr203 dissolved into the salt and sulfides formed at the scale/metal

interface. In order to examine the dissolution of carbides in the salt a

specimen of IN-738 was coated with Na2SO4 (1 mg/cm2) and oxidized at 9700C for

5 minutes. The specimen was then dipped into boiling water for 10 minutes to

wash away the remailiisng salt, Figure 4 (a) shows the surface of this specimen.
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The carbides have apparently dissolved into the salt. Figure 4 (b) shows

more detail of one of the dissolved carbides. Figure 4 (c) shows another

region on the same surface. The white whiskers on the surface are Al203,

The mechanism of their formation is not clear at this tame. EDAX results

indicate the surface scale is primarily Cr203 , Ti02 , Al20, and NiO. A

corresponding EDAX result for the dissolved carbide is also presented

in Figure 4 (e).

Stage II:

Figure 5 (a) is a specimen oxidized at 9700C for 6 hours with a

1 mg/cm2 Na 2SO4 coating. The salt trapped in the scale is evident.

Due to the low oxygen potential tinder the scale the salt composition is

r	 shifted toward higher sulfur potentials. Sulfides then start to form in

the alloy. Figure 5 (b), (c) and (d) shows the details of the regions

where sulfides form. T}c presence of the salt in the scale is obvious.

One important feature is the sulfides incorporated into the inner part

of the scale. EDAX results presented in Figure 5 (e) indicate a high

content of Na, S, Mo, Al, Cr, Ni and Ti at the scale-metal interface.

'It is probable a liquid solution of Na 2SO4 and Na2Mo04 exists there with

Cr203 , Al 203 , NiO and Ti02 dissolved in it at temperature.

Stage III:

Figure 6 (a) shows an IN-738 specimen which has been oxidized at 970 0 C

for 9 hours under the same conditions as the specimen in Figure S. The weight

rain of this specimen is just at the point where stage II is changing to stage III

It is quite clear that extensive sulfidation has occurred locally and the internal

oxides which originally were lined up along the scale/metal interface have become

continuous. It is quite possible the Al 203 particles have dissolved into the
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salt. at this interface, A high sulfur potential, is reached in the salt

and sulfur diffuses into the alloy sulfidizing the chromium in the alloy.

Figure 6 (b) shows more detail of this region, The outer scale is Cr2O3

Y
	 and an Al-rich salt is present at the scale-metal. interface, Chromium

sulfides have formed in the matrix, Figure 6 (c) and (d) show other portions

of the specimen. It is ob-vious, these reactions occur locally indicating the

salt penetration is a local reaction, One important difference between

the sulfides formed in Stage I (or early stage II) and stage III is that

the sulfides formed in Stage I are mainly (Cr,Ti) sulfides, which are

smaller and form at a lower sulfur , potential, The sulfides formed in

stage III are mainly chromium sulfides. No titanium has been found in

these sulfides, which are much larger and require a higher sulfur potential

for their formation. Figures 7 (a) and (b) show the scale on a Na2SO4-coated

specimen after oxidation at 9700C for 10 hours. The outer scale is much

thicker and again strong sulfidation is evident. The sulfide which forms

in this stage consists primarily of (Ni,Cr) sulfide, From Figure 7 (b),

it is clear, the sulfidation occurs preferentially along the alloy grain

boundaries. Figure 8 (a) shows severe attack at the specimen corner after a

longer exposure time, Porous green NiO has formed in this area, The specimen

will eventually be almost completely consumed as*shoism in Figure 8 (b). The specimen

has split into three pieces on cooling to room temperature with utzreacted alloy

in the center.

3,2 Remelted IN-738

The above results and the results presented in the previous reportl

indicate a significant role of carbides in the initiation of hot corrosion

of IN-738. To further confirm this, a portion of the IN-738 ingot

r
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(which has a large carbide size x1.0 j,m as received from 1N00) was melted

in an Argon atmosphere and drop-cast into a water cooled clapper chill with

dimensions 1" x 3/8" x 6". This process produced an alloy R-738 with

much smaller carbides _ lum, Specimens cut from the remelted alloy were

coated with Na2SO4 and subjected to hot corrosion at 970
0C, The refined

carbide size resulted in a factor of five increase in the time to breakaway

over that for the commercial ingot (Fig. 1),

A Rc ies of remelted IN-738 specimens were subjected to hot corrosion,

and interrupted at different times. The specimens were dipped into boiling

water to wash away the remaining salt on the surface and the solution was

analy::ed by atomic absorption spectroscopy. The results of this analysis

are presented in Table 11. Again, the results show the Na2SO4 stays on

the surface of the specimen as long as 10 hours, Except for Cr,: significant

amount of other water soluble species was found,

Figure 9 (a)-(e) shows the surface of the remelted IN-738, which was

coated with Na2SO4 and oxidized at 970 00 for various times. It is clear

the carbides dissolve into the molten salt immediately. The attack of the

surface is visible in seine areas, Dbre detail of some of these regions

is shown in Figure 10. Figure 10 (a) shows the region, where large Ti02

crystals form on the surface of a layer of Cr203 . In the right side of

this picture some Al 203 whiskers have grown on the surface while on the

left side no Al 203is found. The transition from an Al 203whisker-rich

region to a whisker-free region is shown in Figure 10 (b) and more detail

of these two regions is shown in Figure 10 (c) and (d). One important

difference is that in the vAiisker-rich region large plates of Ti0 2 grow

along with Al203 whiskers an top of a finer-grained Cr203 layer, while

in the viiisker-free regions the density and the size of these Ti0 2 crystals

is greatly reduced. The mechanism of growth of these Al203 whisker is

nod; clear, but apparently they can be dissolved into the molten salt.

i
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Ti02 will also be dissolved into the Na2SO4 . Figure 11 (a) and (b) shry

the surface oxide on two areas of a R-738 specimen reacted for 10 minutes

at 97000, The dissolution of TiO2 is evident. Figure 12 (a) and (b)

illustrates the surface of R-738 after reaction under the same conditions for

52 hours, Now most of the Na2SO4 has evaporated from the surface, No Al203

whiskers are found on this surface and a continuous layer of Cr203 has formed,

Some large grains of T102 lie on the top of this layer. Cross sections

of the above specimens are also included in Figure 13 and Figure 14, Figure

13 (a) illustrates the alloy oxidized at 970 0C for 10 minutes with a

Na2SO4 coating, It is clear that the salt penetrated through the outer

protective scale, rbre detail of this region is shown in Figure 13 (b) where

the attack of the scale by the salt in the initial stage is evident, Figure

13 (c) and (d) illustrate the alloy after reaction for 30 minutes, The

protective scale has started to form but some sulfides can be found in the

matrix. The alloy is unaffected by the presence of sulfides for a long time.

Figure 14 (a) shows that after one hour of reaction a rather protective scale

has formed and possibly some salt is isolated at the scale/metal interface.

Figure 14 (b) shows more detail at this interface, Figure 14 (c) shows

the specimen after 10 hours at temperature. In some local regions the

needle-like internal oxide Al203 particles have become continuous and

incorporated into the outer scale, Fxtensive su'lfidation occurs in this

region. More detail of this region is shown in Figure 14 (d) and the

corresponding EDAX results from this region indicate a high content of Tb,Ta,

W and S as well as Ti, Cr and Al are present at the scale/metal interface, However

the weight change of the specimen is still small indicating the reaction is restricted

to a very small area. The overall weight changes of the specimens were not

affected by the presence of the sulfides until 50 hours, Figure 15 (a) and

(c) show the specimen reacted for 52 hours, The scale has become rather porous

at this time and again the incorporation of the internal Al203 particles into the
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outer scale is obvious. Extensive sulfidation is also evident. The sulfur

probably penetrates into the matrix along the Al 203 stringers, which provide

an easy diffusion path. Figure 15 (b) and (d) show the details of the
w

scale/metal interface. Figure 15 (b) illustrates a continuous layer of

CrS and Figure 15 (d) indicates a mixture of AI,Cr,S, Ma and W at the

scale/metal interface which probably occurs due to the presence of Na SO2 4
and dissolution of oxides into it The protective scale is then rendered

ineffectual, and extensive sulfide formation occurs, Figure 16 (a)-(d)

shows the scale of a remelted IN-738 specimen reacted at 970 0C for 120

hours. The outer porous scale has peeled off, It is quite clear, attack by

the sulfides along the grain boundaries will eventually lead to catastrophic

degradation of the alloy,

The observations of the hot corrosion of camerical IN-738 and remelted

IN-738 suggest the following sequence for the initiation of severe attack

(see Fig. 17). Figure 17 (a) shows the salt coating an the surface of the

.	 alloy. Initially, the solubility of Cr 203 in reagent grade Na 2SO4 is quite

low but the salt will dissolve carbides which have high MO,W,Ta, and Ti contents

This increases the acidity of the salt and, consequently, increases the solubility of

Cr203 locally resulting in a path for molten salt to penetrate to the scale-

metal interface as shown in Fig. 17 (b). This penetration may be due to the

carbide providing a physical discontinuity in the scale as well as a site

of locally high Cr203 solubility. As the scale grows the salt will remain

at the scale-metal interface where a low oxygen pressure will obtain

producing high sulfur pressures and rapid sulfidation (Fig. 17c). This

corresponds to the transition from Stage I to Stage II. As sulfidation

proceeds increasing amounts of Cr are tied up in the sulfides and a protective

scale can no longer be maintained. The subsequent oxidation of the sulfides

^?	 along the alloy grain boundaries and the Cr-depleted matrix leads to a layered,
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porous MO scale and breakaway oxidation (Stage 111)

3,3 Effect of Carbide Size and Carr sib

The following alloys were prepared to examine the offeat of carbide

r..c%vsition on the initiation of hot corrosion attack of IN-738 type alloys,

AC S 13 alloy; Ni-16Cr-3,4Al-3,4TH.-1,7Mo-2,6W-1,7Ta-0,17C (Cb free)

AG 14 alloy: Ni-16Cr-3,41-3,4Ti,.1,7Mo-2,6W-1,7Tr.•8,5Co-1,OCb-0,17C

AC # 15 alloy: Ni-16Cr•3,4Al-3,4Ti-1,7Nb-2,6W-8,5Co-1,OCb (Ta free)

Their microstr^ ,.cture and corresponding EDAX analysis of the carbides are

shown in Figure 18. In AC #13 there is a high concentration of Ta, W and Ti

in the carbide, In AC #14 there is a high concentration of Ta,W,Cb,Mo, and

Ti in the carbide and in AC #15 there is a high concentration of Ti,Cb,Mo, and

W in the carbide. Specimens cut f cxn the as-cast ingots were subjected to hot

. LL	 i , en	 7.Y., en ^1r. to	 .s......	 sC'.oL—iosion, wi	 2thl 1 —rig/cm NarfSO 
=
--",dtia2,v4,, q.,1"v2 va^ ul^^, ii^e react ion ;-̂;L+i ves

for these alloys are shown in Figure19 and Figure 20, It is noteworthy that

AG #13 does not undergo severe attack in either case, The major component

0 	 absent from this alloy tis columbiiacn. The columbium in the alloys will

preferentially segregate to the carbide during solidification, The role

of Cb in promoting hot corrosion attack has been discussed by D, M, Johnson,,

D,P Whittle and J. Stringer (2) who found the Na 2SO4 coatings had caused

an acceleration in the oxidation rate of a Cr . ,4Cb alloy* similar to that in

Co-7,5W and Co-4 Mb alloys, Therefore, they conclude, in addition to tungsten and

molybdenum, columbium can promote hot corrosion by an acidic fluxing reaction,

Cb205 has a high affinity for oxide ions,forrning double oxides at the alloy/oxide

interface, a feature characteristic of hot corrosion, Seybolt (3) found that

Cb205 reacted quite readily with Na 2SO4 , as did W03 and M003 . Therefore, it

would-be reasonable to assume the addition of Cb 205 into Na2SC)4 would promote
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hot corrosion of alloy AC #13. Surprisingly, the result of this test

illustrated in curve A of Figure 21 indicates that the addition of Cb2O8

hi ll' ► the Na 2SO4 does not accelerate. the reaction of alloy AC #13. However,

if 10 rW3 is added to the salt the alloy will be degraded at a rapid rate

as illustrated in curve C of Figure 21. Curve B of Figure 21 also includes

the kinetics of a series of AC#13 alloy spedrtens which have been heat-

treated in vacuum at 1180°C for 3,16,48 and 100 hours all of which fall on

the same curve. The purpose of this treatment was to coarsen the carbides in

the alloy to study the effect of carbide size in inducing hot corrosion attack.

The results indicate none of there specimens undergo severe attack. This

further points to the crucial role of carbide composition in the hot corrosion

reaction. Curve D of Figure 22 shows the addition of 10% MoO 3 will also

promote hot corrosion attack in a carbon-free alloy (#151, while the

additions of TiO2 and Cb 2O5 as shown in curve C of Figure 22, do not

effect the hot corrosion resistance of the alloy. By careful examination

of the carbide composition in the alloy it was found that the addition of

Cb into the alloy also increases the Mo content in the carbides. The

reason for this increase is not )aiown but it will definitely enhance the

penetration of the salt through the protective scale. Figure 23 illustrates

a series of alloy AC #14 specimens which have been heat-treated at 11800C

for 3,16,48, and 100 hours to coarsen the carbides. The results indicate the

larger the carbides the easier is salt penetration and the shorter the

incubation time. Similar results have also been found at AC #15.

Figure 24 (a) shows the scale of a carbon-free alloy #14 which was

oxidized at 9700C for 5 days, A protective scale forms and sulfides are

found in the matrix. Figure 24 (b) shows the scale on alloy AC #14 which

has been oxidized at 9700C for 4 days with a Na 2SO4 coating. The

degradation of the outer scale is obvious. Figure 24 (c) shows the scale

on alloy AC #14 which has been vacuum annealed at 11800C for 48 hours,
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and subjected to the same conditions for 50 hours. A porous scale has

e
	 formed and again extensive sulfidation along the grain boundaries is evident.

Figure 25 (a) shows the scale on alloy AC #15 which has been coated with Na2SO4

and oxidized at 970oC for 5 days. This scale has also become ineffectual.

Figure 25 (b) shows more detail of the scale/metal isnterfaco where a layer of

a Mo-rich phase adjacent to the alloy was identified by nAX suggesting that an

acidic fluxing reaction is probably dominant in the propogation stage

for this alloy.

3,4 Carbon-Free Alloys

The hot corrosion of carbon-free Ni-16Cr-3,4A1.3,4Ti alloys, taken to be

the basis for IN-738 type alloys, has been studied and the effect of individual

additions of refractory metals has been evaluated. Daring oxidation in the

absence of Na2SO4j Ni-16Cr-3:4x1 -3,4Ti, Ni_16 -3,j,n =3.4Ti-1.e, ,

Ni-16Cr-MA1-3,4Ti-2.6W, Ni-16Cr-3.4Al-_3,4Ti-2,6W, Ni,-16Cr-3.4A1-3.4Ti-1,7Ta,

Ni-16Cr-3,4A1-3.4Ti-1,7Mo-2.6W and Ni-16C -3,4Al-3.4Ti-l.7Mo-2,6W-1,7Ta

all form a continuous Cr2O3 layer, which is overlaid with a thin layer of T102.

with internal, Al203 particles forming at the scale base, In some regions,

internal T102 and Al203 stringers tend to form deep into the rmtrix. The

scales on these alloys in simple oxidation are illustrated in Figure 26,

It is apparent that the addition of refractory elements into the alloy does not

change the scale morphology significantly. The oxidation curves for these

alloys with anc. ;without thA presence of Na2SO4 are included in Figure 27,

The presence of Na2SO4 accelerates the reaction slightly, and the addition of

the refractory elements reduces the hot corrosion attack, Comparing the

e	oxidized specimens with and without the presence of Na2SO4 deposits

(Figure 26 and 28), it can be seen the microstructure of these oxidized

specimens were identical except that in the presence of Na2SO4 a few

(Cr, Ti) sulfide particles were observed in the alloy. The addition of the
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refractory elements decreases the rate of attack by producing a more acid

salt which does not react extensively with the Cr 203scale to form Na2Cr04,

Apparently the decrease in Na 29activity of the salt is sufficient to minimize

thc-. basic attack of Cr 203 but not to induce acidic attack,

4.0 Sunmaxy

The results of this study have shaven that the initiation of hot corrosion

attack of IN-738 and similar alloys is the result of local penetration of the

molten salt through the protective oxide scale. This penetration occurs at

sites where alloy carbides have been incorporated in the scale. The mechanism

of scale breakdown may by that the carbide provides .a physical discontinuity

in the scale or that it provides a site where the salt may become very acid

and dissolve the Cr203 scale, The observation that the effectiveness of the

carbides in initiating scale breakdown is influenced strongly by their

composition suggests the latter mechanism may be the mr)st important. It

should be pointed out that while the carbides are the most important

[u

	

	 factor in the initiation stage of hot corrosion of the class of alloys studied

here other mechanisms will give similar results for different alloys. For

example, thermal cycl ng or erosion can damage a protective scale -to allow

penetration of a molten salt through it, Also, preliminary results in the

present study show that the presence of transient oxidation products such as NiO

on Ni-Al alloys may provide sites for local salt penetration, Scale

inhcmogeneities reflecting canpositional inhomogeneities may also provide

similar sites. However, regardless of the particular mechanism, it appears that

the initiation stage for the majority of alloys and pure metals is the result

of localized penetration of the salt through the scale, Once the salt is beneath

the scale the establishment of low po t , high ps2 , conditions leading to the

propogation stage will be inevitable,

L_
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5 0 Future «Sark

The initiation of hot corrosion attack in Al 293- forming alloys such

as Ni-Al, Ni-Cr-Al, acid Co-Cr-AI will be investigated during the next

six wnths. The effect of atmosphere caiWsition eg. p S0d will be

`	 examined carefully. the effect of this variable will also be evaluated for the

Cr.)o -foiuing, IN-738-type alloys.

Observation of scales using transmission electron microscopy will also

begin during this period in an attempt to correlate the fine structure of

scales with the factors which lead to initiation of hot corrosion attack.
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