
 

 

 

 

N O T I C E 

 

THIS DOCUMENT HAS BEEN REPRODUCED FROM 
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT 

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED 
IN THE INTEREST OF MAKING AVAILABLE AS MUCH 

INFORMATION AS POSSIBLE 



DOE/NASA/0054-79-1
NASA CR-159706

SINTERED SILICON NITRIDE
R^'.CUPERATOR FABRICATION

A Gait, W. S. Chou, L R. McCreight
General Electric Co.
Space Sciences Laboratory
Valley Forge Space Center
PO Box 8555, Philadelphia, PA 19101

January 1980

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lewis Research Center
Under Contrac , DEN 3-54

r, 3/27

(4ASA-CP-159706)	 SIN'IF.RF.D SILICON NTTPOIE
R F.CIIP Q RA TOR F APRICAT IC N Final Report
( .Pneral T?ls rtric Co.)	 40 p HC A03/M!F A01

CSCL 1 Ili

H10- 15 26 3

unclas
46515

for

U.S. DEPARTMENT OF ENERGY
Conservation and Solar Applications
Office of Transportation Programs =CO .< _

T	 "j	 ,,>

^	 1^



TOU C WORD

This is a final technical report submitted under Contract No. DH'N 3-54 "Corrine Recuperator

Fabrication 'Technology", which was originally scheduled from August 9, 1978 to May 240

1980. The contract was cancelled on February 2, 1979 for the convenience of flu+ Government

but was later renegotiated so that a Phase 1 demonstration of feasibility could be completed,

This study was perforated at the General Electric Comp on,v Space Sciences Laboratory,

Valley Forge, Pennsylvania, In the Materials Research and Dovuk;^,,moat Section, managed

by Louis R. McCreight. '11io principal participants in the program and Muir roles are:

Dr. Wen Chiu	 Consultant-float Exchanger Design

John Laffroda	 Analysis of Cleat Exclttutgor Designs

Arno Gatti	 Metallurgist - Silicon Nitride Material

Ilarvy W, Rauch	 Ceramist - Sealing Glasses

Willitun Laslcow	 Laboratory 'Technician - Processing
raid Fabrication

This program was sponsored by the NASA-Lewis Research Center for rho Department of

Energy and was managed by John A. Misencilc of the NASA-Lowis Research Center.
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SUMMARY

This report presents the results of a one-year effort to advance the technology of Ceramic

Recuperator Fabrication Technology using pressureless, sinterable, silicon nitride or

silicon-aluminum-oxygen.-nitrogen (Sialon) materials, which are being developed in our

Laboratory, funded by the Department of Enerj i through the NASA-Lewis Research Center.

The program was originally organized as throo technical tasks (plus a Reporting and a

Roliability and Quality Control Task) as follows:

Task I	 Process Fea^:,hilfPy

Task II Recuperator Module Fabrication

Task III Recuperator Evaluation

The contract was cancelled on February 2, 1979 for the convenience of the Government.

However, the contract was renegotiated so that a phase I demonstration of feasibility could

be completed as approximately a one year effort. GE-130 Sialon, which is 94.5 w/o Si3N4,

was considered the material of choice for the application. However, its use in the recuperator

was dependent on further development to increase its final fired density. This task was not

completed. Feasibility of the approach was therefore demonstrated using GE-128 Sialon

which contains GG w/o Si 3 N4 , and it is readily sinterable to theoretical density with ex-

cellent strength, oxidation and corrosion resistance.

Three key elements of the necessary technology for developing a refractory recuperator were,

successfully demonstrated during this contract and arc:

1. Extrusion and firing of thin-walled exchan ger tubes to high density

2. Development of a sealing/brazing technique using a refractory glass

3. Behavior of Sialon materials in corrosive environments containing sodium salts and
slightly reducing combusted gaseous atmospheres as well as air and Hydrogen.
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SI- TION x

INTItOMICTION

E.xWnsive efforts are underway to develop more fuel-efficient velrleular power plants which

currently utilize a .91gmificant fraction of the available 1vtroleurn products. Among the ap-

proachos being considered are continuous combustion gas turbine and :9tirling cycle engines

along with elevated operating tornporatures and various methods of waste heat recovery. In

this program the objective is they dexd;onstratiun of feasibility of recovery of waste heat from

a Stirling engine at 1370 C (2500 F) utiltzing a recuperator constructed of ceramic nurterials.

13001 in tilt proposal and In the program, some design work was performed to provide on the

one hand an efficient, compact, practical recuperator for tin automotive Stirling engine ,in(]

on the other hand a. design which would be .feasible for fabrication from ceramic materials.

This design effort is reported in Section : of this report.

Simultaneously the materials from which to construct a high temperature rocuporator were

being considered to the primary program effort. The operating- conditions, In particular the

temperature, ris well as eventual production requirvinvii s if the development is successful

dictate the use of 11011- critical Ceramics. Of these, two families of high porformanco cugi-

neoring ceraziiies are quite comptuable In most respects and offer the most lil:elillood of

success. `1'ltey are silicon carbide and silicon nitride. 	 silicon carbide offers a higher

thorrnal conductivity, Its highor inodulus and thermal rxpanslon generally eausc it to be r •oro

thermal shock sensitive than silicon nitrlde. In addition, the use, of 3intcrable silicon nitrido

compositions Containing $onro alumina offers the potential for a more corroslon-resista nt,

alumina-silica surface protective layer than the more nearly pure silica shin on either silicon

Carbide or nitrido. Therefore, cur , Initial approach was to sinrultanoously demonstrate the

forming processes with a previously developed sintorablo silicon nitride designated as 01".-12 8

and to vvorlc toward obtaining full density in some advanced compositions containing more

silicon nitride which were designated as CE-129 and -130.

Joining and scaling of these mate:riais using A powdered glass "braze" was also successt'ully

demonstrated in this program.

1



In addition to these primary program activitles, a small parallel effort to assoss the cor-

roslon resistance of the silicon nitride under accelerated conditions which somewhat simulate

the vM- na ►st and road stilt associated witli at ►tomotive opcirating conditions was performed.

Serious corrosion problems of this type had previously caused oxide ceramic regenerators

to be markedly changed In composition. While these tests were not completely clefinitivc.,

no sign of it corrosion problem was detected.
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SETTION 2

Summary

Design considerations of a high temperature ceramic recuperator for tin mitomotivv Stirling

engine led to it recommendation for it cylindrical, counterflow, channel type its most feasible

and responsive to NASA's requirements for automotive applications. The selection %v, s nuide

based on general Electric experience with various Stirling engine programs and many high

temperature materials and devices and in particular (ho, silicon nitride materials.

Extensive analysis was carried out: to study the tradeoff between the heat transfer, prcbssure

drop, reliability, size and cost. Based on the tradeoff study design, configurations were

recommended for various pressure drop levels. A triangular duct cross section was int" tally

chosen but the problems of maintaining straightness during extrusion caused a change to it

rectangular duct cross section. This indeed proved easier to produce with the desired

straightness. It is believed however that %vith some further reflnoments fit 	 dte design, a

triangular tube could also be produced.

The desigm consists of these hollow channels mounted [it 	 annulus between and parallel to

the axis of two large diameter tubes and attached to the outside of the recuperator inner tube,.

The hot exhtutst gases would be carried !it the hollow rectangular tubes, while inlet air would

pass through the spaces formed between the adjacent hollow tubes. S quall samples of hollow

tubing an() flat plates made of sintered silicon nitride were successfully assembled with a

glass sealing material to demonstrate the preliminary feasibility of the concept during div

recently completed Phase I. Larger modules (25mm x 150nim x 15 0mm) as :lopieWd in part

of Figure 3 were intended to be the next step in the program if It had proccoded.

r This section discusses the design approach and analysis leading to our recommended recupvr-

ator configuration.

I

3



«:.I C'tt1111 EM STIRLING IsNGINt. PROGRAMS

Of many Stirling engine programs undertaken by C,eneral 13ectric Company, two major ones

involve a ecuporator design and development for rite :fossil-fuel coon bu8tors.

Since 1075 0 C,8' has conducted product (hiveloplaaent of a heat-activated heat pump for both

residential, and conanaercial use under contract to DOE. and the Chas Research Institute. The

objective of this program Is to develop a viable commercial, product of al sacs-firml heat pump

which will allow both cnc'a.gy conservation and operative cost savings as compared to alterna-

tive gas heating and electric cooling .4ystems. The system rases as 3 IM' free piston Stirling

enghae driving a Rankine cycle vapor compressor,

Dart of the program effort is to develop a high efficiency, compact, quiet, lorr y cost and

reliable combustor ,or the Stirling engine. Figure I depicts the layout of the combustor

developed. The design goal for the recuperator effectiveness was scat at 60( t'. The final

design configuration of the recuperator is a counterflow heat exchanger comistMg of triangular

shaped flow paths alternatively for the hot combustion exhaust and cold air. The recuperator

wall is made from corrugated stainless steel sheet metal. For domestic heat pump applica-

tion, pressure drop across the combustor is designed to be less than 50nana of mater so that

no special air blower is requived. Therefore relatively large chauanc-1 gaps, (5.5mm), for the

recuperator were designed which results in the recuperator pressure drop (air plus gas sides)

being a nlere 5mm water at 010 C pre-heat air Wmperature. The measured recuperator

effectiveness exceeds 70"( Figure 2 shows the test results of this recuperator design.

A similar recuperator design concept was adopted in a program for tho NASA - l',owis liescatrcla

Center. The objective was to produce a preliminary design of a Stirling general-purpose test

engine ,it the 25 III' level. The engine is to have high reliability and versatility over a widv

range of try st conditions, and have the capability of permitting, components of different designs

to be tested interchmigeably or with only minor engine modifications. The recuperator was

designed for 50^', effectiveness with a pressure, drop of 4nini water.

4
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l-Ntenalve experience in the above related programs has been applied to tiro present program

in developing a ceramic recuperator,

2.2 Dl SIC N CONSIDBRA' ION'S

Iar the present program the size and design of the flow passages in the subscale recuperator

modules shall No similar to the flow channels of a Ball size automotive recuperator. Methods

of nianifolding the flow channels and of mating the recuperator to the engine tare also to be

Included in the proposed design and fabrication development. At the initial phase of the pro-

gram, the 4-215 automotive Stirling engine developed by ford Motor Company and Philips of

Holland** has been taken as the basis of the preliminary recuperator design. Table 1 lists

the requirements set forth in the RFP and sonic additional assumed operatic g and size re-

quirements based on the 4-210 engine.

'fable 1. Ceramic I7ecuperator Requirements

Air flow

Combustion products (gas)

Air inlet pressure

Maximum pressure drop

Effectiveness

Maximum ceramic temperature

Interpath leakage

Combustor outer housing

Combustor plus Burner height =

Recuperator Effectiveness

up to (0.14 Kg/sec)* at tomporature

up to (0.144 Kg/sec) at a mean
temperature of 1600 F

0.1 AlPag (16 prig)*

(0.01 M Pag) (1.6 ps ig) * for air s ide
plus gas side

0.0 lain. at maze. power output

1370 C* or higher

less than 51,(,*

400mm in diameter

350mm

greater than 9 c

*Specified in the IirP

Assumed diesel fuel combustion with 1, 050,000 13TU/hr firing rain at 300,'
excess air, 170 hp output @ 803 combustor efficiency acid 55 1, (' engine efficiency.

**VanGiessel, R. and Reininlc, F., "Design of the 4-210 D.A. Automotive Sttrlirag 1,rrgine,"
SAL paper 770082
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In addition to the requirements listed in Table 1, other criteria to be considered. In evaluating

the recuperator design are;

1. Fight weight

2. Potential lore cost

3. Durability

4, Manufacturing feasibility

0. Bast mating with the engine heater head

Overall assessments of the above design considerations concluded that a stationary recupora-

tor appears to be more reliable than a rotary type.

During tine last quarter of 1978, NASA provided all 	 set of test data for a Ford 4-245

Stirling engine which are shown in Table 2. The high effectiveness and low pressure drops

are typical of a rotary type recuperator which has a large frontal flow area and short flow

bath. In our view of this istationary recuperator, the size requirement could become lm-

practically large Ill older to accomplish stinilnr effectiveness and t re8sti e drops, However,

the elimination of power required to rotate the regenerator will be enough to offset the htgher

pressure drop penalty, for a stationary design.

2.3 HEAT ViANSFER ANALYSIS

The ,peat transfer analysis was conducted using the Days and London NTU-riietllod*. A beat

exchanger effectiveness is characterized by the operating condition of the working fluid,

C = Cp at1, and the number of heat transfer unit, NTU - ALA/C 21, i ,,, where A = total l cat

transfer area and U = overall heat transfer coefficient. NTU is indicative of the heat

exchanger size and complexity. For the combustion process In an automotive application,

Crain/Cmax Is around 0.88.

Table 3 lists the maximum achievable effoetiveness for three types of heat exchangers and

their respective NTU's needed to obtain a 90;'o' effectiveness.

*K,.aVs, W. Al. and London, A. L., Compact Heat Exchangers, 2nd Edition, 11lcGraw Hill
Book Co. , 1964.
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Table 2. Recuperator Performance of Ford 4-245 E. gine

TFull Load	 Part Load	 Idle

222.3 54.39 14.79

1036 754 734.8

243 149 135.8

1.030 1.0041 1.001

1.007 1.0001 1.00

0.34 0.06 0.015

210.96 52.86 14.79

52.3 97.7 83.1

969.5 740 726.7

1.153 1.015 1.003

1.137 1.0115 1.002

0.24 0.05 0.015

93.2 97.9 98.7

0.58 0.11 0.03

Table 3. NTU .Requirements for Heat Exchanger at p Min/p max = 0.85

Theoretical NTU Required
max. E @ NTU -* oo for E = 9076

Counter-flow 100% 5.75

Cross-flow with both fluids unmixed 100% 43

Parallel flow 63% -

Hot Side
i

Flow Rata (g/soc)

Tin (oC)

Tout (0C)
Pin (atm)

Pout (atm)

AP (psi)

Cold Side

Flow Rate (g/sec)

Tin (oC)

Tout (0c)
Pin (atm)

Pout (atm)

OP (ps 1)

Effectiveness (%)

Overall all AP (psi)

*Adjusted with flow leakage

8
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It Own bocomos aptlaro it traC to obtain it JOE,'^ cffectivonvs.i, yvt coo-t-filOc Live , and compact

reellp orator, the best configuration is al comiter- flow type lieat exchangor. It van bo as tuba-

'41101 or a V1111111101- path configuration. The svIv'tion must by based on vast, of fabrication,

lnanifoldhig and installation, large iroat transfer surface-to-volume ratio, and rvlia bil.ily.

t:. 4f'^ LaN'1'1^;1i-1^'T,C1^1` Ii1^;^^L11^1^;1iA'^^ 1I \^'1"l'II C'<^lilt[ 1GA'l'1;1) F1,f 11t" t"11^ANN1 l'. Ca4

0 $4o I. "1'i IANt1111All DUCTS

A i'ccuporator t'c?ncopt whivil itict'ts Ow a bovo x't`tlllil't'metit's with al. relattwly simplt` confii; n'. 11-

tion. uses corrugfitod trialigular flow ellaulauols surrounding Clio comb^-initor outor housing ats is

being dvvv1oped at Oo ix --al Electric for othor Stirling o1>ghics. 11a.,wd on those vxporirlacvs

and (it( , 	 vXperionees with tare sintored silicon nttride matcrials, a preliminary deilign

shown as all au l t.ist's rcixloring III Figure 3 has been (r roh ,od. It, shows tl more nearly complete

ecuperator (which I4 boyond the scope of tho present program) as possibly being about 3 501imi

11) x 400111111 01) x 27 mn high pleas ruanifolds.

[it Ow otrrly phaso of Clio program, Cho flow channels wore being dcN »elopod as cxCr^-wd hollow

triangular tubes with it 0.75rn1n (0).030") 1y,all as shown oil ti1e left hand side of Figuro 3. A

dosign chart, as shown iii biguro 4, was constructed for it 00 1'C effccttv ,o recuperator. Tho

nvol,'alll length turd fhc pretisurc drop, AP, of Clio recuperator are plottod for difforeiit tri-

angular flow chalinel colri'Igurattoils (chaurllel height, t, anti chaumol v1+: (](at, 8).

Based oil the Initial design roqu Ir y wotits as spocified t11 Table 1, a sceti,on of t 7 	 and

& ^, all m was recommended for fabrication devoloprnont. The ovorall pressure drop for a

full seal" recuperator was estimated to be 0.01 mPa (1.0 psi) with is channel length of -27511im.

The reeolnlnontied subscaalc recuporat:or module having a x ,50rirm x 150mm section is do -

pietod [it Mgttre a, with appropriate manifoldingy for combustion gas aa11d air non+s.

2.4.2 1 1^.0 L'1^N( 1t^1^1R D UCT

After initial attompts to fabricate coramie hollow triangidar tubes, it alppoars that a rcctaait u-

lar cross section is sutler for to Clio triangular shape from the poilits of	 of eats" of

fabrication and structural Intogrity of C re long tubes. fit addition, after reooiving tltc !Ford

9
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Stirling engine test data as suminarized in `.Cable 2, concern has been raised oil 	 a stalton-

ary recuperator call 	 desigmed in order to achieve a low pressure drop comparable to that

obtained in a Ford rotary recuperator.

Analysis of the recuperator with rectangular flow channels was carried out with essentially

the same configmration as shown in Figure 3 (400min OD for full scale recuperator).

Figure G is the parametric plot for this design analysis. T,he design requirements were based

oil 	 tabulated in Table 1.

it call be seen from Figure 4 that in order to reduce the pressure drop, a longer recuperator

lengtth, L, and a larger duct cross sectional area (channel width, t, and channel gap, 8 ) will

be required. This will result in a larger size recuperator, Nvith snore weight and cost.

Table 4 tabulates three different configurations corresponding to the design points donoted

ill Figure G.
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It is apparent that as the channel cross section area increases, the lower AP can be achieved

only at the expense of a weaker structure for a fixed wall thicluiess. The optimum selection

of the final design, then, will be strongly influenced by the fabrication technique, material

properties, and tradeoff of reliability and cost.
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Table 4. Recuperator Designs with Rectangular Flow Channel

1."f activeness	 cn	DV("
Channel wall thicluiess - 0. 75mm
Recuperator ID z-- 400mm
Cliannel, longth, L 1= 300mm

Chainiol Channel (X'Orall
Design NVIdth,	 t Cal),	 6 AP
Point

111111 (ill) DIIII (ill) A I Pa (P90

1 31.25 1.25 1.00 0.049 .01 1.5

2 43.75 1.75 1.30 0.051 .003 0.5

3	 1 57.5 2.3 1.625 0.065 .001 O. l5 ---j

13



EXPERMI- NTA L
f

The Materials Research and Development Section of the Coneral Electric Company's Space

Sciences Laboratory has been active in studies on sinterable Si 3 N4 compositions since May

1972. (1) Current activities in this area have included a recently completed 3 year study of

Me ceramic processing of silicon nitride containing alumina and aluminum nitride by the Air

.Force Materials Laboratory, Wright-Pattorson Air force base, Ohio(2).

Processing studies were necessary because detailed knowledge of the "new' sinterable St3Nf

systems was not generally available. There was also a need to reproducibly fabricate size-

able specimens for test and evaluation. The sintering mcchannisnn was complicated however

because it involved a liquid pliaso which could vary in composition by both choice of starting

materials and processing tecluniques. This liquid phase in tern had a profound effect on the

nnechanaical properties, particularly at high temperatures. Studies included the fabrication

and properties of compositions with deliberate additives and culminated in the description

of the fabrication of Si3 N4 ..based ceramics of tip to 8711-1/0 Si 3N, with a minimtunn of second

phase content and hence, good strength retention at high temperatures.

That earlier program formed the base for the present work. Sinnterable compositions had

been developed, what remained wa,s to use that 1c'nnowledge to fabricate recuperator components

and modules and so a component fabrication and assembly sequence was developed and is

shown inn Figure 7. This sequence was followed during the program and comprises Phase I.

Also as a pant of Phase I a parallol study was made of the resistance of Sialon to sodium

sulfate and sodium chloride corrosion at high temperatures. This would be a vital

parameter: in the use envisioned, especially for thin-walled recuperator channels.

(I)See References at the end of the report.
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OR
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PREPARATION OF SILICON NITRIDE
COMPOSITION POWDERS
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MANIFOLDS	 1

L^...
ADb PRESSING	 ADD EXTRUSION
13INDER/LUBRICANT	 BINDER/LUBRICANT

NOE INSPND
TEST FOR. 

A
FLAWS,

DENSITY, ETC,

SELECT, PRE-ASSEMBLY
PARTS, NUMBER FOR
TRACEABILITY

APPLY SEALANT
SINTER/BRAZE

I	 INSPECT AND TEST,

*INSPECTION

SEALANT
HIGH TEMP, GLASS
OR BRAZE MATERIALS

r`igure 7, Component Fabrication and Assombly Sequonee

3.1 PC)WI E'R PROCESSING

Sialon starting materials used during this work Nvere processed by nulling inn polyuretliane-

lined mull Beath Sialon brills as shown in the flow diagram of Figure 3. lVear of the Sialon balls

was used to furnish the liquid, phase necessary for sintering to high density together with a

sintering aid composed of "mineralized" Sierralite Tale and Kiranite(3).
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WEIGH SIALON
COMPOSITION USING
313N4, AI 203 AND ANN,

SCREEN SIA	 I
AND AIN
THROUGH ,AOQ

MILL FOR 92 HOURS WITH
5 1gN^qq TYPE BALLS PLUS
POLYURATHANE LINED MILL
USING 2•PROPANOL.

I
SCREEN THROUGH -400 SCREEN
AND DRY.

CRUSH

ADD BINDER ANO FORM SHAPES
FOR PROPERTY DETERMINATION,
RECUPERATOR COMPONENTS, ETC,

I	 SINTER IN PRESSURIZED N	
IAT 1950°C AND 1856C	 z

TEST

Figure & Flow Diagram of the Processing of GE Simon Materials

Hydrostatic pressing, at pressures up to 400 MPa (50 K81), was used to form. the prepared

powders into plane shapes. The development of a process which could form thin-walled,

gas-tight tubing was a major task of this study. When the recuperator design is considered

(channel cross-sections 25mm wide by 3mm thick with l.mm walls to 500nim long) it is ap-

parent that extrusion would be the most practical process. Accordingly, plasticizer-binder-

Sialon compounds with the potential to lead to good final sintered product were systematically

studied. Of the six systems studied, one considered to be most easily adopted was comprised

of a commercial wax compound and 60 w/o Sialoln powder extruded «varm (—GO Q.

Plasticizer-binder-powder mixtures were "mulled" (mixed) in a small bench top muller built

Here. Figure J shows the muller as used to prepare wax powder mixtures maintained at

about 100 C by apl)ly iig eti-terml hoot witli a Beat lamp and a hot air gun. An extrusion press

was also designed and built which utilized a manually powered screw teed to exert pressure

1G



Figure 9. Photograph of the "Alullcr" Used to Alix Wax-Powder Alaterials for
Subsequent Lxtrusion. Note Heat Lamp mid I ► eat ( g un t'sed to
Maintain 100 C Mixing Temperature.

on a piston. The heat capacity of the press was such that if hot extrusion \%as needed, the dic

assembly could he brought to the temperature required and operated before it had cooled off

too much. A disassembled-exploded vices• of the press Is shown in Figure 10, \\ith a portion

of extruded recuperator channel in place.

3.2 BINDER ItEMOVAL

Binder removal and de-waxing by pyr • olyzation was the only methcxi used since none of the

other hinder systems triad was successful. The removal of binders from dense extruded

shapes is not an easily predictable process and had to be determined by trial and error.

Ti me-temperature conditions were adjusted until finall .v most \\arc could be de-waxed defect

free. FV1111er • , during wax rcnroval, the warc had to Ire supported to minimize distortion

OP!GINAL PAGE IS
OF FC -NF. rte..
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	 View of Laboratory Extrusion
Press Used Pill-ing this ;Illdv

and provide a vial: for molten wax. 1'he de-waxing rtch,(1111e de\eloiled was to Il:u`h th, part s

in -900 11u`sh .111111,in:I I ►owder aild then fire Ill air at '21 2..0 C/Ilr to 21 00 C, hold R hours, then

20 C/hr to 350 C. ,111(1 then firing to 1000 C. at 200 C/hr and furnace cool. The \\arc \\as

ca refuRv rctlu ►\ • ,cl from th, alumina bell and storcd for final firing. The :Ilu111i11;1 packing

powder 111,almllil, \\as tic`-Itul,Iu • (I bY screcning and continuouslY recycled.

3.3 FIRING

At first, tilla] firing of Sialon compositions was performed in ;1 111(dYbdellutl) box hacked

loosely with " 5ialoll" po\\der and covered with .1 111olybdt-1111ill hd to control w0gllt loss during

firing;. The nlolYbdununl box wa y placed into :I 111ol .0xl, lilt ill retort, the mouth of Mlich \\.is

covet•c(I \\4th 11lolyl ►(4,1111111 1011 ;111d through which flowed nitrogen at .1 controlled rat,. This

ati3l`1111111' was Ill'e(I 111 a 11ylil'O};ell :Itlll(►sIlhere.	 1.:Itl'1', a "Cl`Iltol'I" , illllgsll Il resist:1111`t`

furnace \Vas IddCd to 0111- fac • iliti,s mith a maxi1111111, t,ulix•r: 1111-, capability to 2.500 C in

1sI.i



nitrogen-amb to tit with allot zone 200mm (8 11 ) diameter by 300mm high. All firings after

December 1078 were made in this facility, a photograph of which Is shown in Figure 11.

1N'are to be fired was mounted oil 	 fixtures and placed in the furnace. Tile furnace

was then evacuated all(] back-filled with nitrogen to a pressure of 1/3 atmosphere above

ambient. The furnace temperature reaches 1700 C in one holl y using power surges of about

3000 amperes every 10 minutes. Recuperator channels were fired in this manner for 30

minutes at 1700 C and furnace cooled.

3.4 CORROSION CRUCIIME'S

l!or corrosion studies, GE 123 Sialon special crucibles and covering lids were fabricated by

die prossing in the shaped dies shown in figure 12. The crucibles and lids were larc,.sled to

100 AIM (15 KSI) and fired for 1 hour at 1750 C in nitrogen using the molybdenum retort sys-

tem described oRrlier. During reaction studies the crucibles were weighed, loaded with

corrodants, re;wolglie i, fired in as mullite retort to air, hydrogen or CO2-N,) -IT G atmospheres,

and wetghted again. Changes in weight and mic i`o Aructural changes as a function of til le at

each test condition were used to evaluate material performance.

3.5 SEALING AND BRAZING GLASS PROCESSING

Sealing and brazing glasses were processed by a fritting technique, ball milled Ili a high

alumina, mill quid balls and screened to --200 ,mesh. The compositions used were first wolghted

out in 50-gram batches. The compositions were then melted at 1600 C iii air, anti waster

quenched twice to ensure homogenization of the resulting glass.

19
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SECTION 4

11WIVIM AND DISCUSSION

4.1 A-TATERIAL.SSELECTION

It was proposed that GB'-130 material be developed for use as recuperator hardware because

It offers tho potential of Improved properties such as thermal conductivity. This development

should be readily accomplished since GE-130 material has a high $iN4 content,- thus it

should have Intrinsic properties that are similar to hot pressed or reaction sintered S13N41

a material which is considered desirable recuperator application. The GE-130 material

contains 94.5 w/o SIA; It can be sintered at 1750 C, but at present it does not sinter to a

density that can guarantee g  tightness. Not much progress was made on this aspect of

material development before the program was curtailed. However, It was decided that

feasibility could be demonstrated during Phase I of the program with the use of GE-128

material which is readily sinterabla to high density and Insure gas tightness. GE-1.28 Is

also an acceptable material for recuperator hardware applications because it possesses

excollont strength, oxidation  and corrosion resistance and, aside from a slightly lower

modulus, has other proporties that are Identical to Si 3N4. Four-hundred gram batches of

GE-128 were prepared as previously described and processed as needed throughout this

study. GE-130 and GE-128 are compared in Table 5.

Table 5, Materials and Compositions Used During This Study

Composition in weight percent and vendors

G8 Designation S13N4 Al203 AIN
AME

(England)
Linde A t	Air
Products Div,

corac/
Pu r C

128 66 24 10

130 94.5 4 1.5

*Composition before processing

21

I

iL--- . --.I-	 -	 --



1
9

4.2 COMPONENT FABRICATION

4.2.1 PLAT

Two .r ni thick x 40 inin wide by 160 mm long GE-128 Sialon plates were fabricated by iso-

static pressing, sintering and diamond sawing to be used as side walls during modular con-

struction. This material has a fired density of 3.05 gin/cc which is 99% of theoretical

(3.08 gin/cc) and is gas tight.

4.2.2 RECUPERATOR CHANNELS

Recuperator channels were successfully fabricated during this program as a result of a sys-

tematic study made to identify a binder-lubricant system which would work satisfactorily.

Six binder-lubricant systems were tested before a workable one was developed. A smnmary

of these rals+ults is shown in Table 6. As can be seen, all of the systems except the

LN-27-266-2 wax had undesirable characteristics ranging from unable to extrude, to

Table 6. Summary of Sialon Extrusion Binder Studies

..

Binder System Results

Alcohol + Orange Shellac Separates, "rattlesnakes".	 Does
not extrude

Polypropolyne Extrusion temperature too high.
Difficult to add solids

PVA-Sterate (1) Extrudes but less than 50 w/o
solids, walls collapse

Buytal Sterate-, ,Reten(l) Extrudes but less than 50 w/o
solids, walls collapse

Mixed waxes Separates, rattlesnakes, collapses
at high extrusion temperature

LN-27-266-2 wax 
(2)

Extrudes well at 580 w/o solids

(1)	 Water based, reacts with sialon mix,

(2)	 Commercial mixtl:re purchased from J. F. McCaughan Co., Rosemead, California..
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cxirusloll without sufficient solids content ( '> 50 w/o) or wall sagging. Xxamplc l of ext rudcd

channel in final configuration arc shown Ili 14gure 1:a. This cll4i mv), clan be extruded to -lily

length desired. Its final fired cross section dimensions are 25 mill wide x 0 min thick with ac

I min	 thicluiess. The original, cross section dcsihn did not have the center vita .shown,

'however, upon firhlg^channels without ribs sagged after firing usually closing the channel.

Some gagging still persists and it is recommended that still another rib (2 cclutwspaml) hr

added which will further support the chalwcl walls during firing.

n
Solld roc-, square Ili cross-section with a adlused corners (50 slim") vv !ats extruded to p,ro\'tdo

material for rncehanical properiy studies and density dcterrntnations ill the as-fired condition
.since such measurements art' needed and arc difficult to perform oil channel material. '1'airle

7 shows the groen and fired densities obtalined. Also included hr the data is the avorago room

Table. 7. Green and ]:Fired Densities of Extruded C1:-138 Sialon

tvrnperaturc AIOR strength of this material tested without: furtllt*r , regard for su:a,fatcr finish.

As can ire soon, this material leas a reasonable strength which is Indicative of tho . q tr.,cllgth of

extruded aired fired cllalnncl. A more definitive test would require internally pressurized

burst tests which were not clone, due to tho lack of funds.

-111 x-ray diffraction trace was also -bade of extruded, dowaxed and fired GE-135 Sialon

matcr_ial, Figure 13. The results show a typical R' Sialon trace as shown in Figure 1.1.
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4.3 SEA LLD A ND D13A ZED STA LON MATEIIIA LS

The initial work in the development of glass sealing and brazing materials was with boro-

silicate and magnesitmi aluminosilicate glasses with and without additions of powdered fused

silica. However, a composition (HS-110) (4) which represents the glass phase at the grain

boundaries in hot-pressed silicon nitride was evaluated and found to be ideal for the applica-

tion. The borosilicate/silica and magnesium altuninosilicate/silica mixtures wet sialon

very well and appear to form strong bonds. However, considerable bubble formation %ti,as

observed in all of these combinations and could be a structural weakness. HS-110 glass

wets sialon very well and produces very strongly bonded sialon/sialon pieces.

The molar composition of the HS-110 glass is Al2 O3 • 4.5 CaO • MgO • IISiO2' A slurry

of the HS-110 glass in alcohol using -200 nosh powder was used to provide a very thin film

of glass particles on small (25 x 50 mm) pieces of sialon. The slurry was dried and the

sialon pieces were fixed. In one instance, two of the glass-coated sialon surfaces were

mated before firing. Two temperature/time schedules, 1250 C/55 minutes and 1320 C/1.5

hours, were, investigated. Both schedules produced nicely glazed sialon surfaces and very

strongly bonded sialon/sialon specimens.
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Various samples of sub-nwodulur brazed assemblies were then made using HS-110 glass

slurries. Examples of these brazed assemblies are shown in Figure 10. A cross- section

of a brazed section showing the glass (meniscus) formed between a channel and wall section

Is shown. in Figure 16, These brazes were all made by firing for 5 minutes at 1400 C in air

atmosphere. A larger module was then brazed using several sintered sialon channels and

large sintered sialon plates. This sialon ceramic heat recuperator sub- module is showwm in

Figure 17. .full sized modules were not made only because our present channel firing furnt-

hire was designed for feasibility work and can only handle 100 mm long pieces.

4.4 CORROSION STUDIES

Corrosion studies were carried out using GE-128 Sialon crucibles described earlier. Small

amounts (N 0.5 g*m) of Na2SO4 , NaCl and carbon were added to the crucibles both individually

and as mixtures. Included in each series was a blanlr crucible to assess the effects of

atmosphere alone on the materials. The loaded crucibles and blanks were fired at 870 C and

1370 C in air, hydrogen and Co t-N2 and H2 O to periods of up to 1000 hours. During air

firing the blank gained about 4%, in weight in 20 hours while the crucibles containing the

various corrodants also gained about the same percentage. It is concluded then that in air

atmosphere the sialon gains weight but is not affected by the corrodants which also persist

as a white porous layer. Specimens fired in H2 lost weight. The blank specimen lost about

2.4% in 20 hours while the crucibles containing the corrodants were emptied of their con-

tents. It is further concluded that in hydrogen, sialon material loses weight but the process

is not affected by the corrodants which are transported away by the H 2 gas stream. Runsy
at 1370 C in a simulated combustion atmosphere using CO 2 -N2 and H2 O vapor were dis-

continued after 100 hours since the aided Na 2SO4 and NaC1 had essentially vaporized away

and/or reacted with the sialon and no further reaction was taking place. The samples are

quite similar in appearance to the runs made in hydrogen in that no frothy glass layers formed

(which are typical of air atmosphere runs). The temperature was then lowered to 870 C where

the salt mixtures remain liquid and have a fairly low vapor pressure. After 1000 hours of

operation, the appearance of the crucibles is similar to the 1370 C 100 hour runs in that ►io
foamy reactions are evident. Further, the only apparent difference in weight gain between

26
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Figure 15. Examples of Subm(Aular Glass Grazes 'Made with 11S-110 Glass,
Extruded and Fired Sialon Channel and Pressed and Fired Plates

Figure 17. Glass Brazed Section
of a Sialon Ceramic
Heat Exchanger 'Module

Figure 16. Cross- Section of a Glass Brazed
Suhmodule Showing Minicus Be-
tween Extruded and Fired Sialon
Chmincl and Pressed and Fi•-ed
Sialon Plate
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the blank sample and the loaded crucible can be accounted for by the initial reaction which

occurred within the first 100 hours. This series was terminated after 1000 hours. The

data for these tests using CO2-N2 -1120 mixtures are summarized in Figure 18.

300

5o
	 A

0'
n
	 1	 1000

TIME (HRS) IN SIMULATED COMBUSTION GASES (SLIGHTLY OXIDIZING)

Figure 18. Corrosion Test Data of GE-128 Sialon in CO2 +N2 +H2O Atmosphere at 870 C
with and without Sodium Salts Added.

Five representative corrosion study sialon crucibles were picked from the total number

of 20 used, and were cross-sectioned and metallographically polished for electron probe

x-ray microanalysis to detect sodium penetration into the bulk material. The samples

examined are shown in figure 19. Results for each sample are discussed below.

I
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Figure 19. Cross-section View of Sialon Crucibles aftc r Corrosion Testing;

Sample no. 1 - 1:170 C, 100 hours, Na. )S .1 + MCI, CO2 + N,̀  + 11,y0

Sodium was found alolig the edg e s of the erucihle mid along cracks; no sodium \%as
detected in the hulk sialon.

Sample no. " - Cont rol Sample, 870 C, 1000 hours, CO,^ # N^ + II ,( )
V

No sodium \%.Is detected in the hull: or around the edges of the sialon material in the
control 'allI Ic.

Smii-filc no. 3 - 1:170 C, 1 00 hours, Air

Sodium \\.Is found along the outside surfaces mid along; cracks, no sodium was detected
in the hull: sialon.

Sample no. •1 - 870C, 100 hours, Na. ) SO + NaCI, C),) + N, -! 11 ,0

Sodium was found along; the surface edges and in cracks but no sodium was detected in
the bull: sialon.

Sammie no. 5 - 1370 C, 100 hours, Na ySO + NaCl. H.,

Very little contamination i+rOdlICI W.Is ohscrTed on the sufaccs of the crucihlc. No
soditmi \\as detected ill 	 hull: sialon.
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These results are parallel to those observed by Palko for G:C, Sialon material tested

at 870 C In combusted gases containing sodium contamination. Palko's tests wore discon-

tinued actor over 16, 000 hours with no significant reactions taking place.
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SECTION 6

CONCLUSIONS

The feasibility of fabricating sintered SiA channels and plates suitable for constructing a

ceramic recuperator have been successfully demonstrated. Techniques were developed for

extruding unlimited lengths of thin-walled channels ushg; wax-powder mixtures which can

be fired to high density. These materials are strong in the as-fired condition averaging

better than 266 AIPa (39 SKI) strength in modulus of rupture. The art of glass brazing using

a IIS-110 glass was also demonstrated so that module sections could be assembled from fired

channel and plate components. Finally, it was concluded that Sialon materials do not react

catastrophically with sodium salt-carbon mixtures at 870 C or 1370 C in atmospheres of air,

H2 or CO2-N2-H2 0 mixtures.

i

t

t
i
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SECTION Q

RECOMMENDATIONS FOR FUTURE WORK

The development of sinterable SiA, con'positions like Gtr-130, which contains 94.5 w/o

Si3 N4 , should be continued. further, since the technique for extruding and firing Sialon

channels has been developed, further studies to characterize its pressurized high tempera-

ture behavior should be done while thermal cycling. Furtherp brazed components should

also be tested for long-time stability as a function of pressurized high temperature and

thermal cycling.

rinally, we fool that ceramic heat exchanger technology, utilizing assemblies developed

during this work would be advanced toward eventual utilization if this program were to be

fundad in the future.
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SECTION 7

i RI # IIIII1I-II lCE's

W. I. Wilson turd X. 11. Jack, paper presented to the American Coramie Soclety,
74th Annunl Meeting, Washington, D. C. , May 10, 1972.

2. A. Gatti and Al. J. Noolte, "MIAllods of Fabricating Ceramic Materials, 11 Technical
Report Ar-Aix.-TI1-77-133, November 1977.

3. A. Gatti  and M. J. Noone, "Ceramics in the Si-Al-O-N System Fabricated by conven-
tional Powder Processin g and Sintering Techniques, " Processing of Crysttalline Cer-
alnies, Edited by Il. Pahnour 111, 11. F- Davis, T. M. hare, Plenner Publishing
Company, 1978.

4. Ram Iiossowsky, "The Microstructure of Ilot-Pressed S13N,1," J, M;It. Sci. , 8
1603-1110 (1973).

0. J. E. Pallco, "A Review of Oxidation and I-lot Corrosion of Silicon Based Cer"lnlics,
TIS, Gas Turbine Series, #77-AID-714, October 13, 1977.

33


	1980007004.pdf
	0001A02.jpg
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001A14.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif
	0001B06.tif
	0001B07.tif
	0001B08.tif
	0001B09.tif
	0001B10.jpg
	0001B11.jpg
	0001B12.tif
	0001B13.jpg
	0001B14.tif
	0001C01.tif
	0001C02.tif
	0001C03.jpg
	0001C04.tif
	0001C05.tif
	0001C06.jpg
	0001C07.tif
	0001C08.jpg
	0001C09.tif
	0001C10.tif
	0001C11.tif
	0001C12.tif




