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Chapter 1

'INTRODUCTION

When a solid object is placed in an otherwise uniform flow, vor-

ticity develops in the vicinity of the solid boundary and in the wake

as a result of the no-slip condition at the boundary. If the associ-

ated Reynolds number is high enough, fluctuations in the flow appear

as a result of the iri6tability of the shear flow thus established.

Fluctuations can develop in the wake as well as in the boundary layer

and around the separation points and may lead to turbulence at rela-

tively high Reynolds numbers. These flow fluctuations in turn,

whether turbulent or not, induce a fluctuating pressure field on the

surface of the body. Similarly, if the main stream is turbulent or

sim3ly snsteady, it gives rise, after being distorted by the presence

of the body, to pressure fluctuations on its surface. The pressure

fluctuations in question are of the so-called pseudo-sound type, and

are due primarily to the instantaneous response of the pressure forces

to fluctuations in the inertia and viscous forces in the neighborhood

of the b Ay.

The knowledge of the details of the pressure fluctuations occur-

ring on the surface of a solid boundary interacting with a complicated

flow field is of considerable importance in many practical problems.

The sound radiated by solid surfaces in the presence of unsteady flows

(Curle 1955; Ffowcs Williams and Hanwki.ngs 1969) is partly due to a

distribution of dipoles whose strengt' depends upon the magnitude of

the surface-pressure fluctuations. In many situations the contribution

of these dipoles is the dominant one. In the recently recognized prob-

lem of airframe noise which is due simply to the motion of the aircraft
i
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body in the atmpsphere, the dominant part of the sound radiated results

from the interaction of the unsteady flow structure in the vicinity of

the aircraft- with the aircraft body itself. Many other problems in the area

of aerodynamic sound can be associated with similar types of interaction.

In addition to the sound radiated away from a solid boundary supporting

a turbulent flow, one often is concerned withthe sound transmitted

through that boundary, an aircraft fuselage for instance, in which case

knowledge of the details of the pressure fluctuations acting on the sur-

face is essential. Finally, in the area of structural design, whether

applied to aeronautical problems or more generally to probl.emas involv-

ing the interaction of a structure with a fluid flow, it is very impor-

tant to know the intensity and the scales of the surface-pressure fluc-

tuations in order to determine the loads on the structure.

Practical problems of the type described above nre. usually very

complicated and not amenable to direct analytical treatment, However,

as is common in similar si.^iations, one begins by decomposing the given

problem into several simpler ones, in the hope that after these simpler

problems have been solved, their combination in one way or another

would reveal in an approximate manner the general behavior of the solu-

tion of the initial problem. Unfortunately in the type of situations

we are concerned about, even after such a decomposition is made, and

if the interesting features are to be preserved, one is still faced with

complex phenomena such as separation and transition to turbulence, and

to determine the details of the pressure fluctuations of interest via

a complete solution of the problem is beyond the power of present day

analytical techniques. In such circumstances one is compelled to seek

a physical understanding of the phenomena involved in terms of cause
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and effect in such a way as to identify each interacting component and

to be able to formulate its role mathematically. It is very important

to note however that such distinction between cause and effect is hardly

unique when nonlinear processes are involved. For instance, in the case

of interest here and which involves a solid body interacting with a com-

plicated flow field, perhaps the only unambiguous way of describing the

physics of L"'	 is by writing the general Navier-Stokes equations

and the associated boundary conditions. The equations themselves are

simply the expression of the balance of the inertia, perssure, and vis-

cous forces while the boundary conditions describe the presence of the

body and the nature of the incoming flow. In such a case the value of

any causal theory would depend upon its usefulness in rendering the

probl.er« tractable mathematically. The Acoustic Theory of Airflows,

now forgotten, of Shaw (1949) is one example where the theory failed

to lead to an analytically tractable formulation. Tn that theory the

vortex shedding behind an airfoil in a uniform flow was regarded as con-

trolled by pressure fluctuations on the surface of the airfoil. If, on

the other hand, we regard the pressure fluctuations occurring on the

surface of the body as the result of the interaction of an already

existing and known velocity field with the geometry of the body, the

Navier-Stokes equations lead under certain conditions to a linear equa-

tion for the pressure of the Poisson type whose forcing term depends

solely on the velocity field. The formal solution of such an equation

is in the form of convolution product involving the forcing term and an

auxillary function which depends exclusively on the geometry of the

body, depicting in this manner the separate roles of the different ele-

ments in the problem. Since it is rather the pressure field that we
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are seeking here and since, in most cases, the velocity field is Huge

accessible to measurement or experimental techniques, the above approach

is the most promising one, and consequently will be followed in the pre-

sent work.

Studies on the pressure fluctuations within a turbulent flow using

the Poisson equation mentioned above began as early as 1945 with the

work of Heisenberg, Obukhov, and Batchelor (1951). These early studies

were concerned with the particular case of an unl m a ted field of homo-

geneous and isotropic turbulence and used extensively the results of

the theory of Homogeneous Turbulence which was developing rapidly at

that time. Kraichnan (1956a), in prepa ation of a subsequen t work on

the case of a turbulent boundary layer introduced a scale of anisotropy

r.	 into the problem, and studied the effect of a mean shear by just super-

posing that shear on the initial field of homogeneous turbulence. In

his second paper (Kraichnan, 1956b) he took into account the presence

of an infinite plane boundary in an attempt to simulate the problem of

the turbulent boundary layer. Although his work laid the foundation

for subsequent works on the subject, his analysis was characterized by

many artificial models which were only kinematically possible. Lille+y

and Hodgson (1960), and Lilley (1963) followed up on the subject using

a different approach which took into account some of the physical pro-

perties of the flow known from velocity measurements in the turbulent

boundary layer, but inevitably encumbered the analysis with many approx-

imations and crude assumptions. Nevertheless, one interesting result

emerged from their work which suggests that the wall pressure fluctua-

tions are mainly due to contributions from sources located in the outer

mixing region of the boundary layer where large eddies are swept in the
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flow direction with relatively high speeds. Corcos (196+) eloborated

further on this point in an interesting paper devoted to a discussion

Of the measurements of the statistical. properties of the wall pressure

and the associated difficulties.

The theoretical work on the wall pressure fluctuations beneath a

turbulent raundary layer, some of which was briefly descr:.bed above,

was motivated by the great practical interest in that type of flows

and the numerous experimental studies on the subject which appeared

during uhe same period of time. But, due to the inherent difficulties

of the structure of wall. turbulence, the line of analytical approach

based on the Poisson equation for the pressure was somewhat frustrated

and as a result was abandoned for several years. Recently, however,

Panton and Lineberger (1974) using that same equation attacked the prob-

lem with the help of the computer and obtained some interesting new re-

stilts. In their work the flow direction waventimber spectrum of the wall

pressure was expressed as a five-fold multiple integral which was inte-

grated numerically using the Monte Carlo method, in three different regions

of the boundary layer, in order to assess the contribution of each region.

Except for the case of a turbulent boundary on an infinite plane

surface, the pressure; fluctuations occurring on the surface of bodies

of arbitrary shape in the presence of an unsteady flow have not at-

tracted the attention of theoretical workers.
*
 On the other hand, exam-

ples where large -scale flow fluctuations not of the boundary layer type

One exception is the work by Hunt (1973a) who considered the interaction

of a bluff body with an incoming turbulent flow (Hunt,1973b) on the
basis of the theory of 'rapid distortion of turbulence' developed by
Batchelor and Proudman.
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occur in the vicinity of compact solid bodies, and consequently induc

pressure fluctuations on their surfaces, are abundant and of considerable

practical interest. The ease of a cylindrical body interacting with it',

own wake may be the prominent example and constitutes the subject of the

present work. Some aspects of this research have been presented Previously

by the authors at the :second and Third Interagency Symposiums on University

Research in 'Transportation Noise (Karameheti and Ayoub 1974; Ayoub and

Karameheti 1975).

In the next chapter the problem of determining the characteristics

of the pressure fluctuations, induced on the surface of a cylinder by the

fluctuating wake behind in is formulated. The flow in the wake is assumed

incompressible and homogeneous in a direction along the span; the condition

of incompressibility is discussed at Me end of the chapter. A formal

solution is then derived which relates the unsteady surface-pressure field

to the velocity field in the wake. This allows certain general results to

be derived, which are independent of the cylinder shape or the values of

the Reynolds number. Although the next chapter is devoted primarily to

the mathematical aspect of the problem, some discussion of the physical

aspect of the flow in the wake is included, either to guide the mathematics

or to interpret some new results. When this is done it is generally in

connection with bluff cylinders.

In Chapter 3, the case of the circular cylinder is examined in de-

tail, in light of the theory presented in Chapter 2.
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Y

CHAP`I7:lt 2

PROBLEM FORMI T IATIf1N AND GI:NI;RAI. ANALYSIS

2.1 Statement of the Frol; f ^ ­ i

We consider an infinitely long

cylinder of constant but arbitrary

cross-section placed in a wind which,

far u0stream, is uniform of magnitude

I T . and in a direction normal to the
l

cylinder axis. A system of orthogonal 	 -"

coordinates Mx l , Ox a  a ► x ,l ) as shown

'in the f igiaro, is Sz e! cap.	 Let U and

A designate rospe(. t iv(.l y Hie viscosity

and de.,, ty of the fluid which is as-

sumed incompressible, and d a char-	
X3

racteristic: dimension of the cross-section. We assume that the value of

the Reynolds number, which is defined by Re = (f)U d)/u , is such that theCO

perturbed flow is unsteady and three-dimensional, and also that the flour

it; homogeneous in Hie iixial direction and of vanishing mean velocity compo-

nent in that direction. The homogeneity in the axial direction implies

that all mean value.,: evaluated at a point in space are independent of the

x3 -coordinate, while cross-correlations at two points (x i ,X,) , x3 ) and
i

(xl X', x3) are functions of (x3 -x3) and not of x3 and x3 sepa-
2

retely. We further assume that all fluctuating quantities are stationary

functions of time, and therefore all mean values will be taken with respect

to time according to the formula:

7



4-'1'

f'(t) = lim	 r f(tt dt

where the bar over a quantit,: is used to designate the mean of that quan-

tit ,y . It is proposed to study the charocteri::tics of thc, pressure f luctiia-

tions induced on the surface of the cylinder by the flow unstc-adiness.

'? 2 Governing Equations

The flaw being incompressible the governing Navi.er-Stokes equations

can be written in the form:

°-v1 +	

.V

V.	 1	 1 -:P-.^_ + V __v I= -	 —	 ;	 i -- 	 1 ,.:1,'3
t	 p -a:	 x ^x

^l	 i	 I	 1

(:'.1

^x.

4

where v  , v,.) , v
3 

are the three components of the velocity vector v , 1+

the pressurE, t the time, V the kinematic viscosity defined by U=Y-

and where the summation convection over repe,.tted subscripts has been used.

Equations (2.1) are to be supplemented by the no-slip condition at the

solid boundary and appropriate conditions on the velocity and the pressure

a
	at infinity. By applying the operatora

x
	on the first equation of (:'..1)

1
and using the second, we obtain the following equation for the pressure:

2	 7`(v v )

'X.ax.	 ^x.ax.
	 ('.2)

1 1	 1 J

If we now express the flow field as composed of two parts, one a steady

mean part and the other a time ,Lependent fluctuating part in the following

manner:

•
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v i (x,t) = v i (x) +vIn(.x,t)

(:'.'l a
-,

p(x, t) = pW 4 p' (x, t)

we obtain by substituting these expressions into (2.2), taking the tfnu,

average, and stib.saractinl, the resulting equation from (2.2.i lrself, the

following equation:

where

^1	 t

P,..q

rittd

q
i( 

x, t) = p(:wv! +V'v'	 V! V'. + C,.0
-
a

-J i	 .1 i	 1	 1	 I

Again, if we substitut-o (2.3) into the	 first equat:i.on of	 '?.)),	 trdc

the Lime average, and substract the resulting equation from the original

one, we obtain:

1
-L.

^v^
e^V1

1 ^V 1 	14^V1	 , ^V! +
q._vl	

>
p'"x	 - Mt	 -V	 7}t	

-p
+^x
	 V.

7X	 V+^x	 U^x Ox	 (- . 7)

on the surface	 S	 of the cylinder assumed rigid, the mean and fluctuating

;arts of the velocity vector vanir,h separately and we have using	 (2.7):

i %Ix. i dx.^x.
1 S J	 3 S

where n is the unit vector (n l , n2 , (l) along the inward normal to S

For large values of 1x^ in a plane x 3 = constant , the mean velocity ap-

proaches the constant value U., while the velocity fluctuation components

9
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decrease to zero like 1/ (x 1" + x,; )	 inside the wake, and like
2	 7 5 /4

I
+ X.,- )	 :)	 outside it. The behavior outside the wake can be een as

follows. The flow for upstream being considered uniform, the unsteady part

of the vorticity vector is generated in the neighborhood of the cylinder,

and decays at large distances from it. The irrotational velocity fluctua-

tions outside the wake can then be thought of as induced by a concentration

of vorticity in the near-wake region. But we know that the velocity in-

duced by a distribution of vorticity (in an incompressible flow), which

decays satisfactorily in all directions in space, behaves like 1/{x,'3

at large distances (see Batchelor 1967 § 2.9). Therefore since the wake

is assumed to extend to infinity in the +x 
3
-direction  and is etai-i.,.tically

homogeneous in that direction, the ; quare 	 fluctuation'; out-

side the wake behaves like,

+ m dx3
^-r 6

from which the behavior stated above follows. Referring to (2.7) we can

see that outside the wake %3p' / ,̂ xi decays at least like 1/(x
1 
 + x^)

and p' at least like 1/(x2	
34

+ x1) ) l . Now inside the wake and at large

d3,5tances downstream the flow has reached the equilibrium stage and the

pressure p' can be assumed to have approximately the value it has out-

side, i.e., p' decays like 1/(x1 +x 2
r)3 •+

Unsteady or turbulent wakes behind infinitely long cylinders remain so at
arbitrarily large distances downstream. This is due to the fact that the
Reynolds number based on the width W of the wake and a typical turbulent
velocity u' is independent of the downstream coordinate x 1 ; W —x

and u' ---x l-z (see Landau and Lifshitz 1959 page 139).
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The flow bring considered homogeneous in the axial direction we per-

form a generalized Fourier decomposition in ths! direction according to

the relations:

_ 0	 1	 + Cr --4	 ikx3	 1	 + CO
	

-ikx3

	p I (x, t) _ 2TT	 P(X,k,t) e	 dk , P(X,k,t) _	 p (x,t)e	 dx3
 f

CO_ 	 -Co

	

1 + CO
	

ikx3	
+ CO	

-ikx3

V!(x,t) = 271r Vi (X,k,0 e	 dk , Vi (X,k,t) = r vi (x,t)e	 dx3

	

-fCO	 -CO

I. = 1,2.,3

1	 + m ,-,	 ikx3	 + CO -4	 -ikx3
	q(x,t) _ ,,^	 Q(X,k,t)e	 dk , Q(X,k,t) =	 r q(x,t)e	 dx3 .

J
-U%-00

where X= (Xl ,X,) ) is the position vector in the plane normal to the cy-

linder, coinciding with the normal projection of x on that plane, k

is a real variable representing the wavenumber in the x 3 -a__-action, and

1' , Vi , Q are the complex Fourier amplitude:; associated with k of the

physical. quantities p' ,v!,q . In the transformed vaiables equation
i

(2.4) becomes:

X^2X^ - k`^P = -Q	 (2.1t))

.a
Since n= (n l ,n2) 0) , Hq. (2.8) can be written explicitly as:

(n a ^ +n a '	 a 2v1	 a2v2

1 ax	 2 dx )
 is  - 

^ (n l. ^...ic^xJ +n2 axjaxj) is

or since v' , v2 and consequently the derivative 
ax 

of v' and v2
3

vanish on 5	 as:

11



2
'	 '	 ° v

1 	a` v 1 	a`v' ? v

(n	
+n	

'

	

lax	 ^^) _ ^t [n	 +n	 +1(	 2 +	
2 ) 2 (	 2)^^

1	 2 I s	 ax1	 ax2 	ax1	 ?x,,

	

`	 Is

Upon taking the Fourier transform with respect to x 3 , and noting that

n1 and n, are independent of x3 , we obtain:

	

^P	 g	 ^2V1	
2V 1 	 a2V2 

a2V^
(1 1a— +n,, ag )

	 = u[n 1 (	 +	
2
)+n

2
(	 2+	 ^)^^

	

1	 2 + S	 "X1	
^X2	

aX1	 ^X2
(,S

which can be written in a concise form as:

r

7

aP	
V.

3.
ni aX i = u (ni X nX ) 1	 .

s	 .l	 I, S

(2.11)

The condition on P at infinity is the same as that on p' , i.e., both

the real and imaginary parts of P vanish like 	
XI3/2	

for sufficiently

large values of IXI.	 Consequently, P(X,k,t) appears to be the solution

of the two-dimensional boundary value problem defined by equation (2.10),

the bounda--- 7 coii,lition (2.11) and the condition at infinity stated above.

This prob'	 is reproduced below for convenience:

72P-k2P = -Q

n.VPI C = U n.02V1 C	(2.12)

IPI	 XI3/2	 for	 IXI -.

where the operators V and V2 are respectively the gradient and Laplace

operators in two dimensions, C the line intersection of S with the

V
plane (X1 ,X2 )	 and V the vector (V 1 ,V2 ) .

The differential equation in (2.12) is that which occurs in problems

of steady diffusion with absorption proportional to the c,.; -entration.

12
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Hence for a given value of k , P can be interpreted as the steady

temperature distribution in a two-dimensional domain of thermal condiic-

tivity equal to 1, bounded internally be C and containing a source dis-

tribution of heat, of density +Q (amount of heat generated per unit area

per unit time). Across C heat flows at a prescribed rate and the medium

absorbs heat in proportion to the local temperature at the constant posi-

tive rate k 2 	P is therefore the solution of a well-posed boundary

value problem and hence is uniquely determined, if the boundary C

satisfies certain conditions of regularity, by the data Q and the bound-

2-4

ary values u n.V `V	 Note that the boundary condition on n.VP is not

arbitrary in our problem but is compatible with the differential equation

since they are bath derived from the same Navier-Stokes equations. How-

ever, for the purpose of determining the pressure from a knowledge of the

H
velot;ity field the value of n.VP on C can be considered as prescribed.

The interpretation of P in terms of a temperature distribution is useful

in assessing the relative importance of the different spectral. componerts
2-

of the prc;ssur.e once some details on the distribution o£ Q and n.V V^C

for different values of k are known.

2.3 Formal Solution.

A formal integral representation of the solution of (2.12) can be

derived using a Green's function G(X1Y;k) defined by the following

V2G -k Z G = -6 (X Y)

n.VC C = 0	 (2.13)

G-'0 as I X I --

The fact that the coefficient of absorption is positive insures the

uniqueness of the solution.

13



W

where the differentiations are with

w
respect to X , and Y = (Y 1 ,Y2 )	 It

can be ea:.ily seen from the physical

interpretation given in the preced-

ing parapraph that (2.13) admits a

unique solution. Multiplying the

first equation of (2.1:?) by G and

the first equation of (2.13) by P

subtracting the resulting two equa-

tions and integrating over the area

2t 'bounded by C and a large cir-

cle C 	 of radius R centered at

the origin we obtain:

(G72P -P72 G)dX =	 Pb(X Y)dX -	 GQdX

`AR 	 R	 R

where dX is an element of area. Using the Green's formula and integra-

ting the term containing 6(X -Y) we obtain:

P(Y,k, t) _	 G Q dX + f (G n. VP - P n. VG)ds (X)	 (2.14)

'-R 
	 C+CR

where n is the exterior normal to C and C  , and ds(X) is a line ele-

ment of C and C  . It is easily seen from the behavior of G and P

at large distances that as R goes to infinity the integral over C 

-4-4
	 y	 2_..,

vanishes. Furthermore, since n.VGI C =O , and n.VP^ C = lIn.V Vi C , re-

lation (2.14) becomes:

14



-^	
-4	

r	 -r	 2-r -.	 -.
P(Y, It, 0 =	 G(X Y; k) Q(X,k,t)dX +!^	 G(X^Y;k)n.9 V(X,k,t)ds(X) , ( .1a)

71	 C

where E is the region exterior to C extending to infinity.

Equation (.15) expresses the fact that at a given time t and at

any point in space or on the cylinder having the coordinates Y 1 and Y.a

in the x l - and x.-directions, the component of the pressure associated

with the wavenumber k (in the axial direction ) is determined uniquely

by the corresponding Fourier components of the velocity fluctuations as

distributed throughout the unsteady region in the (X l ,X 2 ) plane, and also

by those pairs of components whose wavenumbers sums are equal to k . The

contribution of the latter is due to the fact that q contains terms

which are quadratic in the velocity fluctuations, and as .;an be easily

seen the k-Fourier-component of the product v!v. , for instance, is no-
s J

thing but:

+CO

LT? f V
i (X,k,t)V.(X,k-k',t)dk'

J

The surface integral in (2.15) can be thought of as the contribution to

the pressure fluctuations by the inertia forces and the integral. over C

as that of the viscous forces.
*
 Some details of the str ­:ture of the

forcing term Q will be given in a later section. In the following we

turn to the discussion of some practical considerations concerning the

In fact the effect of the viscous forces is also included in the integral
over E because these forces are responsible for maintaining a particular
form of the inertia forces. However, the above distinction is made only
in consistence with the approach adopted and explained in the introduction.
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Green's function G and the determination of the total. forces acting on

the cylinder.

2.4 The Green's Function - Total Lift and Drag for the Case of a Circular

Cylinder.

Due to the linear character of the Poisson equation which governs the

pressure p' , we were able to perform a spectral decomposition in the

axial direction, so that each spectral component of the pre sure can be

studied separately as the solution of a well-posed boundary value problem

in two dimensions. That such a decomposition is meaningful physically fol-

lows from the fact that the flow in general is homogeneous in the spanwise

direction and is composed of two distinct parts: one is discrete and homo-

geneous (or periodic for certain values of the Reynolds number) in that

direction; the other is random in nature and can be assumed homogeneous in

the same direction, in view of the two-dimensionality of the obstacle and

of the flo'.z upstream. A detailed discussion of this and other features of

the flow behind a typical two-dimensional body (the circular cylinder) will

be given in the next chapter. However, in order to guide our discussion

of the Green's function in this section, a few words on the origin and the

re la tive importance of these two components of the flow ar! appropriate.

When a bluff cylinder is placed in a uniform flow at relatively high

Reynolds numbers, two boundary layers form on the sides of the cylinder,

separate from its surface and tend to interact with each other to form the

wake behind it. In this process two different phenomena take place inde-

pendently. The first is the transition in the individual separated shear

layers, which leads to small scale fluctuations and eventually to turbu-

lence. The second is the direct interaction of these two shear layers,

16
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carrying vorticity of opposite signs, which results in the formation of

the large scale vortices characteristic of wakes behind bluff bodies at

almost all. Reynolds numbers. The random fluctuations have scales of the

order of the thickness of I— shear layers emanating from the cylinder sur-

face and contain only a fraction of the wake energy, while the discrete

component has length scales in the axial direction ranging from 2 to 30

times a typical dimension of the cross-svetion and carries most of the

energy in the wake. The:;e two com pponent .; which result from two indepen-

dent phenomena in generally two difforc -nt range, of scales and frequencies

preserve their separate idvi titie:+ for :;emu- distance downstream and do not

interact with each other in the near-wake region (see for instance Rosliko,

1954). With this in mind, it is clear that by studying the distribution

of P on C for a given value of k , we evaluate the contribution to

the pressure fluctuations on the cylinder, of a physically identifiable

component of the flow. 	 The usefulness of the interpretation of P iii

terms of a temperature distribution is likewise easily seen from the above

discussion, for the waventimber k is of the order of an inverse length

scale in the spanv ise direction, and k 2 is the rate of absorption in the

analogue problem.

In the form (2.15) the solution of the problem requires, among other

things, a knowledge of the Green's function G which satisfies (2.13).

The usual method of finding G consists of writing it as follows:

G(XIY;k) = G0 (X,Y;k) + G l (X`Y;k)	 (2.16)

Here we are implicitly assuming that the contribution from the quadratic
terms in the forcing function can be neglected. We will do the same in
some of the discussions of §2.6 and §2.7. The role of these quadratic
terms is discussed in Appendix A.

17



where G0 (X5Y;k) is the free-space Green's function satisfying the first

equation of (2.13) and the boundary condition at infinity, and G I is

a solution of the corresponding homogeneous equation, whidi is regular

everywhere outside C and such that the sum G0 +G 
I  

satisfies: the second

boundary condition in (2.13). G0 is given by (see Stakgold, 1968):

G0 (XI Y ;k)	 2rri`^)[ {k(X Y)I^ ,	 (2.17)

where K0 is the zero-order modified Bessel function of the second kind.

This function is tabulated (Abramowitz and Stegun, 1964), and has the fol-

lowing asymptotic behavior for large and small. values of the argument:

KC (a)	 e^ for a--
(2.18)

K0 (a)	 -log a	 foi' a- 0

As for Gl , it satisfies the following problem:

02G 1 - k 22 G 1 = 0

n.VN 
C 

_ - 2rrn.OK0,	 XY) I]I 
C	

(2.19)

G  -' 0	 as ,XI - -

For certain particular shapes of the boundary C , (2.19) can be solved

by the method of separation of variables. The solution obtained is usu-

ally in the form of an infinite series of cylinder functions. When C is

a circle centered at the origin, separation in the polar coordinates r

and 6 yields an infinite sum of terms involving the circular functions

ein6 and the modified Bessel functions of the second kind Kn (IIcXI) ,

I
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whose asymptot.1c b( ,havior for large values of the argument is similar to

that of Kt) . Approximate solutions can then be found in some ei.rcum-

stances depending on the value of k . Another way of approaching the

problem is by using the free-space Green's function alone in (2.14), and

instead of (2.15) the resulting relation becomes:

	

P(Y,k,t) _	 G0(X,Y;k) Q(X,k,t)dX +µ J G0(X^Y;k)n.V2V(X,k,t)ds(X)
s	

C

	

-	 P( X, k, t) n. VG0(X^Y,k)ds(X)
	 (2.20)

C

­
42"

where G0 is given by (2,17). If Q and n.V V are sssumed known this

equation is an inhomogeneous integral equation of the second kind in the

curvilinear. domain C , to which in principle several approximate and nu-

merical. techniques can be applied to yield a solution for P on the :sur-

face of the cylinder.

The methods of solution contemplated above are all approximate and

have as a goal the detc-rmination of P , for a given value of k , as a

function of position on the boundary C 	 Although it is usually desir-

able to have such a solution it i_s often sufficient in practice, to ob-

Lain expressions for certain parameters, related in a global way to the

detailed solution P . Among such parameters perhaps the most important

ones, in the case of a bluff cylinder, are the total lift and drag forces

acting on the cylinder. Using (2.20) we derive below such expressions for

the case of a circular cross-section.

If such a course is to be followed (2.20) requires some modification un-
less the dependence on time is sim,)le, nevertheless in its present form
Eq. (2.20) is useful as we will see below.
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Iet r , 6 designate the polar coordinates of X and	 ,	 thost.

of Y , d/2 being the radius of C . We multiply (2.20) by -sin :`,d-.

after setting p = d/2 , and integrate from •,7= Q to P= 2Tr , to obtain:

2Tr

1.(k, t)	 f -P(Y,k, t) sin cp 2 dip

0

?(T

- 
d J
s in pTGO (X! ,k) Q(X,k, t)dX] d,,

(1	 i

2Tr	 2".T

-(a)^U	 sinop(J G^1 (X!Y;k)n.0`V(X,k,0d9 ? d,

0	 0

22
,
7	 2 Tr

+(-d̂ )^ J	 sin ,.,( f P(X,k,t)n.VG0 (XIY;k)d9 I dr;,,(2.21)

0	 0

where L(k,*.) designates the fluctuating lift per unit span associated

with the wavenumber k* , and evaluated at time t . We now set:

2 TT

QS (k,0 = - a J sin cp(((^
J

 G 
0 

Q dX} dcp

0	 E	 (2.22)

2Tr	 2Tr
/`	 /`	 2"

S s (k, t) = - u (2) J sin cp (J G O 
W
n.OVde } dcp

0	 0

and noticing that n.VGO (XiY;k) = - ar (X^Y;lc)I

	

	 we obtain, after inter-
r=d/2

changing the integration in the last term of (2.21):

The spanwise correlation length of the fluctuating surface-pressure at a
particular frequency is found experimentally to be a function of the azi-
muthal angle cp in general. The spectral decomposition in the x -direc-
tion has therefore the advantage of removing the ambiguity associated with
the choice of a characteristic spanwise length scale of the fluctuating
lift (or drag) at a given frequency.
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X2

-)W- X I

.ate	 .^^
i

Lt k, t)	 Q (k, t l + S (k, t) -(a)	 PQ,k, t)(?- I G (X ;k)sin . d

 
r ^l j

( ''	 I ^

The integral inside the brackets in the

last trrm of (;'.'3_t , which we denote by

I , is evaluated at constant r and for

`i tm the circle to , Now since

VIA) is a function of Of! only,

when Y is on the circle, it becomes a

function	 (i(';' -0,r;k)	 of r and	 (%) -0)

only*. Therei'nry the Mugral in question

c n n hP ur1 t ten as:

''
T

f	 /	 GO( '-9,r.;ka sin nd^?	 ,

or, ai'ter making the change of variable v = m-9 , as:

I =

	

	 G0.
(v,r;k)sin(v+A)dv

-e

t,	 2TT

tJ (y , r;k)sin(v +0)dv+ 	G (v,r;k)sin(,+A)dv
j 
f'

A	 0

2r-8

JGc1('V,r;k)sin(v+6)dv

07

Since G0 (v-f-2 ,r;k) - ,0 ('Y,r;k) the first and third terms in the above

expression can be easily seen to cancel, and we have:
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I = eos °^ G,P,r;k) sin ydv+sin9
J G

t ^t^ ,r;k)	 dw

0	 0

Hence, (2. ?3) becomes:

7

L(k,t)- Qti(k,t)+;ti(lc)t)_(d)`^:r^G^I(v,r;k)tii^n^^d^^	 d	 1^iX,k,titu^^•6ay

cl r=7,
t1

2n	 27

+ r r^ Go (v,r.;k)cos vdy}	 P(X,k,t)sin9d9]

()	 r=d /2 f
If we define I)(k,t) to be the fluctuating drag per unit spun associated

vit:h the wave number k , we have:

,,,,T
1

1)(k,0	 -J F(X,k,t)cos	 d9	 X on C

and finally:

:^2{1

L(k,t) =	 (k, t) +S s (k,t)^r	Gt)(y,r;k)sinl dy1 d1)(k,t)
t)	 r

2-
d+,^ ( n	 (^ t1 (y,r;k)cos 11dy ^ d I,(k,t)

0	 r= ^^

Similarly if we multiply (2.20) by -nos T d d oh, and integrate from w = 0

Lo rp= 2^7 we obtain following the same procedure:

f

2T

I)(k,t) = Q G (k,t) +S O (k,t) +^ { .̂ r	 GO(y,r;k)cos ydv } d 1)(k,t))

0	 r=

Or
d

- {--r J Gt) (v,rNsi.nydv! d L(k,t)	 (2.25)
r=7
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wht , ry Q t , anal ti t, Kira deIin(d as in (''.`?.?) by rep lac 1ng s1.n'. 	 by

cos % . Eqs. (.1 . 94) and (?."'5) are two Independent aIgebraic equations in

I, and 1) , and honc• t, yield the following expressions for thc+ lift in(l

drag forces 1,(k,t) and D(k,t) :

^Q,^(k,t) +S S (k,t))lC()C(k)
)

+{QC(k,t) +S (,(k,t), GUS(k)

f 1 GC(,(k)y' I°GC)S (k ' ^ 	
('.:^,r

sQ tk,0 f;tt,(k,t)){1-^t.kj)-{Q^(k,t) +Sst:k,k_)	
t)s(

l:i

I -('()C (k) ) 2 +G()S (k)

whert	 y
^*. rr

1C t k)	 7r I

u

a( .(w,r;k) cosvdv)
r- d/ 2

., -r

,;.	 rf	 ',
cT

OS Ck ^ 	 2	 r
O

t'^)(v'r;k) siI yd'y

An important: feature of the formal solution (:)..15) and the oxpre ,s oo,;

( :' .16) and (?.27) is that the invogra l s over z: involved converge very

rapidly. These integrals which in principle should be integrated ovcr

the entire. re.gi on where (1 is di forent from zero, can 1)e. 1.ntegf;+.ted in

a practical problem over a imited region around the point; Y , due to

the asymptotic behavi.or of G and (T() for large values of ^X-Yj . l.f

I' is to be evA cca ted on	 the domain of integration is generally con-

fined to the near-wake and is smal.ler the Larger the value of k for

which the pressure is to be evaluated (see, for instance, equation (2.17)

and the asymp!-oti.c behavior given in (2.18)). From an experimental point.

of view, this constitutes a considerable advantage because the amount of

velocity meaSUrements needed would be very limited.
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Before leaving this section we note that in practical applications

our analysis so far can be applied only to situations where the length of

the cylinder is many times the diameter of the cross-section and more im-

portant, many times the largest length scale in the spanwise direction

(in which case the assumption of homogeneity in the x 3 -direction is valid).

This is usually the case at high Reynolds numb?.rs.

2.5 The Two-Dimensional Case.

For relatively low values of the Reynolds number (Re less than 90

in the case of the circular cylinder for instance), the large vortices

in the wake have a correlation length in the spanwise direction many

times the diameter of the cross-section and within a correlation length

these vortices have straight axis parallel to the cylinder. In addition

the random component of the velocity fluctuations is practically absent.

In such circumstances the flow can be assumed two-dimensional and equa-

tion (2.4) can be integrated using the two-dimensional Green's function

G(XiY) associated with the Laplace equation.	 The boundary condition at

large distances outside the wake can be derived as in § 2.2 using (2.7)

and the behavior of the velocity fluctuations there. The latter is given

(upon integrating the three-dimensional behavior along the x3-direction,

in view of the two-dimensional assumption) by:

Note that the two-dimensional Green's function G(XIY) has a singular
behavior for large values of IX-YI . In other words for very small
values of the wavenumber k cor4e-4ponding to very larye^values of the
spanwise length scale 27r/k , G^XIY;k) approaches G(XIY) only in a
finite domain around the point Y ; this can be seen from the second re-
lation in (2.18) and by solving (2.19) to the first order in k 2 . This
singular behavior however does not introduce any difficulty in the follow-
ing because in (2.30) the first integral can be integrated by parts and
the second is negligibly small. as we will, see in the next chapter.
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P 
cc 

d 3

K
3

or

1

xl.+xj

and therefore p' decays like 1 /(x
1 

+X2 
2 )
	 for large values of

outside and inside the wake. Hence p' is the solution of the following

rroblein:

n p 1 = -q

n.`7p'^ C = ^Ln.7 v`i C	(2..

-H as 1X1

X I	 V{ 

The two-dimensional Green's function G(X Y) is the solution of:

^72G - - S (X-Y)

n.VG^ C = C)	 (2.29)

1 ,7GI - a o	 as	 IRI

(T(X Y) as defined by (2.29) is nothing but the velocity potential of the

flow created by a negative unit source at the point Y in presence of the

solid boundary C . The function G can therefore be constructed 'or a

variety of shapes of the boundary C , using the method of images and the

techniques of conformal. mappings, as it All be -^hown in the next chapter.

It is to be noted that the solution of (2.29) is determined up to an

arbitrary harm- ,)ic function, ragular everywhere outside C , bounded at
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infinity and satisfying the second condition of (2.29). Howevcr, it can

be easily verified that when such an arbitrary function is added to G

the resulting expression for p' is not altered. Combining (2.28) and

(2.29) as in § 2.3 and noting that the integral:

(Gn.Vp' -p'n.17G)ds(X)

C 

	over a large circle C 	 of radius R and centered at the origin, vanishes

as R goes to infinity, we obtain:

p'(Y,t)	 ^G(XIY) q(X,t)dX+ij	 G(XIY)n,v (X,t)ds(X)	 (;1.30)

C

The Green's function in two dimensions behaves like log ;X, for

large values of lX . Therefore in order to improve the. convergence of

the integral over E in (2,30), we perform a double integration by parts,

by using (2.5) and (2.6), in the following manner:

72q
Gq=G ^1

1 J

^X?aX, q ij +aX. ( G aX ) - aX. ( X, qij)

	

i J	 i	 i	 i

Hence:

f,.	 2	 ^q . .

JJ Ug d X = J ^aX^^Xj gij dX+^ G^X ni ds(X)	 Xigi^njds(X).

F	 E 
i	

C+CR	 C+CR

Now:

dq..	 ^v.	 ^V'	 ^V'

^X .. - P (2	 v j + ^Xl v 
j ^X1 v j)

J	 .7	 J	 J
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;q
Therefore both 

qi7 
and %'X.vanish

a
on C . On CR-W 

qij 
is of the

1)
order of 1./R` and 

;^qij 
/ax i is of the

order of 1/R 3 , consequently the inte-

grals over CR-W vanish as R goes to

infinity. On W , the wake width, which

is of the order of R^ , qij is of the

order of 1/R apd	 is of the

3/2
order of 1/R	 and therefore the integrals over W also vanish. We

have finally:

2	 i	 r

r' 'mo	 ^  17X.U' 
g ij (X,t) dX+r^ J G(X Y)n.02v`(X,t) ds(X) .(2.31)

C

2.6 Structure of the Source Term Q - Some Practical Considerations.

In many practical problems an interesting and important question

arises as to how the magnitude of the pressure fluctuations on the cy-

linder surface, or the magnitude of the lift and drag forces varies with

Raynolds number. A quantitative answer to such a question would require

quantitatively detailed information about the changes which occur in the

flow when the Reynolds number is varied. However, at this stage of our

knowledge of the complicated flow field behind bluff bodies, a qualitative

analysis is useful in pointing out the major factors which come into play

in determining the pressure fluctuations on the cylinder. To this end we

take in this section a closer look at the source term Q in the three-

dimensional. case (corresponding to high Reynolds numbers) and compare

with the two-dimensional one. Also, we concentrate on the discrete compo-

27



r

vent of the flow and the corresponding surface-pressure which is dominant

at almost all Reynolds numbers and is of considerable interest in applica-

tion.

First, we note that the continuity equation (the second in (2.1)) can

be shown to be satisfied separately by the mean and the fluctuating parts

of the velocity vector. Therefore, we have:

bv 1 	6v2

6x 1 + 6x 2 = O	 (2.3')

and

dvi	 6v;	 bv3

^x + 6X + 6X	
O

1	 2	 3
(2.33)

	

Also if we denote by w 	 and w!	 i= i,2,3	 the mean and fluctuating
	i 	 i

_a
cjmponents of the vorticity vector w , we have:

	

6v3	
6v2

wi = 6X2 - 
^X3

6vi 6v3

	

W2 — 6x - 6x	
(2.34)

	

3	 1

6v2 _ 6v1
u'3 	 6X 1 	6x2

Upon taking the Fourier transform of both sides of each relation in (2.34)

and defining -2i (i = 1,2,3) as:

+CO
-ikx3

^i (X,k,t) _ , w!(X,t)e	 dx3	 i = 1,2,3	 (2.3")
_CO
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we obtain:

av3
`l = aX -I	 X') ikV2

=Z2 = ik Vi
?V3

-- aX1

'V2
dV 

1x"13	
3x1

3X2

Now:	
2

q i .
..	 7

2

= 32811 +'l
	2 +	 q13

	

7x 2
	 ^x1 x2	 3'13x3

1

	G 	

2	 2

+ .^ g21 ? q 2 
N 

q23
Ox2ax1 + nx 2 + ax2ax3

2

	

2	 2	 2
d 831	 r 832	

d 
833

+ x-33x1 + 3x 3ax2 + ax 2
3

By referring to (2.6) and noting that v 3 = U , we have:

a2g 11 + a2g12
g 

s	
2	 ax 3x

ax 	 1 2

L	 2

a 821	 3 822
+ ax2ax1 + ^x 2

2

d 2	 -
+ ax-	 2p(°1°3 +°N - viv3)

	

3 2 	 -
+ ax 2p(v2v3 + v2v3 - v2v3)

2 3

(2.36)
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+	 , p 
(v3 - 

v3 `)
x3

Lot us designate by F[al the Fourier transform with respect to x 3 of

any quantity a . We have by applying the Fourier transform to q and

noting, in view of the assumption of homogeneity in the x 3 -direction, that

v'v3 , v^v3 , and v3 are independent of x3

2Q ll 	 Q12
Q+ 

2 + aglag^
1

a 2	 2)
Q 21	 ^^Q22

^X,) )X l + X 2
n 1)

+ ik 
^X 

2p(v1V3 +F[viv3])
1

a
r: ^X 'p(v2 V3 +F[v,)v3])

- k 
2

o F
r v3 2 ] ,

where
+00

-ikx

Qij — J	 gij(x,t)e	 3 dx3	i,j =i,2	 (2.37)
CO_

or, using (2.32)

^ 2 _ aV _ ^V a
Q a +2ikp(vl 

^X
3+v2 

aX
3+F[ 

dX (v lv3 ) 
+^X (v2v3)^) -k 2 p F[v3`'

i ^	 1	 2	 1	 2

The second term on the right-hand side can be written as:
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_ ^V_ V	 JV' 

^V')
	 ?v'	 cV'

Mp(v ---3 +v 3+FEv'(^ 1 + 3 +v' 3 +v' 3])f 1 X1 2 ^X2 	3- I ^X2	1 X̂ 1 	2 ^X2

or, using (2.33), (2.34), and (2.36) as:

21.kp ( v l (i.kV 1 - ^2) +v2 (ikV2 +x 2̀ 1 ) -i-

;'̂ v'	 3v'	 ^V'
F[ -v 3+v'( 1. -w') +v'( 2 -L0 1,)]}3 ^x 3 1 ax 3 2 2 x7 

and finally as:

2ikp { i-k(v 1 V 1 +v2V 1 ) + (v^s`2 l - v12 ) - 2 ikF FV3, 2]

+ 1 ikF[v1 2 +v,^"] + F[v2wi - v1w'3 }

Consequently Q is given by:

Q = ^X-- . X + 2ikp (v2 1-2 - v 1 1 22 ) + 2ikp F[v'W' - vl'w2]

- 2k^p (v1V1 +v 9 V,) ) - k2   F [vi +v2 2]	 (2.38)

We emphasise that the first term on the right-hand side of (2.38) is the

some of four terms only and Q iJ is given by:

Qij = p(2viV^ +F rvva - vivj ])	 i, j = 1,2	 (2.39)

In order to appreciate the expression of Q in the form (2.38), another

feature of the discrete component of the fluctuating wake is worth ela-

borating upon. We have said in a previous section that this component

results from the interaction of the two shear layers emanating from the sur-

face of the cylinder, and has a finite length scale in the spanwise direc-

tion whose value varies with Reynolds number. While the interaction of
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the two Shear Iayers is a two -dimensiona l plienoidenon, it it; obviUtis LI10L

the finite spanwise length scald is the result of some three-dimenr,ional

effect. Th s effect: which can be expected to be due to the presence of

three-dimensional disturbances in the flow, takes place in each of the

two shear layers separately. The evidence for this is I)rovidvd by thc

experiment of Ilum»hreys (1960) in the particular cast of` a circular Cy-

linder at Reynolds numbers close to the critical value. Humphreys ob-

served a periodic cellular structure along the length of the cylinder

which was not altered by the introduction of a splitter plate in the wake,

the effect of which is normally to prevent the interaction of the two

shear layers (more discussion of this point is given in the next chapter).

As for the nature of the effect of the three-diiiiensi,,nal df_!.turbances on

the individual shear layers, one might think that it is restricted to

the generation of the small scale fluctuation, which lead to the random

component. However, since potentially amplifiable disturbances with wave-

vectors in all directions are usually present, the ones with wavevectors

making a large angle with the direction of the mean flora have wavelengths

large compared with the thickness of the shear I^iyers. This I5 due to

the fact that in the direction of such wavevectors the velocity jump

across the layer is relatively small. and correspondingly the wavelengths

of the most amplified disturbances are likely to be large. Furthermore,

when such disturbances grow to the extent of being able to change the

direction o` the flow streamlines from that of the main flow, which is in

the plane normal to the cylinder, secondary flows in the form of flow-wise

vorticity are generated which strengthen the spanwise non-uniformity and

Flow-wise vorticity is generated whenever a shear flow is turned in a
plane normal to the velocity gradient.
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create in a remarkable and puzzling manner a stable situation whose energy

is continuously supplied by the mean shear flow. This Mow-wise vorticity

which is absent in the two-dimensional case constitutes, in addition to

the finite character of the axial correlation length, the main distin-

guishing features of the flow at high Reynolds numbers., To see how this

is reflected in the source function Q we consider the integral over

in the solution (2.15) namely:

JJ G ( X I Z'^ k) Q(X,t) dX

F.

Referring to (2.38) and integrating by parts the first term as in the

two-dimensional case we obtain:

ff ii' i"G X Y; kL

J.i 6x. 'Ox.
Q. 

l 
(X, t)f1X

+ 2ipk JJ G(X'Y;k) (v2 y z1 - v1"2?)1 
Cv2w1 - v1U)

2 IJdX

I

- pk2 JJG(-XI -Y;k)f 2(V-
1

V
1
 +V_

2
V
2
 ) +F[v'2+v2 23 3d- . (2.40)

E

The first integral in (2.40) is the same as the one in (2.31) except that

in (2.40) only the component with wavenumber k of q ij is taken, and

corres ondin 1 G(X Y;k) instead of G X Y is usedp	 g y	 ( , )	 (note G(XIY) is

nothing but G(X1Y;0) ).	 Hence varying the Reynolds number means, for

the discrete component, varying the value of k , higher values of k

being in general associated with higher values of Re . Therefore, this

term which can be thought of as a quasi-two-dimensional term reflects only
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the e ffect of the finite spanwise correlation length of the large vor-

tices at high Reynolds number. Tlie second integral in (2.0) represents

the contribution of the flueLuating flow-wise vorticity to the pressure

fluctuations. In fact, the mean flow being steady the first term in that

Integral reflects the departure of this flew-wise vorticity from its mean

position, since (v, ) ttl - v l •^, a ) vanishes when the vorticity vector in Lthe

plane (X l ,X_) ) coincides with tic• mean velocity vector. The second term

is a nonlinear affect resulting from Lhe non-alignment of the two-dimen-

sional ., omponents of the velocity and vorticity fluctuations vectors.

The third integral is an additional Lerm i nvolving only the componcut.r, of

the velocity fluctuations in the plane (X 1 ,X. ) ) .

in conclusion we note drat the solution (A* the problem as given in

(21 .15) or i_n the form (2.2h) and

tical problems one is interested

intensiL.ies, and frequency spect

twp-point space-time correlation

the wavenumber k as:

(2.27) is a function of time. in proc-

i.n averaged quantities li.lce correlations,

ra . There fc)t.: , we define in general the

of the surface-pressure associated with

RPP (Y,Y,k,T) = V(Y,k,0 P"(Y',k,t + T)
	

(2.41)

where the star indicates that the complex conjugate should be taken.

Similarly for the lift and drag forces we define:

RLL (k,T) = L(k, t) L' (k, t +T)
('? .4  )

"DD (k,T) = D (k, t) D* (k, t +T)	 J

When the formal expressions of P , L and D are used in (2.41) and
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(2.42) , we obtain sums of double integrals over terms involving the factor

G(XiY;k)G(X'^Y';k) or G(XIY;k)GC	Y(X'^C1	 ';k) , and averaged products of

the form: 

x x' ,k,r) = A(x,k, t)B^(XRAB (,	 k, t 4-r)

where A and B are the Fourier transforms of some physical quantities

-4
a(x,t) and b(x',t + r) . In accordance with the definition of Fourier

transforms of quantities stationary with respect to the variable of

transformation we have:

2/2 R12	
-ik(x -x')

RAB(X,X',k,7') =-	 J	 a(x,t)b(x',t+r)e	 3 3dx3dx3

-2/2 -2/2

where 1,, is very large but finite (for instance the length of the cy-

linder). , or:

;Z/2

Al2 r2/2	 -ik(x^-x3)

RAB 	 J	 Rab (X , X ', x3 -x3,r) e 	dx3dx.3
 -2/2

2/2

12	 Rab(X,X' If, r)e	 ` dF

Consequently, the spectrum densities per unit length of the cylinder

RPP/2 , RIh/2 , and PDD/2 are given as sums of double integrals over

terms involving quantities of the form F[Rab I . Therefore, from an ex-

perimental point of view the quantities to be measured, in order to deter-

mine the pressure characteristics, are the various cross-correlation func-

tions Rab!X,X'•,T) .
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2.7 limitations of the Incompressible Flow,

The general analysis given in the previous sections is based on the

incompressible form of the Navier-Stokes equations. In a steady flew it

is well known that variations in the density of the fluid can be neglected

If the Mach number is very small. However, fora time-dependant flow this

condition is not sufficient, for no matter how slight the comnressibi.lity

of the fluid is, compression waves make their appearance in the medium and

affect a change in the incompressible flow condition. Nevertheless, it

can be shown that within a length scale of the motion, and if that length

scale is much smaller than the wavelength of these compression waves, the

dynamics of the flow can be described as if the fluid were incompressi-bla.

More specifically if ^, and T are respectively a length and a time

scale of the velocity fluctuations the condition for local incompressibility

is:

X <-- a
10

7	 (:?.43)

where a m is a typical. speed of sound in the medium (see Landau and

Lifshitz 1959,;;-10 or Batchelor 1967, 3.6). Since the Navier-Stokes

equations are simply the expression of the dynamics of the flow within a

small neighborhood of a given point the above condition, (together with

that of small Mach number) is sufficient for the validity of equations

(2.1). However when these equations sere combined together (to yield equa-

tion (2.4) and later (2.10)) an equation of the cl.l_i»tic type is obtained

which says that the pressure fluctuations at a point; are not determined

only by the local velocity field, but by the k, ilocity field (both mean

and fluctuating parts) throughout the entire unst.(3dy region of the flow,

the effect of each point, whether close or remote, being propagated with
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an infinite Sneed. For this to be valid it remains to be shown that tliv

major contribution to the pressure fluctuations as given by the volution

of that elliptic equation (i.e., equations (2.15) and (2.31)) comes from

points within a distance of the order of the length scale X ,

In the wake behind a cylinder several length and time scales are

present in general. However since we have considered each length scale

"T
k	

in the axial direction separately, we can check the 	 •.1ition (2.'+:3)

for each separate value of k . When k corresponds to ..ci discrete

component of the wake the time scale can be taken as the inverse of the

shedding frequency f of the vortices and the length scale in the plane

(X l ,X,) ) as the longitudinal spacing a of these vortices. Both a and

f depend on the ,-,hape of the cylinder and for a given cylinder on tho

value of the ltevtiolds number. Iiowever for the sake of illustration we

consider briefly the casu of a circular cylinder. Then (2.43) can be

written as

a	 a	 ]	
,

or a:):

1 ^^ 1

a	 of

and finally as:

I `^ « d a
a	 St

where St is the Strouhal number defined by St = U . The lateral. spac-
C,

ing of the vortices is generally of the order of the diameter d and

therefore the ratio d/a is approximately equal to 0.28 (the Kerman ratio).

on the other hand St is always between the values 0.12 and 0.21 (Roshko
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1054). Consequently the above condition is the same as that of small Mach

number. As for the relative importance of the contributions to the pres-

sure £liictuatious (on the surface of the cylinder i;sr instance) from

different regions of the flow field, it can be shown that, due to the

rapid convergence of the integrals involved, the major one comes from

points within a dist^nce of the order of the longitudinal spacing of the

vortices. In fact is is shown in the next chapter that this is true even

for the least convergent case, namely the two-dimensional one.

When the random component is considered, for each value of k there

exist several length and time scales in the (XV X2 ) plane. Nevertheless

a length scale of the velocity fluctuations in low Mach number turbulence

is much smaller than the wavelength of the sound having the frequency of

those fluctuations. Therefore (2.43) can be assumed to be satiff:ied for

all the scales present. On. the other hand for a given value of 1s the

rate of convergence of the integrals in the solution is fixed since the

Green's function G(X Y;k) is fixed. Hence for each k there exist fre-

quencies which are high enough for their wavelengths to be comparable with

or smaller than the size of the region over which theSV integrals converge

satisfactorily. For such frequencies the incompressible model breaks down

and the compressibility of the medium must be taken into account.
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CHAPTER 3

THE CIRCULAR  CYLINDER IN UNIFORM CROSS FLOW

3.1 Introduction.

We shall now concern ourselves with the case of a circular cylinder

in uniform cross flow. Our present state of knowledge of the nature of

the unsteady forces acting on the surface of a circular cylinder in uni.-

farm dross flow is duce primarily to a number of experimental investigation:.

which were conducted and reported in the literature during the last twenty

year,. These investigations consisted in the first place of measuring;

directly the forces in question, either locally as pressure distribution+:

or on a short ,,egmv nt of the cylinder as tonal. lift and drag forces. In

some instances direct measurements were made of the moment acting on the

cylinder, from which values of the average forces were deduced. The ob-

jective behind these various measurements was to provide valuable data

necessary for the design of cylindrical structures subject to cross winds,

and also to provide ;information needed in the evaluation of the acoustic

intensity radiated as aeoli.an tones. Concurrently, but quite independently,

considerable effort was directed toward achieving a better understanding; of

the unsteady wake structure behind the cylinder. This effort was a contin-

t
cation of an earlier interest in the subject which began after the dis-

covery of the asymmetric arrangement of the vortices in the wake by

Ahlborn and 13enard, and the subsequent work on the stability of such ar-

rangement by von Karman. Except in few cases, these two aspects of the

problem, namely the wake structure on one hand and the unsteady loading

on the cylinder on the other, continued to be treated separately and no

attempt was ever made to study their interdependence. This is'perhaps not
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surprising; because the study of the development of the vortices i.n the wake,

their stability, their convection, and subsequent decay downstream was con-

cider A of a fundamental interest, while the determination of the unsteady

loading on the cylinder was motivated by purely practical. problems. I.n

fact, the part of the wake which is intimately connected to that leading,

namely the near-wake region, where the vortices are first formed and which

is sometimes called the 'formation region' was seldom investigated in dc-

tail by the students of the first aspect. The few papers which considered

the relationship between the structure of the near-wake and the unsteady

forces were motivated by the inconsistency of the available data on these

forces: measurements made under slightly different conditions yielded re-

suits with substantial discrepancies. Such discrepancies were suspected

to be due, in addition to differences in the. modes of measurements and the

imperfections of the measuring devices, to differences in the free-stream

turbulence level and the details of the experimental. setup, and an attempt

was made to explain the effect of these differences on the unsteady forces

through their effect on the properties of the near-wake region. Although

this attempt was only partially successful, being limited to qualitiative

arguments, it led to substantial insight into the mechanics of the 'for-

mation region.' Numerical solutions of the complete Navier-`itokes equa-

tions were equally attempted, but these cannot be expected to shed any

light on controversial issues of the type in question since they depend on

the manner in which the flow is perturbed and are based on purely two-di-

mensional models.

We present the theory of the preceding chapter as an alternative ap-

proach to the problem which clarifies the relationship between the flow
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structure in the 'ag ar-w-nkv and the unsteady loading on the cylinder and

puts it on a more firm and rigorous basis. This will enable us to recon-

sider some previously published incorrect results and will lead us to the

discussion of some interesting; features of the flow in the wake. In the

next section a description of the flow field in the near-wake is given,

together with a review of the avail.abl.e data on the unsteady loading and

the available work relating the two aspects of t.7e problem. This is fol-

lowed by a detailed study of a representative case of the low Reynolds

number regime, finally, the high Reynolds number case is discussed in

the last section.

3.2 Desr.ri p tion_of' the flow Field - Review of Previous Work.

The entire range of Reynolds number I:e (based on the cylinder diame-

ter), insofar as the nature of the fluctuating; wake is concerned, can he

broadly classified into three ranges (Roshko 1954). The fist range ex-

tends from a value of Re between 30 and 40 to some value between

1.50 and 200 and is characterized by a stable and regular vortex street

extending far downstream. The fluctuating energy of the flow is concen-

trated into discrete frequencies and decays downstream by the mere action

of viscosity; no turbulence occurs in the flow. The sec and range which

extends from Re between 150 and 200 to Re between 300 and 400

is a transition range characterized by irregular bursts in the velocity

signal from a hot-wire placed in the flow indicating a laminar-turbulence

transition and making the determination of the frequency of the dominant

component rather difficult. The third range called the ,.rregular range

extends from Re between 300 and 400 to a value near 10 7 the highest
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value of Reynolds number investigated up tc date. In this range turbulent

fluctuations accompany the periodic fluctuations; however the frequency of

the latter is easily detected over most of the range. There is transfer

of energy from the discrete components to the random ones as the fluctua-

tions are convected downstream, and the wake decays by the combined action

Of viscous and turbulent stresses. It can be noted right away that the

reason for which the limits between the various ranges are not well de-

fined lies in the sensitivity of the flow to the experimental environ-

111e11t. For instance, the value of Re which marks the first appearance

Of fluctuations in the wake depends mainly on the ratio of the tunnel

width to the cylinder diameter, being higher for smaller values of this

ratio. On the other hand varying the level of turbulence in the free-

stream can vary the limits between the first and second ranges and be-

tween the second and third ranges. We now consider in detail each of the

three ranges separately.

The Stable Range.

For values of Re below 30 or 40 (and above a value near 6) the

g low in the wake is steady and consists of two standing oppositely rota-

ting eddies at the back of the cylinder

and a laminar trail immediately down-

stream as shown in the figure. The

vorticity generated in the boundary

layer on the forward face of the cy-

linder goes in part into the standing

eddies and in part into the trail form-

ing the laminar wake (see Batchelor 1967, § 4.12). Foppl (see Goldstein
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1935) showed, using an idealized model of two potential flow vortices that

the symmetrical arrangement of the two eddies is unstable for asymmetric

disturbances. It is an experimental fact (Kovasznay 1949, Taneda 1956)

that when a value of Re between 30 or 40 is reached the laminar

wake shows signs of instability before the standing eddies do. Regular

sinusoidal fluctuations antisymmetric in the longitudinal velocity develop

and are convected downstream in the form of a vortex street. As Re is

increased, these fluctuations move closer to the cylinder and at a value

of about 45 they begin to affect the tip of the standing eddies which

begin to oscillate laterally assuming an asymmetric position. Below a

value of Re between 90 and 110 (Tritton 1959, 1971) the standing ed-

dies, although oscillating, remain attached and fluid does not leave them;

above that value fluid moves continually out into the street, and Tritton

speaks of two different modes of vortex shedding, a 'low-speed mode' which

has its origin in the instability of the laminar wake and a 'high-speed

mode' in which shedding starts in the immediate vicinity of the cylinder.

Tritton (1959) discovered these two modes when studying the variation of

the Strouhal number with Reynolds number, he observed a discontinuity in

the St vs. Re curve at Re equal to 90, separating two different laws

of variation of St with Re , and also irregularities in the street when

Re was close to that value. Later Gaster (1969, 1971) found that such

discontinuity or irregularities could arise from slight nonuniformities in

the cylinder or in the free-stream in a direction along the span. Berger

(see Wille, 1966) found another mode, t-­ 'basic mode,' for Re above

120 similar to the 'low-speed mode' of Tritton. Tritton (1971) argued

that the 'basic mode' of Berger could possibly occur throughout the whole
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stable range instead of his two modes depending on the level of distur-

bances in the free-stream. These different findings were for some time

the subject of a controversy which does not seem to have been settled yet

(see the review by Berger and Wille, . 2).

The basic mechanism involved in the development of the laminar vortex

street is two-dimensional; however three-dimensionalities in the wake in

the form of slantwise shedding or waviness in the vortex filaments have

been observed in this range of Reynolds number. These observations vary

from one experiment to another especially as far as the degree of inclina-

tion of the vortices to the cylinder axis and the existence of waviness

are concerned, which emphasizes once more the sensitivity of the flow to

the experimental conditions and the level of disturbances in the free-

stream. Gerrard (1966a) and Berger and Wille (1972) summarized the ob-

servations of various experimenters, and the picture which emerges indi-

cates that for values of Re not exceeding 60 the flow is stable for

small three-dimensional disturbances or slight non-uniformities in the

cylinder or in the flow upstream and is truly two-dimensional. This is

supported by experiments in both water tanks and wind tunnels (Kovasznay,

1949; Taneda,1952; and Phillips, 1956). Gerrard (1966a) further concludes,

on the basis of his own experiment and his analysis of the occurence of

three-dimensionality that for values of Re below that of Tritton's

transition "the wake is intrinsically stable and would exhibit a stable

two-dimensional character if the flow and model arrangement were two-di-

mensional." This suggests that for such values of Re the attached ed-

dies behind the cylinder provide at least in the near-wake region a sta-

bilizing factor against three-dimensional disturbances. On the other hand,
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for values of Re above that of the transition the shear layers which

spring freely from the sides of the cylinder are more vulnerable to such

disturbances and slantwise shedding or waviness in the vortex filaments

occur inevitably as it is observed by most experimenters.

Results on the fluctuating loads in this first range of Reynolds

number are scarce, in particular, the ones from direct measurements. The

only available data are due to Tanida et al. (1973), and their Figure

3(b) is reproduced here for reference. In this figure ICL I is the
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amplitude of the fluctuating lift coefficient defined by:

L = 2p U^ d CL

where L is the lift per unit 'length. Tanida et al. made their mea-

surements in an oil tank (for the low values of Re ) on a 100 mm 'long

central segment of a cylinder 352 mm long and 30 mm in diameter. The

main feature of their results is the low level of lift fluctuations at low

Reynolds numbers. Phillips (1956) using the data of Kovasznay (1949) at
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Re equal to 56 , c:alculated the amplitude of the fluctuating lift and

drag and obtained the rather high value of i& 11 ^ = 0.76 for the lift.

Jordan and Fromm: (1972) solved numerically the complete time-dependent

incompressible Navier-Stokes equations in two dimensions and obtained at

Re equal to 100 the value IC11 1 =0.'27 . These variations in t:he results

will be discussed at length later in this chapter.

The Transition Range.

When Re reaches a value between 150 and 200 , the flow in the

near-wake, though still laminar, contains low-frequency irregularities

which become more violent downstream and eventually render the gar-wake

turbulent (Floor 1964). 'These low-frequency irregularities are believed

to be due to three -dimensionalities in the flow. however, small bursts

of turbulence do not make their appearance before a value of Re of 300

is reached (Bloor 1964). These occur at random in time and in a direction

parallel to the cylinder axis making; the vortex filaments in the street

partly laminar, partly turbulent until a value of Re equal to 400 is

reached. It has been argued by Roshko (1954) and Roshko and Fiszdon

(1967) and observed by Bloor (1964) that these turbulent bursts occur

right before the end of the formation region which is defined by Bloor

as the beginning of the (turbulent) vortex street and by Roshko and Fisz-

don as being located near the closure point or the tip of the two standing

eddies of the corresponding mean flow.	 As a result of the low-frequency

irregularities associated with large scale three-dimensionalities and the

intermittent turbulent bursts, the flow in the near-wake in this transi-

Imai (1964) has shown that up to a value of Reynolds number of at least
6000 the mean flow pattern is similar to that at low Re where two

standing eddies exist right behind the cylinder.
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tion range is obviously three-dimensional. No information is available on

the nature of the unsteady loading on the cylinder in this range except

the numerical results of Jordan and Fromm (1972) at Re =400 . They ob-

tained the value 0.75 for the amplitude of the lift coefficient.

The Irregular Range.

When a value of Be of about 400 is exceeded the turbulent bursts

start to occur more systematically before the end of the formation region

so all vortices in the street are turbulent on formation (Bloor 164).

The low-frequency irregularities continue to exist in the formation region

and farther downstream with substantial reduction in intensity in the region

in between. This state of affairs continues unt-il a value of Re of

about 1.3X10 3 is reached when sinusoidal waves of the Tollmien-Schlich-

ting type begin to precede the turbulent bursts (Bloor 1964). These,

called by Bloor, "transition waves " have a definite frequency	 f t which

is greater than the fundamental shedding frequency and varies (for a con-

stant cylinder diameter) as UCO 	 The ratio of f t to the fundamental

frequency is proportional to Re g at high Reynolds number and it is equal

to 2.5 at Re= 1.3X10 3 and to 8 at Re= 5X10 3 . Below 1.3X10 3 the

transition waves are not detected and as suggested by Roshko and Fiszdon

(1967) it is possible that, since their frequency is very close to the

shedding frequency in this range, there is a coupling between the two

modes, in particular when Re is close to 400 . Above 1.3X10 3 the

low-frequency irregularities continue to exist in the formation region but

disappear in the wake downstream. As Re is increased from 1.3X10 3 to

8X103 (Bloor 1964) the transition points in the separated shear layers

move upstream rendering the downstream part of these shear layers more and

3
more turbulent. Beyond Re =8X10 	 the transition waves are no longer visible
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inside the wake, the laminar portion of the separated shear layers being;

rapidly followed by turbulence (Bloor 1964). Transition to turbulence

continues to move upstream along the shear layers as Re is increased

until it becomes very close to the separation points on the surface of

the cylinder. When a value of Re of about 2x10 5 , the so-called er -

tical value, is reached and while the separation is still laminar,

transition is followed by reattachment which in turn is followed

by turbulent separation on the back of the cylinder. The wake is

narrower, there is a sudden fall in the drag coefficient and a loss of

periodicity in the wake. This continues until the transcriti.cal regime is

reached (Re > 3.5X10 6 ) in which transition to turbulence precedes separa-

Lion (Roshko 1961) and where a definte vortex Shedding; occurs as at sulb-

critical Reynolds numbers. The critical or supercritical regime

(2x105 < Re < 3.5X10 6 ) is characterized by a great sensitivity to surface

roughness and free-stream turbulence, one manifestation of which is the

loss of regular vortex shedding caused by gross non-uniformity along the

length of the cylinder. Using highly polished cylinders Bearman (1969)

conducted interesting experiments in the range 10 5 < Re < 7.5X10 5 and

found that by carefully and frequently cleaning the cylinder during the

experiment regular vortex shedding could continue up to a Reynolds number

of 5.5X105

There is less disagreement among the various experimenters about the

existence and nature of three-dimensionalities in the irregular range than

in the stable or transition range. As noted by Gerrard (1966a), "this is

perhaps because the chaotic nature of the three-dimensional structure al-

lows less precise description of the phenomena." Most workers describe
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the three-dimensionality in terms of a spanwise correlation length, i.v.,

the distance in the axial direction over which the fluctuations of some

property of the flow are well correlated. By correlating velocity fluc-

tuations Roshko (1954) finds a value of 3 diameters at Re =500 .

Prendergast (1958) correlated surface-p essure fluctuations but his corre-

lation functions dial not tend to zero for large separations. I.1 Iiaroudi

(1960) repeated the same experiment but instead correlated velocity fluc-

tuations near the shoulder of the cylinder and found a correlation length

which increases slowly with Reynolds numbe- in the range 104 °: Re' 4. `ixlci4

being about 3 diameters at Re= 10 	 and about 6 diameters at Re= 4..5X1()4.

Phillips (1956) gives a value of 3 diameters at Re = 5X10 3	Mattingly

(1962) observed a spanwise periodicity on the surface of the cylinder in

the range 104 < Re < 10 5 with a wavelength of a few diameters. Using

threads attached to the cylinrl .:r Humphreys (1960) observed a periodic

cellular pattern with a wavelength of about 1.5 diameters at the critical

Reynolds number. Gerrard (1966a) describes the nature of three-dimension-

ality in the irregular range as a combination of randomness associated

with the small-scale turbulent structure and a "more gentle variation of

the low Reynolds number type" probably associated with the low-frequency

irregularities.

The bulk of the experimental data available concerning the unsteady

loading on the cylinder corresponds to values of Re in the irregular

range, and more specifically to values of Re greater than 2X10 3 . Yet

from these data it is not possible to draw any firm conclusion about the

"true" level of the loading or its real behavior when the Reynolds number

is varied across the range. This is perhaps best illustrated in Figure 15
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FIG. 15, OSCILLATORY LIFT COEFFICIENT,

of Morkovin's (1964) review which is reproduced here and in which the root

mean square value or the maximum amplitude of the unsteady lift coefficient

is shown. Tn. this figure the results of Gerrard (1961), Keefe (1.961),

Humphreys (1960), Goldman (1958) , and Fung (1960) are summarized and in-

dicated symbolically by G[111] , K[110] , H[31], G[281, and F[30] respectively,

Gerrard measured the r.m.s. value of the local pressre fluctuations at the

shedding frequency and assuming a constant prase on each half (upper and

lower) of the cylinder surface integrated to obtain the lift. Keefe mea-

sured the forces on a central segment of 1 diameter in length and examined

the effects of fastening to the cylinder ends two circular discs (in order
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to redure the interterenre of ttic wall boundary Ialyerst of diametcr :'i^*l

times that of the cylinder and senarated by a distance of 'i or IS cy-

IInder diameters and also the affect of sealing the clearance holes at

bath cylinder ends. llumphreys' results are based on measurements (it' the

moment- on a cantilevered cylinder, he also studied the effect o,' changing

the end conditions. Dung measured the fluctuating farces on a short seg-

ment of 1.74 .9iamet-t a rs at supercritical Reynolds numbers and noted the

et fact of the }saps betty en the farc e transducer and the rest of the cy-

tinder, but did not rc^cogni.ze the effect of the length of his transducer

being larFor than thu correl. , tion length at Lhese high Reynolds number;;.

To these various data uLs, others c:a n be added but only to complicate

fur ther 010 gU11e1`,1I l+lt'tUVV, tilu rcason bt!ing, as we have stated ear lier,

Llle sensitivity of prv+ ;:.ure or force:; 1111 WMT_t'Ltt`11L5 Lo LI1u details of Lhe

e%perimental setup, the i-tl,per.fc4.t1on:; of the Measuring devices and the

level of disturbance:; in the treO-str0a111. Results not mentioned above in-

clude those of 1`iacovsle y (1958), McGregor. (1951) who measured local prc^:;:,ur,^

fluctuations, Jones op t al	 (1069) at :1uperc•ritical and transcriti.cal Rey-

nolds numbers, and also at these high Reynolds numbers those of Schmidt

(1965,. 	 1966). These hitter (i.e., the high Ilo dicta, in particular those

at supercritical Re ) show in addition a :,trong dependence on the state

of cleanliness of the cylinder which is a consequence of the extreme sen-

sitivity of the flow to local surface roughness.

Among the various factors which can have a major impact on the mea-

sured values of the unsteady forces the free-stream turbulence is the only

one which received some attention by the workers in the field. Gerrard

(1965) puzzled by the large discrepancies between his results (of 1961)

and those of Keefe (1961). 	 and t,thers,and by the low level of lift fluctua-
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t°ions he observed at Re= '+'-'10 3 , investigated the effect of increasing

the turbulence in his wind tunnel. Instead of measuring again the pressure

fluctuations he measured tho velocity fluctuations near the shoulder of

the cylinder and found an increase (when the wind tunnel turbulence was

Increased) in the intensity of these velocity fluctuations similar to the

discrepancy between his results and those of Keefe, indicating that this

discrepancy is perhaps due to differences in the level of disturbances in

the free-stream.	 Iie also recognized the role of characteristic length

played by the length of the formaLion region but stopped short of consi-

dering the effect of an increase in free-stream turbulence to be equiva-

lent to do effective increase in 11' ­ because the shedding frequency re-

mained unchanged. hater he (Gerrard 1966b) discovered a second character-

istic length, the length to which the shear layers diffuse at the end of

the formation region and as a consequence achieved a substantial insight

into the mechanics of the formation of vortices in the wake. On the basis

of the two characteristic lengths Gerrard could explain why the Strouhal

number remained constant over a wide range of Reynolds numbers and why

the shedding fre,.iency was insensitive to changes in the free-stream tur-

bulence level. However, on the basi s, of the same arguments Gerrard

could not explain the great change he observed (but Keefe did not) in the

level of fluctuating lift when Re was varied from 4X10 3 to 7X104 .

This led him to ,suggest that possibly at the lower Reynolds number and in

the absence of free-stream turbulence the two separated shear layers de-

velop independently of each other creating a symmetrical formation region,

the periodic wake downstream being formed in a manner similar to that at

Reynolds numbers below 90 . The idea of a symmetrical formation region

was, in fact, inspired by the results of his potential flow model (Gerrard
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1967x) in which the shear layers separating from the sides of thc: cylinder

were modelled by a distribution of elementary vortices moving under the

;action of the flow past the body and the velocity field of the vortices.

ThisThis model however, when forced to generate a fluctuating lift in agree-

ment with Gerrard's data at low Re , gave a formation region much larger

than th- value measured by Bloor (1964). Some comments on the modal in

question will. be given at the end of the present chapter as part of our

general discussion.

Finally, mention should be me-' of the few data points obtained by

Tanida et 81. (1973) in the range 2x10 3 < Be !1.04 (using the same test

cylinder as at low Re but with water as the medium) which are shown in

the figure already introduced in connection with the low Reynolds number

range, and also the value 0.95 for the amplitude of the lift coefficiunt

found in the computations of Jordan and Fromm (1972) at Re =103

3.3 A Representative Case of the low-Speed Mode of Vortex Shedding.

In this section we consider in detail the problem of determining ana-

lytically the unsteady pressure distribution on the surface of the cy-

linder when the Reynolds number Re is equal to 56 . At this Reynolds
Y

number Kovesznay (1949) investigated in some detail the velocity field in

the wake and his data will be used to generate the essential terms needed

for the application of the theory of the preceding chapter. Also at this

Re the wake structure and the nature of the relationship between the near-

wake and the surface-pressure are typical of the whole range below Re =90

namely the vortex street develops as a result of the instability of the

laminar wake and is stable and laminar. The velocity fluctuations are

negligibly small near the cylinder and reach a maximum intensity some
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distance downstream (Kovasznay 1949). The flow is two-dimensional and

therefore the results of f; 2.5 are applicable. In addition, in this range

of Re we can make the assumption:

n. 0 '	 = tl n. ^2v'	 = 0
,y	y

p	

C,	 f C

This is based on the following argument: since the vortex street develops

some distance downstream of the cylinder, the unsteady part w' of the

vortici.ty vector vanishes in the neighborhood of the cylinder, the small

velocity fluctuations there being irrota:i.onal and induced by the vortical

street further downstream; nevertheless at the boundary C and as a re-

sult of the no-slip condition additional. unsteady vorticity might be gen-

erated locally, in other words, while the velocity fluctuations themselves

are vanishingly small there their gradient can be large; this latter pos-

sibility however can be eliminated on the assumption that the frequency of

the oscillatory motion in the wake is high, i.e., the "relaxation time"

associated with the viscous flow is of the same order as, or even greater

than, the time scale of the oscillations, and therefore the viscous ef-

fects do not have the time to respond to the full no-slip condition.

From this it follows that w' vanishes at and near the boundary C

and since

42v' = -Curl w'

This is similar to the argument sometimes invoked in connection with the
Kutta condition at the trailing edge of a thin airfoil shedding vortices
at high frequencies. Previous experience has shown that relaxation of
the Kutta condition in such circumstances yields results in better agree-
ment with observations (see for instance Davis 1974). The question re-

mains however whether the above condition is satisfied for values of Re
above 90. It is interesting to note that in all the previous studies

made on the case of a turbulent boundary layer the condition n.Op' =0

at the solid boundary has been adopted.
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I

the above condition can be considered satisfied. The resulting expression

for the pressure p' is:

p I (Y ' 
t)^2G X Y) q (X, t) dX

^Xi ax	 ij
(3.1)

-+ -4

3.3.1 The Green's Function G(X,Y) .

H --1
As previously noted, the two-dimensional Green's function G(X,Y) is

nothing but the velocity potential of a negative unit source at Y in the

presence of the boundary C which in the 	 X2

present case is a circle of diameter d
Y

G is therefore the sum of the potential
i

	

!	 X
of that source in absence of C , plus	 Y

that of a similar source at the inverse	 X^

-4	 -4
point Y' of Y with respect to C

and plus the potential of a source of op-

posite sign at the origin. In other words, G can be written as:

G(XIY) _ - 
	
log IX Yj - 2 log IX Y' I + 1 log IXI

or as:

3	 ^.

G(XIY) _ - 27Tlog( ( Xi -Y 1 )2 + (X2 -Y2 )2 1 - I log { (X1-Yi)2 + (X2-Y2)2

L

+ 21— log {X2+X2 }	 ,

where

Y' 	

(d/2)2Y1 
	 (d/2)2Y2

1	 Yi +Y2
	 Y2 Y1 +Y2

55

i.



1

Since in (3.1) the derivatives of G appear rather than G itself, we

differentiate with re.;pect to X I and X2 to obtain the following expres-

sions:

ry2G _ - ^ 1	
2_ (X

	 1)2
	

(X -2,)2- (X1 'Yi) 2
	- X

	

+	 }

3X1 `	
rr C (

X 1 -Y 1 ) 2+(X I) -Y2 ) 2  `	 C (X l -Y1) 2+(X2 -Y2) 2 ] 2	
(X2 

+X
2  )

2	 2 (X -Y ) (X -Y )	 2 (X -Y') (X 
_Y2')
	 2X X

^G	 1	 1 I	 2 2	 1 1	 2 2	 _	 1 2
^IX 1̂ X2 	 2rr 

{ C (x 1 -Y 1 ) 2+(X2 -Y2 ) 2 ] ` + C(X 1 -Yi) 2+(X2 -Y2) 2 ] 2 	(Xi+X2)2

and since G is a harmonic function of X1 and X2 we have:

12	 2

	

^X 2 = - ^X G
	 for X1 Y1	 X2 0 Y2

2	 1

When we evaluate the surface-pressure fluctuations as given by (3.1), Y

goes onto the circle C and Y' , Y. become respectively Y 1 and Y2

the above expressions reduce to:

3 2G	 1	 (X2 Y2 ) 2-(X 1 -Y 1 ) 2	 1 X2 -X1
Y on C (3.2)

aX12 = -
	

{C (Xl-Y1)2+(x2-Y2)2]2 - 2 (X1 +X2	
)2 }

^ 2G 	 1	
2(X 1-Y1)(X2-Y2)	 1	 2XIX2

aX1c^X2	
Y on C	 (3.3)

17{
C(X1 -Y1 ) 2+(X2 -Y2 ) 2 ] 2	 2 (Xi+X2)2 } 

3.3.2 The Velocity Field in the Wake.

Both the mean and the fluctuating parts of the velocity field in the

wake at Re =56 were investigated by Kovasznay using the hot-wire tech-

nique. Measurements of the total mean velocity distribution and that of

the r.ra.s. value of the velocity fluctuations were made at several down-

^ ^ i7a? ,I'1'y OI'' '1
111111,

56
RL',YR^)hLt` ._
ORTGINAI^ Pi^'`^1' I'^ POUR
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stream stations. In addition, it was observed that the fluctuating vc10-

city had two components with two different frequencies, one is the shedding

frequency f , the other is the double frequency 2f , and the phases of thc;o

t w o components as functions of X  were determined. At the middle of

the wake only the double frequency component was present, but this de-

creased ra p idly with distance: from the wake centerline and disappeared al-

most completely before the point of maximum fluctuations was reached.

In order to determine the various q ij terms in (3.1) the two compo-

nents v 	 and v9 of the mean velocity vector are needed. However, by

examining the mean streamline pattern plotted in Kovasznay's work and a

similar plot made during the present work it was judged that the v,,

component is everywhere a small fraction (perhaps 10Z or less) of the total

mean value except in a central narrow region of width 1.5d bounded down-

stream by X 1 =5d ; in that region the total mean velocity is a small

fraction of the free-stream velocity U . ; consequently it will be assumed

here that tverywhere v 9 is an order of magnitude smal.ler than U. . As

for vl it is to a good approximation equal to the measured value

_ _ _y
^.

V = (vi+v )	 except in the narrow region mentioned above. This region

contains the two standing eddies in which there is a reverse flow (see

Taneda's 1956 picture at Re= 57.7 ). Kovasznay measured v at

X l = 2d , 3.5d , 5d , 8d .. ,	 .1t X L = 2d and 3.5d the measured values on

the wake centerline which are exactly those of v l , were taken here as

negative and an interpolation (numerical, using spline functions) was made

between these values and values off the centerline which were judged to be

a good approximation of v l	In this manner the distribution of v l in

the region of the standing eddies where v 2 can be larger than v  and

in particular where v 	 changes sign was determined. Again it is believed
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that v 	 as determined by the data and the above procedure is occurot y iii,

to 107 .

In addition to the mean velocity components the determination of

q i .
J
 requires a knowledge of the fluctuating velocity components v  ' and

v9' . Since the hot-wise is more sensitive to the fluctuating velocity

component in the direction of the mean flow and since the direction of the

latter is, to a good approximation, in the X 1 -direction everywhere e ctpr

in the neighborhood of the standing eddies, the r.m.s. values as measured

by Kovasznay can be taken as those of v 1 ' except in that region, there

a similar procedure to the one used above was adopted. As suggested by

Kovasznay, we can write:

v l ' 	 ' l ( X i ,X •^)Cos 2rr[ 61(X1)-ft]+c^2(XVX^)Cos4rr[J2(Xl)-ft]

(3.4)

where 
11 

and 
r°2 

are respectively the amplitudes of the fundamental

component and its first harmonic and Al and 
e2 

their phases. In

addition, 
`nl 

is an odd function of X1, and cp2 is an even function of

X2 which can be assumed to vanish parabolically in the transversal direc-

tion, i.e.,

X2

ID2 (XV X2 ) = cA2 (XV
0

)
[
1 - 2 2 ]	 (3.5)

X20

where 
X,)0 is the value of X2 for which the total fluctuations are a

maximum. Using (3.4) and (3.5) and noting that:

J^

In fact, Kovasznay had a + sign inside the brackets in the expression
corresponding to (3.4), but since the vortices are convected in the posi-
tive X1 -direction and 8 1 and 8 2 are increasing functions of X 1 a
- sign is more appropriate.
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v1 2 _ I rP1^+^n^^)

c,^ l and `pn can be calculated from the measured r.m.s. values. These

latter are vanishingly small for X I ^'2d , peak at about X 1 =7d and

slightly off the wake centerline, and are everywhere an order of magnitude

smaller than the mean velocity. As for v2 ' , which was not measured by

Kovesznay it will be determined here using the continuity equation. First.

we note that like v l 	 v.? ' has two components with two different fre-

quencies. One is f	 the other is 2f	 It can be easily seen that the

continuity equation must be satisfied separately by each frequency comrxo-

nent; in other words, if we denote by v 1 '1 and v 1 '2 the components of

v l ' with frequencies f. and 2f respectively, and by v 2 '1 and v. 'l

those of v '	 we have:
2

X 11 
+ aX,)

and

aV'	 dv^.,

7X 1 + rX, = 0

v2 1 and v'	 vanish at X2 =+-, in addition v2 2 vanishes at X,) =  U .

This can be seen by examining the velocity field of an idealized vortex

street where it is found that vG on the wake axis is of pure fundamental

frequency. This is also observed experimentally in the wake of cylindrical

bodies shedding vortices (see for instance Campbell 1957). Consequently,

integrating the above equations yields:

X2

rF
v21 	 j	 ^,X - L 11 (X1' 23t) 

d 
2-001
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and

X2

V22	 3X1 v11(X1'F2't)dF2
0

therefore:

X	
X 2

__	 2 3
v2	

^^ CO 3X °11 (X1 ' F2' t)dF2 - J	 X V1

or

1	 1	 2
0

or

r _ _ dw
v2	

3Xl	 (3.6)

where

X2	 X
r	 2

w	 , vl 1
(xl )17 t) d F2 +	 v12 (X1 ^ F2 ^ t) d F2_

0

or

w(X1 ,X2) Q = 6 1 (X1) X,)cos2rr [e
1 (Xl )-ft]+0 (Xl ,X2 )cos 47T [6 (X -ft]

(3.7)
where

X2

t6l(X13X2) 	 cp1(Xl,F2)d,2

X	
(3.8)

2
01 2 (X l 2X2 ) = J cp2(Xl,F2)dF-2

0

In order to evaluate 
01 inside th^ wake, values of `D1 outside the wake

are needed. The available data from which cp 1 was calculated cover the

wake region up to 5 or 6 diameters from the centerline, at these bor-

derlines the r.m.s. values of the fluctuations are very small and so is

'P i . However, in order to account for the remaining part of the integral,

i.e., the part beyond X2 = 5 or 6d , cp1 was assumed to decay like
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1/X2  in the + X2 -direction (see. ', 2.5).

3.3 . 3 The Fluctuating Surface-Pressure Field - Li ft and Drag Fluctuations.

The fluctuating surface-pressure field is given by (3.1) where Y

is taken on the circle C: . By expanding (3.1) we obtain:

-4

p' (Y ' t) _ i ` I	 G g11dX1 dX2 + J•1 ^X ^X g12dX1 dX2
^ c^X l " 	 1 2

)'C	
r('	

2
+ 
I r

 aX2aX1 g
21dX 1 dX2 + ^, 

a G

ax
2 g22dX1dX2

2

We also have:

gij (X,t) = p(2vi v'.+viv! -viva)

Therefore:

p' (y , t) = 2P r	 ^^ v v' dX dX + 2P	 "G v1 v' dX dX
aX	

1 1 1 2	 dXj aX12	 2	 1	 2
1	 E

rr	 a 2G _— ,	 NI (' a 2G --
+ 2P J^ aX1 aX2 v2 v 1 dX dX - `PJJ ^X 2 v 2 v2 dX dX

E	 F	 1

Ir 
^ 
2	 2

+ P , .	 2 (v12 _V,12 )dX1 dX2 + 2P J. l ax G	 (viv2 - vl'v2)dX1dX_,
^ aX l 	1 2

P .I I, ^ 2 2 (v2 2 - v2 2 )dXl dX2	(3.9)
E aXl

In evaluating p' only the first two terms in (3.9) will be retained,

these are thought to contain the major contributions to the real value of

p' . The contribution from the third and fourth terms which contain the
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mean velocity component v 2 can be Expected not to exceed 1{l	 of the

contribution from the first two, and is perhaps of the same order of mag-

nitude rah the error involved in evaluating the first two integrals with

v 
	 as determined in the last section. The contribution from the remain-

ing terms, which are quadratic in the velocity fluctuations, is discussed

in the Appendix. With the understanding that we are computing only an

approximate value we write:

2

	

Mr,	
G	 a2G

	

p' (Y ' t) = 2p .iv	 vl vl dX l dX,2 + 
2p jr' I aX ' X vl v7 dX 1 dX,	 (3.10)

	

^X 1 "	 1 2

or

p (Y ' t) = 2P .,
X 

2 v l v1 dX l dX,^ - 2p J,! X17Xx vl X̂1 dX 1 dX,2

1	 r

CC' --M 2p r	 ,, v v' dX dX,, - 2p rl —ĉ— ( ?-U
2	

v w)dX dX,
TX	

1 1	 1	 M	
X1 ^X 1 aX., 1	 1E	 1	 i,

r	 3	 „r	 2	 )v

+ 20aX' R v
1 w dX l dX2 + 2n	

^X1^X2 ^X1 w dX l dX,a

i	 " 1 ' 2

The second integral in the above expression can be integrated partially

with respect to X1 between some value X10 of X1 such that

<X10 < 2d and X1 

2

= +	 At X10 
X91 

and m2	

2

are vanishingly small

and since v and	
^G	

are finite there the product	
dG 

v w

	

1	 ^X1?X2	 p	
X1^X2 

1 X10

is negligible. Furthermore, as X I -'+ CO v 	 and w remain finite, how-

ever, ^X G
	

decays like X13 (see equation (3.3)) and the product

	

1 2	 1

vanishes again. Therefore the integral in question vanishes and we have:
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^3G
p' (Y ' t) = 20 ,	 2 v l vi dX l dX 2 + 2G ^^	 vl	 lW dX dX.}

F 'X l	 ^X12X2

a2
+ 2p	

G	
^vl

 
^X bX, ^X w dX

1 dX2 	(3.1 1 )

t.	 1	 1

The above step, i..e, the partial integration with respect to X1 is vital

for maintaining a good accuracy of the numerical computations. The data

which will be used to evaluate the physical functions in the above inte-

grals cover only the part of the wake between X 1 = 2d and X1 =40d ,

Although 
61 

and Lb. are small for X
1 
-2d , their derivatives with

respect to X1 there cannot be accounted for numerically with a good

accuracy. In addition, the form assumed for ^p
2
 and the numerical repre-

sentation of rPl are approximate; therefore while their integrated valucs

01 
and 

W2 
are still a good approximation, the derivatives of the latter,

i.e., X61/)X1 and %%;,) loXI (taken numerically) are not. * Finally,

while in (3.11) only one numerical differentiation is required, in (3.10)

four are necessary to evaluate v , .

We now define the following functions:

2	 2

a(X1' X P.) 

= X2 
-Xl 

2
(X12+X22)

R(X15X	
2X2(3X12- X22)

2 ) =	
3

(X 1 2+ X22)

2X1X2
,/ (X1' X2 ) _	 2

(X1 2+ X22)

(3,12)

J^Numerical integration is always a smoothing process, unlike numerical
differentiation which reduces the accuracy.
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It follows from (3.2) and (3.3) that when Y lies on C

aX 2	 - ^ (a(X 1 -Y1' X 2 -Y 2 ) - ^a(XI , X2 ) 1 	 (3.13)

^' 1

23X = 
I (y(X 1

. YV X" -Y9 ) - .I—, /(X 1 ) x ') ) ^	 (3.14)
aR
1 ?

and also after one additional differentiation with respect to X1

3

^2^ 	
3(X1 -Y1,X2-Y2) 

--21 li(X1.'X2)}	 (3.1.5)
aX l ^X)

We note that a is an even function of X2 and 13 and v are odd func-

tions of X., . In addition, v l and ^v l /^X 1 are even functions of X,),

and 69 are odd functions of X2 , and finally cp 9 and 41) 1 are even

functions of X2 , Using the equations (3.4), (3.7), (3.13), (3.14), and

(3.15), relation (3.11) can be written in the form:

P (Y, t) _ - 2p f f (a(X -Y ,X -Y ) - i U(X ,X ) }v ((P cos 2Tr(6 -ft) +rr	 1 1 2 2	 2	 1 2	 1 1	 1
Z

+ rp,) cos 4rr(6 2 -f t) } dX I dX2

2
7  l r (B(x YVx 2 -Y 2 ) - 2 8(Xl' X2 )IV l(0 cos 2Tr(6 1 -ft) +

E

+0 2  cos 477(6 ? -ft)} dX1 dX2
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+	 r {v(X -1' ,X -Y ) - 1 y	
\T

(X X ) }	 1 fU cos 27r(A -ft) +
1	 1	 2 2	 2	 1' 2	 ^X 1 	1	 1

+ 6,
2
 cos 4-r(A 2 -f O) dX I dX2

It is easily seen that after expanding the above expression, the integrals

7

	

which contain the product a vl 'D1 , 3v 6	 and v X1 Z^ vanish and what
1

remains can he written in the form:

p' (Y, t) 	 J r	 cY l v l r: cos 2 -x(9 1 -ft) dX l dX2r
X2 ;^ 0

v1 T cos 4TT(9., -f t ) dx l dx.^

X2'()

^ r.̂^+ 7	 Cx v  C^
2
 cos 47(0 2 -f0 dx I dx,,

X2 0	
..

2rr J, S1 vl 
1 

cos 2T ( 6 1 -f t) dX 1 dX2

X2'()

- ^L) r	 R2 vl O2 cos 4Tr(6 2 -ft) dx l dX27 j 
x2 "' 0

+ T J f RV 
1 

0 2 cos 4Tr(6 2 -ft) dX l dX2

X 2 ? 0

+ 2p J J	 avl iTr	 ri ^X ^1 cos 2 r(6 1 -ft) dX l dX2
x2- 0	 1
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4 -^
rr
^J	 v 

3v
2 X̂l i f) 2 cos 417(62 -f t) dXl dXz

x2 a, 0	 1

2p	
6v l

TT J.!	 y ax ^2 cos 4rr(A 2 -f t) dX 1 dX2	,

x2'z 
0	 1

where:

al(X;Y) = U(X1 -Y 1 ,x2 -Y 2) -a(xl -Y l , x2+Y 2)

(3.1.6)

a 2 (x;Y) = a(x 1 -Y l2 X2 -Y2 )+ a(X 1
-YV x2+Y2)

^l MY) = R(x 1 -Y1 ,x2 -Y 2 )- R(Xl -Y l ,X 2+Y 2)

(3.17)

R2 (X;Y) = R(X1 -Y l ,X2 -Y2 )+ R(Xl -Y l ,X2+Y 2)

-4 -4
(X; Y) = v(x 1 -Yl ,X2 -Y 2 )- v(x1-Y1,x2+Y2)

(3.18)

Y2 (X ; Y) = v(xl -y V x2 -Y 2)+v(xl -Yl ) x 2+Y2 )	 J

Finally, if we denote by w the angular frequency 2 TTf and we introduce

the non-dimensional quantitates v1 /UM , (Dl /U- , cp2 /Uc, , Ol /Umd , 62 /UCOd
6(vl/Uj Xl	 X2

6(X /d)	 d ' and 
d we obtain:

1

p' (Y, t) = 2	 r	 2	 °1 ^1	 v1l	 (Vl/U^,)l	 xl	 x2

U 
2	 - cos wt J 	d(a l V' !'-+dRl U^ U^d -yl 6(X1/d) Ud )cos276 1d(d)d(d )

P	 x220

2
jj 

7	 °1 ^1	 °11	
6(

°1
/U") o 1 	 X1	 X2- n sin wt	 d -(alUCOUCO	 I UCOUCOd - yl 6(X 1 /d) Uod) sin 2n 61 d( d)d( d )

X220
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2 	 2	 V1 '2	 v1 2	 ^(v" /i1 )	 z	 X	 x.
- cos 2wt I f d (Od2U^U^+dq2 U^U_d - Y2 ^?(X 1 /dl t^ )cas4^r62d(-d-) d

X ''02

2	 rr 2	 v1 (P	 v1 2	 a(v1/U^,) 02	 xi	 X,,

- IT 
sin 2wt	 d (CX2 U^U^ +do2 U_Uod - v2 -cl(X1

/d) U_d) sin 4rTA ?d ( a-)d( d )

X220

2	 ('('	2 v 1 rp2 	 v1 2	 c (v l /U^) 2	 Xl	 X2
+ TT	 2wt	 d (OCU U. +dE3U^U^d -

y
 a_(x1/d) U_d )cos4nfl 2d( d)d( d )

X 2 -0

r	 v1 "2	 v1 :b2	 ^(v1/UCO) 02 	 X1 X2.+ 2 
sin2wt	

2
Gf, d (CY --+d^	 -y	 )sin4Tlfl d(—)d(--^

	

TUB 	U^U_d	 a(Xl/d) U^d	 2 d	 d
CO

X2'0

(3.19)

Note that:

d 2a I MY) = U1 (X/d ' Y/d)

	

	 rP ODUC"II^I1:^'TY OF'ilil'^
ORIGINAL PA('[: I^ I'OUIt

d391 (x ;Y ) _ o1(X/d^Y/d)

d2y1 (x ; y ) = vl(X/d;Y/d)

and that similar identities hold for a2 ' 
92 ' y2  and U , a , y .

As is clear from (3.10) the surface-pressure fluctuations contain two

components with two different frequencies, one is the fundamental or shed-

ding frequency and is represented by the first two terms in (3.19); the

other is the double frequency and is represented by the remaining four

terms. In addition, we note that a l , (31 , and Y  are odd functions

of Y2 while a2 ,P,2 ) and y2 are even functions of Y 2 . This implies

that the fundamental frequency component is antisymmetric with respect to
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to the direction of the free-stream, while the double frequency component

is symmetric with respect to that direction. In terms of the lift and

drag fluctuations this means that the lift fluctuates with the shedding

frequency and the drag fluctuates with twice that frequency!

The data of Kovasznay were used to determine the integrands in (3.19)

as was indicated in the last section. These data were first smoothed and

interpolations were made using spline functions; the results of the inter-

polations were checked and proved to be excellent. Then the various func-

/U_	 a(vl^) wl 12 0	 0
tions A l 	6^	 vl / U^, , ' a(X./d)	 U	 U ' U ' U	

were determined in
1	 co	 C,	 m	 CO

the domain 2 S X 1 /d !!^ 20 , 0 <X 2/d !n 5 using Simpson's rule of integration

for the last two, and the aforementioned interpolating functions (which

a(vl /U^)
are twice continuously differentiable) for ^(Xl/d) . Finally the coef-

ficient of cos wt , sin at , cos 2wt and sin 2wt (i.e. thle integrals) in

(3.19) were evaluated at 19 different points (separated by a uniform angu-

lar distance of 10 0) on the upper side of the circle C . The integration

was dote over  the domain 2< d s 20 , 0 < d2 5 , using Simpson's rule and

a mes'- size of 0.5 d . This domain covers in the X 1 -direction two wave-

lengths of the vortex street, and the major part of the unsteady region

in the X2 -direction. In the next section it will be shown that the major

contribution to the complete integrals comes from this limited domain.

For convenience and in order to determine the phase variations of

the surface-pressure fluctuations we write (3.19) in the following form:

—P 2 = P  cos 2rr(6 l -ft)+P 2 cos 4TT(6 2 -f t)	 (3.20)
P CO

where P 1 , P2 , 6 1 , 6 2 are functions of the angular position on the cir-

cle C . In addition, P 1 has an antisymmetric distribution with respect
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lift and the fluctuating part of the

drag per unit span we have:

2Tr

L(t) = -d f p' sin Ode
0

2Tr

D(t) _ - 2 J p' cos 6 d8
0

X2

__	 _ e

to the X1 -axis, and P,) , 6 1 , and 6 2 have symmetric distributions with

respect to that axis. These functions were determined and are plotted in

Figures 1 and 2. In Figure 2 the phases are plotted in such a way (by a

translation of the phase ordinate, different in each case) that they are

zero at the back stagnation point. It follows from the form of the phase

distributions that as the vortices are shed in the downstream direction

the pressure pattern at each frequency travels along the surface of the

cylinder in the upstream direction. Note also that the intensity of the

shedding frequency component is maximum at about 120 0 from the front stag-

nation point while that of the double frequency component is maximum on

the back of the cylinder. These results will be discussed in a later

section.

The results of the integration in (3.19) can be used to determine. Lhe

magnitude of the lift and drag fluctuations on the cylinders. If L(t)

and D(t) designate respectively the

where in the first integral only the antisymmetr.c part of p' has a net

contribution while in the second only the symmetric	 does.
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Effecting the integration yields:

pUCO2d

L(t)	 0.0186 2 	cos wt	 (3.21)

pU 2d

D(t) — 0,0007	
d	

cos 2cut	 (3.22)

the time origin being not the same in both expressions. From (3.21) and

(3.22) it is seen that the magnitude of the lift fluctuations is about

25 times larger than that of the drag fluctuations.

3.3.4 Estimation of the Error Involved in Integrating Over a Finite Domain.

In this section the error involved in evaluating the right-hand side

of (3.19) by integration over the limited domain 2d L- 20	 U a d <5 is

examined. The estimation procedure is instructive and elucidates the man-

ner in which the velocity fluctuations in the wake induce the fluctuating

surface-pressure field.

Referring back to the expression of p' as given by (3.10) and to

the relation (3.2) and (3.3) we note that for a fixed value of X 1 , we

have:

0 2 2	 12 for ^X21
aX1	X2

ax — 
lg for IXIaX a	

-^

1 2	 X2	
2

and similarly for a fixed value of X2 :

a2 2 — 12	 for I X1 I -.
aXl	X1
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G	 1

	

-/ CO

6X16X2
^" x 

3 for X l 1	 ,

1

X

but for a fixed ratio of 
Xz 

we have:

1

M 
In	

for IXl , ^X2

6X 1	 l' 1

	

X X̂ 1
z 

for Ix	 Ix, IX2 I m

1 2	 X1

2

This is due to the fact that 
6X6^X	

admits a local extremum whose' value

1 ` 2

is of the order of 1 and whose X2 -coordinate increases linearly with
X 1 2 	 x

X 1	 however. for a fixed ratio 	
2

Xl^

- 
C2	 1	

for	 I x 	, ^xI
6X1	

X12	 1	 2

dX16X2 ., X
	 G I

	

/2 for 1X1
	 IX2I

1

and therefore inside the wake and at large distances or at a fixed X1

	

2	 2
station and for large 

IX 2 I	 6X 6X	
is of smaller order than	 2

1 2	 "X1
Since vl and v2 are of the same order of magnitude, this implies

that it is sufficient to examine only the rate of convergence of the
2

integral containing a G	 We denote by I that integral:
6X12

I = 2p JT ^ J2 2 v
1 vl dX l dX',

1, 7X1
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whirr can also be written as:

20d " +5d 2

I = 2p ,r	
2 vlvidX2 dX1 +I l +I 2 ,	 (3.23)

	2d 	 -5d 'XI

where:

r+- +5d 2

	I 1 = 2pI	 f	 d 2 vl v1 dX2 dXl 	(3.24)

20d -5d aXl.

+C

j5d

+CO	 +^ -5d

	

r	 r	 2_	
r r	

2_
I 2 = 2p J	

I	
o	

v 1 vl dX2 dX 1 + 2p J	 J	 a 2 v l_ v1 dX, > dXl

	

2d 	 ^X 1	 2d - co ?X1

(3.25)

and we propose to estimate the values of I 1 and I 2 . Introducing the

	

non-dimensional variables as before and letting v
1 .1 	 ' 0̂ 2 ' Y l ' Y'?

X l , and X2 denote these new variables we can write:

1 X2 2_x 1  
2 )

 v
2 (X 1	 2

2+X 
2) 2	 1 X

dX2 dX1

v  are even functions

Il — 
2 ^ 

-f
 
r
5	 (X2-Y2)2-(X1-Y1)2

PU 2	 - rr J 1

-15	
I (X -Y ) 2+(X -Y )2]2

CO	 20 	 1 1	 2 2

CP1 cos 2Tr(6 l -ft)+cp 2 cos 4rr(62 -ft)

or since cp1 is an odd function of X2 ) cp 2 and

of X2 :

	

I l 	
2 -+- +r5
	 (X2 -Y 9 )2 -(X1 -Y 1 )2 	 (X2+Y 2)2-(Xl-Y1)2 —

	

2	 z	 ^1	 2	 -	 2	 2 2 v1 y1
cos2Tr(8 1 -ft)dX dXl

	

P U S,	 20 0 C( X 1 -Y 1 ) 2+(X2 -Y 2 )	 C(Xl-Yl) +(X2+Y2)

- 21r	 5	 (X2 -Y 2 )2 -(X1 -Yl )2 - X2 2-Xi —

TT
20 _5	 I(X1-Y1r-F(X2-Y )2 ]

2 2 ( X i +X ^) 2 v1 cp2 cos 4^r(9 2 -ft)dX2 dX1
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- — + ^ 5 X 2-X ry2 	 2 1 —
rr J	 I	 2	 2 2 v l l'̂

2 cos 4Tr(9 2 -ft)dX,a 	dX l 	(`i.2h)

20 1,0 (X1 +X
2 )

As is clear from (3.26) and from the expression of p' in the form (3.11)1,

the shedding frequency component of the surface-pressure is the result of

an incomplete cancellation of the contributions coming from the parts of

the wake below and above the X 1 -axis, This is best seen by putting Y,,=t ►

in the above expression or in (3.19), the resulting contribution then

vanishes. This is due to the fact that at a given time t an,a at fixed

X1 station the shedding frequency component of vi for instance, is

antisymmetric with respect to the wake axis, and consequently the induced

pressure at a point on that axis is the sum of two exactly opposite con-

tributions; if.,however, Y2 is not zero the cancellation is not complete

and there is a net contri-bution. The double frequency component on the

other hand results from two additive contributions and is not the result

of an incomplete cancellation effect. With this in mind it is clear that

contributions from distant points in the wake are small not only because

the velocity fluctuations at the shedding frequency there are small but

also because the difference in distance between a point on the cylinder

and two points symmetric with respect to the X 1 -axis becomes small. This

however does not apply when the double frequency component is involved,

For these reasons, and in order to achieve better estimates, I 1 was

(and 12 will be) written in the above form. We now write:

1 1	 J1	 J2	 J3

PU 
2	

P U 2+PU	 PU
CO 

2 (3.?7)
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r_

J1	 J2	 J3
where -- 2 ,	

2	
and	 2 are respectively the first, second, and

M lr oo	 Pltso	 PUm

third term on the right-hand side of (3.26). An estimate of each of these

terms as well as of 1 2 is found in Appendix B. The results are as

follows:

	

J1 ^
	 0.0788X10 -3 	(3.28)

o11002'

J,j I
`	 0.0190X10-3	 (3.29)0PIT2

3 15	 0.1329x10-3
	

(3.30)
i P tT'M

I 1 2 1 r 0.6308/,10(3.31)(3.31)
2	 .

We note that the above estimates constitute only upper bounds to the

values of the integrals	
J12	

J22	
J32 , and	 I22 . These upper

PUro	 PITCO	 PUCO	 PUoo

bounds are sometimes too gross (in view of the limitations of the formal

procedure) to yield close estimates to the real values of the integrals.

If we consider for instance the component of the pressure at the shedding

frequency f , an estimate of the error involved in integrating I (see

(3.23)) over the finite domain 2 X 1 ` 20 , -5 ` X2 5 is given by (3.28)

and (3.31). By referring to Figure 1 we can see that an upper bound to

that error is about 17, (given by (3.28)) plus 10% (given by (3.31)) of the

maximum calculated value. The estimate given by (3.31) is too gross as

is discussed in Appendix B and we can conclude, after assuming that a similar

accuracy is obtained from the second term in (3.10), that to a very good

approximation the contribution to the fluctuating surface-pressure at the

shedding frequency comes from the near-wake region defined by 2 <X 
1  
c20
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-5 ` X2 • 5 . On the other hand if we consider the component of "it	 surt,

at the double frequency 2f the estimates (3.29) and (3.30) • 1, Id an igpper,

bound for the errcr involved which is about 207 of the maximum calculated

value, This, however, does not give any indication of the acctzracv of' the

results which, we believe, is much better than is revealed by the above

figure; and as for the shedding frequency component, we can conclude that

the component of the surface-pressure at the double frequency is determined

to a large extent by the velocity fluctuations in the near-wake region.

3.3.5 Comparison with Other Results and Discussion,

As we have said in Section 3.2, HiL only available experimental re-

stilts on the unsteady loading on the cylinder in the stable Reynolds num-

ber range are those of Tanida et al, (1973). They measured directly the

fluctuating lift	 force, but found that the fluctuating drag was too small

to be measured accurately, Their data on the magnitude 'CIj of	 the	 lift

coefficient have been introduced already in Section 3.2, Comparison of

our result: ('3,21) (at_ IZe = 56 ) with these data shows excellent agreement

and confirms the rather low level of lift fluctuation inherent to the low

Reynolds number regime. By contrast thc^ value for ^Z1	 obtained by

Phillii)s (1950) at Ile = 56 is in strong disagr ,rement with the above

results. This value (^ CL I = O,76) is about 40 times larger than ours

(^ CL ^ =0.0186) . Phillips used the same data of Kovasznay which have been

used in the previous sections, and calculated the fluctuations in lift

and drag according to the formulas:

I. = P d t IT v2d X 1 dX2	 (3.32)

Z
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Xt

ll=	 d t ^` v 1 dX l dX
	

(3.111

However, since behind an infinitely long cylinder the wake remains un-

steady (if it is so near the cylinder)

at arbitrarily large distances down-

stream the above formulas are incom-

plete and an additional non-vanishing

term should be added to the right-hand

side of each of the relations (3.321)

and (3.33). This can be seen by ap-

plying the :aomonLum theorem to the

fluid inside the control volume, hav-

ing 7:1	 as cross -section and one d 1 a-

meter in depth in the ipanwise direction,

in Lhc^ following manner:

r r	 r	 `AV	 7V

t (tw i )dX 1 dX ) =	 t - pb i +II(Xi +	 )- ov iv In d.,;
1	 .l 71x.

 i	
1	 ]

R	
c+c. R

or after separation of the mean and fluctuating parts of each variable:

r r	 r 	 v	 w'	 ^.v'

a--t (ov!)dX 1 dX 2 	 6 +,.^(,X̂+ X) +N.(,.X ^X )

 

ij
R	

C-FCR

	

J	 i	 i	 i

- o(V +v')(V +v')}n d 

	

i	 i	 J	 ]	 J

Taking the time average of the above relation and subtracting they result

from the relation itself we obtain:

78



^	 (Rv^)dXldX.,	 - Ia'6i,1+11(1 	 +.X ) - t (viva -v^ V.,X.
r 	C+C	 1	 i

• "It	 R

0(v,V!-viv^IIn;. ds

If now we designate by F' the ith component of the fluctuating force

per unit span on the cylinder the above rulati.on becomes:

r

F1 - -	 at(pv )dX 1 dX^ ^^ f - P ,b iJ +µ(aX^ +^X) 	- p(viv.l +v v!)
r	 c	 1	 I
`yIt	 R

0 ( v ' v' - v' v') jn ds	 0. 34)
_]	 7

On CIt	 R being a.er;^ large,	 ^,v^ ^,	 l,, e:;cept on the e.akc^ portion
R"

where	 v! -^ 	 p'^I but since the flew is only approximately t<<,n-
R

dimensional we can assume fo, the prosent. purpose that i t 'i of smaller

order than R . Since W—R`' , upon increasing It indefinitely and o!;-

suming that the first term on the ri-gh;-hand side of (3.34) convergwe v.,*^

ob to in:

(ovi.)dX.,, dX,, - r p(v i v' +v.v')n ds.. 	.J	 1	 z	 .1
F	 W

On W	 nl = 1 and n ,, = 0 , assumi.ng thet v1) vanishes in the far-wake

and taking i. equal to 1 and 2 separately we obtain the following, re-

lations:

Ia = - p dt .^ rv I (IX 1 dX2 - p .^ vlv2ds
	

(3.36)

i;	 W
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U	 - p d !'I v' dX dXM - L r v v' d s

	

dt 4	 1	 1	 p	 1. 1	
('3.37)

	

Y	 W

(3.36) and (3.37) are to be compared with (3.32) and (3.33). In addition,

we note that even in the above form it is doubtful whether (3.36) and

(3.37) can be used efficiently to evaluate L and D , for the convergence

of the first term on the right-hand side of each of these relations, is at

best too slow and the Integration would require an infinite amount of: data.

In fact, Phillips used the form (3.33) for the drag only, while for the

lift he used the fact that:

rr	 ,^ dvI')vI
v,?x dX.^ = - ,^ (X̂ - aXl )dX1dX2

^	 1	 ^

But since only vi is known from measurements he was led to differentiate

the numerical data several times (for instance, y i was differentiated

numerically three times with respect to X  ) to evaluate L . This, as

we have mentioned earlier, can destroy the accuracy of the computations

and lead to results totally different from the sought ones.

Experimental results on the surface-pressure distribution when Re

is in the stable range a ,-e not available. Even at higher Reynolds numbers

there are few instances where such results have been reported in the lit-

erature. Those of Gerrard (1961) and McGregor (1957) are given in terms

of intensity of fluctuations at the shedding frequency and its first har-

monic, at several values of Re between 10 4 and a value slightly above

10 5 . These two components (i.e., the shedding frequency component and

its first harmonic) were found to be domii.ant in the range studied

(4/10 3 `' Re' 1.0 5 in Gerrard's case). We reproduce below the results in
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question as they were presented in Figures 8 and 9 of Gerrard's paper

which also include the data of McGregor. The main feature of these re-

sults is the invariance of the angular distribution with Reynolds number:

REPRODUCIBILITY OP T11
ORIGINAL. P:.GL IS I> ' ij'

((	 ip	 (di	 9)	 I 	 I",1	 ItA

Anl;ulxr pw;ilion, 0, deR1rw1y

FIn-rift, K. Angular distril,Iltloll of int onsity of Nur" ' Let • 1)r , 'RMilrn Ut tb('. 11111dUlnentlll
frequency. log,,1?z ( i, 4 . 1; A, 4 . 3; x , 4 . 8; C1, 5•:3; 4 , Af(4 1'r,•gor 4•fi4.

05. —r--

0

w
.05

NJ

O

-15

180	 150	 120	 90	 60	 30	 0

Angular prisiti(m 0 degrees

1'iw-uF 9. Angular distribution of intensity (d surftice pr,-4snre at the second hnrrnollie
In„lueney. (--), 1 in. diam. c}linder; x, 3 in. dilun, cylinder; -} , AN-Gregi,r. 1,', ill. diuln.

the intensity of fluctuations at the shedding frequency is always maximum

at about 120 0 from the front stagnation point and drops substantially at

the front and back of the cylinder, while that at the double frequency is

maximum at the back of the cylinder. In addition, Gerrard observed that
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in the range studied the pressure is essentially in phase over one side

(upper or lower) of the cylinder and 180 0 out of phase with that oil tthe

other side. Referring back to Figures 1 and 2 we can sec' that a remark-

able similarity exists between our results at low Reynolds number and the

above ones at much higher Reynolds numbers. The question whether the in-

variance of the angular distribution with Re can be extended to the

stable range may tentatively be asked. In order to facilitate the com-

parison, the results of Figure 1 were plotted again, in the manner fol-

lowed by Gerrard in Figures 8 and 9, and are shown in Figures 3 and 4. It is

readily observed that the two sets of figures are similar to a great de-

free, the difference being that at high Reynolds numbers, the intensity

of fluctuations at the shedding frequency drops more slowly when the

front and back stagnation points are approached and the ratio of the in-

tensity of fluctuations at the double frequency on the back of the cy-

linder to that on the front is greater than it is at low Re . We defer

the discussion of these similarities and differences to the next section

where a general discussion of the high Reynolds number case is given.

To conclude t:he present section we examine the effect of varying Re

in the range below Re =90 . As we have said at the beginning of	 3.3,

the nature of the velocity fluctuations in the wake does not change when

Re is varied from 40 to some value below 90 : the fluctuations de-

velop always as a result of the instability of the laminar wake and the

flow remains two-dimensional. The only change is in the intensity of

fluctuations and in the distance from the cylinder at which this intensity

reaches its peak value. Upon increasing Re the velocity profiles in the

laminar wake become steeper, the concentration of vorticity in the street

becomes stronger, and the distance at which the intensity of fluctuations
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reaches a maximum value becomes shorter. Consequently, the pressure fluc-

tuations on the cylinder, at the shedding frequency, for instance, cont•intic

to be the result of an incomplete cancellation of two contributions coming;

from the parts of the wake below and above the centerline (see 	 3.3.4)

and the magnitude of the fluctuating lift can be expected to remain small

even though it tends to increase slightly with Re as a result of the in-

crease in the intensity of the velocity fluctuations in the proximity of

the cylinder. Similar increase may be expected for the fluctuation in

drag for the same reasons.

3.4 General Discussion - Re ynolds Number Effect.

When Re exceeds some value near 90 , the flow becomes sensitive

to small three-dimensional disturbances or slight non-uniformities in the

cylinder or in the flow upstream, and some of the details of the wake pat-

tern become uncertain and dependent upon the nature of these disturbances

and non-uniformities, in addition to their dependence on the details of

the experimental setup, as has been already discussed in Section 3.2.

With this in mind it is clear that it would be impossible to attach a

unique value for the magnitude of the fluctuating lift or drag coefficient

to each value of the Reynolds number Re . This is true whether we are

talking about laboratory experiments or about real life situations as they

occur in applications. The theory of the preceeding chapter, on the other

hand, allows certain systemization in the study of the fluctuating loads,

and this by identifying the role of the cylinder geometry and that of the

various components of the wake flow, as they may occur, in bringing about

such loads. On the basis of that theory and o.ir experience with the low

Reynolds number range treated in the preceding section, we will attempt
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below to speculate on, or when it is possible, "predict" the manner in
which the unsteady loading on the cylinder would vary with Re under var-

ious conditions. At the same time some comments on previous attempts will

be made and areas where further research is needed will be indicated.

Using (2.39) and (2.40) the general solution (2.15) given in the prL­

ceding chanter can be written in the form:

^'	 rr d2G X YW1)	 I	 (2v.V. +F[v:v: -v! ] dXP(Y lc t = p ^.;XiaXJ	 J	 i J	 i J

+ 2ipk rr IG(XiY;k)((v 2 = 11 - v l^20 +F[v^w1 -viru2]1dX

r

- pka J IG (_X ^ -Y-* ; k) ( 2 (—V IV 1 4- _V_G(X^Y;k)(2(v1V14-_V_ V 2 )+Fr V , +v^` }dX

+ µ ^G(XjY;k)n.V2V ds	 (3.38)

C

From the above relation it is clear that, insofar as the pressure P is

concerned the two aspects of the fluctuating wake, namely the two-dimen-

sional one represented in (3.38) by the first, third, and fourth integral

and the three-dimensional one represented by the second integral can be

examined separately, and both play an important role in the determination

of P . Some important features of these two aspects are examined below

in detail.

Considering first the two-dimensional aspect, i.e., the wake flow as

it appears in the plane (X 1 , X2) and concentrating on the vortex street

alone, one can argue that the intensity of the velocity fluctuations V1

and V2 and the manner in which it (the intensity) changes with Re

N 
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should have an important role in determining the magnitude of 1' anti it.:

variation with Reynolds number. The intensity of the velocity fluctuation:

on the other hand is closely related to the strength of the vortices in

the street. Measuring the strength of these vortices is a difficult pro-

cess which is usually accomplished by matching a theoretical. model. of the

flow to hot-wire measurements in the wake; this gives only an average

value and has been attempted by several investigators. It has always been

considered as remarkable that only a part of the rate of vorticity gener-

ated in the boundary layers on the cylinder is found in the vortex street:

(see Berger and Wille 1972). If we define (as in Berger and Wille's re-

view) the rate of discharge of vorticity in one row of the street: by:

K = Tf = Au	 ,

where r is the circulation of a vortex, and the initial rate of discharge

of vorticity from the boundary layer on one side of the cylinder by:

Ks=0.51JJ'

where US is the velocity at the outer side of the boundary layer near

the separation ;p oint, the ratio:

K2A_
K	 1-c
s	

PS

where 
C 
	 is the base-pressure coefficient is a measure of the fraction
s

of the vorticity which escapes annihilation during the interaction of the

shear layers from both sides of the cylinder. This ratio is found to be

about 0.4 in the low Reynolds number range corresponding to Tritton's low-

speed mode and to vary between 0.5 and 0.6 or 0.66 at higher Reynolds
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numbers (see Berger and Wille 1972). On the other hand a measure of the

strength of the individual vortices in the street is r . From the above

relations it follows that:

1-C

	

r _ /^	 Ps K

Ucod	 St	 2St K
s

C 
	 varies with Re	 ; it is about -0.5 when the wake oscillations begin,
s

it decreases to about -0.9 at Re= 200 , then increases to about -0.7

at Re= 10 3 , and finally decreases to -1.2 near Re= 10 5 before in-

creasing again at the critical Reynolds number (see Roshko and Fiszdon

1967). As for St , it is about 0.12 at the onset of oscillations, it

increases to about 0.19 at Re =200 , then to about 0.21 at Re =10

and remains near this value for all subcritical Reynolds numbers (see

Roshko 1954). After some calculations one can easily see that the ratio

(1-C)/2St varies little in the range considered; it takes the values 6,
Ps

5, 4, and 5 at Re =50, 200, 10 3 , and 10 5 respectively. In view of

the small changes of K/K
s 

with Re we note here that it is even more

remarkable that the strength of the vortices in the street (non-dimension-

alized) varies little over the whole range of Re below the critical

value. With this in mind, if we look at the results of Tanida et al.

(1973) and those shown in Figure 15 of Morkovin (1964) (both introduced

in Section 3.2) concerning the magnitude of the fluctuating lift coeffi-

cient we see that this coefficient increases from very low values in the

range below Re= 100 to high values near Re= 10 5 and this despite the

increasing three-dimensionality of the vortex filaments in the street with

Re . Therefore, neglecting for the moment whatever contribution to P

the flow-wise vorticity term (the second on the right-hand side of (3.38))
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has, the absolute strength of the individual vortices in the street and

the closely related intensity of velocity fluctuations there are not of

prime importance in determining the magnitude of P . What is important

rather is the net strength of the total vorticity (mean and fluctuating

part) in the wake, which does not vanish at all times as in the case of

an idealized Karmari street, * and upon which the intensity of velocity flue-

tuations in the vicinity of the cylinder depends to a large extent. This

can be seen in the following way. Let us consider a cylinder started from

rest in an infinite fluid equally at rest. As a result of the no-slip

condition, vorticity is generated at the coundary and is mainly swept to

the back of the cylinder (at sufficient high I:e ) to form the wake. I3y

applying Kelvin's theorem as in airfoil theory it is seen that an equal

amount of vorticity must be placed inside the cylinder so that the circu-

lation on a contour surrounding the cylinder and the part of the fluid

which has already received some vorticity is zero. Before the onset of

instability the vorticity generated at the boundary is anti.symmetrically

distributed with respect to the wake centerline, therefore the net vorti-

city in the wake vanishes and so does the bound vorticity inside the cyl-

inder. This implies that no circulation exists on a circuit closely sur-

rounding the cylinder and consequently the cylinder does not experience

any lift force. On the other hand, when 	 high shear region in the wake

becomes unstable to small disturbances, antisymmetric (with respect to

the wake centerline) n the longitudinal velocity, modes of disturbance

vorticity, symmetric with respect to the wake centerline, grow and travel

downstream in a wavelike pattern (see Mattingly and Criminal; 1972). This

An idealized Karman street, if left alone in an infinite fluid, does not
move in a transversal direction.
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additional vorticity is r^inaaaly r,uherposed an the original mean vvI Ic•itV

distribution in the early stage of its growth while further down.strc^aan it

interacts with the mean vorticity, modifies it, gets modified iLself and

uegins to diffuse in the fluid. However, at all times the mean vort.Acity

remains antiysnmietric with respect to the wake centerline and the distur-

bance vorticiLy at. the fundamenLal frequency remains symmetric. Therefore

the not vort.icity in the wake sloes not vanish and alternates (at the tun-

damental frequency) between positivu and negative values. In addition, by

the nature of the process of generation

of the disLurbance vorti.cit:y, thl.s net

strength is tima!l; if for instance at
A B

_ a,.-
a given tin ge, sand at each downstream 	 X 1

station we sum the vorticit y in the

transversal direction and plot the

obtained values as a function of the downstream coordinate X 	 we obtain

a curve of the form shown in the figure, the net strength in question is

nothing but the algebraic area under this curve, this is of the ordel of

the area under the curve All and therefore is small. 'Phis implies that

the bound vorcicity is small and so is the lift force. As for the velocity

fluctuations in the wake, they are due to the field of the unsteady vorti-

city both in the wake and in the cylinder. Near the cylinder the field of

the bound vorticity is dominant, and since in this case the latter is

small, the velocity fluctuations there are small.

What we have described above is the state of affairs corresponding to

the low-speed mode of vortex shedding. This is to be contrasted to the

case when the vortex shedding results from the direct interaction of the
J
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two shear layers emanating from the :surface of the cylinder (correpondink

to the high-speed mode of Tritton) the way it was described by Gerrard

(1966b) and observed by Mattingly (1962), and to which the fundamental

stuuy on the non-linear interaction of two infinite vorLex sheets of Aber-

nathy and hronauer (1962) applies.

r

Without entering into details (re-

ference is made to the mentioned

papers) and referring to the figure,

the net vorticity in the wake (as-

suming that all the vorticity is

concentr,ited in the Street) is

A

8

dominated by the difference i.n strength between vortex B and vortex A .

At certain moments which occur periodically this difference is large; the

induced bound vorticity is then large and the lift has a maximum amplitude,

In addition, the velocity fluctuations in the vicinity of the cylinder,

which are due mainly ;o the field of vortex 13 and the bound vortex, reach

high values and are in phase in a direction parallel to the Xl-axis.

The three-dimensional nature of the flow in the wake, when Re is

above 90 , is far less clear and much more difficult to describe. The

pieces of information available are scattered in the literature and are

often reported in a rather crude manner. ror instance, spanwise corre-

lation lengths determined using two hot-wires separated in the x3-direction,

This is the reason that calculated convection speeds, of the street vor-
tices, based on phase measurements increase without limit in the vicinity
of the cylinder (see Bloor and Gerrard 1966, and Simmono 1974). Simmons

recognized the existence of the bound vortex, but assumed that the vor-
tices in the wake are equivalent to a distributio.i of vortex doublets,
while in fact it is the total vorticity including the bound vortex which

is so.
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arc- usual lv giWil without speci hying whether the signals from tlic hot-

wires were filtered at the shedding freque>ney or not. Similarly it ic,

not cic,ir SOMQLimes wilt-ther the periodicity in the spanwisv directioll,

observed at certain values of Re , is associated with slantwiSe shedding

or simply With waviness in the vortex filaments. Even the more speciol-

lzed studies of Gerrard (1906a) and G;ister (1969, 1971) oil 	 Vi-fect of

spanwfso non-culifermities (in the cylinder or in the free-stream) leave

sonic , important. issues unanswered. IIl addition, Gerrard (19b6a) attributed

the existencv of low frequency modulations, in the minsition range, to

the simultansous exist:euc-e Ill a direction along the span of laminar anti

turlitlleilt vortices, which also resulted in the continuation of the vor-

tex: filamellts into tlW direction of the free-stream, He also noted that

in the i.rrcgular range, when all tht- vorticv.s are turbulent, this ef.fc,c-t

is less pronounced. However, lie. l,itc+r showed (Gerrard 1967b) that suppres-

sing the vortex street with a spli.Uer plate did not alter the low fre-

quency component in the vici.ni .ty of the cylinder, thus proving that this

component is unretated to the vortices in the street.

Leaving aside such factors as the spanwise non-uniformity and the details

of the experimental setup, one thing we can be sure about is that the pre-

sence of three-dimensional disturbances in the free-stream will ultimately

render the flow in the near wake three-dimensional. In Section 2.6 we

have suggested that such a phenomenon takes place in the individual shear

layers, and gave as evidence the observations of Humphrey (196()) at the

critical Reynolds number. Other pieces of evidence can be given to support

further this point: for instance, the observation of llama (1957) that

"the ransverse waviness of the vortex lines appears almost immediately,
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further develo p s apparently in tilt! shear layer." In additloaa, we ran ar-

guts that a free shear layer is more likely t o be vu lnerable to small dis-

turbances than a rolling or rolled up vortex. It is also tempting to

eonclude, as we dial in Section 2.6, that as a result of the growth tai

these disturbances, flaw-wise vorticity is generated, which tither takes

the form of waviness in the vortex filaments, or causes the slantwise

shedding of vortices, " or even leads to the low frequency irregularities.

If we accept this sequence of cause an.l effect, the various observations

mentioned above become less puzzling. Another item of observation seVa;ar;

to fit the abovo picture: by oscillating the cylinder at the shedding

frequency, Bergor (4;ee Wi l le 1966) liar, shown that laminar vortex streets

with narallcl (.ns opposed to slantwise) shedding could be uplield until

Re =-- 	 .	 It is possibIc t:Ilat upon osci11ating the cylinder the separated

shear layers become more stable against both small and large scale thrce-

dimensional distrrbances, thereby delaying the transition to turbulence

and preventing the formation of flow-wish vort:ie ty which would otherwist^

lead to slantwi^;e shedding. I,et us emphasize that the preceding disctu: sloa;

is merely spoculative and is not intended to be definitive. Nevertllcle.q!=,

a:> is clear from the general solution (3.38), thu knowledge of the thrcat'-

dimensional nature of'. the flow in the near-wake or the form LMder which it-

manifests itself under various conditions is essential for a successful pro-

diction of the unsteady loading on the cylinder. This, we believe, call be

achieved only by conducting experimen.ts under controlled conditions.

We now proceed to the discussion of the changes in the magnitude of

" Slantwise shedding is equivalent, from a kinematical point of view, to a

vortical component in the direction of the mean flow plus a certain perio-
diciry in the spanwise direction.
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the unsteady loading with Reynolds number. The tirst question ones is

faced with, when Re exceeds 90 , is which of the two modes of vorte%

shedding discussed above is Il_kely to occur. Is it the low-speed mode

or is it the high-speed moc:r:. vle know that. the low-speed mode is caused

by the instability of the laminar wake and is 16. ,.iggered by the presence

of linearir.ably small disturbance:.. (* n the other hand, the high-speed

mode can only be triggered by finite disturbances (Abernathy and Krou-

aner 196?.). ii we lncrea:ur he a,ladually from values below 90 where

the low-sl • c+ed mode 1r; previji ling, the velocity fluctuations induced in the

vicinity of the Cylinder, which are alatisymmec,ric in the longitudinal com-

pon'nt and therefore , constitute a potentially triggering agent for the

high-speed %node, iaacre,isc but remaili very small at low Re and therefore

are not able to call.;' the non-linear interaction of the two separted shear

layers, 11' on the other !land the level of disturbances in the free-stream

is high enough, and Re is increased beyond 90 the absence of the two

standing eddies (i.e., the fact that the two shear layers spring freely

from the sides of the cylinder) will lead to this type of interaction. We

don't know the background turbulence level in Tritton's experiment of 1.959,

however i n Ol e 1971. paper 'i'ritton mentions that this level was high. I:o-

vasznay (1949) who had a background turbulence level of 0.067, did not

observe the transition of Tritton and in his words, "the vortices develop

some distance downstream within the Reynolds number range: 40 to 160 ,

and are not shed direct"y from the cylinder, consequently the phenomenon

can properly be considered as an instability of the laminar wake, that

develops to an amplitude limit but dies out before becoming turbulent."

Therefore, we can conclude that with low free-stream turbulence level the

wake remains in the low-speed mode even after Re= 90 is exceeded; the
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increase in the lift and drag fluctuations with Re is then moderate and

is quickly counterozf: ed by the increasing effect of three-dimensionality

with Re	 (a typical value of the spanwise correlation length for

90 < Re< 150 -200 is 17d , see Phillips 1956). Referring back to the

data of lanida et al. (1973) in the stable range, which were taken in an

oil tank where presumably she level of disturbances is very low, it is

very likely that the measured values of IC11 I correspond to the low-speed

mode of vortex shedding. On the other hand the relatively high value

= 0.27) obtained by Jordan and Fromm (1972) at Re= 100 might have
1,

resulted from prematurely triggering the high-speed mode of vortex shed-

ding, by twisting the cylinder back and forth in order to perturb the

numerical solution.

When Re is increased beyond the stable range, the increasing effect

of three-dimensionality corresponding to the second term in (3.38) becomes

more difficult to assess (a typical value of the spanwise correlation

length in the transition range is 10d given by Rr,shko (1954) at

Re =220). howe%rer, we expect that, like the Strouhal number, the lift

and drag fluctuations are not well-defined in the transition range, in

particular when Re is close to 400 (see Section 3.2). For this and

other reasons it is doubtful that the value ICL 1 = 0.75 obtained by

Jordan and Fromm at Re =400 can be considered as typical of the range

in question.

For a given two-dimensional distribution of velocity fluctuations in the
wake, the difference in magnitude of he pressure fluctuations corre-

sponding to an infinite or a finite spanwise length scale 2rr/k is the
same as the difference in temperature distribution in a medium corre-

sponding respectively to a zero or a finite coefficient of absorption k2
(see Section 2.2).
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The possibility of a coupling between the transition waves of Bloor

(1964) and the shedding frequency mode extends to Re = 1.3x10 3 . To our

knowledge no measurements of unsteady forces have ever been reported in

this range, and one may well wonder whether this is due to measurement:

difficulties of the type encountered in the transition range. Above

Re= 1.3X1() 3 the transition waves and the shedding frequency component are

decoupled, and therefore the lift and drag fluctuations at the sheeding

frequency and its first harmonic respectively can be expected to be well

defined as in the stable range. However, the qu jtion concerning the mode

of vortex shedding arises ag&tn. In addition, the wake becomes highly

three-dimensional; typical values of the spanwise correlation length are

three to five or six diameters up to Re= 10 5 , and we expect the contri-

bution from the flow-wise vertical component to become important. Conse-

quently the changes in the magnitude. of the-uiisteftdy loading with Re in

this range are the result of the simultuueous change in both the two-di-

mensional and the three-dimensional characteristics of the flow in the

near-wake. Since very little is known about the three-dimensional char-

acteristics, it is very difficult at this stage to speculate on their

possible effect. On the other hand the two-dimensional characteristics

and their effect on the magnitude of the fluctuating lift were the subject

of a series of three papers by Gerrard (1965, 1966b, 1967a). Since then

two relevant papers appeared in the literature and we feel that some com-

ments here are in order to further emphasize some uncertain issues.

On the basis of a potential flow model Gerrard (1967a) suggested the

possibility that, when the turbulence level in the free-stream is very low,

the wake remains in the low-speed mode up to values of Re of the order

of a few thousands. However he later questioned that possibility, because
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of the three-dimensional nature of the flow at such high 1 , eynolds nlmmht-r!

and the invariance of the Strouhal number, which normally can be expected

(the Strouhal number) to depend on the mode of shedding. In their photo-

graphic study, made in a mercury tank, Papailliou and Kykoudis (1974)

observed a wake in the low-speed mode at Re = 3.4x10 3 and a formation

region whose length is in agreement with the value measured by Bloor

(1964), This could have provided a confirmation of Gerrard's suggestion

if it was not for the fact that the only picture showing a symmetrical

formation region was taken with a cylinder ^4hose span to diameter ratio

is only 2.5 . This we know can impose the two-dimensionality on the flow,

at least in the near-wake region. In addition, the recent data of Tani_da

et al (1973) in the range 2X10 3 < Re < 104 , which (the data) correspond

to a low free-stream turbulence level, do not agree with those of Gerrard.

They do not agree with those of 'Keefe (1961) either, but Keefe had a

background turbulence level of 0.37, . On the other hand, the similarity

of the uata of Gerrard and those of Keefe with the clearance holes oven,

suggests that perhaps the results of Gerrard suffer from end effects. If

this is true, then the reason for the unrealistically large formation re-

gion generated by Gerrard's (1967a) numerical model, when forced to yield
E

the very small fluctuating lift he measured, becomes clear. Gerrard

(1967a) argued that with a hot-wire in the flow it may be impossible to

obtain a symmetrical Formation region, hence the discrepancy with Bloor

(1964) is natural. But Papailliou and Lykoudis did not have a hot-wire in

the flow and yet the length of the symmetrical formation region they ob-

served is in agreementwith B1oor's measured value. Another factor, which

might have contributed to the large formation region in Gerrard's model,

is the fact that this model is purely two-dimensional.
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To conclude, we consider again the question (noted in Section 3.3.5)

of the invariance with Reynolds number of the angular distribution of the

surface-pressure fluctuations at the shedding frequency and its first

harmonic. The similarities in this respect, between the stable range and

the subcritical range, can be attributed to the fact that whenever a de-

finite vortex shedding occurs at high Reynolds number, as is the case for

instance in the subcritical range, the two-dimensional characteristirs of

the velocity fluctuations at the shedding frequency and its first harmonic

are similar to those in the stable range. For instance, the components

and v2 2 are antisymmetric with respect to the wake centerline, andvil 

the components v1 2 and v2 1 are symmetric. From this and the continuity

equation one can easily deduce that w l and w2. (the second subscript

being used as for vi and v2 ) are symmetric with respect to the wake
40	 4'

centerline, and w1 2 and 
w21 

are antisymmetric. Referring to (3.38)

and noting that G(X^Y;k) is simply a geometrical function which depends

only on the spanwise length scale and, like G(X^Y) , on fX Yf , we can

see upon inspecting the different integrals (concentrating only on the

linear terms) that, as in the ,:wo-dimensional case, the component of P

at the shedding frequency is the result of an incomplete cancellation of

two contributions coming from the regions below and above the wake center-

line, while the component at the double frequency is the sum of two such

contributions. This implies that the angular distributions of the surface-

pressure at these two frequencies should have roughly the same form as at

low Reynolds number. The difference between the two cases, on the other

hang , lies in the fact that, when Y 2 is put equal to zero (corresponding

to the front and back stagnation points), the cancellation is not complete

for the component of P at the shedding frequency, as it is at low Re .

z
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This is due to the fact that at high Reynolds numbers the wake 'physical'

centerline does not coincide at all times with the wake 'geometrical'

centerline (i.e., the X 1 -axis). This phenomenon is often referred to a.;

the wobbling of the wake axis and is manifested by a non-vanishing signal,

at the sh(:dding frequency, from a hot-wire placed on the X 1 -axis tsee

Bloor and Gerrard 1966). As for the double frequency component, the fact

that k is finite at high Reynolds numbers implies that the velocity

fluctuations at the double frequency in the immediate vicinity of the cyl-

inder supply a more dominant contribution to the surface-pressure than they

do at low Re . This follows from the asymptotic behavior of G at large

values of the argument (see Chapter 2) and the effect is more pronounced

the larger k is. Hence, the ratio of the distance between the back

stagnation.point and the region capplying the dominant contribution at

that point to the distance between the front stagnation point and the cor-

responding region which supplies the auminant contribution there is smaller

at high Reynolds number than it is at low Reynolds number. This may be

the source of dissimilarity between our Figure 4 (at low Re ) and Gerrard's

(1961) Figure 9 (at high Re ).
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APPENDIX A

The Role of the Nonlinear Terms in the Source Distribution Function

The source distribution function in its original form, i.e., as given

by (2.5) and (2.6), can be written as:

vi
 ^v'	 ^V' dv'.	 )v' ^v'

	q(x,t) = 2p ^xj ^ + p ax e ax - p axe d	 (A.1)

The first term on the ribf , t.-nand aide of (A.1; represents the Amplifying

effect of the mean shear on the velocity fluctuations, while the remaining

two represent the effect of these fluctuations on themselves. In all the

previous studies which considered the pressure fluctuations on a plane sur-

face supporting a turbulent boundary layer (Kraichnan 1956b, Lilley and

Hodgson 1960, and Lilley 1963), the latter effect was neglected. The rE<a-

son being that du,, to the large mean shear in the boundary layer, the con-

tribution from the quadratic terms is only a fraction (4 to 67.) of the

total contributio... However Corcos (1964) argued that the linear term

(the first on the right-hand side of (A.1)) which is large only in a region

very near the wall supplies a dominant contribution only at high frequen-

cies, while at low frequencies the remaining terms have contributions at

least comparable with that of the former and their scales and convective

speed are more typical of those of the observed wall pressure. Nonethe-

less Panton and Lineberger (1974) in their recent study retained only the

turbulence-mean shear term and found that their results were in good agree-

ment with observations for wavenumbers k 	 (in the streamwise direction)

as low as O6 , where 6 is the boundary layer thickness.

In the wake behind a bluff cylinder the situation is different. The

shear layers which spring freely from the sides of the cylinder increase
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in width with the downstream dis-

PEAKS OF	 CONTOURSLance and at a faster rate the	 RMS LEVEL	 OF CONSTANT
higher the Reynoldo number is,	 RMS LEVELS

Although the velocity fluctua-

tions do not peak very near

the toundary where the mean shear

is highest, they do peak, at each 	
X1

downstream station x l , at the

MEAN SHEARI
center of the shear layers. This 	 I	 REGION

is true not only for the high fre-

quency components which result

from instability of the individual shear layers themselves but also true

for the shedding frequency compinenf.(see Gerrard 3.967b). A.crors each.

layer the change in the mean velocity is of the order of the free-stream

velocity U. while the change in the level of velocity fluctuations is

about one order of magnitude smaller (see Figs. 2 and 3 of Hanson and

Richardson 1968, where contours of constant mean velocity and r.m.s.

values of velocity fluctuations in the near-wake are shown at two differ-

ent values of Re : 10600 and 53000). With this in mind, the first term

on the right-hand side of (A.1) can be expected to yield a contribution

about one order of magnitude larger than that of the remaining terms.

Note however that at values of the wavenumber k (in the spanwise direc-

tion) or the frequency w (in time) for which the velocity fluctuations

in the wake are not particularly significant. The linear term in q is

not dominant and the main contribution to the fluctuating pressure at these

wavenumbers and frequencies comes from the quadratic terms.
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For the particular case of Reynolds number equal to 56 which is

treated in detail in Chapter 3, the same argument given above is still

valid. Inspection of the mean velocity profiles and those of the velocity

fluctuations shows that at each downstream station the peak of the fluctu-

ations occurs in the high shear region and that the gradient of these

fluctuations in the transversal direction is at least one order of magni-

tude smaller than that of the mean velocity. Therefore the contribution

from the nonlinear terms in q can be expected not to exceed 10'A of the

total contribution. On the other hand, and as was noted above, the compo-

nents of the pressure fluctuations at the frequencies 3f and 4f can be

accounted for only by considering the nonlinear terms. But these compo-

nents are negligibly small and practically non-measurable at this low

Reynolds number.	 M
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APPENDIX B

Estimation of Some Integrals

Estimation of J l/OUCO2 . We first consider J  . We have:

+	 +Sr

	

Jl2 = - r2r^	 a22 logC(x2+Y2 )2+(X 1 -Yl )2I -1ogC(x2-Y2r+(Xl-Y1)^]
PU,»	 20	 0 aX2

	

v l ^I>l cos 27r(0 l - ft)dX2 	dXl

+	
rI

-5	 2	 2X2 .° 2+Y2 2	 -2X +YY,

	

1	
2

	

1	 I

	

" 
rrJ	 ,1	 2 log[ 1+	

2	 2 ] -logC l+	
^) 2

2 ] x

	

20 0 aX,
a 	(X1-Yl) +X2 	(Xl-Y1)2+X2

	

v 1 cpl cos 2rr(0 1 -ft)dX,)	dXl

Since -2 Y l , Y^` 
Z we have in the domain of integration:

+ 2X2 Y2 +Y 2 << (X1 -Y 1 ) 2+X22

By expanding the logarithms and retaining only the first term in each

expansion, we obtain:

+co

	 5

	

J1

	 —7r 
n	 ('	 a 2	 4X2Y2

	

2	
" ^

I	 2	 2	 2^v1 (P1 cos 2rr(0 1 -ft)dX
2
 dX1

	nU.	
20 0 ax 	 (X1-Y1) +X2

	

4Y2 r o r a 2	 -X2	 __	 1
Tr j	 J	 2	 2	 2 iv1 cp1

 cos 2Tr(9 1 -£t)dX2 dX1

	20 0 aX
2 	(X1 -Y 1) +X2

or,

Jl	 4Y2 +CO

.r K1 (X1 ) cos 27(0 1 -ft)dXl	(B.1)
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where:

1	 1 Ix. ) 	(X1 -Y 1  "+X';	 ! 1
)

-X,
in which v 	 rRl	 and	 -,; [	 2	 ^] are all p0sitivc^ functions

	

X .,	 (X 1-Y 1) 
-+X,)'

of X,̂, for X 1 ' 20 , Therefore, K 1 ( X 1 ) is a positive function of X1

for	 X1 20	 In addition, K 1 ( X 1 ) i ; a monot-tically decreasing
7	 -X.?

function of X 1	 for X 1 ''?t1	 because	 In 1 and	 ^^^ [	 "' ,^	 9 ]	 arc',

while v1 is a slightly increasing function of X 1	 An upper bound

can be fours.' for K 1	 in the inte n t it	 ?()- X 1	 100 . By examl-ni.ng the

data on the velocity fluctuations we can seta that:

	

for	 20 - X^	 1u+)

and since v1 1	 we have ( for  '"t X 1 100 )

5 X,

K(X )	 ^^	 ]dX,)

	

1 1	 X1 
	 --^X^	 (X 1 -Y '.+X',

or:

2 f25-(X -Y 1

1 1
	XI[(X1-Y1)2+?5]2	 (X1-Y1)2

2	
3X25(X I -Y 1 2)2+(5)2

X1 [(X1-YI)2+2.5]2(X1-Y1)2

2	 3x25(X1-Y1)2+ 3x(25)2

X1 [(XI-YI)2+25]2(X1-YI)2
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1	 2	 3X25

X1 
[(Xl 

-Y 1 ) 2+25] (X1 -Y 1 ) 2

,. 2	 3x25
X1 (X1-Y1)4

and therefore:

K (X ) `_ --150	 for 20 1 X ^' 100
1 1	

X1(X1-Y1)4
	 1

In estimating 
'T1 

we will neglect the part of the integral beyond

X 1 s 100 assuming that it is negligibly small and does not affect thc.

order of•magn'rude of the retained part. 	 With this in mind we write

in: tend of (B. 1)

. T 1	 4Y2 X00

tT 
2	 ^	

,	 K 1 (X 1 ) cos 217(0 1 -ft)dX T 	(13.?.)

IG	 90

Since K 1 (X I ) is a positive monotonically decreasing function, it follow!,

from the second mean value theorem (see Whittaker and Watson 1963) that:

J 1	 4Y7

_	 K1 (20) .^ cos 2Tr(81-ft)dX1

pU^ 	 20

where ,1 is such that 20' 1 ^- 100 . Now we know that given a linear

function U(X 1 ) such that:

In the far-wake ^pl decays more slowly than 1/X but it is —asonable

	

to assume that the velocity fluctuations beyond	 1= 100 do not affect

the surface-pressure field.
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r

ft = d
dXl

the following integral:

b

r cos 27a dXl
a

where a and b arc' arbitrary but finite, is bounded with
	 I a s

1713

upper bound. A l is an almost Linear function of X l , for the present

pur pose it can be a<su.iiLd linear rand inspection of the data Shows that:

dX3 1 	2

dX1 — 15

'therefore we have:

t^. a	 k l ( •20)	
1?

pU p 	TT 
X 15

or:

J1	 P 1	 15X1 50
2pU z '	 rr	 20 (20 -Y ) 41

	

1	 15 X 150

r 20(19.5)4

and finally:

J12r .; 0.0788X lU-3
pU^ ^

Estimation of J L/pU.2	We have:

(13,3)
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J)	 2
77 i	

+5
	(X2-Y2)2-(X1-Y1)2
	

X2 -X1	 —
cos47r(6 -ft)dX	 dX-	

2	 23 2 -
	

2	
2 2 v l cp22 ^	 l

plT^	 20 -5	 ^(X1-Y1) +(X2 -Y 2)(X1
+X2 )

+	 +5 2	 1
Z

_ - TT J	 f ^X 22 log(X2-FX2) -log [(X 1 -Y1 )2+(X2 -Y
2 )2

] vlrp2cos4rr(62-ft)dX,^>dXl
20 -5	 2	 J	 j

 +M +5 ^2	 Y2 +Y2 -2X 1Y 1 -2X2Y2 r
_ - 2

j,^ ,^ _,__2 
-log(1+	 2 2	 ) vl (p

2 cos4^r(6 2 -ft)dX dXl
20 -5	 2	 X  +X2

Again, since in the domain of integration:

Y1 2+Y2 2 -2X1Y 1 -2X2Y2 << X12+X22

by expanding the logarithm and reta4•-_.Ig only the pirt of the first term

which !..- of lowest order:

^ +5
J 2	 2 

+	
52	 Y1Xl+Y2X2

pU 2
	 TT 'i	 '-

r 

5 aX 2 - X 2+X 2	
v  cp2 cos 4Tr(6 2 - ft)dX 2 dX1

20	 2	 1	 2

or since v 	 is even in X2	 cp2 is even in X2 , and since cp2 (by

inspection c, the data) is different from zero only for -3 s X2 T^ +3 and

X 1 ' 100

J	 2Y 100 +3 2
	 -X

pU22	 Trl ' 2 0 f ^X 2 X 2+X2 v
l cp2 cos 4rr(6 2 -ft)dX2 dXl

3	 2	 1	 2

J2

2 can be written as:oUm 
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2Y
, 100

J2 

2	

T r
	 K 9 (X l )cos 4Tr(02-ft)dXl

P U o,	 _? 0

where:

+3
K (X)	 J	 y 

r
9
-X 

1	
v cp dX2 1	

-3 ;X72 IX^+X2 	
1 2 2

As before, it can be shown that K 2 (X1 ) is a positive monotonically de-

creasing function of X I . In addition, since (by inspection of the data):

0.7 	 for 20 • X1 100
1

we have:

+3	 2 
)(
 -X

K, (X)
L	

0-^-7 	 l ^ dX2
1	

X1 4-3 s x	 ^X 1 +X

8.4

(X1. +9)..

Now from (B.4) and in view of the second mean value theorem it follows

t:ha t:

F

J2 2 = 2^1 IC2(20) ! cos 47(02-ft)dX1
PUS	 20

where 20	
1
S 100 . bike for 01 we have:

d9l2

dX1
_ 

15

and therefore:

J2 2 	 IC2(LO)	
1 

2
PUS	2Tr x l

7 `y

L
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or:

`12	 _ 1 15	 8.4
^ X

	

r?tlm2
	 TT	 +	 E(20)2+9]2

and finally:

	

,^ 	 0.0190X10-3
	

(B.5)
P LTA `

F.sti.mation of J3/PUC
2

The cancellation effect mentioned in Section 3.3.4 cannot be ex-

ploited to find an upper bound for `13 . However, in order to improve

the estini?tion we can use the fact that:

X

1

We write:

	

D,^'	

X Z

	 2

J3 2 	 - r r' f i r — 2 2 Y v1'2 cos 4- r(8 2 -ft)dX2 dXl
PtI",	 `0 (X1 `X2 )

	

100 3	 r X

rr r	 ^X	 2 2 
2 v1 T cos 4rr(8 2 -ft)dX 1) dX1

	

20 0	
2 X1

2

or:

IT
3 = 

2 i K3 (X1 )cos 4TT(02-ft)dX1

PUM	
,

2	 20

where:

('3
	 X

K3 (Xl )	 J '6X	 2 2 2 v1 ?2 dX2

0	 2 X1 +X2
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K3 (X 1 ) is a j^ositive monotonically decreasing function of X 1 and:

7

3
X^ X 2

K3 (X1 ) a	 X
1
f aX	 2	 2 (1- ) dX2

0	
2 +X2LX 1

r
194

X -
arctan X

1 1

S 194 X -
3

X + 3 (X) - 51( X)	 + .. .
1 1	 1 1

s 1--= -4
X13

Also, we have as before:

J

32 	̂
^ K3(20)	 1 1)

pI1CO , 	2.n x 15

or:

J3 1 <, 1 15 x 0.7

pUCO2	 Tr2 (20) 3

and finally:

J32	
0.1329 x 10 -3	 (B.6)

^PUm

Estimation of I2/pUC
2

I 2/pU.2 accounts for the effect of neglecting the contribution from

the ve` )city fluctuations outside the strip IX2 1 `5 . There, only the

fluctuations at the shedding frequency are present and they are very small.

Upon examining the data we find that:
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0.0175	
for X ;^ 5

	

1	 (X7/5) 2 	 2

where again the variables are non-dimensional. from ( 3.25) it follows

that:

T^	
2	

-r (X2 -Y 2 )2 - (X1 -Y 1 )2	 (X2+Y2)2-(X1-X1)2 ~^

	

_	 u

PU 	 - 2 s	 [(X i -Y 1 ) 2+(X9 -Y 2 ) 2] 2 [(Xl-YI^+(X2+Y2)2]2

vl 
cpl 

cos 2rr(O I -ft)dX2 dXl	,

where the fact that 7 rp1 is an odd function of X2 has been used to elim-

inate the part of, a--G which is independent of Y 1 and Y7 . We now
^Xl`

write:

+ a,212 	 2 r	 2	 -2X2Y2+Y2	 2X2Y2+Y22

	

y	 ^
	 (log(l+
	 ) -log(1+	 ) ^ x

PU ..	 ^^2	 5	 dX l 	 1-Y(Xl-Y1)2+X12	 (X1..11)2+X22

v l ?l cos 277(8 1 -ft)dX2 dXl

or, upon expanding the logarithms and retaining only the first terms in

each expansion:

T2 ^ 4X2 ^ ^(^ CO a 2 	 X2	 ..r 	 .
PU 2

	
TT	 X 2 (X -Y `-1X 2 v

l cp1 cos 277(0 1 -ft)dX2^ I
CO	 2	 1 1 )	 2- (B.7)

We note that:

	

a2	 X2	 2X2[3(X1-Y1)2-X2

7)X
1 2 

(X1 -Y 1 ) 2+X2 2	[(X1-Y1)2+X22]3
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and therefore in the domain of integration (i.e., 2 X 1 + M ,

5 -^ X,^ `- + w ) this quantity changes its sign. It follows that the proce-

dure used in the previous estimations cannot be applied here to account

for the behavior of the cosine function in (B.7). Nevertheless, we will

carry out the estimation below by taking the absolute values of the dif-

fPrnnt terns in (B.7), knowing that only a gross estimate can emerge:

+ ^ + W
I2 j 5 .1 r ,^	 a2	

X2	 0.0175 dX	 dX
2

pU	 JI	 bx 
2 (X -X ) 2+X 2 I 

(X 
/5} 2	 2	 1

CO	 2	 5	 1	 1 1	 2	 2

+0° +	 1.^ 0.875 (' (^' 	 ^ a2	 1	 `	 1
d

77
,{ 	 dx	 x

5 L2	

x12 (Xl-Y1)2+X22
	 1 X.	 2

Now, we have:

J CO

	
a2	 1	

+C 6(X1-Y1)2-2X22

^	 = 	 ^dX

2	 aX2f(x1-Y1)2+X22	
dX 

1	 2	
[(Xl-Y1)2+X22]3
	 1

- x2/vr3-+Y1 2X2 2 -6(X1 -Y 1 ) 2 	+ CO	 6(X1-Y1)2-2X22
dX +^	 dX

[(X1 -YI ) 2+X 2 2] 3	1 X
2 /^-3 +Y 1[(X1°Y1)2+X22)3	 1

9	 1	
2(2-Y1)

X2 3	 [(2-Y1)2+X22]3

and therefore:

12
	 s 0.875 r	 9	 1 -	

2(2-Yl)	
dX

pUCO2
	 TT ^	 4^ X24	 X2 [ (2-Y l ) 2+X,,212	 2

s 
0.175 X^ 1,75	 1	 +	 1	 log	 5

	

100 TT	 2(2-Yl)[(2-Y1)2+25]	 (2-Y 1 ) 3	(2-Yl)2+25
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The maximum value of the term containing the logarithm on the right-hand

side of the above inequality cannot be determined accurately, we therefore

evaluate that term at Y 1 = ^ corresponding to the maximum value of P1

(see figure 1). The resulting estimate is:

I?

2+	
0.6308 x 10-3

pUCO

(B.8)
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