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Chapte: 1

INTRODUCTION

When a solid object is placed in an otherwise uniform flow, vor-
ticity develops in the vicinity of the solid boundary and in the wake
as a result of the no-slip condition at the bLoundary. If the associ-
ated Reynolds unumber is high enough, fluctuations in the flow appesr
as 8 result of the instability of the shear flow thus established.
Fluctuations can develop in the wake as well as in the boundary layer
and around the separation points and may lead to turbulence at rela~
tively high Reynolds numbers, These flow fluctuations in turn,
whether turbulent or not, induce a fluctuating pressure field on the
surface of the body. Similarly, if the main stream is turbulent or
simply unsteady, it givns rise, after being distorted by the presence
of the body, to pressure fluctuations on its surface. The pressure
fluctuations in question are of the so-called pseudo-sound type, and
are due primarily to the instantaneous response of the pressure forces
to fluctuations in the inertia and viscous forces in the neighborhood
of the body.

The knowledge of the details of the pressure fluctuations occur-
ring on the surface of a solid boundary interacting with a complicated
flow field is of considerable importance in many practical problems,
The sound radiated by solid surfaces in the presence of unsteady flows
(Cucrle 1955; Ffowcs Williams and Hanwkings 1969) is partly due to &
distribution of dipoles whose strengt' depends upon the magnitude of
the surface-pressure fluctuations. In many situations the contribution
of these dipoles is the dominant one. 1In the recently recognized prob-

lem of airframe noise which is due simply to the motion of the aircraft
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body in the atmpsphere, the dominant part of the sound radiated results
from the interaction of the unsteady flow structure in the vicinity of
the aircraft with the aircraft body itself, Many other problems in the area
of aerodynamic sound can be associated with similar types of interaction.
In addition to the sound radiated away from a solid boundary supporting

g turbulent flow, one often is concerned with the sound transmitted
through that boundary, an aircraft fuselage for instance, in which case
knowledge of the details of the pressure fluctuations acting on the sur-
face is essential. Finally, in the area of structural design, whether
applied to aeronautical problems or more generally to problems involv-
ing the interaction of a structure with a fluid flow, it is very impor-
tant to know the intensity and the scales of the surface-pressure fluc-
tuations in order to determine the loads on the structure.

* Practical problems of the tvpe described above are usually very
complicated and not amenable to direct analytical treatment. However,
as is common in similar si.aations, one begins by decomposing the given
problem into several simpler ones, in the hope that after these simpler
problems have been solved, their combination in one way or another
would reveal in an approximate manner the general behavior of the solu-
tion of the initial probiem. Unfortunately in the type of situations
we are concerned about, even after such a decomposition is made, and

if the interesting features are to be preserved, one is still faced with
complex phenomena such as separation and transition to turbulence, and
to determine the details of the pressure fluctuations of interest via

a complete solution of the problem is beyond the power of present day
analytical techniques. In such circumstances one is compelled to seek

a physical understanding of the phenomena involved in terms of cause




and effect in such a way as to identify each interacting component and
to be able to formulate its role mathematically., It is very important
to note however that such distinction between cause and effect is hardly
unique when nonlinear processes are involved. For instance, in the case
of interest here and which involves a solid body interacting with a com-
plicated flow field, perhaps the only unambiguous way of describing the
physies of t%= pzablem is by writing the general Navier-Stokes equations
and the associated boundary conditions., The equations themselves are
simply the expression of the balance of the inertia, perssure, and vis-
cous forces while the boundary conditions describe the presence of the
body and the nature of the incoming flow. In such a case the value of
any causal theory would depend upon its usefulness in rendering the
problem tractable mathematically. The Acoustic Theory of Airflows,

now forgotten, of Shaw (1949) is one example where the theory failed

to lead to an analytically tractable formulation. Tn that theory the
vortex shedding behind an airfoil in & uniform flow was regarded as con-
trolled by pressure fluctuations on the surface of the airfoil., 1If, on
the other hand, we regard the pressure fluctuations occurring on the
surface of the body as the result of the interaction of an already
existing and known velocity field with the geometry of the body, the

Navier-Stokes equations lead under certain conditions to a linear equa-

tion for the pressure of the Poisson type whose forcing term depends
solely on the velocity field. The formal solution of such an equation
is in the form of convolution product involving the forcing term ard an
auxillary function which depends exclusively on the geometry of the
body, depicting in this manner the separate roles of the different ele-

ments in the problem. Since it is rather the pressure field that we s




are seeking here and since, in most cases, the velocity field is more
accessible to measurement or experimental techniques, the above approach
is the most promising one, and consequently will be followed in the pre-
sent work,

Studies on the pressure fluctuations within a turbulent flow using
the Poisson equation mentioned above began as early as 1948 with the
work of Heisenberg, Obukhov, and Batchelor (1951). These early studies
were concerned with the particular case of an unlimited field of homo-
geneous and isotropic turbulence and used extensively the results of
the theory of Homogeneous Turbulence which was developing rapidly at
that time. Kraichnan (1956a), in prepa ation of a subsequent work on

the case of a turbulent boundary layer introduced a scale of anisotrony

. .. inte the problem, and studied the effect of a mean shear by just super-
posing that shear on the initial field of homogeneous turbulence. In
his second paper (Kraichnan, 1956b) he took into account the presence
of an infinite plane boundary in an attempt to simulate the problem of

the turbulent boundary layer. Although his work laid the foundation

- TN T T T e T T e

* for subsequent works on the subject, his analysis was characterized by
many artificial models which were only kinematically possible. Lilley
and Hodgson (1960), and Lilley (1963) followed up on the subject using

L a different approach which took into account some of the physical pro-~-

? perties of the flow known from velocity measurements in the turbulent
boundary layer, but inevitably encumbered the analysis with many approx-
imations and crude assumptions. Nevertheless, one interesting result
emerged from their work which suggests that the wall pressure fluctua-
tions are mainly due to conftributions from sources located in the outer
mixing region of the boundary layer where large eddies are swept in the

4




flow direction with relatively high speeds. Corcos (1964) elaborated
tfurther on this point in an interesting paper devoted to a discussion
of the measurements ot the statistical properties of the wall pressure
and the associated difficulties,

The theoretical work on the wall pressure fluctuations beneath a
turbulent toundary layer, some of which was briefly descr:bed above,
was motivated by the great practical interest in that type of flows
and the numerous experimental studies on the subject which appeared
during .he same period of time. But, due to the inherent difficulties
of the structure of wall turbulence, the line of analytical approach
based on the Poisson equation for the pressure was somewhat frustrated
and as a result was abandoned for several years. Recently, however,

Panton and Linebarger (1974) using that same equation attacked the prob-

- [al

lem with the help of the computer and obtained some interesting new re-

sults, In their work the flow direction wavenumber spectrum of the wall

pressure was expressed as a five-fold multiple integral which was inte-

grated numerically using the Monte Carlo method, in three different regions

of the boundary layer, in order to assess the contribution of each region,
Except for the case of a turbulent boundary on an infinite plane

surface, the pressure fluctuations occurring on the surface of bodies

of arbitrary shape in the presence of an unsteady flow have not at-

tracted the attention of theoretical workers. On the other hand, exam-~

ples where large~-scale flow fluctuations not of the boundary layer type

“One exception is the work by Hunt (1973a) who considered the interaction
of a bluff body with an incoming turbulent flow (Hunt,1973b) on the
basis of the theory of 'rapid distortion of turbulence' developed by
Batchelor and Proudman,
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occur in the vieinity of compact solid bodies, and consequently indae
pressure fluctuations on their surfoces, are abundant and of considerable
practical interest. The case of a cylindrical body interacting with its
own wake may be the prominent example and constitutes the subjeet of the
present work, Some aspects of this research have been presented previonsly
by the authors at the Sccond and Third Interagency Symposiums on University
Research in Transportation Noise (Karamcheti and Ayoub 1974 Ayoub and
Raramcheti 1975,

In the next chapter the problem of determining the characteristics
ot the pressure fluctuations, induced on the surface of a cylinder by the
tluctuating wake behind it is formulated. The flow in the wake is assumed
incompressible and homogeneous in a direction along the span; the condition
of incompressibility is discussed at he end of the chapter. ‘A fbrmal
svlution is then derived which relates the wnsteady surface-pressure ficld
to the veloeity field in the wake, This allows certain general results to
be derived, which are independent of the cylinder shape or the value of
the Reynolds number, Although the next chapter is devoted primarily to
the mathematical aspect of the problem, some discussion of the physical
aspect of the flow in the wake is included, either to guide the mathematics
or to interpret some new results. When this is done it is gemerally in
connection with bluff cylinders,

In Chapter 3, the case of the circular cylinder is examined in de-

tail, in light of the theory presented in Chapter 2.




CHAPTER 2

FROBLEM FORMULATION AND GENERAL ANALYSIS

2.1 Statement of the P'robivm

We consider an infinively long +x2
cylinder of constant but arbitrary
cross-section placed in a wind which,
far upstream, is uniform of magnitude

v and in a direction normal to the

cylinder axis., A system of orthogonal - X
coordinates (le y UX,) ,ij) as shown
in the tigure, is cet np, Let U  and
0 designate respecrively the viscosity
and de. sty of the fluid which is as- F . s
X Xs

sumed incompressible, and d a char-

acteristic dimension of the cross-section., We assume that the value of

the Revnolds number, which is defined by Re==0)Ua§)/u, is such that the
perturbed flow is unsteady and three-dimensional, and also that the flow

is homogeneous in the axial direction and of wvanishing mean velocity compo-
nent in that direction. The homogeneity in the axial direction implies

that all mean values evalvated at a point in space are independent of the
xB-coordinate, while cross-correlations at two points (x1 > ¥, ,x3) and
(xi ,x; ,x%) are functions of (x3-xé and not of X, and xé sepa-
rately. We further assume that all fluctuating quantities are stationary

functions of time, and therefore all mean values will be taken with respect

to time according to the formula:
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O 7.*.. r

f(t) = lim ) f(ty dt
T e J-T

where the bar over a quantity is used to designate the mean of that quan-
tity. It is proposed to study the characteristics of the pressure fluctna-

tions induced on the surface of the cylinder by the flow unsteadiness,

2.2  Governlng kquations

The flow being incompressible the governing Navier-Stokes equations

can be written in the torm:

‘)

Vi Vi 1 vy )
R p——— e e e e, i ® - ) -

t TV T X, + vz, ¢+ ! L2538

] L N
> (.1
< “Vi > ®

N

1. ’

R
where ViV, Vg are the three components of the velocity vector v, p

the pressure, t the time, v the kinematic viscosity defined by U==%
and where the summation convection over repeated subscripts has been used.
Equations (2.1) are to be supplemented by the no-slip condition at the
solid boundary and appropriate conditions on the velocity and the pressure
at infinity. By applying the operator %;— on the first equation of (’.1)

.

and using the second, we obtain the following equation for the pressure:

4]

52 37 (v,v,)
e = L e . (2.2)
f':xiaxi Bxibxj -

1f we now express the flow field as composed of two parts, one a steady
mean part and the other a time rependent fluctuating part in the following

manner:




> P 13 d o= n o
vi(x,t) = vi(x)-fvi(x,t) 1= 1,2,3

- o -t
pUx, Y = p(x) +p'(x,L)

we obtain by substituting these expressions into (2.2), taking the time
average, and substracting the resulting equation from (2.2 icself, the

tfollowing equation:

SN )
Ere L (2.4)
i
where
.2
» Ty _—
q(x,t) = ==t (2,%)
- A%,
1
and
- . "y L
- ea —a
(e, t) = pRv.vl kvlv! -vivh) . (72.0)
qu(’ PV, ioiy i ’

Again, it we substitute (2.3) into the first equation of 12,1), take
the time average, and substract the resulting equation from the original

one, we obtain:

—r JOI—— ‘)
Lip' Ev; __Bvi 3vi *v; avi b"vi
L A opripey g S0 y U T &
P ~x, At TV 2y VJBX] V3 % VJBXi % 0K 2.7

On the surface $ of the cylinder assumed rigid, the mean and fluctuating

carts of the velocity vector vanish separately and we have using (2.7):

A2y
3p! ’ vy
el s -
oy E:xi Hn; 3% ax. ? (=.8)
S J J S

-~

where n 1is the unit vector (n1 : T, , U) along the inward normal to & .
)

For large values of fxf in a plane x3==constant » the mean velocity ap-

proaches the constant value U while the velocity fluctuation compouents




e O TWESTITERTER

1 .

decrease tv zero like 1/(xﬁ-+x£5‘. ingide the wake,w and like

» 2 5/4
1/(xi”+1m;) outside it, The behavior outside the wake can be seen as
follows, The flow far upstream being considered uniform, the unsteady part
of the vorticity vector is generated in the neighborhood of the cylinder,
and decays at large distances from it. The irrotational velocity fluctua-
tions outside the wake can then be thought of as induced by a concentration
of vorticity in the near-wake region. But we know that the velocity in-
duced by a distribution of vorticity (in an incompressible flow), which
decays satisfactorily in all directions in space, behaves like 1/1;!3
at large distances (see Batchelor 1967 $ 2.9). Therefore since the wake

is assumed to extend to infinity in the +x, -direction and is staiistically

3
homogeneous in that direction, the equare ... +Lc weioelty fluctuation= out-
side the wake behaves like.

-+ o

U/n dy3
1%

- 0

from which the behavior stated above follows. Referring to (2.7) we can
5/4
¢ )
see that outside the wake Bp’/Bxi decays at least like 1/(xi'4-x;3
»3/4 B

and p' at least like 1/(xf-¥x9) Now inside the wake and at large

distances downstream the flow has reached the equilibrium stage and the
pressure p' can be assumed to have approximately the value it has out-

2 23/4
side, i.e., p' decays like 1/(x1 +-x2) .

Unsteady or turbulent wakes behind infinitely long cylinders remain so at
arbitrarily large distances downstream, This is due to the fact that the
Reynolds number based on the width W of the wake and a typical turbu}ent
velocity u' is independewt of the downstream coordinate X ; erxle

and u'nwﬁ'% (see Landau and Lifshitz 1959 page 139).

10
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The flow being considered homogeneous in the axial direction we per-
form a generalized Fourier decomposition in thar direction according to

the relations:

\

. AR ik, . A
p'(x,t) = oy J/ﬁ P(X,k,t) e dk , P(X,k,t) = J/\ p'(x,t)e dxg,

[ ] Y. -]
" 1 te R ikx3 - e - -ikx3
vIGE,D = 5= / v, &k e Pde o, v &k, = f viG e Cdx, (2.9
-0 e O

i=1,2,3

. A iks, . e L -ikx,
a0 =3z [ e@koe Cak, edke - f aGve  Cdny |

o’

-t -0

where §==(X1,X2) is the position vector in the plane normal to the cy-
linder, coinciding with the normal projection of ; on that plane, k

is a real variable representing the wavenumber in the x3-a_,¢ction, and
p ’Vi , Q are the complex Fourier amplitudes associated with k of the

physical quantities p ,vi »q . In the transformed vaiables equation

(2.4) becomes:

)
7P 2
XK. k"p = -Q . (2.10)
i1
Since ;==(n1,n2,0) , Eq. (2.8) can be written explicitly as:
dp! 3p' azvi Bzvé
(nlax -FnZon) - “(“171.ax.'knzax.ax.> >
1 2 I3 i3

S

v! and consequently the derivative SS— of wv! and v/

or since v ; 1 2

vanish on 8 , as:

11




T T T T T e

2 2 2 2
vy vy v, vy
', 3y L 1 1 2, % Vo g
(O 5 TPy 5 )| T MIn G = by (=]
1 2 lg axl X, 0,7 %, |

Upon taking the Fourier transform with respect to X3 s and noting that

n. and n, are independent of x, , we obtain:

1 2 3
.2 ~2 2 2
O o | OE o o i Mo Arwn MU
s 1 1 "2 .
'S
which can be written in a concise form as:
2
\Pj 2Ty,
3 i
| = o= . 2,11
noax| =4Oy ) (2.11
Hs U
The condition on P at infinity is the same as that on p' , i.e., both
the real and imagirary parts of P wvanish like T:f§7§ for sufficiently
X

large values of ]i . Consequently, P(X,k,t) appears to be the solution
of the two-dimensional boundary value problem defined by equation (2.19),
the bounda:~ cowlition (2.11) and the condition at infinity stated above.

This prob’ is reproduced below for convenience:

vp-k’p = -Q )
E.vp]c - uB.VZV'C > (2.12)
2l ~ oy for [E| e

X -

where the operators ¥V and V2 are respectively the gradient and Laplace
operators in two dimensions, C the line intersection of S with the
plane <X1’X2) , and V the vector (Vl’VZ)

The differential equation in (2.12) is that which occuzs in problems

of steady diffusion with absorption proportional to the c. .entration.

12




Hence for a given vaiue of k , P can be interpreted as the stcady
temperature distribution in a two-dimensional domain of thermal conduc-
tivity equal to 1, bounded internally be C and containing a source dis-
tribution of heat, of density -Q (amount of heat generated per unit area
per unlt time). Across C heat flows at a prescribed rate and the medium
absorbs heat in proportion to the local temperature at the constant posi-
tive rate k2 . P 1is therefore the solution of a well-posed boundary
value problem and hence is uniquely determined,* if the boundary C
satisfies certain conditions of regularity, by the data Q and the bound-
ary values LL;.VQV . Note that the boundary condition on n.VP is not

arbitrary in our problem but is compatible with the differenfial equation

since thev are both derived from the same Navier-Stokes equations. How-

ever, for the purpose of determining the pressure from a knowledge of the
—
velocity field the value of n.VP on C can be considered as prescribed.

The interpretation of P in terms of a temperature distribution is useful

in assessing the relative importance of the different spectral componerts

3 of the prcssure once some details on the distribution of Q and ;.VQV c
; for different values of k are known.
2.3 Formal Solution.
% A formal integral representation of the solution of (2.12) can be
F derived using a Green's function G(il?;k) defined by the following
756 -k = SE-Y)
"ﬁ.vc-‘c =0 (2.13)

: G~ 0 as &!*m

“The fact that the coefficient of absorption is positive insures the
uniqueness of the solution.

13




where the differentiations are with
respect to X , and Y= (Yl,Yz) . It
can be easily seen from the physical

interpretation given in the preced-

3¢

ing parapraph that (2.13) admits a

unique solution, Multiplying the

first equation ecf (2.12) by G and u w
the first equation of (2.13) by P,

subtracting the resulting two equa-

tions and integrating over the area

ZR bounded by C and a large cir-

cle C of radius R centered at

R

the origin we obtain:

' 9 9 - —_ = - -p
/ (GV'P - P77G)dX = / PO (X-Y)dX - [ GRdx
ZR ZR

<«
3
[

R

—
where dX is an element of area. Using the Green's formula and integra-

— =
ting the term containing 0 (X-Y) we obtain:

p(?,k,t>=[GQd§+ f(cE.VP-pE.vc;)ds&) o (2.14)
2N CHCp

- —
where n 1is the exterior normal to C and CR , and ds(X) is a line ele-

ment of C and CR . It is easily seen from the behavior of G and P

at large distances that as R goes to infinity the integral over CR

—_ e — 2-0
vanishes. Furthermore, since n.VG C==O , and n,VP C=LLn.V ViC, re-
1

lation (2.14) becomes:

14
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P(Y,k,t) = G(XIY;k)Q(X,k,t)dXﬁﬁi G(X|Y;k)n.v V(X,k,t)ds(X) , (2.13)
> C
where Z 1is the region exterior to C extending to infinity.
Lquation (1.15) expresses the fact that at a given time t and at
any point in space or on the cylinder having the coordinates Y, and Y,

1

in the Xy - and x2~directions, the component of the pressure associated
with the wavenumber %k (in the axial direction ) is determined uniquely
by the corresponding Fourier components of the velocity fluctuations as
distributed throughout the unsteady region in the (Xl,Xz) plane, and also
by those pairs of components whose wavenumbers sums are equal to k . The
contribution of the latter is due to the fact that ¢ contains terms
which are quadratic in the velocity fluctuations, and as can be casily
seen the k-Fourier-component of the product viv} , for instance, is no-
thing but:

+

— -
oy Vi (X,k,t)Vj X,k-k',t)dk' .

-0
The surface integral in (2.15) can be thought of as the contribution to
the pressure fluctuations by the inertia forces and the integral over C
as that of the viscous forces. Some details of the strncture of the

forcing term Q will be given in a later section. In the following we

turn to the discussion of some practical considerations concerning the

In fact the effect of the viscous forces is also included in the integral
over 2 because these forces are responsible for maintaining a particular
form of the inertia forces. However, the above distinction is made only
in consistence with the approach adopted and explained in the introduction,

15




T

sreen's function G and the determination of the total forces acting on

the cylinder.

2.4 The Green's Function - Total Lift and Drag for the Case of a Circular

Due to the linear character of the Poisson equation which governs the
pressure p' , we were able to perform a spectral decomposition in the
axial direction, so that each spectral component of the pre sure can be
studied separately as the solution of a well-posed boundary value problem
in two dimensions. That such a decomposition is meaningful physically fol-
lows from the fact that the flow in general is homogeneous in the spanwise
direction and is composed of two distinct parts: one is discrete and homo-
geneous (or periodic for certain values of the Reynolds number) in that
direction; the other is random in nature and can be assumed homogeneous in
the same direction, in view of the two-dimensionality of the obstacle and
of the flow upstream. A detailed discussion of this and other feature:r of
the flow behind a typical two-dimensional body (the circular cylinder) will
be given in the next chapter. However, in order to guide our discussion
of the Green's function in this section, a few words on the origin and the
rel ative importance of these two components of the flow ar> appropriate.

When a bluff cylinder is placed in a uniform flow at relatively high
Reynolds numbers, two boundary layers form on the sides of the cylinder,
separate from its svrface and tend to interact with each other to form the
wake behind it. In this process two different phenomena take place inde-
pendently. The first is the transition in the individual separated shear

layers, which leads to small scale fluctuations and eventually to turbu-

lence. The second is the direct interaction of these two shear layers,

16




carrying vorticity of opposite signs, which results in the formation of
the lerge scale vortices characteristic of wakes behind bluft bodies at
almost all Reynolds numbers. The random fluctuations have scales of the
order of the thickness of 1"+ shear layers emanating from the cylinder sur-
face and contain only a fraction of the wake energy, while the discrete
component has length scales in the axial direction ranging from 2 to 30
times a typical dimension of the cross-section and carries most of the
energy in the wake. These two compenents which result from two indepen-
dent phenomena in generally two ditterent ranges of scales and frequencies
preserve their separate identities for some distance downstream and do not
interact with cach other in the near-wake region (see for instance Roshko,
1954), With this in mind, it is clear that by studying the distribution
of P on € for a given value of k , we evaluate the contribution to
the pressure fluctuations on the cylinder, of a physically identifiable
component of the flow.* The usefulness of the interpretation of P in
terms of a temperature distribution is likewise easily seen from the above
discussion, for the wavenumber %k dis of the order of an inverse length
scale in the spanwise direction, and kz is the rate of absorption in the
analogue problem,

In the form (2.15) the solution of the problem requires, among other
things, a knowledge of the Green's function G which satisfies (2.13).
The usual method of finding G consists of writing it as follows:

c(X|Tik) = c0(§i§;k)+cl(3'c|?;k> , (2.16)

ot

Here we are implicitly assuming that the contribution from the quadratic
terms in the forcing function can be neglected. We will do the same in
some of the discussions of $2.6 and §2.7. The role of these quadratic
terms is discussed in Appendix A.
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where Go(ﬁi?;k) i1s the free-space Green's function satlisfying the first

equation of (2.13) and the boundary condition at infinity, and G] is

a solution of the corresponding homogeneous equation, which is regular
everywhere outside C and such that the sum GO-I-G1 satisfies the second

boundary condition in (2.13). GO is given by (see Stakgold, 1968):

el s 1 ~ =
. = m——K - 2
Go(xiy,k) 2ﬁh0Hk(X Vil o, (2.17)
where KO is the zero-order modified Bessel function of the second kind.

This function is tabulated (Abramowitz and Stegun, 1964), and has the fol-

lowing asymptotic behavior for large and small values of the argument:

L ¢
KO(Ot) ~ o © for -
(2.18)
Ko(a) ~ -loga for a=-0
As for G1 , Lt satisfies the following problem:

2 2. _ N
VG, -k G = 0
= R Sied M e (Roy }
n.vc;lf = -5-n. K Tk (x-Y)|] (2.19)

C C

G1 -0 as li( - ® -

For certain particular shapes of the boundary € , (2.19) can be solved

by the method of separation of variables. The solution obtained is usu-
ally in the form of an infinite series of cylinder functions. When C 1is
a circle centered at the origin, separation in the polar coordinates r
and O yields an infinite sum of terms involving the circular functions

elne and the modified Bessel functions of the second kind Kn(]ki‘) s
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whose asymptotic behavior for large values of the argument is similar to
that of Kn . Approximate solutions can then be found in some circim-
stances depending on the value of k . Another way of approaching the
problem is by using the free-space Green's function alone in (2.14), and

instead of (2.15) the resnlting relation becomes:

- -~ - -~ — - D= e d
P(Y,k,t) = f (:U(xj‘:;k)Q(x,k,t)dx+u /(:()(xiy;k)n.V"V(i,k,t)ds(X)
¥ c

-4 - - - 220"
..fP(X,k,t)n.VGo(XJY;k)ds(x) , (2.20)

C

where GU is given by (2,17), If Q and H.VQV are sssumed known this
equation is an inhomogeneous integral equation of the second kind in the
curvilinear domain € , to which in principle several approximate and nu-
merical techniques can be applied to yield a solution for P on the sur-
face of the cylinder.*

The methods of solution comtemplated above are all approximate and
have as a goal the determination of P , for a given value of k , as a
function of position on the boundary C . Although it is usually desir-
able to have such a solution it +is often sufficient in practice, to ob-
tain expressions for certain parameters, related in a global way to the
detailed solution P . Awmong such parameters perhaps the most important
ones, in the case of a bluff cylinder, are the total 1lift and drag forces

acting on the cylinder. Using (2.20) we derive below such expressions for

the case of a circular cross-section.

"If such a course is to be followed (2.20) requires some modification un-
less the dependence on time is simple, nevertheless in its present form
Eq. (2.20) is useful as we will see below.
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— vy

-
et r,0 designate the polar coordinates of X and &+, ¢ thosc

of Y, d/2 being the radius of C . We multiply (2.20) by -sin‘.’%d‘. ,

after setting ¢ = d/2 , and integrate from =0 to r=27, to obtain:

i
L(k,t) f ~P(§',k,t:) sincp%dfp
Q0

21

= -%f sinrp{fcl)(?c!?,k)Q(?{,k,t)dk’} dep

0

27

207
9
- - - e e ]
-(%—) uf sin'pf/ Go(le;k)n.v“V(x,k,c)de}dr:v
0 0

2

2m
d 2 — - e e .
+(:,') f singﬁ{f P(X,k,t)n.VGO(X‘Y;k)dH}df.",(:!.iﬂ)
0 0

where L(k,%) designates the fluctuating 1ift per unit span associated

with the wavenumber k*, and evaluated at time t . We now set:

21
d X -
Q (k,t) = -5 [ sino{ [/ 6QdX}dy
0 z (2.22)
21 2
d.2 - 2
Ss(k,t) = -u(—z-) sin'p{f Gon.v vdh Ydegp
0 0
and noticing that E.VG (;(H(‘;k) = -———O(—}Eﬁ";k)? we obtain, after inter-
0 or y=d/2
=

changing the integration in the last term of (2,21):

The spanwise correlation length of the fluctuating surface-pressure at a
particular frequency is found experimentally to be a function of the azi-
muthal angle ¢ in general. The spectral decomposition in the x,-direc-
tion has therefore the advantage of removing the ambiguity associadted with
the choice of a characteristic spanwise length scale of the fluctuating
lift (or drag) at a given frequency.
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2 2t
. d 2 2 I3 - bl st 4
LAk, tY = Q\‘(‘k,l)‘fﬁu(k,t‘)-(ﬂ’)‘) P(X,k,t)‘,-._‘—l;- G”(Xh';k)sin vd a4 -,
d 0 1ad/
to, My
The integral inside the brackets in the
last term of (.03, which we denote by
Xo |
I , is evaluated at constant r and for ﬁ
-3
Y i the circle €, Now since - -
4.4 I Y X
G“(z{;.';k) is a function of  (X-Y! only,
- P {
when Y is on the circle, it boecomes a
- — X
function GH(‘:‘--Q,r;k) of r and (-A)
only, Therefore the integral in question
can be written as:
Ria)
I = / 'ﬁ")(v:J—Q,r;k‘) sinondy
0
or, after making the change of variable v=0-A | as:
RESE
I
I = / G()(v,r;k‘)sin(v+6')d'v
-6
0 217
= ’/'(’ﬁ()(v,r;k)sin(v+6)dv+/E”(v,r;k)sin('v+9)dv
-A 0
2m-0

Z';’() ,r:k)sin(v+0)dv .

2Tt

Since ?‘;O(v+2rr,r;k) :'50(7,1';1() the first and third terms in the above

expression can be easily seen to cancel, and we have:
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e

Yy
l

I = cos Sf G”w,r;k) sin'yd'v+sinG/ '(\:“(‘,-*.r:kwu.s*-'dv N
0

0

Hence, (2.219) becomes:
Lk,L) = Q (k, r)+& (k t)—('—) ){.4 f(. (v,r; k)hm,dﬂ _/ l()\ k,ticon8d9
0 '_' 0
o 2
+{r‘~‘;/\(;”('v,r;k“)co:~"vd'}/} f P(X,k,t)sinfdb ] .
0 r=d/2 4

If we define D(k,t) to be the fluctuating drag per unit span associated

with the wavenmumber k , we have:

217

Dk, t) -f P(X,k,L)cusG%dQ : X’ on €

i)

and finally:

r;'iy

Lik,t) = Q (k,t) +'~’ (k,t) +71f f (V,r;k)siny dy } I)(k t)
r=—-
0 2

Yy

de 3 .
';{ = f G()('V,r;k)cos ydvy } d Lk, t) . (2,24)
0 i)
d .
Similarly if we multiply (2.20) by -cosv5de, and integrate from ¢=0
to @=27 we obtain following the same procedure:
21
\ ded e
D(k,t) = QC(k,L') +.SC(k,l:) +-5{—:; f(:()(‘,\/,r;k)cos vdv '} dI)(k,t.)
r=7
0 2
21
—“c-l'{r*‘—' G (v,r3k)sinydy } L(k,t) (2,23)
2 .\’r () 3 k] ;.__d_ b . LR I R
0 -
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where Q. and Sc are defined as in (2,22) by replacing sin7t by
cos 4. Bgs. (2,24) and (2,25) are two independent algebraic eqnations in
I. and I} , and hence yield the following expressions for the 1ift and

drag forces L(k,t) and D(k,t) :

o tk,t) +8,(k, )1 =T L ()} +{Q (K, t) +8,(k, 637 G ()
L(k,t) = - D) G) - - 'r) Y
IR W N (2.7
f1 GOC(k)}‘ + Gy ()
Ttk ) +#8 Ge, 310 (k) 1-{Qu(k,t) +S,(k, )} &, (1)
Dik,t) = —2 - L x 3 05 . (2.07)
2~ 2
{l-c”c(k)} Gy ()
where -
Y Ak) = = - G (v,r:k) cosvdv] ,
ne 20 3 G "
0 r=d/?
Kl
T o - Lo o k) sit k
huﬁ(k) = 2{ r .r G”(v,r,k)slv)/dyj )
0 r=d/ 2

An important feature of the formal solution (2.15) and the expressions

(2,260 and (2,27) is that the integrals over @ involved converge very
rapidly. These integrals which in principle should be integrated over
the entire region where Q  is different from zero, can be integuoited in
—

a practical problem over a limited region arcund the point Y , due to

. . - - = E -
the asymptotic behavior of G and GO for large values of [X-Yl . 1f
P 1is to be evaluated on € the domain of integration is generally con-
fined to the near-wake and is smaller the larger the value of k for
which the pressure is to be evaluated (see, for instance, equation (2.17)
and the asymptotic behavior given in (2,18)). From an experimental point

of view, this constitutes a considerable advantage because the amount of

velocity measurements needed would be very limited.
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Before leaving this section we note that in practical applications
our analysis so far can be applied only to situations where the length of
the cylinder is many times the diameter of the cross-section and more im-
portant, many times the largest length scale in the spanwise direction

(in which case the assumption of homogeneity in the x,-direction is valid),

3
This 1s usually the case at high Reynolds numbars,

2.5 The Two-Dimensional Case,

———r

For relatively low values of the Reynolds number (Re less than Y0
in the case of the circular cylinder for instance), the large vortices
in the wake have a correlation length in the spanwise direction many
times the diameter of the crnss-section and within a correlation length
these vortices have straight axis parallel to the cylinder. In addition
the random component of the velocity fluctuations is practically absent,
In such circumstances the flow can be assumed two-dimensional and equa-
tion (2.4) can be integrated using the two-dimensional Green's function
G(ii?) associated with the Laplace equation.* The boundary condition at
large distances outside the wake can be derived as in § 2.2 using (2.7)
and the behavior of the velocity fluctuations there. The latter is given

(upon integrating the three-dimensional behavior along the x,-direction,

3

in view of the two-dimensional assumption) by:

X — =
‘Note that the two-dimensional Green's function G(X\Y) has a singular

behavior for large values of |X-Y| . In other words for very small
values of the wavenumber k , coryegponding to very large values of the
spanwise length scale 2m/k , G&X]Y;k) approaches G(XlY) only in a
finite domain around the point Y ; this can be seen from the second re-
lation in (2.18) and by solving (2.19) to the first order in k2 . This
singular behavior however does not introduce any difficulty in the follow-
ing because in (2.30) the first integral can be integrated by parts and
the second is negligibly small as we will see in the next chapter.
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P dx3
[} R 3 '
- x|
or
1‘_--
R
X, +x

A

9 ey
and therefore p' decays like 1/(x1"4-x22) for large values of Ex!

outside and inside the wake. Hence ©p' is the solution of the following
problem:
S
P -q
n.' =:LL; 72;" (2.28)
ol = BRIV
ptovte as K] we |
X ]
The two-dimensional Green's function G(i!?) is the solution of:
2 -
7°G = -3 (X-Y)
n = ( 2.2
n.VG‘C ) (2.29)
(6] ~0  as |X| ~ e

G(§1¥) as defined by (2.29) is nothing but the velocity potential of the

flow created by a negative unit source at the point ? in presence of the
solid boundary C . The function G can therefore be constructed Sor a
variety of shapes of the boundary C , using the methnd of imazes and the
techniques of conformal mappings, as it vill be -hown in the next chapter.

It is to be noted that the solution of (2.29) is determined up to an

arbitrary harv-mic function, reagular everywhere outside € , bounded at
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infinity and satisfying the second condition of (2.29), However, it can
be easily verified that when such an arbitrary function is added to G
the resulting expression for p' is not altered, Combining (2,28) and

(2.29) as in § 2.3 and noting that the integral:

f (Gn.¥p' - p'n.vG)ds (X)

°r

over a large circle CR of radius R and centered at the origin, vanishes

as R goes to infinity, we obtain:

) =, - - — el B s 4 V- -~ -4
p'(Y,t) = ”G(X!Y) q(X,t)dX+uI G(XIY)H.V'—V‘ (X, £)ds(X) . (203m
= C
-
The Green's function in two dimensions behaves like log ;X} for
large values of \i{ . Therefore in order to improve the convergence of
the integral over ¥ in (2.30), we perform a double integration by parts,

by using (2,5) and (2.6), in the following manner:

37q. ,
. ll
Gq = G 5p5x
1773
2 iq, . N
A G 3 14 A 3G
T 3K, ax 95 ax © 3X, T axj(axi 4 4
Hence:
jc X = | »le aX+ ! Ga——lnd(fc) ;2L ds (X)
J q JJax 3%, 943 J 3x, Ty 8- 3 qqnyesi®).
5 T 3 CHCy 1 CHCy *
Now:
qu. Bv Bvi 3v!
- ! (. '
5, - Psx vyt vy o vy
% j
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2
2, .
Therefore both qii and 75%1 vanish

=1

on C. On CR-W , qij is d% the

order of l./R2 and aqij/axj is of the

order of 1/R3 , consequently the inte- e
grals over CR—W vanlish as R goes to

infinity. On W , the wake width, which

is of the order of R35 > Gy is of the

order of 1/R% apd quj/BXi is of the

2
order of 1/R3/" and therefore the integrals over W also vanish., We

have finally:

— r 2 ndnd -~ - —~ | b e " oy
o' (¥, t) = fJ %}‘; }a{xn 0 ;&) dx+uf cE|Da. 7% (X, ) ds(®) .(2.31)
g 19%5

c

2.6 Structure of the Source Term Q -~ Some Practical Considerations.

In many practical problems an interesting and important question
arises as to how the magnitude of the pressure fluctuations on the cy-
linder surface, or the magnitude of the 1lift and drag forces varies with
Reynolds number. A quantitative answer to such a question would require
quantitatively detailed information about the changes which occur in the
flow when the Reynolds number is varied. However, at this stage of our
knowledge of the complicated flow field behind bluff bodies, a qualitative
analysis is useful in pointing out the major factors which come into play
in determining the pressure fluctuations on the cylinder. To this end we
take in this section a closer look at the source term Q in the three-
dimensional case (corresponding to high Reynolds numbers) and compare

with the two-dimensional one. Also, we concentrate on the discrete compo-
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nent of the flow and the corresponding surfare-pressure which is dominant
at almost all Reynolds numbers and is of considerable interest in applica-
tion.

First, we note that the continuity equation (the second in (2.1)) can
be shown to be satisfied separately by the mean and the fluctuating parts

of the velocity vector. Therefore, we have:

;v v
1 2

=20 (2.32)

Bxl sz

and

t 1 1

::1 + :v2 + Zv3 =0 . (2.33)
1 g %3

Also if we denote by Gi and wi , 1=1,2,3 the mean and fluctuating

-
components of the vorticity vector ® , we have:

1 Ny !
3
1 sz 3%y
dv! ov!
1 3
Wy, = 5= - 5 ? (2.34)

2 Bx3 Bxl
' I

3 5x1 axz J

Upon taking the Fourier transform of both sides of each relation in (2.34%)

and defining Qi (i=1,2,3) as:

Qi(?c,k,t) = | wi(?{,t)e dx. 3 i=1,2,3 . (2.35)
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we obtain:

o~
L
(84
23
I
[N
=
J

e

2
1]
3

Now: 2

2 - &
©dy; T 435 9 dgq

6x33x1 + BxBsz 2

-+

By referring to (2.6) and noting that v3=0 , we have:

2 2
d7q 37q

11 12

q = 5 T
Bxl"

Ax. A
Bxl.x2

2 2

979,y 57dy,
TSk, T T2
X2 1 sz

2

3 o ! Tapl o Ban®
+-§§I§;; 2p(v1v3 + vlv3 - vlvs)

2
3 — 1 (] ()
+ 5%, 3% 20 (v, vy + vovy - vyva)
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Let us designate by

Flo]

the Fourier transform with respect ‘o
any quantity o .

Xy of
We have by applying the Fourier transform to

q and
noting, in view of the assumption of homogeneity in the xj-direction, that
[y | U v 3
V1V3 R V,v3 , and v3 are independent of x

3¢
2

)
. 1%,
2 )
} Y0, . "Ry,
S
RS ax,)z

3
—_—2 I
axl p(v1V3-+F vy ])

3 p(?2v3+F[v,;v'J)

- k oF[V ] ,
where
j-m -ikx3
= | -
Qij {m (x,t)e dx3 ; 1,j=1,2 (2.37)
or,using (2.32):
EQ v, av
Q=353 5 Ziko(vl\

- 2 ’2
Vzaxz'”[ a?c (vyv )+““<V v D -k FLv)]

The second term on the right-hand side can be written as
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R

W, _ AV w2y v, av/!
3 3 Fy! 1 2 y 3 y 3
Hlkp(vl ﬂxl v, 3, w==+TF (., X, ax ) + vy 3X1+v2 3% h o,
2
or, using (2.33), (2.34), and (2.36) as:
i v. - v, Q) +
21kp{vl(ikV1 p) v, (1KY, + )
Bvé Bvi Bvé
"l oy ! ——t $ (e o f 1 - !
Flovg gty (5 -wp) +vy s -epdl
3 3 3
and finally as:
2ike {ik (v, V +v \'3 )+(v Q. -v.0) -likFrv'ZJ
- 1°1 O T ) 2 '3
1 «r' 2 v '
+ 5 ikFLv 1 v, ]-FFrv wy -V woj} .
Consequently Q 1is given by:
1:——11— 9 .04 ; ! o rtin!
Q BXiBX hlkp(v - lwz)-+21koF[v2w1 v1w2]
2 — — 2 2 2
- M - 1 1
2k7p (v, +v,V,) -k7p F[vl +vy 1 . (2.38)

We emphasise that the first term on the right-hand side of (2.38) is the

sume of four terms only and Qij is given by:

= 27 2 Tyty! o . i,ji=
Qij p(zvivj-+b “Yivj vivj]) ! ij=1,2 (2.39)

In order to appreciate the expression of Q in the form (2.38), another
feature of the discrete component of the fluctuating wake is worth ela-
borating upon. We have said in a previous section that this component
results from the interaction of the two shear layers emanating from the sur-
face of the cylinder, and has a finite length scale in the spanwise direc-

tion whose value varies with Reynolds number. While the interaction of
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the two shear layers is a two-dimensional phenomenon, it is obvious that
the finite spanwise length scale is the result of some three-dimensional
effect. This effect which can be expected to be due to the nresence of
three-dimensional disturbances in the flow, takes place in each of the

two shear layers separately. The evidence for this is provided by the
experiment of Humnhreys (1960) in the particular casc of a circular cy-
linder at Reynolds numbers close to the critical value., Humphreys ob-
served a periodic cellular structure along the length of the cylinder
which was not altered by the introduction of a splitter plate in the wake,
the effect of which is normally to prevent the interaction of the two
shear layers (more discussion of this point is given in the next chapter),
As tor the naturce of the effect of the three-dimensional disturbances on
the individual shear lavers, one might think that it is restricted to

the generation of the small scale fluctuations which lead to the random
component., However, since potentially amplifiable disturbances with wave-
vectors in all directions are usually present, the ones with wavevectors
making a large angle with the direction of the mean flow have wavelengths
large compared with the thickness of the shear layers, This i1s due to

the fact that in the direction of such wavevectors the velocity jump
across the layer is relatively small and correspondingly the wavelengths
of the most amplified disturbances are likely to be large. Furthermore,
when such distuyrbances grow to the extent of being able to change the
direction o* the flow streamlines from that of the main flow, which is in
the plane normal to the cylinder, secondary flows in the form of flow-wise

vorticity are generated" which strengthen the spanwise non-uniformity and

ot
"

Flow-wise vorticity is generated whenever a shear flow is turned in a
plane normal to the velocity gradient.
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create in a remarkable and puzzling manner a stable situation whose energy
is continuously supplied by the mean shear flow, This flow-wise vorticity
which is absent in the two-dimensional case constitutes, in addition to
the finite character of the axial correlation length, the main distin-
guishing features of the flow at high Reynolds numbers, 7To see how this
is reflected in the source function Q we consider the integral over

in the solution (2.15) namely:

jTG(ii?;x)Q(i,c)di .

PN
Referring to (2.38) and integrating by parts the first term as in the
two~-dimensional case we obtain:

o \2 '—'1“* 4

] ng Y-Q — R
I X, 5%, QKX
b tod

no

+ 2ipk JJG(EZi—"Y’;k) {(\-;2‘.'21 -'\;;(2”)4-1.‘ [véw’

1 -viwé]}d§

)
A

2o [Je@Fola@y, +7v,) +5 [vi? 4y 23R L (2.40)
by

The first integral in (2.40) is the same as the one in (2.31) except that
in (2,40) only the component with wavenumber k of qij is taken, and
correspondingly G(il?;k) instead of G(il?) is used (note G(i!?) is
nothing but G(il?;O) ). Hence varying the Reynolds number means, for
the discrete component, varying the value of k , higher values of k
being in general associated with higher wvalues of Re . Therefore, this

term which can be thought of as a quasi-two-dimensional term reflects only
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the ettecet of the finite spanwise correlation length of the large vor-
tices at high Reynolds number., The sccond integral in (2.40) represents
the contribution ot the fluctuating tlow-wise vorticity to the pressure
fluctuations. In fact, the mean flow being steady the first term in that
integral reflects the departure of this flow-wisce vorticity trom its mean
position, since (gznl-;ng) vanishes when the vorticity vector in the
plane (XI’XQ) coincides with the mean velocity vector, The second term
is a nonlinear effect resulting from the non-aligmment of the two-dimen-
sional zomponents of the velocity and vorticity fluctuations vectors,

The third integral is an additional term involving only the components of
the velocity tluctuations in the plane (Xl’xﬁ) .

In conclusion we note that the solution of the problem as given in
(2.15) or in the form (2.26) and (2.27) is a function of time, 1In pric-
tical problems one is interested in averaged quantities like correlations,
intensities, and frequency spectra., Therefore, we define in general the
twp-point space-time correlation of the surface-pressure associated with

the wavenumber Lk as:

-~ b i
RPP(?,Y,!(,T) = D(Y,k,t) P(Y',k,t+T) (2.41)

where the star indicates that the complex conjugate should be taken,

Similarly for the lift and drag forces we define:

RLL(k,T) = L(k,t) L"(k,t+7T)

RDD(k,T) D(k,t) D*(k,t+T)

When the formal expressions of P , L and D are used in (2.41) and
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(2.42), we obtain sums of double integrals over terms involving thefactor
- e — - e b )
GX I Y;KGEX'|Y' 5k) or GO(XlY;k)GO(X'lY';k) , and averaged products of

the form:

=2, — w
RAE}(X’X sk, T) = AKXk, £) BT (X k, £ +T)

where A and B are the Fourier transforms of some physical quantities
-t -

a(x,t) &and b(x\t+7T) . In accordance with the definition of Fourier

transforms of quantities stationary with respect to the variable of

transformation we have:

L/2 272
RAB(-}Z’—ilsk,T) = ‘[ j «"i(;,t)b(;',t +T)e
=412 -4/2

-1k (%, ~x!
373 '
dxsdx3

where £ is very large but finite (for instance the length of the cy-

linder), or:

pr2 b - ik (s -x
R,, = J f R (X,X",x.-x!,T)e dx,dx/!
AB Y072%4)2 ab 373 3773
4/2
i - = -i%F
= 4 J R b(x,x',%,r)e Teag
~2/2 @ ,

Consequently, the spectrum densities per unit length of the cylinder

4 : .
RPP/ , RLL/£ , and RDD/Z are given as sums of double integrals over
terms involving quantities of the form F‘[Rab] . Therefore, from an ex-
perimental point of view the quantities to be measured, in order to deter-
mine the pressure characteristics, are the various cross-correlation func-

- — )
tions Rab(X,X'.%,T)
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2,7 Limitations of the Incompressible Flow,

The general analysis given in the previous sections 1s based on the
incompressible form of the Navier-Stokes equations. In a steady flow it
is well known that variations in the density of the fluid can be neglected
if the Mach number is very small. However, for & time-dependent flow this
condition is not suificient, for no matter how slight the compressibility
of the fluid is, compression waves make their appearance in the medium and
affect a rhange in the incompressible flow condition., Nevertheless, it
can be shown that within a length scale of the motion, and if that length
scale is much smaller than the wavelength of these compression waves, the
dynamics of the flow can be described as if the fluid were incompressible,
More specifically if A and 7T are respectively a length and a time
scale of the velocity fluctuations the condition for local incompressibility
is:

A << a_T s (2.43)
where a_ is a typical speed of sound in the medium (see Landau and
Lifshitz 1959, 10 or Batchelor 1967, $3.6). Since the Navier-Stokes
equations are simply the expression of the dynamics of the flow within a
small neighborhood of a given point the above condition (together with
that of small Mach number) is sufficient for the validity of equations
(2,1). However when these equations smre combined together (to yield equa-
tion (2.4) and later (2.10)) an equation of the ¢llintic type is obtained
which says that the pressure fluctuatiens at a point are not determined
only by the local velocity field, but by the vzlocity field (both mean
and fluctuating parts) throughout the entire unsteady region of the flow,

the effect of each point, whether close or remote, being propagated with
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an infinite speed. For this to be valid it remaing te be shown that the
ma jor contiibution to the pressure fluctuations as given by the rolution
of that elliptiec equation (i.e., equations (2.15) and (2.31)) comes from
points within a distance of the order of the length scale A ,

In the wake behind a cylinder several length and time scales are
present in general. However since we have considered each length scale
%; in the axial direction separately, we can check the  ~iition (2.43)
tor each separate value of k . When k corresponds to ..« discrete
component of the wake the time scale can be taken as the inverse of the
shedding frequency f{ of the vortices and the length scale in the plane
(Xl,xz) as the longitudinal spacing a of these vortices. Both a and
f depend on the shape of the cylinder and for a given cylinder on the
value of the Reynolds number., However for the sake of illustration we
consider briefly the case of a circular cylinder, Then (2.43) can be

written as:
- 1
a << a T ’

or as:

1 1
—_— L e
a af

3

and finally as:

U

8

<« 4/a
St

°l

=<}

where St is the Strouhal number defined by S8t = £d . The lateral spac-

U

[=2]
ing of the vortices is genera.ly of the order of the diameter d and

therefore the ratio d/a is approximately equal to 0.28 (the Kirman ratio).

On the other hand St is always between the values 0.12 and 0.21 (Roshko
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1954), Consequently the above condition is the same as that of small Mach
number, As for the relative importance of the contributions to the pres-
sure fluctuations (on the surface of the cylinder 1»r instance) from
different regions of the flow field, it cen be shown that, due to the
rapid convergence of the integrals involved, the major one comes from
peints within a distonce of the order of the longitudinal spacing of the
vortices, In fact is is shown in the next chapter that this is true even

for the least convergent case, namely the two-dimensional one.

When cthe random component is considered, for each value of k there
exist several length and time scales in the (Xl,Xz) plane. Nevertheless
a length scale of the velocity fluctuations in low Mach number turbulence
is much smaller than the wavelength of the sound having the frequency of
those fluctuations. Therefore (2.43) can be assumed to be satiffied for
all the scales present. On the other hand for a given value of ¥ the

rate of convergence of the integrals in the solution is fixed since the

Green's function G(§l§;k) is fixed. Hence for each k there exist fre-
quencies which are high enough for their wavelengths to be comparable with
or smaller than the size of the region over which these integrals converge
satisfactorily. For such frequencies the incompressible model breaks down

and the compressibility of the medium must be taken into account.
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CHAPTER 3

THE CIRCUIAR CYLINDER IN UNIFORM CROSS FLOW

3.1 Introduction,

We shall now concern ourselves with the case of a circular cylinder
in uniform cross flow, Our present state of knowledge of the nature of
the unsteady forces acting on the surface of a circular cylinder in uni-
form c¢ross flow is due primarily to a number of experimental investigations
wvhich were conducted and reported in the literature during the last twenty
yvears, These investigations consisted in the first place of measuring
directly the forces in question, either locally as pressure distributions
or on a short segment of the cylinder as total lift and drag forces. In
some instances direct measurements were made of the moment acting on the
eylinder, from which values of the average forces were deduced., The ob-
jective behind these various measurements was to provide valuable data
necessary for the design of cylindrical structures subject to cross winds,
and also to provide information needed in the evaluation of the acoustic
intensity radiated as aeolian tones. Concurrently, but quite independently,
considerable eiffort was dirveeted toward achieving a better understanding of
the unsteady wake structure behind the cylinder. This effort was a contin-
nation of an earlier interest in the subject which began after the dis-
covery of the asymmetric arrangement of the vortices in the wake by
Ahlborn and Bénard, and the subsequent work on the stability of such ar-
rangement by von Karman. FExcept in few cases, these two aspects of the
problem, namely the wake structure on one hand and the unsteady loading
on the cylinder on the other, continued to be treated separately and no

attempt was ever made to study their interdependence. This is perhaps not
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surprising because the study of the development of the vortices in the wake
their stability, their convection, and subsequent decay downstream was con-
sidered of a fundamental interest, while the determination of the unsteady
loading on the cylinder was motivated by purely practical problems. In
fact, the part of the wake which is intimately connected to that loading,
namely the near-wake region, where the vortices are first formed and which
is sometimes called the 'formation region' was seldom investigated in de-
tail by the students of the first aspect. The few papers which considered
the relationship between the structure of the near-wake and the unsteady
forces were motivated by the inconsistcucy of the available data on these
forces: measurements made under slightly different conditions yielded re-
sults with substantial discrepancies. Such discrepancies were suspected
to be due, in addition to differences in the modes of measurements and the
imperfections of the measuring devices, to differences in the free-stream
turbulence level and the details of the experimental setup, and an attempt
was made to explain the effect of these differences on the unsteady forces
through their effect on the properties of the near-wake region. Although
this attempt was only partially successful, being limited to qualitiative
arguments, it led to substantial insight into the mechanics of the 'for-
mation region.' Numerical solutions of the complete Navier-5tokes equa-
tions were equally attempted, but these cannot be expected to shed any
light on controversial issues of the type in question since they depend on
the manner in which the flow is perturbed and are based on purely two-di-
mensional models.

We present the theory of the preceding chapter as an alternative ap-

proach to the problem which clarifies the relationship between the flow
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structure in the near-wake and the unsteady loading on the cylinder and

puts it on a more firm and rigorous basis, This will enable us to recon-
sider some previously published incorrect results and will lead us to the
discussion of some interesting features of the flow in the wake. 1In the
next section a desceription of the flow field in the near-wake is given,
together with a review of the available data on the unsteady loading and
the available work relating the two aspects of the problem. This is fol-
lowed by a detailed study of a representative case of the low Reynolds
number regime, Iinally, the high Reynolds number case is discussed in

the last section.

3.2 Description af the Flow Field - Review of Previous Work.

The entire range of Reynolds number Re (based on the cylinder diame-
ter), insofar as the nature of the fluctuating wake is concerned, can be
broadly classified into three ranges (Roshko 1954). The fiist range ex-
tends from a valuc of Re between 30 and 40 to some value between
150 and 200 and is characterized by a stable and regular vortex street
extending far downstream. The tluctuating energy of the flow is concen-
trated into discrete irequencies and decays downstream by the mere action
of viscosity; no turbulence occurs in the flow. The second range which
extends from Re Dbetween 150 and 200 to Re between 300 and 400
is a transition range characterized by irregular bursts in the velocity
signal from a hot-wire placed 1n the flow indicating a laminar-turbulence
transition and making the determination of the frequency of the dominant
component rather difficult. The third range called the .rregular range

extends from Re between 300 and 400 to a value near 107 the highest
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value of Reynolds number investigated up tec date. In this range turbulent

fluctuations accompany the periodic fluctuations; however the frequency of

the latter is easily detected over most of the range. There is transfer
of energy from the discrete components to the random ones as the fluctua-
tions are convected downstream, and the wake decays by the combined action
ot viscous and turbulent stresses. It can be noted right away that the
reason for which the limits between the various ranges are not well de-
fined lies in the sensitivity of the flow to the experimental environ-
ment. For instance, the value of Re which marks the first appearance
of fluctuations in the wake depends mainly on the ratio of the tunnel
width to the cylinder diameter, being higher for smaller values of this
ratio. On the other hand varying the level of turbulence in the free-
stream can vary the limits between the f{irst and second rsnges and be-
tween the second and third ranges. We now consider in detail each of the

three ranges separately.

The Stable Range.

For values of Re below 30 or 40 (and above a value near 6) the
flow in the wake is steady and consists of two standing oppositely rota-
ting eddies at the back of the cylinder
and a laminar trail immediately down-

stream as shown in the figure. The ’/////,,———~—~—--\\\\\\\\

vorticity generated in the boundary

layer on the forward face of the cy- ‘\\\\\\\\\_____——”,,,/’///’ﬁ

linder goes in part into the standing

eddies and in part into the trail form-

ing the laminar wake (see Batchelor 1967, § 4.12). Foppl (see Goldstein

42




T — e TSSO T o .

1938) showed, using an idealized model of two potential flow vortices that

the symmetrical arrangement of the two eddies is unstable for asymmetric

disturbances, It is an experimental fact (Kovasznay 1949, Taneda 1956)
that when a value of Re between 30 or 40 1is reached the laminar
wake shows signs of instability before the standing eddies do. Regular
sinusoidal fluctuations antisymmetric in the longitudinal velocity develop
and are convected downstream in the form of a vortex screet. As Re 1is
increased, these fluctuations move closer to the cylinder and at a value
of about 45 they begin to affect the tip of the standing eddies which
begin to oscillate laterally assuming an asymmetric position. Below a
value of Re between 90 and 110 (Tritton 1959, 1971) the standing ed-
dies, although oscillating, remain attached and fluid does not leave them;
above that value fluid moves continually out into the street, and Tritton
speaks of two different modes of vortex shedding, a 'low-speed mode' which
has its origin in the instability of the laminar wake and a 'high-speed
mode' in which shedding starts in the immediate vicinity of the cylinder.
Tritton (1959) discovered these two modes when studying the variation of
the Strouhal number with Reynolds number, he observed a discontinuity in
the St wvs. Re curve at Re equal to 90, separating two different laws
of variation of St with Re , and also irregularities in the street when
Re was close to that value. Later Gaster (1969, 1971) found that such
discontinuity or irregularities could arise from slight nonuniformities in
the cylinder or in the free-stream in a direction along the span. Berger
(see Wille, 1966) found another mode, t - 'basic mode,' for Re above

120 similar to the 'low-speed mode' of Tritton. Tritton (1971) argued

that the 'basic mode' of Berger could possibly occur throughout the whole
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stable range instead of his two modes depending on the level of distur-
bances in the free-stream. These different findings were for some time
the subject of a controversy which does not seem to have been settled yet
(see the review by Berger and Wille, . . 2).

The basic mechanism involved in the development of the laminar vortex
street is two-dimensional; however three-dimensionalities in the wake in
the form of slantwise shedding or waviness in the vortex filaments have
been observed in this range of Reynolds number, These observations vary
from one experiment to another especially as far as the degree of inclina-
tion of the vortices to the cylinder axis and the existence of waviness
are concerned, which emphasizes once more the sensitivity of the flow to
the experimental conditions and the level of disturbances in the free-
stream., Gerrard (1966a) and Berger and Wille (1972) summarized the ob-
servations of various experimenters, and the picture which emerges indi-
cates that for values of Re not exceeding 60 the flow is stable for
small three-dimensional disturbances or slight non-uniformities in the
cylinder or in the flow upstream and is truly two-dimensional. This is
supported by experiments in both water tanks and wind tunnels (Kovasznay,
19494 Taneda,1952; and Phillips, 1956). Gerrard (1966a) further concludes,
on the basis of his own experiment and his analysis of the occurence of
three-dimensionality that for values of Re below that of Tritton's
transition 'the wake is intrinsically stable and would exhibit a stable
two-dimensional character if the flow and model arrangement were two-di-
mensional." This suggests that for such values of Re the attached ed-
dies behind the cylinder provide at least in the near-wake region a sta-

bilizing factor against three-dimensional disturbances. On the other hand,
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for values of Re above that of the transition the shear layers which
spring freely from the sides of the cylinder are more vulnerable to such
disturbances and slantwise shedding or waviness in the vortex filaments
occur inevitably as it is observed by most experimenters.

Results on the fluctuating loads in this first range of Reynolds
number are scarce, in particular, the ones from direct measurements. The
only available data are due to Tanida et al. (1973), and their Figure

3(b) is reproduced here for reference. In this figure |C

LI is the
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amplitude of the fluctuating lift coefficient defined by:

1 2 .~
L='§'pUdeL R
where L 1is the lift per unit length. Tanida et al, made their mea-
surements in an oil tank (for the low values of Re ) on a 100 mm long
central segment of a cylinder 352 mm long and 30 mm in diameter. The

main feature of their results is the low level of 1ift fluctuations at low

Reynolds numbers. Phillips (1956) using the data of Kovasznay (1949) at
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Re equal to 56 , calculated the amplitude of the fluctuating lift and

drag and obtained the rather high value of €. | = 0,76 for the lift.

L\
Jordan and Fromm (1972) solved numerically the complete time-dependent
incompressible Navier-Stokes equations in two dimensions and obtained at
Re equal to 100 the value !E}l =(,27 . These variations in the results

will be discussed at length later in this chapter,

The Transition Range.

When Re reaches a value between 150 and 200 , the flow in the

near-wake, though still laminar, contains low-frequency irregularities
which become more violent downstream and eventually render the far-wake
turbulent (Bloor 1964). These low-frequency irregularities are believed
to be due to three-dimensionalities in the flow. However, small bursts

of turbulence do not make their appearance before a value of Re of 300
is reached (Bloor 1964)., These occur at random in time and in a direction
parallel to the cylinder axis making the vortex filaments in the street
partly laminar, partly turbulent until a value of Re equal to 400 is
reached., It has been argued by Roshko (1954) and Roshko and Fiszdon
(1967) and observed by Bloor (1964) that these turbulent bursts occur
right before the end of the formation region which is defined by Bloor

as the beginning of the (turbulent) vortex street and by Roshko and Fisz-
don as being located near the closure point or the tip of the two standing
eddies of the corresponding mean flow.* As a result of the low-frequency

irregularities associated with large scale threec-dimensionalities and the

intermittent turbulent bursts, the flow in the near-wake in this transi-

wImai (1964) has shown that up to a value of Reynolds number of at least
6000 the mean flow pattern is similar to that at low Re where two
standing eddies exist right behind the cylinder.
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tion range is obviously three-dimensional. No information is available on
the nature of the unsteady loading on the cylinder in this range except
the numerical results of Jordan and Fromm (1972) at Re=400 ., They nb-
tained the value 0,75 for the amplitude of the 1ift coefficient.

The Irregular Range.

When a value of Re of about 400 is exceeded the turbulent bursts
start to occur more systematically before the end of the formation region

so all vortices in the street are turbulent on formation (Bloor 1964).

The low-frequency irregularities continue to exist in the formation region

and farther downstream with substantial reduction in intensity in the region

in between. This state of affairs continues until a velue of Re of
about 1.3><1()3 is reached when sinusoidal waves of the Tollmien-Schlich-
ting type begin to precede the turbulent bursts (Bloor 1964). These,
called by Bloor, '"transition waves " have a definite frequency ft which
is greater than the fundamental shedding frequency and varies (for a con-
o312

stant cylinder diameter) as . The ratio of ft to the fundamental

frequency is proportional to Re% at high Reynolds number and it is equal
to 2.5 at Re==1.3X1O3 and to 8 at Re==5><103 . Below 1.3X103 the
transition waves are not detected and as suggested by Roshko and Fiszdon
(1967) it is possible that, since their frequency is very close to the
shedding frequency in this range, there is a coupling between the two
modes, in particular when Re 1s close to 490 . Above 1.3X103 the
low-frequency irregularities continue to exist in the formation region but
disappear in the wake downstream. As Re 1is increased from ']..3XlO3 to
8>(103 (Bloor 1964) the transition points in the separated shear layers
move upstream rendering the downstream part of these shear layers more and

3
more turbulent. Beyond Re = 8X10 the transition waves are no longer visible
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ingide the wake, the laminar portion of the separated shear layers being
rapidly followed by turbulence (Bloor 1964). Tramsition to turbulence
continues to move upstream along the shear layers as Re 1is increased
until it becomes very close to the separation points on the surface of
the cylinder. When & value of Re of about 2X105 , the so-called cri-
tical value, is reached and while the separation is still laminar,
transition is followed by reattachment which in turn is followed
by turbulent sevaration on the back of the cylinder. The wake is
narrower, there is a sudden fall in the drag coefficient and a loss of
periodicity in the wake. This continues until the transcritical regime is
reached (Re>>3.5X106) in which transition to turbulence precedes separa-
tion (Roshko 1961) and where a definte vortex shedding occurs as at sul-
critical Reynolds numbers. The critical or supercritical regime
(2X105<<Re‘<3.5X106) is characterized by a great sensitivity to surface
roughness and free-stream turbulence, one manifestation of which is the
loss of regular vortex shedding caused by gross non-uniformity along the
length of the cylinder., Using highly polished cylinders Bearman (1969)
conducted interesting experiments in the range 10542Re‘<7.5X105 and
found that by carefully and frequently cleaning the cylinder during the
experiment regular vortex shedding could continue up to a Reynolds number
of 5.5X105 .

There is less disagreement among the various experimenters about the
existence and nature of three-dimensionalities in the irregular range than
in the stable or transition range. As ncted by Gerrard (1966a), ''this is

perhaps because the chaotic nature of the three-dimensional structure al-

lows less precise description of the phenomena." Most workers describe
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the three-dimensionality in terms of a spanwise correlation length, i.c.,
the distance in the axial direction over which the fluctuations of some
property of the flow are well correlated. By correlating velocity fluc-
tnations Roshko (1954) finds a value of 3 diameters at Re =500 ,
Prendergast (1958) correlated surface-pressure fluctuations but his corrc-
lation functions did not tend to zero for large separations. 11 Baroudi
(1960) repeated the same experiment but instead correlated velocity fluc-
tuations near the shoulder of the cylinder and found a correlation length

which increases slowly with Reynolds numbe~ in the range 104'iRe'74.5X104,

being about 3 diameters at Re==1()4 and about 6 diameters at Re==4.5x1“4.

Phillips (1956) gives a value of 3 diameters at Re:=5X103 . Mattingly
(1962) observed a spanwise periodicity on the surface of the cylinder in
the range 104‘5Re‘<105 with a wavelength of a few diameters. Using
threads attached to the cylindzr Humphreys (1960) observed a periodic
cellular pattern with a wavelength of about 1.5 diameters at the critical
Reynolds number., Gerrard (1966a) describes the nature of three-dimension-
ality in the irregular range as a combination of randomness associated
with the small-scale turbulent structure and a '"more gentle variation of
the low Reynolds number type' probably associated with the low-frequency
irregularities.

The bulk of the experimental data available concerning the unsteady
loading on the cylinder corresponds to values of Re in the irregular
range, and more specifically to values of Re greater than 2><103 . Yet
from these data it is not possible to draw any firm conclusion about the

"true" level of the loading or its real behavior when the Reynolds number

is varied across the range. This is perhaps best illustrated in Figure 15
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FIG. 15, OSCILLATORY LIFT COEFFICIENT,

of Morkovin's (1964) review which is reproduced here and in which the root
mean square value or the maximum amplitude of the unsteady lift coefficient
is shown. In this figure the results of Gerrard (1961), Keefe (1961),
Humphreys (1960), Goldman (1958), and Fung (1960) are summarized and in-
dicated symbolically by G[111], k[110], u[31], ¢[28], and F[30] respectively.
Gerrard measured the r.m.s. value of the local presare fluctuations at the
shedding frequency and assuming a constant phase on each half (upper and
lower) of the cylinder surface integrated to obtain the lift. Keefe mea-
sured the forces on a central segment of 1 diameter in length and examined

the effects of fastening to the cylinder ends two circular discs (in order
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to reduce the interterenve of the wall boundary layers) of diameter vive
times that of the cylinder and senarated by a distance of 3 or I8 c¢y-
linder diameters and also the effect of sealing the clearance holes at
both evlinder ends. Humphreys' results are based on measurements of the
moment on a cantilevered cylinder; he also studied the effect ol changing
the end conditions. Fung measured the fluctuating forces on a short seg-
ment of 1,74 diameters at supercritical Reyrelds numbers and noted the
erfect of the gaps betwren the foree transducer and the rest of the cy-
linder, but did not recognize the effect of the length of his transducer
being larger than the correlation length at these high Reynolds numbers,
To these various data sets, others can be added but only to complicate
further the general picture, the reason being, as we have stated earlicr,
the sensitivity of pressure or force:s measureunents to the details of the
experimental setup, the ifwmperfections ot the wmeasuring devices and the
level of disturbances in the trec-stream.  Results not mentioned above iu-
clude those of Macovsky (19458), McGregor (1957) who measured local pressure
fluctuations, Jomes et al (19689) at superevritical and transcritical Rey-
nolds numbers, and also at these high Reynolds numbers those of Schmidt
(1965, 1966). These lutter (i.e., the high Re data, in particular those
at supercritical Re ) show in addition a :trong dependence on the state
of cleanliness of the cylinder which is a consequence of the extreme sen-
sitivity of the flow to local surface roughness.

Among the various factors which can have a major impact on the mea-
sured values of the unsteady forces the free-stream turbulence is the oanly
one which received some attention by the workers in the field. Gerrard
(1965) puzzled by the large discrepanciecs between his results (of 1961)
and those of Keefe (1961) and others, and by the low level of 1ift fluctua-
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tions he observed at Re=~QV103 , investigated the effect of increasing
the turbulence in his wind tunnel. Instead of measuring again the pressure
fluctuations he measured the velocity fluctuations near the shoulder of
the cylinder and found an increase (when the wind tunnel turbulence was
increased) in the intensity of these velocity fluctuations similar to the
discrepancy between his results and those of Keefe, indicating that this
discrepancy is perhaps due to differences in the level of disturbances in
the free-stream, He also recognized the role of characteristic length
played by the length of the formulion region but stopped short of congi-
dering the effect of an increase in free-stream turbulence to be equiva-
lent to an effective increase in L.+ because the shedding frequency re-
mained unchanged. Later he (Gerrard 1966b) discovered a second character-
istic length, the length to which the shear layers diffuse at the end of
the formation reglon and as a consequernce achieved a substantial insight
into the mechanics of the formation of vortices in the wake. On the basis
of the two characteristic lengths Gerrard could explain why the Strouhal
number remained constant over a wide range of Reynolds numbers and why

the shedding fresuency was insensitive to changes in the free-stream tur-
bulence level. However, on the basis of the same arguments Gerrard
could not explain the great change he observed (but Keefe did not) in the
level of fluctuating lift when Re was varied from l+><103 to 7X104 .
This led him to suggest that possibly at the lower Reynolds number and in
the absence of free-stream turbulence the two separated shear layers de-
velop independently of each other creating a symmetrical formation region,
the periodic wake downstream being formed in a manner similar to that at
Reynolds numbers below 90 , The idea of a symmetrical formation region

was, in fact, inspired by the results of his potential flow model (Gerrard
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1967a) in which the shear layers separating from the sides of the cvlinder
were modelled by a distribution of elementary vortices moving under the
action of the flow past the body and the velocity field of the vortices.
This model however, when forced to generate a fluctuating lift in agrec-
ment with Gerrard's data at low Re , gave a formation region much larger
than the value measured by Bloor (1964). Some comments on the model in
question will be given at the end of the present chapter as part of our
general discussion.

Finally, mention should be ma’  of the few data points obtained by
Tanida et al. (1973) in the range 2><103<Re<1.04 (using the same test
cylinder as at low Re but with water as the medium) which are shown in
the figure already introduced in connection with the low Reynolds number
range, and also the value 0,95 for the amplitude of the 1ift coefficient

found in the computations of Jordan and Fromm (1972) at Re==103 .

3.3 A Representative Case of the Low-Speed Mode of Vortex Shedding.

In this section we consider in detail the problem of determining ana-
lytically the unsteady pressure distribution on the surface of the cy-
linder when the Reynolds number Re is equal to 56 . At this Reynolds
number Kovasznay (1949) investigated in some detail the velocity field in
the wake and his data will be used to generate the essential terms needed
for the application of the theory of the preceding chapter. Also at this
Re the wake structure and the nature of the relationship between the near-
wake and the surface-pressure are typical of the whole range below Re =90,
namely the vortex street develops as a result of the instability of the
laminar wake and is stable and laminar. The velocity fluctuations are

negligibly small near the cylinder and reach a maximum intensity some




distance downstream (Kovasznay 1949)., The flow is two-dimensional and

5

therefore the results of ” 2.5 are applicable. In addition, in this range

of Re we can make the assumption:

() .

n.Vp" = uH.VZ.\-;
C C

This is based on the following argument: since the vortex street develops
some distance downstream of the cylinder, the unstesdy part @' of the
vorticity vector vanishes in the neighborhood of the cylinder, the small
velocity fluctuations there being irrota:ional and induced by the vortical
street further downstream; nevertheless at the boundary C and as a re-
sult of the no-slip condition additional unsteady vorticity might be gen-
erated locally, in othier words, while the velocity fluctuations themselves
are vanishingly small there their gradient can be large; this latter pos-
sibility however can be eliminated on the assumption that the frequency of
the oscillatory motion in the wake is high, i.e., the '"relaxation time"
associated with the viscous flow is of the same order as, or even greater
than, the time scale of the oscillations, and therefore the viscous ef-

fects do not have the time to respond to the full no-slip condition.

-
From this it follows that ' wvanishes at and near the boundary C ,

and since

2—0 —
Vov!' = ~Curlw'

.
“w

This is similar to the argument sometimes invoked in connection with the
Kutta condition at the trailing edge of a tkin airfoil shedding vortices
at high frequencies. Previous experience has shown that relaxation of
the Kutta condition in such circumstances yields results in better agree-
ment with observations (see for instance Davia 1974). The question re-
mains however whether the above condition is satisfied for values of Re
above 90. It is interesting to note that in all the previous_studies
made on the case of a turbulent boundary layer the condition =n.Vp'=0

at the solid boundary has been adopted.
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the above condition can be considered satisfied. The resulting expression

for the pressure p' 1is:

»eX|¥)

o qij(i,odi . (3.1)
i3

p'(Y,t) = f

«
el

— -
3.3.1 The Green's Function G(X,Y) .

-3 -
As previously noted, the two-dimensional Green's function G(X,Y) 1is

—y
nothing but the velocity potential of a negative unit source at Y in the

presence of the boundary C which in the Xa
present case is a circle of diameter d . >
Y
G is therefore the sum of the potential -
> X
of that source in absence of C , plus
that of a similar source at the inverse X
o -
point Y' of Y with respect to C ,
and plus the potential of a source of op-
posite sign at the origin. In other words, G can be written as:
—) = _ _];- — -, i‘ —o—o' —l_ -
G(X|Y) = - 5 log |X-Y| - 5 log IX-v'| + 5= log x|
or as:
1 2 2.7 ¢
— - N 1 B _ ._l. . 2 e 247
G(X|Y) = - 5= log { (X, ~¥)" + (X,-Y,)} - 5o Log L (X =¥ )"+ (x,-v))7)
1 2,2 5
- {
+ 5= log {X, "X} ,
where
2
(d/2)°y @/2)%y
Y = ———L Y= 2
1 2,,2 ? 2 2,,2 ‘
Y1 +Y2 Y1 +Y2
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Since in (3.1) the derivatives of G appear rather than G itself, we

differentiate with respect to X1 and X2 to obtain the following expres-

sions:
2 2 2 2 2 2
2 - - - Yy . v -
% 1. ¥ KT &) Yy) 5 3
2 Tom 2 242 '\ 2 1272 2,272
3X, [(X)-Y ) "X, -Y) 717 DX -Y)) “H(X, -Y)) ] (X,7#K,))
9 9 - - vt !
R s A A Y 2(X; -¥1) (X, -Y,) 2X\ %,

X, 9K,  2m 2 972 (2 3272 2
’ (X - 2 - < - - 24y 2
1772 [(xl Yl) +(x2 YZ) ] [(x1 Yl) +(x2 Y2) ] (x1 +x2)

and since G is a harmonic function of X1 and X2 we have:

2
°G2=-'3G for X, #Y. , X. #7Y

7 175 2
X, X

2

R -
When we evaluate the surface-pressure fluctuatiouns as givern by (3.1), Y

goes onto the circle C and Yi , Y, become respectively Y1 and Y2 ;

“

the above expressions reduce to:

2 2 2 2
32g 1 Fp¥y) -(XYp) 1 % Xy 3 \
= - { ; vl Py T 2} , YonC (3.2)
A - ..7 —
3K, [(x)-Y))o+(X,-7,) 4] (X HK5)

3% 1, 2T XY) AR -
m— = ;r- { 2 2 2 -~ '2— 2 2 2 3 Y on C (3-3)
17%2 L&Y )5+, -Y,) 4] (X, +K5)

3.3.2 The Velocity Field in the Wake.

Both the mean and the fluctuating parts of the velocity field in the
wake at Re =56 were investigated by Kovasznay using the hot-wire tech-
nique. Measurements of the total mean velocity distribution and that of
the r.m.s. value of the velocity fluctuations were made at several down-
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stream stations. In addition, it was observed that the fluctuating velo-
city had two components with two different frequencies, one is the shedding
frequency f , the other is the double frequency 2f , and the phases of these
two components as functions of X1 were determined. At the middle of
the wake only the double frequency component was present, but this de-
creased rapidly with distance from the wake centerline and disappeared al-
most completely before the point of maximum fluctuations was reached.

In order to determine the wvarious qij terms in (3.1) the two compo-

nents V1

examining the mean streamline pattern plotted in Kovasznay's work and a

and ;: of the mean velocity vector are needed. However, by

similar plot made during the present work it was judged that the ;;
component is everywhere a small fraction (perhaps 107 or less) of the total
mean value except in a central narrow region of width 1.5d bounded down-
stream by X1==5d ; in that region the total mean velocity is a small

fraction of the free-stream velocity U_ ; consequently it will be assumed

here that ¢ vcrywhere v, is an order of magnitude smaller than U_ . As

for ;I it is to a good approximation equal to the measured value
1

—
]?+v£d except in the narrow region mentioned above. This region

contains the two standing eddies in which there is a reverse flow (see

3

v = (v

Taneda's 1956 picture at Re=57.7 ). Kovasznay measured v at

X1 =2d,3.5d ,5d,8d, ... At X1==2d and 3.5d the measured values on

the wake centerline which are exactly those of ;I , were taken here as
negative and an interpolation (numerical, using spline functions) was made

between these values and values off the centerline which were judged to be

a good approximation of vy In this manner the distribution of ;I in
the region of the standing eddies where ;; can be larger than ;I and

in particular where v. changes sign was determined. Again it is believed

1
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that v, as determined by the data and the above procedure is accurate up

1
to 107 .
In addition to the mean velocity components the determination of

qij requires a knowledge of the fluctuating velocity components vl' and

v,' . Since the hot-wire is more senmsitive to the fluctuating velocity

component in the direction of the mean flow and since the direction oi the

latter is, to a good approximation, in the X -direction everywhere ercept

1
in the neighborhood of the standing eddies, the r.m.s. values as measured

by Kovasznay can be taken as those of vl' except in that region; there

a similar procedure to the one used above was adopted. As suggested by

Kovasznay, we can write:

[ Yo - F s rg £t 1
vy r;1(x],x2)c.os 2n{_el(xl) ft]+cpz(X1,X2)co&. MTFJZ(Xl) frl

(3.4)

where " and o, are respectively the amplitudes of the fundamental

2

component and its first harmonic and 91 and 92 their phases. 1In

addition, ®, 1is an odd function of X, and Py is an even function of

1

X2 which can be assumed to vanish parabolically in the transversal direc-

tion, i.e.,

2
X2
0y (X15X,) = 0, (X,0[1-—=57] , (3.5)
20
where X is the wvalue of X for which the total fluctuations are a

20 2
maximum. Using (3.4) and (3.5) and noting that:

In fact, Kovasznay had a + sign inside the brackets in the expression
corresponding to (3.4), but since the vortices are convected in the posi-
tive X, -direction and 61 and 92 are increasing functions of Xl a

- sign'is more appropriate.
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s 1 R 2
1 =Rl Ty s

@ and o, can be calculated from the measured r.m.s. values. These

latter are vanishingly small for X1<:2d , peak at about Xl==7d and
s1ightly off the wake centerline, and are everywhere an order of magnitude

smaller than the mean velocity. As for v2' , which was not measured by

Kovasznay it will be determined here using the continuity equation. First

1
1 b

quencies, One is f , the other is 2f , It can be easily seen that the

v,' has two components with two different fre-

we note that like v 5

continuity equation must be satisfied separately by each frequency compo-

nent; in other words, if we denote by Vl& and vlh the components of
vl' with frequencies f and 2f respectively, and by vza and V°b
those of v ' , we have:
9
] ! '
3v11 . szi o
AX A,
1 2
{ and
1
Bvlz szz
\X+.\ = 0
r Xy OXZ
' 1 . P = . P 1 . -
Vo1 and Voo vanish at X2 +®, in addition Yoy vanishes at X2 0

This can be seen by examining the velocity field of an idealized vortex

; street where it is found that vé on the wake axis is of pure fundamental

E frequency. This is also observed experimentally in the wake of cylindrical
bodies shedding vortices (see for instance Campbell 1957). Consequently,
integrating the above equations yields:

3

[ Xz

P - S F 4
v 4, 5 et e,
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and
X
v! = _F 2 _é_ v (X t)dF
22 ¢ X 11 1”2’ ’
0 1
therefore:
= . Fo. e F
R M TICTENCLLA | x Via ¥y 5pe02dt,
0
or
dw \
' Ow_ .
vy - X s (3.6)
1
where X X
?2 2
= df ! F g
N (Xlﬁaz, ) ..2 +f vlz(xl’ Jzat)dJZ
0
or

b

w(Xl,Xz,t) = zbl(xl,x?_)cos znfel(xl) -ft] +¢2<x1,x2)cos 4Tr[92(X1) -ft]

(3.7)
where
F{z
{ = F
(3.8)
X

= F
by (X1,X,) f 9y (X5 E))dE,
0

In order to evaluate ¢1 inside th- wake, values of 2 outside the wake

are needed. The available data from which ml was calculated cover the

wake region up to 5 or 6 diameters from the centerline, at these bor-

derlines the r.m.s. values of the fluctuations are very small and so is

Py - However, in order to account for the remaining part of the integral

3

i.e., the part beyond X2==5 or 6d , ¢, was assumed to decay like
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1/X.” in the +X, -direction (sec % 2.5).

2 -2

3.3.3 The Fluctuating Surface-Pressure Field - Lift and Drag Fluctuations.

The fluctuating surface-pressure field is given by (2.1) where Y

is taken on the circle G . By expanding (3.1) we obtain:

2 2
o 376 3°G
[ - —_ —_—
p'(¥,t) ,F 3 9195 9%+ )] sxoar 91095 3K,
oX 17772
n 1 -
+J. 2 dde+N'_§_2£ dX, dX
3X,3K, 21981 S8 ™ yu -y 99294198
% 2
We also have:
7 = I ! C ot Tt
qij(x,t) p(mvivj-i-vixj Vivj)
Therefore:
o M le r 3¢
Lo oy G IR
p' 0 = 2e |1 Vv K ax 42 [ X%, v1V2 4% 9%,
5 BXl 5 1772
A 2
86 ' P36 —
+ 2¢ J 5X18X2V2V1dx dX J = 5 2vzdxldx2
bN b3 |
2 2
f 376G 2 ”
+ p.ﬁl - 5 (vi v' )dX dX2 + 2p BX BX (Vl 9~ )dX dX)
z 1 =
} BZG 2 2
-p [’ (v, -vL7)dX, dX . (3.9)
Voo 2 2 2 1 2
r %

In evaluating p' only the first two terms in (3.9) will be retained,
these are thought to contain the major contributions to the real value of

p' . The contribution from the third and fourth terms which contain the
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mean veloeity component ;; can be expected not to exceed 10- of the
contribution from the first two, and is perhaps of the same order of mag-
nitude as the error involved in evaluating the first two integrals with
;I as determined in the last section, The contribution from thevremain-
ing terms, which are quadratic in the velocity fluctuations, is discussed
in the Appendix. With the understanding that we are cowputing only an
approximate value we write:

9 2

np <o n ~
(Y - G ’ ‘ 2 G '
p'(Y,t) = 2p ol ; 5V vy Xm dX2+Zp J‘\} X5 V1Y Xm dX2 , (3.10)
. X 172
Z‘ 1 Py
or
o : \')
PrTG — . H TG — R
! = 2 ' -
PILE) = 2o oy vy v dKy - 2o ) spsec vy A, K 9%
- X 1772 1
¢ 1 by
pp rea 3e —
o, M \ ., Mra 3¢ _
=20 sV vpdXdX, - 20 (i Gy VWX, dX,
X o 1 172
z 1 %
3 2 Av
PP 36— 3% 1
— 9 i —
+ 20 o 107, vlvadxldxz + 20 XK. X deldX2
o 'Xl :‘Xz 5 1772 1

The second integral in the above expression can be integrated partially

with respect to Xl between some value Xlo of Xl such that
1

<X, < = . - .
Ed xlO 2d and X1 %ém . At X10 o1 and mz are vanlshi?gly small

. — 3 e s 376G -
and since vy and 3X1“X2 are finite there, the product BX15X2.VIW Xlo
is negligible. Furthermore, as Xl'*+-w ;; and w remain finite, how-
.2
ever, —_ decays like A (see equation (3.3)) and the product
3X15X2 X13

vanishes again. Therefore the integral in question vanishes and we have:
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p'(Y,t) = 2p ! = ] v} dX, dX +°on vlde] dx,,
RS r X xa
+ 2p ff -'*X BX BX de dX . (3.1

The above step, i.e. the partial integration with respect to X1 is vital

for maintaining a good accuracy of the numerical computations. The data
which will be used to evaluate the physical functions in the above inte-
grals cover only the part of the wake between X1=2d and X1 =40d ,

Although 11)1 and ¥, are small for X <2d , their derivatives with

1 )
respect to X1 there cannot be accounted for numerically with a good
accuracy., In addition, the form assumed for @, and the numerical repre-
sentation of v, are approximate; therefore while their integrated values
wl and 21)2 are still a good approximation, the derivatives of the latter,
i.e., awl/axl and ¥.vm2/b‘{1 (taken numerically) are not.* Finally,
while in (3.11) only one numerical differentiation is required, in (3.10)

four are necessary to evaluate v, .

We now define the following functions:

2 X 2
4N -, W
alX,,X,) = 2 1
1’772 2 2
(X, "™X,7)
2
2X2(3Xl 9 )
B(Xl,X ) = 3 (3.12)
2
(X1 +X,7)
2X.X
'y(x !x') = 1 2
1°72 9 22
J/
(X, "X,

-l,f . . . . 3
Numerical integration is always a smoothing process, unlike numerical

differentiation which reduces the accuracy.
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It follows from (3.2) and (3.3) that when ¥ lies on C :

237G 1 1
Ax 2 T {oz(X] 'Yl’xz"Yg)" 20&(X1‘,X2)'} (3.13)
1

2

e _1 . .
XX, T T [y() =Y, X,-Y,) - 5 ¥(X K, (3.14)

and also after one additionail differentiation with respect to X1

3G

= - 21BMX Y, X, -¥,) - TR XN (3.15)
AX 5X -

We note that o is an even function of X and B and v are odd func-

2
tions of X, . In addition, ;7-1_ and B;I/BXI are even functions of X, ,

fpl and zb,, are odd functions of X2 , and finally @, and zbl are even
functions of X2 . Using the equations (3.4), (3.7), (3.13), (3.14), and
(3.15), relation (3.11) can be written in the form:

e 2p

p'(Y,t) = - == {a(xl-yl,x )-— (X)X, Y v, {cpl cos 2m(6, -ft) +

Z

+ P, €OS 4n(62-ft)} Xm dX2

‘T%IF{B(X -Y, X2-Y2)-%B(X1,X2)3\—7—{w1 cos 2n(61-ft) +
=

+ zbz cos 4n(92—ft)} Xm dX2
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v,
+ 28 ” {'V(X Yy BX

7 ad Xy Y,) - 2K X))

+ U, cos 4'\'(92-ft)}dX1 dX

2 2

Ul cos 27’7(9 ~-ft) +

It is easily seen that after expanding the above expression, the integrals

— :‘*v1
/ —21
» Bv, b, and v X, v

which contain the product avl 5

remains can he written in the form:

- 2 —— ,
p'(Y,t) = - *;TQ— f‘r al vy ml cos Zw(el-ft) Xm dXx
Xza 0
a0 ——
- ~L ” oz? vy ro:,‘ cos xm(ez-m dX] dX2
er' 0
2 e
+ :'rﬂ fr o v, @, cos ém(G?-f't) Xm dX,
XQ" 0
- 2;?- f 1U] cos '7Tr(9 -ft) dX dX
sz’ 0
_ 2 W v . Fp
pudl 82 v, U, cos ém(ez ft) Xm dX2
X25"— 0
2p j’ - 3
+ j‘ va d)z cos zm(92 ft) Xm dX2
Xz2 0
20 >y
[P | -
+ - ‘U Y1 Bxl U, cos 2.'r(61 ft) Xm dx
X2>— 0
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,_Z_Q pjv 3v1
+ po J Vo 3"1 zb cos lm(e ~-ft) dX dX2
X,:0
2
2 r v,
- = fu o ax zb cos lm(G -ft) Xm dX2 ,
P4
X2 0
where:
Oll(X;Y) = (X --Y1 XZ—Y )-Oz(Xl-Yl,Xz-i-Yz)
(3.16)
oy (X3¥) = a(Ry =¥y, K, -¥,)+0u(K ¥ X HY))
B (K3Y) = B(X Y, ,X,-Y,) - R(X, =¥ X +Y,)
(3.17)
BZ(X;Y) = R(xl-Yl, 9" 2;+ R(x Yl,X +Y )
vy (K5Y) = w(X) <Y, X Y)) - v(K ¥ X, HY,)
(3.18)
VZ(X;Y) = y(Xl—Yl,X }+V(X -Yl,X +Y )

Finally, if we denote by ® the angular frequency 2mf and we introduce

the non-dimensional quantitites \7’1'/Um , col/Uoo , coz/Um R wl/Umd s zblewd ,

CICAAUD) X X
1" " 1 2 .
—a-(—i-l—/—dT- Tl and T we obtain:
¥ v, ¥ 3(¥,/U,) ¥y X, X
(Y,e) 2 2 V1 i 71 2
E—~—32-—-——-7-;rcoswt”‘ d (ozlﬁ--U———+dB T %) VlB(X 73 Ud)coserG d(—= )d(d)
P X,20 ® Ve
2
‘” V. 19 V_l- z,bl a(v /U ) d, X X
-—51nwt d (alﬁ—h—-+dﬂ fJ—U d Y1 B(X /d)U d)81n 2T791d(—~—)d(—~)
XZZO

66




v, B(v /u) ¥
2 2, V1P "1 b, 2 X; X,
< Zoos ot [ a @55, 45T, T Y2 T Ay U cosh A6 =
X.>0 @
2
v, a(v /u) b x X,
R 1“’2 vy ¥, 2 *_ i
-Zetnoue || o® @55 *T 54" w(x 7y Ga) Sindmd (gd (g ’
X.20
2
2 o V% Vi b, B/ b, 5 X%
+Zcos 2““1_” d (O‘ﬁ‘;ﬁ;'*'dgﬁ“ il ’*(X 73§ d)coslme d(—-—-)d(——)
X, 20
2
ff vim, Vi, A(v /v ¥, X, X
+=sin2wt || d (a-ﬁ;ﬁ—;+dﬁﬁ-— 7" B(X 75T d)smlme d(—-—)d(»«—)
X 20
2
(3.19)
Note that:
2 22 2.2 — IL‘Y OF TH-\‘)
de, (K3Y) = @, (X/d;¥/d) REPROD ucl}{ }m 13 POOR

ORIGINAL
a*, @Y

B, (X/d;¥/a)

ay, &) = v, &/a;3/a)

and that similar identities hold for a2 , ,32 , ‘)/2 and & , B, v.

As is clear from (3.10) the surface-pressure fluctuations contain two

components with two different frequencies, one is the fundamental or shed-
ding frequency and is represented by the first two terms in (3.19); the
other is the double frequency and is represented by the remaining four

terms. In addition, we note that « Bl , and 'yl are odd functions

1 E)

, and ')’2 are even functions of Y, . This implies

of Y., while « ,

2 2 ’Br

2

that the fundamental frequency component is antisymmetric with respect to
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to the direction of the free-stream, while the double frequency component
is symmetric with respect to that direction. In terms of the 1ift and
drag fluctuations this means that the 1lift fluctuates with the shedding
frequency and the drag fluctuates with twice that frequency!

The data of Kovasznay were used to determine the integrands in (3.19)
as was indicated in the last section. These data were first smoothed and
interpolations were made using spline functions; the results of the inter-
polations were checked and proved to be excellent. Then the various func-
tions @ 6 v./U Eﬁfligfl fl ?g ?l f& were determined in

1’ zilm’a(x“/d)’U’U ’U ,U
1 © © ) [
the domain 2=§X1/d5520 s 0‘§X2/d535 using Simpson's rule of integration
for the last two, and the aforementioned interpolating functions (which
3@/U,)
are twice continuously differentiable) for —=5g—5sv . Finally the coef-
B(Xl/d)
ficient of coswt, sinwt, cos 2wt and sin2wt (i.e. the integrals) in
(3.19) were evaluated at 19 different points (separated by a uniform angu-
lar distance of 10°) on the upper side of the circle C . The integration
X X
was doue over the domain 2533L5320 s 0’575”35 , using Simpson's rule and
a mesh size of 0.5 d . This domain covers in the Xl-direction two wave-
lengths of the vortex street, and the major part of the unsteady region
in the Xz-direction. In the next section it will be shown that the major
contribution to the complete integrals comes from this limited domain.

For convenience and in order to determine the phase variations of

the surface-pressure fluctuations we write (3.19) in the following form:

—-R—'—z = P cos 2m(0. -ft)+P,_ cos 4m(d  -ft) (3.20)
oU 1 1 2 2

@

where P1 , P2 , 51 s 52 are functions of the angular position on the cir-

cle C . In addition, P1 has an antisymmetric distribution with respect
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to the Xl-axis, and P2 , 51 , and 52 have symmetric distributions with
respect to that axis., These functions were determined and are plotted in
Figures 1 and 2, In Figure 2 the phases are plotted in such a way (by a
translation of the phase ordinate, different in each case) that they are
zero at the back stagnation point. It follows from the form of the phase
distributions that as the vortices are shed in the downstream direction
the pressure pattern at each frequency travels along the surface of the
cylinder in the upstream direction, Note also that the intensity of the
shedding frequency component is maximum at about 120° from the front stag-
nation point while that of the double frequency component is maximum on
the back of the cylinder. These results will be discussed in a later
section.

The results of the integration in (3.19) can be used to determine Lhe
magnitude of the 1ift and drag fluctuations on the cylinders. If L(t)
and D(t) designate respectively the
1ift and the fluctuating part of the iz
drag per unit span we have:

21 ]

Ley=-5 [ prsingas o
0 = X

ol

2m
D(t) = - J p' cos6d6
0

where in the first integral only the antisymmetric part of p' has a net

contribution while in the second only the symmetric =.:e does,
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Effecting the integration yields:
2

pU_d

L(t) = 0.0186 > cos Wt s (3.21)
pUm?d

D(t) == 0.0007 a cos 2wt (3.22)

the time origin being not the same in both expressions. From (3.21) and
(3.22) it is seen that the magnitude of the 1lift fluctuations is about

25 times larger than that of the drag fluctuations.

3.3.4 Estimation of the Error Involved in Integrating Over a Finite Domain,

In this section the error involved in evaluating the right-hand side

X X
of (3.19) by integration over the limited domain 2f57%4320 , 05575555 is

examined, The estimation procedure is instructive and elucidates the man-

ner in which the velocity fluctuations in the wake induce the fluctuating

surface-pressure field,
Referring back to the expression of p' as given by (3.10) and to

the relation (3.2) and (3.3) we note that for a fixed value of X1 , we

have:
‘ 2
] N )
°6 .. L for lX | = e
3% 2 X 2 2
% 2
E % 1
, =22 ~ = for |X |- |,
E axlaxz X 3 2

2

and similarly for a fixed value of X

2:
v 2
26 L sor Ixloe
BXl X,
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2
76 1
= for \X ‘ -]
a b
axl.xz Xl3 1
X?
but for a fixed ratio of i* we have:
1
'E——G"'N 1rs for \X',,']Xl"m 3
3 2 g 1 2
1 1
2
3°G 1
sox, ~ Tz o Kl Kl
2 X
1
AZG
This is due to the fact that Si*gf— admits a local extremum whose value
3%, X,
is of the order of *l; and whose X2~coordinate increases linearly with
Xq14 X
1
X] . However for a fixed ratio —i% :
Xlﬁ
26 L for x|, X o
ax 2 X 2 1 2
1 1
s% 1
3% ox, " o572 LoF RN
172 X
1
and therefore inside the wake and at large distances or at a fixed X]
2 ~2
station and for large !XZI , 2 ¢

Since vi and vé are of the same order of magnitude, this implies

. 3G
BXIBXZ is of smaller order than .

EXl

that it is sufficient to examine only the rate of convergence of the

\2
integral containing 51—5 . We denote by 1 that integral:
5X1
:'ZC
_ - x T '
I = 2p j'\ 2 vlvlXmd\)
n K
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whivli can also be written as:

20d ~ +5d
I =201 [ —539-?7 rax. b oax, 1. +1 (3.23)
LN J a}{21"1 2 17712 e
2d -5d4 "%
where:
4o +5d
3% —
I. = 2p i f v.vlax {dx, (3.24)
1 N .2 171520
20d (-5 “*1
tof 4o +or=5d
[‘ RZG—— aZG — l
I =2pf —v, v! dX ax +2pI f —v. v!dX,\dX, ,
2 Sy 2171 1 % 2 171 1
2d | 5d 1 2d |-° N

and we propose to estimate the values of I1 and 12 . Introducing the

non-dimensional variables as before and letting ;r—; v Oy 9, Y1 s, Y

A

9

X1 , and X2 denote these new variables we can write:

2 2 2 2
11 2 fj. X,-v) - -v)t %Ak _
= - v
™ u 1 2 2 2 1

272 2
U, [ -y +(x -¥,) %] (X, “H,2)

<]

{col cos Zﬂ(el-ft)+cp 5 €08 lm(ez-ft)} dX2 Xm s

and v are even functions

or since CP]_ is an odd function of X2 , cp2 1
of X2
1 P S S e SR (X AY, Y- (X, -1, Y
1 gj' 2 "2 171 22 11 —
5= "o 27" 5 o) vlcplc032n(61-ft)dx Xm
pU, 200 (LX) X, -1)TT LRy =¥ (X 4Y,)7]

cos 4TT(‘92 -ft) dX2 Xm

_gf-mf-s{ (x,-¥ )2-(x _Yl)z - x22-x121 B
"0 s UL

942 2, 252 vy th
(X, -Y )2+(x -2 (% +x2)f
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-f )
f { a = +x ._)2 v, P, cos 411(92 ft:)dX2 Xm . (4,261
0 1

:HN

20

As is clear from (3.26) and from the expression of p' in the form (3.19),
the shedding frequency component of the surface-pressure is the result of
an incomplete cancellation of the contributions coming from the parts of
the wake below and above the X1~axis. This is best seen by putting Y2=

in the above expression or in (3.19), the resulting contribution then
vanishes, This is due to the fact that at a given time t anl at fixed

X station the shedding frequency component of v

1 1

antisymmetric with respect to the wake axis, and consequently the induced

for instance, is

pressure at a point on that axis is the sum of two exactly opposite con-

tributions; if,however, Y2 is not zero the cancellation is not complete
and there is a net contribution. The double frequency component on the
other hand results from two additive contributions and is not the result

of an incomplete cancellation effect. With this in mind it is clear that

b
b

contributions from distant points in the wake are small not only because

the velocity fluctuations at the shedding frequency there are small but
also because the difference in distance between a point on the cylinder
and two points symmetric with respect to the Xl-axis becomes small. This

however does not apply when the double frequency component is involved,

For these reasons, and in order to achieve better estimates, I, was

1
(and 12 will be) written in the above form. We now write:
i I J J J
L 1,2, 3 (3.27)
) 2 2 2
PU, U, U, PU,
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third term on the right-hand side of (3.26). An estimate of each of these

5 are respectively the first, second, and

terms as well as of 12 is found in Appendix B, The results are as

follows:

rJ |
t——l—f < 0,0788x1070 (3,28)

o
oUmZ

?——5;1 < 0,0190x107 (3.29)

—3_1 < 0.1329%1073 (3.30)

2 . -3
f < 0.6308¥10 . (3.3D)

We note that the above estimates constitute only upper bounds to the
J J J I

values of the integrals ) 2 ) 3 , and —2 . These upper
2 2 2 2
PUe pUc

pUco pUe
bounds are sometimes too gross (in view of the limitations of the formal

procedure) to yield close estimates to the real values of the integrals.

If we consider for instance the component of the pressure at the shedding
frequency f , an estimate of the error involved in integrating I (see
(3.23)) over the finite domain 2’1X11520 s -5‘3X2‘55 is given by (3.28)
and (3.31). By referring to Figure 1 we can see that an upper bound to

that error is about 17 (given by (3.28)) plus 10% (given by (3.31)) of the
maximum calculated value. The estimate given by (3.31) is too gross as

is discussed in Appendix B and we can conclude, after assuming that a similar
accuracy is obtained from the second term in (3.10), that to a very good

approximation the contribution to the fluctuating surface-pressure at the

shedding frequency comes from the near-wake region defined by 257X1f€20 )
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~5"X2‘ 5 . On the other hand if we consider the component of tihe procsure
at the double frequency 2f the estimates (3.29) and (3.30) vicld an vpper
bound tor the errcr involved which is about 207 of the maximum calculated
value, This, however, does not give any indication of the accuracv of the
results which, we believe, is much better than is revealed by the above
figure; and as for the shedding frequency component, we can conclude that

the component of the surface-pressure at the dsuble frequency is determined

to a large extent by the velocity fluctuations in the near-wake region,

3.3.% Comparison with Other Results and Discussion.

As we have sald in Section 3.2, th. only available experimental re-
sults on the unsteady loading on the cylinder in the stable Reynolds num-
ber range are those of Tanida et al. (1973). ‘They measured directly the
fluctuating 1lift force, but found that the fluctuating drag was too small
to be measured accurately, Their data on the magnitude lﬁii of the lift
coefficient have been introduced already in Section 3.2, Comparison of
our result (3.21) (at Re=56 ) with these data shows excellent agreement
and confirms the rather low level of lift fluctuation inherent to the low
Reynolds number regime. By contrast the value for 16}{ obtained by
Phillins (1956) at Re = 56 1is in strong disagrreement with the above
results., This value (f@il = (),76) 1is about 40 times larger than ours
(IE%J =0.,0186) . Phillips used the same data of Kovasznay which have been

used in the previous sections, and calculated the fluctuations in 1ift

and drag according to the formulas:

- if .
L= o5t fvzdxldxz , (3.32)
%
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dx, . (3,373

P

However, since behind an infinitely long cylinder the wake remains un-
steady (if it is so near the cylinder)
at arbitrarily large distances down-
stream the above formulas are incom-
plete and an additional non-vanishing

term should be added to the right-hand

side of each ot the relations (3.3
and (3.3%). This can be seen by ap-
plyving the momentum theorem to the
fluid inside the control volume, hav-
ing ER as cress-section and one dia-

meter in depth in the spanwise direction,

in the following manner:

ne s W, f_i ?

—(pv,)dX_ dX = Cap0 L, (ot g -ov.v,in,ds
. vy 4%, = o, IL(,,jXi ,qxi) ov;vyin, ds
“R C-H,R .

or after separation of the mean and fluctuating parts of each variable:

pp p N o ?'VJI_ vl
[ I, 1 = - ! 3 - ~ .l | (= — .]_
oo splovpdx AR, = | {0 hugTHh Gt )
5 CHC ] 1

R R
-o;.+v! ;/—.-Pv'. n,ds .
(v Hvi) (v, J>} ;

Taking the time average of the above relation and subtracting the result

from the relation itself we obtain:
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“v' ~v!

reo —
. (pv!)dX. dX, = ( f—p'@ '+u(r-"+-—J1 vVt -V v
oo g PYPIEM G, F ] X S
"
" C'|'CR
i L TTON g ds
D(Vivj vivj),njds

If now we designate by F{ the ith component of the fluctuating force

per unit span on the cylinder the above relation becomes:

rroA P v, v - _
F!l = - = iX.d ‘(-'6+———l (v, v! + !
i o RplevyddX, Xp+ LD M= +55) - o(vivj vjv,l.)

5

R (:I{

- o(v!v! -v!vDin, ds . (3.3%)
L] 1] ]
n CR , R heing very large, 1v§{ ,,ﬂ% except on the wake portion W
‘ R-
where ivilavjr . p'~u% but since the flow is only approximately two-
R"

dimensional we can assume for the present purpose that it is of smsller
1 7

order than 7 Since W~R® , upon increasing R indefinitely and as-

suming that the first term on the righu-hand side of (3.34) converges we

obtain:

e P o
ol I . , ' ' . Qo
Ii. oy BL(OV )dX dX K o(vivj-+vjvi)njds . (3.3%)
= W

On W n1==1 and n, = 0 , assuming thet ;; vanishes in the far-wake
and taking 1 equal to 1 and 2 separately we obtain the following re-
lations:

o ) -
‘ﬁjv,dx dX2 0 j vlvqu R (3.36)
2 %)
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D= - 03y 1] vidX,dX, - 2p | v vids (3.37)
= W

(3.363 and (3.37) are to be compared with (3.32) and (3.33). 1In addition,
we note that even in the above form it is doubtful whether (3.36) and
(3.37) can be used efficiently to evaluate L and D , for the convergence
of the first term on the right-hand side of each of these relations is at
best too slow and the integration would require an infinite amount of data.
In fact, Phillips used the form (3.33) for the drag only, while for the
1ift he used the fact that:

pp rrl aVl Fv!

| ' = - ——
“szxldXz 3 o)dxldxz .
% g L A

But since only vi is known from measurements he was led to differentiate

the numerical data several times (for ingtance, 9, was differentiated
numerically three times with respect to X1 ) to evaluate L . This, as
we have mentioned earlier, can destroy the accuracy of the computations
and lead to results totally different from the sought ones.

txperimental results on the surface-pressure distribution when Re
is in the stable raunge ave not available. FEven at higher Reynolds numbers
there are few instances where such results have been reported in the lit-
erature, Those of Gerrard (1961) and McGregor (1%57) are given in terms
of intensity of fluctuations at the shedding frequency and its first har-
monic, at several values of Re Dbetween 104

1()5 . These two components (i.e., the shedding frequency component and

and a value slightly above

its first harmonic) were found to be domiuant in the range studied

3 5

(47167 < Re 7 10 in Gerrard's case). We reproduce below the results in
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question as they were presented in Figures 8 and 9 of Gerrard's paper
which also include the data of McGregor, The main feature of these re-

sults is the invariance of the angular distribution with Reynolds number:
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Fravre 8, Angular distribution of intensity of surfiace pressure at the fundamental
frequency. logoB:th 15 A, 485 x, 181 O, 52; +, MeUrogor 4464,

05

Iogor B2 BMist

15
180 150 120 9% 60 30 0

Angular position 0 degrees
Fisrre 9. Angular distribution of intensity of surface pressure at the second harmonie
fsvqueney. &, Lin, diam, eylinder; x, 3 in. diam. eylinder; 4, MeGregor, 1) i, diamn,
the intensity of fluctuations at the shedding frequency is always maximum
o . . .
at about 120" from the front stagnation point: and drops substantially at
the front and back of the cylinder, while that at the double frequency is

maximum at the back of the cylinder. In addition, Gerrard observed that
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in the range studied the pressure is essentially in phase over one side
(upper or lower) of the cylinder and 180° out of phase with that on the
other side., Referring back to Figures 1 and 2 we can sec¢ that a remark-
able similarity exists between our results at 'ow Reynolds number and the
above ones at much higher Reynolds numbers. The question whether the in-
variance of the angular distribution with Re can be extended to the
stable range may tentatively be asked. In order to facilitate the com-
parison, the results of Figure 1 were plotted again, in the manner fol-
lowed by Gerrard in Figures 8 and 9, and are shown in Figures 3 and 4, It
readily observed that the two sets of figures are similar to a great de-
free, the difference being that at high Reynolds numbers, the intensity
of fluctuations at the shedding frequency drops more slowly when the
front and back stagnation points are approached and the ratio of the in-
tensity of fluctuations at the double frequency on the back of the cy-
linder to that on the front is greater than it is at low Re . We defer
the discussion of these similarities and differences to the next section
where a gemeral discussion of the high Reynolds number case is given.

To conclude the present section we examine the effect of varying Re
in the range below Re=90 . As we have said at the beginning of * 3.3,
the nature of the velocity fluctuations in the wake does not change when
Re is varied from 40 to some value below 90 : the fluctuations de-
velop always as a result of the instability of the laminar wake and the
flow remains two-dimensional. The only change is in the intensity of
fluctuations and in the distance from the cylinder at which this intensity
reaches its peak value. Upon increasing Re the velocity profiles in the
laminar wake become steeper, the concentration of vorticity in the street

becomes stronger, and the distance at which the intensity of fluctuations
82
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reaches a maximum value becomes shorter. Consequently, the pressure fluc-
tuations on the cylinder, at the shedding frequency, for instance, continue
to be the result of an incomplete cancellation of two contributions coming
from the parts of the wake below and above the centerline (see £3.3.4)

and the magnitude of the fluctuating lift can be expected to remain small
even though it tends to increase slightly with Re as a result of the in-
crease in the intensity of the velocity fluctuations in the proximity of
the c¢ylinder. Similar increase may be expected for the fluctuation in

drag for the same reasons.,

3.4 General Discussion - Reynolds Number Effect.

When Re exceeds some value near 90 , the flow becomes sensitive
to small three-dimensional disturbances or slight non-uniformities in the
cylinder or in the flow upstream, and some of the details of the wake pat-
tern become uncertain and dependent upon the nature of these disturbances
and non-uniformities, in addition to their dependence on the details of
the experimental setup, as has been already discussed in Section 3.2.
With this in mind it is clear that it would be impossible to attach a
unique value for the magnitude of the fluctuating lift or drag coefficient
to each value of the Reynolds number Re . This is true whether we are
talking about laboratory experiments or about real life situations as they
occur in applications. The theory of the preceeding chapter, on the other
hand, allows certain systemization in the study of the fluctuating loads,
and this by identifying the role of the cylinder geometry and that of the
various components of the wake flow, as they may occur, in bringing about
such loads. On the basis of that theory and oir experience with the low

Reynolds number range treated in the preceding section, we will attemnt

85




below to speculate on, or when it is possible, 'predict' the manner in
which the unsteady loading on the cylinder would vary with Re under var-
ious conditlions. At the same time some comments on previous attempts will
be made and areas where further research is needed will be indicated.
Using (2.39) and (2.40) the general solution (2.15) given in the pre-

ceding chanter can be written in the form:

- pp N2 g"!". —_ — =
P(Y,k,t) = JJ 2 gxx}i k) {2viV1-+F[viv3 —viv&]}dx
L] '

<
4

o ['f' 2. g - Ty Legy ! 1t v
24pk J‘[G(XiY,k){ (vl = vy, + Flvw) - vl«nzj}clx

+
5.
- ok’ ﬂc(i]?-k){z(G V. +v.V )+ vl 2 v 2 11ax
J ’ 171"Vl 2 -
T
r -y -t i
+u leX|Yik)n.vVds . (3.38)

C

From the above relationm it is clear that, insofar as the pressure P 1is
concerned the two aspects of the fluctuating wake, namely the two-dimen-
sional one represented in (3.38) by the first, third, and fourth integral
and the three-dimensional one represented by the second integral can be
examined separately, and both play an important role in the determination
of P . Some important features of these two aspects are examined below
in detail.

Considering first the two-dimensional aspect, i.e., the wake flow as
it appears in the plane (X1 ,X2) and concentrating on the vortex street
alone, one can argue that the intensity of the velocity fluctuations Vl

and V2 and the manner in which it (the intensity) changes with Re
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should have an important role in determining the magnitude of P and its
variation with Reynolds number. The intensity of the velocity fluctuation:
on the other hand is closely related to the strength of the vortices in
the street. Measuring the strength of these vortices is a difficult pro-
cess which is usually accomplished by matching a theoretical model of the
flow to hot-wire measurements in the wake; this gives only an average
value and has been attempted by several investigators. It has always becn
considered as remarkable that only a part of the rate of vorticity gener-
ated in the boundary layers on the cylinder is found in the vortex street
(see Berger and Wille 1972). If we define (as in Berger and Wille's re-

view) the rate of discharge of vorticity in one row of the street by:
2
K=If=Av0_ ,

where [' is the circulation of a vortex, and the initial rate of discharge

of vorticity from the boundary layer on one side of the cylinder by:

-’

)
K = 0,50 "
S ]

where U_ 1is the velocity at the outer side of the boundary layer near

e

the separation point, the ratio:

K20
KS 1-C
Pg
where C is the base-pressure coefficient is a measure of the fraction

Pg
of the vorticity which escapes annihilation during the interaction of the

shear layers from both sides of the cylinder. This ratio is found to be
about 0.4 in the low Reynolds number range corresponding to Tritton's low-

speed mode and to vary between 0.5 and 0.6 or 0.66 at higher Reynolds
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numbers (see Bevsger and Wille 1972). On the other hand a measure ot the
strength of the individual vortices in the street is I'. From the abovc

relations it follows that:

1-C
T _A_ s K
v d st 2st Ks
C varies with Re ; it is about -0.5 when the wake oscillations begin,

8
it decreases to about -0.9 at Re=200 , then increases to about -0,7

at Re==1()3 , and finally decreases to =~1.2 near Re==1()5 before in-
creasing again at the critical Reynolds number (see Roshko and Fiszdon
1967)., As for St , it is about 0,12 at the onset of oscillations, it
incruases to about 0,19 at Re=200 , then to about 0.21 at Re==103
and remains near this value for all subcritical Reynolds numbers (see
Roshko 1954). After some calculations one can easily cee that the ratio
(1—Cp)/28t varies little in the range considered; it takes the values 6,
5, 4,b and 5 at Re =50, 200, 103, and 105 respectively. In view of

the small changes of K/KS with Re we note here that it is even more

remarkable that the strength of the vortices in the street (non-dimension-
alized) varies little over the whole range of Re below the critical
value. With this in mind, if we look at the results of Tanida et al,
(1973) and those shown in Figure 15 of Morkovin (1964) (both introduced

in Section 3.2) concerning the magnitude of the fluctuating lift coeffi-
cient we see that this coefficient increases from very low values in the
range below Re =100 to high values near Re==1()5 and this despite the
increasing three-dimensionality of the vortex filaments in the street with
Re . Therefore, neglecting for the moment whatever contribution to P

the flow-wise vorticity term (the second on the right-hand side of (3.38))
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has, the absolute strength of the individual vortices in the street and
the closely related intensity of velocity fluctuations there are not of
prime importance in determining the magnitude of P , What is important
rather is the net strength of the total vorticity (mean and fluctuating
part) in the wake, which does not vanish at all times as in the case of
an idealized Karmamn street,* and upon which the intensity of velocity fluc-
tuations in the vicinity of the cylinder depends to a large extent, This
can be seen in the following way. let us consider a cylinder started from
rest in an infinite fluid equally at rest. As a result of the mno-slip
condition, vorticity is generated at the coundary and is mainly swept to
the back of the cylinder (at sufficient high Re ) to form the wake. By
applying Kelvin's theorem as in airfoil theory it is seen that an equal
amount of vorticity must be placed inside the cylinder so that the circu-
lation on a contour surrounding the cylinder and the part of the fluid
which has already recei.ed some vorticity is zero. Before the onset of
instability the vorticity generated at the boundary is antisymmetrically
distributed with respect to the wake centerline, therefore the net vorti-
city in the wake vanishes and so does the bound vorticity inside the cyl-
inder. This implies that no circulation exists on a circuit closely sur-
rounding the cylinder and consequently the cylinder does not experience
any lift force. On the other hand, when ti:e high shear region in the wake
becomes unstable to small disturbances, antisymmetric (with respect to

the wake centerline) “n the longitudinal velocity, modes of disturbance
vorticity, symmetric with respect to the wake centerline, grow and travel

downstream in a wavelike pattern (see Mattingly and Criminals 1972). This

An idealized Karmén street, if left alone in an infinite fluid, does not
move in a transversal direction.
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additional vorticity is simply superposed on the original mean velocity
distribution in the carly stage of its growth while further downstream it
interacts with the mean vorticity, modifies it, gets modified itself and
peging to diffuse in the fluid, However, at all times the mean vorticity
remains antiysmmetric with respect to the wake centerline and the distur-
bance vorticity at the fundamental frequency remains symmetric, Theretore
the net vorticity in the wake does not vanish and alternates (at the tun-
damental frequency) between positive and negative values, In addition, by
the nature of the process of genvration

of the disturbance vorticity, tnls net

strength Is small: it for instance at A 5

. . ’"‘\::7‘::5<::;f<:“>~
a given time, and at each downstream (:::> X,
station we sum  the vorticity in the
transversal direction and plot the
obtained values as a function of the downstream coordinate Kl we obtain
a curve of the form shown in the figure, the net streungth in question is
nothing but the algebraic area under this curve, this is of the order of
the area under the curve AB and therefore is small. This implies that
the bound vorcicity is small and so is the lift force. As for the velocity
fluctuations in the wake, they are due to the field of the unsteady vorti-
c¢ity both in the wake and in the cylinder., Near the cylinder the field of
the bound vorticity is dominant, and since in this case the latter is
small, the velocity fluctuations there are small,

What we have described above is the state of affairs corresponding to

the low-speed mode of vortex shedding., This is to be contrasted to the

case when the vortex shedding results from the direct interaction of the
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two shear layers emanating from the surface of the cylinder (correponding
to the high~speed mode of Tritton) the way it was described by Gerrard
(1966b) and observed by Mattingly (1962), and to which the fundamental
stuay on the non-linear interaction of two infinite voruex sheets of Aber-
nathy and Kronauer (14Y62) applies.
Without entering into dctails (xe-
ference is made to the mentioned
papers) and referring to the figure,

the net vorticity in the wake (as-

suming that all the vorticity is

concentrated in the street) is

dominated by the difference in strength between vortex B and vortex A .
At certain moments which occur periodically this difference is large; the
induced bound vorticity is then large and the lift has a maximum amplitude,
In addition, the velocity fluctuations in the vicinity of the cylinder,
which are due mainly (o the field of vortex B and the bound vortex, reach

high values and are in phase in a direction parallel to the Xl-axis."
The three-dimensional nature of the flow in the wake, when Re 1is
above 90 , is far less clear and much more difficuit to describe. The
pieces of information available are scattered in the literature and are
often reported in a rather crude manner. TFor instance, spanwise corre-

lation lengths determined using two hot-wires separated in the x_-direction,

3

This is the reason that calculated convection speeds, of the street vor-
tices, based on phase measurements increase without limit in the vicinity
of the cylinder (see Bloor and Gerrard 1966, and Simmonc 1974). Simmons
recognized the existence of the bound vortex, but assumed that the vor-
tices in the wake are equivalent to a distributioa of vortex doublets,
while in fact it is the total vorticity including the bound vortex which
is so.
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are usuallv given without specitying whether the signals from the hot-
wires were filtered at the shedding frequency or not, Similarly it s
not ¢lear sometimes whether the periodicity in the spanwise direction,
observed at certain values of Re , is associated with slantwise shedding
or simply with waviness in the vortex filaments, Even the more special-
ized studies of Gerrard (1966a) and Gaster (1969, 1971) on the effect of
spanwise non-unitormities (in the ¢ylinder or in the free-stream) ledave
some important issues unenswered. In addition, Gerrard (1l9v6a) attributed
the existence of low frequency modulations, in the transition range, to
the simultansous existence in a direction along the span of laminar and
turbulent vortices, which also resulted in the continuation of the vor-
ten filaments into the direction of the free-stream, He also noted that
in the irrcgnlar ronge, when all the vortices are turbulent, this effect
is less pronounced. lHowever, he later showed (Gerrard 1967b) that suppres-
sing the vortex street with a splitter plate did not alter the low fre-
quency component in the vicinity of the cylinder, thus proving that this
component is unrelated to the vortices in the street.

Leaving aside such factors as the spanwise non-uniformity and the details
of the experimental setup, one thing we can be sure about is that the pre-
sence of three-dimensional disturbances in the free-stream will ultimately
render the flow in the near wake three-dimensional, In Section 2.6 we
have suggested that such a phenomenon takes place in the individual shear
layers, and gave as evidence the observations of Humphrey (1960) at the
critical Reynolds number., Other pieces of evidence can be given to support
further this point: for instance, the observation of Hama (1957) that

“"the . ransverse waviness of the vortex lines appears almost immediately,
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turther develons apparently in the shear layer,'" In addition, we ¢an ar-
gue that a free shear laver is more likely to be vulnerable to small dis-
turbances than a rolling or rolled up vortex., It is also tempting to
conclude, as we did in Section 2.6, that as a result of the growth of
these disturbances, flow-wise vortiecity is gencrated, which either takes
the form oif waviness in the vortex filaments, or causes the slantwise
shedding of vurtices,* or ¢ven leads to the low frequency irregularities,
It we accept this sequence of cause and ctffect, the various observations
mentioned above become less puzzling, Another item of observation seems
to fit the above picture: by oscillating the cylinder at the shedding
frequency, Berger (see Wille 1966) has shown that laminar vortex strecets
with narallel tas opposed to slantwise) shedding could be upheld until

Re =350 , Tt is possible that upon oscillating the cylinder the separated
shear layers become more stable against hoth small and large scale three-
dimensional distrubances, thereby delaying the transition to turbulence
and preventing the formation of flow-wise vorticity which would otherwisc
lead to slantwise shedding., Let us emphasize that the preceding discusnsion
is merely speculative and is not intended to be definitive. Nevertheloss,
as 1s clear from the general solution (3.38), the knowledge of the three-
dimensional nature of the flow in %he near-wake or the form uuder which it
manifests itself under variousconditions is essential for a successful pre-
diction of the unsteady loading on the cylinder. This, we believe, can be
achieved only by conducting experiments under controlled conditions,

We now proceed to the discussion of the changes in the magnitude of

“Slantwise shedding is equivalent, from a kinematical point of view, to a
vortical component in the direction of the mean flow plus a certain perio-
dicity in the spanwise direction.
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the unsteady loading with Reynolds number., The tirst question one is
faced with, when Re  exceeds 90 , is which of the two modes of vortex
shedding discussed above is likely to occur., Is it the low-speed mode

or is 1t the high-speed mour. We know that the low-speed mode is caused
by the instability of the luminar wake and is *tviggered by the presence

of linearizably small disturbance:, n the other hand, the high-speed
mode can only be triggered by finite disturbances (Abernathy and Krou-
aner 1962), It we increase Re radually from values below 90 where
the low-speed mode is prevailing, the velocity tfluctuations induced in the
vicinity ot the cylinder, which are antisymmecric in the longitudinal com-
ponent and therciore constitute a potentially triggering agent for the

high-speed mode, increase but remain very small at low Re and therefore
. -
- .

are not able to cause the non-linear interaction of the two separted shear
layers. 1If on the other hand the level of disturbances in the free-stream
is high enough, and Re is increased beyond 90 the absence cof the two
standing eddies (i.e., the fact that the two shear layers spring freely
from the sides of the cylinder) will lead to this type of interaction. We
don't know the background turbulence level in Tritton's experiment of 1959,
however in the 1971 paper Tritton mentions that this level was high. Ko-
vasznay (1949) who had a background turbulence level of 0.067 did not
observe the transition of Tritton and in his words, 'the vortices develop
some distance downstream within the Reynolds number range 40 to 160 ,
and are not shed direct'y f[rom the cylinder, consequently the phenomenon
can properly be considered as an instability of the laminar wake, that
develops to an amplitude limit but dies out before becoming turbulent."
Therefore, we can conclude that with low free-stream turbulence level the

wake remains in the low-speed mode even after Re =90 1is exceeded; the
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increase in the lift and drag fluctuations with Re is then moderate and
is quickly countericted by the increasing effect of three-dimensionality
with Re* (a typical value of the spanwise correlation length for

90 <Re<'150 -200 is 17d , see Phillips 1956)., Referring back to the
daca of ianida et al. (1973) in the stable range, which were taken in an
oil tank where presumably the level of disturbhances is very low, it isg

very likely that the measured values of ]E’ correspond to the low-speed

IJ’
mode of vortex shedding. On the other hand the relatively high value

~

cI( =0.27) obtained by Jordan and Fromm (1972) at Re =100 might have

4

(|
resulted from prematurely triggering the high-speed mode of vortex shed-
ding, by twisting the cylinder back and forth in order to perturb the
numerical solution,

When Re is increased beyond the stable éange, the increaglng effect
of three-dimensionality corresponding to the second term in (3.38) becomes
more difficult to assess (a typical value of the spanwise correlation
length in the transition range is 10d given by Rashko (1954) at
Re = 220). However, we expect that, like the Strouhal number, the lift
and drag fluctuations are not well-defined in the transition range, in
particular when Re 1is close to 400 (see Section 3.2). For this and
other reasons it is doubtful that the value 151i==0.75 obtained by

Jordan and Fromm at Re =400 can be considered as tvpical of the range

in question.

For a given two-dimensional distribution of velocity fluctuations in the
wake, the difference in magnitude of .~ he pressure fluctuations corre-
sponding to an infinite or a finite spanwise length scale 2m/k is the
same as the difference in temperature distribution in a medium corre-
sponding respectively to a zero or a finite coefficient of abscrption k
(see Section 2.2).
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The possibility of a coupling hetween the transition waves of Bloor
(1964) and the shedding frequency mode extends to Re =1.3X103 . To our
knowledge no measurements of unsteady forces have ever been reported in
this range, and one may well wonder whether this is due to measurcement
difficulties of the type encountered in the transition range. Above
Re = 1.3><1()3 the transition waves and the shedding frequency component are
decoupled, and therefore the lift and drag fluctuations at the sheeding
frequency and its first harmonic respectively can be expected to be well
defined as in the stable range. However, the qu stion concerning the mode
of vortex shedding arises agsin, In addition, the wake becomes highly
three-dimensional; typical values of the spanwise correlation length are
three to five or six diameters up to Re==105 , and we expect the contri-
bution from the flow-wise vertical component to become important. Conse-
quently the changes in the magnitude of the wunste&dy loading with Re in
this range are the result of the simultuueous change in both the two-di-
mensional and the three-dimensional characteristics of the flow in the
near-wake. Since very little is known about the three-dimensional char-
acteristics, it is very difficult at this stage to speculate on their
possible effect. On the other hand the two-dimensional characteristics
and their effect on the magnitude of the fluctuating lift were the subject
of a series of three papers by Gerrard (1965, 1966b, 1967a). Since then
two relevant papers appeared in the literature and we feel that some com-
ments here are in order to further emphasize some uncertain issues.

On the basis of a potential flow model Gerrard (1967a) suggested the
possibility that, when the turbulence level in the free-stream is very low,

the wake remains in the low-speed mode up to values of Re of the order

of a few thousands. However he later questioned that possibility, because
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of the three-dimensional nature of the flow at such high Revnolds mmbers
and the invariance of the Strouhal number, which normally can be expected
(the Strouhal number) to depend on the mode of shedding. In their photo-
graphic study, made in a mercury tank, Papailliou and Kykoudis (1974)
observed a wake in the low-speed mode at Re==3.47103 and a formation
region whose length is in agreement with the value measured by Bloor
(1964). This could have provided a confirmation of Gerrard's suggestion
if it was not for the fact that the only picture showing a symmetrical
formation region was taken with a cylinder whose span to diameter ratio
is only 2.5 ., This we know can impose the two-dimensionality on the flow,
at least in the near-wake region. In addition, the recent data of Tanida
et al (1973) in the range 2><1O3<Re<1()/‘L , which (the data) correspond
to a low free-stream turbulence level, do not agree with those of Gerrard.
They do not agree with those of Keefe (1961) either,.but Keefe had a
background turbulence level of 0.37 . On the other hand, the similarity
of the uata of Gerrard and those of Keefe with the clearance holes open,
suggests that perhaps the results of Gerrard suffer from end effects. If
this is true, then the reasou for the unrealistically large formation re-
gion generated by Gerrard's (1967a) numerical model, when forced to yield
the very small fluctuating lift he measured, becomes clear, Gerrard
(1967a) argued that with a hot-wire in the flow it wmay be impossible to
obtain a symmetrical formation region, hence the discrepancy with Bloor
(1964) is natural. But Papailliou and Lykoudis did not have a hot-wire in
the flow and yet the length of the symmetrical formation region they obh-
served is in agreementwith Bloor's measured value. Another factor, which
might have contributed to the large formation region in Gerrard's model,
is the fact that this model is purely two-dimensional.
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To conclude, we consider again the question (noted in Sectijion 3.3.5)
of the invariance with Reynolds number of the angular distributior of the
surface-pressure fluctuations at the shedding frequency and its first
harmonic. The similarities in this respect, between the stable range and
the subcritical range, can be attributed to the fact that whenever a de-
finite vortex shedding occurs at high Reynolds number, as is the case for
irnstance in the subcritical range, the two-dimensional characteristics of
the velocity fluctuations at the shedding frequency and its first harmonic

are similar to those in the stable range. TFor instance, the components

Vil and véz are antisymmetric with respect to the wake centerline, and
the components viz and Vél are symmetric, From this and the continuity
equation one can easily deduce that wil and wéz (the second subseript
being used as for vi and vé ) are symmetric with respect to the wake

- W .
centerliné, and wiz and wél are antisymmetric. Referring to (3.38)

and noting that G(il?;k) is simply a geometrical function which depends
only on the spanwise lengih scale and, like G(il?) , on i~§1 , we can
see upon inspecting the different integrals (concentrating only on the
linear terms) that, as in the :wo-dimensional case, the component of P

at the shedding frequency is the result of an incomplete cancellation of
two contributions coming from the regions below and above the wake center-
line, while the component at the double frequency is the sum of two such
contributions, This implies that the angular distributions of the surface-
pressure at these two frequencies should have roughly the same form as at
low Reynolds number. The difference between the two cases, on the other

hand, lies in the fact that, when Y, is put equal to zero (corresponding

2
to the front and back stagnation points), the cancellation is not complete

for the component of P at the shedding frequency, as it is at low Re
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This is due to the fact that at high Reynolds numbers the wake 'physical!
centerline does not coincide at all times with the wake 'geometrical’
centerline (i.e., the Xl-axis). This phenomenon is often referred to as
the wobbling of the wake axis and is manifested by a non-vanishing signal,
at the shedding frequency, from a hot-wire placed on the X1~axis 1see
Bloor and Gerrard 1966)., As for the double frequency component, the fact
that k is finite at high Reynolds numbers implies that the velocity
fluctuations at the double frequency in the immediate vicinity of the cyl-
inder supply a more dominant contribution to the surface-pressure than they
do at low Re . This follows from the asymptotic behavior of G at large
values of the argument (see Chapter 2) and the effect is more pronounced
the larger k is, Hence, the ratio of the distance between the back

. stagnalior.point and the rtglon cupplying the dominant contribution at
that point to the distance between the front stagnation point and the cor-
responding region which supplies the uuminant contribution there is smaller
at high Reynolds number than it is at low Reynolds number. This may be
the source of dissimilarity between our Figure 4 (at low Re ) and Gerrard's

(1961) Figure 9 (at high Re ).
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APPENDIX A

The Role of the Nonlinear Terms in the Source Distribution Function

The source distribution function in its original form, i.e.,, as given

by (2.5) and (2.6), can be written as:

Av. ov! Av! av! dv! dvy!
2 - i i i . i i
q(x,t) = 2p A, 3% +op 3, 9%, p =, By (a.1)

The first term on the right-nand :»ide of (A.l, represents the amplifying
effect of the mean shear on the velocity fluctuations, while the remaining
two represent the effect of these fluctuations on themselves. 1In all the
previous studies which considered the pressure fluctuations on a plane sur-
face supporting a turbulent boundary layer (Kraichnan 1956b, Lilley and
Hodgson 1960, and Lil]ey }963), the_l;tter effect was neglected, The rea-
son being that duc to the large mean shear in the boundary layer, the c;n—
tribution from the quadratic terms is only a fraction (4 to 67) of the
total contribution. However Corcos (1964) argued that the linear term

(the first on the right-hand side of (A.1)) which is large only in a region
very near the wall supplies a dominant contribution only at high frequen-
cies, while at low frequencies the remaining terms have contributions at
least comparable with that of the former and their scales and convective
speed are more typical of those of the observed wall pressure. Nonethe-
less Panton and Lineberger (1974) in their recent study retained only the
turbulence -mean shear term and found that their results were in good agree-
ment with observations for wavenumbers kl (in the streamwise direction)
as low as Qéé-, where 0 is the boundary layer thickness.

In the wake behind a bluff cylinder the situation is different. The

shear layers which spring freely from the sides of the cylinder increase
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in width with the dcwnstream dis-

PEAKS OF CONTOURS
RMS LEVEL OF CONSTANT
RMS LEVELS

tance and at a faster rate the

higher the Reynolds number is.

Although the velocity fluctua-
tions do not peak very near

the toundary where the mean shear

is highest, they do peak, at each \\\\ ;r
downstream station X1 s at the

MEAN SHEAK
center of the shear layers. This REGION

is true not only for the high fre-

quency components which result

from instability of the individual shear layers themselves but also true
for the shedding frequency compiment./{see Gerrard 1967b}. Acroes each-
layer the change in the mean velocity is of the order of the free-stream
velocity U_ while the change in the level of velocity fluctuations is
about one order of magnitude smaller (see Figs. 2 and 3 of Hanson and
Richardson 1968, where contours of constant mean velocity and r.m.s.
values of velocity fluctuations in the near-wake are shown at two differ-
ent values of Re : 10600 and 53000). With this in mind, the first term
on the right-hand side of (A.l) can be expected to yield a contribution
about one order of magnitude larger than that of the remaining terms.
Note however that at values of the wavenumber k (in the spanwise direc-
tion) or the frequency w (in time) for which the velocity fluctuations
in the wake are not particularly significant. The linear term in q 1is
not dominant and the main contribution to the fluctuating pressure at these

wavenumbers and frequencies comes from the quadratic terms.
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For the particular case of Reynolds number equal to 56 which is
treated in detail in Chapter 3, the same argument given above 1s still
valid. Inspection of the mean velocity profiles and those of the velocity
fluctuations shows that at each downstream station the peak of the fluctu-
ations occurs in the high shear region and that the gradient of these
fluctuations in the transversal direction is at least one order of magni-
tude smaller than that of the mean velocity. Therefore the contribution
from the nonlinear terms in ¢ can be expected not to exceed 107 of the
total contribution., On the other hand, and as was noted above, the compo-
nents of the pressure fluctuations at the frequencies 3f and 4f can be
accounted for only by considering the nonlinear terms. But these compo-
nents are negligibly small and practically non-measurable at this low

«Reyno’ds number. - . . .
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APPENDIX B
Estimation of Some Integrals

Estimation of J1/°Um2 . We first consider J1 . We have:
3 -i-c:or +5 2 y )
.2t 4 - logl(X, +Y )2+(x -Y )21 -logf (X, -Y )2+(x YT > ox
5 2 md A 2 2 1751 Tl T T
PUs 20 Lo %
vy 9y cos 21'r(61--ft)dX2 } Xm
9
e 50, 2X, Y, +Y. 2 2K Y, Y,
1f ) 2°2 72 272 "2
= -2 '] —5 logl 1+ —*——"—T—E]-logfl'i‘ """""""‘""5_"_5] ¥
; -V - <
20 N0 3X2 (Xl ‘l) +X2 (xl Yl) +X2
v, @, cos Zﬂ'(Ol—Et)dx2 Xm
1. .1 . . . .
Since —-2-4Y1 s Y2 ‘o we have in the domain of integration:
2 2., 2
< -
+ 2X2 Y2+Y2 < (X1 Yl) +X2 .

By expanding the logarithms and retaining only the first term in cach

expansion, we obtain:

4o, 5
J 2 4X. Y
LA g 22 157 ¢, cos 2m(8, -£t)dx, b dx
U 2 . x 2 . v g2 171 1 2 1
™ 20 L0 2 17717 ™2
4%, Fm [‘5 32 %, — )
= =] ] - 2[ o )2+x ?_Jvl @, cos .’21‘T(91—ft)dx2 7 dx1
20 % 0 2 1771 T
or,
34y, Fm
5= Kl(Xl) cos Zﬂ(Gl-ft)dxl , (8.1
oU
® 20
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data on the velocity fluctuations we can see that:

';1 ;{L , for 20~ X]' 1)
1
and since q"l , w¢ have (for 20 Xl 1040 )
5 .
K& g ot 7 4%,
Lo ™y X,
or:
‘)
25-(X,-Y )"
K(X):’—:-i-{ 5(X1Y1'2+ L )1
171 X 120514 2
1 Lexg -y ) %405] (X;-¥)",

3X25 (X, ~Y. ) +(25) >
2 17 e

Y e—

X 2 a2 2
1 L%, -Y)) 2 425] (X -Y))

2 2
Iy9 - . e
2 ,.’thS(X1 Yl) +3x(25)

"X 2 . 42 2
1 [(Xl-Yl) +257] (X,-Y,)
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whore:
; ':“) " -X, y —
K&y =0 T NIRRT R R T
o Ry (YT
» X
in which v, , m , and = [ =——-] arc all positive functions
*X’.’,M (X -Yl)"+X,,"
of X, for X, >20. Therefore, Kl(Xl)“ is a positive function of X,
for Xl?QH . In addition, Kl(xl) is a monot-ically decreasing
32 -Xo
function of X1 for X1 =20 , because . and 2 5 [ — ,,] are,
___ RXZ“ (X]'-Yl)"*l-xz"
while vy is a slightly increasing function of X1 . An upper bound
can be four' for Kl in the inter 1 20 Xl' 100 ., By examining the




3%25
2 7}
e -¥,) +25] (X, -¥,)

1
e
1

-~ 2 3X25
"X 4
1 (Xl-Yl)
and therefore:

R (X ) - l§9~“—— , for 20<X. <100

x %, -1 )" !
in estimating J1 we will neglect the part of the integral beyond
Xlzflnn assuming that it is negligibly small and does not affect the
order of \magn'tude of the retained‘yart.w With this in wmind we write

instead of (B,1;

) - ’ ”
Kl(xl) cos _ﬂ(ﬁl ft)dX] . {B.2)

Since Kl(xl) is a positive monotonically decreasing function, it follows

from the second mean value tLheorem (see Whittaker and Watson 1963) that:

F
3 5y, 2
7= 4 Q0

© 20

cos Zﬂ(el—ft)dx1 .

where £_ is such that 20f’§1‘f100 . Now we kmow that given a linear

-

function a(Xl) such that:

“In the far-wake ¢ decays more slowly than 1/X, but it is ..asonable
to assume that the velocity fluctuations beyond k =100 do not affect
the surface-pressure field,
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the following integral:

b
‘r cos 27 Xm s

a

, - . . 1
where a and b are arbitrary but finite, is bounded with =5 as

=8

upper bound. 91 is an almost linear function of X1 , for the present

purpose it can be acsumed linear and inspection of the data shows that:

. ' J ' ) *
L2 1
J-—-—;, DER Q) —
oU nx~1-5~
or:
.1 _1sx1s0
70 "3 A
ou "l 20(20-,)
.1 _15x150
"7 7
= 20(19.5)

and finally:

—=5i 0.0788 %1070 . (B.3)

Estimation of JZ/pUm2 . We have:
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- - = T
I, ) Foxf 45 (xz"Yz) 2-(X1~Y1) 2 X22 _X12
-o=_;r ; Ty 5 vlcpzcoslm(e ft:)dX dx
- (3 l.- - -, 2 f
pll 20{ -3 [(x1 ¥y)SH(X,-E,) ] (X, 4+X7)
o
27 2%
== f —— log(X -}-X ) 1ogL(X ~Y )+(X -Y )] rp coslm(e ft)dX
T 2 2 72 2
20 | -5 %%,
00 2 !
) 52 Y +Y2 -2X, Y -2X,¥,)
= -"-f Y| —5<-log(l+ ; Yp v, 0, cos4m(0,-ft)dX >dX. .
T % 8}{2 X2+X2 172 2 1
20 2 172
:
Again, since in the domain of integration:
2.2 2,, 2
- - <<
Yl +Y2 2X1Y1 2X2Y2 X1 +X2 ,
: by expanding the logarithm and reta?-.ag only the pert of the first term
p
; which 13 of lowest order:
|
oot AL —
—_——= = r r v, @, cos 4m(6,-£f£)dX, »dX ,
2 ™ v 2 2 2 172 2 2 1
| pU,, 20| -5 8}{2 X1 +X2
|
' or since v, 1is even in X2 » ®, 1is even in X2 , and since @, (by
inspection ¢i the data) is different from zero only for -3 ‘SX2$+3 and
' J2 2Y1 100{ +3 az {'Xl }___
—_— = — —— 0,-ft)dX dX
7 n'f f 2 Yo 2.2 (V1 ¥ cos 4, 2 (M
DUm 20 | -3 axz Xl +X2
| J2
‘ > can be written as:
nU_,
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J2 2Y1 gOU
— = kz(Xl)COSAH(OZ-ft)dxl , (B.4)
LU 20
where:
}3 22 { "Xl —
R.(X,) = = i-——-— v, o, dX .
21 2 2 .2 17272
-3 3x2 X1 +X2

As before, it can be shown that Ko(Xl) is a positive monotonically de-

creasing function of X, . In addition, since (by inspection of the data):

1

. 0.7 , .
?2 = X for 20 Xl 100
1
we have:
+3
2 (X
K, () s B [ =24 5 X,
L 4 E«x2 ‘~X1 +x2
8.4
: 5 5 .
(X, +9)

Now from (B.4) and in view of the second mean value theorem it follows

that:
F‘
J2 2Y1 fl
— = K, (20) coséﬂ(ez-ft)dxl ,
el 20

where 20“51:1100 . Like for 61 we have:

a#,
Xm 15

and therefore:
J
2 ir,0) ——
i B 2%
™ T
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or;

2 | 115, 84
n /
ou 2l W 02012
and finally:
J, -3
= = 0.0190X10 . (8.5)
1L

e , 2
Estimation of J3/pUOo

The cancellation effect mentioned in Section 3.3.4 cannot be ex-

ploited to find an upper bound for J3 . However, in order to improve

the estimation we can use the fact that:

2

X
=~ 0.7 2
vy g (-5
1
We write:
I3 2 }‘m; 3 Xzz‘xlz —
_— = - ! v, ¢, cos 471(8, -ft)dX, S dX
DUmz k1 \‘ -(4) (XZ XZ) 112 2 2 1
w 1 2
0003
=2 [ f 2 x2 v, P, cos 4m(B, -£t)dX dx
d N axzixz+xz 1% 2 9 1
20 L0 1 2
or:
J3 ) }OO
———E == KS(XI)COS 4ﬁ(92-ft)dxl ,
pU°° 20
where:
%5
K3(X]) = f X 55 vlcpzdx2 .
o 2K,
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KB(XI) is a positive monotonically decreasing function of X1 and:
3 2
ey LT[ D ﬂ( X *2 g
K =% w2
o 2 X
-
clBed | arctan
9 'ixl X1
3 5
1.4 ) 3 3 1.3 1,3
s e L o) - 26+,
9 X1 X1 3 X1 5 X1
< Lb
X 3
1
Also, we have as before:
Jq
3 2 4
—=! < = K_(20)
21 m o3 2 ’
pU, ?(TTXE
{ or
! J3 | . 1 15x0.7
' 2 - 3
ou ?l W o)’
‘ and finally:
| J
— = 0.1329x 107
Py,
| o . 2
! Estimation of Ig/pUm

(B.6)

2
Iz/pUm accounts for the effect of neglecting the contribution from

the ve rcity fluctuations outside the strip iX2‘

<5 . There, only the

fluctuations at the shedding frequency are present and they are very small,

Upon examining the data we find that:
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by ().()172 for X 25
(%,/5)

where again tne variables are non-dimensional. From (3.25) it follows

that:
Ig _ _2_[‘ [‘ r (XZ'YZ) -(Xl-Yl) (X2+Y2) ..(xl-yl) )
2 T v m P 2 - ;
Pl "2 0 [(&)-¥;) 2+ (X, -¥,) 2] [(xl-Y1)2+(x2+Y2)2]2)

Gzcglcos 2n(91-ft)dx2 dX;

wnere the fact that Py is an odd function of X? has been used to elim-

2

inate the part of :B___q') which is independent of Y1 and Y, . We now
de’ -
write:
I —2X2Y2+Y 2X 2Y2+Y2 A
;-r zf -—— 10g(1+——-—-—-————-—-———-2 5 ) ~log (Lt —=—="s 2)% X
m ) 5 (Xl—Yl) +X2 (Xlel) +X2 J

v 2 -
v, @y cos J‘I‘(Gl ft:)dX‘2 Xm s

or, upon expanding the logarithms and retaining only the first terms in

each expansion:

3

+of +w
zf f %2 }"’ (9, -£t)d ‘}a
= = v. @, cos 2mM(9, ~-ft)dX X, .
s A 5 (X )4+X22J 171 1 2| 1
7 (B.7)

pU

©

We note that:
2
2 X, ) 2X2[3(X1-Y1) -xZZ]

2 2 2 - 2 243
3K (Xl-Yl) X, [(Xl-Yl) +X, ]
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and therefore in the domain of integration (i.e,., 2‘iX1' +®
5<X,% 4+ ) this quantity changes its sign, It follows that the proce-
dure used in the previous estimations cannot be applied here to account
for the behavior of the cosine function in (B.7). Nevertheless, we will

carry out the estimation below by taking the absolute values of the dif-

ferent terms in (B.7), knowing that only a gross estimate can emerge:

1 p X g y

2 2 a 2 0.0175 "
“—'zjsﬁf f zr’ 7 4%y p 4%y
) (X,-¥;) +x (X,/5) )

o
. 0.875 f ff' | 22 { 1 })dx1 L,
T Ty 1 e 2 2. 2015 X T2
3 ;
< Lz 3%, (XY ) X, j

Now, we have:

+e 52 . | e (X -Y1)2—2X 2
f f 7 72 Xm"r i : 7 s idxl
S S (A S he S AR (¢ % R N
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The maximum value of the term containing the logarithm on the right-hand
side of the above inequality cannot be determined accurately, we therefore

evaluate that term at Y1=% corresponding to the maximum value of P1

(see Figure 1), The resulting estimste is:

I,

< 0.6308x 1070 (B.8)

eU,,
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