
ACID RAIN: MICROPHYSICAL MODEL

By A. N. Dingle*

BASIC EQUATIONS

P

When HCI and H20 vapors are present together, they jointly determine the

r equilibrium vapor pressure of each component over an HClaq droplet. It is
assumed that the two vapors may be treated as if they diffuse independently.

Thus, the change of mass of a solution droplet may be expressed as

dmr = dmI + dm2 (I)

where the subscripts indicate the respective components; i.e., H20 and HCI.
Then, analogously with equation (i)_

dml 4_rDiFvlV /e_al erl_ (2)

dt RI \T a Tr J

and

dm2 4_rD2Fv2V <ea 2 er2hd--6--= R2 Ta Tr / (3)

The energy balance of the droplet may be expressed by!

QT = QL + QK + QR - Qr + QM + QF + QD (4)

*University of Michigan.
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where QT, the internal energy increase, is defined as

dT
r

O = m C
"T r r dt

QL' the latent energy release, is defined as

QL +
= QLI QL2

QLI= L1 (dml/dt)

QL2 = L2(dm2/dt )

QK, the conductive heat transfer from drop, is defined as

QK = -4_rKFKV(T r - Ta)

QR, the radiative transfer from drop, is defined as

QR = -16_r2ORETa3(T r - Ta)

Qr, the surface increase energy_ is defined as

Qr = _vr i_- mI dt + _ 1 1Or _ mI d= m2 7J

_r (i dml i din2) dTr (_ 2_ i _r_l-_ _ mI at m2 d't + d--_ _T 3 Or
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QM, mixing, is defined as

am

T)adtr

QF_ frictional conversion 9 is defined as

2r2mr g2

QF = 9_f (Pr - Pa)

and QD, the heat of dilution, is defined as

am
dh r

QD = m d_ dt
r

A detailed discussion of the energy terms is given in reference 1 and

need not be repeated here. A study of the relative magnitudes of these terms

for different sizes of droplets of 4.0 molal HClaq in a l-m/sec updraft (table
I) shows that only QF is definitely negligible in the cloud droplet size
range. This allows simplification of equation (4) to

QT = QL + QK + QR - Qr + QM + QD (5)

By means of the definitive expressions, the droplet temperature elevation may
be written as

(QL + QD - QT - Qr d_r-] (6)
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In addition, for each time step, the mass conservation accounts are

kept. Assuming that there is no dilution of the air parcel by turbulent
mixing with environmental air,

dxI (dmll
at ni\d-7--/i (7)

i

dx2 <dm21d-_--= - _ ni d-_--/i (8)
i

The environmental temperature and pressure changes from one time step to an-
other are given by

dt = -WPa g + d-{

and

dT LI d--i-+ L2 _-+ g +_ _\ + xI + x2--Aa=- (I0)
dt

c + XlC + + _ (mrCr)in iP Pl X2CP2 i

where the summation in the denominator represents the heat capacity of the

liquid carried with the rising air parcel. Equations (2), (3), and (6) for

each droplet size category and equations (7), (8), (9), and (i0) constitute

the explicit model for two volatile components.
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NUMERICAL INTEGRATION TECHNIQUES

The numerical technique used for the integration of the microphysical

equations is Hamming's modified predictor-corrector method started by a

Rung_-Kutta procedure. This method has been described in reference 1 and is

given in reference 2. At present_ there are 2n + 2 first-order ordinary

differential equations to be solved simultaneously, where n is the number

of droplet size classes. In terms of the variables used in reference 2_

' through y_ are the derivatives with respect to time of the mass ofYl
water in a droplet in a specific size class:

drollYl dt i

Rl \Ta Tr7

!

Yn+1 through y" are the derivatives with respect to time of thezn ....
HC1 mass of a droplet in a speclflc size class:

_I2n dm2Yl n+l = _ i

_ 4_rD2Fv2V_h2 e__r2_
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' is the derivative with respect to time of cloud air temperature:
Y2n+l

dT
a

=Y n+l dt

= LI d--_-+ L2 d--_-+ g + d-t d-t i + xI + x2 (ii)

c + XlC + x2c + _ ImrCrlin±
P Pl P2 \ I

where ni in the denominator on the right-hand side of equation (ii) refers
not to the number of size classes but to the number of droplets in size

class i and where y' is the derivative with respect to time of the2n+2
cloud air pressure:

dp
Y2n+2 = dt

= - ag d-t + 0a dt dt2J

The droplet distribution is initialized by assuming a starting pressure

or height (Y2n+2(0)), temperature (Y2n+l(0)), relative humidity, and vapor
pressure of HCI of the center of the cloud. The small droplets are assumed

to be in equilibrium with the environment and the large droplets near equilib-

rium. Under these assumptions, the mass of H20 (Yl(0) . Yn(0)) and mass of

HCI (Yn+l(0) . Y2n(0)) on each droplet are determined. Integration of the
microphysical equations now begins.

One of the benefits of the Hamming method is the fact that the local trun-
cation error (LTE) is calculated at each increment of integration or time step

and can be used to modify this time step. If the sum of the LTE's for each

equation exceeds a given tolerance limit specified by the user_ a new time

step that is one-half the length of the previous time step is selected and the

integration is restarted at the last accepted integrated values. This halving
of the time step continues until the new values are within the error limit or

until the number of halvings exceeds a specified limit. If the sum of LTE's
is between the tolerance limit and one-fiftieth of the given tolerance limit_

the calculated values are accepted and integration continues. Finally_ if the
sum of the LTE's is less than one-fiftieth of the given tolerance limit_ the

70



calculated values are accepted 9 the time step is doubled_ and the integration

continues. With this time step adjustment, the integration is more accurate

and efficient than if a fixed time step were used.

A computational instability was encountered during the integration of the

microphysical equations. Some droplets were found to fluctuate wildly about

their equilibrium values. The vapor pressures of HCI and H20 in the environ-
ment may not equal the equilibrium vapor pressures at the droplet surface

which are a function of temperature, molality, and radius. The existence of

a vapor gradient allows the molality of HCI or H20 (or both) independently of
each other. The consequent condensation/evaporation of vapors may overcompen-

sate the change in molality necessary for the droplet to reach equilibrium with

the environment. The overcompensation of molality causes the vapor gradient

to change sign_ and during the next step, growth is in the opposite direction.

To correct for the resultant instability or oscillation of the droplets about

their equilibrium, the following scheme was developed.

Consider, for the moment_ one diffusing vapor. The vapor difference at

the droplet surface is some value B:

B= e - e
a r

If the droplet goes to e_uilibrium_ B goes to zero. The change of vapor

difference for a droplet that goes to equilibrium during the time step is

B = - ea - er - ea - er

Grouping terms, one obtains

E 1
d At - er r (12)

B=- _-_ ea -e

Ae B + d_t ea

The vapor gradient is not allowed to collapse far beyond zero in a time step.

Therefore, the change in vapor pressure Ae defines the maximum allowable

change in vapor pressure. The maximum change in vapor pressure can then be

used to find the maximum allowable change in droplet molality during a time

step. The derivation of the maximum change in molality follows.
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The vapor pressure to a droplet can be expressed as a function of drop-

let molality_ temperature9 and radius.

e = f(_,T,r)

Differentiating_ one finds that

_e _e _e

de =-_ d_ +-_ dT +-_r dr (13)

Having the equations for the vapor pressure of each component over a flat

solution as a function of T and _ (ref. i)_ it is an easy matter to
differentiate and find that

=i___,_l= A (14a)
T,r

and

I_,r

Now_ for a droplet of radius r_ the vapor pressure at the surface is

er er= _ exp

=e k
r___oo
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Then_

_eI o_/ _h

k
r r

Transforming dr . dm_ one obtains

_-rl k dm
_e dr = -e 2

T,p r r 4_pr

= G dm (14c)

Substituting equations (14a), (14b), and (14c) into equation (13) yields

de = A dp + F dT + G dm

and in finite difference form,

Ae = A Ap + F AT + G Am

de
a

= B +d-i--Am (15)

From the definition of molality, one finds that

- _---AmI + U---Am2
A_ = ml m2

where mI is the solvent and m2 is the solute.
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The relative growth rate (dm2/dm I) can be determined from the growth
equations (2) and (3):

dm21
din2 \d--{-/

dml (d_)

Then,

I_l dm2hi i d__l_Aml (16)A_ = _ + m2

Substituting equation (16) into equation (15) and solving for A_,

d (ea)At _ F ATB+_
A_ = G (17)

A+

mI m2 d-_ml/

where d(ea)/dt and dTa/dt are estimated by backward differencing. Then,

dT
a

F AT = F .----At
dt

The maximum allowable change of molality determined from equation (17),

A_I_ applies to the solvent. Similar calculations for the solute result in

another value_ A_2" With the smaller value of the two_ the maximum allow-
able values of Am I and Am 2 can be found in equation (16). This method is
approximate.
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However, one would not want to prevent the droplet from crossing the

equilibrium line when the natural process is to do so. If the growth of the

droplets becomes unstable, it will fluctuate wildly across the equilibrium

line. Therefore, a domain about the equilibrium line is defined. If the

droplet tends to grow and/or evaporate quickly outside that domain, it is

assumed that there is a numerical instability. For the current computation,

if the change of mass of either component computed by the numerical integra-

tion is less than three times the maximum allowable change estimated above,

the integrated value is assumed correct. In practice, the factor of 3 is

quite arbitrary; however, it is found that the ratio of calculated Am to

the estimated maximum allowable Am is either <<i or >>I0. If the droplet

growth is constrained in this manner, after the first few seconds on integra-

tion, only the two smallest size classes need adjustment and the model is
stable.

RESULTS

To assess the situation in which droplet growth should be most favored_

the microphysical model has been used to simulate the case of a ground cloud

(GC) without dilution by entrainment and without precipitation. The updraft

speeds used (table II) were chosen to approximate the observed behavior of

several Titan ground clouds (ref. 3) as shown in figure i. Thus, in this

case, the GC reaches a height of i000 meters at t = 250 seconds and stops

rising after t = 500 seconds at a level of 1500 meters.

The initial GC temperature (at t = 90 seconds) is set at 25° C, and the

initial HCI vapor pressure is 3.8 dyn/cm 2, corresponding to a concentration

of 4 p/m at the 950-millibar level. The dry particle distribution was taken
from the suggestion of Lala (ref. 4). It is a bimodal distribution of the

following form.

I 2]dN = _ i exp -

d log r _n2g i Ji=l _ %n2Ogi 2
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The various parameters suggested by Lala (ref. 4) are as follows.

N2 = NI/8000

i0

N = 1.5 × 104 parti¢les/=m 3
r=0.01

°gl = °g2

= 2.0 micrometers

rgI = 0.05 micrometer

rg2 = 1.0 micrometer

The distribution is plotted in figure 2.

The course of the relative humidity H for the period 90 seconds ! t

720 seconds is shown in figure 3 for initial humidity values of 80, 90_ and

I00 percent. The effect of rapid initial droplet growth in the 100-percent
case is to reduce the initial humidity quickly to a minimum of 98 percent

at t = 99 seconds and then, with continued rising and cooling of the cloud_

to approach the nearly constant value of 99.7 percent after 200 seconds.

The asymptotic humidity value decreases by about 0.l-percent steps to the
90- and 80-percent cases.

Figure 4 shows the course of the HCI vapor pressure. It is reduced to

10-3 dyn/cm 2 at about t = 300 seconds for the 100-percent case, about i00

seconds later for the 90-percent case, and not until t _ 500 seconds for the

80-percent case. The droplet molalities decrease to 0. i at t = 225_ 300,

and 500 seconds for the i00-, 90-, and 80-percent cases, respectively

(fig. 5).

The droplet-size spectra after 720 seconds are shown in figure 6. The

outstanding feature of this set of results is the enhancement of the growth

of the largest droplets as the initial humidity is lowered. The curves are
truncated at 7 micrometers, although the largest drops formed exceed 20 mi-
crometers in radius. These are, however 9 very few in number. The bifurca-

tion in the 100-percent relative humidity size distribution curve is an

artifact produced in this case by the mechanics of calculating dN/dr. The

equivalent cloud liquid water content figures at 720 seconds are, respective-

ly, 2.8, 2.1_ and 1.6 g/m3 with mean droplet radii of 3.8_ 3.75_ and 3.4
micrometers.
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An additional result of this study is that the droplet molalities are
nearly constant across the size distribution at each value of t, a fact

which will be helpful in parameterizing the microphysical processes for the

submesoscale dynamic model. A summary of results at t = 720 seconds is
given in table III.
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TABLE I.- ESTIMATES OF THE ENERGY TERMS

[In relation to QT for the HCI/H20_ system at _ = 4]j

Energy term r = 0.i Bm r = 1.0 _m r = i0 _m

QL/QT (_QK/QT) 1.46 x 104 4.28 × 104 1.95 x 103

QR/QT (E = I) .92 9.7 3.7

Qr/QT 8.9 2.6 .012

Q_/QT .006 1.05 .24

QF/QT 8 x 10-15 1.2 x 10-12 1.2 x i0-I0

Qp/QT 94 276 13

TABLE II.- UPDRAFT SPEEDS AND HEIGHTS FOR

STABILIZED GROUND CLOUD

Time_ sec Updraft speed, Height_ m
m/sec

90 to 250 4 360 to I000

250 to 500 2 I000 to 1500

500 to 720 0 1500
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TABLE III.- VARIABLES AT TIME = 720 SECONDS

Variable Initial humidity, percent

80 90 i00

Temperature, K ......... 290.99 292.45 293.73

Relative humidity, percent • • • 99.59 99.65 99.70

HCI vapor pressure, dyn/cm 2 . . . 0.001 0.001 0.001

Droplet molality ........ 0.09 0.07 0.05

Liquid water content, g/m 3 . . . 1.56 2.14 2.80

Mean radius, _m ......... 3.40 3.74 3.79

Standard deviation, _m ..... 0.45 0.62 0.31

Largest droplet, _m ....... 19.56 20.91 17.04
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Figure I.- Cloud rise and stabilization heights in eight Titan III launches.
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Figure 2.- Particle size distribution of AI203 in the ground cloud (after
ref. 4).
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Figure 3.- Course of the relative humidity from t = 90 seconds to t = 720

seconds for initial humidity values of 809 909 and 100 percent.
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Figure 4.- Course of the HCI vapor pressure.
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Figure 5.- Change of droplet molality with time.
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Figure 6.- Droplet-size spectra after 720 seconds (truncated at r = 7
micrometers).
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