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MODEL TASK FOR THE DYNAMICS OF AN UNDERWATER TWO-LEGGED WALKER
V. V. Beletskiy, V. V. Golubkov, Ye. A. Stepangya

Academy of Sclences USSR Institute of Applied
Mathematics imeni M. V. Keldysh

Hecently investigations of the dynamics of walking of anthro- VA
pomorphic apparatuses and man have been strongly developing. This
direction is connected with the maturing possibilities of creating
integral robots and anthropomorpialc autonomic systems of a type of
exoskeletons and pressure suilts for operation in experimental conditions.

The proposed work borders on the indicated investigations. A
model task of two-legged underwater walking is examined. This task
allows for the establishment of several characteristics of the walking
of two-legged underwater apparatuses or pressure sults. The under-
water walking device 1is represented by a substantial sphere, which |
moves on dual-member rigid legs under the action of momentums which
are located in the joints of the legs. The legs of the apparatus are

round cylinders, the joints are hinged between themselves and with
the sphere.

The dynamics of this system are investigated with the calculation
of the buoyancy of Archimedes, which acts on the sphere, and the force
of hydrodynamic resistance, which acts on the sphere and legs. For
the assigned walking veloclty of the apparatus, the compensating
vibration of the housing, momentums of force in the joints and the
key reactions are determined. Several questions of stability are
investigated. A comparison of underwater and terrestrial walking is
given.

1. Definition of the Task. The Dynamic Model of a Walking Apparatus
and Equalization of its Motion.

Plane-parallel motion of a walking apparatus in a liquid is 5

¥Numbers in the margin Indicate pagination in the original text.

i s W A




TR Y W T N e

R T TR TP g ST WPy e g

examined. The apparatus consists of a rigid housing in the form of
a sphere and a pair of legs which are mounted to the housing at one
point of support I (Fig. 1).

For the description of this movement, let us introduce the
statlonary, right quadrate Descarte system of coordinates Nxyz, the
plane Nyz which coincides with the plane of motion of the apparatus.

Let us make the following assumptions:

1. The legs of the apparatus are identical and each of them
consists of two joints --athigh and shank. The thigh and shank are
round cylinders, which have corresponding lengths a and b and

diameters ds and d,.

The legs are welghtless and sufriiciently thin, i.e.

Mg =m, = 0, %‘f-«!, —gi-«!

where ms and m, are the masses of the thigh and shank.

3. The attachment of the shank to the thigh, and the thigh to
the body (housing) is jointed with one degree of latitude.

4. The plane motion of the apparatus takes place in such a manner
that the center of the sphere 0, the point of support I and the legs
are found in the plane Nyz.

5. The distribution of mass on the sphere and inside it is such
that the plane Nyz 1is the plane of dynamic symmetry of the sphere
(apparatus), and the center of mass C of the apparatus lies on a line
which passes through the center of the sphere and the point of
support.

6. The force of gravity 1s directed along z.

7. The forces of friction in the hinges (Joints), the lifting
forces of the leg joints and forces of viscid friction, which




act on the apparatus from the side of the liquid, are negligible.

8. The surface with which the legs of the apparatus contact is
absolutely uneven.

9. The control by the action of the apparatus 1s realized with
the aid of guliding momentums affixed in its Joints.

10. Acceleration and the speed of any point of the apparatus
are finite.

With the assumptulons made, let us determine the task of the
motion of the walking apparatus in a 1liquid in the following
manner. Let

1) the metion of the point of support be known and take place
unlformly and rectilinearly along axis y (comfortable motion [1]):

2) the legs of the apparatus move along a given regular marked
path, placed in the plane Nxy on the 1line Ny (in other words, the
apparatus walks along plane Nxy along the line Ny with a constant
pace):

3) the step of the apparatus 1is single-supported, periodic and
repetitious [1,2]: at each point of time the apparatus is supported only
on one leg; the movement of the legs of the apparatus take place
periodically with a period of 2T (T is the length of one step); and one
leg exactly repeats the motion of the other with a delay of T;

4) the motion of the end of the moving leg is specified in the
form of a clear function of time.

The position of the body of the apparatus in space will be

characterized by two Descartes points of support Vs 2 and angle vy,

n




and the position of the legs
R S e LS '”1 by the angles Oy Bv' L Bw
(Fig. 1).

Let us consider that the
contact of each foot with the
surface is a point and all the
action of the surface on the
foot is reduced to a single /8
force (the force of reaction)

R, (1 = ¥, 7), applied to
i

the foot at the point of
support.

From here on, through

(m (K) (m) (K)

s U, , and u. s U

we willl designate the momentums
of the force of control, which
acts from the side of the body
Figure 1 on the thigh and from the side
of the thigh on the knee respectively in the support and moving legs.
By the establishment of the task, the coordinates of the point of support
Yps 2q and the angles a s Bv’ a s 8“, which define the position of the

u
\Y

leg in space, it is known to us as a function of time.

The forces of reaction ﬁi and also of control uy appear as unknowns.

Applying to the walking apparatus the principle of the elimination
of connections and using the theories concerning the change of the
quality of the motion of the apparatus and its kinetic momentum relative
to the point of support, we receive the equation for the definition of
unknown forces cf reaction and the angle y. These equations are the
actual development of the equation received in [1] and can be




recorded in the form
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(1.1)

Here and henceforth the point denotes the differentialization
in time. 1In (1.1) 1s indicated: I(ﬁ)is the tesor of inertia of the
apparatus at the point of support I: 30, 38 are the radius-vectors
leading from the point of support to the center o“ the sphere to the
center of mass of the apparatus (they are, on the strength of assump-
tion 5 on page 4, colinear); ?n ;v ;“ are the radius-ve:tors /9
which lead from the beginning of the selected system of coordinates
respectively to the point of support and to the supporting points of
the feet; MA is the mass of the apparatus equal, on the strength
of the weightlessness of the legs, to the mass of the body; MHP is
the combined mass of the body-sphere; ® is the angular velocity of
the body; 7 is the velocity of the point of support Rc¢ is the radius
of the sphere' P 1s the density of the liquid; 3 and f are vectors
of the buyoing force and force of the weight which acts on the body;
ﬁK’ ﬁv’ ﬁﬂ are the forces of hydrodynamic resistance of the liquid
which acts respectively on the body (sphere) and the legs of the
apparatus; ﬁK’ ﬁv,
resistance relative to the point of support, which act respectively on

ﬁ“ are the momentums of force of the hydrodynamic
the body and the legs of the apparatus.

In deriving equation (l1.1) in a known approximation we
considered the instability of the streamlining of the body-sphere of
the walking apparatus in its motion in a liquid by means of the intro-
duction of its combined masses [3] (the combined masses of the legs




were assumed to equal zero, which on the strength of supposition
2 on page 4 is fully feasible).

From here on only the single support motion is examined. It is
convenient to introduce the index "v" for all values which pertain
to the support to the leg and the index "=#" for all values which
relate to the moving leg (Fig. 2,3). Then on the strength of the
establishment of the task and suppositions which have been made, we
have (Fig. 1, 2, 3):
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Here Vn, Les PB are the absolute values of the vectors ﬁn ’ ?A, 38;
JﬁA)ia the point of inertia of the apparatus relative to the axis
which passes through the point of support and parallel coordinates
of the axis x; H is the height of the point of support over the sur=-
face Nxy, hl is the projection of the radius of the vector ;n on

the axis y at the initial moment of time to; ;v is the radius-vector
of the point of support; §ﬂ 1s the radius-vector of the end of the
moving foot; h 18 the value of the step of the apparatus; T is the
earlier introduced time in which the apparatus makes one step; §°,
§°, z° are respectively the unit vectors of the coordinate axes x, Yy,
z; [t-ty,/T] is the entire part of the unit t-t /T.

With the written formula (1.2) it was assumed that at the initial
moment of time one leg is found at the beginning of the system of
coordinates N and the apparatus has ceased to be supported on this
leg (the leg has started moving), and the other leg is found on the /12
axis y at a distance h from point N and the apparatus has just
begun to be supported on this leg (the leg becomes supporting) (Fig. 3).
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Figure 2 Figure 3




Substituting (1.2)=-(1.3) into (1.1) and writing out the obtained
vector of the equation on coordinate axes, we obtain the equation

which describes the change of the angle y with time, and the expression
for the projection of the forces of reaction.
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The four last formulas of (1.4) are written with the calculation of /13
connections which exist between VII' T and h

h= VHT'

This connection 1s the consequence cf the periodicity of motion of
the valking apparatus.

With the absence of hydrodynamic forces and momentums the equations
of (1.4) are converted to earlier knowns [1].




The first of the equations (1.4) has the structure

AR S (1.47)
In the task which is examined 1ln the present work, the right part of
this equation depends on the clearly forward moving time t with a
periodic pattern so that f( v, ?, t + 2T) = £(y, §. t). Let us desig-
nate.the value of the phase changes at the initial moment to through
Yor Yo Then the general solution of the equation (1.4') may be
written in the form

'J(t)"(’Ov,..DtOO t);

iy (1) .00 > (1'5
Fotetong,, ettt g )

According to the establishment of the task y(t) must be a
periodic function with a period of 2T. This indicates that from the
series of solution of (1.5) we must choose only those solutions which
meet the following condition of periodicity:
I 0o b, 8,02T) = 7,
J.(ln i'o- t..l.‘c?"')ti. ; (1.6)
Let us assume that the conditions of periodicity of (1.6) may
be satisfied by the choice of initial givens vy, §. Then the relation-
ships of (1.6) must be examined as a system of two transcendental
equations with two unknowns Yor ?o. Finding the solution of the
system of equations of (1.6), we find by that very solution the periodic
solution of the differential equation in (1.4), and, as it has come /14
to be, the periodic motion of the walking apparatus. Thus the task
of finding the periodic solutions of the equation for y is reduced
to the solution of the angular task of (1.4), (1.6). Below will be
shown that this angular task actually has the solution.

2. PFinding the Control Momentums in the Joints

For the realization of the indicated above motion of the walking
apparatus, it is necessary to place corresponding momentums of control
of the forces uin), u&K) (1 = v,n) in its Joints. Let us find these
momentums. According to the assumption, they are located only in the

hip and knee joints. Let us apply to the parts of the leg (from the
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gears to the point of support) the principle of the freedom of
movement of connections and the theory concerning the change of
kinetic momentum (respectively relative to the knee and the point
of support).

Let 1 = v ,7 18 the index respectively of the support and the
moving legs. Let us take the i-leg and having eliminated the body
and the support surface, let us change the motion of the body on the
thigh at the point I of support by the force of reaction ﬁ{n) and
momentum ui") relative to I and the motion of the surface on the
foot of the force of reaction R1 (Fig. 4). Applying the theory con-
cerning the change of kinetic momentum of the leg relative to the
point of support and using assumptions of the weightlessness of the
leg and the finiteness of velocity and acceleration of any of its
points, we obtain

& RME (T T B0, o)X, -

Here Mv; M” are the momentums of forces of hydrodynamic resistance,
which act respectively on the support and moving legs.

Considering that
RyeR, Rye0, &)-Fynoy,0)]°-HE*

from (2.1) we find ué“) and uin) consecutively assuming
i=vand i = 7 j

/] )
U/ .'””‘y’{t)ﬂ'-”p’. ”"'..”’.

(2.2)
Let us now apply the theory of kinetic momentum relative to the
knee to the shank of the i-leg. Substituting the action of the thigh
on the shank by the force of reaction ﬁi(K) and momentum uiK), and
the action of the support of the surface -- of the reactions at the
point of support ﬁi and taking into (.'nsideration the weightlessness
of the shank and the finiteness of velocity and acceleration of its

points, we obtain (Fig. &)
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Figure 4 Figure 5

This gives, with 1 = y and { = n respectively

w0 @ ;

U w-My -B(Rycospy+R,sinsy),
w o)

U’ L J '”' .

Here Mv(Z) and M"(Z) are the momentums of forces of hydro-
dynamic resistance which act respectively on the shank of the
supporting and moving legs and are taken respective to the thigh;

Bv 18 the angle B for the support leg. From the given formulas with
the absence of hydrodynamic momentums the formulas of work are obtalned
[(1]. The obtained formulas for the control in the joints (2.2, 2.3)
hold for the single-support moticn in a smooth motion of the walking
apparatus in a liquid. From these formulas it is seen that the con-
trol in the joints of the moving leg in an examined case, despite

its weightlessness, are not equal to zero, in contrast to the situation
when the apparatus moves in a nonresisting environment [1]. In order
to achieve movement of the leg in a resisting environment in the thigh
and shank, it is necessary to place compensating controlling points.
They are, according to the value, equal to the momentum of the forces
of resistance which act respectively on the leg and the shank. After
the solution of the angular task for y and definition of reactions, /17

according to formulas (2.2), (2.3) the controls in the joints are ]
11
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clearly computed (if trajectories are assigned of the motion of the
points of support and foot of the moving leg, and also the path
being followed).

3. Computation of Forces and Momentums of Forces of Hydrodynamic
Resistance which Act on the Walking Apparatus

For the calcuiation of angle y it 1s necessary to know how
to compute the forces and momentums of forces of the hydrodynamic
resistance which act on the walking apparatus. Let us assume that
the fluid is incompressible; the forces of viscid friction are
negligibly small in comparison with the forces of hydrodynamic pressure;
the calculation of the hydrodynamic forces and momentums which act
on the various parts of the apparatus may be arrived at independently,
without calculation of the interference; the motion of the apparatus
is quasistationary in a sense that for the calculation of the forces
of hydrodynamic resistance 1t 1s possible to use the formulas which
are correct in the case of stationary streamlining of the bodies
(the unstationariness of the streamlining in a known approximation
has already been calculated by us by means of introducing the combined
masses of the body of the apparatus).

Using the assumptions made, let us calculate first the forces
and momen.ums of hydrodynamic resistance which act on the body of
the apparatus. With calculation of these forces and momentums let us
consider the movement of the body-sphere as being set, and the velocity
of this motion equal to the velocity of the center of the sphere. The
hydrodynamic effects which are connected with the revolution of the
oncoming flow of fluid on the sphere reduces to a single force which
1s applied to the center of the sphere. This force is given by the
formula [4]

g--c,KVo ’ cv'él' Cep (/?e)ﬂ/?;,ﬂ,
,q,.éli_iz . V=/V/,

Ne) is the coefficient of resistance which is dependent /18

(3.1)

N
»

where Cc
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ii{thekeynolds number Re; p and v are respectively the density and
coefficient of the kinematic viscosity of the fluid.

The dependence of the coefficient CcQ on the Reynolds number
is shown in the following table 4.

Table 4

Re |or | 1| 10 |10? | 10® |10t | 105 | 16b |
Cop | 245 | 28| 44| LI | 046] 0,42 | 0,49 0.14:

In the work the motion of the apparatus is numerically
investigated with Rc¢ - 1 and Vo-.lm/sec.

With these conditions, as the value shows

Pe=2VoP¢p: é'/'f

s
v 0.0173 10°% ~ 9

the Reynolds number has a great value. Therefore the value of the
coefficient Cc¢ in the formula (3.1) in our case must be derived
for great Reynolds numbers.

As has been noted, (3.1) was received as a result of the solution
of the task of stationary streamlining of the sphere by a viscid,
incompressible fluid; the hydrodynamic effects of the unstationary
streamlining have been disregarded. However, these effects add to
the simple value, for example, on the basis of the task concerning
the periodic oscillatory movement of the sphere in a viscid fluid
which was examined in the work [6]. In this work is noted the
following expression for the momentum Mo of forces which act from
the side of the fluld on the sphere which achieves a periodic
oscillatory motion.

M,=Real M, M--'!al/-i"am"l/7pw (c-1)92 , (%)

Q-Q'el.at .

13




where n 1s the viscosity, Q@ is the angular veloclity of the oscillations
of the sphere, w is the frequency of the change of the angular

velocity, R is the radius of the sphere. The formula (*) is valid /19
in the hypothesis pR2m >> n, which in the given case 1s realized.

The values show that the value Mo according to (*) does not exceed

3% from the base momentum of hydrodynamic resistance which is cal-
culated on the tasis of formula (3.1). These formulas lead to the
following expression for the momentum of the forces MK and MKF’

which are defined by the motion of the forces of hydrodynamic resistance

on the body of the apparatus

Me=CaVofoo (V087 - G, )
Aa,.qﬂgﬁ#k}g&gﬁygaﬁyuﬁmmyqﬁ

(3.2)
' Thus,

A&‘Aar’Qﬂfﬁ%ﬂ%GNV“ﬁoqﬂzﬁyQSQVMﬁ@nVQ/%y

Vo= (V:'j;?,‘-.?l{, ,jcosg)“' . (3.2')

Let us calculate now the forces and momentums of the hydrodynamic
resistance which act on the legs of the apparatus. Let us take any

z) leg and examine an arbitrary section
of this leg (Fig. 6). An infinitely
small element of this section of the
leg d& presents 1tself as a round

thin cylinder.

With motion of the legs of the
apparatus the angles of incidence

Figure 6 are close to 90°. Considering that

14




~of the cylinder at the angle of incidence a = 90 s V.
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it is possible to disregard the influence of viscosity on the stream-
liring of the cylinder under the angle of incidence, which 1s close

to a right angle, we detormine thaé hydrodynamic force acts along the
normal to the axis of the cylinder. The force which acts on the
element of the length of the leg df, 1s described by the formula

d =T p(Vn/Z)d dg, where cp is the coetficient of any resistance

1 is the component
of velocity in the direction perpendicular to the axis of the cylinder.
d is the diameter of the cross section of the section of the leg.

-~ In a vector form this may be recorded in the following fashion

l

aFe-LEapV,IVoIF dE,

E=tk, E:7%ing-Z cosp,

7w Z%E, < eosp sing, (3.3)
V-\fvﬁséé;?.,

V,2(V.7)=(V,,7)+G¢ -

Here £ 1s the distance from the beginning of the section (point /20

H) to the element df ; V VH are the velocities respectively of the
element a% and the point H; (V n), (V ,n) are the scalar products
respectively of the vectors v n, and VH, N. The coefficient of
resistance 6 depends on the Reynolds number.

Re = d\’l s
where V is the characteristic velocity of the motion of the element
of the leg. 1In a characteristic situation with motion of the apparatus
in water V = Vo.,lm/sec with d ~0.09 mm we will have

Re « ¢1V 0094

s
V % Tors e 295N

Irn conformance to the results of work [5] in a sufficiently large
area of values of the Reynolds number being examined 1t 1s possible

to accept Ep: 0.6.

15
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Considering that the streamlining of each element of the section

1 move independantly, we recelve the following expression for the full
force which acts on the section

N 4 X
, Fek Gap v, 1V,)7 at (3.4)

By an analogous method are computed the momentums of the forces
! of hydrodynamic resistance relative to the point of support (Fig. 6).

; #a-1 c,.a'pjv [Vol(ETxR)aAE «
: .-_c,a;o(e,.ﬁ’)-—c dﬁ V,V/(f:ﬁ)dt (3.5)

Substituting 3, 3 and VII from (3.3) into (3.4) and (3.5) we find

Foly o210 pafs, Moo
e 5" G pafcosp, A ---t" ,oa//.s'm;o,
N-y”F' 2~ _&0_,” .

-z “pﬁd/ﬂ%uw 2, cosp)em],
f"f/ff’;. F)ePEITV, , 7)e Gl]af «

5 £ _9¢s
/9/0/31 (y so/g//s/)

mel petlols iargar @ st goesial 2], (3.6)

6(V,, 77)= ,ycos;od{,,sin;o, gssegpl,
Vu' ;vy,f/ Ve Z°

From (3.6) we have
Z-M,f’-(ﬁ-?,)xﬁ

~r=4$/l";*”"}"5’ C, paf (a4 sing ¢+ Heosp). (3.7)

Let us now apply formulas (3.6) and (3.7) for the calculation of

forces and momentums of hydrodynamic resistance which act on the thigh
and shanks of the walking apparatus.

16
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For the thighs of the apparatus, assuming in formulas (3.6) and
(3.7)
dld" v.d’ " ¢'&l' eld.
GeVhevige .
y’- a » !" 0

we receive the following formulas fo the forces Fic) and momeritums

Mis), Mﬂ(‘,s) of hydrodynamic resistance, which act respectively on the

thigh of the moving (1 = ) and support (i1 = v) legs. /22

Br g by

=8 £@ 15 8 .
£y =3 c,,oaf,/; md £y ..2_’%093.]‘ sindl;
X | 5,,00':’":

Mie =4 &0dls 1 “tag, sinay + Heosar; ) (3.8)
3.
% o g c® w?
VA : /:"‘/‘/s“l (94 K ’9 i ”

(‘)

m a m a? m w rm ml
[9 Ie{ l,‘/ (9 *
m m m m z"'; s

() (I
s =V cosa, , 9f’-s"da TR &

The formulas for the forces and momentums of hydrodynamic
resistance which act onthe shanks of the apparatus we receive from
(3.6) and (3.7) by means of substitution

d.d ’ vcﬁ “/3 - .

V,. V'ad "’, n,-j‘cosd #i.&‘[lld‘-,
&, asing, _7‘ acosa, F°,

As a result the following formulas are received for the forces
Fi")and momentums Mge), Mil(?z) which act on the shank of the moving

1T




(‘i = 1) and support legs (1=v).

= (2) @ 4.
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With the aid of formulas (3.8), (3.9) the forces of hydrodynamic
resistance and their momentums which act on the legs of the apparatus

are calculated conclusively in the following manner:

f. £ . 5(0' A, F“’ ;-3“)'

Myt e Mf‘i ”’m M ;J) M;n,
ré) {') ()]
Mg *Mag = Nyp +Mye ¢ ”.vp L/
Thus, the formulas received (3.1), (3.2), (3.2'), (3.8)-(3.10)
which fully allow calculation of the forces and momentums of
18
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hydrodynamic resistance which act on the walking apparatus during /24
its movement in a liquid. These formulas together with (1.4) allow

the calculation of angle y which describes the motion of the body of
the apparatus relative to the point of support.

4. Numerical Method of Solving a Nonlinear Task of Walking

Solution of the task of walking is not reduced to solution of
the angular task of (1.4), (1.6). The right parts of the differential
equation (1.4) are described by the formulas (3.2), (3.2'), (3.8)-
(3.10). The differential equation for v 1s significantly nonlinear
and complex. Therefore for the solution of the angular task (1l.4),
(1.6) it is necessary to use numerical methods. In the given work
the numerical, iterative, generalized method of cords is used. Descrip-
tion of this method 1s given in the Appendix.

The value of the functions y(y,, §°, tos to + 2T) and v4(v,, ?o,
tys to + 2T)for the different values of y, and Yo, which must be known
in the process of solving the angular task (l1.4), (1.6) by the general-
ized method of cords, were received by a numerical integration of the
differential equation (1.4) by the method of Runge-Kutt with a constant
step. Here the necessary values of the angles av(t),8v (t), am(t),
Bn(t), which are formed by the thighs and the shanks of the legs with
the axis z, were calculated along the assigned trajectories of the
point of support and foot of the moving leg with the help of the
algorithm used in work [2].

Like any local algorithm, the generalized method of cords re-
quires knowledge of the zero approximation. As a zero approximation
it 1s possible to use elther the solution of the task of walking which
is received in a linear approximation in the supposition of an
insignificant amount y(or y=-m), § and Yy or the values Ve, ™ o(ye =m ),

¥ ™ 0. The indicated zero approximations are sufficlently good, in so

far as calculations have shown, the oscillation of the body of the
apparatus along'yand'§which are obtained as a result of solving the /25

nonlinear task of walkingis expressed in uianalytic form through
quadratures. The solution of this task is given below.
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5. Solution of the Task of Walking in a Linear Approximation

Let us assume that the equations of (1.4) have such solutions
which have y,‘?andtfaufriciently small., Then, applying the usual
procedure of linearization to the formula foryin (1.4), we
receive the equation describing the small oscillations of the body

of the apparatus:
ioee, ioq’,- mytt)em,(t) .
Here
PoCxlBtHIVele | o . Pub=tub;
L CAN T
n,a)._‘k%_;i"&"ﬂ-,n_;‘ a9,(8).
(] .

My (¢)a 3’.:..[51,, ()+ My (t)s Myp (8)0 My(2)) |

(5.1)

.
J' IJ"”p””' .7. -

In the equation (5.1) the member mH(t) results from the action
of the forces of hydrodynamic resistance on the legs of the apparatus,
and the member mK(t) -= the action of the buoying force, the force
of weight and the forces of hydrodynamic resistance on the body of
the apparatus.

The general solution of the equation (5.1) may be obtained in
the form
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Here v, and §° are the values of y(t) and y(t) at the initial
‘point of time to.
Ir P$ - Qy <0, then as is evident from formulas (5.2), wy is the
virtual value. In this case ¥y (t) is calculated according to those
formulas of (5.2), only in them it is necessary to substitute wy for
|wy] , eh for cos and sh for sin. In addition, from the formulas
of (5.2) it follows that in the linear approximation the solution of
y (t) is presented in the form of the sums of two components, one
of which yx(t) results from the action of exterior forces on the body
of the apparatus, and the second yH(t) by the action of exterior
forces nii its legs.

In turn, each component is the sum of two parts -- the periodic
(yx(n)(t), y? (t)) with a period of T and a nonperiodic or aperiodic
(v 2 (8), vy (a)(e)

In order that the solution of ¥ (t) be periodic, it is necessary
and sufficient that Yx(a)(t) + yﬂ(a)(t) = 0, which may be achieved
by a selection of corresponding initial data : and y . The initial
data and yo which provides the periodicity or y(t) is defined
clearly and equals

vo = dlta) Tu (2,003 C20)
Qy
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The periodic solution has the form

m (a) L)
g =g vqn (0, (5.4)

where yén) (t) = yénﬁ (t) arc given by the formulas of (5.2).

Analysis of the formulas of (5.2) shows that if qy>0, then the
solution of y (t) ~aymptotically approaches the periodic solution of
y(nzt). Thir nilcat-c that in the case of qy >0 the periodic /29
oscillatory @' ."ion of tie body of the apparatus is stable. If
qy < 0 then 'his motion 1s unstable.

Let us ncie that by "stability"and "instability"™ is understood
here the usuai stability and instability according to Lyapunov of the
periodic solation of y(t) of eauation (5.1) relative to the perturbation
of Ay, AY, of the initial duta Y,, Y,. In terms of the initial
dynamic task this means that the question lies in the conditional
invariabliity of the assigned jorward motion of the point of support
of the lers and the legs theme=.lves. The result of this invariability
of the vss8igr<: forward motiin (and motion of the legs) is the
immebilization of the dvr=nic parameters which enter into equation
(5.1). So, for -:a-3lg, the parameters considered invariable are
V == the velocity of the forward motion of the point of support of
the legs of the apparatus, H == the height of the point of support
of the legs above the surface and so forth.
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Establishment of the task of motion stability on the whole
(relative to the entire series of perturbations) leads to the task
of control -- the task of full walking stabilization of the apparatus.
In the present work the task of full stabilization is not examined.

The described effect of stability does not have a place in the
analogor situation with the motion of the apparatus in nonresisting
surroundangs [1]. The noted feature of apparatus motion in a liquid
is explained by the simultaneous action on the body of the buoying
force and the forces of hydrodynamic resistance (in the absence of
a 1liquid, these forces are not present).

Because for the examined case of body position of the apparatus,
close to the upper vertical, we have J; > 0, then the conditon

9'._’1£f;.‘.’4££_ 20
. (5.5)
indicates that the reducing momentum of the buoying force of the body
relative to the point of support of the legs is greater than the
momentum of its force of gravity. This condition provides the stabi-
1lity (in the sense indicated above) of the periodic motion of the
body with the upper =-- relative to the point of support of the legs

== position of the center of masees of the apparatus. The action on

/30

the body of the hydrodynamic forces of resistance, whichare dissipative,

exceed the stability at the symptotic.

If the momentums of the forc<.- ' .ich act on the legs are

considerably less in comparirui: with the momentums of the forces which

act on the body of the appara:.s, then it is then possible to set
mﬂ(t) 0 and for y(t) the following approximate value is received

70 s 7, t)e 3.7ty |

which in an explicit manner is expressed thr=ough the elementery
functions. In this case, as analysis of the formulas for y(t) show,
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in order for the procedure of linearization to be valid, it is
necessary to require that

|IO'“! ’ ’i.n et ,

(Po=Py) Collo o)V,
r»’.f.-e,a.)l“" bpi-ape | (5.6)

In an analogous manner, in a linear approximation it is possibdble
to examine the motion in a case when the body of the apparatus is
close to the lower vertical position, i.e. receive and examine the
solution of the equation for y(l.4) in the area y =n, § = 0,
considering Ay = y-m, Ay and Ay with small values. 1In this case, the
equation and formulas describing the changeof Ay with time, are
received from the equations and formulas for y when y < 0 (formulaz
(5.1)=(5.4), if set 4in them

L AR A S Y Y A

The conditions for the applicability of the linear theory in /31
the examined case have that form (5.6), only Yo must b¢ substituted
for Ayo " Yo~ T The qualitative derivation about the character of
body motion relative to thepoint of support of the legs in the area
Y= n, y = 0 remains the same as in the case of y = 0, y = 0. Only
the conditions of the acymptotic stability of the oscillations o! angle
Y change. In this case, it turns out that the oscillations will be
asymptotically stable if

(plﬁo"lpc)/(%'”ﬂ,”) <0 (5.7)

and unstable if

(4~ Pe)/(In=MPup #) > 0 (5.8)

Here it is relevant to note that according to the base equation
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of motion (1.1), the momentum of the forces of control act on the
apparatus, which =-through the support reaction -- depends on the
angular acceleration of the apparatus. Thus the angular acceleration
enters into the equation of motion not only through the change of
kinetic momentum of the apparatus, but also directly =-- through the
controls. In the examined planar task this is equivalent to the
introduction into the examination of any effective "introduced"
momentum of inertia -- of the coefficient entering into the equation
of motion by a multiple factor with the ang'lar acceleration. The
effective momentum of inertia, generally speaking, depends on the
angular position of the apparatus, that is, it is not constant. It
can even change sign. In the examined case of small oscillations

the effective momentum of inertia J; is a constant value. But the
sign of this value -- dependent on the value of the parameters -- may
be positive or negative, which in turn, acts on the stability of the
body motion of the apparatus in the sense earlier indicated according
to the condition introduced above. And namely, in the case of oscill-
lations of the body near the upper vertical position, the value of
J; is positive: JH‘ = Jn + Mpan > 0. In this case, as the condition /32
of stability was indicated (5.5) reduces to the condition of positive-
ness of the numerator in (5.5).

With oscillation of the body near the lower vertical positior
. _ " * #

we have JH JH + Mpan, so that JH > 0 with JII > Mpan and Jn <0

with JII < hdpan. The condition of stability for such a case has the

form of (5.7) and is fulfulled if the numerator and denominator in

(5.7) have different signs.

It is necessary to underline that the conditional stabllity
defined above of the periodic oscillations of the body of the apparatus,
a3 also all motion of the body, implies calculation of the controlling
momentum in the hip joint of the apparatus. The great number of
possible controlling momentums answer the assigned motion, being
calculated by the formulas of (2.2) and are distinguished one from
the other only through the various motions y(t) of the body.
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According to (1.1) and (2.2) with the assigned motion of the legs of
the apparatus, the controlling momentum u(n)(t, y,Q,QW may be varied
only on account of the variation of Ay, A§, Nf of the oscillation of
the body which 1is also calculated with examination of the stability
of the periodic oscillation y(t) of the body of the apparatus. The
corresponding variayion of control 1s defined by the formula

) .- .
AU (T ) = 2 Mp,,Haf

where the sign "plus" answers the variation near the value y = 0,
the sign "minus" -- the variation near y = w.

In coneluding this paragraph let us examine one significantly
nonlinear effect, important for the understanding of the mechanism
of underwater walking. The periodic solution of equation (1.4) could
be sought in the form of a Foure series, preliminarily having expanded
to sepries the periodic coefficients of this equation. Realization of
the procedure is hardly efficient in view of the great amount of
computation; but the main, constant member of the periodic solution
which gives a medlan position of the body, with a good approximation
received from equation (1.4) by the establishment of y = Y,= const /33

and with the retention of only tYe main, constant, members in the
expansion of the coefficients leads to the formula

s[”aro, (&‘PJ)(/’Q‘Q/?)*( M

pAﬂc'eﬂo (5-9)

Here < M2 > is the median value of the summated momentum of the forces
of hydrodynamic resistance.

The condition [siny | <1, which is

-7% (Pd'pc)(/'z"e/?)'<”:>5 z
Pe = Fapo (5.10)

presents a necessary condition of the existence of the sought

periocdic, compensating motion of the body, which is the condition of

the occurrence of the walking being examined. 1In the absence of hydro-
dynamic resistance <Mz:> = 0 and PB = 0, and the condition (5.10) gives
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~PesRb &Py 8 P+ 2N .

(5.11)
(here it is accepted Pe>@ ). The inequalities of (5.11) define
the series of possible éonfigurations of the walking of the apparatus;
these configurations with the assigned height H of the point of subpport
above the surface and the assigned length h of the step, are clearly
defined by the support section h

2I
The condition (5.10) may be recorded so:

Va-Rhe <> €1 ¢ g2 (pep)l
Prop=Py=by > 0. (5.12)

As 1t is possible to understand from the formulas written out earlier
for the momentum of the forces of resistance, we have <Mg> >0;
accepting for the values Pe ~ Ry» We recelive from (5.12)

Aﬁ? 6”&)

-jk4éb- £ hy € p.+R2h- < P+ Rh.

(5.13)

This means that the diapason of possible values of the support section

h2 in underwater walking displaces to the side lesser values in com- £34
parison with the diaposon 1n terrestrial walking. From Figz. 3 it is
possible to understand that this correspondas, in turn, to those walking
confirurations in which the point of support of the legs is shifted
farther forward in motion, so that the bLody would be "placing its chest on
the watery' moviag somewhat forward relative to the legs. This fact

is accounted for in numerical calculations where value h2 =0 is

accepted. With h2 = 0 the point of support of the legs at the moment

of change of the support leg 1s projected precisely on the point of
support. Presentation of the result of calculation is given in the

following parcgraph.
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6. Results of Calculations

Let us cdescribe several results of calculations. The motion of
a walking apparatus in water was examined. For the base variation,
the variant with the following values of parameters was chosen:

Radius of the sphere of the apparatus Rc¢ = 0.9 m
Distance from the point of support to the
center of the sphere Py = 0.6 m

Distance from the point of support to the

center of masses of the sphere pc = 0.3 m

Weight of the apparatus PA = 3180 kg
Buoying force PB = 3130 kg
Effective weight of the apparatus . PB = 50 kg
Velocity of the point of support of the legs VII = 0.5 m/sec
Height of the point of support above the

supporting surface H=1.5m

Length of step h=1m

Length of time of step T = h/Vn = 2 sec
Density of water p = 104 kg secz/mu

In addition, in the base varlant, the configuration of motion is
defined by the fact that the point of support of the legs at the /35
moment of change projects to the point of support (h1 = h, h2 =0).

In Fig. 7 results are shown of calculation of the base variant.
In this figure behavior with time of angle y is shown -- the digression
of the axis of the apparatus from the vertical, the components Ry,
R, of the reaction of support, the controls uj in the thighs and
shanks of the supporting and moving legs. Hereafter these functions
as a set will be called the "dynamic characteristics" of the apparatus.
Behavior of the apparatus which follows after the results shown in
Fig. 7, seemed to little resemble the behavior of an analogous

29
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apparatus in the absence of resisting surroundings.

Comparison of the given dynamic characteristics with the dynamic
characteristics of [1] shows a qualitative and quantitative difference--
in the behavior of the horizontal component R_ of the reaction of
support. For a terrestrial apparatus the function Ry(t) is almost
linear and changes sign in the middle of the step. For an under-
water device this function is signifiicantly not monotonic and in
almost all parts of motion is positive. The maximum value of it ~ 30 kg
with an effective weight of 50 kg (by the erfective weight of the f
apparatus 1is understood the difference between 1ts weight and the o
buoying force of the body). This 1is a factor of 10 greater than for
an equivalent terrestrial apparatus. Such behavior of the horizontal
component of the support reaction is explained by the fact that it

compensates the resistance of

8j \ the environment. The vertical
Rz component of reaction 1s close
g & to a constant value equal to the
U effective weight (50 kg). The |
i uf’ controlling momentums in the ;
‘E& R, joints of the support leg are
;i significantly nonmonotonic, in i
gﬁ . o1 contrast to the terrestrial case.
E‘ J time,sec Controls in the thigh and shank
é;; of the support leg attain a max-
75 imum (by the module) ~ 40 kg m.
i Controls in the moving leg are
7 much less (of an order of 5 kg m);
i they are directed only on the /37
; passage of water resistance.

Controls in the Jjoints are com-
Figure 7. Dynamic characteristics parable in value with
of the apparatus in its motion on the control in a terrestrial
one step. P, = 3180 kg, Py = 3130 K& . panatys. Finally, the amplitude
VH = 0.5 m/sec, Rc¢ = 0,3 o, of oscillations of the body 1is

p0 = 0.6 m, P, = 0.3 m. not great (.~ 3°).
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The noted difference in the dynamics of an underwater and terres-
trial apparatus does not always take place. The conditions in which
the dynamic characteristics of the underwater apparatus bear a signif-
icantly oscillatory nature, and also the mechanisms of these oscillations
will be described below.

As calculations show, the decrease of the distance Peo between
the point of support and the center of masses leads to an increase of
the frequency of oscillations of the dynamic characteristics: in that
temporary section appear a great quantity of minimums and maximums
of functions. This tendency of increase of the frequency of oscill-
ations with a decrease of Pe is seen in the picture of Fig. 8. 1In
this figure, results are shown of calculation for a very small value
P = 10'5m (al) remaining parameters are as in the base variant). It
is possible to explain the noted effect theoretically also (in a
linear approximation). From the formulas for the frequency in the
natural oscillations of the body wy in (5.2) we find:

")( = (Q'Oﬂe)% .
where Co’ CI are positive, independent of Pos constants. From here
it follows that with a decrease of Pe the frequency of natural oscilla-
tions of the body of the apparatus increases,and this means that the
frequency of osclllations of the dynamic characteristics caused by it
also increase.

In "ig. 9 the results are shown of calculation of a variant,
the initial parameters of which are distinguished from the parameters
of the base variant only by the velocity of motion: Vn = 0.2 m/sec.
The change of velocity of motion acts 1little on the frequency of
natural oscillations, which is evident from comparison of Fig. 9 with
Fig. 7: for one and the same interval an ldentical number of extremes
of functions take place. Increase of the number of oscillations in
a perlod of the length of time of a step is explained by the increase
of this very period. /40
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Figure 8. The dynamic characteristics
of the apparatus in its motion on one
step. P, = 3180 kg, Py = 3130 kg,

Vg = 0.5 m/sec, Rc¢

=0.9m, p. =0.6m,
4 (o]
Py = 0.0'1 m.

The amplitude of
oscillations of the body some-
what increases, but remains
small: the initial value
-0°.6, and the amplitude
of oscillations near this
value have an order ~U0,

With an increase of the
weight of the apparatus, the
maximum values of the forces
of reaction and the amplitude
of oscillations of the body
arise, which Fig. 10 illus-
trates (this supports also
the qualitative analysis of
the motion of the apparatus
carried out in the boundaries
of linear theory). In this
figure the initial parameters
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Figure 9. Dynamic characteristics of the cpparatus in 1ts motlon onone leg.
B, = 3180 kg, Pp = 3130 ke, V"=0.2 m/sec, RC¢= 0.9m, p_= 0.6m,mC =0.3m.




are distinguished from the parameters of the base variant only by
the weight of the apparatus PA = 3330 kg, such that there is a
difference of welght and buoying force PA-PB = 200 kg. The maximum
value of the horizontal component of reaction here becomes ~ 100 kg,
the maximum amplitudes of oscillations of the body ~ 20°.

The oscillatory nature of the dynamic characteristics is induced
by the fact that in the examined case

P‘ﬂﬂ“‘p@ ..q (6-1)

and the summated momentum of the force of gravity and Archimedean
force tends to put the body of the apparatus in the position y=0.
Oscillation of all the charcteristics is areflection of the natural
oscillations of the body near the position y = 0.

It 1s possible to try
to attain a planar, almost
nonoscillatory change of

- : reactions and controls in time

’ u"” T of the length of one step,

& Rz having selected this length
~21 sufficiently small in comparison
g& with the period Tc of the
s natural oscillations of the
g"' Ry system. So, for example,

. /‘ i having imposed the condition
- o 2.8
2.4 f time,sec 7 _4!. 7‘: ' (6.2)
gl .
v it 1s possible to expect that
%- the dynamic characteristics in
time T will not be able to
complete a great number of
Figure 10. Dynamic characteristics oscillations and will not have
ggetggeg?pagitfs3§goi§:’mg;£?§1§8 more than one or two extremes.
kg, Vn = 0.5 m/sec, Rc¢ = 0.9 m,
Py ® 0.6 m, P, = 0.3 m. 33
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In terms of the parameters
of control of small oscillations

$ (5.1) the condition (6.2)
—_.:r is reccrded in the following
Y form:
— (6.3)
= v,22k TM&,_
g T We2hcup, (0 W)X 1%
gg. uf” - " -—
= 2] The characteristics of
g — motion of the apparatus with
:? 0 07 ov o é:eﬁ'?r‘-—-‘ a velocity Vg = 0.97 m/sec,
§ Ui, pec which corresponds to the sign
5:.. of the equality in (6.3) (with
values of the remaining para-
ug’ meters of the base variant) is
1) shown in Fig. 11. It 1is obvious
) that the dynamic characteristics
are, in this case, actually

weakly oscillating.

The varlants examined
Figure 11. Dynamic characteristics

of the apparatus in its motion in above answer the case of (6.1).

step. PA = 3180 kg, PB = 3130 g, If the parameters are selected
V= 0.97 m/sec, Rc¢= 0.9 m, in such a manner that (6.1) is
g ® 0.6 m, Py * 0.3 m. not fulfilled, then the picture

of @hange of the function
characteristics will be such as in Fig. 12. (po = 0.6 m, pc==0.5995 m).
Here, as in the base variant, at the moment of change of the step,
the point of support projects on the support point. It is obvious
that the characteristics change very smoothlyvin contrast to the case
of fulfilling the conditions of (6.1). Let us note, however, in the
examined case, the solution found is unstable, as in the tasks of
terestrial walking. (Instability may have a positive consequence for
the controllability of the apparatus.)

As has been shown earlier, at least two periodic modes of
operation take place: in the area vy = 0 and in the areay=n. The
latter mode for those values of parameters, which are also in Fig.l2
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Figure 12. Dynamic characteristics Figure 13. Dynamic characteristics
of the apparatus in its motion on of the apparatus in its motion
one step. PA = 3180 kg, PB- 3130 on one sten. PA- 3180 kg,
kg, VH-O.Sm/sec, Rw- 0.9 m, PB = 3130 kg, V= 0.5 m/sec,
po-O.6m, po™ 0.5995 m. Rc¢ = 0.9 m, Py ™ 0.6 m,
b = 0.5995 m (solution in the

areay=m,y= 0)

are shown in Fig. 13. Let us suggest that stabllity in the area of
y = 180° depends on the sign of the value (PBpo'PApc)/(Jn'Mpan)’ and
stabllity in the area vy = 0 only on the sign of the value PBpo-PApc.
Therefore, instability in the area of y= 0 does not certainly answer
the stability in the area y= 180°. Both modes may appear unstable
(such as takes place in the cases shown in Fig. 12, 13).

In Fig. 14 the case of a stable mode is shown in the area y = 180°.
The parameters are taken from the base variant, which give a stable /N7
motion in the area vy = 0. Stability is kept also in the area y = 180°
owing to the fact that Jﬁ = Jn-Mpan< 0, as this was explained in the
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Figure 14. Dynamic characteristics
of the apparatus in its motion on

one step. P, = 3180 kg, By = 3130 ke,
0.6 m,

Vn-O.Sm/sec, Rc¢-0.9m, Po "
Py ™ 0.3 m (solution in the area
Y=®,y=0)

apparatus.

preceding paragraph. Very strong
oscillations of all character=-
istics are noted == the
consequences of a small (by the
module effective, "introduced")
momentum of inertia J;).

It is useful to recall that
stability (instability) here 1is
understood in the sense in-
dicated above, in Section 5,

-= 88 stability of the angular
motion of the body with in-
variability of the forward
motion and motion of the legs.

In conclusion it 1s neces-
sary to note that the disregard
of the combined masses qualita-
tively changes nothing (all rules
remain in force). Only quantita-
tive relations are able to
change. What has been said
directly follows from the

equation of motion of the

This 1s obvious from comparison of Fig. 7 and 15, where the

results of cilculations are shown of one and the same variant with
regard (Fig. 7) and without regard (Fig. 15) of combined masses.

Conclusion

The main quantitative results of the calculations done are

given in two consecutive tables,

The maximum values, rounded off,

of the values of reaction and controls are combined in them, and also




Figure 15. Dynamic characteristics
of the apparatus in its motion on

PA = 3180 kg, PB- 3130
= 0,9 m,
(Solution
without calculation of combined

one foot.

kg, Vn = 0.5 m/sec, Rc‘
L 0.6 m, Py

= 0,3 m.

the median values and amplitude
of oscillation of the angle of
inclination of the body of the
apparatus. Shown alsc 1is the
stable or unstable angular
motion of the body in that
limited sense which was ex-
amined in the work (with an
invariable forward motion).

The last graph of the table
contains the conditional number
"n" characterizing the smoothness
of the dynamics of the apparatus:
this is the "number of peaks"
(maximums and minimums) in the
controls and the horizontal
component in the time of the
length of one step.

Table 1 contains the in-
dicated values for the apparatus

masses)
TABLE 1

\.b:”'" ye'r%ﬁgoicﬁ' IM’,I,.. K2 1By mer s kg |/Ulmars kgm | F227, deg &

mo. - e 50 25 50 o040 ! 6
0.5 yes 50 e 0 40 0%%3° 2¢+4

no 50 25 35 0°42° | 0

yes 55 0 120 180°25° 4

no 60 40 50 155°42° 0

0.97 yes 50 60 50 ey 182
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with an effective weight P, = 50 kg. with various values of velocity /59

of the apparatus. In Table 2 with a fixed value of velocity (Vg = 0.5
m/sec) the effective weight of the apparatus is varied.

TABLE 2
Tatmema 2 5
3 VO SERILISY 10 e o k& |18y imor k&  |/ttimer kem | 2207 [ n
S0 IA yes 50 30 40 0% 39 | ¢
zn 0o 220 100 250 0°220° 2

It seems natural to consider such motion "good", which, with
the other equal conditions provides a) a minimum of maximum values
«f the dynamic characteristics and b) a smoothness of change with
time of these dynamic characteristics. Actually fulfullment of con-
dition a) is advantageous energetically, and fulfillment of condition
b) represents a simplicity of control by the apparatus in a nominal
mode of operation. In aggregate fulfillment of conditions a) and b)
make it possible to call it "good controllability" of the apparatus.

From the given tables it is obvious that the motions with a
moderate speed meet these conditinns, with an upper position of the
center ¢f masses relative to the point of support of the legs and
moreover unstable in the sense introduced above. Stability mars the
power engineering, particularly with a lower (y - 180°) position of
the center of masses. In addition stability leads to a strong
oscillation of the dynamic characteristics, whereas the unstable modes
give smooth, monotonic functions.

Instability of the angular motion in the sense examined here
does not present any danger. It is known that adequate changes of
the law of control are able to stabilize similar instabilities. Stabili-
zation is achis=ved for example, by a small systematic change of the




mﬂ___ﬁ

length and length of time of the step [7].

From the second table it is also obvious that an increase of
apparatus weight, naturally, leads to a corresponding increase of
maximum values of the dynamic characteristics.

The conducted research of a model task of the dynamics of {51
underwater two-legged valking allows the following conclusions to be
Md(‘ .

I

1. Modes cf operation of motion exist which provide its
conformability with periodic compensating oscillations of the body
of the apparatus.

2. At least two classes of periodic oscillations of the body
exist: with an upper and lower position of the center of masses of
the body relative to the point of support of the legs.

3. The conditional stability of the angular motion of the body
is understood in invariable forward motion of the point of support
of the legs. If the maximum momentum of the Archimedean buoying force
is greater than the maximum force of gravity, then the reducing momen-
tum is positive and the "upper" mode of motion in the indicated sense
is asymptotically stable. 1In an opprsite case -- unstable.

4, Stability or instability of the "lower" mode ir defined not
only by the sign of the reducing momentum, but also by the sign of the
introduced momentum of inertia. The asymptotic stability is achieved
when these values have different signs.

5. The oscillatory nature of change of the dynamic characteristics
of walking is accompanied by the stable mode of motion. These
oscillations take place with the frequency of the natural oscillations
of the apparatus. A smooth (often monotonic) nature of change of the
dynamic characteristics is accompanied by an unstable mode of motion.
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6. With the change of legs the values of the support reaction
and of controls undergo a disruption which is a consequence of single-
support movement.

T. The vertical component of the support reaction at the point
of support 1s little distinguished from the difference between the
force of the weight and the buoying force of the body. The horizontal
component of the support reaction has this order: 1t 1s less than
the vertical component only by one and one half totwo times. Almost
henceforth the hori.o.tal component of reaction is positive, there /52
being a strong qualitativ> and quantitative difference in the behavior
of the horizontal component of the underwater and equivalent terres-
trial apparatus. This is explained by the fact that in underwater
walking the horizontal component of reaction must compensate for the
resistance of the enviornment.

8. The controlling momentums in the joints of the legs in order
of value are such as the controlling momentums for an equivalent
terrestrial apparatus. In the support leg the momentums in the hip
joint are approximately one factor of that of the momentums in the
shank. The momentums in the moving leg are small in comparison with
the momentums in the support leg. In addition, the momentum in the
hip joint on one leg, as a rule, changes sign whille the momentum
in the knee joint in_basis of sign does not change sign and is positive.

9. The unstable modes require a lesser maximum value of control-
ling momentums in comparison with stable.

10. The unstable mode with an upper position of the center of
masses of the body by the minimum of maximum values of the dynamic
characteristics and by the smoothness of their behavior is most
preferable. The worst in this sense i1s the stable mode with a lower
position of the center of masses of the body.
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Appendix: Generalized Method of Cords /53

In the present work, for the solution of the boundary task
(1.4)-(1.6), the numerical, iterative, generalized method of cords
was used. The basic idea of this method is included in the follow-
ing. Let 1t be necessary for us to find the solution of a system
of transcendental equations

J(x)=0,

(P1)
where f’(x) = f (x),...,fn(x) is the vector=-function of the vector
argument x.'=(xl,...,xn) of the dimension n (here and henceforth
by the prime is meant the operation of transposition). Let us assume
x(n) of the solution of the system
(P1). In the population x(n) let us approximate the nonlinear state-

that we know several approximation

ment f(x) by the linear

J@)sAlz-2") + 8 .
(P2)

Here A is (nxn) -- the matrix, and B is n -- the vector. Let us find
the unknown matrix A and the unknown vector B from the following
conditions.

Let us assign in the population x(n) the point x(i)(i = 0,1,...,n)and
compute the value f(x(i)) (1 = 0,1,...4n=1). Then let us reduire that
at the points x(i)(i = 0,1,...,n) the values of the nonlinear and
linear statements coincided

f(.r".') AL x™e8, (204N
This 1i1s equivalent to the matrix equations

oF=Asx, B8=fz'™),

(P3)
where AF and Ax are (nxn) -- the matrixes of the form
(o) ¢r) n=-7)
af, " af, " ... af
AF = dj:zm’ .,JJ;("~ s Afi(”—"
of " aflt L apid
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axe | o ax’ .. ax,"" /54
L R ;
2 ax? .z',‘.""
0 (»)
‘fl. -fd‘(x )of'-{: )’ ‘.5. ..9- - ‘.
(1).

Let us assume that the points x are selected such that
det Ax # 0.
Then from (P3) we find
A= AR(AX)"!
which together with (P2) and (P3) gives
£(x) » aF(AX) L (x-x(")y 4 £(x(D))
(nt1) is received in the usual manner
by means of solution of the system of linear equations

The following approximation x

aF (2X)" 12 "L 2y e flz ™)

Supposing that
det AF # 0
we find

(261)

e ®eaX(ary (2"

Having received x(n+1), let us compute f(x(n+l)).

(9) (1) (n)

the points x AR ¢ let us eliminate the most remote from
(n+l)

Then among

points. The distance between points is considered in several

assigned(metrics. In the given work the distance p(x(i),x(x)) between
1) (K)

points x and x were computed by the formula

@ _w 72 0
x, - L (s = )%
where PJ are the assigned nonnegative welight coefficlients. The number
of the eliminated point 1, is defined by the condition
ﬁ{tt(‘.)

Mm

)-fncx/onz )

The following approximation of x(n 2),

that were used for x(n+l)
to substitute x(1 )for X

is calculated by the same formulas
» but only in these formulas it 1s necessary
(n)(concurrently f(x(iﬁ)) for f(x(n)), if

i, # n, x(n) for x(n 1)(r'espectively f(x(n)) for f(rn+1)). Having /5
obtained x(n+2) in an analogous manner let us calculate x(n+3), then
x(n+u) and so forth. The iterative process ends i1f at the s iteration

D e e




the conditions are fulfulled

) . -

'IJM_IJ‘”‘ ,.sj .. s.,. /.'.‘..u’” »
where GJ are the assigned positive numbers which characterize the
precision with which it 1s necessary to know the solution.

The welght coefficlents PJ are selected from the considerations
of dimensions. In particular it 1s possible to set

, .
‘}'21.- (/l/,...,ﬁ),
r

if xJ is dissimilar, or

ecl’ (jl’,.u,ﬂ)

if xJ is similar.

It is possible to show that the generalized method of cords
(0) (1) (n)
b

converges if the zero approximation (points x giois oy X

are sufficiently close to the solution. Here the speed of convergence
of the method in proportion to the approximation to the solution

strives to the speed of convergence of the method of Newton. Practical
use of the generalized method of cords showed that the general volume
of computation which must be done in order to receive a solution

with the assigned precision 1s less than with the use of the method of
Newton, despite the fact that the number of iterations which must be
done is larger. The generalized method of cords by speed of convergence
being no worse than the method of Newton, has one significant advantage:

with 1ts use it is not necessary to compute the matrix of partial

roducts " - ‘o .
= afex) dﬂ’}”
ox axl' [’Jt -

which for many tasks has a considerable value. In addition, in contrast
to the method of Newton, when for each iteration it 1s necessary to
convert the matrix of n factor %é—, the iteration process in the
generalized method of cords can be so limited, that on the first
iteration the matrix will be converted by an n factor, and in all the

following -- the matrixes only of the second order, which is very /5€
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important if n is important. The latter is achﬁqved in the following
manner. Let us designate through AF(l) the matrix AF, which is
computed in the first iteration by the points x(o), le),..., x(n-l)
see formula (P4). In the first iteration in the process of obtaining
the first approximation x(n+1) it is necessary for us to convert the
matrix of n factor AF(I). According to the generalized method of
cords, after the first approximation of x(n+1)1s obtaineds one of
the points x(o), x(l),..., x(n'l) is eliminated. Let the eliminated
point prove to be the point with the number i. "Then in the following
iteration it will be necessary for us to convert the matrix
. (B) 0) L(mot) L f1) (9¢0) tm ,tnet) (n=1) ,(ne9)
EEGYT LA S )

where .. . )
f‘”"f(x ) » f';tz(‘,)"([((x ”5000 ”{xll,))‘ (Al'o", u-.mﬂ {fv).f(m”)

ar(2)

is the jJ column of the matrix . The matrix AF(Z) may be recorded

in the form

Here "Bm-(f""—f"', f’”ﬁ.f”"”)

‘.
L,m.(ao... oro .,. a)
2 o ttf ... /
Y

2 (2)

For the conversion of matrix A we use the formula

(A+80C) "~ AL A B0 cAb) ca’. (P5)
This formula takes place for any matrix A, B, C, D for which all
operations are fulfilled, which are figured in (P5) (it is easy to
be assured of the accuracy of (P5) by direct checking). Supposing
in (P5)

A-dp{'f 8= 8”", C=C % =&, ./0/,0
we obtain
Jea -7 - o g . =7 40y - J .
df.‘(li" AF”)-API” 8(‘)(63 *C'”'AF'MB/”) 2'"’AF{') I’

From this formula it is obvious that conversion of the matrix
AF(Z) is reduced to conversion of the matrix of the second order
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E, + ¢(1)p(1)-1 B(i), in as much as the matrix AF(l)']has already
been computed in the preceding iteration. In an analogous manner 1in
each final iteration, using the results of the preceding iteration,
the conversion of matrix AF will reduce to conversion of the matrix

of the second order.

In the particular case when1=n, that is when point x(“) is
eliminated, conversion of the matrix AF(Q)

by the number. Actually in this case
oF ®e ar"”s 8c

‘cfm-f("”, ":{, ”.'.. 7)

from this it follows

may be reduced to division

-t
aF @l gotrt 8P scapm™’
1+CaF M’ g

Thus when the point which answers the approximation obtained in the
preceding iteration does not take part in the construction of the
given approximation conversion of the matrix AF reduces to multipli-
cation of the knowns of the matrix and division by the number.

45




46

REFERENCES

V.V. Beletskiy, "Dinamika dvunogoy khod'by" [Dynamics of two-
legged walking], IPM An SSSR, Preprint No. 32, ordena lenina
Institut prikladnoy matematiki AN SSSR, 65 pages, Moscow, 19T4.

V.V. Beletskiy, P.S. Chudinov, "Nelineynye modeli dvunogoy khod'by"
[Nonlinear models of two-legged walking], Preprint No. 19, ordena
Lenina Institut prikladnoy matematiki AN SSSR, 69 pages, Moscow, 1975.

N.Ye.Kochin, I.A. Kibel', N.V. Roze, "Teoreticheskaya Gidromekhanika"
[Tgeoretical hydromechanics], vol. 1. Fizmatgiz, 583 pages, Moscow
1963.

L. Prandtl', "Gidroaeromekhanika" [Hydro-aeromechanics], M.IL, 575
pages, 1951.

B.Ya. Kuznetsov, "Frontal resistance of cables, wires, turnbuckles
and aviation films," Tsentral'nyy Aero-Gidrodimanicheskily Institut,
Issue 97, Gosydarstvennoye nauchno-tekhnicheskoye izdatel'stvo, 1931.

L.D. Landau, E.M. Lifshits, "Mekhanika sploshnykh sred" [Flow
mechanics], GITTL, 788 pages, Moscow, 1953.

V.V. Veletskiy, P.S. Chudinov, "Upravlenie dvunogoy khod'boy"
[Control of two-legged walking], Preprint No. 10, ordena Lenina
Institut prikladnoy matematiki, 54 pages, Moscow, 1977.




	1980007562.pdf
	0033E14.JPG
	0035@00.JPG
	0035A02.JPG
	0036A02.JPG
	0036A03.JPG
	0036A04.JPG
	0036A05.JPG
	0036A06.JPG
	0036A07.JPG
	0036A08.JPG
	0036A09.JPG
	0036A10.JPG
	0036A11.JPG
	0036A12.JPG
	0036A13.JPG
	0036A14.JPG
	0036B01.JPG
	0036B02.JPG
	0036B03.JPG
	0036B04.JPG
	0036B05.JPG
	0036B06.JPG
	0036B07.JPG
	0036B08.JPG
	0036B09.JPG
	0036B10.JPG
	0036B11.JPG
	0036B12.JPG
	0036B13.JPG
	0036B14.JPG
	0036C01.JPG
	0036C02.JPG
	0036C03.JPG
	0036C04.JPG
	0036C05.JPG
	0036C06.JPG
	0036C07.JPG
	0036C08.JPG
	0036C09.JPG
	0036C10.JPG
	0036C11.JPG
	0036C12.JPG
	0036C13.JPG
	0036C14.JPG
	0036D01.JPG
	0036D02.JPG
	0036D03.JPG
	0036D04.JPG
	0036D05.JPG
	0036D06.JPG
	0036D07.JPG




