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MODEL TASK FOR THE DYNAMICS OF AN UNDERWATER TWO-LEGGED WALKER

i V. V. Beletskiy, V. V. Golubkov, Ye. A. Stepaapga

Academy of Sciences USSR Institute of Applied
Mathematics imeni M. V. Keldysh

hecently investigations of the

pomorphic apparatuses and man have

direction is connected with the mat

integral robots and anthropomorp:lic

"	 exoskeletons and pressure suits for

dynamics of walking of anthro-	 /4*

been strongly developing. This

wring possibilities of creating

autonomic systems of a type of

operation in experimental conditions.

The proposed work borders on the indicated investigations. A

model task of two-legged underwater walking is examined. This task

'	 allows for the establishment of several characteristics of the walking

'	 of two-legged underwater apparatuses or pressure suits. The under-

water walking device is represented by a substantial sphere, which

moves on dual-member rigid legs under the action of momentums which

are located in the joints of the legs. The legs of the apparatus are

round cylinders, the ,joints are hinged between themselves and with

the sphere.

The dynamics of this system are investigated with the calculation

of the buoyancy of Archimedes, which acts on the sphere, and the force

of hydrodynamic resistance, which acts on the sphere and legs. For
F

the assigned walking velocity of the apparatus, the compensating

vibration of the housing, momentums of force in the ,joints and the

key reactions are determined. Several questions of stability are

investigated. A comparison of underwater and terrestrial walking is

given.

1. Definition of the Task. The Dynamic Model of a Walking Apparatus

and Equalization of its Motion.

Plane-parallel motion of a walking apparatus to a liquid is 	 /5

*hutrbers in the mar-In Indicate pagination in the original text. 	 a
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examined. The apparatus consists of a rigid housing in the form of

a sphere and a pair of legs which are mounted to the housing at one

point of support II (Fig. 1).

E

	

	 For the description of this movement, let us introduce the

stationary, right quadrate Descarte system of coordinates Nxyz, the

plane Nyz which coincides with the plane of motion of the apparatus.

Let us make the following assumptions:

1. The legs of the apparatus are identical and each of them

consists of two joints -- athigh and shank. The thigh and shank are

round cylinders, which have corresponding lengths a and b and

1	 diameters d  and d2.

The legs are weightless and sufficiently thin, i.e.

and = rr^a = o^	 ad a 1,	 B+ « 1

where an d and m a are the masses of the thigh and shank.

3. The attachment of the shank to the thigh, and the thigh to

the body (housing) is jointed with one degree of latitude.

4. The plane motion of the apparatus takes place in such a manner

that the center of the Sphere 0, the point of support H and the legs

are found in the plane Nyz.

5. The distribution of mass on the sphere and inside it is such

that the plane Nyz is the plane of dynamic symmetry of the sphere

(apparatus), and the center of mass C of the apparatus lies on a line

which passes through the center of the sphere and the point of

Support.

6. The force of gravity is directed along z.

7. The forces of friction in the hinges (,joints), the lifting

forces of the leg ,joints and forces of viscid friction, which

t

2
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act on the apparatus from the side of the liquid, are negligible.

8. The surface with which the legs of the apparatus contact is

absolutely uneven.

9. The control by the action of the apparatus is realized with

the aid of guiding momentums affixed in its ,points.

10. Acceleration and the speed of any point of the apparatus

are finite.

With the assumptuions made, let us determine the task of the

mDtioii of the walking apparatus in a liquid in the following
--	 manner. Let

1) the motion of the point of support be known and take place

uniformly and rectilinearly along axis y (comfortable motion [11):

2) the legs of the apparatus move along a given regular marked

path, placed in the plane Nxy on the line Ny (in other words, the

apparatus walks along plane Nxy along the line Ny with a constant

pace):

t 3) the

repetitious

on one leg;

periodicall

leg exactly

step of the apparatus is single-supported, periodic and

[1,2]: at each point of time the apparatus is supportell only

the movement of the legs of the apparatus take place

y with a period of 2T (T is the length of one step); and orie

repeats the motion of the other with a delay of T;

4) the motion of the end of the moving leg is specified in the

form of a clear function of time.

The position of the body of the apparatus in space will be

characterized by two Descartes points of support y,, z n and angle y,



r

and the position of the legs

by the angles a., pv , a  it
(Fig. 1).

MFM

Let us consider that the

contact of each foot with the

surface is a point and all the

action of the surface on the

foot is reduced to a single /8

force (the force of reaction)

Ai (i - vs r), applied to

the foot at the point of

Support.

From here on, through

u	
'

v (TT) u v (K) '
	 n	 ' n
and u (T) u (K)

s
we will designate the momentums

of the force of control, which

acts from the side of the body

Figure 1	 on the thigh and from the side

of the thigh on the knee respectively in the support and moving legs.

By the establishment of the task, the coordinates of the point of support

y n , z. and the angles a v , B V , a7 , a .rt , which define the position of the

leg in space, it is known to us as a function of time.

The forces of reaction Pi and also of control u  appear as unknowns.

Applying to the walking apparatus the principle of the elimination

of connections and using the theories concerning the change of the

quality of the motion of the apparatus and its kinetic momentum relative

to the point of support, we receive the equation for the definition of

unknown forces of reaction and the angle y. These equations are the

actual development of the equation received in [1] and can be

4



5

recorded in the form

.hT	 - cool,AW -N,+(/^c x rn ),
y y y y yy y ^y

40 - ^ .MIY • ^ io„p'cv^(cvXA„Pe,
MA	 Af	 (1.1)

(A)	
n nn^

M•,MA +Mx^, j^^fn .M„^,Po E, f^o'^/ o ^,

my
3^ R^'

	
l 00 1

Here and henceforth the point denotes the differentialization

in time. In (1.1) is indicated: I (A) is the tesor of inertia of theII 4.	 ►
apparatus at the point of support R: p o , p s are the radius-vectors

_	 leading from the point of support to the center o`' the sphere to the

center of mass of the apparatus (they are, on the strength of assump-

tion 5 on page 4, colinear); ^ ^v ^n are the radius-vectors	 19

which lead from the beginning of the selected system of coordinates

respectively to the point of support and to the supporting points of

the feet; MA is the mass of the apparatus equal, on the strength

t	 of the weightlessness of the legs, to the mass of the body; M HP is

the combined mass of the body-sphere; w is the angular velocity of

the body; VT, 	 the velocity of the point of support; R co is the radius

of the sphere: p is the density of the liquid; ^ A and -A
B 

are vectors

_	 of the buyoing force and force of the weight which acts on the body;

PK' Pv' P
n are the forces of hydrodynamic resistance of the liquid

which acts respectively on the body (sphere) and the legs of the

apparatus; M K , Mv , M,T are the momentums of force of the hydrodynamic

resistance relative to the point of support, which act respectively on

the body and the legs of the apparatus.

In deriving equation (1.1) in a known approximation we

considered the instability of the streamlining of the body-sphere of

the walking apparatus in its motion in a liquid by means of the intro-

duction of its combined masses [3] (the combined masses of the legs

ft.-	 - -	 —.-A



were assumed to equal zero, which on the strength of supposition

2 on page 4 is fully feasible).

From here on only the single support motion is examined. It is

convenient to introduce the index "v" for all values which pertain

to the support to the leg and the index "n" for all values which

relate to the moving leg (Fig. 2,3). Then on the strength of the

establishment of the task and suppositions which have been made, we

have (Fig. 1, 2, 3):

Rr ='^ ^	 GPs + ° '

A.

•	 (A1	 ^

IA 4! • J„ a'.Z %70.-7 ♦ MAP /^o (1.2)

~ -N ♦ V tito)
 r

V,,aV t/	 ^i+•^ r

N• coast , V • cast , A. - Est .

In addition

r^ (t)•^^ t 
r ^. ^^hy"° T,cnnst. h-ewst , Yr •y y ^4

f1r -roast t 0 '0,	 .'^/^. ^. 0 •

p̂ P ^^' rosd^
0.	 if	 ^^,	 ). o ,	 (1.3)

A"	 y

/11

r
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Here VV PA , P  are the absolute values of the vectors 11. , fA , fB;

3 (A) is the point of inertia of the apparatus relative to the axisR
which passes through the point of support and parallel coordinates

of the axis x; H is the height of the point of support over the sur-

face Nxy, h l is the projection of the radius of the vector 7n on

the axis y at the initial moment of time t o ; VV is the radius-vector

of the point of support; 12, is the radius-vector of the end of the

moving foot; h_ is the value of the step of the apparatus; T is the

earlier introduced time in which the apparatus makes one step; z°,

y°, z° are respectively the unit vectors of the coordinate axes X. y,

Z; [t-to/T] is the entire part of the unit t-to/T.

With the written formula (1.2) it was assumed that at the initial

moment of time one leg is found at the beginning of the system of

coordinates N and the apparatus has ceased to be supported on this

leg (the leg has started moving), and the other leg is found on the 112

O j 	 axis y at a distance h from point N and the apparatus has just

begun to be supported on this leg (the leg becomes supporting) (Fig. 3).

z
	 't

	

H^--^---nR-^► yn	
N

	

X70 •	 Fev

s

Figure 2
	

Figure 3
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Substituting (1.2)-(1.3) into (1.1) and writing out the obtained

vector of the equation on coordinate axes, we obtain the equation

which describes the change of the angle y with time, and the expression

for the projection of the forces of reaction.

a `,p !(A/^c - i loo ) Sind' • (P - s ay3 (t) +
106 M^^P a t(Hsin^ - Gyr (t ) CoS^) +

+MwF +Mir ' Mss.rM,v'M3 MAJ 9

R3y = ^Py • - F,y - F^ - F,y 	si /3o') .

iP3l -R.' rp-Pe - Ni - Ft - Xt -M^p^,p (^sin7•i cos^

(1.4)

(A)

1̂1P =711 +Mj ,̂^ IGyr !t)sin^•Hcor^J ► 	J,. "y^►̂ o^•

J0110 ` jy^J^t * /i 1̂1 p !r0
F, - z11. 4YO (OP- - Hi •.

4yr(r).h(^ tTt•> _ fTl•>+h,^

D u^ (t • r) - a.y3 (t ) .

The four last formulas of (1.4) are written with the calculation of /13

connections which exist between V n , T and h

h - VnT.

This connection is the consequence cf the p,-riodicity of motion of

the walking apparatus.

With the absence of hydrodynamic forces and momentums the equations

of (1.4) are converted to earlier knowns [1].

8



The first of the equations (1.4) has the structure

-f Q" r,t ) .
(1.41)

In the task which is examined In the present work, the right part of

this equation depends on the clearly forward moving time t with a

periodic pattern so that f( M, Y, t + 2T) - f(y j Y, t). Let us desig-
nate . the value of the phase changes at the initial moment t o through

Yo , Yo . Then the general solution of the equation (1.4 1 ) may be

written in the form

According to the establishment of the task y(t) must be a

periodic function with a period of 2T. This indicates that from the

series of solution of (1.5) we mus t, choose only those solutions which

meet the following condition of periodicity:

OU". a', . t o  to of r)
i o'... Ti • t.. t, •,fir) war,	 (1.6)

Let us assume that the conditions of periodicity of (1.6) may

be satisfied by the choice of initial givens y, Y. Then the relation-
ships of (1.6) must be examined as a system of two transcendental

equations with two unknowns Y o , Yo . Finding the solution of the
system of equations of (1.6), we find by that very solution the periodic

solution of the differential equation in (1.4), and, as it has come 	 /14

to be, the periodic motion of the walking apparatus. Thus the task

of finding the periodic solutions of the equation for y is reduced

to the solution of the angular task of (1.4), (1.6). Below will be

shown that this angular task actually has the solution.

2. Finding the Control Momentums in the Joints

For the realization of the indicated above motion of the walking

apparatus, it is necessary to place corresponding momentums of control

of the forces u
(I n) , ujK) (1 v ,n) in its points. Let us find these

momentums. According to the assumption, they are located only in the

hid; and knee points. Let us apply to the parts of the leg (from the



0

gears to the point of support) the principle of the freedom of

movement of connections and the theory concerning the change of

kinetic momentum (respectively relative to the knee and the point

of support).

Let i a v ,w is the index respectively of the support and the

moving legs. Let us take the i-leg and having eliminated the body

and the support surface, let us change the motion of the body on the

thigh at the point n of support by the force of reaction A (
1
n) and

momentum uin ) relative to R and the motion of the surface on the

foot of the force of reaction R  (Fig. 4). Applying the theory con-

cerning the change of kinetic momentum of the leg relative to the

point of support and using assumptions of the weightlessness of the

leg and the finiteness of velocity and acceleration of any of its

points, we obtain

U`.it'0M.s'•(NJ-^,^ X • o , I • ^, ^.
(2.1)

Here Mv ; M it are the momentums of forces of hydrodynamic resistance,

which act respectively on the support and moving legs.

Considering that

from (2.1) we find P.) and u (n) consecutively assuming
V	 IT

i - v and i n r
too

(2.2)

Let us now apply the theory of kinetic momentum relative to the

knee to the shank of the i-leg. Substituting the action of the thigh

on the shank by the force of reaction i(K) and momentum u (K) , and

the action of the support of the surface -- of the reactions at the

point of support A i and taking into :. ,nsideration the weightlessness

of the shank and the finiteness of velocity and acceleration of its

points, we obtain (Fig. 5)

1w1 .0 ra 18)^ to y.	 f#)

1

i

10
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N
Y

I

N
Y

Figure 4	 Figure 5

This gives, with i w v and i • n respectively

ild 
-Mai., (RrCOSAr•,P'. sitrA0)

41 .1. ' M,r r ►

Here Mv (2) and Mit (2) are the momentums of forces of hydro-

dynamic resistance which act respectively on the shank of the

supporting and moving legs and are taken respective to the thigh;

sv is the angle B for the support leg. From the given formulas with

the absence of hydrodynamic momentums the formulas of work are obtained

[1]. The obtained formulas for the control in the joints (2.2, 2.3)

hold for the single-support motion in a smooth motion of the walking

apparatus in a liquid. From these formulas it is seen that the con-

trol in the points of the moving leg in an examined case, despite

its weightlessness, are not equal to zero, in contrast to the situation

when the apparatus moves in a nonresisting environment [1]. In order

to achieve movement of the leg in a resisting environment in the thigh

and shark, it is necessary to place ,:ompensating controlling points.

They are, according to the value, equal to the momentum of the forces

of resistance which act respectively on the leg and the shank. After

the solution of the angular task for y and definition of reactions, 	 /1^

according to formulas (2.2), (2.3) the controls in the joints are
_

11
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clearly computed (if trajectories are assigned of the motion of the

points of support and foot of the moving leg, and also the path

being followed).

3. Computation of Forces and Momentums of Forces of Hydrodynamic

Resistance which Act on the Walking Apparatus

For the calculation of angle Y it is necessary to know how

to compute the forces and momentums of forces of the hydrodynamic

resistance which act on the walking apparatus. Let us assume that

the fluid is incompressible; the forces of viscid friction are

negligibly small in comparison with the forces of hydrodynamic pressure;

the calculation of the hydrodynamic forces and momentums which act

on the various parts of the apparatus may be arrived at independently,

without calculation of the interference; the motion of the apparatus

is quasistationary in a sense that for the calculation of the forces

of hydrodynamic resistance it is possible to use the formulas which

are correct in the case of stationary streamlining of the bodies

(	 (the unstationariness of the streamlining in a known approximation

has already been calculated by us by means of introducing the combined

masses of the body of the apparatus).

Using the assumptions made, let us calculate first the forces

and momeri,uins of hydrodynamic resistance which act on the body of

the apparatus. With calculation of these forces and momentums let us

consider the movement of the body-sphere as being set, and the velocity

of this motion equal to the velocity of the center of the sphere. The

hydrodynamic effects which are connected with the revolution of the

oncoming flow of fluid on the sphere reduces r o a single force which

is applied to the center of the sphere. This force is given by the

formula [4]

,- c^,Y, V,	 Cw s cn, (Re) nR^^, ^^

iPe. RVeAOCV	
(3.1)

V"

wherewhere C c ^(:;e) is the coefficient of resistance which is dependent /18

12
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On-fte Reynolds number Re; p and v are respectively the density and

coefficient of the kinematic viscosity of the fluid.

The dependence of the coefficient C c ^ on the Reynolds number

is shown in the following table 4.

Table 4

I'

r-^
C. 0.1

245

I

28

IO

4.4

IO2 103 I04 105 I06

0.I4I.I 0,46 0.42 0.49

In the work the motion of the apparatus is numerically

investigated with R co - 1 and Vo _ lm/sec.

With these conditions, as the value shows

0.0/ 13 • /0
i

the Reynolds number has a great value. Therefore the value of the

coefficient Cco in the formula (3.1) in our case must be derived

for great Reynolds numbers.

As has been noted, (3.1) was received as a result of the solution

of the task of stationary streamlining of the sphere by a viscid,

incompressible fluid; the hydrodynamic effects of the unstationary

streamlining have been disregarded. However, these effects add to

the simple value, for example, on the basis of the task concerning

the periodic oscillatory movement of the sphere in a viscid fluid

which was examined in the work [6]. In this work is noted the

following expression for the momentum M  of forces which act from

the side of the fluid on the sphere which achieves a periodic

oscillatory motion.



where n is the viscosity, n is the angular velocity of the oscillations

of the sphere, w is the frequency of the change of the angular

velocity, R is the radius of the sphere. The formula (*) is valid 	 /19

in the hypothesis pR 2w >> n, which in the given case is realized.

The values show that the value M  according to (*) does not exceed

3% from the base momentum of hydrodynamic resistance which is cal-

culated on the basis of formula (3.1). These formulas lead to the

following expression for the momentum of the forces M K and MKF'

which are defined by the motion of the forces of hydrodynamic resistance

on the body of the apparatus

^^• = C*, V)Op (Y cesfi - ip. )
MKF = Cw V. INv -ip. oyv sink« Hcos^')J.	

(3.2)

Thus,

MM 	 CN V L III 60. c°Sor''yl - .P. (dye $ill	 VS'r Oo JJ

Let us calculate now the forces and momentums of the hydrodynamic

resistance which act on the legs of the apparatus. Let us take any

2	 leg and examine an arbitrary section:

of this leg (Fig. 6). An infinitely

N	 V	 small element of this s--ction of the

leg dE presents itself as a round

thin cylinder.

^ "Sp
i

N I	 --.-s,
Figure 6

With motion of the legs of the

apparatus the angles of incidence

are close to 90 1 . Considering that

14



it is possible to disregard the influence of viscosity on the stream-

lining of uhe cylinder under the angle of incidence, which is close

to a right angle, we det^^rmine that hydrodynamic force acts along the

normal to the axis of the cylinder. The force which acts on the

element of the length of the leg d&, is described by the formula

7P (V2/2)d • dE, where 
Cp 

is the coefficient 	 any resistancedFN 

of the cylinder at the angle of incidence a = 90 , VR is the component

of velocity in the direction perpendicular to the axis of the cylinder.

d is the diameter of the cross section of the section of the leg.

In a vector form this may be recorded in the following fashion

y °:gin 9 - Z-4, °cos50,

17 = x' x ° = c0ssp •
'r

°sin SO ,
(3.3)

.VN.Spn

Vn =(7. '0;*) - (VN ,n)+Sp y .

Here Eis the distance from the beginning of the section (point 120

H) to the element dE ; V, V  are the velocities respectively of the

element d c, and the point H; (V,n), (VH ,n) are the scalar products

respectively of the vectors V,n, and 	 The coefficient of

resistance ^ depends on the Reynolds number.

Re = dV
V

where V is the characteristic velocity of the motion of the element

of the leg. In a characteristic situation with motion of the apparatus

in water V = V  -lm/sec with d- 0.09  mm we will have

Re. cYv^ 0.09•t` 
fi o.s iosJ 00173 , 10  `

Ir conformance to the results of work C51 in a sufficiently large

area of values of the Reynolds number being examined it is possible

to accept 
U  

::0.6.

15
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Considering that the streamlining of each element of the section

move independantly, we receive the following expression for the full

force which acts on the section

e
F._k ere. dp JV„/V (3.4)

By an analogous method are computed the momentums of the forces

of hydrodynamic resistance relative to the point of support (Fig. 6).
_	 e

M=-	 dp f v„ /V, /(2,0'r 	'^ Y

._^ c^dP(zMx,^j_i C,,d^pfVnlV/(^xn')cr^.	 (3.5)

Substituting n, p and VIT from (3.3) into (3.4) and (3.5) we find

F •_,^ CPPafwS ^O . i •-^ e,-,O Oft

M=3xi"2x y- CP2^ ^ r
=-P ^,,pd^f(y^ s«^ - 2,r cos 90) "W-7.

y

0

2

	

^4/ql+lQ Q/a/ (4's : Qs Q /s/	 (3.6)
y +

s '^VN. n ) =VMy cos ^p.VNt sinsp, s,S+spC,

From (3.6) we have

M _ a F*HF =-^c O Q stn +#COS ).	
(3.7)

f - YO ,	 y a PP f l ,yr S^	 S^

Let us now apply formulas (3.6) and (3.7) for the calculation of

forces and momentums of hydrodynamic resistance which act on the thigh

and shanks of the walking apparatus.

16



For the thighs of the apparatus, assuming in formulas (3.6) and

(3.7)

^•dj , so• af , y.dj , ^. ^ ,
N • e V-

yM- 0 , r'V =o

we receive the following formulas fo the forces F (6) and momentums

Mia), Mi(Fd) of hydrodynamic resistance, which act respectively on the

thigh of the moving (1 	 7) and support (i	 v) legs.	 /22

-^ ^	 rd)	 ld)-. a	 rd,+re)
17 = F;y y F, a

f•(6)inArf
-	 r6,M =_^ CpA^d rd)

^'^fd ^- ^.^ddf fd̂ dy,+ slya +//Cosa•

(3.8)
^a) a R ' S:	 rye aeii ed,,lSri)._	 o

^	 ^ `^ lgrdlls^q (7i	 i

^ra- a ra+ d:	 (1)/ r6^ ' 	^"	 X61 F rA+

M (t) 	 S
+ QI St

.	 ra)
s; = Y cesa. Qrj: sr^ajd a

The formulas for the forces and momentums of hydrodynamic

resistance which act onthe shanks of the apparatus we receive from

(3.6) and (3.7) by means of substitution

fj^^ rr^ ^^^y•cold, + 'sired; ,

As a result the following formulas are received for the forces

p	 F(t)and momentums M 	 (2) which act on the shank of the moving
iF

17



i	 n) and support legs (1 -0.

^ ^) rt1 O	 ftl.. e

	

`Fy n ` Fta.	
V!

f•ns^ 	 too rig
^y s 0PP°'.f• COSA . F,

^+'''^ ^PlodiJr' ^dyJ StI7̂ ^ . HMS30^) ,

n^ d f!) ft^
4i y S; (OP? !t)t (1) ft,

3 /4r• l^ /s; /

(3.9)

f̂rt^ d ^ft^ 6e^ rte rt^+	 4r(s)

y Ji !,a

	

^i^ ru rt) f:,	
rte + rt)

S^ n cosh, . ad• Cod (dr' -./st ) ,

ft)	 rrJ	 / •̂

n 3 .7r.

With the aid of formulas (3.8), (3.9) the forces of hydrodynamic

resistance and their momentums which act on the legs of the apparatus

are calculated conclusively in the following manner:

F F r!1 f, r^, ^. rs, F rt ►

	

3 a	 J	 3 	 Jr

Mr ^ M^ f M^ ^+ M^ 
tl+ M^dl^ MAe)r

Mrs Af rs rF ^^ ` M^f

Thun, the formulas received (3.1), (3.2), (3.2 1 ), (3.8)-(3.10)

which fully allow calculation of the forces and momentums of
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hydrodynamic resistance which act on the walking apparatus during 	 /24

its movement in a liquid. These formulas together with (1.4) allow

the calculation of angle y which describes the motion of the body of

the apparatu3 relative to the point of support.

4. Numerical Method of Solving a Nonlinear Task of Walking

I	 Solution of the task of walking is not reduced to solution of

f	 the angular task of (1.4), (1.6). The right parts of the differential

equation (1.4) are described by the formulas (3.2), (3.2 1 ), (3.8)-

(3.10). The differential equation for Y is significantly nonlinear
and complex. Therefore for the solution of the angular task (1.4),

(1.6) it is necessary to use numerical methods. In the given work

the numerical, iterative, generalized method of cords is used. Descrip-

tion of this method is given in the Appendix.

The value of the functions y(y o , y o , to, t o + 2T) and Yo(Yo, Yo,
t o , t o + ?T)for the Oi fferant values of Yo and Yo, which must be known
in the proces3 of solving the angular task (1.4), (1.6) by the general-

ized method of cords, were received by a numerical integration of the

1 differential equation (1.4) by the method of Runge-Kutt with a constant

step. Here the necessary values of the angles av(t),Sv (t), ar(t),

an(t), which are formed by the thighs and the shanks of the legs with

the axis z, were calculated along the assigned trajectories of the

point of support and foot of the moving leg with the help of the

algorithm used in work [2].

Like any local algorithm, the generalized method of cords re-

quires knowledge of the zero approximation. As a zero approximation

it is possible to use either the solution of the task of walking which

is received in a linear approximation in the supposition of an

insignificant amount y(or y-n), Y and Y or the values Y 0 s o(Yo =n ),

Y o = 0. The indicated zero approximations are sufficiently good, in so
far as calculations have shown, the oscillation of the body of the

apparatus along yand Ywhich are obtained as a result of solving the /25

nonlinear task of walking is expressed in ,.,analytic form through

quadratures. The solution of this task is given below.
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.9. Solution of the Task of Walking in a Linear Approximation

Let us assume that the equations of (1.4) have such solutions

which have y,Y and y sufficiently small. Then, applying the usual

procedure of linearization 	 to the formula for y in (1.4), we

receive the equation describing the small oscillations of the body

of the apparatus:

Here

1	 J0	 (5. 1)

"ItA MV; , - A - PA ay (tl.J• 	 J	 r
^	 w

•

[Mjrf (t 1'N'm	 (t).

In the equation (5.1) the member m H (t) results from the action
i	 of the forces of hydrodynamic resistance on the legs of the apparatus,

and the member mK (t) -- the action of the buoying force, the force

of weight and the forces of hydrodynamic resistance on the body of

the apparatus.

The general solution of the equation (5.1) may be obtained in

the form

Vf -4a)-x" a) ,

OM (t)^(/M'(^)^^f,(r) r VM (t) ' pAl')^t)+(^IyrO!(t)

(t) • —^—_dw^ 
T
^ T" e g ah(t^^ ^).
r

W 
sh(urzJ.ch(wr t^^

e- îT -	
/26

r

f-2e'z 'ch(cd^ TJ•e-^P;r a-Pr r sh(c^^T).

ch(cijT)•e'^^—^ sh(a^ (T- z))- ch(wr (r T)))]
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Here YD and Yo 
are the values of y(t)-and Y(t) at the initial

pint of time to.

If PY - qY <0,, then as is evident from formulas (5.2), wy is the

virtual value. In this case y(t) is calculated according to those

formulas of (5.2), only in them it is necessary to substitute wy for

l wy l , ch for cos and sh for sin. In addition, from the formulas

of (5.2) it follows that in the linear approximation the solution of

Y (t) id presented in the form of the sums of two components, one

of which YK (t) results from the action of exterior forces on the body

of the apparatus, and the second Y H(t) by the action of exterior

forces rn: its legs.

In turn, each component is the sum of two parts -- the periodic

(YK (n) (t), Y (n) (t)) with a period of T and a nonperiodic or aperiodic

( YK
(a) (t), YH`a)(t).

In order that the solution of Y (t) be periodic, it is necessary

and sufficient that YK a) (t) + YH a)(t) = 0, which may be achieved

by a selection of corresponding initial data Yo and Yo. The initial

data Yo and Yo 
which provides the periodicity of y(t) is defined

clearly and equals

(Al	 ae

If

(t
/28

Î (t,) s

.S	 L	 lJ^

i r sh (w+ )-e	
10,

Jm^(te•^)d^

f/est^(telsaYn)ao- j',, U.)

(5.3)
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The periodic solution has the form

	

'	 (5.y)

where YK n )(t) - YH n ) ( t) art given by the formulas of (5.2).

Analysis of the formulas of (5.2) shows that if qY>0, then the

solution of y(t ) % ymptotically approaches the periodic solution of 	 i

	

C	 Y(n^t). Thin -„j.'.catn,- that in the case of qY >0 the periodic	 129
oscillatory	 -ion of Lt;e body of the apparatus is stable. If	 +
qy < 0 then th a motion is unstable.

Let us n(^:.e that by "stability"and "instability” is understood

here the usual stability and Instability according to Lyapunov of the

periodic so ation of y(t) of equation (5.1) relative to the perturbation

of 6Yof 
AYj 

of the initial dut y Yo , Yo . In terms of the initial

dynamic task this means that the question lies in the conditional

invariability of the assignee forward motion of the point of support

of the le7s and the legs then?°.lves. The result of this invariability

of the E jsigno-: forward m%t'; n (and motion of the legs) is the

immobilization of the d yrntjic parameters which enter into equation

(5.1). Soy " ar	 e:,,>>	 the parameters considered invariable are

V -- the velocity of the forward motion of tt,e point of support of

the legs of the apparatus,H -- the height of the point of support

of the legs above the surface and so forth.
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Establishment of the task of motion stability on the whole

(relative to the entire series of perturbations) leads to the task

of control -- the task of full walking stabilization of the apparatus.

rn the present work the task of full stabilization is not examined.

The described effect of stability does not have a place in the

analogo*jF situation with the motion of the apparatus in nonresisting

surroundings [1]. The noted feature of apparatus motion in a liquid

In explained by the simultaneous action on the body of the buoying

force and the forces of hydrodynamic resistance (in the absence of

a liquid, these forces are not present).

Because for the examined case of body position of the apparatus,

close to the upper vertical, we have Jn > 0, then the conditon

Q 
plA	 A so -PAe	 Oj	 J.

(5.5)
indicates that the reducing momentum of the buoying force of the body aO

relative to the point of support of the legs is greater than the

momentum of its force of gravity. This condition provides the stabi-

lity (in the sense indicated above) of the periodic motion of the

body with the upper -- relative to the point of support of the legs

-- position of the center of masses of the apparatus. The action on

the body of the hydrodynamic forces of resistance, which are dissipative,

exceed the stability at the symptotic.

If the momentums of the force- ' .1ch act on the legs are

considerably leas in comparirui: with the momentums of the forces which

act on the body of the apparatus, then it is then possible to set

m1i W = 0 and for y(t) the following approximate value is received

ACT

which in an explicit manner is expressed through the elementary

functions. In this case, as analysis of the formulas for y(t) show,

24
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In order for the procedure of linearization 	 to be valid, it is

necessary to require that

d,) « t ,	 I a, n « e .

(A A )hc,_rp, .N1 Yom+
orl. 	 -	 ke 1	 (5.6)10A - 104 PC

In an analogous manner, in a linear approximati on it is possible

to examine the motion in a case when the body of the apparatus is

close to the lower vertical position, i.e. receive and examine the

solution of the equation for y(1.4) in the area Y n n , Y - 0,

considering AY - Y - n , AY and 1; with small values. In this case, the

equation and formulas describing the chan geof AY with time, are

received from the equations and formulas for Y when Y Z 0 (forrula7

(5.1)-(5.4), if set in them

• GCS . * • n' M.O,V H, QJ • . ^P /gyp ' P p^^ •rn

The conditions for the applicability of the linear theory in 	 /31

the examined case have that form (5.6), only Yo must be substituted

for Ay - Y o- n. The qualitative derivation about the character of

body motion relative to the point of support of the legs in the area

Y - n , Y - 0 remains the same as in the case of Y - 0 9 Y - 0. Only

the conditions of the acimptotic stability of the oscillations of angle

Y change. In this case, it turns out that the oscillations will be

asymptotically stable if

('08A- AfpeW-7,.-#JO^N^ o	 (5.7)

and unstable if

008 Po- 4pe )1(.7,, - Mp..p h) -- D	
(5-8)

Here it is relevant to note that according to the base equation

'5
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of motion (1.1), the momentum of the forces of control act on the

apparatus, which --through the support reaction -- depends on the

angular acceleration of the apparatus. Thus the angular acceleration

enters into the equation of motion not only through the change of

kinetic momentum of the apparatus, but also directly -- through the

Controls. In the examined planar task this is equivalent to the

introduction into the examination of any effective "introduced"

momentum of inertia -- of the coefficient entering into the equation

of motion by a multiple factor with the angular acceleration. The

effective momentum of inertia, generally speaking, depends on the

angular position of the apparatus, that is, it is not constant. It

can even change sign. In the examined case of small oscillations

the effective momentum of inertia J^ is a constant value. But the 	 ^-

sign of this value -- dependent on the value of the parameters -- may

be positive or negative, which in turn, acts on the stability of the

body motion of the apparatus in the sense earlier indicated according

to the condition introduced above. And namely, in the case of oscil-

lations of the body near the upper vertical position, the value of

Jn is positive: Jn = J n + MpnpH > 0. In this case, as the condition /32

of stability was indicated (5.5) reduces to the condition of positive-

ness of the numerator in (5.5)•

With oscillation of the body near the lower vertical position_

we have JT = J11 + Mp npH, so that J* > 0 with Jn > Mp npH and J < 0

with Jn < MP np H.  The condition of stability for such a case has the

form of (5.7) and is fulfulled if the numerator and denominator in

(5.7) have different signs.

It is necessary to underline that the conditional stability

defined above of the periodic oscillations of the body of the apparatus,

a ,3 also all motion of the body, implies calculation of the controlling

momentum in the hip ,joint of the apparatus. The great number of

possible controlling momentums answer the assigned motion, being

calculated by the formulas of (2.2) and are distinguished one from

the other only through the various motions y(t) of the body.
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(5.10)

According to (1.1) and (2.2) with the assigned motion of the legs of

the apparatus, the controlling momentum u (t, Y,Y,Y) may be varied
only on account of the variation of AY, AY, DY of the oscillation of

the body which is also calculated with examination of the stability

of the periodic oscillation y(t) of the body of the apparatus. The

corresponding variation of control is defined by the formula

d U^, n1= d Q,,,o d ) _ ± M̂ np Nad

where the sign "plus" answers the variation near the value Y = 0,

the sign "minus" -- the variation near Y = Tr.

!

	

	 In concluding .t h is paragraph let us examine one significantly

nonlinear effect, important for the understanding of the mechanism

of underwater walking. The periodic solution of equation (1.4) could

be sought in the form of a Foure series, preliminarily having expanded

to series the periodic coefficients of this equation. Realization of

the procedure is hardly efficient in view of the great amount of

computation; but the main, constant member of the periodic solution

which gives a median position of the body, with a good approximation

received from equation (1.4) by the establishment of Y = Yo= const 	 /33

and with the retention of only the main, constant,members in the

expansion of the coefficients leads to the formula

Stn = (P^ -Pa)(ha-	 <M,^>
PA^PC - P /Qo

(5.9)

Here < M E > is the median value of the summated momentum of the forces

of hydrodynamic resistance.

The condition Isiny o <1, which is

presents a necessary condition of the existence of the sought

periodic, compensating motion of the body, which is the condition of

the occurrence of the walking being examined. In the absence of hydro-

}	 dynamic resistance < M ^> = 0 and P R	0, and the condition (5.10) gives
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(5.11)

(here it is accepted 	 Oc%O ?. The inequalities of (5.11) define
A.

the series of possible configurations of the walking of the apparatus;

these configurations with the assigned height H of the point of support

above the surface and the assigned length h of the step, are clearly

defined by the support section h2.

The condition (5.10) may be recorded so:

Il^^•P,i,•ex. >pL I ElP * ^

P,=PA -Pa -D.	 (5.12)

As it is possible to understand from the formulas written out earlier

for the momentum of the forces of resistance, we have < M E > >0;

accepting for the values p c ..po , we receive From (5.12)

-^Oc +2h-tom
Pop 

h,a E^ocf'2h- Pip, < ĉ^ .2h.

(5.13)

This means `hat the diapason of possible values of the support section

h 2 in underwater walking displaces to the side lesser values in com-

parison with the diapcson in terrestrial walking. From Fig. 3 it is

possible to understand that this corresponas, in turn, to those walking

confi gurations in which the point of support of the le gs is shifted

farther forward in motion, so that the body would be "placing its crust nn

the water;' moving somewhat forward relative to the legs. 	 This fact

is accounted for in numerical calculations where value h 2 = 0 is

accepted. With X1 2 = 0 the point of support of the legs at the moment

of change of the support leg is projected precisely on the point of

support. Pres entation of the result of calculation is given in the

following paragraph.
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6. Results of Calculations

Let us e.escribe several results of calculations. The motion of

F	 a walking apparatus in water was examined. For the base variation,

the variant with the following values of parameters was chosen:

Radius of the sphere of the apparatus	 RCO = 0.9 m

Distance from the point of support to the

center of the sphere	 Po = 0.6 m

Distance from the point of support to the

center of masses of the sphere	 pc = 0.3 m

Weight of the apparatus	 PA = 3180 kg

Buoying force	 P  = 3130 kg

Effective weight of the apparatus	 PA- PB = 50 kg

Velocity of the point of support of the legs 	 VT1 = 0.5 m/sec

!	 Height of the point of support above the

supporting surface	 H	 1.5 m

M..	
Length of step	 h = 1 m

Length of time of step	 T = h/V1 = 2 sec

Density of water 	 p = 104 kg sec t /m4

i

	 In addition, in the base variant, the configuration of motion is

defi.ned by the fact that the point of support of the legs at the 	 /35

moment of change projects to the point of support (h l = h, h 2 = 0).

In Fig. 7 results are shown of calculation of the base variant.

In this figure behavior with time of angle y is shown -- the digression

of the axis of the apparatus from the vertical, the components Ry,

Rz of the reaction of support, the controls u^ in the thighs and

shanks of the supporting and moving legs. Hereafter these functions

as a set will be called the "dynamic characteristics" of the apparatus.

I	 Behavior of the apparatus which follows after the results shown in

E	 Fig. 7, seemed to little resemble the behavior of an analogous
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apparatus in the absence of resisting surroundings.

Comparison of the given dynamic characteristics with the dynamic

characteristics of [1] shows a qualitative and quantitative difference--

in the behavior of the horizontal component R  of the reaction of

support. For a terrestrial apparatus the function R y (t) is almost

linear and changes sign in the middle of the step. For an under-

water device this function is significantly not monotonic and in

almost all parts of motion is positive. The maximum value of it — 30 kg

with an effective weight of 50 kg (by the effective weight of the
apparatus is understood the difference between its weight and the

buoying force of the body). This is a factor of 10 greater than for

an equivalent terrestrial apparatus. Such behavior of the horizontal

component of them support reaction is explained by the fact that it

compensates the resistance of

the environment. The vertical

component of reaction is close

to a constant value equal to the

effective weight (50 kg). The
controlling momentums in the

joints of the support leg are

significantly nonmonotonic, in
contrast to the terrestrial case.

Controls in the thigh and shank

of the support leg attain a max-

imum (by the module) -40 kg m.

Controls in the moving leg are

much less (of an order of 5 kg m);
they are directed only on the 	 i;7

passage of water resistance.
w

Controls in the ,joints are com-

Figure 7. Dynamic characteristics 	 parable in value w i t h

of the apparatus in its motion on	 the control in a terrestrial
one step. PA = 3180 kg, P  = 3130 kg, apparatus. Finally, the amplitude
Vn = 0.5 m/sec, Rc , = 0.9 m,	 of oscillations of the body is
p = 0.6 m,	 p c = 0.3 m.	 not great (- 3°).

0
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The noted difference in the dynamics of an underwater and terres-

trial apparatus does not always take place. The conditions in which

the dynamic characteristics of the underwater apparatus bear a signif-

icantly oscillatory nature, and also the mechanisms of these oscillations

will be described below.

As calculations show, the decrease of the distance p c between

the point of support and the center of masses leads to an increase of

the frequency of oscillations of the dynamic characteristics: in that

temporary section appear a great quantity of minimums and maximums

of functions. This tendency of increase of the frequency of oscill-

ations with a decrease of p c is seen in the picture of Fig. 8. In

this figure, results are shown of calculation for a very small value

p 1 , = 10 -5m (al] remaining parameters are as in the base variant). It

is possible to explain the noted effect theoretically also (in a

linear approximation). From the formulas for the frequency in the

natural oscillationo of the body wy in (5.2) we find:

4Jr _ (CO - Cipc 
Ms .

where C o , C I are positive, independent of p c , constants. From here

it follows that with a decrease of p c the frequency of natural oscilla-

tions of the body of the apparatus increases,and this means that the

frequency of oscillations of the dynamic characteristics caused by it

also increase.

In Fig. 9 the results are shown of calculation of a variant,

the initial parameters of which are distinguished from the parameters

of the base variant only by the velocity of motion: Vn = 0.2 m/sec.

The change of velocity of motion acts little on the frequency of

natural oscillations, which is evident from comparison of Fig. 9 with

Fig. 7: for one and the same interval an identical number of extremes

of functions take place. Increase of the number of oscillations in

a period of the length of time of a step is explained by the increase

of this very period.	 /40
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Figure 8. The dynamic characteristics
of the apparatus in its motion on one
step. PA = 3180 kg, P  = 3130 kg,

V R = 0.5 m/sec, R CO = 0.9 m, po = 0.6 m,

PC = 0.0 4 1 M.

Or

C^

The amplitude of

oscillations of the body some-

what increases, but remains

small: the initial value y o =

-00 .6,	 and the amplitude

of oscillations near this

value have an order - 40.

With an increase of the

weight of the apparatus, the

maximum values of the forces

of reaction and the amplitude

of oscillations of the body

ari°z, which Fig. 10 illus-

trates (this supports also

the qualitative analysis of

the motion of the apparatus

carried out in the boundaries

of linear theory). In this

figure the initial parameters

Figure 9. Dynamic characteristics of the ^ pparatus is Its motion on one leg.

P A = 3180 kg, P  = 3130 kg, V
U 

= 0.2 m/sec , R^, fi = 0.9  m, pp ,) = 0.6m, pc = 0 . 3 m.
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Figure 10. Dynamic characteristics
of the apparatus in its motion in
one step. P A = 3330 kg, P  =3130

kg, V 11 = 0.5 m/sec, Rco = 0.9 m,

Po = 0.6 m, p c = 0.3 m.

are distinguished from the parameters of the base variant only by

the weight of the apparatus P A = 3330 kg, such that there is a

difference of weight and buoying force P A-PB w 200 kg. The maximum

value of the horizontal component of reaction here becomes ~ 100 kg,

the maximum amplitudes of oscillations of the body - 200.

The oscillatory nature of the dynamic characteristics is induced

by the fact that in the examined case

and the summated momentum of the force of gravity and Archimedean

force tends to put the body of the apparatus in the position y= 0.

Oscillation of all the charcteristics is a reflection of the natural

oscillations of the body near the position y = 0.

!;I

It is possible to try

to attain a planar, almost

nonoscillatory change of

reactions and controls in time

T of the length of one step,

having selected this length

sufficiently small in comparison

with the period Tc of the

natural oscillations of the

system. So, for example,

having imposed the condition

Tc y T	 (6.2)
it is possible to expect that

the dynamic characteristics in

time T will not be able to

complete a great number of

oscillations and will not have

more than one or two extremes.
i
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In terms of the parameters

of control of small oscillations

(5.1) the condition (6.2)	 /4

is reccrded in the following

form:
(6.3)

ff /^,2hcwp,^^O,•HJ/^►J^ ^l

The characteristics of

motion of the apparatus with

a velocity V H = 0.97 m/sec,

which corresponds to the sign

of the equality in (6.3) (with

values of the remaining para-

meters of the base variant) is

shown in Fig. 11. It is obvious

that the dynamic characteristics

are, in this case, actually

weakly oscillating.

The variants examined
Figure 11. Dynamic characteristics 	 above answer the case of (6.1).
of the apparatus in its motion in
step. PA = 3180 kg, P  = 3130 ;cg,	 If the parameters are selected

Vn = 0.97 m/sec, R CS = 0.9 m,	 in such a manner that (6.1) is

Po = 0.6 m, p c = 0.3 m.	 not fulfilled, then the picture

of.change of the function

characteristics will be such as in Fig. 12.	 ;p o = 0.6 m, p c = 0.5995 m)•

Here, as in the base variant, at the moment of change of the step,

the point of support projects on the support point. It is obvious

that the characteristics change very smoothly in contrast to the case

of fulfilling the conditions of (6.1). Let us note, however, in the

examined case, the solution found is unstable, as in the tasks of

terestrial walking. (Instability may have a positive consequence for

the controllability of the apparatus.)

As has been shown earlier, at least two periodic modes of

operation take place: in the area y = 0 and in the area y - n . The

latter mode for those values of parameters, which are also in Fig.12
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Figure 12. Dynamic characteristics
of the apparatus in its motion on
one step. PA = 3180 kg, PB = 3130

kg, V 11 = 0.5 m/sec, Rco = 0.9 m,
p o = 0.6m, pm 0.5995 m.

Figure 13. Dynamic characteristics
of the apparatus in its motion
on one sten. P A  1180 kg,

P  = 3130 kg, V II = 0.5 m/sec.
Rc^ = 0.9 m, Po	 0.6 m,

PC = 0.5995 m (solution in the

area Y=n,Y= 0)

are shown in Fig. 13. Let us suggest that stability in the area of

y = 180 0 depends on the sign of the value (P B Po-PA pc )/(J
]T -M

pDp11), and

stability in the area y - 0 only on the sign of the value PBPo-PApc'

Therefore, instability in the area of y = 0 does not certainly answer

the stability in the area y- 180 1 . Both modes may appear unstable

(such as takes place in the cases shown in Fig. 12, 13).

In Fig. 14 the case of a stable mode is shown in the area Y = 1800.

The parameters are taken from the base variant, which give a stable 	 /47

motion in the area Y = 0. Stability is kept also in the area Y = 1800

owing to the fact that J* = J^- MP
11p

H< 0, as this was explained in the

W
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preceding paragraph. Very strong

oscillations of all character-

istics are noted -- the

consequences of a small (by the

module effective, "introduced")
^n1

U4	 momentum of inertia J T1 ).

R	
It is useful to recall that

z^M	 stability (instability) here is

understood in the sense in-

  dicated above, in Section 5,
CRY time,sec	 -

as stability of the angular

motion of the body with in-

variability of the forward

of- Y, !w	 motion and motion of the legs.

2

In conclusion it is neces-

sary to note that the disregard

Figure 14. Dynamic characteristics of the combined masses qualita-
of the apparatus in its motion on

tively changes nothing (all rules
one step.	 P A = 3180 kg, PB s 3130 kg,

remain in force).	 Only quantitn-
Vn = 0.5m/sec,	 Rc , = 0.9m, Pon 0.6	 m,

tive relations are able to
PC	 0.3 m (solution in the area change.	 What has been said
Y s n ,	 Y	 0) directly follows from the

equation of motion of the

apparatus.	 This is obvious from comparison of Fig.	 7 and 15, where the

results of calculations are shown of one and the same variant with

regard (Fig.	 7) and without regard	 (Fig. 15) of combined masses.

Conclusion

The main quantitative results of the calculations done are

given in two consecutive tables. The maximum values, rounded off,

of the values of reaction and controls are combined in them, and also
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Figure 15. Dynamic characteristics
of the apparatus in its motion on

one foot. PA * 3180 kg, PB BE 3130
kg, Vn a 0.5 m/sec, R0 a 0.9 m,

po a 0.6 m, p c - 0.3 m. (Solution

without calculation of combined

masses)

the median values and amplitude

of oscillation of the angle of

inclination of the body of the

apparatus. Shown alic is the

stable or unstable angular

motion of the body in that

limited sense which was ex-

amined in the work (with an

invariable forward motion).

The last graph of the table

contains the conditional number

"n" characterizing the smoothness

of the dynamics of the apparatus:

this is the "number of peaks"

(maximums and minimums) in the

controls and the horizontal

component in the time of the

length of one step.

Table 1 contains the in-

dicated values for the apparatus

TABLE 1

VM'SQL qc O:M Z CTI IRl1,A,ar . ka I QAt Imar . kS Iu1^,a^..kRm a'sv^', deg	 7

0.2 Yes 50 25 ,0 00+40	 (	 s

0.5 Yes 50 25. 30 40 00—+30

I
^

I	 2	 4

no 50 25 35 00!e I	 o

yes 55 90 120 I8&4ZO h

no 60 40 .10 I550:::o 0

0.97 Yes 50 60 50 0013"	 I*2
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with an effective weight Pe n 50 kg. with various values of velocity /50

Df the apparatus. In Table 2 with a fixed value of velocity ( Vn n 0.5

n/sec) the effective weight of the apparatus is varied.

TABLE 2

Tom= 2

Pt V•0 y^ o	
ili R11ma, kg hf4, 1.e^r kR lul~e, l4tw I ^'r ad'	 I	 /:

so .".A	 ye p 50 30
i

40	 0°- 3 1
II

f	 2

200 .;o	 no 220 I00 250 00220°

It seems natural to consider such motion "good", which, with

the other equal conditions provides a) a minimum of maximum values

^ , f the dynamic characteristics and b) a smoothness of change with

time of these dynamic characteristics. Actually fulfillment of con-

dition a) is advantageous energetically, and fulfillment of condition

b) represents a simplicity of control by the apparatus in a nominal

mode of operation. In aggregate fulfillment of conditions a) and b)

make it possible to call it "good controllability" of the apparatus.

From the given tables it is obvious that the motions with a

moderate speedd meet these conditions, with an upper position of the

center of masses relative to the point of support of the legs and

moreover unstable in the sense introduced above. Stability mars the

power engineering, particularly with a lower (Y -180 0 ) position of

the center of masses. In addition stability leads to a strong

oscillation of the dynamic characteristics, whereas the unstable modes

give smooth, monotonic functions.

Instability of the angular motion in the sense examined here

does not present any danger. It is known that adequate changes of

the law of control are able to stabilize similar instabilities . Stabili-

zation is achieved for example, by a small systematic change of the

f
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i

length and length of time of the step (73.

From the second table it is also obvious that an increase of

apparatus weight, naturally, leads to a corresponding increase of

maximum values of the dynamic characteristics.

The conducted research of a model task of the dynamics of 	 /57
underwater two-legged Kalking allows this following conclusions to be

made.

1. Modes of operation of motion exist which provide its

conformability with periodic compensating oscillations of the body

of the apparatus.

2. At least two classes of periodic oscillations of the body

exist: with an upper and lower position of the center of masses of

the body relative to the point of support of the legs.

3. The conditional stability of the angular motion of the body

is understood in invariable forward motion of the point of support

of the legs. If the maximum momentum of the Archimedean buoying force

is greater than the maximum force of gravity, then the reducing momen-

tum is positive and the "upper" mode of motion in the indicated sense

is asymptotically stable. In an opp)site case -- unstable.

4. Stability or instability of the "lower" mode it defined not

a

	

	 only by the sign of the reducing momentum, but also by the sign of the

introduced momentum of inertia. The asymptotic stability is achieved

when these values have different signs.

5. The oscillatory nature of change of the dynamic characteristics

of walking is accompanied by the stable mode of motion. These
oscillations take place with the frequency of the natural oscillations

of the apparatus. A smooth (often monotonic) nature of change of the

dynamic characteristics is accompanied by an unstable mode of motion.
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6. With the change of legs the values of the support reaction

and of controls undergo a disruption which is a consequence of single-

support movement.

7. The vertical component of the support reaction at the point

of support is little distinguished from the difference between the

force of the weight and the buoying force of the body. The horizontal

component of the support reaction has this order: it is less than

the vertical component only by one and one half tO two times. Almost

henceforth the hori-.o',tal component of reaction is positive, there 	 /52

being a strong qualirati ,_. and quantitative difference in the behavior

of the horizontal component of the underwater and equivalent terres-

trial apparatus. This is explained by the fact that in underwater

walking the horizontal component of reaction must compensate for the

resistance of the enviornment.

8. The controlling momentums in the joints of the legs in order

of value are such as the controlling momentums for an equivalent

terrestrial apparatus. In the support leg the momentums in the hip

joint are approximately one factor of that of the momentums in the

shank. The momentums in the moving leg are small in comparison with

the momentums in the support leg. In addition, the momentum in the

hip ,joint on one leg, as a rule, changes sign while the momentum

in the knee ,joint iri basis of sign does not change sign and is positive.

F.,
9. The unstable modes require a lesser maximum value of control-

ling momentums in comparison with stable.

10. The unstable mode with an upper position of the center of

r,^.

	

	 masses of the body by the minimum of maximum values of the dynamic

characteristics and by the smoothness of their behavior is most

preferable. The worst in this sense is the stable mode with a lower

position of the center of masses of the body.
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Appendix: Generalized Method of Cords 	 /53

In the present work, for the solution of the boundary task

(1.4)-(1.6), the numerical, iterative, generalized method of cords

was used. The basic idea of this method is included in the follow-

ing. Let it be necessary for us to find the solution of a system

of transcendental equations
fix.) = 0

(P1.)

where f (x) = f l (x),...,fn(x) is the vector-function of the vector

argument x =(xl,...,xn) of the dimension n (here and henceforth

by the rime is meant the operation of transposition). Let us assume

that we know several approximation x (n) of the solution of the system

(P1). In the population x (n) let us approximate the nonlinear state-

ment f(x) by the linear

f (.Z) z A(.,r-.z
ln1) F B

C

	

	 (P2)

Here A is (nxn) -- the matrix, and B is n -- the vector. Let us find

the unknown matrix A and the unknown vector B from the following

conditions.

Let us assign in the population x (n) the point x (i) (i = 0,1,...,n)and

compute the value f(x (i) ) (i = 0,1,...,n-1). Then let us re q uire that

at the points x (i) (i = 0,1,...,n) the values of the nonlinear and

linear statements coincided

	

f(x"')-A(x(i)
.z 	,	 j:p,/,...,n.

This is equivalent to the matrix equations

	

df . AeX .	 B= f(ar"")
(P3)

where AF and Ax are (nxn) -- the matrixes of the form

d l` (0)	 ^!!)	 { (/?- f)

t	 J^	 J!	 ,4

fn ^"	 a

i
3

ul
x



(s)	 M	 (q-4
axI AXO . . , AS,

AX	 da Xi Azi 	 4 Xj

	

dx„ 6x,	 4x"
eis	 emp	 W	 (4)

Let us assume that the pints x (i) are selected such that

det Ax # 0.

Then from (P3) we find

A = A F(AX)-1

which together with (P2) and (P3) gives

f(x) , AF(dX) -1 (x -x (n) ) + f(x(n))

The following approximation x (n+l) is received in the usual manner

by means of solution of the system of linear equations

eF(d+YJ-/(^rn•rl 
.^(n1Jff(.,r `^^J =O

Supposing that

det AF # 0

we find

Iiaving received x (n+l) , let us compute f(x (n+l) ). Then among

the points x (0) x (1) , ... ,x (n) let us eliminate the most remote from

x (n+l) points. The distance between points is considered in several

assigned metrics. In the given work the distance p(x(i),x(K)) between

points x (i) and x (K) were computed by the formula

	

4) (K)	 ri,	 fry

where Pi are the assigned nonnegative weight coefficients. The number

of the eliminated point i* is defined by the condition

(i,) roHA
^•r	 .Z	 a I770X (.Z	 .r

Oa^ln

The following approximation of x (n+2) is calculated by the same formulas

that were used for x (n+l) , but only in these formula3 it is necessary

to substitute x (i * ) for x (n) (concurrently f(x (i * ) ) for f(x (n) ), if

i * f n, x (n) for x (n+l) (respectively f(x (n) ) for f(x n+l) ). Having	 /55

obtained x(n+2) in an analogous manner let us calculate x (n+3) , then

x(n+4) and so forth. The iterative process ends if at the s iteration
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the conditions are fulfulled

(OW
Ix

where E i are the assigned positive numbers which characterize the

precision with which it is necessary to know the solution.

The weight coefficients P  are selected from the considerations

of dimensions. In particular it is possible to set

P.

if xi is dissimilar, or

if xi is similar.

It is possible to show that the generalized method of cords

converges if the zero approximation (points x (0) , x (1) ,..., x(n)

are sufficiently close to the solution. Here the speed of convergence

of the method in proportion to the approximation to the solution

strives to the speed of convergence of the method of Newton. Practical

use of the generalized method of cords showed that the general volume

of computation which must be done in order to receive a solution

with the assigned precision is less than with the use of the method of

Newton, despite the fact that the number of iterations which must be

done is larger. The generalized method of cords by speed of convergence

being no worse than the method of Newton, has one significant advantage:

with its use it is not necessary to compute the matrix of partial

products-- n
a^,^ are I
ax axe lid• ►

which for many tasks has a considerable value. In addition, in contrast

to the method of Newton, when for each iteration it is necessary to

convert the matrix of n factor 8f , the iteration process in the
OX

generalized method of cords can be so limited, that on the first

iteration the matrix will be converted by an n factor, and in all the

following -- the matrixes only of the second order, which is very 	 i5E

a
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important if n is important. The latter is ach4e;ved in the following

manner. Let us designate through AF (1) the matrix AF which is

computed in the first iteration by the points x(C), x h )J..., 
x(n-1)

see formula (P4). In the first iteration in the process of obtaining.

the first approximation x(n+l) it is necessary for us to convert the

matrix of n factor AF (1) . According to the generalized method of

cords, after the first approximation of x (n+l) is obtained; one of

the points x (0) , x (1) ,..., x (n-1) is eliminated. Let the eliminated

point prove to be the point with the number i. * Then in the following

iteration it will be necessary for us to convert the matrix

1F.! s<^reifO"d ^!^)^peH1	 rn1^ln.i)..	 rn-I) 1W)

where
^w,^ f(x rw,) ^ f^^rw^`^	 (off)

^, 	 (1 f PWO)

is the j column of the matrix AF (2) . The matrix AF (2) may be recorded

in the form

Here	 Brt, =^ f ry, f ry, f ry, fr^•,,^

400  ... O/O	 OI	 /! 	 /i

	 (2)•For the conversion of matrix AF  we use the formula

(A."UC)^ = A - - A B(D CA B) !CA r
.	 (P5)

This formula takes place for any matrix A, B, C, D for which all

operations are fulfilled, which are figured in (P5) (it is easy to

be assured of the accuracy of (P5) by direct checking). Supposing

in (P5)

we obtain

	

a^'!'),-,aFrr)^^aFr►^-rgr.')^E,t^cr^af.n)'Bi^^^	 -QF(f)'r.

From this formula it is obvious that conversion of the matrix

AF (2) is reduced to conversion of the matrix of the second order
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E2 + c (i) AF (l)-1 B (i) , in as much as the matrix AF (l)-l has already

been computed in the preceding iteration. In an analogous manner in /57

each final iteration, using the results of the preceding iteration,

the conversion of matrix AF will reduce to conversion of the matrix

of the second order.

In the particular case when i= n, that is when point x (n) is
eliminated, conversion of the matrix AF (2) may be reduced to division

by the number. Actually in this case

df ^j: dF^iBC

from this it follows

^Hrf e/^''	 f
e	 Redpf"ms-. ^ -

Thus when the point which answers the approximation obtained in the

preceding iteration does not take part in the construction of the

given approximation conversion of the matrix AF reduces to multipli-

cation of the knowns of the matrix and division by the number.

r
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