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ABSTRACT

Analysis techniques are developed for the rmultivariable root
locus and the multivariable optimal root locus. The generalized
eigenvalue problem is used to compute angles and sensitivities for
both types of loci. and an algorithm is presented that determines
the asymptotic properties of the optimal root locus.
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I. Introduction

The classical root locus has proven to be a valuable analysis and
design tool for single input single cutput linear control systexms.
Research is currently underway to extend these methods to multi-input
multi-output linear control systems and linear optimal control systems.
In this paper we present analysis techniques for both of these multi-
variable root loci. We show how to compute angles and sensitivities for
both types of loci, and how to determine the asymptotic behavior (as
control weights get small) of the optimal root locus.

Previous work on angles and sensitivities is contained in {1,2). The
former uses time domain techniques (the eigenvalue problem) and the
iatter uses frequency dorain techniques. We extend the time decmain
techniques through the use of generalized eigenvalue probiems, and
we show this approach to be significantly better for computing angles
of approach.

Perhaps the most significant development in the understanding of
multivariable root loci was the concept of multivariable transnission
zeroes [3]. These form the endpoints of all asymptotically finite
branches. Determining the behavior of the asymptotically infinite
branches, however, has proven to be a difficult problem and all of the
details are not yet known [4]. Prequency decmain interpetations of
multivariable root loci using Riemann surfaces have been given {s1,
and the behavior of the closed loop eigenvecters has also attracted

some attention.
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The root loci of linear quadratic optimal control systenms were
first described for single~input single-output systems in [6,7]. These
methods have been extended to the multi-input case in (8,9,10]. Asymptotic
properties (which include tha asymptotic behavior of eigenvectors) are
used to select quadratic welghts in [11). Optimal root loci can be
considered a special case of ordinary linear feedback loci, and it
turns out that the adymptotically infinite behavior of thig special
case is better behaved. Consequently more progress has been made in
analyzing this behavior [12,13]. We extend the available analysis
techniques for determining the asymptotically infinite behavior to
include the behavior of the eigenvectors. 1In doing so we use a new
type of subspace decomposition which simplifies the previous analysis
technique [12].

In section ITI we develop the formulas for computing angles and
sensitivities of the multivariable root locus. 1In section III these
formulas are applied to the multivariable optimal root locus. Then in
section IV we develop analysis techniques for determing the asymptotically

infinite behavior of the multivariable optimal root locus.

The Generalized Eigenvalue Problem

The generalized eigenvalue problem is to find all finite A and

their associated eigenvectors v which satisfy
Lv = AMv

L and M are real valued pxp matrices which are not necessarily full

rank. If M is invertible then premultiplication by H-l changes the
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generalizea eigenvalue problem into a stardard eigenvalue problem for
vhich there are exactly p solutions. I general there are 0 to p finite
solutions, except for the degenarate case when all A in the camplex plane
is a solution. Reliable FORTRAN subroutines based on stable nunerical
algorithms exist in EISPACK [14] to solve the generalized eigenvalue

Problem. See [15] for the application of this software to a related

class of problems.

Notation

Matrices are denoted by capital letters, scalars and vectors by lower
case letters. AT and ya are the transpose and Hermitiar transpose,
respectively, of A andy. A™® indicates (a°1)T or, equivalent, (aT)°L,
A>0 and A > 0 indicateg that A is positive semidefinite and positive
definite. 1If A is symmetric then AV 2 is the (nonunique) decomposition
1/2A1/2'r

of A into A - Subspaces are denoted by script letters, with

the exception of the real vector space Rn. "Im A" and "ker A" are the
image and kernel of the linear map A. The dimension of U is dim U,
subspace inclusion is C, subspace intersection is N, and a linear

combination of subspaces in U + V. An open loop linear system is denoted

by (a,B,0). ‘

oo
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II. 2Angles and Sensitivities of the Root lLocus

We consider the linear time invariant cutput feedback problen

% = Ax + Bu xenr", uer )
n

y=Cx YER (2)

u-:;'—xy. (3)

The closed loop systea matrix and its eigenvalues, right eigenvectors, and

left eigenvectors are defined in the usual way by

Acl. - A-i— BKC (4)
H
Yimcz-six) = 0 i = lpoon' n . (6)

We make the assumptions that (A,B) is controllable, (C,A) is observable,
and X is invertable. Only the case where the number of inputs and ocutputs
are equal is treated, and we further assume that the closed loop eigen~
values are distinct.

As k is varied from infinity down to zero the closed loop eigenvalues
trace out a root losus. At k = ® (to be more precise let £ = 1/k and use
% = 0) the n branches of the root locus start at the open loop eigenvalues.
As k + 0, some number p < n-m of these branches approach transmission

zeros, which are defined here to be those values of s which reduce the

rank of

A - sI B
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We further rule out degenerate cases, in other words we assume that A,B,

and C do not conspire in such a way that any value of 3 in the co=plex
plane reduces the rank of the matrix. W¥e note that if all of our assumptions
are valid then this is an adequate definition of transmission zeros [3].
Also as k *+ 0, the remaining n-p branches of the root leccus approach in-
} finity. The behavior of these branches concern us in Section IV.

At any point on the root locus an angle can be defined. Consider the
closed loop eigenvalue 55 which is computed for some value cf£ k. If k

is perturbed by an amount Ak then 3, will be perturbed by A"i' As

i
) Ax + 0 then As 1/Ak approaches the constant dsi/dk (3f this limit exists).

The angle of the root locus at point 8y is then defined to be

(9]

b= a:g(dsi).

where "arg” is the argument of a complex number. The angles of the root
locus at the open loop eigenvalues are the angles of departure, and the
angles at the transmissions zerces are the angles of arrival,igure 1
illustrates these definitiors,

Next we define the sensitivity of a closed loop eigenvalue to a change

in k to be

from which we obtain
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Pig. 1. Definition of Angles
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ds
i
= - lal

So, to first order, a change Ak will move 8, a distance IAoil in the

lAsiI o~

direction arg (dai).
Bafore presenting formulas for these angles and sengitivities, we
pregent the following lema, which shows how the gencralized eigenvalue

problem can be used to compute the cloged loocp eigenstructure.

Lexna 1. The s 10 X530 and y? are solutions of the generalized eigen-
value problems

A~-s,1 B X
& i =0 i=1,..., p (7)
-1
-C -kK \:1
- -
A -3 B
[yi! nf] i -0 i=1,.00, p. (8)
-C -xxt
! ]
Proof. From (7) we see that
(A - air)xi + B\Ji = 0 (9)
V. = -']"‘KCX (10}
i 3 i°® .

Substitute (10) into (9) to get
A -s,Dx, -= BRC x, = 0
E e S i !

which is the sama as (5), the defining equation for the closed loop eigen-

values and right eigenvectors. 1In a similar way (8) can be recduced to (6)

- & - .. - P S
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and the prcof is complete. Lemma 1 is not a new result but we have been
unable to f£ind a reference for it, A precuxsor of this result (without
consideration of closed loop eigenvectors, and without mention of the
generalized eigenvalue problem) is the polynomial system matrix repre-
sentation of Rogenbrock [3].

When k>0 then p, the number of finite solutions of s, in (7) and
(8), is equal to n. When k=0 then 0 S P £ n-m (under stated assumptions).
The ability to use (7) and (8) with k=0 is the major advantage of the

generalized eigenvalue problem. The finite solutions s, when k= 0 are

i
the transmission zeroes of the system, and the x i and y’; vectcers are the

right and left zero directions [15]. From (7) and (8) it is clear that
as k + 0 the finite closed loop eigenvalnes approach the transmission
zeroes and the associated eigenvectars approach the zero directions.l

The solutions of the generali;ed eigenvalue problems contain two
vectors \’i and n? which do not appear in the solutions of the ordinary
eigenvalue problems. The importance of the v i vectors can be explained
as follows. The closed loop right eigenvector Xy is constrained to lie
in the m dimensional subspace of R" spanned by the columns of (siI-A)-ls
[17}. Exactly where x; lies in this subspace igs determined by \)i, via

X; = (siI-A)-]'BVi. This follows from the top part of (7). If the state

J'In {16}, transaission zeroces are computed by solving an eigenvalue problem

for equation (5) with k close to zers. This is the high gain feedback
method. In “15] this is shown to have the potential to be computationally
inferior to solving ecquation (7) with k = Q.
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of the closed loop gysten at time zero is x_w ax

s
for time greater than zero is x(t) = ax, e i + and the control action is
8,t 8.t

u(t) = -(a/k)!«:xie 1 . avie - This follows from the bottom part of (7).

i then the state trajectory

The n'; vectors play an analogous role in the dual system S(-AT, CT, BT).
For our purposes, however, the v i and n’; vectors are alco significant

because they can be used to coupute the angles on the root locus. This is

shown by the following Theorem:

Theorem 1. The angles of the root locus, for 0 < k<= and for distinct

31' are found by

*YgBKL‘xi
arg (dsi)aarg g O0<k<w (11)
¥i¥5 i=1,...,p
nfx-lvi
arg (ds,) = arg m 0<k<e (12)
Yi*s
i= 1,...,p

Remark. The angles of departuze are found using (11) with k = ®, the
angles of approach are found using (12) with k=0. For k > 0, p=n; and

for k = 0, in_<_ n-m,

Proof. The proof of (11) can be found in {1]. To prove (12), we first

show that
ds -nﬂx'lv,
P | (13)
dk HY *
Yi*1
Rewrite (7) as
(L-siﬂ)vi = 0 i=1,..., p (14)
where
A B I 0 xi
L= . M= ’ v, = .
-C -kK 1 o] o] i \)i
S
Let also,
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Differentiate (14) to get

X L-sMiv + (L-g,n) ;‘14‘-- 0
dk 1 i i dk *

Multiply on the lefs by u? to get

After substituting and Yrearranging the result is (13). 7The formula for

the angle ig shown from (13) to be

"g"-l"i
arg(dsi) = arg(dk) + arg(-1) + arg m .

¥i%s

Since k varies negatively from o to 0, arg (dk} = 180°; and since
arg(-1l) = 180°, the result is (12), This completes the proof.

The angles on the root locus for 0 < k< » can be found using
either (11) or (12). Except for k very close to zero, when numerical
Problems may be a factor, it isg best to use (11) because it involves
solving an n dimensional eigenvalue problem rather than an n+m dimensional
generalized eigenvalye Problem. The following identities, which are

obtained from (7) and (8) of Lemma 1, can be used to pass back and forth
from (11) to (12):

~1
Cxi ~kK Vi

" H -1
y,B=1kn K.

From these identities we see that when k= 0, (::q:i = 0 and y;‘a = 0. There-

fore, (11) cannot be used when ke g to cenpute angles of approach because
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arg (ds,) = arg (0), which is not defined.’
Equations (11) and (12) are still valid when the controllability
and cbservability assumptions are relaxod. However, angles can only
be computed for modes that are both controllable and observable because
only these modes move as a function of k,and thus have well defined angles.
The \’i and ng Vectors are also useful for the calculation of eigen-
value sensitivities. Thig is shown in the next lerma. A separate proof

of this lemma is not necessary because the proof follows from intermediate

steps in the proof of Theorem 1.

Lexma 2. The sensitivities of distinct closed loop eigenvalues to

changes in k, for 0 < k < ®, are found by

0<kzem ) (15)
i=1,...,p
0ik<= (16)
im= 1'...,p

Equations (15) and (16) give the same anwers for 0 < k < ®_ Even
though k appears only in (15), we note that both (15) and (16) are
dependent on k because the vectors y;‘, Xgo nl;. and v i are all dependent

on k.

2In {l1] a limiting arqument as k*0 is used to derive alternate equations

for the angles of approach. These resultsare more complicated than (12)
because the rank of CB must be determined. The generalized eigenvalue
problem eliminates the need for this rank deternination. Furthermore,
the equation given in [1] for the Rank (CB) = m case (3.16b {1]) is
incorrect due to an error in the derivation after (3.15 {1}]). This
error leads to the incorrect conclusion that the angles of approach

are indeperndent of the output feedktack matrix K.
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Exarple 1

To illustrate that above results, we define a system S(A,B,C) and

Plot root loci for each of 3 output feedback matrices K. The system

matrices are

- B n
™ 7 1 13 o 1
0 3 0 2 1 )
A= B=
4 7 -4 8 2 0
0 -1 o 0 ] -2 0
¢ -5 2 -2
Ca= .
8 -14 0 2

The output feedhack matrices are

Case # 1 Case #2 Case #3
10 o 1 o 1l o

K'[o 1] K'[o 1] K’[o so]
Case £2 is the same ag used in {l]. The root loci are shown in Figure
2. The angles of departure and approach were computed and are listed
in Table 1.

The system has two open loop unstable modes that are attracted to
unstable transmission zeroes, so for all values of k the system is
unstable. The system hag Lwo open loop stable modes that are attractegd
to ~» along the negative real axis. Cne of the branches first goes

to the right along the fiegative real axis and then turns around.

The turn around point is called a kranch point. The rcot locus can

e e e e e
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be thought of ag being plotted on a Riemann surface, and the branch
points are points at which the root locus moves betwcen different sgheets

of the Riemann surface {5].
TABLE 1

Angles of Departure and Approach for Example 1

Case Angles of Departure Angles of Approach
-4+ 24 1 2 1+14
1 + 1730 0° 180° + 170°
2 + 149 0 180 + 121
3 i + 135 0 180 + 114
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Case ¥

Case #2

A

h

M

/_\x
\/x

Case #3

[ — /—\x 1 ﬂ‘
\\\\\\-.______————¢/"x ) Cl\::::::::;zr_

Fiqure 2, Root Loci of a Linecar System with Output Feodback
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IITI. Angles and Sensitivities of the Optimal Root locus

Our attention now shifts from the linear output feedback problenm to

the linear optimal state fcedback problem with a quadratic cost function.

As in [7, 12], we show that the optimal root locus for thia problem is a
special case of the ordinary output foedback root locus. We show how
to compute asymptotically finite properties of the optimal root locus

and how to compute angles and gengitivities.
The lincar optimal state foedback problem is

& = Ax + Bu x @ R, uer” Qa”n

u= F(x) . {18)

The optimal control is required to be a function of the state and to

minimize the infinite time quadratic cost function
[,
g = f (xTQx + puTRu)dt ¢
0

where

e oy - .

- b A e B i b e 3 e, W—— — e —i—

As usual we assume that (A,B) is controllable and that the state weighting

matzix; factored into

Q=HH ,
where Rank (Q) = Rank (H) = r, and H e:Rrxn: produces an observable

pair (H'l‘t) .

vl -t s Vi,

n e F s e AR v A men

»
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Xalman [{18] has shown (for p>0) that the optimal control is a linear

function of the state

E u=-Fx , (19)
| where
| 3 -lp-a'la"p . ‘ (20)
’ and P is the solution of the Riccati equation

O=Q+AP+PA- %-PBR-IﬁTP . (21)

The closed loop system matrix is

Aci‘. ~ A-ET . (22)

As p is varied from infinity down to zero the closed lecop eigenvalues

trace out an optimal root locus.

To study the optimal root locus we define a linear ocutput feedback

problem with 2n states, m inputs, and m outputs.

A © B
A= B =

9 -AT 0
S=(0 B3] E=rY .

The closed loop system matrix is

~ -

1l
Z=n -~ —BKC =
. o
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The Z matrix is cometimes called the Hamiltonian matrix. 3Its 2n
eigenvaiues are known to be syrmetric about the imaginary axis, and
those eigenvalues in the left half plans (LHP) arxe the eigenvalues of
Acztsl. Wa again assume that the 2n eigenvalues of Z zre distinct.
Then the right and left eigenvectors of Z can be defined to be

H
w

1 1-1,.-.' 2n .

zi.

The right eigenvectors can be further decomposed into

z = 1 L ]
e
i
Then the xi vector 1s a right eigenvector of Acz and Ei - Pxi. There

is apparently not a similarly easy way to £ind the left eigenvector
H H
Yy of Ac£ from z; and wi.

The closed loop eigenvalues, right and left eigenvectors of 2 can
be found by solving ordinary eigenvalues problems. Alternatively,
using Lemma 1, they can be found by solving the following generalized

eigenvalue problems.

ri - siI § zi
-~ o~ _1 = o i = 1'.00'29 (23)
-cC ~-pK vy
[A - 8,1 B
[wxz n?] - ~a| =0 i=1,...,2p (24)
o

The number of finite generalized eigenvalues is 2p = 2n if p > 0 and

is 0 < 2p < 2{n-m) if p = Q.
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We can analyze the optimal root locus by using the LHP porticn
of the root locus of the Hamiltonian system. At p = © the n branches
of the optimal root locus start at the stable open loop poles (or the
mirror image about the imaginary axis of the open loop unstable poles),
The branches of the optimal root locus always stay in the LHP. As
p*0, p of these branches stay finite and approach transmission zeroces,
where 0O < P X n-m. These transmission zeroes are the finite LHP solutions
of the generalized eigenvalue problem (23) with p=0, The right zero
directions associated with the transmission zeroces are the x i portions
of the associated z vectors.3

i
These asymptotically finite properties will be grouped together

in the following vay:

0 0
S = diag (sl, cees sg)

x° - [x(l’,..., xg] .

Cach sg is a transmission zero and each xg is a right zero direction.
Because each xg is a dirsction it is only unique to within a scalar

multiple.

31! Q= 8T§~I, where H enm, then an n+m dimension generalized eigen-
value problem using S(A,B,H) can be solved to find the transmission
Zeroes. The p hranches that remain finite approach the LH? tranismission
zeroes, or the mirror image about the imaginary axis of the RHP trans-
mission zeroes. The zero directions are the vectors associated w.th
the LHP transmission zeroes. The zero directions associated with the
nmirror image of the RHP transmission zerces cannot be found using
this n+n dimension problem.
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The angles and sensitivities of the optimal root locus can be

found by applying Theorem 1 and Lemma 2 to the llamiltonian system. The
results are the following:

Theorem 2. The angles on the optimal root locus, for © spse=

and for distinct s yr &re found by

(25)
-1.7
N LA ) 6<pew
arg (ds;) = arg {—r— w, 5l 1w=1,...p
w,2 0 0
1%
H
n.RV
arg (dsi) = arg —}i!-—i— 0Osp<e (26)
iy i=1,...,p

Remark. The angles of departure are found using (25) with
p =%, and the angles of approach by using (26) with p=0. For p> 0,

P = n; and for p=0, inin—m.

Lemna 3. The sensitivities of distinet closed loop eigenvalues

to changes in p, for 0 < p < =», are found by

=17

Byl _r gm0 BB | ocece (27)

R 2 B o i i=1.p
LR

s, | . RV, osp<= | (28)

dp | Wiz i=1,...,p

i7i
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Remark. The computations for (25-28) can be reduced by using

the following identities. First, frcam (23) and (24), it can be shown
that

)
1R
)
!

170 .

Second, from {8}, let si

be the RHP mirror image about the imaginary
i -
i i " (;?. E?)H be the right eigenvector associated

oxis of 3,, and let z

with ;;. Then the left eigenvector associated with siis

H FH
i

w, = ('E'i ) .
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IV. Asymptotically Infinite Properties of the Optimal Root Locus

In this section we continue to analyze the optimal root locus.
We review what is known about the asymptotic behavior and then present
an algorithm which can be used to predict the asymptotically infinite

behavior.

Review of Known Asymptotic Behavior

As p + 0 the number of asymptotically finite branches is p, where
0 £ p £ n-m. These branches approach the LHP transmission zeroes of
the Hamiltonian system. The associated eigenvectors approach zero
directions, which are part of the zero directions of the Hamiltonian
system, as explained in section III. The remaining n-p branches group in
m Butterworth patterns and approach infinity. Let the order of the ith
pattern by n,. Each of the n, eigenvalues in this pattern lies on one

i

of ni asymptotes 4 with a distance from the origin approximately equal

to

i \i
172
o /

s

There are ni right eigenvectors associated with the pattern. These

span the same subspace of Rnspanned by

4A first order Butterworth pattern has one asymptote which coincides

with the negative real axis. A second order Butterworth pattern has
two asymptotes which have angles of +45° with the negative real axis.
In general, an ith order Butterworth pattern has i asymptotes, each
of which starts at the origin and goes through the LHP solutions s
of 52t + )i = 0.

e —— o ————— e A e S o
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B [ dﬂ ni‘l o
Vi ’ AB 1,.0.. h Bvi .

The orderingof these vectors can be conveniently summarized in terms of

a multi-index defined in the following way:

Y b (01' 11' 21,...' (n1°1]1. 02' 12' 22,-.., [n2-1]2,...,

[nm-llm) .

fach component ij of Yy describes the vector AIB'/; associated wita the n
Butterworth patterns.

One special case of the above asymptotically infinite structure
deserves special notice. When Rank (BTQB) = m then there are (n-m)
finite modes and the remaining m infinite modes all form first order
Butterworth patterns. This is called the "generic” case. For an
explanation of the wozd "generic,” see [19]. The m asynptotically
infinite eigenvalues lie on the negative real axis an approximate distance
sﬂ;"/pll2 from the origin. Their associated eigenvectors approach B\J:

and, hence, the multi-index Y is
Y- (011 02' e8P m) -

o [ ]
The asymptotically infinite eigenstructure {si, Vi i=li... m}

of a generic problem can be readily computed by solving the following

m-dimensional eigenvalue problem:
o 2 -1 7 St
((si) I ~-R BQB]vino i=1l,00., M.
The resulting solutions will be grouped together in the following way:
(-] R [~} .-}
S = dxaq(sl,..., sn)

© o o
N = [\)l,..., \‘m]
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Each of the v: vectors is a direction and is therefore only unique to
within a scalar multiple,

In contrast to the generic problem, the nongeneric case does not
yield to a similarly simple calculation of its infinite asymptotic
eigenstructure. For this case, it is necessary to evaluate vectors

(]
vi' scalars s:, and also the Butterworth dimensions ni, i=1, ..., n.

An algorithm for this purpose is provided below.

An Ajgorithm for the Non-Generic Case

©
Under our earlier assumptions, the vi vectors form a basis for

R The algorithm presented here deccmposesn-'(’n into these basis vectors.
This is done in two steps. The first is to compute basis vectors for a
sequence of Ui subspaces of R* (defined below). The second step is to
use a series of eigenvalue problems to further break down the Ui sub-

<
spaces into the vi basis vectors. These same eigenvalue problems compute

(-]
the si's.

Let k < n-m+l be the highest order Butterworth pattern. Define

the matrices

3, = milp i=1,..., k,

and define the subspaces of =
UO - br]

R

u, = 0N xer g
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These subspaces are shown pictorially in Figure 3. They are nested

such that

o= C...CUS U ==&,

0

and their dimensions satisfy

m o=dinll,_ -adm U, im0,k
k

im i

A basis for each of the Ui subspaces can be recursively computed.s The

recursion stops at the kth step when Uk = 0. Define

g 1.0'1'.-'0 k‘l

to be matrices whose columns form a basis for the Ui seuspaces. The

basis vectors are not unique, and without loss of generality let

Uo =3I .

Though it is not obvious at this point, we note that the number
of ith order Butterworth patterns is ni. If there are no ith order

Butterworth patterns then m, = 0 and Ul_1 = [ The dimensions of U

i° i
are mxﬁi. vwhere

£, =m

+.l.+ m
i

i+l k '

and 1i is the number of Butterworth patterns of order greater than {i.

When the Ui matrices are computed we have enough information to form

SNumerically this my be difficult to do. The decomposition requires deter-
mination of the kernal of a matrix and the intersection of subspaces., For
both of the singulezr value decomposition i3 a ¢ood tool to use [14].
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Fig. 3. The Ui Subspaces,
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Y, the multi-index which lists the orders ol the m Butterworth patterns.
In the generic case k=1, ml = m, and Ul = Q,
The next step in the algorithm is to use the Ui matrices to

-] (-] (.- (-]
ccapute N and S . We decompose N and S into
@ o0 00
N = [Nl'oo.' Nk]
L. -4 -]
S = diag (Sll eesy Sk) -

(-]
Ni is an n:xm1 matrix whose columns are the V;'s associated with ith

[
order Butterworth patterns. si is an mixmi diagonal matrix whose

diagonal elements are the sj 8 associated with ith order Butterworth

patterns. We noce that

i mi+l +.eet Ime i 0,...,~ "l
and that in general
o -]
Ile [y ImNj # 0 for i#Aj .

In words, these two equations tell us that one basis for the subspace
(-]
Ui consists of the vectors “i associated with Butterworth patterus of
-]
order greater than i, and that in general the vi's are not orthogcnal.

We define two more sets of matrices:

T —
Gi JiJi i=1,..., k
T b S
T, T W RO ) TW 46U ) =1, ko

When the U matrices are known then the '1‘i matrices can be computed in
i

a straightforward manner. The dimensions of Tl are li_lx Qi-l' The
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significance of the Ti matrices is that they can be decomposed by an

co o
eigenvalue problem to £ind the Ni and si matrices. This connection

is made clear in the following Theorem.

Theorem 3, The Jordan canonical form of Ti is
1 © -1
Ty = W W] ["n "12] i=1,..., k (29)
0 oz
Ai is a diagonal matrix with positive real eigenvalues, and
N, =U, w
=
i i-1741 (30)
o 2
(Si) = Ai . (31)

Proof: Appendix A.

Note that in the decomposition (29), wil has as many coluwns as

there are ith order Butterworth patterns, and ”iz has as many columns

as there are Butterworth patterns of greater than ith order. so the

dimensions of w’.1 and wiz' respectively, are zi_lscmi and £i_lx li.
If there are no ith order Butterworth patterns then Tl-=0 and "11 is

not present.

Note further that there are no restricticns on the multiplicity

of the s:'s (thesa are positive real numbers and not closed locp

eigenvalues). If s: o s; but they are associated with Butterworth

patterns of different orders then they are solutiong to different

eigenvalue problems (29), Consequently there ig ne ambiguity in the
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asscciated vi and vj vectors. However, if si - sj and they are associated
with Butterworth patterns of the same order then we can only say that
v: and v; form a nonunique basis for a two dimensional subspace of R
This is known from propertics of the Jordan canonical form of Ti (29)

and from (30).

Example 2
The algorithm described above is illustrated with the following

A, B, Qm ﬁTH, and R matrices:

K 1 0 1] R
-5 -4 0.1 1 o o
A= B =
0.1 0 -1 1 1 o
0 ‘0 0 5 o 1]
i i
=65 0 0 1 01 -.10
Hmw= R =
- be ]
100 10 o o] .01 L1211

The asymptotically finite propertics are found by solving a generalized
eigenvalue problem using the system S(A,B,H). The results are

- -

1

0 -
s = [10] <0 | -10

0

. 65 J

The asymptotially snfinite properties are found by the algoraithm

of Theorem 3. First we €£ind the Ui subspaces and their matrices Ui:
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Since Ui = ker J

The number of first and second order Butterworth patterns are
m, = dim Uo - dim U1 = ]
m -
" dim U1 dim Uz =1

The T, matrices and their Jordan canonical forms are

2 o 9 1 1o o3t 17!
T, =R G, = -
o 9 r ol o o) L1 o

o0 1l
N - = » 1/2 =
1 = wll [ ] Sl Al [3)
1l
Te v 10T o o
T2 (UIRUl) UTQ2U1 [100)
[ e
o o 2
Ny =0y = S; = Ay = (o)
.0
Therefore
1 1 3 0
a (.-}
N o S = Y = (01, 02, 12) .

1 ] 0 10

Each ¢ .: an of N°° represents a direction and is therefore only unique

to with:, a scalar multiple.

1! U1 - OJ « Since ker 32 = 0, U2 - Ui N ker J2 =0,
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V. Conclusions

Both the eigenvalue and generalized eigenvalue problems can be used
to compute angles and sensitivities of multivariable root loci and optimal
root loci. The generalized eigenvalue problem is superior to use for
computing the angles of approach.

The elementary matrices A, B, Q, and R can be used to determine the
asymptotic behavior of the optimal root locus and the associated eigenvectors.
A generalized eigenvalue problem can be used to comnpute S: and xg, the
asymptotically finite properties. A subspace decomposition of the control
space }fiand a series of eigenvalue problems can ke used to compute
SQ, Nm, and Y; the asymptotically infinite properties.

We are hopeful that a similar type of subspace decorposition can be
used to determine the asympotically infinite behavior of arbitrary
multivarizble root loci. The extension of the present method is diffi-

cult, however, because we do not in general have the synmetry of closed

loop eigenvalues about the imaginary axis forced by the optimal Hamiltonian

systen.,
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Appendix A - Proof of Theorm 3

The proof is by induction anduses the fact that all closed lcop

elgenvalues sj and closed loop vectors vj must satisfy

[oR + o"'(-sj)o(sjnvj u 0 j=1,..., n (A.1)

where

0 (s) = H(sI-a) lp

- a(i-r +5 A+
8

1
- :ib -E'Ji .

i=) g

Equation (A.l) is derived in [20]. It can also be derived by

manipulations of (23). an expanded version of @T(-s)¢(s) is

“1

T S & joT .
®" (~5)@(s) = Z: - -1)33. % _.]
& [sl }; 3 713

The first step in the induction proof is to show that the theorem

" is valid for NT and S:. We assume without loss of generality that

first order Butterworth patterns exist. Equaticn (A.l) can be

rewritten
pR+—li-aTQB+O lz v, =0 j=1,..., n. (A.2)
Sj Sj
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As p*0 the 352 term doninates (for the asymptotically infinite eigen-

values sj) and (A.2) can be rewritten

aj: - R-IBTQB)\); =0 J=1...,n (A.3)
2
)‘j psj . (A.4)

The eigenvalues A 3 of R-]'BTQB are real and nonnegative. (This is be-

cause the eigenvalues are the same ag those of R-]'/ ZBTQBR-Uz, which is

a matrix of the form xTx, vhich i3 known to have real and ronnegative

eigenvalues). When Aj > 0 we can use (A.4) to solve for s,. The LEP

3

solution is sj - o) jl/ 2/p1/2, which is & first order Butterworth pattern

with s; - 1;'/2. Therefore si' as given in Theorem 3 is valid. Nl is also
valid, beczuse Zrom (A.3) ve see that the v; vectors associated with
first order Butterworth patterns are eigenvectors of R-IBTQB.

(-]
The vj vectors associated with Butterworth patterns of order greater

than one form a basis for the kernal of R-IBTQB, which is Ul. Heuristically

speaking, these v: vectors are not “trapped™ by the 5-2 term of (A.2).

3
The next step in the induction proof is to assume that 3:_1 and
N 4-1 are valid and then show that S i a i are valid. 1If Si-l and N $-1

<
are valid then the v 3 vectors associated with Butterworth patterns of

[--]
order > i form a nsis for U {~1° Therefore for each of these vj vectors
.-}
there exists an wj vector such that vJ =y (4] Substitute this into

i-173°
(A.1) to get

T
{pR + & "33’“53”"1-1‘”1 = 0 i=1,..., £i-1 .
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Multiply on the left to get

T T
Ui"l!pR + 0 (-sj)‘P(sj)]Ui_le = Q0 j - 1’000' 11-1.

After some algebra this reduces to
7 i 1 .7 1
[pUy 4ROy + (-1) 21 931%% 0 * 0 (821 ) @9y =0
b

As p*0 the 8;21 term dominates and we get

i
l'i - = -
gi (AjI Ti)mj [¢] 3 1,000 ﬂi_l
’

i 21
a Aj (-1) psy R

n

(A.5)

(A.6)

The eigenvalues lj are real and nonnegative, for the same reasons as

r for the i=1 case. When Aj > 0 we can solve for s 57
P are recognized as an ith order Butterworth pattern with s; = X;/ 2.
1

J i
il

e mare wer A

21

b
they lie in Ui. This completes the proof.

L.

and tha LIP solutions

Therefore S: of Theorem 3 is valid. The eigenvectors w, of T, assocciated
with the nonzero eigenvalues lj are the columns of W,, and therecfore
N 1 3] i-lwi.l' The Vv 3 vectors associated with Butterworth patterns of

order greater than i are not “trapped" by the Sy term, and therefore
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