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CHARACTERIZATION OF ACOUSTIC DISTURBANCES
IN LINEARLY SHEARED FLOWS

S. P. Koutsoyannis

Joint Institute for Aeronautics and Acoustics
Department of Aeronautics and Astronaubkics
Stanford University, Stanford, Californis 94305
The equation describing the plane wave propagation, the stability

or the rectangular duct mode characteristius in a compressible inviscid
linearly sheared parallel, but otherwise homogenous flow, is shown to
be reducible to Whittaker's equation. The resulting solutions, which
are real, viewed as functions of two variables, depend on a parametex
and an argument the values of which have precise physical meanings de-
pending on the problem. The exact solutions in terms of Whittaker func-
tions are used to obtain a number of known results of plane wave propa-
gation and stability in linearly sheared flows as limiting cases in
which the speed of sound goes to infinity (incompressible limit) or the
shear layer thickness, or wave number, goes to zero (vortex sheet limit).
The usefulness of the exact solutions is then discussed in connection

with the problems of plane wave propagation and the stability of a finite

thickness shear layer with a linear velocity profile. With respect to the
plane wave propagation it is shown that, unlike the compressible vortex
sheet, the shear layer possesses no resonances and no Brewster angles,
whereas with respect to the stability problem it is shown that again unlike
the compressible vortex sheet, the thin shear layer is unstable to long
wavelength disturbances for all Mach numbers. These results imply that

the reflection and stability characteristics of a nonzero thickness but
thin shear layer (i.e., the long wavelength characteristics) do not go
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over smoothly into the results of the compressible vortex sheet as the
wave number approaches zero except fur a limited range of generally sub-

sonic relative flow of the two parallel streams bounding the shear layer.

l. Introduction

Although problems pertaining to plane wave propagation, stability
and rectangular mode in a compressible inviscid linearly sheared paral-
lel flow have received considerable attention, with the exception of the
work of Goldstein and Rice [1], all previous work has been concerned
with either asymptotic and/or series solutions of the governing equation
which is of course the same for all three above classes of problems.
Typical examples of earlier work are that of Kuchemann {2} and Pridmore-
Brown [3), and of later work, that of Graham and Graham [4) and Goldstein
and Rice [1]. Kuchemann (2] obtained formal series solutions of the den-
sity perturbation equation and also asymptotic solutions purportedly valid
for large Mach numbers. His series solution, although it is given in a
cumbe&some and lengthy form, is correct and agrees with our compact form
(see equations (8) and (9) below), but his asymptotic solution is in error
(see discussion following equation (17) below). Pridmore-Brown [3] solved
the pressure perturbation equation in the shcrt wavelength approximation.
His asymptotic solution which is in terms of Airy functions is limited in
that the interesting region n »+ 0 is excluded. Graham and Graham [4] ob-
tained a series solution for the density perturbation equation apparently
unaware of the earlier work of Kiuchemann. Their series solution agrees
with that of Kuchemann and with our series expressions mentioned above.
Goldstein and Rice [l] were apparently the first to obtain solutions to
the governing equation in terms of special functions. Using an unusual

2
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double trariformation (the essential part being a differential transfor-
mation with a gaussian kernel) they were able to obtain from the original
second order equation for the pressure perturbation an exact third order
equation fyrom which two independent solutions of the original second or-
der equation were easily extracted in terms of the parabolic cylinder D
functions. Unfortunately the solutions obtained by Goldstein and Rice

[1] are not in terms of single parabolic cylinder D functions, but combi-
nations of D functions of different orders and in addition the solutions
obtained were complex. It is not possible to reduce the solutions given
by Goldstein and Rice (1] to our solutions wﬁich are in terms of single
Whittaker M or W functions, which is not surprising since our solutions
are real, whereas those of Goldstein and Rice are complex. But if one
does choose either specific linear combinations of the solutions of Gold-
stein and Rice or the so-called even and odd solutions of Weber's equation
instead of the parabolic cylinder functions D used in the above work, then
it may be shown that our real solutions, in terms of single Whittaker
functions and those of Goldstein and Rice are compatible. Recently in a
study Jones [5] considered the stability of an everywhere subsonic (M < 1)
shear layer with a linear velocity profile with the result that for

0 < M <1 there is a characteristic Strouhal number below which the layer
is unstable. The problem investigated by Jones [5) is substantially dif-
ferent from the problem treated here. In the first place he considers a
source at a finite position from the layer whereas we consider plane waves
emanating from -» in the propagation problem and the usual formulation of
the eigenvalue equation for parallel flow stability (see Betchov and

Criminale [6]) without the necessity of invoking causality which Jones

3




does, Moreovey, Jones' work pertains to the open~ended region 0 < M <1

whereas ours covers the whole range M > 0 including the incompressible

limit M = 0 and the supersonic flow regime.

2. Basic Differential Equation and Its Solution

In a homogeneous inviscid compressible parallel shear flow having
a linear velocity profile in the z-direction only, i.e., U = U(z) = bz,
with b constant, it may be easily shown that, starting either from the
linearized equations of motion or directly using the appropriate linear-
ized form of the convective wave equation, the z-dependent part p(z) of

the pressure perturbation p(?) is governed by the equation:

2 2(2 . = 1
where
W
n=;1(—-m, M=M(2)=%a: 4T = K (2)

M is the local Mach number, a the (uniform) souvnd speed, and K and w ac-
quire the following meanings depending on the problem at hand:
For propagation of a plane wave of wave vector ﬁ and frequency @
impinging on the shear layer from a half-space (z < 0) of relative

rest and at an angle 0 measured from the z-axis (— g-s 0 <+ g).

K=sin® . (2a)




For the stability of a free shear layer to assumed disturbances

of the form p('x?) - p(z)em(”'cm (0 and ¢ possibly complex),

Ks%andmnac . (2b)

For sound propagation in rectangular ducts and for assumed distuy-

eia (kx~-ut)

bances of the form p(?) = p(z) (k and w real),

ak
The transformation
1
2 2
P=nw() , &=aqn (3)

with q independent of n to be suitably specified later, reduces equation

(1) into:

2 2 ’
at” a4t _spe| o, (4)

+ -
,, q2 q€ gz

Wee

If we specify q = 2T in equation (4) we obtain:

1 1)
21‘_3(1+T)
WEE+ l"E“ “—_5‘5“'_‘ W=20 (5)
5
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1
i.e., the Colomb wave equation with fractional angular momentum =,
whereas if we specify q = 4iT in equation (4) we obtain:
=
Loy
it 4 \7%

i,it -
WE& + i 3 + &2 W=0 (6)

i.e., Whittaker's equation with independent solutions the M oxr W func-
tions with parameters iT, : 3/4 and argument 43ﬁn2. It thus follows
from equation (6) and (3) that the two independent solutions £ and g of

equation (1) are:

£ -%—tmz
(g) = (4iT) n

1

2 = .3.. 7
Mi’[":pm(‘ti'rn )llio' m 4 ‘v)

where M are the Whittaker M-functions and T and n are defined by equa-
tions (2). Using the properties of the Whittaker functions it is eas-
ily shown that for T and 1 real the functions f and g are also real
with £ being even and g odd functions of 1, whereas both £ and ¢ are
even functions of T. The solutions in equation (7) were found earlier
by us (see Refererce (7)) and used in some preliminary studies on wave
propagation through a linearly sheared £low.
Series forms for f and g may be easily obtained from the well-known

series expressions of the Whittaker M-functions. The following is one

such form:

£ 2 n=290,2,4,... for £
( )" anﬂn ’ {8)

n n=0 n=1,35,... forg

where a_ is determined by the 3~term recurrence relation:

(41)2

n = nfn - 3) (an-2 - an-4) , n>3 (9

6
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2

azw-m’ a3~1 .

The above series forms were obtained by expanding in series the ex-
ponrntial part of the Whittaker M~functions and are in agreement with
the series obtained earlier by both Kichemann [2] and Graham and
Graham (4] although the expressions given by these asuthors ave un~
necassarily cumbersome. But the expressions in equation (7) for the
solutions of equation (1) enable one to obtain even better series~type
expressions for £ and g that may not only be faster converging but also
more suitable in certain applications. These may be obtained from equa-
tion (7) using the (series) expressions of the M-functions without ex-
panding in series the exponential part :nd using the fact that Mir,m(iz’
is a real function for real T, m and z. One thus after some algegra ob-

tains the following forms:

3 - 0
£ =+ 2m ‘ n
( )* n2 cos (2Tn2) Z A, (41‘!12) +
g =
| n=0 (10)
[:d
n
+ sin (2mn?) E an(4'mz) ,
n=0
where the coefficients An and B are given by:
= 2n - 1
A T - {—-—5-—- +m) A
= (11)
2n = 1
5] It (=4 m) T By
7
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withm = ¥ %-and with the upper sign for f and the lower for g, and
A,=1, B, =0,

The asymptotic expansions for £ and g (as well as those of the de-
rivatives of £ and g) may be obtained using Olver's method (8). It
should be stressed that one is interested in asymptotic expansions as
T #» @ holding uniformly in n when n rangus over unbounded regions as
well as asymptotic expansions holding for unbounded T as n *> ® or 0,
i.e., expansions describing the asymptotic behavior of £ and g as func-
tions of both T and n. The point is not one of mathematical rigour
only, but also of necessity since the cases n -+ 0 or © correspond to ia-
comprassible flow or high Mach number limits respectively and T »+ 0 or

« correspond to the long or short wavelength limits; moreover, the cases
(Tn) - finite characterize the vortex sheet and the incompressible layer
limits as we will see later. Such uniform asymptotic expansions of the
Whittaker M-functions have been derived by Skovgaard {9) following
Olver's method [8]. The results suitable to the present study are in

terms of the modified Bessel functions of the first and second kind I2m
and 1

asymptotic expansions for £ and g for T and n real we will need later are:

(i) Leading asymptotic expansion terms for n + w, t-finite:

B s
£ 2.,m 2T 1

{47) =~ e 2 [_ 2 2
mz'r(%;:m*.“)'ﬂ {cos T n(ﬂn)*'

g
(12)

+21n2+6-§-(1$2m)]} ,

with m = %'and § = arg [P (%'7 m + ir)]

8

a1’ Few of the resulting uniform leading term expressions for the
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(ii) Leading asymptotic expansion terms for T »+ o or %-» 0.

£ %- sin h cos h
( )m n( 1 (aty) - (4t

g In? = 11/ Lcos n sin h )

1
4Ty
Bo(x) cos h
Y aT sinn U

where
\
X"'}+i%['N|m'ﬁ"(|ﬂl+mg
and > (14)
B°=;_;.e.;+-n;.l-_1-2 lznl ‘3 lnP)2
| el (P -)? )

From the above expressions we may also obtain the following limit
forms for £ and g that we will also need later:

As n >, T+ 0 but Tn2 - finite we obtain from equation (12):

I
INES

(1 5 2m)” (15)

NN lcos [2Tn2 -
g

As n ~» 0+, T + © but TN - finite we obtain from equations (13) and

0 or (2)()'l depending on

(14): (Note that fim X = -n and fim B_(YX)
.nN*0 n+0 °
whether n <1 orn > 1.)

3 sinh cos h
( )m (4tn) (41n) - (41n) (16)
g cos h sin h

ha B T IR TR Rl ey e gt i S R o s R




Az T =, n >0 we obtain from equation (13):

f ; %ﬁ sin h
( )r\. n ( 21 ) (41x) (17)
9 In® = 1]/ cos h

The above asymptotic expressions differ from some corresponding

expansions obtained by Kichemann [2) and Pridmore-Brown [3). This

was expected as mentioned in the introduction since Kichemann [2] es-
sentially seeking a high Mach numbexr (ox large n) expansion neglected 1
compared to n2 in the last texm of equation (1) which is tantamount to
letting T = 0 in Whittaker's equation (6), with the result that the solu-
tions to equation (6) then are the special Whittaker functions
Moi3/4(4iT“2) which are proportional to the Bessel functions
J¢3/4"2Tn2) as was obtained by Kuichemann [2] by solving di-

rectly the approximated equation (1) as mentioned above. But this
clearly implies that the high Mach number, or large n, solution in terms
of Jia/d(-ZTnz) is only valid for t - 0, i.e., for low frequencies w.

Ir actuality the correct high Mach number asymptotic expansion to lowest:
order is given by egquation (12) for all frequencies whereas the low
frequency/high Mach number limit is given by equation (15) and is ob-
tained from equation (12) as T »+ 0, n » ® but Tna-finite. It is more~
over easily seen that equation (15) constitutes essentially the leading
term of the asymptotic expansion of the Bessel functions J$3/4(~2Tn2)
for large n. The xeason for Kuchemann's [2] incorrect expression

lies of course in the fact that it is not sufficient to have n2>>l for
neglecting 1 in the last term of equation (1) but one should compare

the term to be neglected to all the other torms of equation (1) which,

10
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after soma algebra results into the additional) necessary condition,
1T+ 0, L.0,, low frequencies or large wavelengths. The leadina term of
our asymptotic expansion for T > « diffors also from that given by
Pridmoxe-Brown [3]1. It should be pointed out that Pridmore-prown (3]
did not obtain a uniform asymptotic expansion but by applying

Langer's method [10] he obtained only a nonuniform asymptotic

(leading) term which is not valid for n - 0. Our expansions are uni-
form with respect to both 1 and n valid in the whole n-plane with the
axception of an arbitrary neighborhood arownd the points nz = 1. These
points correspond to points at which the wave normals are parallel to
the mean flow there. Por the propagation problem, these points define
the location of caustics where rays forming ray tubes converge on a
line (or a surface). For the stability problem, as pointed out by
Betchov and Criminale [G], at these points the pressure fluctuation
equation changes from elliptic to hyperbolic but the points n2 = 1 are
not esgential singular points of equation (1). The behavior of the so-
lution around these points way be easily obtained Ffollowing Skovgaard
(9] and Olver [8) who have obtained uniform asymptotic expansions

in torms of Airy functions. The leading texms given in equation (13),
(16), and (17) are, in particular, uniformly valid in the region n = 0,
which, for the propagation problem corresponds to the incompressible
case and for the stability problem to the solution in the so~called

"ecritieal layex".

3. Liniting Cases

In this section we will examine three limiting cases of our solu-
tions to equation (1) which correspond to well-known problems of plane

1l
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wave propagation in a stratified wind and to stability of vortex sheets
which exemplify the significance of the parameter T and the variable 0.
The limitine cases depending on the values of T and 1} are shown in

Table 1 below:

TABLE 1
n-+o In| » e
(a » =) IMZ'M|>0 (M + w)
W w
a+o, =0 %—*’0; M- ®and =+ 0
() but a &+ o Compressible (tn) ~finite
b b Vortex Sheet Low frequency-iHigh
Incompressible (Miles, Ribner) Mach number
Vortex Sheet Finite Shear Layer
(Kelvin-Helmholtz)
> Q] Critical Layer Finite Compressible M =+ = and g-= finite
Shear Layer
{Present Case)
a-+mo, %‘f 0 %~* ) M -+ ® and %-» ™
but (Tn)-finite Geometrical Acoustics
Incompressible finite | Limit of a Compressible
or a +w Shear Layer (Rayleigh) | Finite Shear Layer

We will discuss first the case a -+ ® which corresponds to the in-
compressible shear layer and then we will consider the limiting cases
%~* 0 and %'+ ®, i.e., the low and high frequency limits which charac-

terize the compressible vortex sheet and the geometrical acoustics of

the compressible finite layer respectively.

3.1. Stability of the Incompressible Shear Layer
For the finite shear layer, letting a -+ ® results in n =+ 0 and

T = =, for finite %7 and moreover 4Tn = %-- oz is finite. In such a

12
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case, since our asymptotic expansion is uniform as %-» 0 the solutions
of the stability equation are those given by equation (16). 1Indeed it
may be easily verified that the two independent solutions of the stabil-
ity equation for inviscid incompressible fluctuations in a linearly

sheared flow, i.e., of the equation

2 2
- = - - 18
Pon = 7 Pn (41)°p=0 (18)

are exactly those given by our asymptotic forms in equation (16).
Moreover, the uniformity of our expansions may also be exhibited

from the limiting forms of the equation for the eigenvalues. For the

geometry shown in Figure 1, it can be shown that the eigenvalue equa-

tion is:

= Q (19)

where £ and g are the two independent solutions of the pressure pertur-~
bation equation (1) and T and n have their previous meaning. (See sec-
tion following equation (2)).

Using in equation (19) the expressions for £ and g given by equa-
tion (16), we obtain, after some straight forward though lengthy alge-

bra, the following expression for the phase speed c.

13
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The above expression, for z, = 1, 2, = =1 and b = 1 yields the

1
better known special eigenvalue form (Betchov and Criminale [6]).
e ==1-61-‘-+-—1—-(1-e‘4°‘) (21)

4a2

The limiting form of the incompressible vortex sheet may be easily
obtained from the above equation (20) in the limit b < ® and 2y and

Z*Obutbzl'*u,bz

2 1
on the opposite sides of the vortex sheet; the result is

0 Uz. the two constant velocities respectively

U, + U, U, = u
c = ~l_5*=£.¢ i _l_E__Z (22)

which for U = -U = 1 reduces to the well-known result ¢ = ¥ i charac-
terizing the Kelvin-Helmholtz instability of the incompressible vortex
sheet. Actually the same result above may be directly obtained not as
a limit of equation (20) but directly from the general eigenvalue equa-
tion (19) in the limit n + 0, T + 0 which again exemplifies the uni-
formity of our asymptotics. In such a case it follows from either equa-
tion (8) or equation (16)' that £, g and their derivatives £_, g

n n
acquire the forms:

w

Note that the power series equation (8), and the asymptotic forms,
equation (16), of f and g are identical to second ordar, i.e., as

n =+ 0 the uniform asymptotic expansion equation (16) has a second oxder
contact with the power series equation (8).

14
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£ --;— (atm 2 + o(n") ' fn"'-(mzn + 0(3\3)
(23)

g v 3 (4 + X (am)® o(n7), g, v 4n)n? 4 o(n?)

Substituting the above limiting expressions in the eigenvalue equation

(19) and keeping lowest order terms by going to the limit n -+ o0, T + 0

we obtain directly the eigenvalues:

2
U, - ¢
1
(u - c) - -1 (24)

which is precisely the result in equation (22) derived previously from

equation (20),

3.2. sStability of the Compressible Vortex Sheet
(Long Wavelength Approximation)

This case i5 obtained in the limit T *+ 0 (or %'+ 0) with n finite,

The series expressions given by equation (8) are to lowest order in T:

2 4
£l - (41)2(32— + 134—) + 0(74) ’ fn n -(41')2(n + n3) + 0(14)

2 5 7 2 6
3,40 (0 _n ) 4 2 (41) ( 4 _n ) 4
gun o+ > (5 ia) ¥ °(tH ., g "3+ n <)+ ot)

n 2
(23a)
Using these values in the eigenvalue equation (19) we obtain:
L+l (25)
2 2
o

The above equation (25) may be easily reduced to a 4th order equation

for ¢ to yield the eigenvalue expression obtained by Miles [l1] and

others:

15
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1
U +u 2
£x.d 2¢£[M2+4-4/M2+1, (26)

2a 2

- U
with M = 1 m 2.

3.3. Plane Wave Propagation Through A Compressible Shear Layer
(short Wavelength Approximation)

This case is usually handled via the so-called Geometrical Acous-
tics approximation where for the pressure perturbation p(;,t), one as-

sumes a solution of the form

p(¥,t) = p_(F,t) et (WEKO)

where the amplitude po(?.t) is assumed to be a slowly varying function

{of ? end t) and by letting k be large., Finally, by exprescing all the am-
plitudes of the perturbations in series of (ik)-l one finds that to the
lowest order in (ik)'l, 0 is determined from the so-called eikonal equa-
tion whereas the amplitude p, may be determined from the energy equation

as follows (Blokhintsev ({12}):

[ve|2 = (1 - #i « vo)? (28)
and
p2
Vo >
Ve 2 ( + M) = 0 (29)
1 -4+ ve \|V8]
->
wich'lﬁ-—- —Ll.
a

In both equations above the undisturbed and local sound speeds have
been assumed to be the same and in the energy equation (29) in addition
to neglecting constant multiplicative factors the partial derivative
with respect to the time t has also been neglected compared with the di-

*
vergence term. For the case of a plane wave incident from a homogenous

*

This is justified either in the case of a stationary process, such as
for a time harmonic field, or on the basis of the original assumption
of quasistatic perturbation amplitudes,
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half-space (z < 0) at an angle ¢ with the z-axis upon a linearly sheared
homogeneous medium (z > 0) with velocity ﬁ " sz(z)z; where H is the
Heaviside function, the exact solution of the eikonal equation for the

phase function 8 is known to be (Kornhauser [13]).

xi%%[n/nz-l-ﬂ,n(n-& nz-l)l (30)

8 = gin ¢

The amplitude po(g) of the pressure perturbation is not usually
given in the standard literature but may be obtained from the reduced
energy equation (29) by observing that the guantity 1 - M. Ve i, from
the eikonal equation (28) equal to * |V| = in,

It follows then that

n

P, (®) (31)

1
(2 - 1)*
The above results in equation (30) and (31) obtained from the two separate
equations (28) and (29) of Geometrical Acoustics actually may be oktained
simultaneously from our uniform asymptotic expansion in equation (13).
Since the x-dependence of the pressure perturbation p(?) is eiKXSin¢,

we may write from equation (27) and (13) in the limit k + ® or T - o:

-
8 n f%'gim.iﬂfl_

koo po(;)

B

%k-{ik sin ¢ + zn[um (f)”

't‘—+oog
= X sin ¢ + X on [2im sin n
ik , (4Tx)
1+ cos h

L

X sin ¢ + %% ln/n2 -1 - ln(n + /nz - 1)]
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or since 4T = %~sin b = %g'sin ¢ in this case, the result in the Geo-

metrical Acoustics limit equation (30) follows. Moreover, the ampli-
tude of the pressure fluctuation n(n2 - l)-& is obtained immediately by
inspection of our asymptotic expansion, equation (13). In fact the
leading term of the asymptotic expansion in equation (13) yields the
additional information that all the terms of the formal short wavelength

expansion have the common temm n(n2 - 1)'5. a result not available from

the formal Geometrical Acoustics theory (Kornhauser [13]).

Finally it should be pointed out that the Geometrical Acoustics
limit in the example of this section has been obtained from the uniform
asymptotics of the solutions of equation (1) in the limit T + =, i.e.,
%-* © and not in the formal limit Tnz*-m, according to a criterion that
has been suggested in the literature (Felsen and Marcuvitz [14]).
Clearly the later criterion cannot be true for regions arbitrarily close
to the origin n = 0 whereas our asymptotic solution is valid througn the
point 1 = 0. This observation indicates that care must be exercised in
the application of the above mentioned (nonuniform) criterion that has
recently been applied to the solution of certain Aeroacoustics problems

in the limit of Geometrical Acoustics (Candell [15)).

4. Physical Meaning of n, T and 4Tn2

The physical meaning of n, T and 4'rn2 which characterize the solu~
tions £ and g of the pressure perturbation equation (1) follow from the
definitions in equations (2) and the meaning of K which depends on the
problem at hand. Defining by ﬁa and ﬁf the disturbance and relative
mean flow vector Mach numbers and letting 3f be the unit vector in the
direction of the parallel mean flow we may write

18
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2in 8 - M for plane wave propagation

n-%-u- -E - M | for stability

- M for rectangular duct modes

- (‘ﬁd - ',;‘) . ':f (32)

Thus n is a relative Mach number measure, i.e.,, it is the parallel to

the mean flow component of the disturbance (vector) Mach number ﬁd’

relative to the relative mean flow Mach number M.. In addition, for

12 ™

Propagation of a plane wave at incident angle - 3 < ¢° < + g-from a

homogeneous half-space (z < 0) on a parallel flow half-space (z > 0)

it is easily shown that

1
sin ¢ (33)

N=

where ¢ = ¢(;) is the (local) angle that the wave normal makes with the
z axis.

The quantity %»acquizes the meaning of a characteristic disturbance

Strouhal number, i.e.,

s = (Shear Layer Thickness) X Disturbance Frequency
Relative Mean Flow Speed

]
St
]
ole

(34)

The quantity T is a measure of the disturbance Strouhal number with

respect to the disturbance Mach number, i.e.,

19
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@ w/b 8 Disturbance Strouhal Number
AmpXR=1K" B oe T * Component of the Disturbance Mach (35)
d ~ ®f  Number parallel to the relative
Mean Flow

Finally the argument 4'rn2 of the Whittaker M-functions also has in
the case of plane wave propagation the elegant meaning of the (local)
disturbance wavelength with respect to the relative refractive index

change. This may be shown as follows: For propagation of a plane wave

incident from a homogeneous half-space (z < 0) at an angle -‘§~g ¢° < + g‘.

with respect to the z-axis, on a homogeneous medium (z 2 0) with speed
3 » ﬁ(z)g* , it 18 easy to show that the wave normal unit vectors 3n are
independent of x, i.e, that all wave normals of a given z-stratum are

parallel. Thus, defining an index of rafraction n by

- 1 1 .
n 1+§,g'1+nsm¢ (36)
£ n

where ¢ is the local angle of the wave normal and the z-axis and using

equation ({33) and Snell's Law it follows that

n=1~Msin ¢° = n sin ¢° = nn sin ¢ (37)

and one then may write:

Local Disturbance Wavelength - kon
Relative Refractive Index Change IVn]
n
sin ¢,

=kOsin$ akc> n___w n2 =

1b _. b sin¢ b sin ¢

o a Sin ¢° °

= % sin ¢° n2 = 4Tn2 (38)
20

e P e e R T T T T T T
IS et e g g - .
— e e e T g A g

) 5

i e iage



This interpretation of the argument of the Whittaker functions of
the solutions £ and g of equation (1) also implies that the necessary
condition for the applicability of Geometrical Acoustics suggested in
the literature (Felsen and Marcuvitz [14)) and recently applied to aero-
acoustics (Candell [15])) is not only not a sufficient one, but
also unnecessary and unnecessarily restrictive. This condition is usu-
ally given as (Felsen and Marcuvitz (14); Candell ({15}):

lonl oy

2 ’
kon

(39)

which, in view of equation (38), implies that dtnz >> 1. But in effect
in Section 3 (3.3) we obtained both the exact solution of the eikonal
equation and the correct amplitude of the pressure perturbation from our
uniform asymptotic expansion in equation (13) in the limit T -+ ® indepen-
dently of the value of n (i.e., of z or upper fluid Mach number). In-
deed from equation (13) we see that by comparing the first two terms of
the asymptotic expansion we easily conclude that the second term is
negligible compared to the first provided that 4Tlx| >> 1 which yields
the criterion equation (39), i.e., 4Tn2 >> 1, only in the additional
limit |n| + =, But also since our expansion in equation (13) is uni-
formly valid for l-+»o we conclude the following two conditions for our

T
case (nonzero incidence angle 6 and finite velocity profile slope b):

am? > 1or A <<y (40)
z
P,l,-rOor)‘z-*O (41)
21
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Condition (40) above has buen interpreted and used as a relaxed
criterion for tha applicability of Geometrical Acoustics with the impli-
cation that far enough from the x-axis (large z) the characteristic
wavelength A need not be unduly small. This interpretation is false in
view of the second condition in equation (41) which implies that the
further one is in the far field the shorter the wavelength should be to
satisfy that condition. i hene observations indicate that care should
be exercised in applying the necessary criterion in equation (39) of
Geometrical Acoustics without examining in detail the behaviour of the
solutions of the perturbation equations for the particular velocity pro-

file of the problem at hand,

5. Applications

In this section we indicatc' how the general solutions of egquation
(1) may be effectively used for certain problems arising in plane wave
Propagation and in the stability of a finite thickness shear layer with

A linear velocity profile.

5.1. Plane Wave Propagation
One of the problems relating to plane wave propagation through a
finite thickness shear layer with a linear velocity profile is that of
the existence of "resunances" and the existence of what, in analogy to
optical wave propagation, may be called Brewster angles. Resonances

and Brewster angles correspond to infinite and zero values of the

*

Here only the general outline of the methodology and certain relevant
results are given. The details and complete results will be presented
in another place.
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reflection coefficient ruspectively. It is known for instance (Ribner (16},

Miles (11)) that the vortex sheet, which may be thought as the exact
limit of long wavelength wave propagation, exhibits both resonances and

Brewster angles. In contrast short wavelength wave propugation through

a finite chickness shear layer, i.e., the geometrical accustics limit,
does not exhibit any resonance but only a continuum of Brewster angles.
This is shown in Figure 2. The problem of resonances was touched
briefly by Graham and Graham [4), who were only able to show that a
sufficiently thin, but nonzero thickness, shear layer has no reto-
nances; they were though unable to draw any conclusions for a finite
thickness shear layer. The reason for the latter was that Graham and
Graham essentially obtained and used the series representation, equation
(8), of our solution of the pressure perturbation equation (1). Using
our solution in terms of Whittaker functions given by equation (7) it
may be shown that the reflection coefficient R (for the amplitude of the

pressure perturbation) is given by:

2. am?ectn?

(42)
(A #B)2 « (C 7 D)2
where
=1 -
A=t [fn(O)gn(l) fntl)gn(O)]
B=4t/n2-1/n%-1[EWg( - £0g()]
(43)

c =y ni -1 [f(l)qn(O) - fn(O)g(l)]
p=/n-1[g e - co15,W)]
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The upper signs in equation (42) hold for Ny > 1 and the lower
signs for n < = 1, in both cases |n| > 1. In equations (43) we used the

notation 0 and 1 in the arguments of f and g and their derivatives with the

I
z=0 sgin O

- M, i.e., at the

understanding that 0 designates evaluation at n = no = n[ and

. =t

1 designates evaluation at n = n1 = n|z=zl i B
two edges of the shear layer. (See Figure 1 with Zy = 0.)

Equation (42) is valid for -Jg <6 <+ %-with the upper signs

holding for the regime of ordinary reflection (n > 1 and R2 < 1) and the
lower signs for the regime of the so-called amplified reflection

(n1 < -1, R? > 1). (For the total reflection regime |R|2 =1,

% <6<+ % .) The conditions for the existence of

resonances and Brewster angles become:

-1<r‘1<+1’-

A+B=C+D=0

(44)
with A-3#0

or C-D#0
or both.

Using the Wronskian expression W(n) for our solutions f and g, it

may be shown that

AB + CD = =W(0O)W(1) /;2 -1 /n?' -1

= -Sngni V/ng -1 /’ni -1

It follows from equation (45) that in general A # B and C # D.
In order to assess whether the conditions for resonance in equation

(44) are possible we consider the thin shear layer case, i.e., T small
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bufz not zero. Using our expressions in equation (23a) we find to lowest

order in T:

A+Bs= 4‘“13”0“1(1 - NoMy) + v’ﬁg -1 v’hz -1 (ng + ni + nonly\ (46)

To lowest order in T the right-hand side should be evaluated at the vor-
tex sheet values of n  and n, for which to lowest order in T the second
condition for the existence of resonances, i.e., C + D & 0 is fulfilled.

Using the known properties of the vortex sheet solution, i.e.,

2

2 2 2 2
Ng *+ N =n,n; and nn =1-vH + 1

we obtain from (46):
A+ B = ~(47) (2M3) (47)

It follows from (47) that A + B = 0 for a nonzero Mach number only if
T=10, i.e., only for the vortex sheet case. The conclusion is that

the conditions for the existence of resonances equation (44) are incom-
patible for small but finite 1, i.e., for the sufficiently thin shear
layer and that layer, in contrast to the compressible vortex sheet ex-
hibits no resonances and no Brewster angles. This is evident also from
Figure 2 where the reflection coefficient has leen evaluated numerically
as a function of Mach number for various values of T and for a fixed in-
cident angle of 30° for which the corresponding compressible vortex
sheet has two resonances and one Brewster angle. It is also seen in Fig-
ure 2 that for finite nonzero T the resonances and Brewster angles of

the corresponding vortex sheet disappear even for very small values of T.
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5.2, Stability to Long Wavelength Disturbances

It is known that the incompressible vortex sheet is unstable for all
wave numbers 0 whereas the introduction of either finiteness (finite in=-
compressible shear layer) or compressibility (compressible vortex sheet)
lead to ranges of o or M for which the motion i3 stable. This is shown in
Figure 4. The question that naturally arises is then whether the intro-
duction of both finiteness and compressibility will yield increased or
any ranges of o for which the motion is stable. For small o, i.e., long
wavelengths, this question may be readily answered by the use of our
series solutions for £ and g of the pressure perturbation equation given
by equations (23a). For small wave numbers O or small T using these ex-~
pressions to lowest order in 7T the eigenvalue equation (19) for the nor-

malized disturbance phase speed c/a may be shown to be
o3 e (-2 k- e+ M) =0 (48)

where x = i, M is the upper fluid Mach number (see Figure 1 with z, = 0)

and € is the small parameter

n2 /1 _ n2
_ .let, o 1 _
g = +=3 e nonl(z NoM) y M #E 2 V2 . and

€ is to be evaluated at the vortex sheet value of (g) as determined in
section 3.2. The allowable solutions of the above equation are given

exactly by:

[M s/l v a-a/ Rr1re ] (49)

=3 5

26

e e g



T T

Rt d TR T T R Ea L T,

And either by examining the solutions of the 4th order equation (48) by

use of Rouché's Theorem (Copson {17}) or the algebraic expression for

the solution, equation (49) above, one easily concludes that for all non-

zero Mach numbers M (excluding M = 2 / 2) there is always a value of -E»
with positive imaginary part. A slight modification of the eigenvalue
equation yields for M = 2 v 2 a 5th order equation for x = g-and again
one may show that ¢ acquires always a complex value with positive imag-
inary part.

Thus the long wavelength properties of the shear layer are drasti-
cally different from those of the compressible vortex sheet and in fact
contrary to the compressible vortex sheet the thin shear layer is un-

stable to all Mach numbers for small wave number disturbances.

6. Conclusions

In this study we have considered the characterization of inviscid
fluctuations in a coﬁpressible linearly sheared, but otherwise homoge-
neous parallel two-dimensional flow. The behavior of the cross-flow

part of the fluctuations were found to be governed by essentially

Whittaker's equation with the pressure fluctuations being characterized

by the functions.

1/2

g, 2 (4imm?)

where M is the Whittaker M-functions and n, T and 4Tn2 admit the fol-

lowing simple interpretations
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N = Disturbance Mach number component in the mean flow direction
relative to the mean flow Mach number
T Disturbance Strouhal number

" DIsturbance Mach number component in the mean flow direction

2 _ __Local Disturbance Wavelength
Relative Refractive Index Change

41y

The known solutions to a number of other parallel flow problems may
be obtained as limiting cases of our exact solutions. Such cases in-
clude the compressible vortex sheet (T - 0), the incompressible vortex
sheet (T ~ 0, n + 0), the incompressible linearly sheared layer (T + <,

n -+ 0, (tn) - finite) and the short wavelength or Geometrical Acoustics
limit of the compressible linearly sheared layer (T =+ « or %-* 0).

Finally the exact solutions we have obtained for equation (1) en-
able us to study exactly the compressible shear layer and to answer
some as yet unanswered questions such as those pertaining to the exis-
tence of resonances and Brewster angles and to the stability of such a
layer. For the shear layer with a linear velocity profile resonances
and Brewster angles do not exist except in the limits T -+ 0 (vortex
sheet) and T + » (geometrical acoustics). Moreover for small wave num-
ber disturbances the linear shear layer is unstable for all Mach numbers M,
Thus contrary to the compressible vortex sheet, which is stable for
M>2 VFEZ one may not regard the compressible vortex sheet as an adequate
model of a thin shear layer for all relative Mach numbers of the uniform

flows bounding the shear layer.
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Figure 1:

Figure 2:

Figure 3:

Figure 4:

LIST OF CAPTIONS

The linear velocity profile shear layer geometry.
Reflected energy flux/incident energy flux (= Rz) versus

n or upper £luid Mach number M for T = 0 (vortex sheet)
and T = © (geometrical acoustics). Shear layer geometry
as in Figure 1 with z, = 0. 1Incident acoustic plane wave
at an angle 0 = + 30° (clockwise) with the positive z-axis.
Reflected energy flux/incident energy flux (= Rz) versus n
or upper fluid Mach number M for various values of T.

Shear layer geometry as in Figure 1 with z, = 0. Incident
acoustic plane wave at an angle 6 = 4 30° (clockwise) with
the positive z=~axis.

Regions of stability of vortex sheets and shear layers with

a linear velocity profile.
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