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SUMMARY

The plane wave propagation, the stability and the rectangular duct mode
problems of a compressible inviscid linearly sheared parallel, but otherwise
homogeneous flow, are shown to be governad by Whittaker's equation. The exact
solutions for the pgrtutbation quantities are essentially the Hhittakarzn-func-
tions "11,&3/4(41'“ ) where the non-dimensional quantities t, n and 41n“ have

precise physical meanings. A number of known results are cbtained as limiting
cases of our exact solutions. For the compresaible finite thickness shear layer
it is shown that no resorances and no critical angles exist for all Mach numbers,

frequencies and shear lay=r velocity profile slopes except in the singular case
of the vortex shecet,
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SYMBOLS

Speed of sound of the homogeneous fluid
Velocity profile slope of the shear layer
Disturbance phase speed (in general coriplex)
Unit vector in the direction of the mean flow
Independent solutionsof equation (1)

Wave numbers of incident wave

Second index of the Whittaker M~-functions
Index of refraction

Wave normal unit vector

Liaear combinations of f and g in equation (5)
Parameter of transformation in equation (1)
z-component of the veloc¢ity perturbation
Rectanular coordinates

Shear layer thickness

Functions of f, g and their derivatives in equation (7)
Functions of A,B,C and D in equation (9)

Heaviside function

Inverse of the x-component of the disturbance Mach number
Disturkance vector Mach number

Mean flow vector Mach number

Mean flow Mach number

Reflection coefficient
In and out of phase component of R
Transmission coefficient

In and out of phase component of T

Mean velocity

Dependent variable in Whittaker's equation



x-component of the wave vector of the pressure disturbance

o

" n Non-dimensional variable in equation (2)
0,8, Angle of incidence of plane wave

’ 13 Independent variable in Whittaker's equation
T Non-dimensional paxameter in equation (2)
¢u& ¢£ Perturbation velucitly potentials
w Disturbance frequency
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INTRODUCTION AND BACKGROUND

studizs on compressible freg shear layers have not been oxtensive. In fact
with the exception of tha earlier work of Graham and Graham (ref. 1) who studicd
sound propagation through a finite linearly sheared layer in the low-froguency
limit, it has been only recently that Blumen et al (ref. 2) obtained an exast
solution for the stability of the shear layer with an hyperbolic tangent profile
with the significant result that this shear layer is unstable to two dimensional
disturbances for all Mach numbers whercas the vortex sheet is known to be un=-
stable only for M<2y2, a result that cautions against modeling real sheared flows
with vortex sheets, as has heen the practice in a number of recent noise re=-
search studies, since, as the authors point out, even the long wavelength chax-
acteristics of finite thickness shear layers may be quite different from the
corresponding properties of the analogous vortex sheet. 1In this study we con-
sider sound propagation and stability in linearly sheared parallel compressible
inviscid homogeneous flows. Woxk relating to the salutions of the pressure per-
turbation equation has been that of Kuchemann (ref. 3) who also considered the
stability of a boundary layer approximated by a linear velocity profile, the
study of Pridmore-Brown (ref. 4) and that of Graham and Graham (ref. 1).

Kuchemann (ref. 3) obtained a formal series solution for the density per-
turbation equation and he also arrived at a solution supposedly valid for large
values of (our) parameter n = 3--M. His series solution, altho: gh it is given
in a cumbersome and lengthy form, is correct but his asymptotic solution is in

serious error. Pridmore-Brown (ref. 4) solved the pressure perturbation equation
in the short wavelength approximation, i.e., for large values of (our) parameter

T = Zg-x. His asymptotic solutions may also be in error. Graham and Graham (ref.

1) studied the problem of a plane wave incident on a linear velocity profile free
shear compressible inviscid layer. They used entirely a series solution of the
density perturbation equation which they independently rederived apparently un-
aware of the earlier work of Kichemann. Because they used the series solution
only, they were unable to give proofs for the range of the parameters T and n
for which ordinary, total or amplified reflection occurs, although correctly
identified the regions intuitively. More importantly and for the same reasons,
they could neither prove the existence or non-existence of reasonances or crit-
ical angles, but for the case of "sufficiently thin -- but not zero thickness --
shear layer" nor could they draw any conclusions for either the large Mach
number M or large T cases.

*Work supported under NASA Grants NASA 2007 and NASA 676 to the Joint
Institute of Aeronautics and Acoustics.
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SOLUTION OF THE PRESSURE PERTURBATION EQUATION

In a homogeneous inviscid compressible parallel shear flow having a linear
velocity profile in the z-direction only, i.e., U = U(z) = bz, it may be easily
shown that, starting either from the linearized equations of motion or directly
using the appropriate linearized form of the convective wave equation, the z-
dependent part p(z) of the pressure perturbation p(¥) is governed by the equa-

tion:

2 2
Pon "0 Pyt 402 0 - D p=o (1)
where
1
n:E-M, 4'(!-%!(, and Mnm(z)-t—bf-. (2)

M is the local Mach number and K and w acquire the following meanings depending
on the problem at hand:

e
(i) Free Shear Layer: Propagation of a plane wave of wave vector k and fre-
quency w impinging on the shear layer from a half-space (z<0) of relative
rest and at an angle ¢ measured from the z-axis (- %—f'e <+ Eoﬂ

K = sinf

(ii) FPree Shear Layer: Stability for assumed disturbances of the form

p(¥)a p(z) elalx-ct) (4 and ¢ possibly complex) :

a
K = 3 and w = Oc

(iii) Sound Prqpagatign in Rectangular Ducts: Modes for assumed disturbances
of the form p(r) = p(z) eia(kx-wt) (k and w real):

ak
K= m
3 2
The transformation P = n2 W(E),E=qn” with q = 4it, reduces equation (1) into
Whittaker's equation for W, so that the two independent solutions f and g of
equation (1) are:

3
£  \eddm 2 .
{g}=(411) 2*m n? MiT,:m‘4lTn2)’ m = f- (3)
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where M are the whittaker M-functions and T.n,K are defined following equ-
ation (2). It is casily shown that for t and n real,the functions £ and g are
also real with £ being even and g odd functions of n whereas both £ and g are
even functions of 1, Moreover series and asymptotic expansions for £ and g are
readily obtainable from the known properties of the Whittaker M-functions (ref.
. 5 and 6). The series expansion agrees with the series obtained by Kilichemann
(ref., 3) and Graham and Graham (ref. 1) although the form thatresults from egu-
ation (3) above is not only more compact, but also faster converging. The asym-
* ptotic forms of f and g and thejr derivatives with respect to n are obtained in

terms of 1, Iomer with m = * o using Oliver's method (ref. 5 and 6) and they

are in disagreement with both the results of Kuchemann (ref. 3) and Pridmore-
Brown (ref. 4). This was expected as mentioned in the introduction since
Kuchemann essentially seeking an expression for large n neglected 1 compared bo
n® in the last term of our equation (1) which is tantamount to setting 7 = O in

Whittaker's equation, whercas Pridmore-Brown by applying Langer's method obtained
only a non-uniform leading term of an asymptotic expansion in terms of Airy fun-
ctions. These and other details may be found in reference 7.
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THE FINITE THICKNZES LAYER

Plane Wave Propagation

We consider the two-dimensional finite inviscid compressible shear layer of
thickneus 2y with velocity profile

= bz 2,220 (4)
= 0 o~z

in the (%,2) plane and a time-harmonic monochromatic plane wave incident from
the z 0 half-space with wave vector F and wave number k = %, in the (rest) frame
of reference of the stationary fluid at z<0, in an otherwilc homogeneoug fluid
in the entire (x,2) plane. The velocity potentials in the lower regicon (of ro=-
lative rost) and the upper reqgion of uniform flow are:

i R.P.{ xi[uixk(xsinﬂ+zaosﬂ-at)+ *1&(\ainﬁ~7coso~ar1§,4so

1
?x, R.P,{iireiik [xsinet(a-zl)lsinel(na-l)g;tli 1222,

where R.P. denotes "real part of"; the first term in equation (5) represents the
incident wave coming from the half-space z<0 and R and T are respectively the

complex reflection and transmission coefficients for the velocity potential, and
the upper signs are taken for n>".* In the middle (shear layer) region with the
veloclty profile equation (4) the pressure perturbation p(r) and the z~component

w(¥) of the velocity perturbation are given by:

p(?) = p‘l)(n)sin [k(xsin&-at) ]+ p(z)(n)cos [k(xsine-at)

w(¥) = z%;-gpél)(n)cos [k(xsine-at)] (2 )(n)SLnl k(xsin&-atJ{

where p(l)(n) and p(z) are linear combinations of the independent solution £ and
g, equation (3), of equation (1), i.e.

1) =
P m =)+ a p ) = (5)

*This representation used by Miles (ref. 8) and Graham and Graham (ref. 1) is
consistent with the radiation condition as postulated by Miles. Actually
Sommerfeld's radiation condition does not apply for plane waves and the diffi-
culties arising in such a case have been discussed by Lighthill (ref. 9). At
any rate these representations for the velocity potentials insure that the re-
flected and transmitted waves are outgoing in a reference frame fixed in the
upper fluid and are consistent with Miles's postulate and Ribner's intuitive
picture (ref. 10).
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with 415 vonatants,  Writing also R = Rl 3 iRz' o Tl + i?z for the ocorpleg rv=
Plewtion and traarmission cocfficients R and T respectively and’applyina b
boumndary conditioas (continnity of the pressure perturbation p(r) ani pepor--
vient wiF) of the veleeity perturbationl at the interfaces z»0 and Z%Zq, ani
diter separating yeal and imginary pacts in the resulting oqua?ionx on » obfn;w@
W system of elght linear algebraic cquations for the datormination of the eialt
unknowns aj4 Ry, T,. After somewhat tedious but straightforward algabra the

rfollowing expressions for the reflection and transmission coefficionts ave ob=
tainedd:

2 e ﬂ
1epde s 72, Mym ~t g =+ |tano]/n? - 1 1? ()

[sin2a] (AFB) 2 + (CFD)

% 7
for iﬂ11>1r - a'ﬁﬁﬁ,iu Ri‘ Tj real, and

{R1’~ = L, T = Tl = T2 = 0, for [nl|<1, - ggpggu Ri’ Tj complex

|

with, A z% X [fn(o)gn(l) - fn(l)gn(o)]

J1-K2
(@r><ssnx>/ni~l [ftl)q(O) - £(0)g(1)

= K /2 ] {7)
c {sgnk -1 -
ﬁ' gnk) n,l’ [f(l)gn(O) fn(O)g(l)

fn(l)G(O) - f(O)qn(l)

w
|

o
|

with K = ging

The upper signs in equation (6) hold for n,>1 and the lower signs for n <-1,
in both cases [n|>1. In equation (7) we used the notation O and 1 in Ehe argu-
ments uf £ and g and their derivatives with the understanding that O designates

evaluation at naﬂowﬂlz,o’giﬁy and 1 designates evaluation at nznlwn[zr_z =

. S

aThA 1+ &-e., at the two edges of the shear layer.

It is clearly scen from equations (6) that the various reflection ragimes
are:

nlnl , R2<l : Qrdinary Reflection
—1<n1<P1 ’ Rzﬂl ¢ Total Reflection ()
n1<~1 i RZ>1 : Amplified Refloction
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Theso rugimes are quite analogous to the three regimes found by Miles (rrf,
8) and Ribner (ref. 10} for the vortex sheet case and intutively arrived at by
Graham and Graham (ref, 1). 'The above conditions in equation (8) 4imply that a1l
though the values of the reflection and transmission cnefficients depend on the
froquency u and the veloecity profile slope b, the dependence is ?nly through the
angle of incidence 8, and the two parameters T 2 gind and Ny "I“E"Hl' whereas
the conditions for the three reflection regimes are indepondent‘of w or b and de-

pend only on n, which is the Mach number of the x-component of the phase

velocity of the incident wave front relative to the relative Mach number M, of
the two uniform flows confining the sheax layer.

The limiting case of the vortex sheet is easily obtained in the limit 10
(high-frequency or long acoustic wavelength limit) whereas the low=frequency or
short wavelength limit is obtained by letting 1= in equation (6); in the former

casa: 5
. ]tanalnzfn -1 0
1-R* = 4 )
8 ‘1) 2
( J i 1)

in Gnliltanﬁl n

which aygrees with the results of Miles (rel, ) and Ribner (ref. 10), whereas in
the short wavelength casa 1-R? becomes the Heaviside function H:

1-R% = H (A-n;), T
Resonances and Critical Angles

In this section we give a formal proof that in the amplified reflection re-
gime, n1<-l, there are no resonances and in the ordinary reflection regime,

ny>+1, there are no cricital angles.

First it is easily deduced from equation (6) that excluding the singular
cases of 620 or M*» (in special ways) we may assume that neither A=C=0 or BaDa),
nor all four A,B,C and D may be zero simultaneously. It is next seen from equ=-
ation (6) that resonances exist if the denominator in the expression for R? is
zero in the amplifying regime nl<-1, i.e., if

A= A2 +Bz =0, A= A+B and B= C+D (9)

with A,B,C, and D given by equations (7). But & in equation (9) above is just
the determinant of the coefficients a4 in equations (5) of the system of the
four equations determining a;.. Since only the first equation of that system is
inhomogeneous with right hand side proportional to 1, a solution for the aj.
exists if and only if either A = A? , B2 +#0and T #¥0or A = A2 + B2, O and
0. It thus follows that equation (9) has solutions, only for t0, and this is
precisely the limiting case of the vortex sheet; i.e., resonances are possible
only for the vortex sheet. One may also obtain the same result by algebraic
manipulation of the general expressions for Rl and Rz:

2 .2 .2 2
R]_ =~ B -I\A-PD ~C ' R2 =_z.. (AD ~ BC), A= (AF 8)2 + (CF D)2 (10)




* for the case of amplified reflection (lower signs).

) For the critical angles we use the expressions in equation (10) with the

s upper signs (ordinary reflection "1>l)' If critical angles exist, then Rl‘Rz'o
and using equation (10) we may easily deduce that for B#0, D#Q the ratio % = %

- may then only attain the value =1 for zero reflection. But this implies that

A+B=C+D=0 which is precisely the condition for the existence of resonances equ-
ation (9) which we have just shown that do not exist for a finite thickness

shear layer.

R . . i P e - e . - S T T



A 4

S L . 1

THE FINITE THICKNESS LAYER
Stability Considerations

For the layer equation (4) the boundary value problem leads to the following
oquation: AN+ D)+ (C=-D) =0 (11)

where A,B,C, and D in general complex are given by equation (7) with K - % and
with (sqn K) ommitted in the expressions for B and C. 'The roots of the ibove

equation give the dopandence of the phase speed ¢, or of the frequency o, on

the wavenumber o, For temporal amplification a is real and positive, ¢ and

W are reals For the neutral stability line howevur, in either case cwcr+ici

with ¢, =0, i.e., c ls real, thug K is resl and one may distinguish the cases
3L, )n[;l corrasponding to supersonic (upper signs) or subsonic (lowor signs)
disturbances and relative Mach numbers respectively.

Comparing equation (11) and equation (9) we see that the resonances, were
they to exist, would oboy the system of equations A+B=0, C+D=0 whereas the
neutral stability characteristics are determined by the system of equations
At+B=0, C-DwO, with A,B,C,D real. Thus, in general one does not ‘xpect any con=-
nection betwean resonances and neutral stability eigenvalues except in ** 9
gingular case of the compressible vortex sheet case which is discussed be. .

Special Case: The Comprassible Vortex Sheet

As befora, wa let 120 in equation (11) and (7) to obtain

1 ) 3
(1= ~§~¢?*R2n2 + =7 v o (12)
|

whore n and K may he complex. Excluding the singular cases K*1 and n+l, as well
A R ow %.wm, we consider the case where the squave root terms in equation (7)
have the same signs, i.e., the cases K<l,|n|>) or K>1,|n|<l. tThe formal solution
of equation (12) above is

» 1
L., l I ey vl I
E"a™2 IM [ MTH4Fq J14M ,

I
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which i in agreement with the results of Landau (ref. 11), Tt iz a matter of
simple algebra to show that in order to satisfy the inoqualities ]nlzl only

the upper (minun) sign in the square root term in the above equation for the
cigenvalues should be retained. Thus two noutral elyenvalues are not por=
nispible which is procisely the result of Miles (ref, 12) which he arrived at in
a totally difforent way, pamely by considering the vortex sheet stabilitv as an
initial value problem. It is finally worth noting that for the vortex shoet
case the stability equation (11) for neutral eigenvalues, bacomes C=D=Q, whoreas
for the plane wave propagation case as we saw previously equation (9) for the
rosonances becomes CHD=), agince for the vortox sheet, 10, and A and B are 0(1)
whereas € and D arve O(L). "Thus it is only for the vortex sheet that regonances
and neutral stability eignevalues are given by the same equation i.e. €= = D=,
Far the fipnite shear layer the roots ol cquatien (9) and {11) the two equations
are in general differont.  In fact, we have shown that althoagh equation (9)

iy have real rooatg, there are no resonances for the finite thickness compresg-
ible shear layer,

AR e e AR AR S
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PHYSICAL MEANING OF n,% , t and Mn?.
b

variable  n % -M. 1/K is vii@ ' g., ﬁﬁﬁ for plane wave propagation,
. »

stabllity and rectangular duct mode studies respectively, and we may thus write

for n:

't\) ;) })'—
» — - O3
n ( 3 -!1‘) f

Thus n is a relative Mach nurbe. 1easure i. ¢., it is the parallel to the
mean flow component of the disturbunce {phase spead based) vector Mach number
M‘, relative to the (relative ) mean flow Mach number and thus it is a measure

of the components of the relative speeds of the disturbance and the mean flow
in the direction of the mean flow.
Parameter %.: % acquires the simple meaning of a characteristic Strouhal
number of the flow by writing:
s = [(Shear layer thickness) x (Disturbance frequency) = 2w oW
Mean Flow Speed bz b
Parameters 1 and 4tn : For propagation of a plane wave incident from a
homogeneous half-space (z<0) at an angle 00 ( —<60f+ ~J with the z-axis, it is
easy to show that the wave normals R are Lndependent of x, i.e., that all wave
normals of a glvcn z-stratum are parallel. Thus defining an index of refrac-
tion n = (1+Mf-n) = (14+MsinB)~!, it is casy to show that n = 1-MsinB, = sinf,n,
n =nsinfin, Using these rqlations we may write;

Local disturbance wavelength kon - 9-51n8 2 _ 4Tn2 and 4Tn2 is the
Relative refraction index change lvnl/n ! !

argument of the Whittaker M-functions in our general solutions £ and g of the
pressure perturbation equation. 1 itself also attains the simple meaning

o= Wge Wb Characteristic Stroubal Numbex
b 1/K bParallel component of the disturbance Mach number
10




e - o . S el o

CONCLUSLONS

In this paper we have exanined some aspects of plane wave propagation and
stability of compresgsible inviscid homogeneous flows characterized by a linear
vialoeity profile. The focus of this study has been on the search for exact
salutioneg of the perturbation equations which bring forth the saliont common
toatures of all such parallel flows. The ossent . al conclusions of this stuly
awe: (1) The z-dependent part of the pressure (or density) disturbance of
nych flows is qoverned by Whittaker's cquation with independent solutionz

T 2 . :
n M (4irn?), with m = % where M are the Whittaker M=functions and n,:,
jl'}'nl

and 41n” admit the gollowing interpretations:
.
n s (ﬁd-uf)-cf = Relative Mach number parallel to mean f£low

ng.ﬁkﬁl.m = Strouhal number ,sDisturbance Mach number component
N //in the direction of the mean flow
a' " f

k

a no_ . N . /Relative refractive
dinr e e = Local disturbance wnv&lcngtdml(index change

() Solutions to a number of other parallel flow problems may be obtained as
limiting cases from our exact solutions. Such flows include the compressible
vortex sheet (1*0), the incompressible vortex sheet (tr, n»*Q, ('n)»0), the in-
compressible shear layer (1,120, (1n)~finite), and the short wavelength
approximation of the compressible finite shear layer (12w), (3)

The compress-
: ible finite thickness layer has no resonances and no critical angles for all

Mach numbers, frequencies, shear layer thicknesses and shear profile slopes

except for combinations of the singular values of O or » for, w and b; two
$ suchl combinations (bww,

ible vortex sheet case.

zl»O but bz1 finite or w+») constitute the ~ompress-

B T o
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