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ABSTRACT

In order to understand the noise generated and radiated by a

high speed circular jet issuing normally into an otherwise uniform

stream, such as in the case of V/STOL aircraft, experimental stuc,ies

have been carried out in the 7 X 10 foot wind tunnel at NASA Ames

Research Center. The J<l t is 1.5 inches in diameter and is operated

at a fixed Mach number equal to .58. The tunnel velocity is changed

to vary the ratio of the speed of the jet to that of the uniform

stream in the range from 3.7 to 9.4. Measurements for zero crossflow

have also been included.

A survey of the plane of symmetry of the jet has been performed

o	 to measure the mean and turbulent velocity fields by using constant

temperature hot wire anemometry. The intensity of the noise radiated

from the jet has been determined in the tunnel test section by utilizing

the cross-corrlation at a particular time delay between the signals

of two microphones suitably located along a given direction. Such a

technique gives the intensity radiated directly by the source without

the effects due to the tunnel environment.

Experimental results indicate that the turbulent intensity inside

the crossflow jet increase by a factor of (1 + r) as compared to the

turbulent intensity of the same jet under free conditions, with r

indicating the ratio of the jet velocity by the cross stream velocity.

The peak observed in the turbulence spectra obtained inside the potential

core of the jet has a frequency that increases by the same factor
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^1 + r j with respect to the corresponding frequency measured in the

case of the free jet. The acoustic intensity of the free jet

measured by the two microphone cross-correlation technique inside the

test section of the wind tunnel shows a very good agreement with

results obtained by a previous worker inside an anechoic chamber.

The noise radiated by the jet becomes more intense as the crossflow

velocity increases. The measured acoustic intensity of the crossflow

jet is higher than the value which would be expected from the increase

of the turbulent intensity only. This fact together with the observation

that the noise radiated by the crossflow jet, even for small values

of cross stream velocity is more than 8 dB higher than the noise

intensity of the same jet under free conditions suggests the existence

Lof flow features aind noise generating mechanisms not explored in

the present study.
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I INTRODUCTION

The prospective use of V/STOL (vertical/short take off

and landing) airplanes presents a series of advantages, comtorts,

and conveniences for most of the people using air transportation.

Due to their capability for taking off and landing ir, very small

areas these airplanes will be operating in airports locat7d

much closer to the center of our communities than the airports

presently in use. Therefore they constitute a potential source

of strong acoustic annoyance for a large part of the population

living and working in the neighborhood of those future airfields.

This has been the motivation recently for an increasing interest

on the problem of noise produced by a jet in a crossflow, a	
F

situation that is created whenever a V/STOL aircraft is landing

or taking off with the lifting jet producing a vertical thrust

while the airplane is m(,ving with a small horizontal velocity.

The need for understanding and subsequently reducing the noise

caused by the interaction of the cross stream, due to the air-

craft forward motion, with the lifting jet makes necessary a

detailed investigation of the internal structure and acoustic

field of the modified jet flow.

Most of the work done so far in the field of jet noise has

been related particularly to the case of a free circular jet,

that is, a jet issuing into a medium at rest. Led by the

classical studies of Lighthill (1952, 1954), a large number of

theoretical and experimental investigators have contributed for

-1-
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a reasonably good understanding of the turbulent free jet as a

source of sound. However, even considering that there usually

exists a good qualitative agreement of the experimental measure-

ments with the theory, the whole picture is not yet clear or

precise enough to simply extend the results of the free jet for

an accurate prediction of the noise produced by a jet in a

crossflow. The cross stream interacts with the jet changing

the basic structure of the turbulence inside the jet flow. This

causes a modification of the noise generation mechanisms with

a consequent variation of the acoustic far field characteristics.

An analytical approach to the problem has already been done in

some extent by Cole (1972, 1974). Experimental studies by Kirk,

Hall, and Hodder (1971)  and also by Stimpert and Fogg (1973), to

determine the effect of crossflow velocity on the jet noise

generation of lift fans have shown that the jet noise increases

with the increase of the cross stream velocity.

In the present study a methodical measurement of simple

turbulent quantities within the jet and of noise intensity in the

acoustic far field has been performed to evaluate the effects of

the interaction of the jet with the crossflow upon the noise

problem. Different values of crossflow provide various degrees

of jet deformation necessary for the investigation. The experi-

ment requires the use of a wind tunnel for obtaining the cross-

flow. The measurement of noise in wind tunnels, as previously

discussed by Hickey, Soderman, and Kelly (1969), is a long,

complex, and difficult task due primarily to the reverberant

-2-
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Effects of the tunnel walls. In this report a new method for

measuring acoustic intensity in a reverberant environment has

been proposed. It consists essentially of a measurement of the

cross-correlation function of the signals from two microphones

conveniently located in the radiation field, at an appropriate

time delay. The result of this measurement gives the noise

directly radiated from the source, practically free from any

effect of reflections.*

In the next chapter the reader will find a background of

previous works related to jet noise and also to the general

problem of a crossflow jet. Chapter III has a brief introduction

of the equation governing the noise radiated from a jet in a

cross stream as derived by Cole (1972). This equation is then

simplified to a form similar to Proudman's equation of the free

4

	

	 jet noise and used afterwards to show how the method of cross-

correlation can be applied for obtaining the noise intensity in

a reverberant acoustic field when the noise source is a jet.
v.

Chapter IV contains the description of the experimental apparatus

ind instrumentation used for the testing. The test procedure

including calibration of the measuring instruments is also in-

cluded. Chapter V has all the test results. Interpretations

and discussions are presented together with the experimental

data and are directed towards understaa:ding the effects of

changes of crossflow velocity on the experimental observations.

At the completion of this report we learned through personal
communication from Mr. Warren F. Ahtye at NASA-Ames Research
Center that he had recently used the two microphone cross
correlation method to measure the noise radiated from a single
source located in a room with no acoustic treatment a ^' that he
obtained good results with both wide and narrow band t^ 	 cro-
phone cross correlations.

-3-



Chapter VI ?.s the conclusion of the report with a summary of

the principal results. In Appendix A some considerations about

the interpretation of measurements by a linearized hot wire

anemometer in compressible flows are discussed. Finally in

Appendix B a simple dimensional analysis is performed to show

how the acoustic intensity of a ,jet should be expected to increase

when a cross stream is present.

-4 -



II BACKGROUND

As already mentioned in the previous chapter, the noise

problem relat,:d to a jet in a cross stream is very recent. Most

of the literature pertaining to jet noise has been concerned with

the case of a jet under free conditions. Therefore, an initial

presentation of some previous works related to the noise pro-

duced by a free jet seems to be appropriate. The general problem

of a crossflow jet is discussed afterwErds.

2.1 Free Jet Noise

Theoretical Notions

The general theory discussing the problem of noise produced 	
k

by the turbulent flow of a jet has been introduced by Lighthill

(1952, 1954) and complemented by Proudman (1952), Lilley (1958),

Powell (1959), Ffowcs Williams (1963), Ribner (1964), and several

others. In a few words and in a very simplified way it says

that the noise is produced inside the jet by a large number of

uncorrelated, time varying, turbulent eddies which are convected

in the same direction as the jet flow and radiate sound indepen-

dently as acoustic quadrupoles. The convection of the eddies

together with the refraction of the sound waves caused by the

gradients of different properties across the jet are responsible

for the directivity pattern experimentally observed in the

acoustic far field. The intrinsic complexity of the turbulent

jet as a source of sound has motivated a large number of experi-

mental investigations.

-5-



Experimental Studies	 j

a) Noise Producing Region (within the jet). Laurence (1956)

was one of the first workers to make measurements concerned with

Lighthill's theory, with!a a circular free jet. With a constant

temperature hot wire he investigated the effect of varying the

exit velocity upon the intensity, scale and spectrum of the

turbulence at several points inside the jet. He used a 3.5 in.

diameter jet with a range of exit Mach numbers from 0.2 to 0.7.

Davies, Fisher,, and Barratt (1963) complemented the

measurements previously obtained by Laurence (1956) and obtained

for the first time important characteristics of the turbulence

with respect to a frame of reference being convected with the

turbulent eddies, P point which had already been discussed in

theory by Lighthill (1952, 1954) and Ffowcs Williams (1963). The

range of Mach numbers in this experiment was from 0.2 to 0.55

and the jet was 1 in. in diameter.

Davies, Ko, and Bose (1968), later complemented by Ko and

Davies (1971), have determined the existence of a near pressure

field within the potential core of a free circular jet. They

also made microphone measurements in the near field outside the

jet. Some characteristics of these two near fields, inside the

core and outside the jet, showed discrepancies which were ex-

plained by the authors as being an indication of the Dopler

effect of moving sources, moving medium, and refraction of sound

waves in the noise producing region.

Later, using hot wire techniques, Wooten, Wooldridge, and

-6-
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Amaro (1972) studied a 1.5 in. diameter jet at exit Mach

numbers of 0.3, 0.5, and 0.7. They investigated the mixing

region, the potential core and the transition region. Particular

attention was given to spectral peaks and to the convection

velocity of turbulent eddies. They also suggested swirling of

the jet as a way to reduce the noise production.

b) Radiation Field. Other workers have investigated

the characteristics of the noise in the radiation field. Among

them Lassiter and Hubbard (1952) used jets of several sizes to

study the effect of varying jet velocity, density, turbulence

level, and jet size upon the intensity, directivity, and

spectrum of the noise produced by the jet. Their results,

obtained at approximately the same time that Lighthill published

his first work, showed good agreement with some of Lighthill's
	 k

results obtained from dimensional analysis.

I:, a recent work Lush '971) studied the noise radiated

from a 25 mm. diameter jet at several subsonic exit speeds and

compared his data with Lighthill's theory of convected quad-

rupoles. His results include total intensity corrected for

the effects of convection as a function of both the jet velocity

and the angular position with respect to the jet. It is

interesting to note that at 900 , where the effect of source

convection does not exist, the experimental data show the

overall intensity as a function of U8. However, for smaller

angles the theory overpredicts the results for high frequencies,

while for angles larger than 90 0 (i.e., at the rear part of the

-7-
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jet) the theory is clearly below the obtained experimental

results. The latter result is found in Fisher, Lush, and

Bourne (1973). The authors spectulated th^nt this effect Ls

caused by a lack of convective amplification whenever the wave-

length of the generated sound is several times greater than

the space the sound waves have to travel before emerging from

the jet.

c) Causality Cross-Correlations. A more recent experi-

mental technique has been now in use to identify the individual

characteristics of the sound sources within the jet with the

noise produced by them. It can be essentially described as

a measurement of a cross-correlation between a certain property

inside the jet (the, cause) and the sound pressure in the

' I	radiation field (the effect). The cross-correlation is measured
A

at a time delay corresponding to the amount of time that an
	 t'

acoustic perturbation takes to go from the sound source to the

measuring point in the radiation field. The measurable property

within the jet can be either the fluctuating pressure or the

turbulent velocity, the former based on the theory of simple

source dilatation, [ see Ribner (1964)], and the latter on

Lighthill ' s quadrupole theory. A complete discussion about this

method with a vast list of references can be found in Siddon (1974).

2.2 Jet in a Cross Stream

Theoretical Notions

only recently has the effect of a crossflow been considered

in the equations of jet noise. Cole (1972) studied the case

-8-



where the jet, representing the source of noise, and the

observer are both at rest and the acoustic medium is at uniform

motion. This situation happens during a testing inside a wind

tunnel where the jet and the microphone (representing the

observer) are fixed and the acoustic medium, provided by the

wind tunnel uniform stream, is moving. In his studies Cole

derived the equation for the acoustic intensity starting from

the basic equations of Fluid Mechanics. Part of his work will

be shown in the next chapter to introduce the equation relating

the sound field to the turbulent fluctuations inside the jet.

In a latter publication Cole (1974) discussed the case of a

crossflow jet moving through a stationary acoustic medium (also

briefly presented in the Appendix of the 1972 report). The

acoustic intensity of the crossflow jet is greater upstream of	
4F

.0 jet than at an equal distance downstream. Even though this

characteristic is more accentuated in the case of a crossflow

j et: in a moving medium, the analytical comparison presented

by Cole (1911) with the two acoustic media (moving, and at rest)

shows that the difference between the two cases is practically

negligible for crossflows at small subsonic velocities.

Kirk, Hall, and Hodder (1971), have made aerodynamic and

acoustic investigations of a large scale lift fan model in the

NASA-Ames 40 x 30 foot wind tunnel. Sound pressure levels were

observed to increase when the jet was under the influence of a

zrossflow.

Later, Stimpert and Fogg (1973) performed an analytical

study and an examination of experimental data to determine the

-9-
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1 1  c of crossflow velocity on the jet noise generation of

lift fans. The noise measurements were taken in the NASA-Ames

40 x 80 foot wind tunnel with a complete lift fan V/STOL

transport aircraft model. It was also found that the jet noise

increases when the velocity of the cross stream increases.

Several other experimental studies have been related to

the aerodynamic aspects of the crossflow jet, particularly the

shape of the jet plume and the distribution of mean velocity

and pressure across the jet. Some of these investigations will be

mentioned below as we discuss the characteristics of a jet in

a crossflow.

A circular jet exhausting perpendicularly into a crossflow

is deformed and altered in shape, bending into the direction of

the stream. A complete physical description of the interaction

of the two flows is given by Keffer (1969) who divides the jet 	 l'

into three arbitrary regions (see Figure 1). The first region

is denominated by Keffer (1969) as the source flow region' r . It

contains both the potential core and the turbulent mixing zone

that surrounds the potential core. As in the case of the free

jet, inside the potential core the turbulence is very low and the

mean velocity has practically the same value as the jet velocity

at the exit. On the other hand, within the mixing zone both the

turbulence and the radial variation of mean velocity are very

large. Jordinson (1956) noticed that the jet has a circular

The source flow region should not be mistaken by the noise pro-
ducing region of the jet. As will be discussed later in the report,
the source flow region contributes with a large part of the total
noise produced by the jet but it is only a part of tiie noise
producing region.

-10-
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contour at the exit but at the end of the source flow region

this contour has already changed to a kidney shape, due to the

lateral deformation of the jet by the crosswind. The source

flow region extends from the jet exit up to the end of the

potential core. its length, as observed by Keffer and Baines

(1963) and also by Pratte and Baines (1967), depends on the

value of the ratio r of the Jet velocity to the cross stream

velocity. The next region of the jet starts at the end of the

potential core and is called the curvilinear or the transition

region. Within the transition region the turbulent mixing zone

occupies the whole cross section of the jet. This region is

also characterized by a constant change of direction of the jet

flow which describes a curvilinear trajectory. Keffer and

Baines (1963), and more recently Chassaing, et.al . (1974) have

found some similarity laws for the Jet trajectory and for the

distribution of mean velocity inside the transition region. The

last region of the jet is the far region where the jet has

approximately the same direction as the crossflow and the mixing

between the two flows is almost completely accomplished. The

jet mean velocity is equal to the. crossflow velocity and the

only characteristic of the jet which makes possible to distinguish

it from the crossflow is now a pair of counter rotating vortices which

are believed to have been started at the beginning of the transi-

tion region. As pointed out by Pratte and Baines (1967) , no

end has been observed yet for this far region. There is also

the wake, a not very well known region behind the jet, where

the mean velocity is much smaller than in either the jet or the

to

-11-
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crossflow. For small values of crossflow Pratte and Baines (1967)

have observed two attached vortices in the wake just behind the

jet, similarly to the attached vortices found behind a cylinder

at small Reynolds number. When the crossflow velocity increases

however, those vortices shed, as has been experimentally observed

by McMahon, Hester, and Palfery (1971).

Other workers had interests in the distribution of pressure

on the surface around the jet exit. These investigations are

related to the change of a pitching moment which a V/STOL aircraft

ebneriences during the trap Nition flight due to the movement of

the center of pressure. Mosher (1970) and Mikolowsky (1972) studied

the pressures on the surface around the let orifice located on a

flat plate and on an airplane wing respectively.

2.3 The Present Investigation

The experimental works mentioned in the previous section,

besides many others on the same subject, have contribtted for

a clear understanding of the physical aspects of a circular

jet in a crossflow. For instance, the ratio r of the jet

velocity by the cross stream velocity is considered to be the

governing parameter influencing the jet trajectory and the

entrainment process. The crossflow velocity, or more precisely,

the Reynolds number of the crossflow (bated on the jet diameter),

is evidently the important parameter influencing vortex: shedding

behind the jet. The maximum free stream Reynolds number of the

tests reported by Pratte and Baines (1967) was about 500. The

vortices were not shed in that experiment. On the other hand,

I

k
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vortex shedding has been observed in the experiments of McMahon,

Hester, and Palfery (1971), where the Reynolds number of the free

stream (in the case of the circular jet) was about 52000. These

works have established the aerodynamic peculiarities of the

crossflow jet without going into the details of the jet noise

mechanisms. In his analysis of noise radiated from a jet in a

crossflow, Cole (1972) was forced to use experimental data from

the free jet due to the absolute lack of information concerning

the turbulent characteristics of a jet in a cross stream.

The objective of this study is therefore, to gain insight

into some aspects of the basic modifications occurring within the

noise producing region and also in the acoustic far field of a

turbulent jet under the influence of different crossflows. The

noise producing region, from which most of the noise produced by 	 10

a subsonic jet radiates, is mainly composed by the source flow

region and by the beginning of the transition region (see Figure 1).

Preliminary measurements were obtained at Stanford University

(Department of Aeronautics and Astronautics). The experiment

was greatly useful for a first acquaintance with the problem,

experimental instrumentation, and .acoustic measuring techniques.

This report is related to the results of the experimental

testing of a jet in a cross stream at NASA-Ames Research Center.

The test description is fully discussed in Chapter IV.

a .

-13-
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III THEORETICAL CONSIDERATIONS

This chapter is concerned with a brief discussion of

the governing equations for the noise radiated from a jet

in the presence of a crossflow. It introduces the equation

relating the Sound field with the turbulent fluctuations

inside the jet as derived by Cole (1972). This equation is

then simplified to a form similar to the equation first

presented by Proudman (1952) in the case of the free jet, and

used afterwards to discuss the noise intenc.,ty in the radiation

field. It is further shown how the intensity of the noise

produced by the jet may be obtained when the radiation field

4
is a reverberant environment, as usually occurs inside the	 V

test section of a wind tunnel.

The system of coordinates to be used is shown in figure 1.

The vector x defines the position of a point outside the jet

flow, while Y is the position vector of a point inside the

noise producing region of the jet.

3.1 Equation of Sound Generation in a Uniformly Moving Medium

In light of the proposed investigation of some aspects of

`	 the noise generation of a jet in a cross stream, it is
r

appropriate to set up the basic equation for the sound generation

for such a case in a form analogous to that of sound propagation

in an initially uniformly moving medium owing to a distribution

of acoustic sources.

-14-



In a fluid medium the equation for conservation of mass

is written as:

F'-
aP u

+ ^ 
i = 0	 (3.1)

i

and the equation for conservation of momentum, in the absence

of external forces acting on the fluid, is expressed by:

)Pu i 	aPuiu	 + aTi	 _ —
	

U

at + Mj	 bXi	 BXj

In these equations, p is the density of the fluid, u  is

the component of fluid velocity in the i direction, p is

the fluid pressure which is associated with other fluid variables

through thermodynamic relations, and 
Tij 

is the viscous stress

tensor. Equations 3.1 and 3.2 can be combined to give:

2
^- a2 a -2 = ^	 [Puiu j + (p - a2P) 6 i i - Tij ] (3.3)

at	 BCxi	 i j

where 6i9 is the Kronecker delta. observe th:,t equation j.3

is an exact equation of fluid motion. It is valid, without

restrictions, in any region of the flow. In the particular case

of a finite turbulent airflow surrounded by an infinite fluid

medium moving uniformly with a constant veloC ty U.0 in the

positive x2 direction (see Fig. 1), equation 3.3 can be

rewritten, as shown by Cele (1972), in the following approximate

(3.2)

V

-15-



form:

2

bP- 
a^	 + 2U .^-^-- + U 2 2Z-12= a--	 (3.4)

at	 axi	

eo 6X2 
at00 

3x2	
axiaxj

where a0 is the sound speed of the acoustic moving medium

outside the turbulent region, and Tij =pu iuj +(p-a
op)6 ij rij

is the well known Lighthill stress tensor. The left hand

side of equation 3.4, due to acoustic linearizations made in

its derivation, is valid only in the unformly moving medium
2

outside the turbulent airflow. The two terms U^ a and

UCO	
are the only part of	 which is non-negligible

2	 1
in the moving medium. Inside the turbulent airflow, however,

a2Ti
the term	 which is shown in the right-hand side of

bxxiO j
equation 3.4 remains intact, without linearizations, and

represents the distribution of acoustic sources. The mentioned

equation shows that outside the turbulent airflow the density

satisfies the equation of sound propagation for a uniformly

moving medium:

	

22	 2	 2 2
P_ a 

2	
+ 2U .a P + U -L = 0

'	 at 	 0 ax 	

CO ax2 at	

CO bx2

and the density disturbances, which were produced by the
a2T

forcing term ax ii xj within the turbulent airflow, are propagated

acoustically.

Formal Representation of the Solution. The solution of equation

3.4 is fully discussed by Cole (1972). The density disturbance

-16-



in the uniformly moving medium outside the turbulent airflow

is given by:

1	 a2	 ff 
	 Tij(Y't1)

P' (X, t)	 4"0 Mi ax Vy 	[ (1-M2) Ix-y +M2 (x2 -y2) 2, 2
 CO

6(t'-t+ a ) dt day
	

(3.5)
0

where V  is the volume of the turbulent airflow, the jet flow
U

in the particular case of this report, M 2 - aaM- is the Mach
0

number of the crossflow, and 
a 

is the time the radiated sound
0

rakes to go from each point within the jet to a position x

in the surrounding medium.a is a delayed time in the sense
0

that a particular perturbation arriving at x at time t was

produced inside the jet at an earlier time t a . Cole (1972)
0

also shows that the value of R is given by:

R _ L ( 1 -M2) ^x-y, + M2 (x2 -y2
) 2 ] 1 /2 

- ML (x2-y2)	
(3.6)

(1-M2)

Equation 3.5 is the formal solution for the acoustic

perturbations produced by a turbulent jet .flow issuing into

an infinite, unbounded, uniformly moving medium.

Approximate Forms. In jet noise problems the radiation field

is usually defined by `x) being much larger than tie dimensions

of the jet and also larger than (2rr) -1 times a typical

acoustic wave length. If the Mach number of the moving medium

is small (M2 «1), the value of p'(x,t) in the radiation

-17-
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field is given by Cole (1972) in the following approximate

form;

	

• x x^	
M^	 -M^•F`'(xt)^ 4TTa

1 x	 ' ,'	 i
12
	 I°I xi

Y	

bj2	 I^I xj a i2 + r12bi2gj2,
o ""	 V	 cc	 I x'

	

a2 l i
j 
(1,t')	 R	 3

	

2	
V t' -t+ $) dt'd	 (3,7)

at	
o 

In turbulent cold jets at low Mach numbers where heating or

coaling is caused only by friction or by rapid acceleration, and

if it is assumed that viscosity effects can be neglected,

Lighthill (1952) shows that the stress tensor can be approximated

in the following form:

y	
Ti j	 i ouiu j	 (3.8)

where 
p0 

is th ,:i undisturbed density of the surrounding medium.

With this approximation for T ij equation 3.7 may be rewritten

as:

o	 , x 
i 

x .	
M2	 _ M2 	 2

f (X,t)y 417a 
	 V'CO

L_X 2 7F x
is j2 7 xj s i2 + M2s126j2)^_x ^	 y	 ^_I

a i j2Y't) 6(t' - t+aj) dt'd 3^	 (3.9)
at	 o

For a free jet, where M2=0, the only term which survives
x,x,	 a2u u

inside the integral is	 1 2 ^	 proudman (1952) was

^ X ^	 at
the first one to notice that this term can be simplified in

to

-18-
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the following way:

xix 
a2ui 

u

► x
► 2 	 at 

	

2 xix	 _ a2ua7 C__2	 uiu	
x] _

at	
12S 1 2 	 at 

2

where u
x 

is the component of the instantaneous velocity within.

the jet in the direction of the observer located at the point

defined by the position vector x . The same procedure

followed by Proudman ( 1952) can be applied to the three other

terms in equation 3.9 to give:

M4.4. ^._	 _

1=1 xibj2 at 	 uiuj

	
at 

M 
2 
u 
x 

u 
2

M	 2	 22 
_ 7 x j ai2 a 2 i1iu j 

_t2 M2u2ux

and,

2	 _ a2 2 2M2 b i2bj2 at 	 u iu j	 at  M2u2

where u2 is the component of the instantaneous velocity

within the jet in the positive x2 direction, that is, parallel

to the crossflow. From the simplifications just obtained,

the four terms inside the integral of equation 3.9 can be

rewritten as:

x x	 M	 M	 2
[ ►X►2 '7 ^cigj2 - T	 xjbi2 + M2bi2bj2 ]	 2 uiuj =

at

to
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_ -	 u2 - 2M2u2ux + M2u 2] 	 ^ C(ux - M2u2)2)
	

(3.10)

at	 at

If a velocity v 	 is defined as

vx = u  - M 
2 
u 
2
	 (3.11)

equation 3.9 can be expressed in a more compact form by:

p ' (xt)°`	 4 
F10 

	2 v2 (y, t ') b( t ' -t+ ) dt' d3y	 (3.12)
4tra0 `El	

V Y 
CO
	 o

Acoustic Pressure and Intensity. In the radiation field the

sound waves can be taken locally as plane waves and the relation

p'=a2 :' applied. The equation for the acoustic pressure per-
0

turbations is then obtained from equation 3.12 and written as:
0

lid	

r

p'(?t't)	 20	 22 v
x (y^t') b(t' -t+ 

a 
)dt'd	 (3.13)

4rao Ix I	
V
Y - 

at	 o

Equation 3.13 shows that the sound pressure at x in the

radiation field at a time t is given by the integral over the

jet volume of the second time derivative of the quantity v2

calculated at the earlier time t- 
a	

The velocity vx,
0

defined by equation 3.11, is called hereafter the instantaneous

compounded velocity of the jet in the direction of the observer.

It is composed of the product of the crossflow Mach number M2

by the instantaneous jet velocity in the x 2 direction sub-

tracted from the instantaneous velocity of the jet in the

direction of the observer. The sound pressure as given by

-20-



equation 3.13 is in a form which is very similar to the equation

derived by Proudman ( 1952) in the case of a free jet, and it

actually reduces to Proudman ' s equation when the Mach number

of the crossflow is zero.

One useful quantity often measured in the radiation field

is the sound intensity which is defined as the flux of acoustic

energy per unit area normal to the direction of propagation.

In a moving medium the acoustic intensity vector is defined by

the following equation:

z (x)

	

	
CP'(s,t)] 2

 (M + n)	 (3.14)
P

o 
a
0

where M is the Mach number vector of the moving medium, n

is a unit vector perpendicular to the acoustic wave front, and

[p'(x,t)] 
2	

is the mean square value of the acoustic pressure, 	 t,

with the overbar indicating time average. if the Mach number

of the moving medium is small enough, the value of M in

equation 3.14 can be neglected and the sound intensity may be

expressed by the following approximate form:

I(x) s C P' 4, t) ]2	 (3.15)P
0 

a 0

The value of the acoustic pressure given by equation 3.13

substituted in equation 3.15 gives
^

P	
2v2	 a2v2

I(X)^	 °	 fff  x (Y, t )	 x (Z, t ) 8(t -t+a)6(t -trz)2 5	 2	 2	 1	 2— 2	 1 a	 2 a
16rr a I x	 yI	 V :' W m at 1

	
at 	 0	 0o — 

dtIdt2d3zd3y	 (3.16)
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where y and z are position vectors inside the turbulent

flow, R 	 is given by equation 3.6, and R  is obtained from

equation 3.6 by substituting z and z 2 respectively for y

and y2.

Ffowcs Williams (1963) shows that if the turbulence is

a stationary function of time, the averaged value in the integrand

can be written as

a2v2
	a 2 

v 
2
	 4

at2x 
(y,tl) 

at 2x (^,
t 2) _	 4 R 

v 
2 
v 
2 (y, z ; r)

l	
2	 x x

where, the cross correlation function of the velocity is given

by

Rv2v2 (y,z;7^ = vx(y,t l)vX (z,t l+T) = vX(y,0) vX(z,r)
x x

the second equality applying for stationary processes. Equation

3.16 can then be rewritten as

 R	 R
I(x) =	 2	 fff4- R 2 2(y,z;r) 6(t -t-^abt +r-t-^-Zl

16na5 x 2 V V CO mvxvx	 \ 1	 o/ \ 1	 a0

	

0 I_ ^	 y z	 a

dt, dr d 3z d3y

which gives after integration with respect to t 

I(x)-.	 P°5	 2 fff--^% R 2 2 ( ,y,1 ;7) 6( 7- 7>, ) dr d 3z d 3y (3.17)
16n2a 0 ^x^	 Vy V z	.6T vxvx

where
R - R

y	 z
a

te

0
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The acoustic intensity in the radiation field depends on

the fourth derivative with respect to time of the cross
R -R

correlation function Rv2V2 (^ Z,T) at the time Teti= —y-- Z

Equation 3.17 gives the value of the acoustic intensity in

the radiation field as a function of measurable quantities

within the jet. The cross correlation Rv2v 2 have a higher

degree of complexity than the corresponding cross-correlation

R u2 u2 of the free jet because vx , as defined by equation 3.11,
x x

is the combination of two velocities ux-M2u2'

3.2 Measurement of Acoustic Intensity in a Reverberant Environment

The most common way to obtain the sound intensity in the

radiation field is by using a microphone located at the point

of interest. The response of the microphone to the pressure

fluctuations can be read through a meter which gives the mean

square value of the acoustic pressure detected by the microphone,

F	 and the intensity is then calculated by using equation 3.15.

In the absence of reflections or other sources of sound

besides the jet itself, as usually happens inside an anechoic

chamber, the total acoustic pressure measured by the microphone,

p'(x,t), will be the same as the acoustic pressure produced
m

by the jet and radiated directly to the point x, p'(x,t)• In

this case, the following equality can be written:

Rpmpm (x; 0) = Rpp (x; 0)	 (3.18)

where Rpp (x;0) = p'(x,t) p'(2S,t+0) is the mean square value,

to

-23-
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or the autocorrelation with zero time delay, of the acoustic

pressure produced by the jet and radiated directly to x, and

R	 (x,0) = pm(x,t)pm(x,t+0)	 is the measured mean square
Pmpm

value of the acoustic pressure detected by the microphone.

in the presence of reflections, as inside a reverberant

room where the noise radiated from the jet is reflected by th-e

walls, the total acoustic pressure detected by a microphone at

x is given by the following expression:

p I  (X, t )	 P' (X, t) + Pr (X, t)
	

(3.19)

where p'(x,t) is still the acoustic pressure produced by

the jet and radiated directly to the point x,, pr (x,t) is
k

the acoustic pressure at x caused by the jet noise reflected

from the walls, and pm(x,t) is the total acoustic pressure

measured at x. The mean square value of equation 3.19 can

be written as:

RPPM
 (x; 0) = Rpp (x;0) + Rp 

P 
(x; 0)	 (3.20)

M 	 r r

where R	 (x;0) = pr(x,t) pr(x;t+0) is the mean square
Prpr —

value of the acoustic pressure due to the reflections; R
PP

and R	 have been already defined after equation 3.18.
Pmpm

The cross cor elation R pp (x,x;0) = p'(x,t) pr(x,t+0),
r

which should also appear in equation 3.20, is actually equal

to zero because p'(x,t) is uncorrelated with any reflection

-24-
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at zero time delay; Rppr may have a value different from

zero at some time delay r, T > 0, corresponding to the time

the acoustic wave takes to go from x to a reflecting surface

and come back to x again.

In equation 3.20, the term R	 (x;0) represents aprpr —

substantial contribution to the mean square of the measured

acoustic pressure, and because it is unknown, the mean square

of the acoustic pressure produced by the jet and radiated directly

to a point	
PP (x_

x, R	 ;0), cannot be determined. Hence, the_ 

acoustic intensity of the directly radiated jet noise (without

the effect of reflections) cannot be obtained in a reverberant

room by the conventional method of using one microphone for

the measurement.

Acoustic Intensity by Two Microphone Cross Correlations. The

mean square value of the acoustic pressure produced by a jet

and radiated directly to a point in the radiation field inside

a reverberant environment can be obtained, with a good approxima-

tion, by cross-correlating the response from two microphones.

This is a new method related to jet noise measurements which

will be discussed with the equations of the jet in the cross-

flow for more generality, but that is also valid for the case

of the free jet as well.

^r
When other sources of
hand side of equation

representing the mean
by the other sources.

problem since its vale
the background noise,

sound are present in the room, the right-
3.20 does have another term, R	 ,

square of the pressure disturbances caused
However, R  PS , is not a part of the

ae can be easilydetermined by measuring
i.e., the noise with the jet turned off.
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Take two microphones at two different points, in the

radiation field, defined by the position vectors x  and x2.

The vectors x  and x2 have the same direction and Ix2 1>lxl,.

Also define a particular time T^ equal to the time which a+

wave front, coming directly from the jet, takes to go from

x  to x2.

The instantaneous response of the two microphones to the

total acoustic pressure at x  and at x2 is obtained from

equation 3.19 and given by:

pm(x l ,t) = p'(x l ,t) + pr(x l ,t) at xl

and

pm(x2,t) = p'(x2 ,t) + pr(x2 t) at
'

	x2.

The cross correlation of these

delay T^ previously defined c,

forms

R	 (x ,x ;T') = R (x ,x ;T''
pmpm 1 2	 pp 1 2

two pressures with the time 	 (r

in be written in the following

+ R
P
 p (xl ,x2 ;T')	 (3.21)
r r

The cross correlations Rppr (xl ,x2 ;T') and Rprp(xl,x2;T')

which should also appear in equation 3.21 are both zero at

the particular value of the time delay T' under consideration.

The only part of pr which contributes to the cross correlations

Rpp and Rpp is the reflection of the acoustic pressure
r	 r

produced by the jet and radiated in the direction of x l . In

the case of Rpp (x l
,)

2 ;T) it is zero because p'(x l ,t) is well
r

-26-
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correlated with its own reflection at x 2 only at a time delay

T , different from T' , corresponding to the time the acoustic

wave front takes to go from x 	 to a reflecting surface and

return to x 2 . The other correlation Rp P (xi , x2 ; T) is

	

_.	 r -..- —
actually zero for any positive value of the time delay T because

the sound perturbations emitted from the jet in the direction xi

always arrives at x 2 before any reflection of this same sound

arrives at x l .

The first term in the right -hand side of equation 3.21, the

cross-correlation Rpp (XIS x2 ; T') , can be written as

RPP (W, x; T')	 p'(xl, t) P'( x 2 , t + T')	 (3.22)

The pressure perturbations p'(x l , t) and p'(x 2 , t + T') are

both obtained from equation 3.13 and expressed in the foll:wing

form:	
a2v 2

	

p ' (xl, t )	 20	 ff 	 2xl (y,t') b t'-t+ el ^dt'd 3y	 (3.23)
4Tra 1 1x 1 1 Vm at	 `	 0

y
and	 a2 2

vx	 R
p+(x2,t-K')	 20	 t	 2 2 (y, t') 6^t'-t-T ` + a?

1 
dt'd 3y (3.24)

4rra 0 lx IV CO at	 0
y

The combination of equations 3.22, 3.23, and 3.24 gives

	2 	 32  2	 b 2 2x	 x
Rpp (— 2,T`) y	

2p4	 f fif 	 2 1 (Y,tl)	 2 2 (?,t2)16rr a0 xl 1 x2 v v m	 at l 	at2
--- y z

6 tl-t+ a— y 6^t2-t -T'+ a2z 
/ 

dt ldt 2d 3 zd 3y	 (3.25)
C	 0	 0 J

!,
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The same steps already used for the derivation of equation 3.17

from equation 3.16 can be repeated to show how equation 3.25 is

	

1!	 transformed to give:

2

	

p0( 'r ( 34	 2 2
Rpp (x l' x 2' T ^ ) 	4	 `	 4 

Rv 
v	 (y,?;T)16TT`a 0 I x l I x2 )	 V I 	 a'1'	 xl x2

-- X2 Y z

6
 (

7. - a—.Y + a 2z - T'
J
 dTd 3 zd 3y	 (3.26)

	

 0	 0

In this equation, x  and x 2 have been previously defined as

being in the same direction and representing the position vectors of

two points in the radiation field such that Ix 1 I »,zI and I x 2 I » Iz1

The time T' has also been characterized as the particular time in

	

ti	 which a same sound disturbance travels from position x 	 to position

x 2 in the direction of x 	 to x2	In light of these definitions

the cross-correlation R  2 v 2 in the integrand of equation 3.26 may
xl x2	 R 2z

be rewritten as Rv 
2v 2	 , and the retarded time a	 - T' in the

	

x l x l 	0

delta function of the same equation may he approximated, for all

practical applications, by alz
	

The discussed modifications in
0

the appropriate places in equation 3.26 give:

2
4

' TRpp(xl'X2') 
s	

2 4 0 	a 4 Ry 2v 2 (y,?iT)
1617 a Ix I I x I^1 )	 aT	 x xl

0 1	 2 y z	 1

6 CT - -Y + lz ! 
dTd3s_d3Y	 (3.27)

0	 0 /

The expression for the mean square value of the acoustic pressure
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at x 	 can be obtained from equations 3.15 and 3.17 and expressed

as:

4
R (x ;0) a°	

p ?_0	

4

a	 R 2 2 
Q,z;'T)

PP 1	 216TTa0Ix 1 ^ 2 	aT	 vxlvx1
_.	 y z

-y + lz 1 
d7d 3z d 3Y	 (3.28)a	 a

0	 0 1

Equation (3.27) can now be compared to equation (3.28) to give:

1 x1

RPP (Xl ' x?' T
	^ Rpp(x1;0)

2

which substituted back in equation 3.21 provides the following

expression to be written:

,x1l

RPmpm 
( xV x2 ,T')	 Rpp(x1 ; 0) + Rp p (x l 9 x2 ;T')	 ( 3.29)

	

--	 x2 --	 --

In this last equation, the cross -correlation R
p	 (x 1 )x 2 ;T')
r

p
 r

represents a very small fraction of the total reflected noise.

I. Observe that in a reverberant environment the reflected waves

propagate in all directions without preference. The pressure

perturbations of the reflected noise, pr(x l ,t) and pr(x2,t)

are such that the mean square values R	 (x1;0) and R	 (x2;0)
P rpr —	 PrPx

are  very important in a reverberant environment because each one of

them is the representation of the total reflected noise at each

point x 1 and x2 . However, in the cross-correlation

R	 (xl,x2;T')	 the only part of pr (x2 ,t) that correlates
Prpr —	 —
with pr (x l ,t) is the fraction of pr (xi, t) which propogoLes

-29-

I



I

from x1 to x2 in the direction of x 1 to x2 . Therefore it

is not unreasonable to assume that R  p (x1 ,x2 ;T') is negligible
r r --

in comparison to R (x 1 ;0) . In view of this assumption, equation
pp —

3.29 may be rewritten in the following approximate form:

î..x2^.
Rpp(xli0)	

{x l 
R	 (x1,x2;T') (3.30)

M.

This equation shows how to obtain the mean square value of the acoustic

pressure (and consequently the acoustic intensity) produced by the jet

and radiated to the far field, by measuring the total acoustic

pressure with microphones conveniently located at two different

points x1 and x2 and then cross-correlating the response of

these two microphones with a particular value for the time delay T' .

Experimental results, later shown in this report, seem to confirm that

the term Rp p (x 1 ,x2 ;T') neglected in equation 3.30 by some
r 	 —

Intuitive arguments is actually very small

In the presence of other sources of sound it can be shown that the
right-hand side of equation 3.29 does have another term,
R  p (x1 ,x2 ;T') , representing the cross-correlation of the pressure

s s — —
perturbations caused by the other sources. The value of R  p will

usually be negligible, unless some of the sources are locate8 
s 

on
the same line that gasses through x 1 and x2 , emitting sound
which propagates if.z:o the direction--- 	 — of x 	 to x2
However, in any case, Rp p	 is not considered as part of the

S S

problem since its valLIC can easily be determined by measuring the
cross-correlation with the jet turned off.

t,
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IV EXPERIMENTAL APPARATUS, INSTRUMENTATION AND PROCEDURES

4.1 Preliminary Considerations

To have the appropriate conditions for the investigation, a

subsonic jet is exhausted frora a circular orifice located on the

surface of a symmetric airfoil into a perpendicular cross stream

inside the test section of a wind tunnel. A general view of the

test section is presented in Figure 2. The jet is 1.5 inches in

diameter and has a fixed velocity at the exit corresponding to a

Mach number of .58 and a Reynolds number equal to 520,000. The

crossflow velocity provided by the uniform stream of the wind

tunnel is varied to change the value of the parameter r repre-

sensing the ratio of the jet velocity oy the cross stream velocity.

}
Five different values of r have been used during the test: r =

(free jet), 9.4, 7.5, 5.6, and 3.7 . The range of Reynolds numbers

of the cross stream is from 55.000 to 141.000, based on the jet

v.
diameter. The turbulent measurements have been performed inside

the plane of symmetry of the jet by using a linearized constant

temperature hot wire anemometer, while the acoustic measurements

have been obtained five feet away from the jet orifice with micro-

phones equipped witi: nose cones. The experiment is divided in two

parts, each one corresponding to a different period of testing. In

the first part of the experiment the jet ha§ been surveyed for

distributions of mean and turbulent velocities. In the second part,

the turbulent component of the velocity has been frequency analyzed

at different points inside the jet and the acoustic intensity in the
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radiation field has been measured.

A comparison of the flow parameters for some experimental

ST01. research aircraft with the parameters which have been used

In the present investigation is shown in Table 4.1. The data

and a detailed description of each wing type mentioned in that

'fable have been presented by Galen Hu, Fliigge-l,otz, and Karamclieti

(1971).

14 ng Jet Angle Vol. Ratio Jet Speed Aircraft
Type fps Model

Au61nentor 200 3.3 320 UNC -5

to to
'1o0 1.4

lift - fan 450 10.0 300 Ryan
to to to XV -5

goo 1.4 520

Adam 30`' 10.0 Proposed
to to 520 research

goo 2.5 aircraft

Present
900 9.4 Present

Investigation to 620 Investi-

3 .7 ga tion

'fable 4.1 Summary of flow Parameters for Some Experimental STOL
A;.rcrat'ts and Present Investigation.

4.2 'Pest Apparatus

The experimental apparatus consisted of a circular jet issuing

perpendicularly from the upper surface of a symmetrical airfoil

located inside the test section of a wind tunnel.

Wind '.Gunnel. The wind tunnel is a closed circuit tunnel located

at NASA-Ames Research Center in Noffett field, California, and
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operated by the Large Scale Aerodynamics Group of that Organization.

The tunnel velocity in the test section can be continuously varied

from 0 to approximately 290 ft/sec. During the test the velocity

was always kept below 180 ft/sec. The test section is 7 ft. high

by 10 ft. wide by 14 ft. long.

Air Jet System. The jet system is shown in Figure 3. It consists

essentially of a manual valve, an electrical valve, a muffler, a

plenum chamber, and a convergent nozzle. The electrical valve is

remotely controlled to adjust the desired velocity of the jet. The

plenum chamber is connected to the nozzle through a circular pipe

with a diameter of 4.125 inches. The nozzle is 12 inches long,

4.125 inches in diameter at the beginning of the convergent part,

and 1.5 inches in diameter at the exit orifice; it is the only part

of the air jet system that stays inside the test section. The air

is supplied by a line connected to a central system that also

provides high pressure air for other facilities at Ames.

Airfoil. Figure 4 shows the airfoil inside the test section. It

is made of aluminum with dimensions as shown in Figure 5. The jet

exit is fitted with a circular orifice at the center of the airfoil

in a section where the surface is flat. This provides the end of

the jet nozzle to be flush with the airfoil upper surface. The

distance from the airfoil lower surface to the wind tunnel floor is

10-7/8 inches. A circular cylinder, involving the jet nozzle,

supports the airfoil. This support is not seen in Figure 4 because

it is surrounded by an aerodynamically shaped surface for less

L-
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disturbance of the wind tunnel flow.

In the first part of the test, when mean velocity and turbulent

intensity profiles in the central plane of the jet were obtained, a

different airfoil was used. It was made of wood instead of aluminum

with a chord length of 12 inches. The dimension in the spanwise

direction was 24 inches, the same as in the aluminum airfoil. The

wood airfoil also had a flat central section with no discontinuities

between its upper surface and the end of the jet nozzle.

4.3 Instrumentation

A schematic diagram of the instrumentation used for the data

acquisition and for the data processing is shown in Figures 6a and

6b respectively.

Hot Wire Equipment. The hot wire anemometer used for the experiment	
k

was a DISA 55D01 Constant Temperature Anemometer together with a

DISA 55D10 Linearizer. The output voltage of the Linearizer consists

of a fluctuating component superposed to a mean component. The

fluctuating component was measured by a DISA 55D35 True RMS Meter,

and the me-.in component was measured by a DISA 55D30 DC Voltmeter.

In the second part of the experiment the fluctuating component was

measured by a Hewlett Packard 3400A True RMS Meter.

A hot wire probe DISA 55A22 Straight General-Purpose Probe

together with a DISA 55A27 Right-Angle Adapter were connected to a

DISA 55A20 Probe Support. The Probe Support was attached to a DISA

55H01 Traversing Mechanism which was driven by a DISA 51C01 Stepper

Motor. This motor was controlled by a DISA 52B01 Sweep Drive Unit
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located outside the tunnel test section. The DISA traversing

mechanism allows the hot wire to be remotely moved and positioned

in the x2 direction (see Figure 1 for coordinate system). A

strong metallic structure connected the DISA traversing mechanism

to the wind tunnel airfoil shaped traversing mechanism, which was

also remotely controlled permitting the whole assemblage of hot

wire probes and supports to be moved and positioned in the x 

and x2 directions. See Figures 2, 4. and 7 for position and

connections pertaining to the hot wire probe and traversing

mechanisms.

Microphone System. Four microphones placed at different positions

in the radiation field were used for measuring the instantaneous 	
k

acoustic pressure. The microphones were B & K Type 4133 1/2 inch

Condenser Microphone with Nose Cone UA 0052 and B & K Type 2615

Cathode Follower. The power supply for the microphones was provided

by a Mic Box B & K Model 321. The calibration of the microphones

was performed with a B & K 4220 Pistonphone.

The four microphones were arranged in three different dispositions.

In disposition number 1 the four microphones were all located in the

plane formed by the coordinate axis xl and x2 . The position of

each microphone in this first arrangement is shown in Figure 8. In

disposition number 2 the four microphones were placed around the jet

as defined by Figure 9. The distance from the jet exit to each micro-

phone was approximately five feet. The four microphones were numbered
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from 2 to 5 for a better identification of each microphone with the

corresponding channel of the tape recorder. In disposition number

3, only two microphones were used. The microphone number 2 remained

in the same location already shown by Figure 9 while the microphone

number 3 was changed to a new point, approximately six feet away from

the jet exit, defined in Figure 10.

Related Instrumentation. The instantaneous responses of the hot wire

system, with the mean component removed, and of the four microphones

were simultaneously recorded in an Ampex FR 1300 Tape Recorder. The

recording was in FM with a speed of 60 inches per second, Extended

Mode, which gives a frequency response in the range of 0 to 20 kHz

The hot wore signal was always recorded in channel number 1, while the

four microphone signals were recorded in channels 2 to 5, each channel

corresponding to the microphone labeled with the same number.

The DC component of the hot wire system was removed prior to

the recording by a KROHN-HITE model 3322 High Pass Filter with the

low cut off frequency adjusted to 1 Hz.

The recording was constantly monitored through a Tektronix type

502 Dual Beam Oscilloscope.

During the data processing phase of the experiment the tapes were

reproduced part by an Ampex FR 1300 Tape Recorder and part by a

Honeywell 5600 Tape Recorder.

Third-octave-band frequency analysis of the hot wire and micro-

phones signals were obtained with a B & K 2113 Audio Frequency

Spectrometer. The analyses were recorded automatically on frequency
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calibrated paper by a B & K 2305 Level Recorder connected to the

Frequency Spectrometer.

A Hewlett-Packard Model 3721A Correlator was used for measuring

cross-correlations. This correlator is essentially a digital

instrument that simultaneously computes and displays 100 points of

either	 probability, an auto-correlation, or a cross-correlation

function. When computing correlation functions, the total time

delay interval of the correlator can be adjusted up to 100 sec.

4.4 Test Procedure

This section is concerned with the adjustment of the jet and

tunnel velocities, the calibration of the measuring instruments, and

the techniques related to the acquisition and processing of experimental

data.

The Air Jet. The local Mach number of the jet can be determined from

the following isentropic expressions:

IG—)
v	 ,

Me =	
v2 1  [(!Oe 
	 (4.1)

e 

where v is the ratio of specific heats (y = 1.4 for air), p 0 is

the total pressure, p is the static pressure, M e is the local

Mach number, and the subscript a stands for the jet exit. Since

the total pressure at the jet exit would not be measured during the

experiment, a few tests were initially performed to determine the

correspondence of this pressure with the pressure measured at the

plenum chamber. The jet was run at different Mach numbers under

fe
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free conditions. The pressure pOe was measured by a total pressure

probe located at the jet exit. The result of this measurement was

read by a differential manometer which gives the excess of the total

pressure with respect to the atmospheric pressure, or

A 
POe — POe - P	 (4.2)

In equation 4..2, pCO represents the ambient pressure at the place

where the manometer is located ( the control room). The plenum

pressure was measured by a pressure tap located in the plenum

chamber wall. The value of this measurement, also read by a

differential manometer, may be represented by the following expression:

APc = Pc - P.	 (4.3)

where pc is the pressure in the plenum chamber. The values of

ApOe and 
Apc 

corresponding to the different jet velocities were

then plotted in a curve as shown in Figure 11. In equation 4.1,

the static pressure p 	 is assumed to be equal to the ambient

pressure, p. , of the medium surrounding the jet (usually P C. = p").

Since the values of Me obtained from equation 4.1 with POe

differ by less than 1% from the values of Me obtained with pc

the plenum pressure has been used afterwards for the calculation of

the jet Mach number. Equation 4.1 can then be rewritten in the

following form:

y_1

M =	
2	 P^ + APc	

y - 1
e	 y_1	 (4.4)

P.

Equation 4.4 was also used to calculate the value of Ap
c 

necessary

k
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for running the jet at a pre -determined Mach number. The jet
1

velocity can be obtained from this last equation by noticing that

a

U j = Mea e = Meap
e	(4.5)
0

where a 	 and a 	 are the sbu d speeds at the jet exit and at

the plenum chamber, respectively. The isentropic expression for

a 	 is substituted in equation 4.5 to give
a0

-1/2

U j = MeaU 1 + ^ Me	 (4.6)

Equations 4.4 and 4.6 were used to calculate the velocity of the free

jet, with a 	 being equal to its standard value at sea level (1116 fps).

Hot Wire. The role of the linearize'r in the hot wire system is

briefly explained in Appendix A. For the case of a hot wire probe

located at the exit of a subsonic cold jet, the output voltage of

the linearizes may be expressed by either of the following equations:

VLIN K
1 pmU j 1 + ^ M2]	 (4.7)

or

__	 v-1 2 1/2

VLIN	 K1 pOOa 0Me 	1 + 2 Me	 (4.8)

The hot wire system was calibrated with the wire located inside

the potential core of the free jet close to the jet exit. The jet

te

was run at different velocities (up to a velocity corresponding to

Me = . 6) , while the controls of the linearizer were adjusted for the

best fit of a straight line representing an approximation of equation 4.7

given by the following form:

OLIN ^ Kl p^U 1	 (4.9)
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In the second part of the experiment, when the hot wire signal

was used for frequency analysis, the hot wire system was calibrated

for the best fit of a straight line representing

VLIN y K
1 p,,a 0Me	(4.10)

This last equation is an approximate form of equation 4.8. The

adjustment of the linearizer controls seems to be easier to obtain

when VLIN is plotted as a linear function of Me instead of Uj .

This can be explained by noticing that the output voltage of the

linearizer is better approximated by equation 4.10 than by equacion

4.9.

The calibration of the hot wire system was briefly checked before

and after each run. A complete calibration was always done when-

ever a sensor was replaced due to failure.

In all measurements involving hot wire, the sensor was located

in the plane of symmetry of the jet (plane defined by the coordinate

axis x  and x 2) with its axis parallel to the direction defined

by the coordinate axis x 3 . It has been assumed that in the plane

of symmetry the mean velocity of the jet in the direction x 3 is

always zero. Therefore, the DC component of the hot wire corresponds

to the mean speed in the plane x lx2 independent of its direction,

while the fluctuating part of the hot wire signal corresponds to the

component of turbulence in the direction of the mean velocity.

The Wind Tunnel Flow and its Effect on the Jet Velocitv. The

dynamic pressure q. of the wing tunnel flow is m3asured by a

pitot static probe located inside the test section in a region not

te
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disturbed by the jet. The tunnel velocity U., can be calculated

from the equation relating the dynamic pressure with the velocity,

2
qc, = 

1
2 P^,UCO

by assuming the density to be equal to its standard value at sea

level (2.377 X 10 -3 lb sec 2 /ft 4 ). The tunnel was run at four

different values of qm (5.3, 8.4, 14.8, and 33.4 lb/ft 2 ) while

the jet Mach number was kept constant at M e = .58 during the

tests involving the jet in the crossflow.

A certain amount of blockage of the jet flow caused by the

cross stream seems to exist. This effect is noticed by the decrease

of the output voltage of the hot wire system, with the sensor

located at the center of the jet orifice, whenever the tunnel is

4
turned on. In order to return the reading of the hot wire to the

same value indicated before, when the jet was in free conditions, it

is necessary to increase the pressure in the plenum chamber by a

substantial amount. A reverse effect is observed when the tunnel

is turned off. A pre-test was performed to verify the influence of

the different values of q. on other parameters related to the flow.

In this pre-test the hot wire sensor was placed at the center of the

jet orifice and the following sequence was executed:

a - Turn jet on. Adjust Ap c to desired value of M e .

b - Check the voltage of the hot wire system with calibration
curve.

c - Turn tunnel on to the desired value of q. .

d - Increase Ap	 until the hot wire voltage goes back to
the same value shown after step b .
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The result of this pre-test is presented below in Table 4.2.

qc, qm Opc

p"0

Me U2

(lb/ft	 ) (in.	 Hg) (in,	 Hg) (in.	 Hg) (By Hot Wire)
r

U

0 0 7.6 30.02 .58

5.3 .075 7.6 29.95 .53

5.3 .075 9.3 -- .58 9.4

8.4 .119 7.6 29.92 .53

8.4 .119 9.5 -- .58 7.5

C
14.8 .209 7.6 29.84 .53

14.8 .209 9.6 -- .58 5.6

33.4 .472 7.6 29.63 .53

33.4 .472 9.7 .58 3.7

Table 4.2 Effect of q. on Other Parameters Related to the Jet Flow.

Since the hot wire system had been carefully calibrated, it was 	 4

decided to rely on the hot wire reading for the adjustment of the

jet Mach number whenever the jet was in the presence of a crossflow.

Therefore, before each run, the hot wire sensor was located at the

center of the jet orifice and the pre-test sequence was followed to

adjust the plenum pressure. After this procedure. the hot wire probe

was then remotely moved to the required position for that particular

run. In the acoustic measurements, where the hot wire probe was not

present, the plenum pressure was adjusted for the values of Apc

given by Table 4.2,

Microphones. The microphones were individually calibrated with a

pistonphone. The sound pressure level of the pistonphone is
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124 dB (ref. 2 X 10 -44bar). During the calibration the electrical

output of each microphone was adjustad to indicate a RMS value of

.5V (or 14dB ref..IV). The calibration was repeated before each

day of testing. The calibration signal of each microphone was

recorded in magnetic tape for reference during the data processing

phase of the experiment.

Data Acquisition. In the first part of the experiment, when the jet

was surveyed for distribution of mean velocity and turbulent inten-

sity, no tape recording was made. The data acquisition was performed

by a direct reading of the DC and RMS components of the ILOt wire

system corresponding to each different position occupied by the hot

wire sensor inside the jet. In the second part of the experiment,

both the hot wire and the microphones signals were tape recorded for

posterior processing. Before each recording, which was labeled with

an identifying number, the RMS value of the fluctuating component of

the hot wire signal and the gain of each one of th , microphones were

read and registered in the experiment log book.

Some vibrations of the hot wire probe were observed during the

experiment. Though they could be reduced by shortening the length

of the metallic structure which connects the hot wire supports to

the wind tunnel tr-versing mechanism, they could not be avoided as

a whole. When observed in the oscilloscope those vibrations were

apparently at frequencies much lower than the frequencies associated
i

with the velocity fluctuations inside the jet.
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Data Processing. During the data processing phase of the experiment

the output voltage of each channel of the tape recorder was checked

with reference values obtained during the data acquisition. The

RMS voltage of the channel corresponding to the hot wire signal was

compared with the RMS value of the fluctuating component of the hot

wire system registered in the experiment log book, and the output of

each channel corresponding to one microphone was compared with the

signal that had been recorded during the calibration of that micro-

phone with the pistonphone. The output voltage of each channel was

connected directly to the Frequency Spectrometer in those cases where

frequency analyses were desired. The signals from channels 2 and 3

of the tape recorder were fed directly to the two inputs of the

correlator for the calculation of the cross-correlation functions.
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V RESULTS AND DISCUSSION

This chapter is divided into three sections, each being

concerned with a particular group of experimental measurements.

The first section presents the results obtained with hot wire

anemometry mainly in the source flow region of the jet. The

second section deals with conventional sound measurements in the

radiation field, while the last section is concerned with the

measurement of sound intensity by the technique of two microphone

cross-correlations in the radiation field. Interpretations and

discussions are presented together with the data and are directed

towards assessing the effects of crossflow velocity.

5.1 Features of the flow Inside the Jet

The experimental investigation with hot wire is limited to the

plane of symmetry of the jet (plane x 
1 
x 2 ) in the source flow region

and in the very beginning of the transition region (see Figure lb).

The ratio r , of the jet and crossflow, velocities, used during the

tests assumes five different values. In all of them the jet velocity

is kept constant while the crossflow velocity is changed whenever th^^

value of r is to be modified.

Magnit ude of the Mean Velocity. The hot wire was placed at a fixed

vertical distance from the jet exit and then traversed in the direction

of the coordinate x 2 to measure the horizontal profile of the mean
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velocity across the jet. Several of these profiles were obtained

.;t dit'f--- ^,t vertical distances x l /D for all values of the ratio

r	 figure 121 shows these three typical horizontal distributions

of noun velocity normalized by the ,jet: velocity at the exit. 'The

\'o locity is low at the sides and increases toward a maximum at the

:outer of the jet. In the transi"Lon region, the maxinutm of the

volocity curve occurs at justt enle point which then a -ines the

center 'title of the jet. Closer to the jet exit, in We source

flaw region, the maximum of the mean velocity profile occurs at

various adjacent points x,, simultaneously, giving a flat shape

to the central part of the curve. That flat shaped section char-

acterizes the interior of the potential core where the mean velocity

is practically constant with a complete absence of shear in the

radial direction. When the jet is under free: conditions (r=m)

the velocity profiles are symmetrical with respect to the axis

x 
	 and the jet centerline coincides with that coordinate axis.

Due to the crossflow, the jet is pushed back into a curved trajectory

with different velocity distributions in tile. front and in the back

part of the cross section. lnside the potential. core, the flat

section of the me--ti velocity profile is stihhtly inclined, with

smaller velocities in the front part which is closer to the region

^a
As previously discussed in Chapter TV, the hot wire sensor
was positioned to measure the magnitude of the mean velocity
of the jet independent of its direction. Because it seems to
be a common practice in the literature, the term mean velocity
is also largely used in this report with the actual meaning of
mean speed.
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of impact of the crossflow with the jet. According to Abramovich

(1963), this small radial variation of velocity inside the potential

core is to be expected since the static pressure in the front part

of the jet is higher than in the back part due to the deceleration

of the crossflow. A schematic view of the mean velocity mapping in

the central plane of the jet is shown in Figures 13a to 13e, each

one representing a different value of r .

Mapping of the Jet -• External Boundaries and Potential Core. The

external limits of the jet are obtained from the mean velocity

profiles by the use of Keffer and Baines (1967) criterion which

defines the edge of the jet as the locus of points "where the

velocity excess above the external undisturbed flow (U-U.) , is

10% of the maximum excess (Um - U^) , at a given cross section."

The boundaries of the jet are represented by the external dashed

lines in Figures 13a to 13e. As observed by previous workers the

jet cross section is circular at the orifice and then evolves to a

horseshoe shape a few jet diameters away from the exit due to the

interaction with the cross stream. As the cross stream changes its

shape, more jet mass spreads to the sides, out of the central plane,

therefore reducing the dimensions of the jet in the plane of symmetry
i

This behavior is observed in Figures 13b to 13e by the gradual

approximation of the front and aft limits of the jet as the axial

distance from the exit increases.

I .

Lr
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The potential core is characterized by a flat distribution of

the mean velocity, its magnitude in the core being maximum at any

given cross section of the jet. The boundaries of the core are

taken as the loci of points where the mean velocity is 2% less than

the maximum velocity in the flat region. The limits of the potential

core are shown by the internal dashed lines in Figures 13a to 13e.

The source flow region, even in the case of higher crossflow velocities,

remains very close to a vertical position as can be observed by the

small distances between the tip of the potential core and the

t	 coordinate axis x  . In a crossflow jet the length of the potential

region, is a function of the velocity ratio r . As shown in Figure

14, the length of the potential core normalized by the jet diameter

decreases with an increase of the cross stream velocity. The length

of the potential core of the free jet was also determined and is

presented in the same figure to show the limit of the curve when the

velocity ratio approaches m	Also plotted in this figure is one

of the curves obtained by Pratte and Baines (1967). Some differences

between the two curves are clearly seen. First, the value of sc/D

in Pratte and Baines curve is higher than the corresponding value of

s c/D in our curve. This is due to the difference of jet diameters

r
used in the two experiments. Pratte and Baines (1967) have measured

th,e length of the potential core for different jet sizes and they

have found that sc/D slightly increases when the jet diameter
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decreases. They also found that the shape of the curves describing

sc/D as a function of r was similar for all jet diameters used in

their investigation. In figure 14, the slope of our curve is stronger

than that of Pratte and Baines curve. The reason for this can be

speculated as due to the following causes: a) the jet velocity

used in Pratte and Baines experiment was of the order of 30 fps

and lower and, b) in Pratte and Baines experiment the crossflow

velocity was kept constant at a value of 3 fps while the jet velocity

was changed to vary the value of r . The reader will recall that

in the present experiment the jet velocity is kept constant at about

620 fps while the cross stream velocity is changed to vary the value

of r . More investigation is needed to determine how the jet

velocity and the way of varying the ratio r may affect the length

of the potential core of the jet.

Turbulent Intensity. During the mea_zrements of the magnitude of the

jet mean velocity the root mean square (RMS)component of the hot wire

system was also measured. The fluctuating component of the hot wire

corresponds approximately to the turbulent component of the flow

^r	 velocity in the direction of the mean velocity vector [see Davies,

Fisher and Barrett (1963)]. The RMS value of the measured signal

normalized by the jet velocity at the exit gives the turbulent

intensity which is discussed in this section.

Three typical turbulent intensity profiles are shown in Figure

15. These profiles were obtained in the source flow region and in

the very beginning of the transition region and they are characterized
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by the presence of sharp peaks in the front and in the back mixing

zones, with regions of low turbulence at the sides of the jet and

also at the jet centerline. The turbulent peaks are usually located

at points where the shear is very high. The turbulent intensity is

particularly low inside the potential core close to the jet exit.

A complete distribution of turbulent intensity in the central plane

of the jet for different values of the velocity ratio r is shown

in Figures 16a to 16e. Unlike the free jet where the turbulence is

symmetrical with respect to the central axis of the jet, the jet in

the crossflow has different turbulent intensity distributions in the

front and in the back mixing regions.

Axial Distribution of Mean Velocity and Turbulent Intensity. It is

interesting to compare for the same jet the axial distributions of

the magnitude of the mean velocity and of the turbulent intensity

for different crossflow velocities. For this purpose the coordinate 	 k

s along the jet axis is stretched by the ratio of the length of the

potential core of the free jet to that of the jet undor consideration,

i	 such that the source flow region has the same length independent of

the value of the crossflow velocity. The coordinate ^ obtained

from s as explained above is further normalized by the jet diameter

D . Figure 17 shows the axial distribution of mean velocity along

the jet centerline. The use of the stretched coordinate ^ permits

one to notice that the behavior of the jet mean velocity along the

centerline in the source flow region and in the beginning of the

transition region is similar for all values of r including r=°°
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which corresponds to the case of the free jet.

The axial distribution of turbulent intensity along the jet

centerline and along the line connecting the points where the peaks

of turbulent intensity are located both in the front and in the back

mixing region is shown in Figure 18. When carefully observed one

can notice that the turbulent intensity becomes regularly higher as

the crossflow velocity increases. It can also be observed that,

except for those points corresponding to r = 3.7 , the turbulent

intensity in the front mixing region is approximately equal to or

slightly higher than the turbulent intensity in the back mixing

region. For r = 3.7 , the experimental case where the crossflow

velocity is stronger, the turbulent intensity is higher in the back

mixing region. This is probably caused by the changing of the

characteristics of the turbulence in the back mixing region due to

the interaction of vortices shed from the jet with the entrainment

process. Further consideration of this point will be given in

discussing the frequency spectra inside the jet.

In light of the increase of the turbulent intensity with

increasing crossflow, as is observed in Figure 18, an attempt was

It may be of interest to mention that in the first part of the
experiment some very high vaL\ ,is of turbulent intensity were
obtained for r = 5.6 . Meas .,rements repeated for this same
value of r in the second part did not show those unexpected
high values. It is possible that vibrations of the metallic
structure connecting the hot wire probe to the wind tunnel
traversing mechanism used in the first part of the experiment
(which was different from the one used in the second part)
have caused the mentioned discrepancy. Those unexpected high
values of turbulent intensity are not shown in Figure 18.

Lr
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ruadc, to find instead of U. a more suitable characteristic
J

velocity so as to bring the experimental results more into a

single. curve. It is found that this can be achieved by intro-

ducing U. + U. = U j (1 + 1\ as the characteristic velocity. As
rJ

u'
is shown in Figure 19, where the variation of

	

	 1	 with
U 1 +

F/D is plotted, all the experimental points	 j	 r	 seem to

fit in just one curve representing the average of the maximum of

the turbulent intensity in the two mixing zones, and another curve

representing the turbulent intensity on the jet centerline.

The physical significance of this parameter (1 + r) on

theoretical grounds remains to be clarified. The present experimental

results seem to indicate, however, that in the range of the values
i

of r investigated, the jet in the presence of a crossf.low has tur-

bulent characteristics in the plane of symmetry inside the source flow

region and in the beginning of the curvilinear region, similar to those

of a free jet with an exit velocity increased by the factor C1 + i
We note and emphasize that as r -+ 0 this observation will not be valid.

Frequency Analysis of the Turbulence. In the second part of the

experimental work, the hot wire sensor was located at different

positions inside the jet and the RMS component of the hot wire

system was recorded for posterior studies of frequency distribution

of the signals. Most of the frequency analyses were limited to the

jet centerline and to the mixing region at those points where the

turbulence levels are the largest.
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Initially some complete spectra (20 Hz to 20 kHz) obtained at

the jet exit for different values of the velocity ratio r are

shown in Figure 20 to explain some features caused by reasons not

directly related to the flow perturbations. All the spectra were

obtained in 1/3 octave band. In those spectra, the bump at lower

frequencies is associated with the observed vibrations of the

metallic structure connecting the hot wire probe and supports to

the wind tunnel traversing mechanisms. The sharp peak at about

13 kHz is apparently not related to the fluctuations of the flow

itself. This high frequency peak is observed in the potential

core and at some places in the mixing region and its frequency

does not change with the position inside the jet, neither does

it change with the variation of the crossflow velocity. The hot

wire data of Ko and Davies (1971) have a similar peak at about

the same frequency. The same peak was also observed, in the

mentioned reference, in the spectra obtained with microphone

measurements in the near field outside the j , '. Ko and Davies

(1971), associated this high frequency peak of the near field

spectra with valve noise. This association is ruled out in the

present experiment for the two following reasons: the high frequency

peak has not been observed in the radiation field with micro-

phone measurements, and neither has it been observed in the spectra

1	
obtained from pressure measurements inside the potential core of

the same jet.	 Due to the high velocity of the jet used in the
f

Personal communication with Mr. Brent Hodder at NASA-Ames
Research Center.
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present test the wire is subjected to aerodynamic forces which

can cause deformations of both the wire and prongs [see Widell

(1965)]. These deformations are variable in time and produce

the so-called "strain gage effect" discussed by Morkovin (1956).

As a result, a high frequency "noise" appears in the output of

the wire. Morkovin (1956) shows some results obtained at super-

sonic Mach numbers where the frequency of the peak due to this

strain gage effect is a function of the jet Mach number. An

extrapolation of these results to the subsonic side would give at

Me = .58 a frequency that is close to the frequency observed in

Figure 20. Thus, it is reasonable to assume that the high frequency

peaks in the hot wire spectra measured in this experiment are

caused by prong and wire vibrations due to aerodynamic forces
	

t-
0

acting on the wire.

The spectra in the front mixing region of the jet are charac-

terized by the predominance of wide band signal which is a peculiarity

of the strong turbulence prevailing at those points. The spectral

content is very similar for all values of the velocity ratio r .

Typical spectra on this region of the jet are shown in Figure 21.

The spectra content is generally flat up to a certain frequency and

then decreases with a rate of the order of 6 dB/octave (3 dB/octave

I	
from the curve plus 3 dB/octave for correction of the 1/3 octave band

i
filters), a figure which is in agreement with the experimental findings

of Ko and Davies (1971).

In the back mixing region the spectra are more subjected to
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changes in the crossflow velocity. For the smaller values of the

crossflow velocity, (r - 9.4 and 7.5) , the spectral behavior is

very similar to that in the front mixing region. Some typical

spectra obtained in th< back mixing region for r = 9.4 are shown

in Figure 22. For r equal to 5.6 , the spectra still show some

resemblance with those in the front mixing region but the appearance

of a small bump is observed around the 200 Hz frequency, as can be

seen in Figure 23. When the crossflow velocity is such that the value

of r is equal to 3.7 , the low frequency bump first observed at

r = 5.6 is transformed to a peak dominating the spectrum close to

the 300 Hz frequency (see Figure 24). This peak at 300 Hz is

probably the cause for the higher values of the turbulent intensity

observed in the back mixing region of the jet when the ratio r is

equal to 3.7 . Vortex shedding from a circular jet in a high Reynolds
a

number crossflow has been previously detected by McMahon, Hester,

and Palfery (1971), who used a two-inch circular jet exhausting

perpendicularly into a crossflow with a fixed velocity of 50 ft/sec.

The non-dimensional frequency associated with the vortex shedding,

`	

represented by the Strouhal number S = fD (where D is the jet

diameter), was observed to be slightly dependent on the ratio r

assuming the values of .083 and .093 for r equal to 12 and 8

respectively. The Reynolds number of the crossflow (based on the

jet diameter) in that experiment was 52000. In the present test

the range of the cross stream Reynolds number is from 55,000 to

141,000, corresponding to the values of the parameter r from

i

0
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9.4 to 3.7 . Based on the observations of McMahon, Hester, and

Palfery (1971) it is probable that vortices are being shed from

the jet for all values of r in the present experiments. These

vortices would probably be detected by a hot wire located in the

wake of the jet. If the hot wire were placed at the sides of the

wake, it would sense the frequency of the vortex shedding. On the

other hand, if the hot wire were located at the center of the wake

it would sense a frequency equal to twice the vortex shedding

frequency. That would be so because vortices shed from both sides

of the jet would influence the hot wire probe. It is interesting

at this point to note that the frequencies of 200 Hz for r equal

to 5.6 and 300 Hz for r equal to 3.7 obtained in the turbulent

spectra inside the back mixing region, with the hot wire located in

the plane of symmetry of the jet in the present tests, correspond to 	
r

a Strouhal number which is approximately equal to twice the value

of the Strouhal number associated with the vortex shedding reported

by McMahon, et.al .(1971). But why would the frequency of the vortex

shedding be felt inside the jet? A reasonable answer is that the

vortices, after being sized, would push air from the wake into the

back mixing region therefore contributing to the entrainment process

of external fluid into the rear part of the jet. Why was the same

phenomenon not observed for the cases of r equal to 7.5 and 9.4?

At this point there is no answer for this question. More investigation

is necessary to clarify the whole extent of this suspected interaction

of the vortices shed from the jet with the entrainment process.
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The most interesting features of the frequency analysis occur

with the signals inside the potential core of the jet, Davies, Ko,

and Bose (1968), later complemented by Ko and Davies (1971), have

shown that inside the potential core of a free jet there exists a

near pressure field caused by the strong fluctuations of the vej city

in the surrounding mixing region. Due to the low velocity fluctu-

ations inside the core, this pressure field gives rise to consequent

density variations which are felt by the hot wire sensors. The

frequency analysis of the hot wire signal shows a peak due to the

near field pressure fluctuations and a flat part due to the

turbulence itself. In the mixing region the turbulence signals are

so high that they completely mask the part correspinding to the

pressure fluctuations in the output of a hot wire sensor located in

that region. For the case of the crossflow je t_ of this investigation

it is also possible to observe the outgrowth of a peak (not necessarily

sharp) at frequencies close to 3000 Hz. This peak does not exist

close to the jet exit but it begins to form at an axial distance of

approximately one jet diameter varying with the value of r . A

typical development of this peak is shown in Figure 25 for r = 7.5 .

The peak shifts to lower frequencies and also becomes wider as the

axial distance from the jet exit increases. As the measuring point

approaches the end of the potential core, the spectral content

becomes similar to that obtained in the mixing region. In the case

of the free jet, the peak frequency of the spectra has a Strouhal

number dependence on the axial distance, as shown by Ko and
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Davies (1971). This 9truuhal, number is usually defined by the
f D

nondimensional parameter--^- where f p is the frequency of the

j
peak of the spectrum. For the case of a jet in the crossflow a

,>ir.iilar dependence is obtained if a modified Strouhal number defined
f D

(y y	 p 1	 is plotted as a function of the stretched axial
U j (1 + r)

distance	 as shown in Figure 26, for all values of r used in

'his experiment. Also plotted in Figure 26 in dashed lines is

the envelope of points obtained by Ko and Davies (1971), in the case

of the free jet. The limits of this envelope were presented by

i•I n oten, Wooldridge and Amaro (1972). Observe that almost all the

roints fall inside the dashed emnelope. It should be noticed,

,,,;ever, that the Strouhal, number defined by our points (even for

our free 'et) decreases with the axial distance at a faster ra ge than

t	 that suggested b the dashed envelope. Ko and Davies 197188	 Y	 P	 (	 ). results

were obtained with a jet operating at a Mach number of .218 in

contrast with the present experiment where the Mach number at the

jet exit was equal to .58. This confirms one observation made by

Wooten et.al.(1972), that the Strouhal number inside the potential

core is also a function of the jet Mach number.

We note that in accounting for the variation of the peak

Strouhal number in the core with distance along the jet axis, the

suitable characteristic velocity turns out to be again Uj (1 + r)

instead of U  . One may argue that this may be expected for,

following Ko and Davies (1971), the origin of the peak frequencies

in the core are due to the near pressure field which in itself is

I
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caused by the turbulence in the mixing region, and as we have seen

the variation of the turbulence intensity in the mixing zone with

axial distance can be represented by almost a single curve if such

intensity is normalized by the characteristic velocity U j (1 + 1 ^ .

5.2 Microphone Measurements in the Radiation Field

The noise produced by the jet was measured by four microphones

in the radiation field, arranged in two different dispositions as

shown in Figures 8 and 9. The results of these measurements are

presented in 1%3 octave spectra (SPL in dB ref 2X10 -4 ubar) . The

plots are already corrected for the background noise of the tunnel

which is defined as the noise measured with the jet turned off and

with the tunnel operating at a velocity appropriate to the desired
6'

value of the ratio r . Figure 27 shows one typict-^ plot containing

both the totsl noise and the background noise curves. The difference

between the sound level with the jet operating and the background

level determines the correction to be used. The amount of this

correction is given by Peterson and Gross (1972). The curve obtained

after the correction represents the noise produced by the jet. This

noise contains both the noise radiated directly from the jet to the

point where the microphone is located plus another contribution due

to the noise radiated from the jet and reflected from the walls of the

wind tunnel. The interaction of the crossflow with the jet flow

increases the noise produced by the jet as can be seen in Figure 28.

This figure is for a particular position of one microphone in the
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redistion field, but due to the effect of reverberation of the wind

tunnel test section, it is also a valid representation for the results

obtained with all the other microphones. This observation confirms

the reverberation characteristics of the test section and the imprac-

ticability of obtaining any directivity effect of the noise produced

by the jet when the meas ►irement is performed in a reverberant

environment by the traditional technique of using just one micro-

phone. The lo,.,Lr frequencies do not appear in Figure 28 because at

those frequencies the difference between the total measured noise

and the background noise is less than 3 dB and therefore the noise

produced by the jet cannot be accurately determined [see Peterson

and Gross (1972)]. The spectra are, in general, very broad with

most of the energy concentrated in the range of frequencies from 1 	 t_

to 10 kHz. The curves presented in Figure 28 suggest a small shift

of the max l -ium point of the spectra to higher frequencies as the

crossflow velocity increase. Due to the broadness of the spectra

though, this frequency shift in only clearly observed for the

velocity ratio r equal to 3.7. The broadband linear weighted

sound pressure level for each value of r is shown at the right

side of Figure 28. The variation of the broadband sound intensity

with the velocity ratio r is presented in the next section for

comparative purposes with the intensity measured by the technique

of two microphone cross-correlations.

5.3 Sound Intensity Measurements by Two Microphone Cross-Correlations

As has been shown in Chapter III, the noise radiated directly
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from the jet cannot be obtained inside a reverberant room by the

conventional. method of measurement with just one microphone. What

the microphone is actually measuring is a combination of the direct

noise, i.e., noise coming directly from the jet to the measuring

point, plus the reflected noise, i.e., noise radiated by the jet in

all directions and reflected by the walls back to the point of

measurement. The background noise is not being considered since it

is always possible to correct its effect similarly to what has been

done in the previous section 5.2. The direct noise, as defined

above, can be obtained inside a reverberant room with a good

approximation by the technique proposed in this report which

1 '4

	

	consists in measuring the cross-correlation of the signals from 	 t,

Lwo microphones conveniently located in the far field, at the appro-

priate time delay (see Chapter III). In order to make some experi-

mental verification of the formulation shown in Chapter III, two

microphones were located in the radiation field in the position

shown by Figure 10. As can be seen in that figure, the position

vectors x2 and x3 , corresponding to microphones 2 and 3

respectively, are in the same direction which is one of the requirements

for this type of measurement when the source of noise is a jet. The

mean square value of the sound pressure directly radiated from the

jet to the point x2 where microphone 2 is located was derived in

Chapter III and is rewritten as:
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R ' 0 )	 x

X3 

P PP (X2' x3' T')	
(5.1)

pp(x2 2	 m m

The appropriate time delay T' is obtained from equation 3.6 and

expressed by f

	
( '32-x22)]C(1-M2) ^x3-x212 + M2  	? - M2 ( x32 -x22	 (5.2)

T'  _

a0 ( 1 -M2)

where the coordinates corresponding to the vectors x 2 and x3

are given in Figure 10.

To check the practical reliability of this measuring technique

the jet was run at different Mach numbers such that the noise

intensity obtained by the method of the two microphone cross-

correlations could be compared with results measured by previous

workers in an anechoic room. The time delay T' in the case of

the free jet is estimated from equation 5.2 to be 9.3 X 10 -4 sec	
te

(with a0 equal to 1116 fps). The total time delay of the correlator

was adjusted to 1 X 10
-3 secwhich gives a sampling rate of 100,000

samples per second (the correlator has 100 calculating points).

Since the highest frequency of the signals being investigated is

20kHz the sampling rate for the highest f-equency component is equal

to five samples per cycle, therefore complying with the sampling

theorem [see Bendat and Piersol (1971)]. A typical cross-correlation

curve is shown in Figure 29, This curve was obtained with the free

jet operating at U j /a0 = .56 . It was observed that all the

correlations curves for various values of U  have definite peaks

at a certain value of the time delay, `namely 9 X 10
-4 
sec, and have
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essentially zero correlation level over most of the range of

the time delay.

Incidentally, using the measured value of 9 X 10 -4 sec for

T' in equation 5.2 and setting M 2 equal to zero, we find a 0 to

be 1148 fps. This corresponds to the conditions in the tunnel room.

The value of the measured correlation at 9 X 10 -4 secapplied

in equation 5.1 and the result substituted in equation 3.15 relating

the acoustic intensity to the mean square of the pressure perturbations,

gives the sound intensity at the point x2 . The results of the

complete test with the free jet is ;shown in Figure 30 together with

the results measured by just one microphone [Mic 2(3)] and also

with the measurements of Lush (1971) in an anechoic chamber. Lush's

points as presented in Figure 30 have been adjusted for the three 	 4

following effects: a) change in the reference level of the sound

intensity (Lush used dB ref. 10 -12Watts/m2 ); b) geometrical

attenuation (Lush measurements were taken at three meters from the

jet); c) jet dimension (Lush's jet was 25 mm in diameter). It is

gratifying to observe that the present data obtained by the two

microphone cross-correlation technique agree strikingly closely,

with those obtained by Lush (1971) inside an anechoic room.

Actually, our data was obtained at 50 0 (Lush's were at 45 0) and

they should be slightly below hush's results, according to the

general trend of his Figure 3. The difference however is so

* See Figure 3, 45 0 data in the mentioned reference.
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small that it can be neglected for all practical purposes. We

have thus confirmed that the use of equation 5.1 above on the

basis of the two microphone cross-correlation technique leads to

a reliable value of the noise radiated directly from the jet.

Also observe in Figure 30 that the sound intensity obtained

with one microphone (corrected for the background noise) is of

the order of 6 dB higher than the sound intensity obtained by the

two microphone cross-correlation. The effect of the reflections

is then to increase the noise by a factor of 4 at that particular

point where the measurements were obtained.

Now we consider the determination of the intensity of the

acoustic radiation from the jet in the crossflow. Due to the

position of the microphones, the appropriate time delay for the

cross-correlations becomes smaller as the cross stream velocity

increases. The appropriate time delay for r = 3.7 for example

is 8.7 X 10 -4 sec , with a0 equal to 1148 fps (assuming the

i	 temperature of the uniform stream in the test section is the same

as the control room temperature; recall that M 2 << 1) . The

characteristics of the cross-correlation curves do not change very

much when a crossflow is present. Figure 31 shows a cross-correlation

curve for a value of the velocity ratio equal to 9.4 . The time

delay appropriate for the correlation is now 8.9 X 10 -4 sec .

The most important feature of the correlation curve for our partic-

ular investigation, the peak at the appropriate value of the time

delay, is definitely characterized in the curve. Some differences
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from the free ,jet case shown in Figure 29 are noticed at other

time delays but they are of no interest in our considerations.

Figure 32 is a cross-correlation obtained with r = 3.7

and with the total time delay interval of the correlator re-

adjusted to 3.3 X 10 -3sec , which gives a rate of 30,000

samples per second. This representation was not used to calculate

the noise intensity since it does not comply with the sampling

theorem for frequencies higher than 15,000 Hz	 It was photographed

to show how some reflections may affect the cross-correlation.

The first peak occurs at the appropriate value of the time delay

for a sound wave, coming from the jet, to travel from microphone 2

to microphone 3 in the direction of x2 to x3 . Two other

smaller peaks occur at a later time delay representing some

reflections from the tunnel walls.

The noise intensity directly radiated from the jet to the

point where microphone 2 is located is plotted in Figure 33 as a

function of the velocity ratio r . Also shown in that figure is

the noise intensity measured at the same point with just one micro-

phone. The difference between the two measurements is still

approximately 6 dB showing that even for louder noises the ampli-

fication factor of the tunnel is 4 , the same value observed for

the case of the free jet. This amp lification seems to be a char-

acteristic of the reverberation room corresponding to that particular

point of measurement. The dashed horizontal lines in the figure

represent the noise intensity of the free jet, when r — - .

!e
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As expected, the noise directly radiated from the jet

increases with the cross stream velocity. It is interesting to

notice that the noise intensity, even for the smaller values of

the crossflow, is always much higher than the noise intensity of

the free jet. In the range of r from 9.4 to 3.7 the noise

intensity increases with the crossflow. The variation of the

intensities with r , for r lower than 3.7 needs to be examined.

%I

19'
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VI CONCLUSION

The present study has b p.̂ n primarily concerned with the

modifications which occur in the internal structure and in the

acoustic field of a high velocity jet when it is deformed by the

pressence of a crossflow perpendicular to the direction of the

undisturbed jet.

The use of the coordinate c , which stretches the jet in

such a way that the length of the potential core becomes the same

for any value of the cross stream velocity, has enabled the

comparison of the internal flow characteristics of the jet under

the influence of different crossflows. The experimental data have

shown that the Lurbulent intensity inside the noise producing region

of a crossflow jet increases by a factor of (1 + i as compared to	
b

the turbulent intensity of the same jet under fr:.:e conditions. The

parameter (l + r) has also been observed in the frequency analyses

of the turbulence. The peak observed in the hot wire spectra obtained

inside the potential core has a f t1quency that changes with the cross

stream and, similar to the case of the turbulent intensity, increases

by a factor of ( 1 + 1 with respect to the corresponding frequency

measured in the free jet.

The two microphone cross-correlation Technique, for acoustic

measurements in a medium where sound directly radiated from a source

co-exists with all kinds of reflected noise, has proved to be a very

, M cient tool for filtering the unwanted noise off of the measurement.

Th p agreement of the acoustic intensity radiated from a free jet
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Ir	 = (1 + r 
)8

r =CO

(6.1)

moasured by the two microphone c • -oss-correlation technique in the

1,reS0nt experiment, with the results obtained by Lush (1971) inside

m anechoic chamber confirms the capability of the methyl.

'l'be intensity of the noise radiated from a jet with a constant

-•-,it velocity becomes higher when the velocity of the cross stream

IIrt'e.Ities. The variation of the acoustic intensity of a crossflow

!( I t as compared to the acoustic intensity of the same jet under free

.iudit.Lons is shown in Figure 34 as a function of the velocity ratio

r	 Also plotted in that figure is the curve

ropresenting the ratio of the acoustic intensity of the crossflow

jot to the acoustic intensity of the free jet, and obtained by a

simple dimensional analysis (see Appendix B). Observe from Figure 34

that for those values of r which are less than 6 , the experimental

curve shows a tendency to level off while the curve representing

equation 6.1 keeps increasing as the value of r decreases. The

behavior of the experimental curve for those small values of r

suggests that the decrease of the noise producing region of the jet

has some effect on the reduction of the acoustic intensity. This is

not observed in the curve obtained from the dimensional analysis

hecause we have not conside-ced the decrease of the noise producing

region with the increase of the crossflow velocity in the derivation

OF equation 6.1. For those values of r between 6 and 10 the
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two curves have a very similar shape shiwing that the increase of

the turbulent level of the jet contributes to the acoustic intensity

as expected from the analytical expression used for the dimensional

analysis. The size of the noise producing region seems to have a

small effect, if any, in the noise output for those values of r

under consideration. The experimental curve however, shows a higher

level of acoustic intensity. Since the hot wire measurements were

performed only in the plane of symmetry of the jet, it is not

unreasonable to speculate about the lateral sides of the jet as a

region of strong noise production due to the deformation caused by

the cross Stream.

The measurement of simple turbulent quantities outside the

central plane of the jet, the verification of the parameter h + r/
for other values of jet velocity and jet diameter, and the investigation

of possible effects of vortex shedding on the entrainment process are

some of the features that need further study. The measurement of

noise at several points in the radiation field, by the two microphone

cross-correlation method needs to be undertaken for determining how

the noise directivity is affected when the jet 9s under the influence

of a crossflow. The two microphone cross-correlation technique

promises to be a useful method for applications in other problems

directly related to the exciting field of Aerodynamic Noise and

should be further explored.

t,
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APPENDIX A

HOT WIRE ANEMOMETRY WITH COMPRESSIBILITY EFFECTS

The output voltage of a constant temperature hot wire anemometer

(CTA) may be expressed [see Bradshaw, (1471)] in the following form:

V2a A + B(pU) n 	(A.1)
CTA

where VCTA is the anemometer output voltage, p and U are

respectively the density and velocity of the fluid at the point where

the hot wire sensor is located, and A, B, and n are constants to

be determined experimentally. The value of the exponent n is

always close co 1/2. Equation A.1 shows that the anemometer output

voltage is a nonlinear function of the mass flow pU .

A linearizer is basically an electronic analog computer that

I
linearizes the anemometer output voltage with the aid of specific

transfer functions. In the particular case of the DISA 55D10

Linearizer the transfer function is given by:

1

VLIN — 
K (V

CTA - A) n
	 (A.2)

where VLIN is the Linearizer output voltage and K is a constant.

Equation A.2 is applied to equation A.1 to give:

VLIN ^ K
1 pU	 (A.3)

where K1 is another constant which can be adjusted with the gain

control of the linearizer.

In the case of incompressible flows, where the density is a

constant itself, VLIN is proportional to the flow velocity only
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and equation A.3 can be rewritten in the classical form:

VLIN ^ K2 U
	 (A.4)

Due to the simplicity of equation A.4, the constant temperature hot

wire anemometer with linearizer has be#:n one of the most valuable

instruments for the measurement of mean and turbulent velocities

in incompressible flows. When coutpressibility effects begin to be

important, however, equation A.3 shows that the output voltage of

the linearizer is a linear function of the mass flow pU . In some

flows it i4 possible to express the density as a function of the

velocity and then obtain a direct relationship between the linearizer

voltage and the flow velocity. A cold jet exhausting into a medium

at rest is an example of such a flow.

Let a cold free jet be represented by its plenum chamber 	 F

conditions and by the ambient conditions where p, p, and T represent

pressure, density, and temperature respectively. The subscript 0

refers to the plenum chamber where the fluid velocity is approximately

zero, cO represents the ambient conditions of the medium into

which the jet is exhausting, and the subscript a represents the jet

conditions at the jet exit. The jet velocity is changed by adjusting

the plenum conditions since the ambient conditions are assumed to be

fixed. It is further assumed that the plenum temperature T O is

also constant and equal to the ambient temperature TC, , and also that

the air is a perfect gas. Thus, the plenum pressure can be rewritten

as

PO = C1p0
	 (A.5)
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P = Pm t 1 v, yy MePe
(A.11)

where

C1 = RT0 = RT,,,	 (A.6)

is a constant. It is also assumed that the fluid undergoes nn

isentropic transformation in going from the plenum chamber to the

jet exit. hence, the stagnation conditions at the exit are the same

as those at the plenum chamber, allowing the following equation to

be written

'0 = pl) / y	 (A. 7)
e	 e

where y is the ratio of the specific heats at constant pressure

and at constant volume of the air. A boundary condition of the flow

is expressed by the equality between the ,jet static pressure p 	 and

the ambient pressure pm
k

Pe = pm	(A.8)

In the ambient medium,

0" = R` (n om = C 1 p m	(A.9)

where C 1 is given by A.6. Equations A.5, A.7, A.8, and A.9 are

combined to give
v-1

pe = pm 
(pe

0
	(A.1t))
)

This last equation c;,n be rewrit!:en in the following form (see
I

Liepmann and Roshko)
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U

where Me = a is the local Mach number of the flow, U j is the
e

	

jet velocity at the exit and a 	 is the sound speed also at the

jet exit.

For a hot wire located at the jet exit, the linearizer output

voltage is given by (see eq. A.3):

VLIN K1peUj

which combined with A.11 gives:

VLIN - K1P^Uj 11 + ~21 M
e	 (A.12)

It has been shown (see Liepmann and Roshko) that

2
a0
 TO _ ^1 + y=1 M2]

2	 T	 2	 e	 (A.13)
a 2	 e

Here, a 0 is the speed of sound in the plenum chamber, or in the
F

ambient medium in virtue of A.6. Equation A.13 may be rewritten

in the following form:

2

UZ = Me [ 1 + y Me	 (A.14)

J

Then, obtaining the value of Me from A.14 and substituting it in

A.12 gives

(y-1)U2

VLIN	 j- K1P u	 1 +	 i	 (A.15)
2a^ -(y-1)U2

Equation A.15 expresses the direct relationship of the linearizer

output voltage with the flow velocity when a hot wire is placed at

the exit of a jet under the conditions assumed. Observe the
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nonlinearity of the linearizer voltage with the flow velocity

due to the second term within the parenthesis. The magnitdue

of this term can be obtained with the known values of p  and

00 (from equations A.10 and A . 11), to determine the error

involved when equation A.12 is used in the following approximate

form:

VLIN c* K,P
COU j	(A.16)

Multiply and divide equation A.12 by a 0 a e and use

equation A.13 to obtain:

_	 v-1 2 1/2

VLIN — K
1 p^a 0Me I1 + -2 Me 1	 (A.17)

which is another form to express the relationship of the linearizer

output voltage. Here, VLIN is shown as a function of the local

Mach number at the jet exit. Equation A.17 may also be written in

•	 the following approximate form:

VLIN =- K
l p.a 0Me	(A.18)

Though the error involved by using equation A.18 as an approximation

of A.17 also depends on the jet Mach number, it is smaller than the

error involved when equation A.16 is used as an approximation for A.12.
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APPENDIX B

DIMENSIONAL ANALYSIS OF THE ACOUSTIC INTENSITY

Lighthill (1952) has shown by dimensional analysis that, for

a free jet, the acoustic intensity at a point x in the radiation

field is roughly proportional to

8 -5 ),2
p0U a 0	 I x1 2 (B.1)

where U and Z are respectively a characteristic velocity and

a characteristic length of geometrically similar jet flows. In

arriving at B.1 Lighthill made use of the non-charging peculiarity

of the 3trouhal number f.Z/U to substitute a characteristic

frequency of the flow, f , by the ratio U/.e . If we substitute

U/.Z	 for f in B.1 , the intensity may be said to be roughly	 t,.

proportional to

pO f4U4a0 -516
`x` 2
	(B.2)

Now, let us take the same jet, with a crossflow present, and let

us apply some of the steps followed by Lighthill (1952), to derive

a proportionality relationship for the acoustic intensity of the

noise radiated from a crossflow jet. Before going on, we should

strongly observe that, rigorously, this dimensional analysis could

not be performed because a geometrical similarity does not exist in

4	 the flow of a jet under the influence of different crossflow

velocities. However, just to obtain a rough analytical estimate

for comparing the acoustic intensity of a crossflow jet with the
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acoustic intensity of the same jet under free conditions, let

us disregard this lack of geometrical similarity being aware of

the resulting consequences.

The expression for the acoustic intensity at a point x in

the radiation field, for the case of a jet in a cross stream, is

given by equation 3.17. The amplitude of the cross-correlation

Rv v ` in that equation will, at corresponding points of similar
x x

4
flows, be proportional to U 

	
, with U  being a typical velocity

c

of the crossfi(-,, jet. In the same equation, the fourth derivative

with respect to time will be proportional to f c 4 where f 	 is a

characteristic frequency of the crossflow jet. A characteristic

linear dimension of the jet flow is I c . Similar arguments as

those used by Lighthill (1952) may be used to conclude that the

acoustic intensity of a jet in a crossflow is roughly proportional

to

p0fc4Uc4a0-51c6IxI2
	

(B.3)
f:

This relation is perfectly valid for comparison of geometrically

similar crossflow jets, that is, for comparison of different cross-

flow jets with the same velocity ratio r . For comparing the same

jet with different values of r though, we have to disregard the non-

existence of geometrical similarity. By doing so, the characteristic .

length I 	 can be taken equal to Z , the same characteristic

length of the free jet, and the characteristic velocity U 	 and

frequency fc , due to the experimental otservations of this report,
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can be substituted respectively by U(1 + r ) and f(1 + r)  .

In this case, the acoustic intensity of the jet in a cross

stream is roughly proportional to

P f4 ( 1+ r )

4 	

U4 ( 1
 + r) 4 a0 -516w2 	

(B .4)

If we now divide relation B.4 by B.2 assuming that the proportionality

factors of those two relations are the same, we arrive at the

following expression:

I r (x)	 1 g
I (^) = 11 + r )
r

(B.5)

Equation B.5 shows in a rough approximation, the amount of increase

in the acoustic intensity of a crossflow jet as compared to the

acoustic intensity of the same jet under free conditions.

to,
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