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y SUMMARY

The control of large space structures encompasses a multitude of physical

phenomena. The structure itself is a complex vibrating system that is excited

by internal and external forces. The external forces and torques come from

aerodynamic, sc. gr wind, and thermal excitations to geomagnetic and gravity

graeient forces. Internal forces and torques are created by vibrating machinery

(CMG's, gyros, etc.), by articulating structural elements and motions of astronauts.

It is not surprising, then, that as the size and performance demands on structures

increase the control problem looms ever larger as one of the overriding problems.

This final report describes the work that was performed by the Grumman

Aerospace Corporation Research Department under contract to the Marshall Space

Flight Center (Contract NAS 8-32587) which was administered by Dr. Michael

Borell.i. The thrust of this effort was to determine what, if any, limits. ins are

imposed on the size of spacecraft which may be controlled using current control

system design technology. The particular problems investigated were:

1. The fundamental limitations imposed by structural/control

interactions, by external torques, and by the mission

performance requirements for Low Earth Orbit (LEO) missions.

2. The development of control approaches for the various control

tasks that are required by large space structures, i.e.,

as required during fabrication, assembly, pointing, shape

and attitude control, etc.

3. The development of techniques for on orbit dynamic testing that

will permit evaluation, during operation, of the parameters re-

quired for control design.

G. Investigate actuator requirements so that the control may be

achieve6 with minimal use of expendable fuels.

These tasks were investigated by using a typical structure in the 35 to 70

meter size category. A control system design that used actuators that are

currently available (CMG's) was designed For this structure. The amount of

control power required to maintain the vehicle in a stabilized gravity gradient



pointing orientation that also damped various structural motions was determined.

The moment of inertia and mass properties of this structure were varied to

verify that stability and performance were maintained. This was accomplished by

systematically varying the linear dimensions of the structure by a scale factor

while maintaining the control gains fixed. The conclusion from this study was

that the structure ' s size was required to change by at least a factor of two before

any stability problem arose. The stability margin that was lost was due to 	 4

the scaling of the gravity gradient torques (the rigid body control,) and as	
i

such could easily be corrected by changing the control gains associated with 	 {

the rigid body control. A secondary conclusion from this study was that the

control design that accommodates the structural motions (to damp them) is a

little -nore sensitive than the design that works on attitude control of the

rig^j body only. The main details of this effort are described in Section I.

The control of large structures can be considered, as the classical control

system designer does, as the problem of controlling the attitude of the vehicle

despite all of the disturbances that are potentially misorientating the vehicles

or causing stability problems. This approach artifically divides the physical

phenomena into control forces and disturbance forces. When this is done, the 	 a

possibility of balancing one disturbance by a second is lost. Thus, gravity- 	
3

gradient forces, which are oscillatory, might be damped by using residual

aerodynamic forces to extract energy from the gravity gradient mnde. To be

able to Achieve this goal, early in the program it was perceived that a fairly

comprehensive model of the spacecraft was needed. This model (described in

Section 11) was used to develop a control system that uses a linear optimal

control approach to:

• Achieve a stable rigid body orientation using gravity gradient

forces balanced by residual aerodynamic forces

r	 Stabilize the interaction of rigid and flex;x*.'vJ r motion

• Increase the damping of the more important flexible modes

using; the same actuators that are used for rigid body

control (a set of three orthogonal CMG's only)

a Be slewed, when required, from one orientation to another

without adversely affecting the vibration and shape of the

structure

ti
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As the control study developed, several problems emerged

that were either poorly understood or that were critically lacking in theoretical

basis. These were:

• A method is required for order reduction of the structural

dynamics that accounts for the undamped vibration modes that are

left out and also considers the effect of control bandwidth that

exceeds the frequencies of the modes neglected

• A method is required that reduces the control excitation of the

high frequency modes.

• A method is required that permits measurements that are not

adversely corrupted by unwanted structural oscillations

• It became clear that an estimator is undesirable in the

control loop because the bandwidth of the filter might easily

dominate the problem. The resulting loss of gain and phase margin

compared with an optimal control design is clearly undesirable. We

instead have proposed that control designs be undertaken which

utilize ar. many rate and position measurements as there are

modes retained

• A method for on-orbit dynamic testing is required

In Section III, these problems are discussed and some solutions are proposed.

We have shown:

• A new method for order reduction which both incorporates the

closed loop dynamic characteristics and the unique problem

associated with finite element modeling which ignores structural

damping

• A method for control spillover reduction at higher frequencies
using a low order observer

• A method for on-orbit dynamic testing which gives structural mode

data and also reduces the measurement spillover problem

• A new method for synoptic control design that naturally suggests

alternate actuators
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I. INTRODUCTInN

As the size of space structures increase and the performance requirements

become more severe the control problem looms larger and larger as the single

most difficult problem that must be overcome.	 The structural size alone

creates a possibility for interactions between the control system and the

structural dynamics.	 The control performance requirements on both pointing and

internal vibration (Jitter) create a need for new and novel techniques for rigid

body control that simultaneously achieves the desired pointing accuracy without
a

creating structural vibration that might ,jitter crucial spacecraft systemb

(optics, antennas, etc.). 	 The rigid body control must also be achievW in

such a way that internal strain on the spacecraft structure does not change at

certain desired points (points where critical optical or antenna elements are

mounted must always remain at the same relative positions so that the phasing

of the light or radio fr y gtaiicy energy does not becom-s distorted). 	 The achievement

of this goal requires control systems with zero steacy state error after a slew

command.	 The structures that are being proposed change their size as a

function of time when the structure is being fabricated in orbit. 	 The ability

to alter the control system as the dynamics change, the ability to recognize

the way in which the structural and rigid body dynamics change, and the ability

to sense the disturbances and the way they change are all desirable characteristics

that the control system should possess.

To achieve the flexibility that all of the above requirements impose on <,h

control system requires a fairly complex system, one which also has inherent

reliability and insensitivity to variations in the structural dynamics.	 Also

one must attempt to exploit the existing physical phenomena that cause "disturb-

ances" on the spacecraft to control the spacecraft.	 Thus gravitational, geo-

magnetic, residual aerodynamic and solar wind forces that are normally considered

as disturbances that are countered by expending reaction Jet fuel, should be

designed into the control system to provide the possibility of "playing one

force off against another".

To achieve all of these goals a synoptic approach has been developed that

attempts to design the control system for-the spacecraft so that, at the outset, all

of the dominan t_ effect are modeled - the spacecraft dynamics are modeled, using

1
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a finite element approach, with both the rigid body and flexible motion coupled

In a coordinate system that does not necessarily explicitly include the rigid

body - the physical forces that interact with the structure are included explicitly

as distributed forces and torques acting on each of the masses (or inertias)

in the finir g element model -- the internal vibration sources are modeled and

included to provide a measure of the jitter induced by these motions when they

are deemed critical -- the slew commands are included in the dynamic description

so that the best possible method for commanding the system to change its orien-

tation can be determined -- the flexibility inherent with digital control

requires that all of the modeling be done in such a way that any problems

introduced by sampling can be minimized.

The study that is described in this report has developed the technology

to address some of these questions and has pointed to problems where technology

must be further developed. Figure 1 shows the structure that was used to

develop the control technology and evalu,^n a the effect of structural dynamics,

gravity gradient dynamics and control interactions during this effor.

2
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11. DESIGN EXAM LE

1. INTRODUCTION

To understand the control problems for large space structures, a at=s,J ftc

system (the Orbiting Construction Demonstration Article (OCDA)) was se zted

to develop a control system. The OCDA is intended to be a apace base in a cir-

cular orbit ' ^O km above the Earth (Ref. 1). Its purpose is to facilitate the

unloading, fabrication, and assembly of objects (e.g., solar power satellites,

microwave power transmission satellites) ferried Into orbit by the shuttle.

The OCDA has four princip le parts (Fig. 2)	 1) the platform or rectangular

truss frame, 2) the boom with traveler, 3) the array that tracks the sun and

absorbs the radiation energy using elastic membranes, and k) the mast extending

on both sides of the platform holding the boom and solar array on one side and

providing a docking port for the shuttle on the other

In its nominal attitude the OCDA is unstable with respect to aerodynamic drag

and gravity gradient torques. These instabilities can be overcome by E',ctive

control that uses momentum storage devices. Environmental effects such as the

iri,i:'aduction of currents into the solar array to produce magnetic control torques

ve effectively used to assist the control system in stabilizing these

Aisturbances. We have studied stabilization by means of three reaction wheels

with mutually orthogonal axes.

In or ' 3r to calculate the control gains D in the control gain relation

u a Dx, the systems equations x -f(x,u) are replaced with the linear

approximations

k- A x+ B u

This set of equations is agumented with the cost functional

0
J	 fo (xTQx + uTRu)dt

where the weighting matrices Q, R are selected to reflect the critical nature

of a particular node motion. The principles of optimal control then yield

differential equations that can be integrated analytico.11y.

Computational expense was reduced considerably by treating t► e problem
in modal coordinates for both the vibration and rigid body modes. These

3
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were handled fit 	 uniform rather than it 	 nutnner. It was found tiutt

satisfactory results could be obtattned when only a few c^f the modes were

cotiVro l led.

In am additional study rhea control gains D were kept fixed while tiles spatial

dimensions of rhea OCDA were scaled up until tilt) point of instability was found.

t
2. CONTROL LIMITATIONS OF CURRENT THCHNOLOGY

As rite size of at space structure .increases, the structural frequencies become

lower. Thus, for any given control. system bandwidth (its determined by the dynamic

requirements of rite rigid hod ,y control speci-fLcation) there exists at structure

whose vibrattion frequencies fall within rite control, system band. if one assumes

that the pr•c>domtuent modal frequency of such it structure, is given by they first

ntode of at simply supported beam whose dynamics are given by the ruler-Bernoul;l.1

equation. then this mode has a frequency liven by

,^ 7r ^	 Cl1

2L2 m

(tit hertz) where E is the modulus: of ela nti,eity, L is the 'length, I is the

I tivrt ,at and m is the nutss of the beinu per unlit length. For it slender glean the

ntodn'i fra1rteney it i ivon by

ys	 11C.
3/2	 M

where M is slit.) total Imgas of tlae berm. The result of this analysis is sumilutr;ired

by Fl it;. 'l, where the firA;t 1m)(1. 1t frequency of at slender beillit I's plotted as at

fUnCtlon of bc1aun length. BY assuming rhnt this froquency is tike control system

bandwidth. we can sov oxatcrly how lAs at structure must be for aty parti,cullatr

control. system sped fication beforc> the ri.l:i.d body control. systen► fright intre:raet
With tile Sit uctut c.

i A soc.ond nrv.i where structurnl. motion potentially impacts the control system

Is when open Ioop rotart;ionat l comiminds arc,' irtiqu;ired as, for example, during it

"	 hikh speed slew maneuver. l'hc^ usua► :1 approach to minimizing the bending inter-
L actions dur,ink, these slew maneuver: Is to tailor the shape and amplitude of the

command pulse, set tlaatt the structuratl modes are not excited. 'rite optima l. control.

J
r
k't

^"	 ..	 as	 _.	 «...— ..............J...,.._..........a..^
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approach offers a natural framework within which such minimum structural excitation

by command shaping may be achieved. This is shown schematically in Fig. 4

where the command generator is shown as a linear differential equation (in this

case the output of a filter with a maximally flat response) whose outputs are

multiplied by "feed forward" gains. Section III-4 describes this approach'in

more detail. In either case, the enact size of a structure when slew maneuver/

bending coupling becomes severe enough to impact performance depends on the control

system pointing accuracy or figure control requirements.

The final area where structural size can impact the control system
performance is in the coupling of disturbance induced structural motion into

the control system. Disturbances on the spacecraft are either external--aerodynamic,

gravity gradient. solar, thermal for example -- or internal as is the case

with vibrations induced by rotating machinery, man motions, bearing noises due to

relative motions of spacecraft elements, etc. As an example of how these distur-

bances may interact through the rigid body control consider the simple case
where gravity gradient torques are used in low earth orbit to orient a long

slender spacecraft which has a solar array mounted at one extremity (Fig. 5).

a
	 In order to maintain the solar array at the correct orientation, the array must

be rotated at twice the orbital rate wo. This will produce .a periodic aerodynamic

torque, due to the residual atmosphere, at the orbital period. The gravity

gradient creates a torque which is proportionate to the rigid body rotation

angle deviation from a line from the spacecraft tv the earth center. Thus, if
7

9 is the rigid body rotational angle, the dynamic description of this inter-

action is (fora single axis)

I9 + T 
G 
0 = T sin 2wot
	

(1)

where

TG = gravity gradient torque

T = magnitude of the aerodynamic torque

I = inertia (principle) of the axis considered

wo frequency of an orbit

In practice, I will be of the form I +I sin2w nt ber_ause of the solar array

motion, and as such the design must Be gase-1 un a time varying inertia.

7
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Fig. 5 Disturbance Interactions Can Cause Stability Problems as Shown by this Example

The solution to Eq. (1) is given by

T	 T	 t	 T
8(t)	 cos	 t e(o) + II sin	 t 8('o) + T I sin	 (t-T) sin2wo T dT

TI	 ^1
G	

I	
^TGI 

o	 I

(2)

Now, it is evident that if twice the orbital frequency and the gravity gradient

frequencies are the same that A(t) grows as t sin2w0t. Thus an unstable inter-

action is possible.

For the example just described, a rather simple "fix" is possible by

controlling the solar array drive motor. Thus by phasing the rotation so that

the solar array alternately leads or lags the sun, the aerodynamic force may be

used to extract energy from the gravity gradient and thereby damp the gravity

q gradient control. Figure 5 shows a root locus plot that results from this

approach which shows the gravity gradient damped regardless of the orbital

frequency. (This design uses full state feedback for pole placement.)
t"
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The design uses Eq. (1) with the solar array drive provided by a motor which

is modeled as

0 + T 0	 u
m m m

where: 0 is the solar array anglem 

® is nominally twm	 o

T is the motor time constant
m

u is the motor input (u nominally is 2w T and there is a perturbation
Au around that nominal which is the control)

When the solar array motor angle is substituted into the torque term on the

right side of Eq. (1) we get

I0 + TC0 = T sin0m

which, since 0 m is given by 0m = wo t + QOm, can be written as

I0 + TC0 = Tsin(w0t +A0) = T sinwot + Tco*otAe)

This the dynamics of the complete open loop system (for perturbations) is

given by

T/I coswot	 r
_

U(s)	 (S2 + T
G 
/MS 2 + TmS)

The open loop root locus for this transfer function is shown in Fig. 5b

plotted as the inertia I increases. The coupling described above occurs when the

gravity gradient pole (S = ± j -TG I) overlaps the a ero pole (2w ). If a control

system configured is shown in Fig. 5d is used, the closed loop root locus

appears as shown in Fig. 5c). The two zeros shown in Fig. 5c are the result of

the feedback K1 S + K2 and K 3 
S + K4 . Clearly, this locus is always stable

independent of the ,gravity gradient frequency.

In general ve have taken this approach for all external disturbances.

When the optimal control model is formulated, any actuators that are available

(the solar array drive motor for examp-l e) are included thereby allowing the

"disturbances" to be used for active control.

For internal disturbances, once again the magnitudes only become

crucial if the control system bandwidth or pointing requirements are severe.

If these sources of vibration must be damped, the structure can be included in

the optimal control model so that they may be actively isolated.

a

T

I

^1
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To define the limitations further, part 7 of this section describes the

analysis of the OCDA large space structure controller that we designed as the

structure is increased in size.

3. VIBRATION AND RIGID BODY MODES

Y
Before a structural analysis of the OCDA can begin the orientation and

tilt of the solar array must be specified. "Orientation" is defined as the

angle of rotation about the mast. The "tilt" is the rotation about the beam

that is closest to the platform. A zero tilt means that the mast is in the

plane of the array. Unlike the orientation, the tilt does not vary continuously.

It is either at plus or minus 26% depending on the longitude of the ascending

node of the orbit. The rate of orbital nodal regression is such that a flip

is required every 22 days. The rate of radiation absorption is never degraded

by more than 10% compared with the best tilt angle.

The particular array position used for our study is shown in Fig. 6 together

,

	

	 with the Y, Z a y es. Their origin is at the lower end of the mast (docking port).

The Y axis is vertical (whether up or down is irrelevant), the X axis is out

of the page and parallel to the velocity. Thus the platform and array move

edgewise. Note that the shuttle - whose structure is ignored except for its

moment/product of inertia - is included. Since the shuttle is over six times

as heavy as the OCDA, Fig. 6 indicates that the combined center of mass is close

to origin. The two points have been treated as identical in our work.

Each node (joint) of the OCDA is assigned a number and is tabulated with

its coordinates and its degrees of freedom. The degrees of freedom are those

translations and rotations about the three axes that are considered to be

significant. Thus, up to six degrees of freedom (DOF °s) can be specified for

each node. The members (beams and strings) are also assigned numbers and they

1	 ?	 are tabulated with their cross sectional areas and the nodes that they Join.

Their lengths can then be found from the node table.

If a unit force is applied at a translation DOF or a unit torque at a

rotation DOF, the displacements for the entire DOF vector can be computed.

The complete set oLtained by varying the unit force/torque over all the DOF's

is called the flexibility matrix. Its inverse is called the stiffness matrix k.

s qFi	 ,.a,.„	 -	 '.:	 a	 =F"^".	 y. 	 ..	
4 X"
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are Shown with their Origin)

When the dimensions (and density) of a member are given, the mass and

moment/products of inertia can be found from simple calculations. What is

needed, however, is the inertia matrix associated with DOF's, because that is

how k is defined. Recall that in general there are up to six relevant DOF's

at a node that joins at least two members. If only the three translation DOF's

are significant, then the 3 x 3 inertia matrix is diagonal. In the general

case, whose theory is too complicated to be given here, for each node there is

a 6 x 6 matrix whose elements have the dimensions of either mass, moment of

mass, or product of inertia. The inertia matrix for the entire structure

will be called m.

The original structural idealization had 1462 degrees of freedom. The

stiffness and inertia matrices were calculated by a computer program. Computer

12



limitations made it desirable to have a reduced order approximation which was

accomplished using a Guyan reduction. The 249 new DOF's were a subset of the

old except for those of the array. There the old DOF ' s were translations (never

rotations) along the XYZ axes. The new DOF ' s were directed along the X axis,

normal to the array plane, and along the common normal. These directions will

be called X, Y', Z', respectively (Fig. 6).

New DOF 's on the array were introduced as load conditions to reduce the

solar array model. These forces balance-should have been equal and opposite

to the loads - this check was not satisfied at a few DOF's with the model as

provided by Grumman structural engineering. Several attempts by us and the

original engineer to find the source of the diffisulty failed. We therefore used

the mass and stiffness matrix as provided and ignored the load balance require-

ment. All this does is to cause errors in the steady state forces on the structure.

If x represents the displacements of the 249 DOF's and K,M the corresponding

stiffness and inertia matrices, then in the absence of external forces the Guyan

model is:

Mx + Ck + Kx @ 0	 (3)

For the analysis that follows, C, the damping matrix, will be assumed to be

zero. In Section III-6, this assumption will be corrected.

Let us look for solutions of the form

x a t cos wt	 (4)

where 1, w are vector and scalar constants to be determined. After

substituting and simplifying

w2MI - KI	 (5)

or

K-1Mj = w
-21	

(6)

Thus w-2 is the eigenvalue of K lM with the corresponding eigenvector .

( The solution Eq. (4) is called the vibration mode.)

If we impose the initial condition k (0) = O there will be a 249 vector

g of arbitrary constants of integration. It will be convenient to define the

generalized coordinate vector 9 whose elements are g i cos (wit). The complete

matrix of normalized eigenvectors j/(jTf) l/2 will be denoted as 0.

^.	 13



The general solution of Eq. (3) is then

x = 'P 9	 (7)

If the elements of 9(0) are all zero except for q i (0) - 1, then x (0)

equals the i th vector of 0. x(t) will remain proportional. to this vector as

its elements oscillate with angular frequency w i . The other frequencies (modes)

will not be excited.

It is perhaps surprising that the matrix of eigenvectors of K -1M can

diagonalize simultaneously both K and M. This capability is related to the

nonorthogonality of the eigenvectors of K -M,which in turn is due to the nonsymmetry

of K
-1 M,*  Let .gym and m a ')e eigenvectors with distinct eigenvalues. Then from

Eq. (5)

wm M ^m KIM	(8)

On multiplying from the left by 0Tn

wm IT,, Im = ITK Im	 (9)

If these steps are repeated with the order of Im, In reversed then

wn 0m Mmn = Im K mn	 (10)

Since C and M are symmetric, the transpose of this equation is

wn 41M-m	
0n K m
	 (11)

On subtracting Eq. (11) from Eq. (9)

(wm - wn)  QnM im = 0	 (12)

which shows that the off-diagonal elements of 0 TMO are zero and that M is

diagonallzed by 0. To prove that K can also be diagonalized, the above steps

are repeated after first dividing Eq. (8) by w2.

The eigenvectors of the matrix K IM are not orthogonal but those of K and M
individually are, as shown in Eqs. (11) and (12).

^'	 14
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The vibration modes were augmented with the 6 rigid body translations

and rotations that were calculated separately. The frequencies associated with

the rigid body motion are of course zero since t laere are no translational or

rotational rigid body stiffness terms in K (until, the gravity gradient is added;.

The symbols K, M denote the diagonal matrices defined by

K 0 4P K 	 ,	 M010 M41 	(13)

	Note that Eq. (9) implies K
ii	 wi2Mii*

The 53 vibrations modes with the highest eigenvalues (lowest frequencies)

were computed (Fig. 7). Because the solar array consists of 11 semi-independent

membranes, most of the modes are out-of -plane oscillations due to the first three solar

array modes. Thirty of the latter were discarded by retaining only one of these

membrane modes per frequet,ny leaving 23 vibration modes. The corresponding

terms of K, M were also deleted which corresponds to reducing the order of the

system by assuming the frequencies are zero. The exact mathematical statement

of this "singular perturbation" is the followint;:

If the modal coordinate vector is denoted by 9 then g is partitioned into

components 91 and22 where, in terms of this partition

M11 0
	 K
	 0	 gl

-

0	
M22	 92	 0	 K22	 92

where all of the matrices are diagonal (as in Eq. (13)). Now if 1122 has a

constant a factored out of each of its terms, then (see Ref. 2), the "reduced

order" model becomes M
ll 91 

+ 
K11 S, = 

0 as c ­ 0 (i.e., 92 -' 0). This tacitly

implies that the full 249 vector x is given by (7) with 92 0.

That is

x

	

X11 X12	 gl	 ®11 ^1

	

1021 X22	 021 g

3



MOOS
FRED
HE

I.S.
LEC2AN, DESCRIPTION

• 1 0,04766 10,653 SOLAR ARRAY •- 1ST NORMAL TRANSLATION
'2 0,05538 3913 SOLAR ARRAY • 1ST TORSION (1ST MEMBRANE)
'3 0,06008 3,822 SOLAR ARRAY • PANEL MODES (IST MEMBRANE)
4 0,06135 3,813 SOLAR ARRAY - PANEL MODES (1ST MEMBRANE)
5 0,06176 3,475 SOLAR ARRAY - PANEL MODES 11ST MEMBRANE)
6 0.06192 3,802 SOLAR ARRAY - Pf ,,NEL MODES (1ST MEMBRANE)
7 0,06201 3 711 SOLAR ARRAY -- PANEL MODES (1ST MEMBRANE)
8 0,06206 3,743 SOLAR ARRAY - PANEL MODES (1ST MEMBRANE)
9 0.08209 3,647 SOLAR ARRAY - PANEL MODES (1ST MEMBRANE)
10 0,06211 3,787 SOLAR ARRAY - PANEL MODES (1ST MEMBRANE)
11 0,06212 3,697 SOLAR ARRAY - PANEL MODES (1ST MEMBRANE)
12 0.06213 3.736 SOLAR ARRAY y-• PANEL MODES O ST MEMBRANE)
13 0,06214 3,676 SOLAR ARRAY -PANEL MODES (1ST MEMBRANE)

'14 0,08400 11.240 SOLAR ARRAY - 2ND NORMAL TRANSLATION
'15 0,09226 20.274 SOLAR ARRAY - SIDE BENDING 1X1
'16 0,10329 5,128 SOLAR ARRAY - TORSION (2ND MEMBRANE)
' 17 0,10951 28,561 NEAT TORSION - BOOM + PLATFORM AND ARRAY LOCATION
• 18 0.11288 3,625 SOLAR ARRAY - PANEL MODES 12ND MEMBRANE)
19 0,11404 3,751 SOLAR ARRAY . PANEL MODES (2ND MEMBRANE)
20 0.11442 3,694 SOLAR ARRAY - PANEL MODES (2,ND MEMBRANE)
21 0,11459 3,757 SOLAR ARRAY -- PANEL MODES (2ND MEMBRANE)

22 0,11468 3,699 SOLAR ARRAY - PANEL MODES (2ND MEMBRANE)
73 0,11473 3,754 SOLAR ARRAY - PANEL MODES (2ND MEMBRANE)
24 0.11477 3,704 SOLAR ARRAY . PANEL MODES (2ND MEMBRANE)
25 0,11479 3,753 SOLAR ARRAY - PANEL MODES (2ND MEMBRANE)
26 0,11480 3,682 SOLAR ARRAY -- PANEL MODES (2ND MEMBRANE)
27 0,11481 3,746 SOLAR ARRAY - PANEL !IODES (2ND MEMBRANE)
28 0,11482 3,715 SOLAR ARRAY - PANEL MODES (2ND MEMBRANE)
'29 0,11628 26,743 ``0'9TICAL BOOM + PLATFORM SCISSOR MODE
'30 0,12259 8,229 !`-,,AR ARRAY - PANEL MODES ORD MEMBRANE)
'31 0.13057 6,362 - AR ARRAY - PANEL MODES (3RD MEMBRANE)
'32 0,14846 3,223 SOLAR ARRAY - PANEL MODES (3RD MEMBRANE ►
33 0,14961 3,925 SOLAR ARRAY - PANEL MODES (3RD MEMBRANE)
34 0,14984 3,425 SOLAR ARRAY - PANEL MODES (3RD MEMBRANE)
35 0,14992 3,791 SOLAR ARRAY - PANEL MODES (3RD MEMBRANE)
36 0,14996 3,747 SOLAR ARRAY -- PANEL MODES ORD MEMBRANE)
37 0,14998 3,744 SOLAR ARRAY - PANEL MOOS (3RD MEMBRANE)
38 0,14999 3,905 SOLAR ARRAY - PANEL MODES (3RD MEMBRANE)
39 0,15000 3,777 SOLAR ARRAY - PANEL MODES ORD MEMBRANE)
40 0,15001 3,724 SOLAR ARRAY -- PANEL MODES (31113 MEMBRANE)
41 0,15002 3,683 SOLAR ARRAY - PANEL MOLES CzIP0 MEMBRANE)

42 0,15002 3,6033 SOLAR ARF.AY - PANEL MODES 13RD MEMBRANE)
'43 0,15178 7,6922 SOLAR ARRAY ­ PANEL MODE
'44 0.15395 4.6886 SOLAR ARRAY -- PANEL MODE
'45 0,17424 165774 PLATFORM NORMAL BENDING
'46 0.20019 3.24636 SOLAR ARRAY - PANEL MODE
'47 0.22621 48,6614 PLATFORM TORSION
'48 0,25980 5.6988 SOLAR ARRAY •- PANEL MODE
'4^? 0.26885 10,4788 SOLAR ARRAY - IN-PLANE
'50 0,27068 7,5181 SOLAR ARRAY - PANEL MODE
'51 0,30673 4,1957 SOLAR ARRAY -.• PANEL MODE
'52 0.30795 210,487 PLATFORM LATERAL BENDING
•53 0.32406 200.3 PLATFORM BENDING

'TNGSE MOUES HAVE BEEN RETAINED 	 ^M

0357.007W

Fig, 7 OCDA Vibration Modes
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4. EXTERNAL FORCES AND TORQUES

If an external force/torque vector f is present, Eq. (3) generalizes to

M1:+K x- f	 (14)

Equation (7) can be used to reduce the number of equations from 249 to 29 by

substituting x 09 in (14)

M09 +K02- f 	 (15)
l
A

Multiplying on the left by IPT and using Eq. (13)

M9 + h9 	 T 	 (16)

This equation is exact although a as calculated from Eq. (7) is approximate.

The complete orthogonalization procedure described above follows the

{
classical structural analysis techniques. A more general approach utilizes the

linear algebra of symmetric matrices. Thus (14) can be rewritten as follows:

• Let M be written as a product of a lower and upper , triangular factor as

M - LL 	 (17)

This "Cholesky" factorization may always be performed since M will

always be symmetric and positive definite.
^u

• Define a new vector z as

Z s LT x	 (18)

e With z replacing x in Eq. (14) we get

Z - -L
-1KL-Tz * L-1 f	 (19)

e Modal Transformation: Since K was symmetric L-1KL 
T 

remains symmetric

and the following results from linear algebra may be used to diagonalize

it.

a Lemma (Ref. 3): A real symmetric matrix can always be diagonalized by

an orthogonal transformation and its eigenvalues are always real.

Thus, let z	 O'g' where V is orthornormal (0'0T '
	 ;PT^r 
	 I) so that

17

,3
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where

OT ' L lKL Tm ' g + OT ' I. if
	

(20)

w22 0 ... 0

0T 'L 1KL Tm' .
02

0 wZ ... 0

0 0 ... w2
n

and we assume w2

Notice that the g' defined

since M in Eq. (16) is not

0 = Mom' where

2	 2W2 < ... < Wn .

in Eq. (20) and the g from Eq. (16) are not identical

the identity matrix. In fact g' Mfg and

Mil0
	 ...	 0

4,	
M	 0	 M22 ...	 0

0	 0	 ...	 Mnn

The only external generalized forces considered were the aerodynamic drag

acting on the solar array and the external torques due to the gravity gradient

and the momentum wheels.

Before discussing the drag we digress to recall that the axes used for the

earlier computer work that was taken over for the present investigation were those

of Fig. 6. However, the earlier report (Ref,. 1) followed the more conventional

usage and interchanged the labels for the Y and Z axes.. When the solar array

has the orientation shown in Fig. 6 it is moving edgewise and there is no aero-

dynamic drag. We used the axes of Ref. 1, but in order to investigate

stabilization in the presence of drag we rotated the OCDA so that the array

moved nearly facewise (Fig. 8). Note that motion is along the Z axis and the X

axis is vertical.



Fig. 8 Axes Used for the Present Investigation. (X is vortical.)
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Since the drag was distributed over the solar array membranes, it was

necessary to find lumped values at the nodes.	 The drag at a corner was assumed {

to be one-fourth that of an interior node. 	 The drag at other edge points was

one-half that at interior nodes. 	 The forces were assumed to be in the direction
s

normal to the array (-Z; Fig. 8) rather than opposed to the velocity as they

should have been.	 It was impossible to give the drag the latter direction because

the Y' and Z' ,DOF's were not selected in pairs at each membrane made. 	 Indeed

the latter were always selected but never the former. s

These remarks will become clearer if we look at 0 in more detail. 	 It has `y

the form

X11	 012	 013

®21	
I	 0 (21)

@31	
0	 I

where in this representation the first column stands for the 23 vibration modes,

the second the three rigid body translation modes, and the third the three ]

rotation modes.	 The 3 x 3 unit and null matrices are denoted by I and 0,

respectively.	 The matrices M, K and the vectors f and 9 can be decomposed

sinilarly into N

v	 v

Ml = diag [M1,1 ... M22,231'	 M2 = diag [M24,24	 ... M26,261

M3 = diag [M 27,27...M29,291,	
K1 = diag	 [K1,1 ... K23,231

d

(22)

K2 = K3	0	 fT _ [ f1T, f2T, f3T]

gT = [31T,
92	 9 393T], g1 is of dim. 25 and q 2 and 93 are each of dim. 3.

The nonzero elements of the 243-vector f l are the drag terms discussed above,

the three-vector f2 is null,,	 The three-vector f 3 of gravity gradient and

momentum wheel torques will be discussed in detail below.	 Equation (16) can

now be written as the three equations

J x

20



Ml gl + . 002(M
IK1 )	 + K1 91 - 4.11 fl + 

4)
31 f3

(23)

M2 92 = 012 fl	 M3 93 ' 
013 f  + f3

4	 Note that a modal structural damping term has been introduced into the vibration

modes. This term changes the solutions of the homogeneous equation (Eq. (3)) by

a factor exp(-.00lwt). It also has a major effect on the modes which were

reduced out of the dynamics as will be discussed in Section III-6.

The second of Eqs. (23) represents the three equations

M2x 
= 24 f l	 M2Y	 ^25f1	 '	 M2z _26f1	

(24)

where M2 = M24 24 = M25,25	
M26,26; x, y, z are the coordinates of the center

mass; and i (i = 24, 25, 26) is a 243-row vector whose elements equal the first

243 elements of the i th vec t or of (P. The terms of the scalar product 1 4f1

are all zero because the nonzero terms of 0 24 and fl never coincide. The

that coincide are all equal to (using the axes of Fig. 3)terms of 125 

cos (Y,Z') = sin 26°, the corresponding terms of 
0 26 are cos (Z,Z') = cos 26°.

The acceleration in the Y direction does not vanish although it is normal to the

velocity. There is no way to correct this qualitative error because no Y' DOF's

were selected for the array membranes.

Reference 1 states that the momentum wheels are located in the mast midway

between the platform and the boom. However, they were placed at the docking

port (origin) for the present study. We have retained the latter position and

assumed that the angular momenta h
wx ,hwy ,

 hwz of the three wheels have fixed

directions along the coordinate axes. Small control torques u x
 = fiwx'

uy = hwy , uz = Fiwz are obtained by changing the magnitudes of the angular

momenta. In accordance with conservation laws, an increase in the angular

momentum of a wheel produces a decrease in the angular momentum of the OCDA.

The rigid body yaw about the X axis (Fig. 6), pitch about the Y axis, and

roll about the Z axis will be denoted by a = 
q 27'	 = q28' Y = q29' respectively.

The corresponding moments of inertia are A - M27,27' R M
28,28 , C = M29,29°

-	 Linearized gravity gradient torques are given in Ref. 4, p. 244 and appendix 1.

y	 Thus the detailed expressions for the last of Eqs. (23) are

21
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.4;+.4; - t27f1 + ca - by - to wyhWZ - ux

BB = f28 f1 + e8 -wxhWZ +wz .Wx - uy 	(25)

Cy = t29f1 
+ ay +b& -wyhWx + wxhWy - u 

These equations use the following abbreviations: w  is the angular frequency

corresponding to the 90 minute orbital period,

a - 4w2 (A--B),	 b = wo(A-B+C)

c = W
2
o (C-B) ,	 e = 3w2 (A-C)	 (26)

wx = a + woy,	 wy = & - W  , wz = Y - woa.

The scalar products ^28 f l , 	
29f1 evaluate to zero. This occurs because

DOF°s were selected in a symmetric manner over the array so that there is a

negative term to cancel every positive term. Thus defining the drag to be in

the Z' rather than the -Z direction does not introduce qualitative errors in the

torques as it does in the forces on the center of mass. The quantitative

error for the torque about the X axis tends to cancel out when summing over

all the DOF°s of the array. That is, the moment arm is smaller for Z° forces

than it is for -Z forces at nodes near the platform and larger at nodes far

from the platform. Note that another non-homogeneous term enters through wy.

Equations (23) with initial conditions g(0) = g(0) = 0 describe a step

disturbance - the drag is zero when t < 0 and jumps to its full value when t = 0.

It is also interesting to study an impulsive disturbance occurring at t = 0.

In this co3e the non-homogeneous terms are removed from Eq. (23) and the initial

conditions 9(0) ar e set equal to them.

22
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5.	 STATE VARIABLE MODEL FOR CONTROL DESIGN

The optimal control model we are developing uses 23 modes by leaving out the

lees important vibration modes through order reduction in modal coordinates.

The force vector f consists of a distributed aerodynamic load on the solar
- i

array and the gravity gradient toraues on the ri gid body (we assume that the

gravity forces are distributed as described in Appendix I). 	 Thus the force vector

f becomes

fl	 +- 243 vector of aerodynamic forces distributed
into the structure if

i

f 0
(27)

f 3 f	 3 vector of gravity gradient torques and
control torques

where

f 3 TG	 x 3 + TG	x3 + H u + Ho as in Eq. (25)
-	

-3
1	 2

-^u h
o to z

Hu control forces;	 Ho = 0 is the non-homogeneous forcing function.

wohwx

TG = gravity gradient torques induced by rigid body rotations
1 x

TG gravity gradient torques induced by rigid body rotational rates.
2 '	 ?!

Following Eq .	 (25) T	 and T	 are given by
GI	 G2

4_ wo (C - B)	 0	 0

TG = 0	 3wo (A - C)	 0 (28)
1

0	 0	 4wo (A - B)

i

j . 23



	

0	 0	 -wo (A-B+C)

TG 	0	 0	 0	 (29)
2

wo(A-B+C)	 0	 0

	

Ilk 0 	 -wz	
W 
	 0	 hwx

Hu	 wz	 0	 -wx	 0	 hwy	 (30)

	

-wy	
W 
	 0	 kD	 hwz

6Array.

h
wx.Y,z - 

angular momentum of the controller about the principle axes

06 Array - torque produced by the solar array angle 
6Arra 

and k is the
lever arm of the drag force D. When D is non -Pero fl is
zero and vice versa

As can be seen the formulation of the control terms Eq. (30) allows the

simultaneous incorporation of the gravity gradient, aerodynamic drag and

!

	

	 control momentum exchange devices. To distribute the terms from Eq. (25)

into the structural mode model Eq. (16) we let f be given by Eq. ( 27) in

Eq. (16) and get

Ml 0	 0	 gl	 5212	 0	 0	 gl

	

0 M2 0	 92	 +	 0	 0	 02

0 0	 M3	
X3j 	0	 0	 0

	
33

i`
T
X31

(P32	
TG1 

(P31(P324^33^ 9 + TG  [031(P32(P33^	 + Hu + Ho	 (31)

I	 T

X33

24

K	 p

Y--	

S	 1

t	

fi

1

;r



which may be reduced to give

-Sl1 + k-4
31TG1"31 

M 11
® 31TG1"32 M11031TG1033

9	 M21	 1	 1
4P
32TG @31 M2 0 32TGI 032 M2	 1

	

0 32TG 
40
33	 91 

M3
1@ 33TG 1@31 M31^33TG 1^32 M31^33TG1"33

S

M11(D31TG1"31 .•• M11031TG1033	 M11ID31

-1 T
+	 M	 ,.a M 

1QT 
T	 + M 

lOT	
Hu+M 1H

2 @ 32TG 1 31	 2 32 G1 33 9	 2 32	 -	 o

-1T	 -1T-	 -lT
M3 ^33TG1 ^31. " ' M3 ^33`Gl@33	 M3 X33

T

and finally, by defining the state vector z as zT = 
(qT qT) the model

used for designing the optimal control system becomes:

a

(32)

i
v

r

a

0 0 0 U23
0 0 0 0

0 0 0 0 U3 0 0 0

z	

_

0

S11

0

S 12

0

S13

0

T11

0

T12

U

T13 L ♦

0

M11 4)31H

u +
0

 M_ldo

S 21 5 22 S 23 T21 T22 T23
-1 T

M2 ^32H

S31
S32

S 33 T31 T32 T33
-1 T

M3 ^33H

or neglecting the A4 
1H0

term

z =Az +Bu

25

(33)

(34)



where

z is now a 58 vector (46 states for the structural dynamics and 12 rigid
body states)

S and T are defined implicitly by Eq. (33)

U  is the n x n identity matrix.

The nominal solar array angle is 23° so that the last component of u acts as a

disturbance on the structure through the M1 1 0T H component of the matrix B in
Eq. (34). Thus, the uncontrolled motion of the spacecraft can be developed

and used as a reference to compare the controlled motion. The open loop dynamic

response at various times are shown in Fig. 9. For the control system design

in the next section, the rigid body tranlation modes have been deleted so the

control vector z is reduced in order to 52.

Notice in the formulation of the dynamic model leading to Eq. (33) that

the rigid body modes are retained in the same coordinates as the structural

modes. This is distinct from Likens et al. (Ref. 5) where a hybrid coordinate

system is used.

6. OPTIMAL DIGITAL CONTROL FOR OCDA

It is not the main point of this report to present the theory of linear

discrete-time optimal control. Therefore, we will briefly outline here the

major assumptions made in designing optimal discrete systems. For further

details the reader is referred to the excellent tutorial paper by Dorato and

Levis, Ref. 6.

The continuous model of the spacecraft in state variable form (where all

matrices are constant) is given by Eq. (34)

:k=Ax+Bu+Cw

X =Mx+ -v
	

(34)

The usual notation in the control literature is to use x as the state vector.

This convention is used here thus the original version of Eq. (34) (on page 25)

is modified (in the original formulation x was the physical motions of the

finite element degrees of freedom).
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7 '7

where x is the 52 vector of spacecraft states ,qnd any augmented noise states

(which are not included) u is a 4 vector ^,ou trol; w would be a m l vector noise

process (which is assumed to be a white process); Y is the vector measurement

which we are assuming is x; and v- to an m2 vector whit" measurement noise.

The discrete-time version of Eq. (34) is given by

NK+l - 0(At) x
g i• rot) uK + Got) wK

LK M-K + 2K

At	 - the sample time

O(At)	 the transition matrix evaluated at At (i.e. # eft)

At
rot) - t m(At-T)B dT

0
At

(i.e., r - AP+B, r(0) - 0 -> T(At) - I eATBdT)
0

G(At) - a matrix which satisfies G(At)G
T
OO - P O O where

P(At) is the covariance of matrix of x from Eq. (34) at t = At.

In general, one would like to solve the following problem: "Given a

quadratic performance index of the form

T

J - f (xTQx + uTRu) dt	 (35)
t
0

find the control which minimizes J subject to the constraint of the

differential Eq. (34)."

The discrete version of Eq. ( 35) is obtained from Eq. (35) and the fact

that the controls are held fixed over the sample interval At. This discretization

of Eq. ( 35) is necessary to be able to compare the discrete design with the

continuous design. It is generally better to use the performance index for

the discrete system which matches the continuous system also to determine the

effect of increasing sample time. Thus, the performance measure Eq. (35) becomes

N
J=E xKQ-xK+2-KS xK + uKRuK 	 (36)

K=1

31



where

At
Q	

t OT
	 Q 0(T) dT

0

At
S M ! rT (T) Q O(T) dT

0

At
R . t (R + P (T) Qr(T)} dT

0

The computation of (, S and R uses an eigenvalue-eigenvector approach where the

transition matrix 0(t) is written as Te AtT 1 with A as the diagonal matrix

obtained by diagonalizing the matrix A.

The discrete-time control problem is solved by using either the discrete

maximum principle or dynamic prs)gramming. In either case the ultimate solution is

that uK is a linear function of the states of the system where the gain msA,trix

Kk satisfies

K 
	 - (R + rTPK0 (rTPK0 + S)	 (37)

and Pk *is the solution of the discrete matrix Ricatti equation

Pk m (OTPk+l0 + Q)

(rTPk+l (D + S)T (R + rTP
k+l r)-1 (rTPk+l0 + S)	

(38)

with P  s [01.

If, as is generally assumed, the steady-state (constant) gain matrix is

desired, we have found that the best way to solve for the gain, Eq. (37), is

to use Potter°s technique (Ref. 7) of evaluating, the eigenvalues and eigen

vectors of the 2n x 2n matrix which results from the application ot.the discrete

maximum principle. Problems such as the OCDA control which are high order and

with significant differences in time constants are as easily solved as low-arder

pr:,,lems when using a numerical eigenvalue, eigenvector technique. If such

The uzatrix r(t) is defined after Eq. (35); also it is significant that the
discrete performance index contains a nonzero matrix S even though Eq. (35)
does not.
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1

problems were solved using iteration, the computer time required would be

p	 exorbitant. This matrix, for the performance Index Eq. (36) is given by

H11	 j	 H12

H---- .., w,t--------

{	
H21	 H2 2

f

where

##11	 0 - rR-1S)-1

H12	 (i - rR-1S)-1rR 1rT

11
21 ' 

	M, sTg "S)(0 - rR-1S)
-1

H,	 (SST - STR-1rT) + (Q - ST	 1,R ^3) (^A - r,R ls)-lrR-l')
	 (3q)

z2

H has the property that its eigenvalues are the n poles of the closed-loop system

and, their reciprocals (there are 2n eigenvalues, n stable and n unstable).

The steady-state gain is given by the Potter algorithm as follows:

Let W be the matrix of eigenvectors, then

n	 o
w-1  11W -

0	
A-1

where A represents the eigenvalues outside the unit circle. Then if W is

partitioned as

W1.1	 W 21

	

-------- --------	 , Wij is n x n

I	 r	 W21	 W22

the steady-state cast Po is given by

P  W21W11

'	
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The program that is used to derive the optimal controls uses this technique

to obtain the optimal gains. The Q - R algorithm is used to determine the eigen-

vector matrix W. Potter's technique applies to both continuous and discrete

systems; however, in the continuous version the eigenvaluea of the 2n x 2n

matrix H have symmetry about the imaginary axis (rather than radial symmetry).

Since we use the continuous optimal design as a reference, the Potter solution

for the continuou3 design existed first. To take advantage of this existing

program we map the roots of the matrix H using the bilinear transformation

w - (1 - z)/(1 + z)

This allows the roots inside and outside the unit circle to hn selected based

on their locations in the left-half or right-half w-plane.

The last point we Have to consider is how one selects the sample time At.

This has already been discussed in a former paper by the authors (Ref. 8), but

a brief outline is in oreer here. The selection of a fundamental sample time

uses the fact that between samples the system is essentially open-loop.

Therefore, if perfect control at the sample times were achieved, between

samples the uncertainty would propagate via the covariance matrix differential

equation

P = AP + PAT + 
cc 

P(0) = [O].	 (41)

At the first time t that the uncertainty due to this open-'loop propagation

exceeds a bound specified by the control specifications, there must be a sample

to lower this uncertainty. Since we are neglecting uncertainties that are due

to the control (feedback) and the state estimation in doing the propagation of

Eq. (41) (i.e. P(0) is really not [01), the actual sample rate should be

modified based on the closed-loop noise response. As we will see the existence

of computer aided design programs allows all of the above steps to be implemented.

To show all of the output of the computer computations for the OCDA example

would not be very instructive; we ther:afore have shown in Section TV an exercise

for a simplified example. Reference 9 shows more .details of this analysis.

Many times it is necessary to provide a constant force to provide the desired

steady state position. To guarantee that this force does not cause an undesirable
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deviation at some position on the structure, the control is assumed to be applied

through a set of integrators. Thus f . Bu', where B distrubutes the control

forces u' through the structure. u' is integrated control, i.e.,

t
u'	 ! u d t

0

or

du'

dt	
u

The dynamic state of Eq. (34) is modified as follows:

91

up

0	 Im	 0	 0

Y	 -	
-S1I
	 °	 "iI "21]L 1B y 1 + 

0	
u	 (42)

0	 0	 0	 LIP

is the "state variable" model of the structure which is used tc design the control

system. y has dimension 52 + p where p is the dimension of u (the control).

The optimal control design based on the model Eq. (34) uses the performance

measure Eq. (35). But Eq. (35) is really based on the actual full 243 degrees

of freedom and through the order reduction, Eq. (35) becomes

I



T

.j	 I L 1 ® 
9	 Q11 Q12 L1

o	 9	 Q12 q22

i
i

m g

+ u T R u dt
m g

7

T

EM	

I
	 L-1[11  9 1	 '12"'2)	

1(P111P22JL D2u•

o	 ill . + X12
(92

2 )-1 [(P11it22IL 

-1 
B2

Q(L- 1 X11 
91 + 

0
12 (^2

)-1	
11022)L 1B2u,
	

+ UT u dt

X11 al	 012(2)-1 ^^11^22^L 1B22

The resulting performance measure is therefore of the form

T	 T

J	 I^	
91	

C2 
91 

+ 91
	

S u + uTR u dt
	 (43)

91	 91	 91

Equation (43) must be used instead of Eq. (35) to develop the discrete contr'ol

performance measure Eq. (36).

As can be, seen a cross product between S l and u is now explicitly included

in the performance measure. Furthermore, even though 9 1 is a reduced state,

its order is still quite large. The solution of Eq. (43) as an optimal control

problem requires extrrimely accurate numerical techniques. Furthermore when

the solution has been achieved, there is still the problem of the control exciting

the higher frequency modes. Notice that this design will require full state

feedback (i.e., 91, g l). This implies using measurements of m physical degrees

of freedom, x  and :km	 Then since

9= JLx
(44)

q	 [Lm) xm + F 
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where Lm denotes the restriction of the matrix ®TL to an mxm matrix corresponding
to those nodes x  measured. No Kalman filter or observer is introduced by

implementing this pseudo-full state measurement scheme.

The determination of Lm requires some explanation. In the order reduction
described in Section II-3, the fact that the "fast" states (denoted by 92)

were zero meant that ,

ill 911

	

x	 =
	

(45)

"21 91

where 91 was the m vector of retained modes. Since 4^ (P = I ( .as formulated in

Eq. (20)), the full mode vector g is given by

T	 T

	

9 1	 o11 X21	 Xl
_ IDT x	 (46)

T	 T

	

9 2	 012 X22	 x2

where x  is an arbitrary subdivision of the node degrees of freedom whose

dimension is the same as g l . Then, since our assumption for the order

	

reduction was thatg 2 = 0 1 which implies 92	 (S22)-110T 002) f = Uf

	

'i2 xl + '22 x2	 Uf
	

(47)

or

52 =	 ( "22 )11 "12 X1- Uf)

therefore

9 1 = [p 11 - ^210T -1012)	 x1+021022)-lUf	 (48)

Thus,if xl is the measured degrees of freedom xm, Lm and Fm are given by

Lm = (P 11	 210T	
1 X12	 (49)

Fm 021(^22)~-U
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The optimal control design for the structure defined above was developed in

a sequence of four different designs, as follows:

• Rigid body control only; the resulting controller is then

tested using the complete structural dynamic model to

verify the rigid body control stability

• A continuous optimal control using only the momentum storage

devices for control

• A discrete optimal control as in case 2

• A control design as in cases 2 and 3 which uses only a reduced order

model; the resulting controller is again verified using the full

dynar.U.c model.

The table below summarizes the results for each of the designs.

RESULTS OF OPTIMAL CONTROL DESIGNS



As can be seen the gravity gradient is unstable in roll. To achieve the level

of damping shown (critically damped rigid body and from 2 x 10 -3 to 0.4 on

various flexible modes) the control forces were not excessively large. For a

typical response (the same as the open loop conditions shown in Figs. 9, 10, 110

and 12, where an impulsive force is applied to the solar array) the control

torques are as shown in Fig. 13 (continuous control) and Fig. 16 (discrete control).

As can be seen, no more than 8 £t. lbs of torque are required to control the

vehicle and to damp the flexible mode vibrations created by the 20 ft. lb .

aeroydnamic torque. The time response using both the continuous and discrete

control at .2 second sample time are shown in Figs. 14 through 15 and Figs..

17 through 18. The time histories of the complete structure are shown in Figs.

19 and 20 for continuous (rig. 19) and discrete control at 1 second sampling

time (Fig. 20).

The assumption that full state feedback is available is not overly restric-

tive. It is quite easy to implement this concept using strain gauges or an

optical system for sensing the motion of the structural nodes. Since, for

most applications, the noise equivalent strain is so low filtering is not

necessary which eliminates the sensitivity of the control to the'modal parameters

introduced by a Kalman filter or an observer. A Kalman filter, by introducing

notches at the modal frequencies, causes a sensitivity to the mode frequencies

that outweighs its beneficial effects for the spillover of measurements from

the truncated modes (see Section III-3).

7. EFFECT OF STRUCTURAL SIZE CHANGES ON CONTROL

We have investigated the stability of the OCDA space structure control

system as its dimensions are rescaled while the feedback Neontrol matrix is held

fixed, which corresponds to a spacecraft with increasing dimension using a fixed

gain controller. The feedback matrix D is first calculated so that the system

x Ax + Bu, (u = Dx) is optimal where x is the 52 vector of modal displacements,

rates and .rigid body angles, and rates. Then A, B are replaced by matrices

corresponding to a structure all of whose linear dimensions are scaled by a

factor L. We seek the value of L at which the system becomes unstable.

}
These figures are frames From a 16mm sound movie that was produced during

-	 this contract. Copies of this film are available. Interested parties
should contact the authors.
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Recall that the OCDA is gravity gradient unstable and that D is determined

by the rotations at the center of mass. The aerodynamic disturbance was assumed

to be an impulse rather than a step. Our analysis employs 23 flexible modes.

There are 18 translational modes whose generalized masses are scaled by a factor

of L3 as though they were true masses. The five remaining modes are rotations

and their generalized masses correspond to torsion and are scaled by a factor of

L5 , as though they were moments of inertia. This is also true of the rigid body

rotation modes. The elements of the stiffness matrix are similarly multiplied

by either L (bending) or L3 (torsion). The three vectors of the mode matrix t

that correspond to rigid body translations do not change because their nonzero

elements are dimensionless. (We have been deleting these from our analyses

in any case.) The linear nodes of the flexibility and rigid body rotation modes

are scaled by L while the angular nodes are kept fixed. Note that although the

impulsive aerodynamic drag increases by I. 2 , it plays no role in this analysis

since it affects only the initial conditions for the state x. The gravity

gradient torque is also affected by the scaling, but since these terms appear

in the stiffness matrix they are automatically scaled by L3.

Some root loci are shown in Fig. 21. It can be seen chat instability

occurs at L = 2.4 (Fig. 21a) and for the design which ignores the flexible motion

(rigid body only), the system is stable for L up to 5.2 (Fig. 21b). In both

cases the instability is caused first by the rigid body/gravity gradient going

unstable. The structural mode that goes unstable is the same in each case but

occurs at a larger L for the case of full state feedback. Thus we can conclude

that the optimal designs are reasonably insensitive to variations in the structural

size.

8. RIGID BODY CONTROL FOR PRECISION POINTING

The problem of precise control of the vibration of a system and the control

of the rigid body are incompatible problems. To control vibration requires

a wide band system while the usually high noise on the attitude sensor relative

to the rate sensor tends to make the bandwidth of the attitude loop very small.

This suggests that a hierarchy of control loops should be designed the first

loop a narrow band attitude loop, the second loop a wider band rate loop that

controls the rigid body rate and the final loop a rapid moving (wide band) loop

that achieves vibration control. We describe in this section how the first of i
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these loops - the attitude control loop can be designed around the second rate

control loop. First, however, we show that the rate sensor noise relative to the

attitude sensor noise determines the bandwidth of the attitude loop.

When sensor noise and external system noise are both exciting the control

loop, the design of the control system requires that an estimator (a Kalman

filter) be designed to provide the best estimate of the rotational rigid body

states. Consider the rigid body dynamics given by

	

0	 1	 0
x	 x +	 w	 (50)

0

	

r
	 0	 aw/I

i

Y	 x + n

that is, the rigid body dynamics are I@ - noise where in Eq. (50) x 	 A,

x2 - 8, I is the inertia of the rigid body axis and the measurement y is a

measurement of attitude and rate with additive noise n. We assume that the

noises w, n1 and n2 are white with variances a 2 a2 and a2, respectively.

The continuous time Kalman filter is given by

z	 0	 1
X	 x + K(y - x)	 (51)

0	 0

where	 K - PMT R 1

and

0 1	 0 0	 0	 0

(► m

	

P + P	 +
0 0	 1 0	 0	 awl/I

1/0 
2 
	 0

-P	
2	

P

	

0	 1/01	 2

. The significant aspect of the filter is what it does to the control system

ghen it is inserted in the control loop. It is well known (See Ref, 7) that the

nosed loop system with a filter in the'loop has closed loop poles which,are those

)f the optimal system cascaded with those of the filter. Thus, the bandwidth of
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the closed loop system will be that of the optimal control if the filter band-

width is greater than the control. If the filter bandwidth is smaller than the

optimal control, then the closed loop response is dominated by the filter. To

determine the poles of the filter (Eq. (51)), we use Potters method on Eq. (50).

Thus, the filter poles are the left hand plane eigenvalues of the 4 x 4 matrix

0 0	 +1/ai	 0

+1 0	 0	 +1/a 2
	(52)

0 0	 0	 +1

0 a 2 /I	 0	 0
w

These eigenvalues may be determined analytically as the solutions of the charac-

teristic polynomial of Eq. (52). This polynomial is

22

A 4
 - ^2 an
	

+	 ^wr	 = 0
IC 
	

10 

which has roots

2	
1/2

a V2	 Ia2
X1.3= ± a-I— 	1+	 1- 4 ala

—`2	
iJ2	 (53)

a r	 I6 21	 4	 ia	 a± ---	 -	 1-	 ,
2,4	 21a2	 ala

w

where a 1 and a 2 are the left half plane poles (with the minus sign). To

characterize the bandwidth of the filter, the following parameters are introduced.

Let Sr (the signal to noise ratio for the rate sensor) be aP/o 2 and let p

(the ratio of the attitude sensor noise to the rate sensor noise) be al/a2.

Then	 1/2

	

/1	
2

al=- -F/2 Sr ( 1+-41(Srp) }
(54)

1/.2

A2 
= - /21/2 Sr f 1 -	 1	 4/(Srp ) 2 }



Figure 22 shows the root locations for various conditions of S r and P. The

situation in Fig. 22a is the critical one. It describes the case when p is large,

i.e., when the attitude noise is larger than the rate sensor nois _ 	For a typical

precision rate gyro and star tracker, the ratio p is on the order r^1 100 which

is clearly the case of Fig. 22a. Thus, the bandwidth for the attitude control

loop is determined by the filter pole near the origin. In other words, the

settling time for the attitude loop is determined by the time it takes to

determine the attitude from the rate measurement. Since this is the case,

an attitude control system should be designed that uses rate sensors for the

basic control and the attitude control loop should provide rate commands. When

this is done it becomes possible to also estimate some of the rate gyro parameters.

The basic function of any onboard attitude control system is to maintain

constant LOS of the spacecraft axes. Ideally, it should be free of long-term drifts

and jitter, and steerable by ground command. To determine the degree to which

these ideal characteristics can be achieved, and by what techniques, a baseline

approach to the control, determination, and parameter calibration problem is

Vv	 proposed and analyzed. B;+/ considering a generic design such as the one proposed,

it is possible to identif5 the specific sources of LOS error and to propose and

evaluate techniques for their compensation.

The proposed design utilizes rate stabilization with a three-axis strapdown

gyro package coupled with a set of coarse and fine reaction wheels. The

stabilization loop recieves ground commands of the required rates it must

hold constant, with respect to inertial space, and the period over which they

must be held. This system is an onboard velocity feedback loop which can

respond rapidly and the position loop is closed through the ground, using

an onboard star sensor. The position loop can be closed through a ground loop

because of its very low bandwidth as described above. Figure 23 depicts the

essential elements of the proposed approach. The dashed portion represents the

onboard stabilization loop, the remaining portion represents the ground -based

j	 position loop.

Four reference frames are used to characterize the system's operation.

The inertial frame, I, is fixed with respect to inertial space. The orbital

frame, 0, is defined to have axes which are local vertical, orbit tangential,

and normal to the orbital plane. The computational frame, C, is derined in

terms of the orbital frame and represents the desired location of the vehicle's
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body frame, B. Ideally, the B and C frames should be coincident. Attitude

misalignment is measured by the small angle misalignment vector, T, between

B and C frames (Y is the three-vector about which a rotation of JYJ radians

by computational frame C will bring the B and C frames into coincidence).

In Fig. 23 a commanded rate to the computational frame is generated, WIC

(for an earth pointing mission this will be earth rate). This command is sent

to the stabilization loop and held. The star data, while the rate is held

by the stabilization loop, are transmitted to the ground via a radio link, and sent

to the star-track preprocessor. The star-track preprocessor collects data

from a known star for one stabilization loop sample time (on the order of 30

seconds) and estimates the position SB (t) of that star in the star tracker at time

t. The star-position generator also computes the nominal position for the same

star, assuming perfect alignment of the B and C frames.

Any difference between the two star positions is a measure of the

misalignment between the two frames. This information is fed to a Kalman filter,

which estimates the misalignment between the two frames, T(t), and at the same

time, updates the values of any observable system biases.

The misalignment information serves a dual purpose. It is sent to the

ground mission processor to update current LOS information, and it is also used,

when desired, to provide a correction rate command, which is added to the nominal

command transmitted to the spacecraft. The corrective rate will drive

the current misalignment to zero in a fixed amount of time.

There are three categories of errors which, if uncompensated, will cause

the UtS to diverge; they are all of the bias or slowly varying parameter variety;

errors in the gyro package, such as bias, scale factors, and input-axis

misalignment; errors in the sensor system alignment; and errors in orbit deter-

mination and star position. These can all be included in the state of the Kalman

estimator. The more-stable errors can be estin ►ated infrequently in a batch

mode; the more unstable ones, such as gyro bias, are ,estimated on-line along

with the misalignment vector, 41 . The results of a detailed covariance analysis

of the star—track preprocessor and Kalman filter estimator for a six-state

implementation that predicts the achievable level of performance are described

below.

f!
r
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The jitter portion of the LOS has its source in the onboard stabilization

portion of the system. The main noise sources are the gyro output noise,

stabilization loop electronic noise, and reaction wheel torque noise. These

noise sources must be suppressed through the wide band stabilization loop control

system and the dynamics of the spacecraft.

A covariance analysis was performed with all of the above noise sources

as the excitat {on. In this analysis, we took advantage of the fact that the

shape of the output time history from a star detector depends only on the path

of the star point-spread function as it traverses the star sensor detectors,

since the intensity remains constant throughout the traversal. In the analysis,

we assumed that the star track is completely characterized by a straight line

at a known velocity with known point-spread function. Hence, an initial x o , z 

coordinate pair and a reference angle measured from a line defined by the locus

of the star completely determine the output signal. Assuming the electrical

characteristics are known, and the point-spread function is an azimuthally

symmetric gaussian function, the estimate of the initial star position (and

angle) is a recursive update using successive sensor outputs. The covariance

analysis results tend to be insensitive to slight modeling inaccuracies.

Given a single voltage measurement at specified location on the sensor (a

sensor node), {vi), from the previous a priori knowledge we know the least-squares

linearized solution for the corrections of the track parameters to be given by

Qx

Az	 CHTR-1(AV)
	

05)
ne

where HT is a 3 by n matrix given by the transpose of the n by 3 measurement

sensitivity matrix, H,

R is the n by n covariance matrix of n voltage measurements, assumed

diagonal and proportional to the identity matrix, and

(AV)is a column vector composed of the n measurement differences,

(vi - vi):
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aVi 3V  3V 
3%	 dao	 aeo

H	 (56)

av	 av	 av
n	 n	 n

ax	 az	 ae
O	 O	 O

C • (HTR-1H)-1

where C is also the covariance matrix for the estimate of the three-component

state vector. The square roots of the diagonal elements of C, then, give the

uncertainties of the xo , zo and 00 
parameters of the star track.

It can be shown that when each additional node measurement is combined with

the current estimate to obtain a better state estimate, the covariance matrix

relation is given by the recursive equation

Ck+l s 
Ckl + H 

T 
R_ 1H
	

(57)

where 
Ck1 is the inverse of the previous covariance matrix obtained before the

new measurements are used.

Computer analyses have been performed to determine the dependence

of the covariance matrix on the relative star-track geometry. As might be

expected, the worst uncertainty in position occurs in the z  estimate, the

direction nearly perpendicular to the star track. If the star image continues

to traverse successive sensor nodes with near-zero inclination angle, the z 

coordinate becomes nearly unobservable. In this geometry, all of the output

signals will be nearly the same for all paths slightly displaced in z from the

nominal path. By tilting the star tracker slightly this unobservability quickly

disappears as caa be seen in rig. 24.

For a relative star tracker angle of 7 deg, the final standard deviation in

the estimate of z  for a 30-second star-track traversal is on the order of

0.05 mil, and somewhat smaller for x o . This result assumes a peak signal-to-

rms-noise ratio of 10:1. Hence, it seems that the nominal 30-second-duration

collections of data will provide sufficient high-fidelity pseudo measurements
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to the Kalman filter processing stage for the more time consuming attitude

determination/bias parameter estimation function,.

The function of the processing segment described above is to determine a

measurement that can be used to precisely determine the attitude of the spacecraft

and provide the necessary information for any subsequent attitude control correc-

tions of unwantea ,rifts. A natural byproduct, which is necessary to achieve

high-precision results, will also be the estimation ( "learning") of at least

three different types of system biases. This set of parameters consists of

(1) the three-gyro drift rate biases, (2) the misalignments between the rate

gyro package axes and the nominal body coordinate system axes (each axis

misalignment being characterized by two direction cosines) and (3) the three

torquer biases, which will effectively characterize the biases in the onboard

rate stabilization segment.

If we define the three vector, wIB, to be the angular velocity of the body

frame with respect to the inertial frame, expressed in the body-frame

coordinates (hence, the superscript), we can write the continuous state equation

expressing how the misalignment vector, T behaves with time. Before writing the

equation, it should be emphasized that the misalignments are infintessimal.

Hence, the state equation will always have at least one error source, even

if the system model were perfect. Furthermore, it is assumed that the differences

between the actual and nominal rates remain small. The state equation, then,

for the misalignment vector becomes

= F(w ^) T + w  - w10 + noise	 (58)

where F is the skew-symmetric matrix

0	 w3	 -w2

F(w) _	 -w3	 0	 W 	 (>9)

W2 -w1	0

When the relation between wIB and the commanded (nominal) rates to the

onboard gyro package is modeled with unknown biases, the expanded state

equations can be shown to assume the following form:
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i - F(w
c
IC
) T+B+I' 

Y
Y+r a +noise

B - 0 + noise
(60)

- 0 + noise

- 0 + noise

where B is the three-vector of gyro biases, y is a six-component state vector

expressing the gyro misalignments, and a is a three-vector expressing the torquer

biases, and r Y , I' s 
 
are the 49fect of these on the misallgiam- lat vector.

To construct the Kalman filter, it is also necessary to define the relation-

ship between the observable star position pseudomeausrements and the state to be

estimated. This equation can be given by

AX - MT +n

where AX is the error In the pseudomeasurement two-vector, and is due only to the

first three components of tile state vector, i.e., the misalignment vector, 41,

and n is the pseudomeasurement noise whose covariance is provided by least squares

inverse above. The measurement sensitivity matrix, M, is given by

0	 -Z	 f
0

(61)

	

- -f	 x 0	 0

where x 
0 , 

z
o
 is the star pseudomeasurement position and f is the effective focal

length of the star sensor.

We performed a preliminary covariance analysis, assuming that only the gyro

bias three-vector is to be estimated with the Kalman filter. For the six-component

state vector, consisting of the misalignment vector and the gyro biases, the

discrete solution for the covariance propagation is given by

M n+l - OpnO T + Q
(62)

P
n+l	 n

(I-K H 
n 
)M 

n 
(I-K

n
 H n ) T + K 

n 
R nK T

 n

where Kn
	 n n
- M H T
	

n
(H M H T + R

n
 ) -1

n n 
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Here m is the transition matrix given by:

A2At2
cQ^e

where
f

ti	 `wIGA	 ^----I---	 (63)
, 	 0	 0

and At is the filter cycle time, nominally 30 seconds. Note that 0 does not change

with each update since wC is assumed to be held at some constant value during
IC

all mission maneuvers. Returning to the above equations, Q is the six by six

covariance matrix expressing the plant uncertainties, P n is the previous updated

covariance matrix, Mn+l 
is the extrapolated covariance matrix before updating

with the current pseudomeasurements, and 
Pn+1 

is the current updated covariance

matrix after accounting for the current pseudomeasurements, whose covariances are

given by R. The H  matrix is the same function of the current pseudomeasurements

defined above.

The main features of the results of our preliminary analysis are shown in

Fig. 25. For the analysis, a gyro drift rate of 0.01-deg-per-hour-per-day

was assumed, not an unreasonably demanding requirement. Using only a single star

in the FOV of the star tracker at any given time, the upper graph of Fig. 25

shows an excellent transient response for the two sensitive coordinate axes

4 salignments. The third axis will require about 6-hours before comaprable

performance is achieved. In 1 1he lower graph of Fig. 25, the drift rate error

is seen to achieve 0.01-deg-per-hour within an initial 15-minute time interval.

i
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1780	 -1780	 X 

	

-1780	 4194.4	 x2

100	 0	
R1

0	 343.8-2 J	 2

0 fl

0.054 f2

(65)

z l	17.8	 -9.6

22	 -9.6	 12.2
L.

zl	 0.1

z 2	0

III. THEORETICAL QUESTIONS FOR CONTROL OF LARGE SPACE STRUCTURES

1. ORDER REDUCTION PROBLEMS

The fact that the differential equation that result from finite element

modeling represents undamped harmonic oscillators means that Eq. (7) is never

exactly satisfied at any time.* This is quite distinct from the normal singular

perturbation approach which we formally used above where the reduced solution

matches the actual solution to the full set of differential equations for times t

which are away from the boundary. The reason this convergence is not valid for

the finite element method is that there is no damping. A simple 2 mass model can

be used to illustrate this point. Figure 26 shows the model for a simplified

2 mass example. With the parameters given, the "finite element" model becomes

f1
(64)

f2

The result of transforming via the Cholesky factor of M (since It is diagonal

	

L = 10	
0 ) is (see Eq. (20))

	

0	 18.54

The matrix ( in	 Eq. (7) is a transformation that supposedly gives all of the
components of x in terms of the modes q. 	 When q is truncated, the harmonic
motion of the ignored modes never damps, so x is never correct.-

PRECEDING PAGE BLANK NOT FILMED
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Fig. 26 Simple Example
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and if

0.6	 0.8
^

g s z w P2

0.8	 -0.6

then Eq. (65) becomes

-5	 0	 0.06	 0.043

g 
+

[f2

6(6)
0	 -25J 0.08	 -0.032 f

If the second state (the fast state) is eliminated from Eq. 	 (66) then the reduced

model is

r
$1 = 5 ql + .06 fl + 0.043 f 2 (67)

q 2	.0032 fl - .00128 f2

Assuming f l	f2 = 0 and g 1,2 (0) are the only initial conditions on the mode state

(41
(0) = 42 (0) = 0) then since x - L leg the solution to Eq. 	 (67) gives xl (t) as

x  W = .06 ql (0) cos	 r t (68)

t whereas the solution to Eq.	 (66) gives xl(t) as

xl (t) = .06 ql (0) cos vr5-t + .08 q 2 (0) cos 5t (69)

If x1 (0) = 1 then Eq.	 (68) and Eq.	 (69) can be compared.	 Figure 27 shows such
i

a comparison, and as can be seen the reduced solution Eq. 	 (68) never converges

to the actual solution Eq.	 (69).

The solution to this problem is to formulate the order reduction as a "weak"

convergence.	 The best way to achieve this is to use the control performance
t

measure as the criteria.	 Thus, if the performance measure for the original

system is

t ^ x T x
J =	 I Q + uT u	 dt (70)

f
o

- -

3
then an approximate J is obtained by using a transformation based on diagonali-

zation of the cost matrix associated with Eq. 	 (70).	 The benefit of such a weak

6
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order reduction is two folds

1. Periodicity in discarded modes may be handled.

2. The dlosed loop dynamics are ueed as a criteria for

reduction In order.

The first use of this form of order reduction was by ,Meier in Ref. 10.

i	
2. ORDER REDUCTION IN THE WEAK SENSE

The procedure we have developed for reducing the order of a dynamic system

accounts for all of the objections that were raised in Section III-1. Firstly,

the reduction in order utilizes the performance index as a criteria for determin-

ing the order reduction so that periodic motions in any particular discarded state

do not cause problems in the singular perturbation. Second, the procedure uses the

r..losed loop dynamics. Thus if a high gain system is required the order reduction

will account for that, fact by retaining the "faster" modes in the open loop

dynamics that are normally discarded. This second step is a significant

departure from the order reduction described in Refs. 11 and 12.

The procedure for order reduction differs from singular perturbation

techniques based on the dynamics of the system where the highest derivatives

of the fastest states are permitted to go to zero (Refs. 2, 13 and 14). In

that case, convergence of the reduced model solution to the solution of the full

order system occurs in an absolute sense. In our case the quadratic performance

measure is used to determine the order reduction so that convergence is in the

`tweak sense".

To develop the reduction procedure, we start with the open loop dynamics

(i.e., !!=  0)

and

k = A x	 2i(0) =xo

T
J - t xT Qx dt

t
0

(71)

(72)

*r'	 69
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Since x(t) . t(t-to ) x(to

J - xT (to) !t 0T (t-to) Q 0(t-to) dt x(to)	 (73)
0

or

J . xo P(T-to) xo

where P(T-to) satisfies the differential equation

dP t	 „ ATP + PA + Q	 (74)
dt

which is simply obtained from differentiating Eq. (73) and using the fact that

(P and A commute. If T 	 then the steady state solution, P . , of Eq. (74)

satisfies

ATPW + PWA + Q - 0	 (75)

The solution to the equation (75) is best developed by diagonalizing A

(assuming A can be diagonalized). Thus, if T is the matrix of right eigenvectors,

then

T1AT=s

and if we premultiply Eq.(75) by TT and postmultiply by T, then

TTATTTTPOOT + TTP^T T lAT + TTQT = 0

or

ATTPo TT + TTPGOTA + TTQT = 0

and if P TTP.,and Q = TTQT, then P is easily seen to be given by

i	 pij = q ij /(A i + a^)

Thus, P. = T T P T 
1 
can be determined by using the eigenvalues and eigen

vectors of the matrix A.
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The matrix Pm is symmetric, hence it is diagonalized by an orthonormal matrix

S, i.e.,

	

61 0	 0

	

0 6 2	 0	
T

A	 ^	 SPAS	 (76)

.	 .

	

0 0	 6
n

where 61 > 6 2 > . .	 > 6n

The order reduction that is now proposed is based on the eigenvalues of the
r

matrix developed in Eq. ( 76). The reasoning is that the eigenvalues of Eq. (76)

specify the amount of control that is important as each of the.101tial conditions

x  are perturbed, and are therefore a good measure of the effect of the control

in terms of the desired performance. Obviously the above derivation depends only

on the initial conditions, since the control was assumed to be zero. When the

control is non zero, the same analysis may be used if one assumes that the

control is linear.

x	 (A + B K) x ; x(0) ® x 	 (77)

The last piece we need before the order reduction algorithm is derived

is the fact that the closed loop dynamics, when the gain is known, can be put

into the form of Eq. (71) and Eq. (72).

As the first step in the order reduction procedure, assume that the desired

performance has been translated into the quadratic perforamnce measure
OD

J P (xTQx + uTRu) dt	 (78)
o

and that the control is known and given by u = Kx. Then Eq. (78) becomes

J	 ! xT :^Q + KT R K) x dt
	

(79)
O
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If K is a stable gain in the full state system (x is a dimension n, which is large,

and we desire to find a reduced order model), then the goal is to find a smaller

dimension approximation such that the value of Eq. (79) is approximately the

same for both the full state and reduced state system.

Following Eq. (75), the value of the cost matrix P . for Eq. (79) is given by

T TPT
-1 

where

Pii . [gij/(Ai + A j ))	 (80)

and where

Q • TT (Q+ KTRK)T

T is the matrix which dagonalizes A + BK

Ai are the closed loop eigenvalues i = 1, ..., n.

This matrix is symmetric and hence can be diagonalized as in Eq. (76) so

Poo - S A ST	 (81)

where

SST . STS - 1

In Eq. (81) let us partition P., in blocks of dimension m and n-m as follows:

P	 P11	 P12

T
P12	 P 222

where P11 is m x m

P12 is m x n-m

P 22 is n-m x n-m

M is the order of the reduced model which is specified based on the

error introduced by the order reduction.

I'
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73

Thus, from Eq. (81) we get

m
S11	 S12	 F`11	 Pla 	A11	 0	 S11	 S1.2

T	 T	
(82)

S21	 S2 2,	 p12	 P22	
0	

A22	 S12	 S22

T	 T T	 T	 T	 T	 :Tor 
S 11P11	 S21 P12	 4115 11	 g11P12 + S21 P22	 ^' s"`i

3

and s12P12 + S22P22 " °22522'	 S.12P11 + S22P12 ' A22S12

By the way in which the eigenvalues 6 i were ordered in A, the eigenvalues in A22

are small compared to those in A ll . If these eigenvalues are of order c then from

Eq. (82) as c 4 0 (the mar^4i.tude of a that is "considered small" in fact will

det ,ermine m)

	

T	 T	 _
S12P12	 S22P22

or
^` ,

P22 s-S22S12P12	
(83a)

and

m

T	 T T
S 12P11 + S22P12 0

so

P12' -P11S12S22

which gives
4

-T T	 -1
P22	 S22S12p11S12S22

since Pll is symmetric.

The cost matrix P, from Eq. (83) is therefore

_1

P11	 P11S12S22
P

-T T	 -T T	 -1
'S22 S12 P11	 S22S12P11S12S22—

(83b)

(83c)

(84)



T	 T

I	 I

P	 P	 (84)

CS -T T	
11	 -T T	 (con't)

"S22 S 12	 "S22S12

When the initial conditions are Gaussian zero mean with covarianne Q o , then

E(J) - tr (PQ 0 )

- tr(P11 
Qoll + P12 Qo21 + P21 Qo12 + P22 Qo22t

Thus, we assume that x2 - - S22S12
xi, where (x1 , x2 ) is a partition of, the

state x into an m dimensional reduced order subset (x1) and an n-m dimensional

"residual" subset which are now a linear combination of x 1 . Using this

definition,

x1	 I
x	 -	 x1	 (85)

-T T	 -T T
"S 22S12-1	 -S22S12

so when x is used in Eq. (79),

0
J - f xT (Q +KTRK)x dt

0

T
I	 I

f x 	 (Q +KTRK)	 x1 dt	 (86)

0	 -S"TST	 -S"TST

	

22 12	 22 12

The state variable mo-1 for x1 is given by substituting Eq. (85) into

Eq. (79), thus if we call the closed loop state matrix E and partition it ass

F11	 F12
(A + BK)

F21	 F22

where F11 is m x m

F22 is n-m x n-m
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^x0px
-o -o

T

xi(0)	 P
-T T Q
S22SLa

I
x1(0)

-T T
-S22S12

(88)

a

t

than

_	 -T T
1 F11 xl - F12S22S12x1 ':	 xl(0)	 as before

and

2	 (P21	 F22S 22S 12 ) -1	 x2(0)	 - S22S 12 x1(0)

are the reduced order state variable models. Since we have assumed x2(0)

-S22S12x1 (0), the performance measure becomes

OD

J f x  (Q +KTRK)x dt
0

a

(87a)

which, if a -). 0 becomes:

x1 (0) T
[I + S12S22S22S12, 

P11 [I + S12S22S22S 12,x1(0)
	

(89)

Comparing Eq. (89) with Eq. (84), the order reduction implied by Eq. (85) gives

the same performance measure as results when the small terms in the cost matrix

are 'iero ( c -► 0) .

To devej,op the series expansion in E for the cost measure requires an

e,.pansion of Eq. (86) as a function of c. The result of such an expansion will

give an indication of the error introduced by the truncation. This was not done

during this contract and is one of the issues that should be pursued.

The reduced model Eq. (87a) where u is not Kx is given by

_
xl = (A11 - Al2S12

S_1
22) xl + Bl u

I	 T	 I

	

J o {xl -S-TST	 IQ}	 -S-T 	 xl + uT R u } dt	 (90)

	

22 _12	 22 12
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which gives the reduced order optimal control problem. The control u is

given by u Kr x1 where Kr is the reduced order gain given by

Kr - 
R-1BTP.	

u = Kr xl	 (91)

and j

T
0= (A - A 5-TST ) P + P (A - A S S

	

-TT )	 ^.
11	 12 22 12	 11	 12 22 12

1	 T	 I

+	 Q
-T T	 -T T'

S S2212	 -S22S12

+ POOB R
-1BTP

OD	(92)

The gain Eq. (91) is an m x p matrix, which may be used in Eq. (79) to

evaluate the performance of the complete n state system as follows:

Let Em be the n x m matrix given by

I
E =	 m

m

O
n-mxm

then

xl	 Em x so Eq. (79), with the gain K. becomes

J = I X  {Q + E KT R K ET} x	 dt	 (93)
0 m r	 r m

Obviously, all of the steps leading to the reduced model Eq. (87) can be

performed usl,ng Eq. (93) instead of Eq. (79) with u=K x =K ET x. There is no
r-1 r m -

reason, on the firs?. iteration, that the resulting state matrix F in Eq. (87) will

be the same. Thus, we must iterate on the gain Kr and the reduced model

(F11-F12S12S22) until the result of two iterations gives the same F. When this

occurs, the reduced model will have been determined along with the optimal gain

that accompanies the dynamic model.
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Figure 28 shows

M gt+Kx v f are th

The matrix A is then

d
dt Lk

the iteration that is described above for the case where

dynamics (corresponding to the finite element model).

(formally) given by

(^	 I	 x	 0

+f	 (94)

I-M 1K
	 0	 x	 M-1B

r

Pt`

3. MOUE SPILLOVER

Mode spillover of the control (Ref. 15) refers to the problem that when an

actuator is placed on a physical structure, it excites all of the structural modes.

This can be minimized if the actuator is constrained to move slowly relative to

some defined high frequency. The problem is how to limit the control bandwidth

without adversely affecting the response.

Because an optimal control design has a 1/w characteristic (see Ref. 7) for

large frequencies, the fundamental theorem due to Bode is satisfied (the

requirement of at least 20 db/decade roll-off at the zero decibel crossover).

However this 20 db roll-off continues to the higher modal frequencies where an

additional 1/w roll-off in each control channel for high frequencies would

be desirable. To achieve an additional 20 db roll-off, an observer is introduced

Into each control channel. We assume the state to be observed Is the feedback

gains times the state [^l^ ^lJ. Thus, z the observer state will become the
control

91

z -► K	 z of aim. p	 (95)

The observer equation is (where the state variable model here comes from Eq. (42))

91	 0

	

z =F z + G	 +	 K	 0	 u	 (96)A,	 I I p

where from the observer constraint equation (the matrix K is the observed linear

combination of states)
0

	

G G K	 -02

and L is defined in Eq. (17).	 0

I	 0

0	 (.011O21)L-1B	
-YK.

0	 0
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The selection of the "Poles" of the observer (eigenvalues of f') is made

in such a way that the Bode criteria is satisfied at the frequency which is the

highest frequency retained in the reduced order model and for frequencies beyond

that, an additional pole is introduced. The resulting control system appears

as shown in Fig. 29. The same transformation used in Section II.6 is used here

to provide the modal measurements^

- I
jI in terms of m coordinates of the structure

and their rates. 

4. COMMAND GENERATORS FOR STEWING AND SHAPE CONTROL

The problem of moving a system from one orientation to another may be

formulated as a control problem as follows:

"Given an initial condition xo and a terminal condition x f , determine
the control u such that some performance measure is minimized (such

as minimum time, etc.) that also causes the system x Apt + Bu to

move from x  to xf."

Most of the problems formulated this way lead to nonlinear control laws which are

difficult to compute - particularly when the dimension of x is large as it is in

the structural control problem. Thus, we have formulated the slew problem in a

different way - an approach that allows the use of linear optimal control

techniques.

The assumption is made that the command is the output of a linear system

with an input that is a step function. Since it is important that slew commands

be smooth, the command generator should be such that ae many derivatives as

possible are zero at t = 0 and that near the terminal time of the command

(t = tf) the derivatives of the command should all be assymptoically approaching

zero. Thus, the command time duration t  may be selected based on the degree

of steady state performance desired (how much motion is tolerable at ' f). A
linear system which; achieves this level of performance is the approximation to

an ideal delay network (Ref. 16) whose transfer function is a-sT where T is

the delay time. The transfer function of the app-roximate system of order N

(even) is given by

a
T (s) _	 ------°	 ------

a  8 + .. + al 's + ao
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where

^IN-1 1
	j

	 j!

	

a
_t

and
_

1 	 2N-1	
k	 (j -k ) Ii —I

By using a partial fraction expansion on T(s), the transfer function becomes

*

T(s) - s by

	
+ e 

1p * + ... + s ^^2	 + $ N^2 
*	 (98)

1	 1	 N/2	 N12

where * denotes complex conjugate, and the state variable form of Eq. (98) is

trivially given by (xc is an N vector)

^p1 	0	 0 ... 0	 - b1

	k c	0	 pl	 0 ... 0	 xc +	 bl	 u	 (99)

*	 *
0 0	 0	

PN/2J	 bN/2

y= x +x + ... +'x
c l	c2	

C 

The mots of the denominator polynomial in T(s) (pl, 	 , PN12 and their

conjugates) are not simply described. They are all complex when N is even and

they are not clustered along any path in the complex plane (unlike the Butterworth

and Tchebyshev filter poles). We rely on the control design calculation to

formulate Eq. (99) and calculate p i , i = 1, ... , N/2. The step response of

Eq. (99) (u = 1) is computed by the addition of an N + 1st state variable in

Eq. (99). This variable becomes u and since a step has a derivative that is

zero, the new form of Eq. (99) is

P i	 0	 0 ... 0	 0	 b1

xc	0	 pl	0 ... 0	 0	 b*	xc ; y	 [11 ... 1OJxc

0	 0	 0 ... pN12 0 bN1 2	(100)

0	 0 0	
0 PN/2bN/2

0	 0	 0 ... 0	 0	 0
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with xc (0) . [0, 0,	 0 , 11T.

Our computer codes do not use complex arithmetic, so a transformation P

Is applied to Eq. (100) to make all of the elements real, where P -1 is given by

1	 0 { 0

-------
--- -----i^------1---------^--0--

o	
-

^ 	 {	 o	 ^

--..
1	 i{	 i	 0

0^	 0 ^ ... T 1 -i
	 0

1	 1 { 0

0	 0	 0	 01 ... 1 0	 0 I 1

It is readily verified that P is given by

1	 1i	 1	 1	 1	 1;

1	 i	 -i{	 0	 0	 f 0	 01

Pa —	 ---------^-----------^------^
2	 i	 t

0	 =	 1	 1	 =	 0

In the new coordinate system (through the transformation P), the state equation

becomes (where in this equation p
j 

= a^ + isj ; j a 1, ... , N/2)
A

c

N/2 b^+b^
a	 S i (a -a )	 s

	

' (01N1	 2-a 
_1

) S

	

1	 1{	 2 1	 2	 i	 2 N/2	 N/2 
{	 i1 b *-b

	

—0 1	 a1)	
S1	

0 =	 _	
S1	

0 =	 1 1

i
x ----------------------- ' ------ ^------------------- i--^-
—c	

...	 ,..	 i	 o..

{	 aN/2 	 N12	 bN/2-bN/2

0	 ^	 0	 ^	 ...	 ^	
^	

i

^+bb
{	 i	 SN/2	 'N/2N/2 N12

{-----------^ ---	 -- 1-=---=--=--------==---=---.-------02--0	 0	
o---__^ o
	 ...	 o	 o
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and the output is

y . (1 0 0 ... 0] xc 	(101)

A typical set of plots of x1 , x2 , ... xN when N . 10 is shown in Fig. 4.

The next step i- ­;ing Eq. (101) to design the control system is the deter-

mination of what in the structure is to be commanded. If the rigid body coordinates

are the only coordinates to be rotated, then the structural model in the rigid

body modes are commanded to follow y in Eq. ( 101). This is achieved by

applying a torque that is the double integral of y since the rigid body motion

in modal coordinates is I 9 - T. If the rigid body rotational modes in the vector

g (as introduced in Eq. (20)) are the last three components of 9 , then the actual

motion of the physical degrees of faeedom are given by

	

xD (t) = L T0T 0	
Y(t)

0
1

	

1	
three rigid body coordinates

1 . are only non zero terms.

where:

xD(t) are the desired motions of physical coordinates in the finite

element model (x(t) is the original finite element model

coordinates)

L and (P are as in Eq. (20)

y(t) is the output of the command generators above.

The optimal control problem is now modified to cause the actual nodes x

to follow xD as follows

J	 I {(x-xD) T C^(x^-xD) + uTRu} dt	 (102)
o	

- -

where

XD _ L 1
(P
T	 0	 [1 0 .... 01	 x

c

0

L. 

1

11 ..
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and

.

M!t + Kx - B u

As can be seen, the control solution will consist of a gain matrix multiplying

the states xD and x. Thus the actuator command will be a linear combination

of feedbacks from x and feed forwards from the command generator xc.

S. ON ORBIT TESTING FOR LARGE SPACE STRUCTURES

One of the difficulties encountered when controlling large space structures

isthat the structural dynamics are not known well enough. If a finite element model

of the structure is used to develop the control system, then the typical errors

,in the mode frequencies and mode shapes that result will lead to a control system

that at best does not perform as well as possible and at worst could be unstable.

The dilemma is that large space structures cannot be built and tested on the

ground -- one must wait until the structure is designed and built in orbit before

reasonable testing may begin. The problems of this "on-orbit" dynamic testing is

discussed here in terms of a phase locked loop adaptive spectrum analyzer that

could provide mode frequencies and mode shapes for control design during the

initial orbital operations of a large space structure.

The determination of the structural parameters of a large space structure

is almost impossible using ground testing. The influences of gravity, aerodynamic

forces and the difficulty in establishing the thermal gradient that will be

encountered in orbit all contribute to uncertainties (even when these effects

are analytically extracted from the test data). Added to these problems

is the impossibility of even assembling the actual structure on the ground so

that it maintains its intended shape. Thus it becomes important to consider

testing the structure when it is in orbit.

The use of modern control theory to develop control systems for large

structures requires that a detailed model of the structure exist. Due to the

difficulty with testing the structure on the ground, the control design must be

deferred until the system is in orbit and the structural model becomes available.

Use of a digital control system is then ideal, because a rigid body low band-

width controller may be used initially (during dynamic testing). After the control
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algorithm is developed using the test data, the original low bandwidth controller

may be easily stripped out of memory and replaced with the control system designed

using the structural data. Thus, the question becomes one of developing a

structural model.

Since the structural frequencies are discrete, a Fourier transform of the

output of a sensor mounted on the structure will show discrete lines at the modal

frequencies. The use of a spectrum analyzer is thus a possible way of developing

a structural model. The problem with this approach is that a decision process

must be appended to the output of the spectrum analyzer to allow the discrete

mode frequencies to be selected. This decision process must be automated since

one would expect to do the dynamic testing periodically to update structural

mode data as the structure's properties change.

A natural device for automatically selecting the mode frequencies is a

Phase Locked Loop (PLL). This device suffers from some problems when the

frequencies of two modes are close together because it will alternately pick

out one or the other frequency. In addition, the loops are sensitive to certain

noise processes. The characteristics of a PLL are described and a method is

introduced that will allow the loop to be better tuned to the characteristics of

structural dynamics. The theory for identification of structural parameters that

are built into the new phase locked loop, and some results from a simple computer

simulation of the loop are also shown below.

The technique we are describing here uses an optimal filter in the loop

to tie the loop operation to the known characteritcs of the structural dynamics.

Reference 1- is the closest application of such an approach in the literature.

There, a Weiner filter is developed to give an optimum filter for a single

sinusoid, whereas here a Kalman filter with a frequency identifier is used.

Figure 30 shows a phase lock loop as it is normally configured. The

operation of the loop relies on the fact that the result of multiplying two

sinusoids is sinusoids at the sum and difference frequency of the two sine waves.

Thus if the input sinusoid is sin (w 1. + ^) and the output of the voltage control-

led oscillator (VCO) is sin (w ot + e) the input to the low pass filter is given by

E(t) = sin ( wo f+O) cos (wot+e) _

f

	 ^ sin((wo-wo)t+0-e) + ' sin((wo wo ) t+0+0)
	

(103)
IIY

^. r	
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and the output of the low pass filter will be the difference frequency component

of Eq. (103). The VCO will change frequency following the low frequency term

until sin ((wi-wo)t+m-9}- 0 at which point the loop is locked where w  • w ® and

0 n 8. The assumption that the input signal is a single sinusoid is crucial to

the op-ration of the phase locked loop. If a second sinusoid with a frequency close

to the primary sinusoid exists in the input then the VCO will not stay locked

on the primary frequency and will alternate between the two frequencies in a random

way.

Figure it shows the modification to the basic phase lock loop that was

first shown in Ref. 9. The fundamental feature of this loop is that the optimal

filter will have a variable bandwidth with multiple notches. The variable

bandwidth is a consequence of the convergence of the loop frequency, w o , to the

frequency contained in the signal w i . The multi;,ple notches in the estimator comes

from the apriori assumption of multiple fraquencies in the signal. These

two properties overcome the major objectiora to the use of a PLL for structural

frequency determination.

The problem of identification of the coefficients of a linear differential

equation may be formulated as a nonlinear filtering problem since the unknown con-

stants may be assumed to satisfy a differential equation where the constant's

derivative are zero (Refs. 18 and 19).

For the phase lock loop used to identify the structural mode parameters,

the assumption is made tLat the underlying structural systems is modeled by

a finite element model of the form

MR + Kx = f	 (104)

A series of transformations are used on Eq. (104) to obtain the modal form of Eq.

(104) as follows

• Transform from x to z using the Cholesky factor of the mass

matrix M. Thus if L is lower triangular and LL  = M, then

defining z LT x and substituting in Eq. (104) gives

_ - L-1K-T z + L-.1 f
	 (105)

• Transform Eq. (105) to diagonal form using the orthogonal trans-

formation g = mT z to give
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9 - - S22 9 + 0TL-1 f	 (106)

where 02 is a diagonal matrix which has the square of the TAode

frequeacies along its diagonal.

In Eq. (106), each mode sat,'sfies an independent differential equation of the form

ai -W 
q i + b11 f 1 + ... + bip fp	 ( ,1.07)

where the b ij are the terms in the matrix 4^TL 1.

Let us consider a single mode with p = 1 (i.e,,, only a single force is

applied to the system). Since we are postulating a dynamic test mode, we can

use the actuators on the spacecraft to excite the structure one at a time. The

unknowns in Eq. (107) then are wi and b ij . Since the solution to Eq. (107)

is of the form of the sum of sinusoids multiplied by the modal initial condition

plus the forcing term, the b il is a scale factor on the amplitude of the steady

state oscillation ind ut .ed by the force f l . By adjusting the amplitude of f1,

the coefficient bil may be made unity. Thus, the only unknown parameter is wi.

If we write the equation (107) in state variable form, where we further

assume w2 is also a solution of a differential equation we get

	

qi	 0	 1	 0	
qi

dt	 qi	 wi	 0	
0	

qi
0

	

wi	 ^D	 +J

	 Oil 	

wi

L	 J L

	

o	
FO
	 0

w
+	 1	 fl + 61	 0	 1	 (108)

w2

	

0	 0	 Cy

where in Eq. (108) the white noise terms w1 and w2 represent the uncertainty

in the problem. w  is the vibration noise that is exciting the structure and w2

is used to change the rate of convergence of the estimator (a 1 and a 2 are the

standard deviations of these noises and is assumed known).
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In Eq. ( 108), since w  is a state (the 3rd component of the state vector),

the equation is nonlinear. To linearize Eq. (:08) and estimate the coefficient

wi, an approximate nonlinear filter described in Ref. 19 is used. This filter,

closely related to the extended Kalman filter used in inertial navigators uses

terms u? to second order in the Taylor series linearization of Eq. (108). The

filter uses as a measurement the standard phase lock loop measurement (as in Eq.
i

(103)) thus

yf(t) - cos w it yj (t?	 (109)

where
A

{Ui	
is the estimate of the mode frequency

y3 (t)	 is the measurement at the physical degree of freedom

^)n the actual structure labeled xi and is given by

y^W	 a Oji qi(t).
i 1

Since fl was adjusted to give unity mode motion, 0 j will be the actual
amplitude at the frequency w i contained in the measurement yi (t). This means

A

that once the frequency w  is at the modal frequency w i , the output of the phase

loop will be Oji, the mode influence matrix. Thus if a full set of m modes are

desired, altogether m measurements with m loops at each measurement point are

required (a total of m2 phase lock loops connected through a single filter) as

shown in Fig. 32.

The resulting nonlinear filter is given by

q 1	 0	 1	 0	 q 

A

dt	 q 	 -wi	
0	 0	 ql

wi	 0	 0	 0	 wi

0

	

A	 ..	 A

+	 P23	 + K{coswit 
Y  

(t) - coswito Jigi}
	

(1i0)

0
J
'S
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where P23 is the 2,3 element of the estimation error covariance matrix P and

K is the "optimal gain" given by

cosw t
K	 P [	

21	
0	 OJ	 (111)

Cy
n

0	 1 0	 0 -wi	 0

P	 -wi	 0 0 P+ P	 1	 0	 0

0	 0 0	 0	 0	 0

2
0	 0 0	

Cos wit 0	 0

2
CY
n

+	 0	 Qi 0	 -P	 0	 0	 0	 P

0	 0	 a2	 0	 0	 0	 (112)

where on is the variance of the measurement noise on the sensor that io measuring

the physical motion yi(t).

A single mode system (m = 1 in Eq. (106)) was simulated to determine the

operation of the optimal loop filter. The result of estimating the loop frequency

is shown in Fig. 33. One of the unique characteristics of this system is the time

varying dynamics of the loop filter. As a function of time, the loop filter tends

to start out with a high bandwidth which gradually gets smaller  as the loop fre-

quency estimate gets better. In the absence of a noise on the coefficient w

(i.e., when a2 -► 0) the loop filter bandwidth goes to zero in steady state.

Thus the parameter 
a2 can be used to adjust the steady state filter bandwidth.

In practical application each filter will have a variable bandwidth and

will have multiple notches (at the frequency of the modes not being estimated).

Furthermore, the actual loop frequency, once estimated, will not be changed

unless there is some reason to believe the estimates are incorrect. We are

currently building a large simulation code that will estimate multiple modes to

test the method on a relatively large problem.
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6. STRUCTURAL DAMPING IN FINITE ELEMENT MODELING

The finite element model is an approximation to the underlying partial

differential equation of the structure it models. As such the full order

fits to element model is the only vehicle available for verifying the stability and

performance of the control system design. Since the low order design model

usually has some dam_='ng assumed, there actually is a measure of stability imposed

on the full order , design. This stability is a consequence of the way the damping

is introduced, and as such it is important that the control designer understand this

modeling.

In order to preserve the mode transformation developed where the damping is

assumed zero, the damping matrix that is used to model the damping on the structural

degrees of freedom is assumed to be (Ref. 20)

m
C - M	 E ai (M lK) i	(1 ")

i@1

where

1
C	 is the damping matrix (see Eq. (3) in Section IIL-1)

M is the mass matrix

K is the stiffness matrix

ai are coefficients which are determined by the amount of damping

desired on the various modes

m is the number of modes in the reuuced order model

Using the notation of Section II-3 the diagonalization of the matrix C

uses the same transformation that diagonalized K and M. Thus if

S	 (D
TL1 x

where

M LL 



0TL-1 C L TO

E a t L iM (M 1K)	 (M-1 K)L-T0
i	 L	 J^i^l	 i terms

then

E	 ai(0TL
- 1 -TT

(P) ... ('TL 1KL-Tp)
i-1

m	 i
E	 a i (S^2)
®1

a, lw2 +a2w2 + ... +amw2m 	0

0	 a1w2 +a2 W
4+	 ... +amw2m

0	 0

0	 0

...	 0

0 ... a lwm+a 2wm + ...+amw2 (114)

Thus, the transformation (D TLT diagonalizes M and K and therefore also C. To

determine a l , a29 ... , am, the levels of damping in each mode is determined

(i.e., the terms C 	 i = 1, ...	 m)

Then the equations

alw2 +a 2wi	 m+ ... + amwi

=	 i = 1, 2, •	 a m	 (113)
i	 2w 

are solved for a l , ...	 am. This set of equations may be written as

W  W  ... W 2 al	 2w1 1

.	 a,2 =	 2co
2^ 2

(116)



and hence

r al 2ww1C1

-1
•	 v	 '

am	2wm^m

t=,	
where V is the vandemonde matrix of Eq. (116).

Notice that there is now an implicit damping for all of the higher frequency

modes, m + 1 to n. These damping coefficients grow with frequency. Since

the same transformation applies to the full nth order system, the damping of the

higher frequency modes is also given by 14. (115) where i - m+l, ..., n.

Obviously as the frequencies w get larger, 91 -► - which means that these

higher frequencies are no longer going to be oscillatory. Thus, if this model

is used to verify stability of the control design, an unrealistic damping is

actually being used on the modes which are expected to be problems.
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1 sec

IV. SIMPLIITIM" DESIGN EXAMPLES

The two mass system of rig. 26 will be used here to describe the linear

discrete time optimal control techniques that were used to develop the control for

the OCDA in Section I. This example has most of the features that were needed

for the understanding of the larger problem, b ylt it is sufficiently simple

that all of the matrices etc., may be written explicitly.

The problem is to control the two miss system using the force f l only.

Thus, the "finite element" model is

- [
100	 0	 R	 1780	 -1780	 x1 + fl	

(117)

0	 343.8	 k2	
-1780	 4194.4	 x2	

0

STEP 1: COMMAND INPUT

Let us assume that the desired response of Eq. (117) is such that the positiun

of the dominant generalized coordinates follows the profile shown below

3	 x-(t)

-t/TD
xD (t) = 1-e

TD = .333 sec

1	 where xD (t) denotes the desired position of both xl and x2 . Clearly, with

only one force alplied to mass 1, the positions of masses one and two cannot both

be increased from their initial values by 1 unit since, in steady state, if

xl 1 andf 1 - I780 -1780	 ! 1li o
 1780 4194.	 x2

from Eq. (117)give. x = 1780 and f = 1780 (1 - 	 1780 ). The procedure we2	 4194.4	 1	 4194.4
described in Section III solves for x  and x2 using a weighted least squares

approach so that x  and x2 are both moved approximately the desired one unit.

95

•+	 •,M	 _	 .	 .^X "^.«	 i:_,	 hil l^p.YY.YU:̂ '"vr'aY.^' .Y.auuw....x.:..,,.v.



The motion xD(t) is imparted to the dominant mode, that is, from Eq. (117)

t} 1	- 5ql + .06 fl	(118)

and since

x LTz.CTJ

x 0.1	 0	 0.6	 0.8	 x0.06	 0.08

9	 9

0	 0.054	 0.8	 -0.6	 0432 -.0324

which gives

x1 - 0.06g1 and x2 - .0324 ql

If ql (t) -ax D(t), then Eq.	 (118) gives

f1 M -
- t /T	 _C /T

{- 12	 e	 D + 5(1-e	 }	 a/.06

TD

l	
-t/T D	 -t/T D

a

- .06	
{5 - (5 +	

2) e
	 }	 -	 {5-14e	 }	 a/.06 (119)

TD

now the amplitude a of the command xD can be determined by solving for a such

that x and x2 are as close to 1 (in steady state) as possible.	 Thus we

want to solve
I

[0.06	 .03241	 506 	- {1	 11 (120)

^-	 which can only be solved in the least squares sense (this is two equations in one

unknown) to give ( following Section III-4)

[0.06	 0.0324}	 1'
2.06	 2(.06)	 + (.0324)

l

.06 + .C324	
19.872.0046

.'.	 a a	 .238 (121)

x,
ti	
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Therefore, the desired motion is

-t/TD
xD (t) - .238 (1-e

which may be modeled as the differential equations

	

kD	- 1 /T D xD + 
.238

D

	

- 3 x  + e	 (122a)

	

s	 0	 (122b)

with

s(o) - .714

xD (o)= 0

STEP 2: CONTROL AND COMMAND MODEL IN STATE VARIABLE FORM

The combined slew and reduced order model in state variable forn!. can be

written in terms of an augmented state variable p defined as

ql	0 1 0 0	 0

4 1	 -5	 0	 0	 0	 .06

Q =	 so that e =	 p+	 fl	 (123)
x	 0 0 -3 1	 0

0

s i	 0 0 0 0	 0

where

ql (0)	 6 x1 (0) + 14.81 x2 (0)

E(0)	 41(0)	 6 x1 (0) + 14.81 x2(0)

xo (0)	 0

S(0)	 .714

The initial condition on p is obtained from the fact that g = (DTLT X.
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STEP 3: PERFORMANCE INDEX
tp ^
f P

The optimal control is required to minimize the difference between the actual

response xl (t), x2 (t) and the desired response x1 (t) and x2 (..:) . Thus, let

	

us assume that we want to minimize 	 D	 D

w }
,i

0	 2	 2

J	 ! {[xl (t) - x1 (t)] +	 [ x2 
(t)- x2 (t)) + rf1 2 (0) dt	 (124)

o	 D	 D	 r

The reason this performance measure is over an infinite time interval is that

a constant gain system is desired. The only parameters in J are q and r since

any multiplier on the first term can be factored out of J (q and r are used to

adjust the relative match of x1 and x2 with x  and x2 and to adjust the maximum

force applied). Since x1 and x2 as well as 
x1D 

and 
x2D 

are modeled by the order

reduction as functions of q l , ql and xD, the performance measure Eq. (124) may

be written in terms of 2 as follows

The vector x1 can be written in terms of E using Eq. (118) as

x2

x 
D

x2
D

i

xl .06 0 0	 0 qy

x2 .0324 0 0	 0 42

xl
D

0 0 .06	 0
XD

i

x
2D

0 0 .0324 0 S

But the integrand in Eq.	 (124) is

x1
T

1 0 -1 0	 x1

x2 0 q 0 -q	 x2
2

+rfl
x1

D
-1 0 1 0	 x1

D

x2
D

0 -q 0 q	 x2
D

.,	 r



Hence, in tame of the reduced state vector p, J becomes

T

	

471 	 .06 .0324	 0	 0	 h.	 0	 -•. 1	 0
CO

	

J • 1	 41	 0	 0	 0	 0	 0 q	 0 -q

	

o	
YD	

0	 0	 .06 .0324	 -1 0	 1 0

S	 0	 0	 0	 0 j LO -q	 0 q
Oj

	

.06	 0	 0	 0	 ql

.0324 0	 0	 0	 41	 + rf 2 	dt

	

0	 0	 .06 0 YID

	

0	 0	 .0324 0	 S

T

	

jq l 	(.06)2+(.0324)2q	 3 -(.06) 2-(.0324) 24 0

1	 l 0	 0	 0	 0

	

D	 -(,06)2-(.0324)2q 0	 (.O y ) 2+(.0324) 2q	 0

0	 0	 0	 0	 0

`	 + rfi	 dt	 (125)

This performance measure, when applied to the reduced order system described

in Eq. (118) will cause the control system to be structured as shown in the

block diagram on the following page, where K l , K21 K31 K4 are the gains that

are derived to make fl m KTQ via the optimal control derivation.

i
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STEP 4:	 OPTIMAL CONTROL

The steady state optimal control comes from the Riccatti equation

P	 0= P11 P12	 P13	 P14 0 1 0	 0 0	 -5 0	 O1
-5 0 0	 0 1	 0 0	 0 P

... 0 0 -3	 0 0	 0 -3	 0

P14 P24	 P 34	 P44 0 0 0	 0 0	 0 1	 0

Y

(.06) 2+(.0324) 2q 0 -Y	 0

0 0 0	 0
+

-Y
0 Y	 0

0 0 0	 0

J
0	 0 0 0

0	 (.06) 2 0 0
_ P Y p

0	 0 0 0

u 0	 0 0 0

_ 100

i

(126)



r
I.

or

(-1OP12+y-8P122)

2	 symmetric

SP22+Pll SP12 p22 ) (2P12 -OP22 )

(-Sp23-3p13 y-SP12p23) (P13-3P23-¢p 22 P23 ) { (-6p33+Y-SP322)

(-5p24
+P 3-S^12p24 ) 	pl4*p23 Sp22p24 

I 

(- 3P +P -aP P ) (2p +P 2)
L.	

1	
1	

34 33	 23 24	 34 44

0	 (127)

where y - (.06) 2 + (.0348)2q

and B - .062
r

This matrix has been partitioned into four 2 x 2 blocks so that the point

can be medo that the optimal control feedback gains are independent of the feed

forward gains. This is obvious in Eq. (127) because the 2 x 2 block in the upper
left depends only on P11' p12' and P22 1

 i.e., this Clock may be determined

independent of the other blocks. Since the feedback gains are given by

K e - a"4-1BTP^ and since B is zero everywhere except in those positions corresponding

to ,:.;fe upper left most 2 x 2 block of P., the gain also only depends on the

el a gents plit P12' and p22 . Solving Eq. (127) gives the upper 2 x 2 block and
the feedback gains as:

p12 ^, 
_Sr2 1 - 1+/ (.06`/5r)21.0^2+^482q)
.062

	

,'2 r
^.._p_-	

2
P2 2
	 12	

p ' 5 /1+  (.06 2/5r} [.06 2 + .0348 22	 .06	 ll	 q1

the control gains are

2
Kl	5/.06 (1 - / 1 + (.06 2/5r) 1.062 + .0348 2q) - 5/.06(1-A)

2( -K, )
K2	

.06	 - /10(A-1)  /.06
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Since the mode we have retained is the differential equation

q1 1 5q 1 - .06f1

and since f 1 K1 q1 + K 24 ;,,he closed loop dynamics are given by

ql - .06 K2 41 + (5-.06K1 ) ql - 0

or

41 +/-10(A-1) 4 1 +5Q q1- 0

Hence the new undamped natural frequency and damping of this mode becomes

w - ►^75-A

and

	

- 
Jz	 --1

	2 	 v

Since

A	 V 1 + (.06 2/5r) [.062 + .03482q]

the rode is damped to .707 when q is large relative to r 2 , i.e., whenever the

control saturation is not important. On the other hand, as r 2 gets large

(less and less control authority is permitted relative to q, the mode is less

dampled and in the limit no control at all is exercised. Note that as A - ► -,
the closed loop undamped natural frequency (w) increases as the damping gets

closer to .707 which is exactly the problem with the order reduction as it was A

performed because when A = 5, the mode retained (q 1 ) crosses in frequency with

the discarded mode (q 2 ) whose frequency was 25 rad/sec.

shows the closed loop pole locations of the design as q and r are varied.

To make these points clear, a root locus plot is shown in Fig. 34 that 	
E

The feed forward gains which determine the optimum response to the command 	 r

such that x1 and x2 are as close to 1 in Cie least squares sense are given by

K3 = -.06/r 
p23 

and Ito = -.06/r p24 . From Eq. (127) p23 and p24 are given by;
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Fad., 34 Root Locus for Modo 9 of Examplo as Function of q%r2
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K4

a
S	 S	 S+3	 K3	 z

iD

'Y	
Ys/.06P23	 14 + s (3P22 + P12)	 K3	 14 + s (3P22 + P12)

-Y(sP22+3) 	 Ys/.06 (6P22 + 3)
p24(sP12+5)(14+ 

(3P22+P12))	 K4	 (sP12+5)(30P22+OP12+14)

Th{ reuslt of combining the command generator whose block diagram is given by

XD

°	 1	
COMMANDS	 $	 S+3

STEP OF AMPLITUDE a .

with the feed forward control gains which give a force equal to K3xD + K4s
is the following block diagram

a

1

X
P

a

r

a



A

3f

Hence, the transfer function from s

K
^D (s)	

+ K
S	

S+3	 4

The last point that must be made is

derived above, the measurements wil

force is given by

f 	 K 91	 o	 I K1 K2 I	 ql	 (128)

$	 ql

but since q l o 6x1 + 14.83 x2 the implementation of this control seems to require

four measurements (xi s icl , x2 , and x2 ). Actually, the measurements need only

be x  and $1 as in Eq. (49).

Via a series of simple block diagram manipulations, the above closed loop

system becomes

0.01 (S2 + 12.2)	 ._
(S2 + 6)(S2 + 26)

16.71K2S+ K,)

to f  is given by

K4 `S+(K3/K4+3) )
R	 S + 3

that in implementing the feedback control

1 be on x  and x2 , hence since the feedback



which has a closed loop root locus that is always stable so that, for this

problem, no additional stabilization need be do ,,ie and the problem may be

considered complete.

STEP 5: DIGITAL CONTROL

The state variable model Eq. (123) is used to derive a discrete model. Since

t

	

x(t) _ 'A(t-to ) x(to ) +	 f 4, ( t-T) b f1 (T) dT
t

_	 _	 _

0

if t = (kI-l)At and to = kAt, then from Eq. (35) the discrete system becomes:

At
X1&1 = fi(At) x  +	 f	 ^P(x) dx b f 1 (1At)_	

o
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where

y
i m(At)	 costAt	 11r sinv5At 0 0 a

-V-5 sin At	 cos 3TAt 0 0

0	 0 e 3At 1-e-
3

0	 0 0 1

s
and #

At
I	 m (x)dx b_	 .012(1-,cos r5At )

°	 .027(	 sin V5-At)

0
0

If the sample time At is 1 sec., then

- -.617	 .352	 0	 0 .019",

-1.76	 -.617	 0	 0 .021

` xk+l xk +
f 

1,
4 0	 0	 .0497	 .317 0	 k

(
0	 0	 0	 1 0

This model is used with the discretized performance index to design the

f

optimal digital control.

;E
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V. CONCLUSIONS AND RECOMMENDATIONS

This report represents one step on a relatively long road that will prvvioe

the technology for designing control systems for large space structures. This

technology is of extreme importance for without it, the schemes, ideas and dreams

for a large number of space missions will never reach fruition. The work here

has demonstrated that control systems may be designed that provide structural and

attitude control when the control specifications are not severe. It has also been

shown that many of the technology items: structural modeling, modeling of damping,

determination of the structural dynamics in orbit, slew command and control

spillover, all have an effect on the coni rol solution. One of the significant

contributions of this effort is the realization that a control system should

exploit the ability to "play" one disturbance off against another. This synoptic

design approach can pay very great dividends in the use of actuator fuel and

performance. Also a synoptic design is best developed using linear optimal

control techniques because of the natural incorporation of disturbances, dynamics

of the structures, rigid body torques and command generator dynamics in the design

model. If there is one feature that we believe is important in this work it is

that the linear optimal control design philosophy has been used throughout the

work. The design incorporates the concepts of stability margin, phase margin and

in general the robustness properties that are usually considered "classical"

but using the terminology and theory of linear optimal control.

Many of the steps taken here are tentative. In particular the "on orbit

dynamics test" procedure must be developed so that multiple mode frequencies

may be estimated. The order reduction in the weak sense should be attempted on

a large problem to demonstrate its effectiveness. Finally, the whole question of

Kalman filter sensitivity vs. the gain margin achieved by the introduction of

an observer must be resolved.

In the course of this effort, three technical papers were presented.

These papers are Refs. 9, 21, and 22.
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APPENDIX A

INTRODUCTION OF GRAVITY-GRADIENT AND

ROTATION TERMS INTO STRUCTURAL MODELS

a

As indicated in Figure A-1, the analyzed satellite is represented by a

number of lump masses. A typical mass 
NO 

has a moment-of-inertia matrix

(I i J in the local body axes Ic	 Point 0 is the location of the cm of the

satellite, assuming that it traveled in the nominal orbit. This orbit is

specified by the user. The user also specifies the initial position of the Z

axes and their constant angular velocity { Q}. These axes rotate at the nominal

angular velocity of the satellite (e.g., the orbital rate for earth-pointing

satellites) so that motions of the satellite relative to the Z axes are small.

{a i } is the undeformed location of m  in the Z axes, and {v i } and {^,i} are the

translational and rotational deformation, respectively, of m i as observed in

the Z axes. In the undeformed system, all of the U M axes are parallel to the

Z axes.

i
s

is

The equations of motion are

[m]{R} + [k]{x} = {f} + { fg } - {g}

where [m] is the system mass matrix,

ml 13

Il

Mn 13

I
n

where [1 3 ] is the 3 x 3 identity matrix. In Eck. (1), [k] is the system

stiffness matrix, { x} is the deformation vector,

(A-1)

(A-2)

}

^A

]

The tilde under a symbol is used to designate a nonscalar quantity such as
a vector, a matrix, or a set of Euler angles.
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Fig. A-1 Representation of Satellite and Coordinates Used
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vl

(x) (A-3)
v
-n

^n

{f} contains the forces and torques on the system other than the gravity-gradient

and stiffness loads,

fl

_C1_

l {f}	 : (A-4)

f

`n

to

k {f g} contains the gravity-gradient forces and torques,

t 'rgl

T1

{f	 } _ (A-5)
g

r
gn

T
y „gn

and {g} contains the mass times acceleration terms attributable to rotation.

gl'

hl
{g}	 _ (A-6)

gn

h

A-3



The gravity forces in Eq. (A-5) are expressed in the Z axes and are

( Fgi } 	 mi Rp ( (pi)- 3((eo)T(pi)){eo)),	 (A-7)

where go is the acceleration of gravity at point 0, and (p i) is the location of

mi in the Z axes; i.e.,

(pi} _
(vi) +

(ai ) (A-8)

The gravity torques in Eq. (A-5) are expressed in the Xi axes and are

{ Tgi } 3 Ro [ r(ei)II I i ] { e^} (A-9)
0

where [ r( )] is the cross-product function defined in Appendix B, and

f

{ei} _ ([1 3 ]	 - [r(y){ eo }) (A-10)

The components in Eq. 	 (A-6) that modify the force equations are expressed in the

axes utd are

{gi) - mi (2[ 1'(SZ)] {iri) + mm {Pi))(A-17)

while the components in Eq. (A 71 ) that modify the torque equations are expressed
in the x (i) axes and are

{hi} _ [Ii)[r(0)](Y + (r(wi)][Ii]{wi} 	 (A-12)

where {w i } is the angular velocity of mi in the X(i) axes; i.e.,

{wi } '{^,i} + ((j 3i)]{ SZ}	 (A-13)

Reduction to Modal Form

The modal matrix is arranged as follows:

IN] - (^f 0t 0 
r 
I I	 (A-14)

where	 f] contains the flexible nodes, [fi t ] contains the rigid -body translation

modes, viz,

A-4



^3

U3

[0 t ] -	 ,	 (A-15)

_[ 3

03

where 03 is the 3 x 3 zero matrix. [®r] contains the rigid-body rotat]on modes,

viz,

-r (al)
13

[fi r ] •	(A-16)

-r (an)

t3

With

(A-17)

the equations of motion in modal form are

[M]{&} + [0]{!} + [K]{C} 	 {_}

[M] is the modal-mass matrix,

ul

u

[M]	 T[ml[^] •	
L

. Wr

m13
I

A-5

(A-18)

(A-19)



where the u i 's are the modal masses corresponding to the r flexible modes that

are used,

ui - (0i
)T [m]{ 0 i ) ;	 i	 1, ... , r,	 (A-20)

m is the total system mass,

M ' mi .	 (A-21)
F

and [I] is the total moment of inertia of the undeformed vehicle about its cm

relative tc the Z axes

[I] - E ([I i ] - m  Mai)]2)
(A°22)

[K] is the modal-stiffness matrix

K 

K2

[K] - [m]T[ k ][f]-	 (A-23)

K
r

06

where

a	
2

ki	 u i wi r (A-24)

with w	 equalual to the ith flexibleq frequency.q	 y	 [C] is damping matrix thata modal dan to 

has been added to the formulation at this steps

N
I ^

,,3
5

[C] _ (A-25)
a

r	
{_} is the equivalent modal force which zontains the coriolis and centrifugal

reverse-acceleration forces -{g} as well as the physical forces {f} + {fg} 	 viz, {

{_} =	 [^] T ( {f} + {fg }- {g}) (A-26)

Motion of Rigid-Body Axes

The modal-displacement vector is partitioned as follows:

w

A-6 .^



A-7

W
	

(A­ 2?',

Y

where (Z), (1)), and (y) are the flexible, rigid-body translation, and rigid-body

rotation coordinates. It can be shown that (p) locates the cut of the satellite

and satisfies the relations

m(p) - X'111 1. (p)= 	rmi (vi )  = [fi t ) [ In] ( X)	 (A-28)

As indicated 
in Figure A-2	 tp) locates the origin of a set of axes known as

the rigid-body (or mean) axes of the satellite, denoted as the x axes, [Y)

orients these axes relative to the z axes. For a given deformed shape of the

satellite W.(y) may be defined by the relation

T
[I](y) _ ,r, 

(in] ( x)	 (A-29)

The total motion In.ay be decomposed its follows:

(x)	 = f+ f HT) + 4 t ) ( p ) + 4 r )(Y)

where

(A-30)

f ) (F}I is the flexible motion relative to the rigid-body axes

t 
I(p) is the translation of the rigid-body axes

1^ r I(y) is the rotation of the rigid-body axes

The components of Eq. (A-30) are

f t -
( vi }	 + ( p ) - 11, (a iMY)	 (A-31)

fr -IfU + (Y)	 (A-32)

where	
ft	 f

is the partition of 	 corresponding to the translation of mi,

and [^ 
fr I is the partition of 1^ f I corresponding to the rotation of in	 The

flexible contributions i. Eq. (A-31) and Eq. (A-32) are called f1i 	 and (0'
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{mi} -10 t ]{Z}	 (A-33)

	

{© i } -[mir ] {Z} 	 (A-34)

{vi }^ {^,i } ^ {p} l {y}, { ui }, and {gi} are expressed in the Z axes. Figure A-2 shows

the components of the motion in vector form. a  (which locates the undeformed

position of m  as seea by an observer fixed in the x axes) is the vector ai

rotated through the angle y.

The last six equations of the set Eq. (A-18) are the overall equations of
i

motion for the system, i.e., the equations for {p} and {y}. The first three of

these equations are

m{[3} - E{fi } + UP, 	 - m[r(Q)]2 { p}	 (A-35)

where {r9} is the gravity-gradient contribution to the total load; i.e.,

g
{rg } _ - m go ({ p } - 3 ({eo } T {p}) {eo })	 (A-36)

0

The last three euqtions of Eq. (A-18) are

[II{y} = {Tg} + { Tg } - E (2mi [r(a i)I[r(s w)	 i}

+ 
M  [ r (a i)I[ r (0I 2 { pi } + [ I i m rm]{,i}

+ [r(wi)I[I i I { Wi })	 (A-37)

where {TR} is the resultant torque of all of the external loads, other than

gravity loads, about the cm that the system would experience if it were rigid,
0

and {Tg } it the contribution to the equation attributable to gravity, i.e.,

	

{T ,) = [mr I T {fg}
	

(A- 38)

Total Gravity-Gradient Torque on Satellite

{TR} is an approximation to the total gravity -gradient torque on the satellite;

however, it does not include certain effects attributable to vibration. The

total gravity torque can be obtained more accurately from the following equation.

This torque is expressed in the rigid -body, or X, coordinate system,

a ..	

ro

A-9

AM-

Y;

i

i

i



{T9) - ( 0 3 l - [r(y )l) E [ r (r i )]{Fgi }+E ([ll +[r(oi)l){Tgi)	 (A-39)

where

(ri } 	 {p i } - {p}	 (A-40)

	

{9 i } ffi {,y i } - {y}	 (A-41)

Gravity Constants

For reference, note that

2

	

go	
KE 2	 RE2 

'5E
	 (A-42)

R	 R0	 0

where KE is the earth's gravitational constant, RE is the earth's radius, and gE

is the acceleration of gravity at the earth's surface. Equation (A-42) is useful

for calculating go and KE.

Particularization to Nominal Circular Orbit

For a circular orbit

go = wo2 R 	 (A-43)

The components of {eo }; the unit vector along the local vertical in the Z axes,

`	 are needed for use in several of the equations. In the A axes s-own in Figure

A-3, {eo )is called {eo } where

1	
A

0

{eo } =	 cos(wo t + d)	 (A-44)
A	

sin(wo t + d)

Then, {e0} in the Z axes is

{e 
0 )_ [T(a)1(7r(s)1{e0

}	 (A-45)
A

A-10



Fig. A-3 Nominal Coordinates Relative to Earth-Centered Coordinates

A-11



where [R(s)] is the coordinate thransformation defined in Appendix n for the
O

Euler angles S - (S 1 , 62
0
 8 3 ) orienting the Z axes relative to the A axes,

a - 0 t .	 (A-46)

0
{Q} is given in the Z axes as

(A-47)

0
and [T(a)] is the transformation from the Z axes to the Z axes due to a

rotation a about an axis, along M, fixed in space; viz,~

	

1-k(1-n l 2 )	 knln2 + sn3 	 knln3 - sn2

IT(a)]	 knln2 - sn 3	1-k(1-n22)	 kn 0 3 + sni	
(A-48)

	

knln3 + sn2	 kn2n3 - snl	 1-k(1-n3 2)

where

s = sin a, c =_ cos a,	 k	 7 .-c	 (A-49)

A-12



APPENDIX B

DEFINITIONS Of' MATRIX FUNCTIONS

Cross-product matrix:

For any vector x = [x 
1 x 

2 
x 3l

T

0 -x3 x2

[r(x)l =	 x3	 0	 -x1	 (B-1)

-x2	 x 1_	 0

Euler-angle coordinate transformation:

For any set of ordered rotations y = 
(yl' y2' y3) about axes 1, 2, and 3,

1	 0	 0

[A(y ) l =	 0	 cosy l 	sinyl	 (B-2)

.0 -siny l 	cosy 1.

cosy 2 0	 -siny2

[ B (y ) ]	 = 0 1	 0

siny 2 0	 cosy 2

1

m
Y

I

i

cosy3 siny3	 0

1C(Y)1	 _ -siny3 cosy 	 0

0 0	 1

s

The total transformation is

»
[^(y)]	 = [C(y)][B(y)][A(y)]

c
B-1

..	 x

,...,	 ^.....	 _.s	 ,..v.	 «wo ..	 ..s,.... .. ,...,:...	 H.	 .. .,.1nCt .... .... ..	 .:tA^.:iwzdi:u.uYd",v.G"	 .,.....^.....s al....

(B-3)

(B-4)

(B-5)
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