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SUMMARY

PR

The control of large space structures encompasses a multitude of physical
phenomena. The structure itself is a complex vibrating system that is excited
by internal and external forces. The external forces and torques come from
aerodynamic, sc:ar wind, and thermal excitations to geomagnetic and gravity
gracdient forces. Internal forces and torques are created by vibrating machinery
(CMG's, gyros, etc.), by articulating structural elements and motions of astronauts.
It is not surprising, then, that as the size and performance demands on structures

increase the control problem looms ever larger as one of the overriding problems.

This final report describes the work that was performed by the Grumman
Aerospace Corporation Research Department under contract to the Marshall Space
Flight Center (Contract NAS 8-32587) which was administered by Dr. Michael
Borelli. The thrust of this effort was to determine what, if any, limita - ons are
imposed on the size of spacecraft which may be controlled using current control

R system design technology. The particular problems investipated were:

' 1. The fundamental limitations imposed hy structural/control
interactions, by external torques, and by the mission

performance requirements for Low Earth Orbit (LEO) missions.

2. The development of control approaches for the various control
tasks that are required by large space structures, f.e.,
as required during fabricatjon, assembly, pointing, shape

and attitude control, etc.

3. The development of techniques for on orbit dynamic testing that
will permit evaluation, during operation, of the parameters re-

quired for control design.

4. Investigate actuator requirements so that the control may be

" achieved with minimal use of expendable fuels,

SRR 3

These tasks were investigated by using a typical structure in the 35 to 70

#

meter size category. A control system design that used actuators that are

vimioie e B

L currently available (CMG's) was designed for this structure. The amount of

- control power required to maintain the vehicle in a stabilized gravity gradient
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pointing orientation that also damped various structural motion! was determined.
The moment of inertia and mass properties of this structure were varied to

verify that stability and performance were maintained. This was accomplished by
systematically varying the linear dimensions of the structure by a scale factor

while maintaining the control gains fixed. The conclusion from this study was

that the structure's size was required to change by at least a factor of two before

any stability problem arose. The stability margin that was lost was due to
the scaling of the gravity gradient torques (the rigid body control) and as
such could easily be corrected by changing the control gains assocliated with
the rigid body control. A secondary conclusion from this study was that the
control design that accommodates the structural motions (to damp them) is a
little more sensitive than the design that works on attitude control of the
rig’d body only. The main details of this effort are described in Section I.

The control of large structures can be considered, as the classical control
system designer does, as the problem of controlling the attitude of the vehicle
despite all of the disturbances that are potentially misorientating the vehicles
or causing stability problems. This approach artifically divides the physical
phenomena into contrcl forces and disturbance forces. When this is done, the
possibility of balancing one disturbance by a second is lost. Thus, gravity-
gradient forces, which are oscillatory, might be damped by using residual
aerodynamic forces to extract energy from the gravity gradient mnde. To be
able to achieve this goal, early in the program it was perceived that a fairly
comprehensive model of the spacecraft was needed. This model (described in
Section II) was used to develop a control system that uses a linear optimal

control approach to:

® Achieve a stable rigid body orientation using gravity gradient

forces balanced by residual aerodynamic forces
¢ Stabilize the interaction of rigid and flexi®v): motion

° Increase the damping of the more important {lexible modes
using the same actuators that are used for rigid body

control (a set of three orthogonal CMG's only)

[ Be slewed, when required, from one orientation to anpther
without adversely affecting the vibration and shape of the

structure

iv
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As the control study developed, several problems emerged

that were either poorly understoocd or that were critically lacking in theoretical

basis.

These ware:

A method is required for order reduction of the structural
dynamics that accounts tor the undamped vibration modes that are
left out and also considers the effect of control bandwidth that

exceeds the frequencie:c of the modes neglected

A method is required that reduces the control excitation of the

high frequency modes.

A method is required that permits measurements that are not

adversely corrupted by unwanted structural oscillations

It became clear that an estimator is undesirable in the

control loop because the bandwidth of the filter might easily
dominate the problem. The resulting loss of gairn and phase margin
compared with an optimal control design is clearly undesirable. We
instead have proposed that control designs be undertaken which
utilize ar many rate and position measurements as there are

modes retained

A method for on-orbit dynamic testing is required

In Section III, these problems are discussed and some solutions are proposed.

We have shown:

A new method for order reduction which both incorporates the
closed loop dynamic characteristics and the unique problem
assoclated with finite element modeling which ignores structural

damping

A method for control spillover reduction at higher frequencies

using a low order observer

A method for on-orbit dynamic testing which gives structural mode

data and also reduces the measurement spillover problem

A new method for synoptic control design that naturally suggests

alternate actuators
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I. INTRODUCTION

As the size of space structures increase¢ and the performance requirements
become more severe the control problem looms larger and larger as the single
most difficult problem that must be overcome. The structural size alone
creates a possibility for interactions between the control system and the
structural dynamics. The control performance requirements on both pointing and
internal vibration (jitter) create a need for new and novel techniques for rigid
body control that simultaneously achieves the desired pointing accuracy without
creating structural vibrat .on that might jitter crucial spacecraft systems
(optics, antennas, etc.). The rigid body control must also be achieved in
such a way that internal strain on the spacecraft structure does not change at
certain desired points (points where critical optical or antenna elements are
mounted must always remain at the same relarive positions so that the phasing
of the light or radio frequsucy energy does not becom: distorted). The achievement
of this goal requires control systems with zero stear y state error after a slew
command. The structures that are being proposed chiange their size as a
function of time when the structure is being fabricated in orbit. The ability
to alter the control system as the dynamics change, the ability to recognize
the way in which the structural and rigid body dynamics change, and the ability
to sense the disturbances and the way they change are all desirable characteristics

that the control system should poscess.

To achieve the flexibility that all of the above requirements impose on *ae
control system requires a fairly complex system, one which also has inherent
reliability and insensitivity to variations in the structural dynamics. Also
one must attempt to exploit the existing physical phenomena that cause ''disturb-
ances' on the spacecraft to control the spacecraft. Thus gravitational, geo~-
magnetic, residual aerodynamic and solar wind forces that are normally considered
as disturbances that are countered by expending reaction jet fuel, should be
designed into the control system to provide the possibility of "playing one

force off against another'.

To achieve all of these goals a synoptic approach has been developed that
attempts to design the control system for. the spacecraft so that, at the outset, all

of the dominant effect are modeled ~ the spacecraft dynamics are modeled, using



a8 finite mlement approach, with both the rigid body and flexible motion coupled
in a coordinate system that does not necessarily explicitly include the rigid
body - the physical forces that interact with the structure are included explicitly
as distributed forces and torques acting on each of the masses (or inertias)

in the finite element model -- the internal vibration sources are modeled and
included to provide a measure of the jitter induced by these motions when they
are deemed critical -- the slew commands are included in the dynamic description
so that the best possible method for commanding the system to change its orien-
tation can be determined -~ the flexibility inherent with digital control
requires that all of the modeling be done in such a way that any problems
introduced by sampling can be minimized.

The study that is described in this report has developed the technology
to address some of these questions and has pointed to problems where technology
must be further developed, Figure 1 shows the structure that was used to
develop the control technology and evaluate the effect of structural dynamics,
gravity gradient dynamics and control interactions during this effor.
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IT. DESIGN EXAMPLE

1. INTRODUCTION

To understand the control problems for large space structures, a &sfuiiflc
system (the Orbiting Construction Demonstration Article (OCDA)) was selvcted
to develop a control system, The OCDA is intended to be a space base in a cir-
cular orbit “JO km above the Earth (Ref. 1). Its purpose is tn facilitate the
unloading, fabrication, and assembly of objects (e.g., solar power satellites,
microwave power transmission satellites) ferried into orbit by the shuttle.
The OCDA has four principle parts (Fig. 2): 1) the platform or rectangular
truss frame, 2) the boom with traveler, 3) the array that tracks the sun and
absorbs the radiation energy using elastic membranes, and 4) the mast extending
on both sides of the platform holding the boom and solar array on one side and

providing a docking port for the shuttle on the other

In its nominal attitude the OCDA 1s unstable with respect to aerodynamic drag

and gravity gradient torques. These instabilities can be overcome by sctive

control that uses momentum storage devices. Environmental effects such as the

iryiaduction of currents into the solar array to product magnetic cuntrol torques

ey be effectively used to assist the control system in stabilizing these

Jisturbances. We have studied stabilization by means of three reaction wheels

with mutually orthogonal axes.

In or '2r to calculate the control gains D in the control gain relation
u = Dx, the systems equations X =f(x,u) are replaced with the linear

approximations
k=Ax+Bu

This set of equations is agumented with the cost functional

oo

J = fo (gTQ§ + BTRg)dt

where the weighting matrices Q, R are selected to reflect the critical nature
of a particular node motion. The principles of optimal control then yleld
differential equations that can be integrated analytically.

Computational expense was reduced considerably by treating tiie problem

in modal coordinates for both the vibration and rigid body modes. These
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Fig. 2 Two Views of the OCDA with Shuttie. Dimensions are indicated.
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were handled in a uniform rather than a hybrid manner. It was found that
satisfactory results could be obtained when only a few ¢f the modes were

control led.

In an additional study the control gains D were kept fixed while the spatial

dimensions of the OCDA were scaled up until the point of instability was found.

2. CONTROL LIMITATIONS OF CURRENT TECHNOLOGY

As the slze of a space structure increases, the structural frequencies become
lower. Thus, for any given control system bandwidth (as determined by the dynamic
requirements of the rigid body control specification) there exists a structure
whoso vibration frequencies fall within the control system band. If one assumes
that the predominent modal frequency of such a structure is given by the first
mode of a simply supported beam whose dynamics arve glven by the Fuler-Bernoulli

cquation, then this mode has a froquency given by

ol

EL
2L m
(in hertz) wvhere E is the modulus of elasticity, L is the length, I is the
inertia and m is the mass of the beam per unit length, For a slender beam the

modal frequency is given by

S [ E
3y

wvhere M is the total wss of the beam.  The result of this analysis is summarized
by Fip. 3, where the first modal frequency of a slender beam is plotted as a
function of beam length. By assuming that this frequency 18 the control system
bandwidth, we can gee oxactly how big a structure must be for any particularv
control system specd fication before the rvigild body control system might interact

with the structure.

A second arca vhere structural motion potentially fmpacts the control system
is when open loop rotational commands are waquired as, for example, during a
high speed slew maneuver. The usual approach to minimizing the bending inter-
actions during these slew mancuvers is to tailor the shape and amplitude of the

command pulse so that the structural modes ave not excited. The optimal control
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approach offers a natural framework within which such minimum structural excitation
by command shaping may be achieved. This is shown schematically in Fig. 4

where the command generator is shown as a linear differential equation (in this
case the output of a filter with a maximally flat response) whose outputs are
multiplied by "feed forward" gains. Section III-4 describes this approach in

more detail., In either case, the exact size of a structure when slew maneuver/
bending coupling becomes severe enough to impact performance depends on the control

system pointing accuracy or figure control requirements.

The final area where structural size can impact the control system
performa.ce is in the coupling of disturbance induced structural motion into
the control system. Disturbances on the spacecraft are either external--aerodynamic,
gravity gradient. solar, thermal for example -~ or internal as is the case
with vibrations induced by rotating machihery, man motions, bearing noises due to
relative motions of spacecraft elements, etc, As an example of how these distur-
bances may interact through the rigid body controcl consider the simple case
where gravity gradient torques are used in low earth orbit to orient a long
slender spacecraft which has a solar array mounted at one extremity (Fig. 5).
In order to maintain the solar array at the correct orientation, the array must
be rotated at twice the orbital Eate W, This will produce a periodic aerodynamic
torque, due to the residual atmosphere, at the orbital period. The gravity
gradient creates a torque which is proportionate fo the rigid body rotation
angle deviation from a line from the spacecraft t« the earth center. Thus, if
6 is the rigid body rotational angle, the dynamic description of this intex-
action is (for a single axis)

10 + TGB = T sin 2m°t (1)

where

T, = gravity gradient torque

T = magnitude of the aerodynamic torque
I = inertia (principle) of the axis considered
Wy = frequency of an orbit

*In practice, I will be of the form I +I .sin2w t because of the solar array

motion, and as such the design must Be Basel On a time varying inertia.
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Fig. 5 Disturbarice Interactions Can Cause Stability Problems as Shown by this Example

The solution to Zq. (1) is given by

T T t T
G . , ;
6(t) = cos| — t 6(o) + !—-sin —Q-t 8(o) +-J!-* J sin £ (t-1) sinlw T dT
J ‘ ‘ / I o
I TG I TGI o I

(2)

Now, it is evident that if twice the orbital frequency and the gravity gradient

frequencies are the same that 6(t) grows as t sinZwot. Thus an unstable inter-

actinn is possible.

For the example just described, a rather simple "fix" is possible by

controlling the solar array drive motor.

Thus by phasing the rotation zo that

the solar array alternately leads or lags the sun, the aerodynamic force may be

used to extract energy from the gravity gradient and thereby damp the gravity

gradient control. Figure 5 shows a root locus plot that results from this

approach which shows the gravity gradient damped regardless of the orbital

frequency. (This design uses full state feedback for pole placement.)




The design uses Eq. (1) with the solar array drive provided by a motor which
is modeled as
0 + T é = u
m mm
where: em is the solar array angle
8_ 1s nominally 2w
m o
L is the motor time constant
u is the motor input (u nominally is 2w°1 and there is a perturbation
Au around that nominal which is the con@rol)
When the solar array motor angle is substituted into the torque term on the
right side of Eq. (1) we get
IB + T.0 =T sind
G m
which, since em is given by em = wot + Aem, can be written as

16 + T0 = Tsin(u t +46) = T sinw t + Tcosﬁnocae)

Thus the dynamics of the complete open loop system (for perturbations) is

given by
T/I cosw t
o

2 2
(s + TG/I)(S + rmﬂ

The open loop root locus for this transfer function is shown in Fig. 5b
plotted as the inertia I increases. The coupling described above occurs when the
gravity gradient pole (S = % j/T;7T) overlaps the aero pole (ZQD). If a control
system configured is shown in Fig. 5d is used, the closed loop root locus
appears as shown in Fig. 5¢). The two zeros shown in Fig. 5c are the result of
the feedback Kl S + K2 and K3S + Ké' Clearly, this locus is always stable
independent of the gravity gradient frequency.

In general we have taken this approach for all external disturbances.

When the optimal control model is formulated, any actuators that are available
(the solar array drive motor for example) are included thereby allowing the

"disturbances' to be used for active control.

For internal disturbances, once again the magnitudes only become
crucial if the control system bandwidth or pointing requirements are severe.
If these sources of vibration must be damped, the structure can be included in

the optimal control model so that they may be actively isolated.

10



¢

‘..M?

To define the limitations further, part 7 of this section describes the
analysis of the OCDA large space structure controller that we designed as the

structure is increased in size.

3. VIBRATION AND RIGID BODY MODES

Before a structural analysis of the OCDA can begin the orientation and
tilt of the solar array must be specified. "Orientation" is defined as the
angle of rotation about the mast. The "tilt" is the rotation about the beam
that is closest to the platform. A zero tilt means that the mast 18 in the
plane of the array. Unlike the orientation, the tilt does not vary continuously,
It is either at plus or minus 26°, depending on the longitude of the ascending

node of the orbit., The rate of orbital nodal regression is such that a flip
is required every 22 days. The rate of radiation absorption 1s never degraded

by more than 10% compared with the best tilt angle.

The particular array position used for our study is shown in Fig. 6 together
with the Y, Z aves. Their origin 1s at the lower end of the mast (docking port).
The Y axis is vertical (whether up or down is irrelevant), the X axis is out
of the page and parallel to the velocity. Thus the platform and array move
edgewise. Note that the shuttle - whose structure is ignored except for its
moment /product of inertia - is included. Since the shuttle is over six times
as heavy as the OCDA, Fig. 6 indicates that the combined center of mass 1s close

to origin. The two points have been treated as identical in our work.

Each node (joint) of the OCDA is assigned a number and is tabulated with
its coordinates and its degrees of freedom. The degrees of freedom are those
translations and rotations about the three axes that are considered to be
significant. Thus, up to six degrees of freedom (DOF's) can be specified for
each node. The members (beams and strings) are also assigned numbers and they
are tahulated with their cross sectional areas and the nodes that they join.

Their lengths can then be found from the node table,

If a unit force is applied at a translation DOF or a unit torque at a
rotation DOF, the displacements for the entire DOF vector can be computed.
The complete set outained by varying the unit force/torque over all the DOF's
is called the flexibility matrix. Its inverse is called the stiffness matrix k.

1
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Fig. 6 Array Oriontation and Tilt Chosen for the Structural Analysis (YZ and Y2’ Axes
are Shown witis their Origin)

When the dimensions (and density) of a member are given, the mass and
moment/products of inertia can be found from simple calculations. What is
needed, however, is the inertia matrix associated with DOF's, because that is
how k is defined. Recall that in general there are up to six relevant DOF's
at a node that joins at least two members. If only the three translatior DOF's
are significant, then the 3 x 3 inertia matrix is diagonal. In the general
case, whose thecry 1s too complicated to be given here, for each node there is
a 6 x 6 matrix whose elements have the dimensions of either mass, moment of
mass, or product of inertia. The inertia matrix for the entire structure
will be called m.

The original structural idealization had 1462 degrees of freedom. The

stiifness and inertia matrices were calculated by a computer program. Computer

12
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limitations made it desirable to have a reduced order approximation which was
accomplished using a Guyan reduction. The 249 new DOF's were a subset of the
old except for those of the array. There the old DOFP's were translations (never
rotations) along the XYZ axes. The new DOF's were directed along the X axis,
normal to the array plane, and along the common normal. These directions will
be called X, Y', 2', respectively (Fig. 6).

New DOF's on the array were introduced as load conditions to reduce the
solar array model. These forces balance~should have been equal and opposite
to the loads - this check was not satisfied at a few DOF's with the model as
provided by Grumman structural engineering. Several attempts by us and the
original engineer to find the source of the diffisulty failed. We therefore used
the mass and stiffness matrix as provided and ignored the load balance require-

ment. All this does is to cause errors in the steady state forces on the structure.

If x represents the displacements of the 249 DOF's and K,M the corresponding
stiffness and inertia matrices, then in the absence of external forces the Guyan

model is:

Mk + Ck + Kx = 0 (3)

For the analysis that follows, C, the damping matrix, will be assumed to be
zero. In Section III-6, this assumption will be corrected.

Let us look for solutions of the form

X = ¢ cos wt (4)
wvhere ¢, w are vector and scalar constants to be determined. After
substituting and simplifying

2 ,

w™M¢$ = K¢ (5)
or

K Mg = w2 (6)
Thus w-z is the eigenvalue of K-lu with the corresponding eigenvector ¢ .
( Thesolution Eq. (4) is called the vibration mode.)

If we impose the initial condition k (0) =0 there will be a 249 vector
g of arbitrary cons*ants of integration. It will be convenient to define the
generalized coordinate vector q whose elements are q; cos (wit). The complete

matrix of normalized eigenvectors Q/(QTQ)I/Z will be denoted as ¢. .

13
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The general solution of Eq. (3) is then

x=¢gqg 7)

If the elements of q(0) are all zero except for qi(O) = 1, then x (0)

th

equals the 1~ vector of ¢. x(t) will remain proportional to this vector as

its elements oscillate with angular frequency w The other frequencies (modes)

will not be excited.

i-

1

It 1s perhaps surprising that the matrix of eigenvectors of K *M can

diagonalize simultaneously both K and M. This capability is related to the
nonorthogonality of the eigenvectors of K—Hn,which in turn is due to the nonsymmetry
of K'lm,* Let ¢ and ¢ "e eigenvectors with distinct eigenvalues. Then from

Eq. (5)
2
wo Mg = K¢ (8)

On multiplying from the left by ¢§

o g g = 9T ¢ (9)

If these steps are repeated with the order of Qm’ Qn reversed then

2 T
“n o Mo = oy K 2y (10)

Since K and M are symmetric, the transpose of this equation is
2 _ T ‘
wp &M &= 0 K¢ (11)

On subtracting Eq. (11) from Eq. (9)

O N (12)

which shows that the off-diagonal elements of ¢Tﬁ® are zero and that M is

diagonalized by ¢. To prove that K can also be diagonalized, the above steps

are repeated after first dividing Eq. (8) by wz.

* -
The eigenvectors of the matrix K 1M are not orthogonal but those of K and M
individually are, as shown in Eqs. (11) and (12).

14



The vibration modes were augmented with the 6 rigid body translatione
and rotations that were calculated separately. The frequencies associated with

the rigid body motion are of course zero since tlere are no translational or
rotational rigid body stiffness terms in K (unti) the gravity gradient is added).
The symbols K, M denotz the diagonal matrices defined by

T T

K=¢"K¢, M=¢" MO (13)

[EPR——

= 2M .

Note that Eq. (9) implies Kiy L My

N

The 53 vibrations modes with the highest eigenvalues (lowest frequencies)
were computed (Fig. 7). Because the solar array consists of 11 semi-independent
membranes, most of the modes are out-of-plane oscillations due to the firat three solar
array modes. Thirty of the latter were discarded by retaining only one of these
membrane modes per frequency leaving 23 vihration modes. The corresponding
terms of i, & were also deleted which corresponds to reducing the order of the
E system by assuming the frequencies are zero. The exact mathematical statement

of this "singular perturbation" is the following:

i If the modal coordinate vector is denoted by g then g is partitioned into

P e

components g, and g, where, in terms of this partition

B L

M, 0 9 Kyp 0 ]9

Wiy
L]
1

~ .. ~

22| | 92 0 K22 | 92

where all of the matrices are diagonal (as in Eq. (13)). Now 1if ﬁzz has a
constant ¢ factored out of each of its terms, then (see Ref. 2), the "reduced

“ order" model becomes Mi; 9, v Ky 9;=0ase+0 (d.e., g, > 0). This tacitly

" implies that the full 249 vector x is given by (7) with gy = 0.
That is
R e PRt QB a4
g had -
§ 21 %22 g %21 4

=

P



FREQ L8,
MODE He SEC2/N, DESCRIPTION
7 004766 | 10663 SOLAR ARBAY . 15T NORMAL TRANSLATION
2 005638 3913 SOLAR ARRAY - 15T TORSION (1ST MEMBRANE)
3 0.06008 3822 SOLAR ARRAY .. PANEL MODES (15T MEMBRANE)
4 0061385 3813 SOLAR ARRAY -~ PANEL MODES (1ST MEMBRANE)
5 0.06176 3475 SOLAR ARRAY — PANEL MODES (15T MEMBRANE)
6 0.06192 3,802 SOLAR ARRBAY - PANEL MODES (1ST MEMBRANE)
7 006201 3 SOLAR ARRAY — PANEL MODES (1ST MEMBRANE)
8 0.06206 3,743 SOLAR ARRAY — PANEL MODES {1ST MEMBRANE)
9 0.06209 3,647 SOLAR ARRAY — PANEL MODES (15T MEMBRANE)
10 006211 3,787 SOLAR ARRAY ~ PANEL MODES (18T MEMBRANE)
1 006212 3,697 SOLAR ARRAY — PANEL MODES (15T MEMBRANE)
12 0.06213 3.736 SOLAR ARRAY - PANEL MODES (15T MEMBRANE)
13 0.06214 3,676 SOLAR ARRAY — PANEL MODES (1ST MEMBRANE)
‘14 008400 | 11240 SOLAR ARRAY — 2ND NORMAL TRANSLATION
1§ 009226 | 20274 SOLAR ARRAY - SIDE BENDING (X}
16 0,10329 5,128 SOLAR ARRAY — TORSION {2ND MEMBRANE)
97 010961 | 28,561 HEAT TORSION —~ BOOM + PLATFORM AND ARRAY LOCATION
"18 0.11288 3,625 SOLAR ARRAY — PANEL MODES (2ND MEMBRANE)
19 011404 3,764 SOLAR ARRAY - PANEL MODES (2ND MEMBRANE)
20 0.11442 3,694 SOLAR ARRAY — PANEL MODES (2ND MEMBRANE)
21 0.11469 3,767 SOLAR ARRAY - PANEL MODES (2ND MEMBRANE)
22 0.11468 3.699 : SOLAR ARRAY — PANEL MODES (ZND MEMBRANE)
23 0.11473 3,764 SOLAR ARKAY ~ PANEL MODES (2ND MEMBRANE)
24 0.11477 3,704 SOLAR ARRAY .- PANEL MODES {2ND MEMBRANE)
26 0.11479 3,763 SOLAR ARRAY — PANEL MODES (2ND MEMBRANGE)
26 0.11480 3.682 SOLAR ARFAY - PANEL MODES (2ND MEMBRANE)
27 0.11481 3,796 SOLAR ARRAY — PANEL 1ODES {2ND MEMBRANE)
28 0.11482 3,716 SOLAR ARRAY ~ PANEL MODES (2ND MEMBRANE)
*29 011628 | 26,743 17 ATICAL BOOM + PLATFORM SCISSOR MODE
*30 0.12259 8,229 i % AR ARRAY — PANEL MODES (3RD MEMBRANE)
*31 013057 5,362 < AR ARRAY - PANEL MODES (3RD MEMBRANE)
*32 0.14846 3223 SOLAR ARRAY — PANEL MODES (3RD MEMBRANE)
33 0,14961 3926 SOLAR ARRAY - PANEL MODES (3RD MEMBRANE)
34 0,14984 3.425 SOLAR ARRAY — PANEL MODES (3RD MEMBRANE)
35 0,14992 3,791 SOLAR ARRAY — PANEL MODES (3RO MEMBRANE)
36 0.14996 3,747 SOLAR ARRAY — PANEL MODES (3RD MEMBRANE)
37 0,14998 3,744 SOLAR ARRAY — PANEL MOLSS (3RD MEMBRANE)
38 0,14999 3.806 SOLAR ARRAY - PANEL MODES (3RD MEMBRANE)
39 0,15000 3.777 SOLAR ARRAY — PANEL MODES (3RD MEMBRANE)
40 0.15621 3.724 SOLAR ABRAY - PANEL MODES (3RD MEMBRANE)
M 0,15002 3,683 SOLAR ARRAY — PANEL MOLES 1250 MEMBRANE)
a2 0,16002 36033 | SOLAR ARFAY — PANEL MODES (3RD MEMBRANE)
*43 0,15178 7.6922 | SOLAR ARRAY .- PANEL MODE
*a4 0.16395 46886 | SOLAR ARRAY — PANEL MODE
*a5 017424 | 165774 | PLATFORM NORMAL BENDING
46 0.20019 324636 | SOLAR ARRAY — PANEL MODE
*a7 022621 | 48.6614 | PLATFORM TORSION
*48 0.25980 56088 | SOLAR ARRAY - PANEL MODE
49 026885 | 104788 | SOLAR ARRAY — IN-PLANE
50 9,27068 75181 | SOLAR ARRAY — PANEL MODE
*51 0.30673 41957 | SOLAR ARRAY - PANEL MODE
52 0.30796 | 210487 PLATFORM LATERAL BENDING
63 0.32406 | 2003 PLATFORM BENDING
*THESE MODES HAVE BEEN RETAINED
h035 7-007W

Fig. 7 OCDA Vibration Modes
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4. EXTERNAL FORCES AND TORQUES

If an external force/torque vector f is present, Eq. (3) generalizes to

M ; +Kx=f (14)

Equation (7) can be used to reduce the number of equations from 249 to 29 by
substituting x ™ ¢¢ 1in (14)

Mdog +Kog=f (15)
Multiplying on the left by o and using Eq. (13)

v o T

Mg + Kg = ¢°f (16)
This equation is exact although X as calculated from Eq. (7) is approximate.

The complete orthogonalization procedure described above follows the
classical structural analysis techniques. A more general approach utilizes the

linear algebra of symmetric matrices. Thus (14) can be rewritten as follows:
e Let M be written as a product of a lower and upper triangular factor as
M = 1LY (17)

This "Cholesky" factorization may always be performed since M will
always be symmetric and positive defiuite,

e Define a new vector z as

z: L x ' (18)

z + L~ £ (19)

o Modal Transformation: Since K was symmetric L "KL ' remains symmetric
and the fcllowing results from linear algebra may be used to diagonalize
it,

® Lemma (Ref. 3): A real symmetric matrix can always be diagonalized by
an orthogonal transformation end its eigenvalues are always real.

Thus, let z = ¢'q' where ¢' is orthornormal (007" = ¢To' = 1) so that

17
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L] - - [ ] -
g = - otk Mo g+ 0T (20)
where
[ 2 -
wl 0 o0 0 o
oft e w0« jo W2 oL 0
o 0 ..
n
- o
2 2 2
and we assume w; < Wy S eee S0

Notice that the q' defined ir Eq. (20) and the g from Eq. (16) are not identical
since M in Eq. (16) is not the identity matrix. In fact q¢' = M°q and
¢ = MkQ' where '

. =
Mll O s 00 0
v A ¥
M 0 MZZ . es 0
o 0 ... M
L : nn |

The only external generalized forces considered were the aerodynamic drag
acting on the solar array and the external torques due to the gravity gradient

and the momentum wheels.

Before discussing the drag we digress to recall that the axes used for the
earlier computer work that was taken over for the present investigation were those
of Fig. 6. However, the earlier report (Ref. 1) followed the more conventional
usage and interchanged the labels for the Y and Z axes. When the solar array
has the orientation shown in Fig. 6 it is moving edgewise and there is no aero-
dynamic drag. We used the axes of Ref, 1, but ih order to investigate
stabilization in the presence of drag we rotated the OCDA so that the array
moved nearly facewise (Fig. 8). Note that motion is along the Z axis and the X

axis is vertical.

18
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Fig. 8 Axes Used for the Presont Investigation. (X is Vorticuﬂ.)
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Since the drag was distributed over the solar array membranes, it was
necessary to find lumped values at the nodes. The drag at a corner was assumed
to be one-fourth that of an interior node. The drag at other edge points was
one-half that at interior nodes. The forces were assumed to be in the direction
normal to the array (-2} Fig. 8) rather than opposed to the velocity as they
should have been. It was impossible to give the drag the latter direction because
the Y' and Z' DOF's were not selected in pairs at each membrane nnde. Indeed

the latter were always selected but never the former.

These remarks will become clearer if we look at ¢ in more detail. It has

the form

®11 %12 %13
o = 09y I 0 (21)
03 O I

where in this representation the first column stands for the 23 vibration modes,
the second the three rigid body translation modes, and the third the three
rotation modes. The 3 x 3 unit and null matrices are denoted by I and 0,

-~

respectively. The matrices M, K and the vectors f and q can be decomposed

similarly into

~ -~

1 diag [Ml,l N M22’23], M2 = diag [M24’24 se M26,26]

=
0

~

3 = diag [My; )7...Mpg 5], Ky = diag [K} ) ... Ky3 53]

=
]

(22)

_ _ T T T T
K, =Ky =0 s f [gl » £, 4 ]

T T T T
q [91 » 957 95 1, a4 is of dim. 25 and 9 and g5 are each of dim. 3.

fl

The nonzero elements of the 243-vector fl are the drag terms discussed above,
the three-~vector §2 is null, The three-vector §3 of gravity gradient and
momentum wheel torques will be discussed in detail below. Equation (16) can

now be written as the three equations

20
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I, Y o T T
M1 9 + 002(M ) 91 + K 011 gl + 031 23

(23)
by 5y = 08 I R

292" %25 » Mygy= 5L + £

Note that a modal structural damping term has been introduced into the vibration
modes. This term changes the solutions of the homogeneous equation (Eq. (3)) by
a factor exp(-.00lwt). It also has a major effect on the modes which were

reduced out of the dynamics as will be discussed in Section III-6.

The second of Eqs. (23) represents the three¢ equations

-z 1 s RN |
Myx = 95,8y »  Mpy = 9o5f; 0 Myz = g8y (24)

where M2 = ?24’24 = M25,25 = M26,26; X, y, 2z are the coordinates of the center
mass; and 91 (1 = 24, 25, 26) 1s a 243~row vector whose elements equal the first

243 elements of the ith vector of ¢, The terms of the scalar product Q94 1

are all zero because the nonzero terms of ¢24 and fl never coincide. The

terus of 225 that coincide are all equal to (using the axes of Fig. 3)

cos (Y,2') = sin 26°, the corresponding terms of ¢26 are cos (Z,2') = cos 26°.
The acceleration in the Y direction doés not vanish although it is normal to the
velocity. There is no way to correct this qualitative error because no Y' DOF's

were selected for the array membranes.

Reference 1 states that the momentum wheels are located in the mast midway
between the platform and the boom. However, they were placed at the docking
port (origin) for the present study. We have retained the latter position and
assumed that the angular momenta h _,h h  of the three wheels have fixed

wx’ wy’ wz
directions along the coordinate axes. Small control torques u, = ﬁwx’
uy = ﬁwy’ u, = ﬁwz are obtained by changing the magnitudes of the angular
momenta. In accordance with conservation laws, an increase in the angular

momentum of a wheel produces a decrease in the angular momentum of the OCDA.

The rigid body yaw about the X axis (Fig. 6), pitch about the Y axis, and
roll about the Z axis will be denoted by a = 957s B = %hgr ¥ = dyg» respectively.
The corresponding moments of inertia are A = M27’27, B = M28,28’ C = M29,29'
Linearized gravity gradient torques are given in Kkef. 4, p. 244 and appendix 1.
Thus the detailed expressions for the last of Eqs. (23) are

21



L3 1 .
Ao 92751 +ca=-by -wh +oh, -u

(1] 1 .
B = 92851 + ef -wxhwz +wz"wx - uy | (25)

Cv = Q;951 + ay +bd -wthx + wxhwy T Y

These equations use the following abbreviations: 0 is the angular frequency

corresponding to the 90 minute orbital period,

= 4wl (A= = u (A-
a= Awo(A B), b mo(A B+C)
2, 2
c = wo(L~B) ’ e = 3w°(A—C) (26)
w, =0 + woy, wy = é - wo y W, = Y - woa.

The scalar products 1 f., 1 f. evaluate to zero. This occurs because
28-1 29-1

. DOF's were selected in a symmetric manner over the array so that there is a

negative term to cancel every positive term. Thus defining the drag to be in
the Z' rather than the ~Z direction does not introduce qualitative errors in the
torques as it does in the forces on the center of mass. The quantitative

error for the torque about the X axis tends to cancel out when summing over

all the DOF's of the array. That is, the moment arm is smaller for Z' forces
than it is for -Z forces at nodes near the platform and larger at nodes far

from the platform. Note that another non-homogeneous term enters through my.

Equations (23) with initial conditions q(0) = 4(0) = 0 describe a step
disturbance - the drag is zero when t < 0 and jumps to its full value when t = 0.
It is also interesting to study an impulsive disturbance occurring at t = 0.

In this caze the non-homogeneous terms are removed from Eq. (23) and the initial

conditions §(0) are set equal to them.

22



5. STATE VARIABLE MODEL FOR CONTROL DESIGN

The optimal control model we are developing uses 23 modes by leaving out the

less important vibration modes through order reduction in modal coordinates.

The force vector f consists of a distributed aerodynamic load on the solar

array and the gravity gradient torques on the rigid body (we assume that the

gravity forces are distributed as described in Appendix I). Thus the force vecter

f becomes

where

Following

1

51 + 243 vector of aerodynamic forces distributed
into the structure
0 (27)
§3 + 3 vector of gravity gradient torques and
contrel torques
Ld N '-
Xq + TG2 X, +Hu+ Ho as in Eq. (25)
-t
o wz
control forces; Ho - 0 is the non-homogeneous forcing function.
w h
o wx

gravity gradient torques induced by rigid body rotations

gravity gradient torques induced by rigid body rotational rates.

Eq. (25) TG and T, are given by

1 2
i W c-m 0 0 2
2
0 WS (A - ©) 0 (28)
0 0 b2
w” (A - B)
o »
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[ o 0 - (A-B+C) |
T - 0 0 0 (29)
G,
wo(A-lH-C) 0 0
boe -
0 -w W 0] " h B
N 2 y wx
Hu = w, 0 —w 0 hwy (30)
-wy W 0 4D hwz
- J _GArray_J
hwx v,z ~ angular momentum of the controller about the principle axes
L 04 ]
2D Array - torque produced by the solar array angle 6 and % is the
lever arm of the drag force D. When D is non-gero fl is
zero and vice versa
As can be seen the formulation of “he control terms Eq. (30) allows the
simultaneous incorporation of the gravity gradient, aerodynamic drag and
control momentum exchange devices. To distribute the terms from Eq. (25)
into the structural mode model Eq. (16) we let f be given by Eq. (27) in
Eq. (16) and get
M, 0O 0 22 o0 o
1 ] 1 9
0 MZ 0 9, + 0 0 0 4,
0 0 M3 L 4, 0 0 0 93
(T ¢ 3
31
= |of [o ] g+ 7T, [¢ ]§+Hu+H> (31)
32 [{ T 6, *31%32%33) 9% Tg [%31%32%33
T
¢
MBSJ L J

24




which may be reduced to give

2 . -1 -1 -1
-y tM ®31Tcl°31 My °31Tcl°32 My °31Tc1°33
. -1.T -1.7 -1.T
g - M2 ®32% P31 M2 ®32Tg 32 M2 *32%c 33
-1.T -1.T -1, T
i My °33Tcl°31 Mg °33Tc1¢32 My °33Tc1°33
. ,
S
_
-1.T -1.T 9 - ~1.T
My °31Tc1¢31 oo My ®31Tcl“’33 My 0
-1.T -1.T .| -1
+ M o32T61@31 e @32T61¢33 g+ | Mlel,
-1.7 -1T -1.T
L "3 *33%, P31 o+ M3 %33% %33 M3 933
[\ _}-‘ - -
-
T

and finally, by defining the state vector z as ET = (q" gT) the model

T °

used for designing the optimal control system becomes:

n O© © O
w O © O

S11
S

12 713

S

21 “22 "23

S S

31 "32 "33

=

or neglecting the M-lHo term

23

S O O o
=]
w

H Qo O O

11 T2 Tys

21 22 23

31 32 "33
.

Z = Az + Bu

25

My oqH
-1.T
My~ o3, H
1T

My 034

-1.T <

Hut H
- (o]

2 O ©o O

(32)

(33)

(34)



where

2 1s now a 58 vector (46 states for the structural dynamics and 12 rigid
body states)
S and T are defined implicitly by Eq. (33)

Un is the n x n identity matrix.

The nominal solar array angle is 23° so that the last component of u acts as a
disturbance on the structure through the MII¢§IH component of the matrix B in
Eq. (34). Thus, the uncontrolled motion of the spacecraft can be developed

and used as a reference to compare the controlled motion. The open loop dynamic
response at various times are shown in Fig. 9. For the control system design

in the next section, the rigid body tranlation modes have been deleted so the

control vector z is reduced in order to 52,

Notice in the formulation of the dynamic model leading to Eq. (33) that
the rigid body modes are retained in the same coordinates as the structural
modes. This is distinct from Likens et al. (Ref. 5) where a hybrid coordinate

system is used.

6. OPTIMAL DIGITAL CONTROL FOR OCDA

It is not the main point of this report to present the theory of linear
discrete-time optimal control. Therefore, we will briefly outline here the
major agsumptions made in designing optimal discrete systems. For further
details the reader is referred to the excellent tutorial paper by Dorato and
Levis, Ref., 6.

The continuous model of the spacecraft in state variable form (where all

‘ *
matrices are constant) is given by Eq. (34)

k=Ax+Bu+u

y=Mx+y (34)

The usual notation in the control literature is to use X as the state vector.
This convention is used here thus the original version of Eq. (34) (on page 25)
is modified (in the original formulation X was the physical motions of the

finite element degrees of freedom).
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Fig. 9 Uncontrolied, Open Loop, Response of the OCDA — Impuise Loading of the Soler

Array as the Driving Force

27




0.02 -

006 - 93

x 104

0.02 " Q4

x 103

000 4

002 -

o T S . f

T !
0.00 9.60 19.20 28.80 38.40 48.00 67.60 67.20
TIME — SEC

[ e e o e

0357-010W

Fig. 10 Oi!;ﬁii;u';'ébdii‘;dciio;n‘;ano'-‘-il‘\lb‘Co'ntvol — Modal Motion of Modes 2,3 and_ 3'4 inéhas)

28




0357-011w

AAAAAQ
RAVAVRVAVRVAY

fﬂAAAAAAﬂ

TUVMVVVV

TIME — SEC




002 - ag
()
e 0.00 pmcsm—
X
0.02
0.02 Qg
8
© 0.00 .
x
0.02 -
005 Q,o
i
2 000
X
-0.06 -
f | T T T T R R |
0.00 9.60 19.20 28.80 38.40 48.00 67.60 67.20
TIME — SEC
0357-012w
Fig. 12 Orbiting Constant Base — Open Loop Rigid Body Rotation Modes (Radiens)

30




RN T

vt

where x 18 the 52 vector of spacecraft states ind any augmented nuise states
(which are not included) u is a 4 vector qoutrol; w would be a m; vector noise
process (which is assumed to be a white process); y is the vector measurement
which we are assuming is X; and v is an m, vector white measurement noise.

The discrete~time version of Eq. (34) 1is given by

Kepp = 0(8E) X + T(AE) up + C(4) wy

g = MEg * Yy

At = the sample time

d(At) = the transition matrix evaluated at At (i.e., eAAt)
At

rae) = f 7 o(At-1)B dt
o

. at
(i.e., T = AT+B, T(0) = 0 » I'(At) = / e&DTBdr)
[+

G(At) a matrix which satisfies G(At)GT(At) = P(At) where

P(At) is the covariance of matrix of x from Eq. (34) at t = At.

In general, one would like to solve the following problem: "Given a
quadratic performance index of the form
T

J= J (x'Qx+ u'Ru) dt (35)

t
0

find the control which minimizes J subject to the constraint of the
differential Eq. (34)."

The discrete version of Eq. (35) is obtained from Eq. (35) and the fact
that the controls are held fixed over the sample interval At. This discretization
of Eq. (35) is necessary to be able to compare the discrete design with the
coatinucus design. It 1is generally better to use the performance index for
the discrete system which matches the continuous system also to determine .the

effect of increasing sample time. Thus, the performance measure Eq. (35) becomes

N - . -
Q Xy + 2 g: S Xy + g: R o (36)

{9

n

™
s
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where

~ oc o
Q = J ¢°(tr) Q ¢(7) dr
o

At

é = f PT(r) Q ¢(t) drt ¥
0

~ At T

R = / {(R+7°(r) Qr(r)} dr
o

The computation of (), S and R uses an eigenvalue-eigenvector approach where the
transition matrix ¢(t) is written as 'I‘eAt:'l‘-'1 with A as the diagonal matrix

obtained by diagonalizing the matrix A.

The discrete~time control problem 1s solved by using either the discrete
maximum principle or dynamic prugramming. In either case the ultimate solution is
that Y is a linear function of the states of the system where the gain mmtrix
Kk satisfies

K, = - R+ 120 a0 +5) (37)
and Pk*is the solution of the discrete matrix Ricatti equation

T ~
Pk (¢ Pk+l° + Q)

-1,.7T o
(r Pk+1¢ + 5) (38)

T T rm T
- (T Pk+l¢ +S) R+T Pk+1F)

with PN = [0].

If, as 1s generally assumed, the steady-state {(constant) gain matrix is
desired, we have found that the best way to solve for the gain, Eq. (37), is
to use Potter's technique (Ref. 7) of evaluating the eigenvalues and eigen-
vectors of the 2n x 2n matrix which results from the application oi the discrete
maximum principle. Problems such as the OCDA control which are high order and
with significant differences in time constants are as easily solved as low-érder

pri.lems when using a numerical eigenvalue, eigenvector technique. If such

3
The matrix I'(t) is defined after Eq. (35); also it is_significant that the
discrete performance index contains a nonzero matrix S even though Eq. (35)
does not.
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problems were solved using iteration, the computer time required would be
exorbitant. This matrix, for the performance index Eq. (36) is given by

]
R E R L ¢
H o~ R s -
Hyy Hy,
where
o1z -1
Hy, = (0 - TR'S)
~15.=1.%=1.T
"12 w (¢ -~ TR ™S) "TR T
H.. = (0 ~ STR ‘S)(¢ - IR 1s)~1
21 b '
Hy, = (07 = sTRTHT) + (@ - sRIS) (o - rr7ls) et (39)

H has the property that its eigenvalues are the n poles of the closed-loop system
and their reciprocals (there are 2n eigenvalues, n stable and n unstable).

The steady-state gain is given by the Potter algorithm as follows:

Let W be the matrix of eigenvectors, then

vl -

where A represents the eigenvalues outside the unit circle. Then 1f W is

partitioned as

1y § Wi
e e s s e e e ’ wij is nxn

the steady-state cost Po is. given by

P —1

o ™ W21¥1 (40)
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The program that is used to derive the optimal controls uses this technique
to obtain the optimal gains. The Q - R algorithm is used to determine the eigen-
vector matrix W. Potter's technique applies to both continuous and discrete
systems; however, in the continuous version the elgenvalues of the 2n x 2n
matrix H have symmetry about the imagiaary axis (rather than radial symmetry).
Since we use the continuous optimal design as a reference, the Potter solution
for the continuous design existed first. To take advantage of this existing

program we map the roots of the matrix H using the bilinear transformation

w= (1 - 2)/(1 + 2)

This allows the roots 1inside and outside the unit circle to bz selected based

on their locations in the left-hkalf or right-half w-plane.

The last point we have to consider is how one selects the sample time At.
This has already been discussed in a former paper by the authors (Ref. 8), but
a brief outline 1s in orcder here. The selection of a fundamental sample time
uses the fact that between samples the system is essentially open-loop.
Therefore, if perfect control at the sample times were achieved, between
samples the uncertainty would propagate via the covariance matrix differential

equation
P = AP + PAT + ccT
P(0) = [0]. (41)

At the first time t that the uncertainty due to this open-loop propagation
exceeds a bound specified by the control specifications, there must be a sample
to lower this uncertainty. Since we are neglecting uncertainties that are due

to the control (feedback) and the state estimation in doing the propagation of

Eq. (41) {i.e., P(0) is really not [0]), the actual sample rate should be
modified based on the closed-loop noise respnnse. As we will see the existence
of computer aided design programs allows all of the above steps to be implemented.
To show all of the output of the computer computations for the OCDA example

would not be very instructive; we thera=fore have shown in UJection IV an exercise

for a simplified example. Reference 9 shows more details of this analysis.

Many times it is necessary to provide a constant force to provide the desired

steady state position. To guarantee that this force does not cause an undesirable
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deviation at some position on the structure, the control is assumed to be applied
through a set of integrators. Thus f = Bu', where B distrubutes the control

forces u' through the structure. u' is integrated control, 1i.e.,

u'= [ u dt

or

The dynamic state of Eq. (34) is modified as follows:

4
Y = 4
9'
s0
. E
[ o I 0 [0
. 2 T T "‘1 \
y = —Ql 0 [®1l¢21]L Bly + ]0 u (42)
L 0 0 0 B LIpa

is the "state variable'" model of the structure which is used tc¢ design the control

system. y has dimension 52 + p where p is the dimension of u (the control).

The optimal control design based on the model Eq. (34) uses the performance
measure Eq. (35). But Eq. (35) is really based on the actual full 243 degrees

of freedom and through the order reduction, Eq. (35) becomes
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g= sty 11z -l |+ uTRu |ae
° ® g Q2 %o g9y
v
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» + 2"1 T T _l '
° (%1 91 Pp®@) 7 [0y %, )L "By
- 2-1 T T ;-1 7
21 (%11 91 912(85) 7 [9g,95,IL "Byu T
Q (L + 2 -1 T T -1 + uRu dt
?
(912 41 012(®)  [97;%5,IL "B

The resulting performance measure is therefore of the form

T
® ~ 149 9q
4 1 1 dt (43)

[

i
'\‘
<

+

w >
e

+
e

b« I
I

ﬁl 9o 91

Equation (43) must be used instead of Eq. (35) to develop the discrete control

performance measure Eq. (36).

As can be seen a cross product between 9 and u is now explicitly included
in the performance measure. Furthermore, even though 9, is a reduced state,
its order is still quite large. The solution of Eq. (43) as an optimal control
problem requires extremely accurate numerical techniques. Furthermore when
the solution has been achieved, there is still the problem of the control exciting
the higher frequency modes. Notice that this design will require full state
feedback (i.e., 97 él). This implies using measurements of m physical degrees

m .M
of freedom, x and X . Then since

B (44)
m
9y = [Lm] X + me
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where Lm denotes the restriction of the matrix OTL to an mxm matrix corresponding
to those nodes gm measured. No Kalman filter or observer is introduced by

implementing this pseudo-full state measurement scheme.

The determination of Lm requires some explanation. In the order reduction
described in Section II-3, the fact that the "fast" states (denoted by 92)

were zero meant that

%1 91
x = (45)

% %

where g, was the m vector of retained modes. Since ¢ @T = I (as formulated in

Eq. (20)), the full mode vector g is given by

T T
9 N | (A
= x = (46)
T T
) 2 Y| | %

where X is an arbitrary subdivision of the node degrees of freedom whose

dimension is the same as 9" Then, since our assumption for the order

reduction was that §2 = 0, which implies g9, = (92) 1[¢{2¢§2] f =uf
T T
By X+ O, Xy = US (47)
or
B S T SR
Xy = (%) 18, % - Uf)
therefore
T T, T ~1.T
gy = [07) - 037057 10T,] x40, (03T UE  (48)

Thus, if * is the measured degrees of freedom §m, Llll and Fm are given by

ol -1 ,T
Lp=¢ 11 21(‘”22) 2

2
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The optimal control design for the structure defined above was developed in
a sequence of four different designs, as follows:
o Rigid body control only; the resulting controller is then
tested using the complete structural dynamic model to
verify the rigid body control stability
® A continuous optimal control using only the momentum storage

devices for control
® A discrete optimal control as in case 2

® A control design as in cases 2 and 3 which uses only a reduced order
model; the resulting controller is again verified using the full
dynamic model.

The table below summarizes the results for each of the designs.
RESULTS OF OPTIMAL CONTROL DESIGNS

MODE OFEN LOOP | RIGIDGGDY | FULL STATE

K. wlHaz) ¢ w ¢ w | ¢

o GBI YAW | 2 REAL PCLES-STABLE 001 716 | .0008!.707
G B0 ROLL| 2 RCAL POLES UNSTABLE | .0018].716 | .0013].71
& Z|PiTCH 0001 0 00191706 | 00tal. 714
1 048 10-3 06 {425

2 066 068 |.342

3 03 ~ 069 | .0a8

| 4 084 RIGID BODY | 084 |.02
b 082 . 204 {600

6 103 CONTROL " fon | s

7 109 GNLY - 417 1500

8 113 18 101
sl 116 STABILITY 1 "197 1 oo
€2 1(11 123 oF A3 o
=R 131 o 185 {002
Wi 148 STRUCTURAL RIT L
R 152 MODES 152 1,004
o [ 14 154 - s ALG | 2
! 15 174 476 1.65
16 2 FUNCTION OF | 2 | .005

17 226 226 |0y

18 26 SEWSOR 200 | 047

19 269 LOCATIONS | 260 |.008

20 271 271 |.02]

21 306 a4

22 308 - 13t .o
23 324 { , a2 |.014
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As can be seen the gravity gradient is unstable in roll. To achieve the level
of damping shown (critically damped rigid body and from 2 x 10"3 to 0.4 on

various flexible modes) the control forces were not excessively large. For a
typical response (the same as the open loop conditions shown in Figs. 9, 10, 11,

and 12, where an impulsive force is applied to the solar array) the control

torques are as shown in Fig. 13 (continuous control) and Fig. 16 (discrete control).
As can be seen, no more than 8 ft. lbs of torque are required to control the
vehicle and to damp the flexible mode vibrations created by the 20 ft. 1b.
aeroydnamic torque. The time response using both the continuous and discrete
control at .2 second sample time are shown in Figs. 14 through 15 and Figs.

17 through 18. The time histories of the complete structure are shown in Figs.

19 and 20 for continuous (Fig. 19) and discrete control at 1 second sampling

time (Fig. 20).*

The assumption that full state feedback is availlable 1s not overly restric-
tive. It 1s quite easy to implement this concept using strain gauges or an
optical system for sensing the motion of the structural nodes. Since, for
most applications, the noise equivalent strain is so low filtering is not
necessary which eliminates the sensitivity of the control to the modal parameters
introduced by a Kalman filter or an observer. A Kalman filter by introducing
notches at the modal frequencies, causes a sensitivity to the mode frequencies
that outweighs 1ts beneficial effects for the spillover of measurements from

the truncated modes (see Section III-3).

7. EFFECT OF STRUCTURAL SIZE CHANGES ON CONTROL

We have investigated the stability of the OCDA space structure control
system as its dimensions are rescaled while the feedback:control matrix is held
fixed, which corresponds to a spacecraft with increasing dimension using a fixed
gain controller. The feedback matrix D is first calculated so that the system
g = Ax + Bu, (u = Dx) is optimal where x is the 52 vector of modal displacements,
rates and rigid body angles, and rates, Then A, B are replaced by matrices
corresponding to a structure all of whose linear dimensions are scaled by a

factor L. We seek the value of L at which the system becomes unstable.

%
These figures are frames from a 16mm sound movie that was produced during
this contract. Copies of this film are available. Interested parties
should contact the authors.
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Recall that the OCDA is gravity gradient unstable and that D is determined
by the rotations at the center of mass. The aerodynamic disturbance was assumed
to be an impulse rather than a step. Our analysis employs 23 flexible modes.
There are 18 translational modes whose generalized masses are scaled by a factor
of L3 as though they were true masses. The five remaining modes are rotations
and their generalized masses correspond to torsion and are scaled by a factor of
LS. as though they were moments of inertia. This is also true of the rigid body
rotation modes. The elements of the stiffness matrix are similarly multiplied
by either L (bending) or L3 (torsion). The three vectors of the mode matrix ¢
that correspond to rigid body translations do not change because their nonzero
elements are dimensionless. (We have been deleting these from our analyses
in any case.) The linear nodes of the flexibility and rigid body rotation modes
are scaled by L while the angular nodes are kept fixed. Note that although the
impulsive aerodynamic drag increases by L2, it plays no role in this analysis
since it affects only the initial conditions for the state x. The gravity
gradient torque 1s also affected by the scaling, but since these terms appear

in the stiffness matrix they are automatically scaled by L3.

Some root loci are shown in Fig. 21. It can be seen rhat instability
occurs at L = 2,4 (Fig. 2la) and for the design which ignores the flexible motion
(rigid body only), the system is stable for L up to 5.2 (Fig. 21b). In both
cases the instability is caused first by the rigid body/gravity gradient going
unstable. The structural mode that goes unstable is the same in each case but
occurs at a larger L for the case of full state feedback. Thus we can conclude
that the optimal designs are reasunably insensitive to variations in the structural

size.

8. RIGID BODY CONTROL FOR PRECISION POINTING

The problem of precise control of the vibration of a system and the control
of the rigid body are incompatible problems. To control vibration requires
a wide band system while the usually high noise on the attitude sensor relative
to the rate sensor tends to make the bandwidth of the attitude loop very small.
This suggests that a hierarchy of control loops should be designed - the first
loop a narrow band attitude loop, the second loop a wider band rate loop that
controls the rigid body rate and the final loop a rapid moving (wide band) loop

that achieves vibration control. We describe in this section how the first of
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these loops - the attitude control loop can be designed around the second rate
control loop. First, however, we show that the rate sensor noise relative to the
attitude sensor noise determines the bandwidth of the attitude loop.

When sensor noise and external system noise are both exciting the control
loop, the design of the control system requires that an estimator (a Kalman
filrer) be designed to provide the best estimate of the rotational rigid body
states. Consider the rigid body dynamics given by l

(50)

154
]
Ed
+
€

that is, the rigid body dynamics are I8 = noise where in Eq. (50) X = 0,
X, = 6, I is the inertia of the rigid body axis and the measurement y is a
measurement of attitude and rate with additive noise g} We assume that the

noises w, ny and n, are white with variances oi,oi and 03, respectively.

The continuous time Kalman filter is given by

2 0 1 N R
X = x + K(y - x) (51)
0 0
where K=PM R!
and
0 1 0 0 0 0
P = P+P + )
0 0 10 0 o “/1
w
lloi 0
-P 2 P
0 1/02

‘The significant aspect of the filter is what it does to the control system
when it is inserted in the control loop. It is well known (See Ref. 7) that the
closed loop system with a filter in the 'loop has closed loop poles which are those
of the optimal system cascaded with those of the filter. Thus, the bandwidth of
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the closed loop system will be that of the optimal control if the filter band-

width is greater than the control.

optimal control, then the closed

If the filter bandwidth is smaller than the

loop response is dominated by the filter. To

determine the poles of the filter (Eq. (51)), we use Potters method on Eq. (50).

Thus, the filter poles are the left hand plane eigenvalues of the 4 x 4 matrix

0 o

0 +1/oi 0
2
[
0 0 +1/0, (52)
0 0 +1
2,1 o 0
w

These eigenvalues may be determined analytically as the solutions of the charac-

teristic polynomial of Eq. (52).

This polynomial is

o 2 0 2
A - a2 = + | =0
2 %1
which has roots
N 1/2
2
o V2 /// Iog
"1,3“*21% 1+ 1-4155 )
J
— 23 12 (53)
o V2 1o, \
JWERE R EEIVATTE )
w |

where Al and AZ are the left half
characterize the bandwidth of the
Let §_ (the signal to noise ratio
(the ratio of the attitude sensor

Then

To

filter, the following parameters are introduced.

plane poles (with the minus sign).

for the rate sensor) be o“/I/o2 and let p
noise to the rate sensor noise) be 01/02.
1/2

—/E/zsr{1+/1

2
= 4/(5.0) } |
(54)
1/2

[}

-/ilzsr{l—/l

- 4,07}
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Figure 22 shows the root locations for various conditions of Sr and p. The
situation in Fig. 22a is the critical one. It describes the case when p 18 large,
i.e., when the attitude noise is larger than the rate sensor nois. For a typical
precision rate gyro and star tracker, the ratio p is on the order . 100 which

is clearly the case of Fig. 22a. Thus, the bandwidth for the attitude control
loop is determined by the filter pole near the origin. In other words, the
settling time for the attitude loop is determined by the time it takes to
determine the attitude from the rate measurement. Since this is the case,

an attitude control system should be designed that uses rate sensors for the

basic control and the attitude control loop should provide rate commands. When

this is done it becomes possible to also estimate some of the rate gyro parameters.

The basic function of any onboard attitude control system is to maintain
constant LOS of the spacecraft axes. Ideally, it should be free of long-term drifts
and jitter, and steerable by ground command. To determine the degree to which
these ideal characteristics can be achieved, and by what techniques, a baseline
approach to the control, determination, and parameter calibration problem is
proposed and analyzed. By considering a generic design such as the one proposed,
it is possible to identify the specific sources of LOS ervor and to propose and

evaluate techniques for their compensation.

The proposed design utilizes rate stabilization with a three-axis strapdown
gyro package coupled with a set of coarse and fine reaction wheels. The
stabilization loop recieves ground commands of the required rates it must
held constant, with respect to inertial space, and the period over which they
must be held. This system is an onboard velocity feedback loop which can
respond rapidly and the position loop is closed through the ground, using
an onboard star sensor., The position loop can be closed through a ground loop
because of its very low bandwidth as described above. Figure 23 depicts the
essential elements of the proposed approach. The dashed portion represents the
onboard stabilization loop, the remaining portion represents the ground-based

position loop.

Four reference frames are used to characterize the system's operation.
The inertial frame, I, is fixed with respect to inertial space. The orbital
frame, 0, is defined to have axes which are local vertical, orbit tangential,
and normal to the orbital plane. The computational frame, C, is defined in

terms of the orbital frame and represents the desired location of the vehicle's
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body frame, B, Ideally, the B and C frames should be coincident. Attitude
misalignment is measured by the small angle misalignment vector, ¥, between
B and C frames (¥ is the three-vector about which a rotation of in radians

by computational frame C will bring the B and C frames into coincidence).

In Fig. 23 a commanded rate to the computational frame is generated, wgc
(for an earth pointing mission this will be earth rate). This command is sent
to the stabilization loop and held. The star data, while the rate is held
by the stabilization loop, are transmitted to the ground via a radio link, and sent
to the star-track preprocessor. The star-track preprocessor collects data
from a known star for one stabilization loop sample time (on the order of 30
seconds) and estimates the position SB(g) of that star in the star tracker at time
2. The star-position generator also computes the nominal position for the same

star, assuming perfect alignment of the B and C frames.

Any difference between the two star positions is a measure of the
misalignment between the two frames. This information is fed to a Kalman filter,
which estimates the misalignment between the two frames, ¥(t), and at the same

time, updates the values of any observable system biases.

The misalignment information serves a dual purpose. It is sent to the
ground mission processor to update current LOS information, and it is also used,
when desired, to provide a correcticn rate command, which is added to the nominal
command transmitted to the spacecraft. The corrective rate will drive

the current misalignment to zero in a fixed amount of time.

There are three categories of errors which, if uncompensated, will cause
the L.US to diverge; they are all of the bias or slowly varying parameter variety;
errors in the gyro package, such as bias, scale factors, and input-axis
misalignment; errors in the sensor system alignment; and errors in orbit deter-
mination and star position. These can all be included in the state of the Kalman
estimator. The more-stable errors can be estimated infrequently in a batch
mode; the more unstable ones, such as gyro bias, are estimated on-line along
with the misalignment vector, ¥. The results of a detailed covariance analysis
of the star-track preprocessor and Kalman filter estimator for a six-state
implementation that predicts the achievable level of performance are described

below.
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The jitter portion of the LOS has its source in the onboard stabilization
portion of the system. The main noise sources are the gyro output noise,
stabilization loop electronic noise, and reaction wheel torque noise. These
noise sources must be suppressed through the wide band stabilization loop control

system and the dynamics of the spacecraft.

A covariance analysis was performed with all of the above noise sources
as the excitat’on. In this analysis, we took advantage of the fact that the
shape of the output time history from a star detector depends only on the path
of the star point-spread function as it traverses the star sensor detectors,
since the intensity remains constant throughout the traversal. In the analysis,
we assumed that the star track is completely characterized by a straight line
at a known velocity with known point-spread function. Henze, an initial X 2,
coordinate pair and a reference angle measured from a line defined by the locus
of the star completely determine the output signal. Assuming the electrical
characteristics are known, and the point-spread function is an azimuthally
symmetric gaussian function, the estimate of the initfal star position (and
angle) 1s a recursive update using successive sensor outputs. The covariance

analysis results tend to be insensitive to slight modeling inaccuracies.

Given a single voltage measurement at specified location on the sensor (a
sensor node), {Vi}. from the previous a priori knowledge we know the least-squares

linearized solution for the corrections of the track parameters to be given by

Ax
bz | = cnrR7 1w (55)
;]

where HT is a 3 by n matrix given by the transpose of the n by 3 measurement
sensitivity matrix, H,

R 1is the n by n covariance matrix of n voltage measurements, assumed

diagonal and proportional to the identity matrix, and

(AV)1is a column vector composed of the n measurement differences,

(vi - 51):
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where C 18 also the covariance matrix for the estimate of the three-component
state vector. The square roots of the diagonal elements of C, then, give the

uncertaintfes of the X 2z, and ¢o parameters of the star track.

It can be shown that when each additional node measurement is combined with
the current estimate to obtain a better state estimate, the covariance matrix

relation 18 given by the recursive equation

1

-1 -1 T,-
Ck+1 Ck + HR H (57)
where Cil is the inverse of the previous covariance matrix obtained before the

new measurements are used,

Computer analyses have been performed to determine the dependence
of the covariance matrix on the relative star-track geometry. As might be
expected, the worst uncertainty in position occurs in the z estimite, the
direction nearly perpendicular to the star track. If the star image continues
to traverse successive sensor nodes with near-zero inclination angle, the zo
coordinate becomes nearly unobservable. In this geometry, all of the output
signals will be nearly the same for all paths slightly displaced in z from the
nominal path. By tilting the star tracker slightly this unobservability quickly

disappears as caii be seen in Fig. 24,

For a relative star tracker angle of 7 deg, the final standard deviation in
the estimate of z, for a 30-second star~track traversal is on the order of
0.05 mil, and somewhat smaller for X This result assumes a peak signal-to-
rms-noise ratio of 10:1. Hence, it seems that the nominal 30-second-duration

collections of data will provide sufficient high-fidelity pseudo measurements
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to the Kalman filter processing stage for the more time consuming attitude

determination/bias parameter estimation function,

The function of the processing segment described above is to determine a
measurement th>t can be used to precisely determine the attitude of the spacecraft
and provide the iiecessary information for any subisequent attitude control correc-
tions of unwantec Qrifts. A natural byproduct, which is necessary to achieve
high-precision results, will also be the estimation ("learning') of at least
three different types of system biases. This set of parameters consists of
(1) the three-gyro drift rate biases, (2) the misalignments between the rate
gyro package axes and the nominal body coordinate system axes (each axis
misalignment being characterized by two direction cosines) and (3) the three
torquer biases, which will effectively characterize the biases in the onboard
rate stabilization segment.

If we define the three vector, w?B, to be the angular velocity of the body
frame with respect to the inertial frame, expressed in the body-frame
coordinates (hence, the superscript), we can write the continuous state equation
expressing how the misalignment vector, ¥ behaves with time. Before writing the
equation, it should be emphasized that the misalignments are infintessimal.
Hence, the state equation will always have at least one error source, even
if the system model were perfect., Furthermore, it is ascumed that the differences
between the actual and nomirial rates remain small. The state equation, then,

for the misalignment vector becomes

. c B c
¥ F(mIC) ¥ + wyp - wf, + noise (58)
where F is the skew-symmetric matrix
0 w3 -0
F(w) = ~ug 0 wy (39)

Wy —wy 0
When the relatirn between m?B and the commanded (nominal) rates to the

oniboard gyro package is modeled with unknown biases, the expanded state

equations can be shown to assume the following form:
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0 + noise
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0 + noise

whare B is the three-vector of gyro blases, y is a six-component state vector
expressing the gyro misalignments, and s is a three-vector expressing the torquer
biases, and Py, rs are the effect of these on the misaligumeut vector.

To construct the Kalman filter, it is also necessary to define the relation-
ship between the observable star position pseudomeausrements and the state to be

estimated. This equation can be given by
AX = MY +n

where AX is the error in the pseudomeasurement two-vector, and is due only to the
first three components of the state vector, f.e., the misalignment vector, VY,
and n is the pseudomeasurement noise whose covariance is provided by least squares

inverse above. The measurement sensitivity matrix, M, is given by

M- (61)

where xo, z, is the star pseudomeasurement position and f is the effective focal

length of the star sensor.

We performed a preliminary covariance analysis, assuming that only the gyro
blas three-vector is to be estimated with the Kalman filter. For the six~component
state vector, consisting of the misalignment vector and the gyro biases, the

discrete solution for the covariance propagation is given by

T
Mn+1 = lM,n“’ +Q
(62)

| T T
P (1-K H M (I-K H )" + K R K

T T -1
where Kn Man(HnMan + Rn)
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Here ¢ is the transition matrix given by:

A, At
o= e 2772
where |
F(wfc) i I .
A = T (63)
0 l 0
|

and At is the filter cycle time, pominally 30 seconds. Note that ¢ does not change

gc is assumed to be held at some constant value during
all mission maneuvers. Returrning to the above equations, Q is the six by six

with each update since w

covariance matrix expressing the plant uncertainties, Pn 1s the previous updated
covariance matrix, Mn+l is the extrapolated covariance matrix before updating

with the current pseudomeasurements, and P is the current updated covariance

n+l
matrix after accounting for the current pseudomeasurements, whose covariances are
given by R. The Hn matrix is the same function of the current pseudomeasurements

defined above.

1

The main features of the results of our preliminary analysis are shown in
Fig. 25. For the analysis, a gyro drift rate of 0.0l-deg-per-hour-per-day
was assumed, not an unreasonably demanding requirement., Using only a single star
in the FOV of the star tracker at any given time, the upper graph of Fig. 25
shows an excellent transient response for the two sensitive coordinate axes
misalignments. The third axis will require about 6-hours before comaprable
performance is achieved. In the lower graph of Fig. 75, the drift rate error

is seen to achieve 0.0l1-deg-per-hour within an initial 15-minute time interval.
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III. THEORETICAL QUESTIONS FOR CONTROL OF LARGE SPACE STRUCTURES

1. ORDER REDUCTION PROBLEMS

The fact that the differential equation that result from finite element
modeling represents undamped harmonic oscillators means that Eq. (7) is never
exactly satisfied at any time.* This is quite distinct from the normal singular
perturbation approach which we formally used above where the reduced solution
matches the actual solution to the full set of differential equations for times t
which are away from the boundary. The reason this convergence is not valid for
the finite element method is that there is no damping. A simple 2 mass model can
be used to illustrate this point. Figure 26 shows the model for a simplified

2 mass example. With the parameters given, the "finite element" model becomes

100 0 '] %, 1780 -1780 X,

343.8-J %, -1780 4194 .4 X,

+ (64)

The result of transforming via the Cholesky factor of M (since M is diagonal

L= 10 0 ) is (see Eq. (20))
0 18.54
21 17.8 -9.6 zy | 0.1 0 f1
= - + (65)
22 ~-9.6 12.2 z, 0 0.054 fz

*

The matrix ¢ in Eq. (7) is a transformation that supposedly gives all of the
components of X in terms of the modes q. When q is truncated, the harmonic
motion of the ignored modes never damps, so .3 is never correct.

PRECEDING PAGE BLANK NOT FILMED 5
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and 1if

0.6 0.8

0.8 -006

i then Eq. (65) becomes

. -5 'I "0.06  0.043 £,
| q = (66)
! '~ 0 -25_[ 0.08 -0.032 £,
3 If the second state (the fast state) is eliminated from Eq. (66) then the reduced
model is
|
; ﬂl = 5 ql + ,06 fl + 0.043 f2 (67)
q, = .0032 £, - .00128 ¢,

Assuming fl 2 = 0 and q1 2(0) are the only initial conditions on the mode state
(ql(O) = qz(O) = 0) then since x = L~ ¢g the solution to Eq. (67) gives x, (t) as

xl(t) = ,06 ql(O) cos /5t (68)

; whereas the solution to Eq. (66) gives xl(t) as

| xl(t) = ,06 ql(O) cos V5t + .08 qz(O) cos 5t (69)

1f xl(o) = 1 then Eq. (68) and Eq. (69) can be compared. Figure 27 shows such
a comparison, and as can be seen the reduced solution Eq. (68) never converges

to the actual solution Eq. (69).

The solution to this problem is to formulate the order reduction as a '“weak"
convergence. The best way to achieve thils 1s to use the control performance

measure as the criteria., Thus, if the performance measure for the original

system is
T
= fx X T
J= f Q + u ulde (70)
(8]

4 1 94e
154

then an approximate J is obtained by using a transformation based on diagonali-

. zation of the cost matrix associated with Eq. (70). The benefit of such a weak

et b
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order reduction is two fold:
1. Periodicity in discarded modes may be handled.

2. The closed loop dynamics are used as a criteria for

reduction in order.

The first use of this form of order reduction was by Meier in Ref. 10.

2, ORDER REDUCTION IN THE WEAK SENSE

The procedure we have developed for reducing the order of a dynamic system
accounts for all of the objections that were raised in Section III-1. Firstly,
the reduction in order utilizes the performance index as a criteria tor determin-
ing the order reduction so that periodic motions in any particular discarded state
do not cause problems in the singular perturbation. Second, the procedure uses the
rnlosed loop dynamics. Thus if a high gain system is required the order reduction
will account for that fact by retaining the ''faster' modes in the open loop
dynamics that are normally discarded. This second step is a significant
departure from the order reduction described in Refs. 11 and 12.

The procedure for order reduction differs from singular perturbation
techniques based on the dynamics of the system where the highest derivatives
of the fastest states are permitted to go to zero (Refs. 2, 13 and 14). 1In
that case, convergence of the reduced model solution t> the solution of the full
order system occurs in an absolute sense. In our case the quadratic performance
measure is used to devermine the order reduction so that convergence is in the

"'"weak sense'.

To develop the reduction procedure, we start with the open loop dynamics
(i.e., u=0)

3 = A X 3 5(0) = X, (71)
and T T
J=17r Xx* Qx dt (72)
t
o
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Since x(t) = d(t-t ) x(t )

J= _:_(T(to) ,r'f oT(c-co) Q o(t-t ) dt x(t)) (73)
o

or

T
J = X, P(T—to) X

where P(T-to) satisfies the differential equation

ﬁ%%L = ATP + PA + @ (7%)

which is simply obtained from differentiating Eq. (73) and using the fact that

¢ and A commute. If T + =, then the steady state solution, P_, of Eq. (74)

satisfties

ATP_+PA+Q=0 (75)

The solution to the equation (75) 1s best developed by diagonalizing A
(assuming A can be diagonalized). Thus, if T is the matrix of right eigenvectors,
then

TlaT =
and if we premultiply Eq. (75) by TT and postmultiply by T, then

1

tTarTr"p 1 + T7p_T 70T + TQT = 0

or

ATTP_T + T'P_TA + TTQT = 0

-~

and 1if 5 = TTQDT and Q = TTQT, then P is easily seen to be given by

~

1

Thus, P_ = TrT P T =~ can be determined by using the eigenvalues and eigen-

vectors of the matrix A.



The matrix P_ is symmetric, hence it is diagonalized by an orthonormal matrix
sp il.e.,

¥ .
61 o . . . o
o 6 L] . L] o
T BEE XL (76)
L o 0 L[] v [ 6“—

The order reduction that is now proposed is based on the eigenvalues of the
matrix developed in Eq. (76). The reasoning is that the eigenvalues of Eq. (76)
specify the amount of control that is important as each of theigieial conditions
50 are perturbed, and are therefore a good measure of the effect of the control
in terms of the desired performance. Obviously the above derivation depends only
on the initial conditions, since the control was assumed to be zero., When the
control is non zero, the same analysis may be used if one ass.umes that the

control is linear.

X= (A+BK) x ; x(0) = x_ an

The last piece we need before the order reduction algorithm is derived
is the fact that the closed loop dynamics, when the gain is known, can be put
into the form of Eq. (71) and Eq. (72).

As the first step in the order reduction procedure, assume that the desired

performance has been translated into the quadratic perforamnce measure

I =/ (xQx + u'Ru) dt (78)
o
and that the control is known and given by u = Kx. Then Eq. (78) becomes

xT Q + KT

ey

R K) x dt (79)

[
]
0 -8
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If K 18 a stable gain in the full state system (x is a dimension n, which is large,
and we desire to find a reduced order model), then the goal 1is to find a smaller
dimension approximation such that the value of Eq. (79) is approximately the

same for both the full state and reduced state system.

Following Eq. (75), the value of the cost matrix P_ for Eq. (79) is given by

T-TiT-l where

-~ -~

Pyy = lagy /Oy + 2] (80)
and where
Q = TF(Q + K'RK)T
T is the matrix which diagonalizes A + BK
Mw are the closed locp eigenvajues 1= 1, ..., n.
This matrix is symmetric and hence can be diagonalized as in Eq. (76) so
P_ =548 (81)
where
SST = STS = I

In Eq. (81) let us partition P_ in blocks of dimension m and n-m as follows:

P P

P = 11 12
T
Pi1o Py
where P11 ismxm
Pl2 is m x n-m

P22 is n-m x n-m

m 1s the order of the reduced model which is specified based on the

error introduced by the order reduction.
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Thus, from EKq. (81) we get

P
S11 S12| fi1 P2 81 O |81y 5y
T - T (82)
S20 S22  LP12 Pp 0 B L8y, Sy
T T _ ., (T T T, oL, T
or $19P11 * S5, P12 = 8811 ¢ SpaPra Y SyyPan = 8 vy
T T T T T T T
and ST P, + S3,Pp) = 8y)80,1 ST,P, + S30P1, = 85581,

By the way in which the eignevalues 61 were ordered in 4, the eignevalues in A22
are small compared to those in All' I1f these eigenvalues are of order ¢ then from
Eq. (82) as ¢ » 0 (the magiitude of ¢ that is '"considered small" in fact will
determine m)

T T .

S12F12 * Sppfpp = @
or

; -T.T

Pyy ==55515P12 (83a)
and

T T T

$19F11 + 535Fyp = 0
80

P..= -PL 8., §o3 (83b)

12= “P1151,522
which gives

-T.T -1

Pyo = 592815P11512522 (83c)

since P11 is symmetric.
The cost matrix P, from Eq. (83) is therefore
P -P..S..5°1
11 11512522
P = (84)
“T.T -T.T -1
~552512P11  522512P11512522
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11 (84)
_S-T sT _szsT (con't)
22 12 22"12

When the initial conditions are Gaussian zero mean with covariance Qo' then

E{J)} = tr {qu)

=tr{Py) Q, +PpQ *Py,yQ  +PpQ

11 21 12

-TT
Thus, we assume that x, = - §,,5,, X, where (X, X,) 1s a partition of the

state x into an m dimensional reduced order subset (51) and an n-m dimensional

"regidual® subset which are now & linear ccmbination of X Using this
definition,
% I
;-‘ = = }-‘1 (85)
-~T.T ~T.T
~522512%1 522512
so when x is used in Eq. (79),
J=/ x(Q+ROx dt =
o
T
- I I
T T
S X (Q +K"RK) X dt (86)
o s-TST s TST
22712 22712

The state variable molesl for X, is given by substituting Eq. (85) into
Eq. (79), thus if we call the closed loop state matrix F and partition it as:

(A+ BK) =

where F11 ismxm

F22 is n-m x n-m
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o TR TN e SR

then
% =F . x, -F S-TST Ry 3 %, (0) as before (87a)
=1 11 =1 12722712=1 ° =1
and
~T T , o e TsT
hy = (P - Fpp8005120%) 5 £(0) = = 55,8y, %, (0) (87b)

are the reduced order state variable models. Since we have assumed 52(0) -
-T.T
-82281251(0), the performance measure becomes

Je/ x' (Q+ROx dt

o
= xT P x
~0o =o
T
T 1 1, I
= %,(0) T %, (0) (88)
TSt _s~TgT
22°12 22°12
which, 1f ¢ - 0 becomes:
T -1_-T.T -1_-T.T
2 (07T + 8.,855525512) PafT + 81955555551,1%, (0 (89)

Comparing Eq. (89) with Eq. (84), the order reduction impiied by Eq; (85) gives
the same performance measure as results when the small terms in the cost matrix

are zero (e + 0).

To develop the series expansion in € for the cost measure requires an
expansion of Eq. (86) as a function of €. The result of such an expansion will
give an indication of the error introduced by the truncation. This was not done

during this contract and is one of the issues that should be pursued.

The reduced model Eq. (87a) where u is mot Kx is given by

'y = - -1 .
By = ()1 = A15519559) X + B u
. I ! 1
J=/ {xT [Q] X, + uT Rul} dt (90)
7o) e T | Rty Ry
22512 22512
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which gives the reduced order optimal control problem. The control u is

given by u = Krgl where l(r is the reduced order gain given by

-1.7 , . ,
K. =-RBP, 3. uw=K x ; (91)
and
0= (A, - A .5 isT )T P + P (A, - A.S_TsT )
11 - 812520512 o =(A11 = 812895515
1 T I
+ Q
T.T T
$22512 §9512
+p B R 18P (92)

The gain Eq. (91) is an m x p matrix, which may be used in Eq. (79) to

evaluate the performance of the complete n state system as follows:

Let E be the n x m matrix given by

m
Im
E =
m
0
n-m x m
then
X = Ei x so Eq. (79), with the gain K, becomes
2 .r T T
J = g x" {q+ E K. RK Em} X dt (93)

Obviously, all of the steps leading to the reduced model Eq. (87) can be
performed using Eq. (93) instead of Eq. (79) with 9=Kr§1=KrE: xX. There 1is no
reason, on the first iteration, that the resulting state matrix F in Eq. (87) will

be the same. Thus, we must iterate on the gain Kr and the reduced model
-1

11732512522

occurs, the reduced model will have been determined along with the optimal gain

) until the result of two iterations gives the same F, When this

that accompanies the dynamic model.
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Figure 28 shows the iteration that is describad above for the case where
M%+Kx=f are the dynamics (corresponding to the finite element model).
The matrix A is then (formally) given by

4 x 0 I x 0
- = -1 + -1 g (94)
dt l'g MK 0 & M B

3. MODE SPILLOVER

Mode spillover of the control (Ref. 15) refers to the problem that when an
actuator 1is placed on a physical structure, it excites all of the structural modes.
This can be minimized if the actuator is constrained to move slowly relative to
some defined high frequency. The problem is how to limit the control bandwidth

without adversely affecting the response.

Because an optimal control design has a 1/w characteristic (see Ref. 7) for
large frequencies, the fundamental theorem due to Bode is satisfied (the
requirement of at least 20 db/decade roll-off at the zero decibel crossover).
However this 20 db roll-off continues to the higher modal frequencies where an
additional 1/w roll-off in each control channel for high frequencies would
be desirable. To achieve an additional 20 db rell-off, an obseryer is introduced
into each control channel. We assume the state to be obseryed is the feedback
gains times the state [g,, QIJ. Thus, z the observer state will become the
control

9

In
+
~

] ; 2z of dim. p (95)
1

The observer equation is (where the state variable model here comes from Eq. (42))

a1 0
z=Fz+G + K 0 u (96)
Lg; I

where from the observer constraint equation (the matrix K is the observed linear

combinaticn of states)

0 I 0
- 02 T T, -1
¢ =K h 0 (¢11¢21)L B «~FK
and L is defined in Eq. (17). 0 0 Y
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The selection of the "poles" of the observer (eigenvalues of F) is made
in such a way that the Bode criteria is satisfied at the frequency which is the
highest frequency vetained in the reduced order model and for frequencies beyond
that, an additional pole is introduced. The resulting control system appe&ars
as shown in Fig. 29. The same transformation used in Scction I1I.6 is used here
to provide the modal measurements[glJ in terms of m coordinates of the structure
and their rates. 1

4. COMMAND GENERATORS FOR STEWING AND SHAPE CONTROL

The problem of muving & system from one orientation to another may be

formulated as a control problem as follows:

"Given an initial condition x and a terminal condition x,, determine
the control u such that some performance measure is minimized (such
as minimum time, etc.) that also causes the system %X = Ax + Bu to

f "
move Ifrom 2_(0 to }_Kf.

Most of the problems formulated this way lead to nonlinear control laws which are
difficult to compute - particularly when the dimension of x is large as it is in
the structural control problem. Thus, we have formulated the slew problem in a
different way - an approach that allows the use of linear optimal control

techniques.

The assumption is made that the command is the output of a linear system
with an input that is a step function. Since it is important that slew commands
be smooth, the command generator should be such that as many derivatives as
possible are zero at t = 0 and that near the terminal time of the command
(t = tf) the derivatives of the command should all be assymptoically approaching
zero, Thus, the command time duration tf may be selected based on the degree
of steady state performance desired (how much motion is tolerable at ﬁf). A
linear system which achieves this level of performance is the approximation to
an ideal delay network (Ref. 16) whose transfer function is e—ST where T is
the delay time. The transfer function of the approximate system of order N
(even) is given by

a
T(s) = 2

N
+ ... +a g+
aNs i
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where

(ZN-i) j 3!
a, = _:\i.:i' and =
2 k Gk ) Ik ¢

By using a partial fraction expansion on T(s), the transfer function becomes

* *

b b b, b
O v N2
P P Pn/2 8 “Py/2

(98)

where * denotes complex conjugate, and the state variable form of Eq. ®8) is

trivially given by (gc is an N vector)

I'pl 0 0...0 | b,
. ! * |
X, = 0 p, 0...0 x, + by u
0 0 0.t bt
et Pyy2 N/2

(99)

The roots of the denominator polynomial in T(s) (pl, oo s Pyy/o and their

conjugates) are not simply described. They are all complex when N is even and

they are not clustered along any path in the complex plane (unlike the Butterworth

and Tchebyshev filter poles). We rely on the control design calculation to

formulate Eq. (99) and calculate Py i=1, ... , N/J2. The step response of
Eq. (99) (u = 1) is computed by the addition of an N + lst state variable in
Eq. (99). This variable becomes u and since a step has a derivative that is

zero, the new form of Eq. (99) is

rp1 0 0 ... 0 0 b 7
. _ * * . -
k_ 0 p; 0 ... 0 0 b x, 3 y=[11 ...10]x
0 0 0 ...py,0 by, (100)
0 0 *
e e lesz/z

0 0o 0 ... 0 0 o
-
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with % (0) = [0, O, ... , 0, 1]".

Our computer codes do not use complex arithmetic, so a transformation P

is applied to Eq. (100) to make all of the elements real, where l"1 is given by

-
-1 -1 {-1 o} 1 o0} o ]
Po= 3 1! o 1 0! o0
O < 1 -i 200 0 0
. 1 4
0 0 LI I J 1 -i o
1 1 0
L O 0 0 O0f ... 0 o0 1

i 9

= f— — -

e
In the new coordinate system (through the transformation P), the state equation

becomes (where in this equation Py = oy + iBJ s =1, ... 4 N/2)
A

[ r ~ N\ N/2 b +b* ]
-1 ’ j j
ERERC Y R O S b 20 2 AR 723 I
*
- b ~b
B, o 8, 0o ... B, 0 éi 1
X = — JR—— PP T
-C
__________ S A —— __qp-----_;---—
*N/2 Bn/2 bN/27PN/2
0 0 .. 2
b +b
| | R P 72 . 77 N/z K2
00T I 0 0 0 |
-
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and the output is

y=(1 0 0... 0] x| (101)

A typical set of plots of Xps Koy eoe Xy when N = 10 is shown in Fig. 4.

The next step i~ 'sing Eq. (101) to design the control system is the deter-
mination of what in the structure is to be commanded. If the rigid body coordinates
are the only coordinates to be rotated, then the structural model in the rigid
body modes are commanded to follow y in Eq. (101). This is achieved by
applying a torque that is the double integral of y since the rigid body motion
in modal coordinates is 1 5 = T, If the rigid body rotational modes in the vector
q (as introduced in Eq. (20)) are the last thrce components of ¢, then the actual

motion of the physical degrees of fieedom are given by

t -7.7[0]
w8 2 T Oy
0
1
1 three rigid body coordinates
1 J are only non zero terms.

where:

§D(t) are the desired motions of physical coordinates in the finite
element model (x(t) is the original finite element model
coordinates) ‘

L and ¢ are as in Eq. (20)

y(t) is the output of the command generators above.

The optimal control problem is now modified to cause the actual nodes x

to follow ED as follows

©o

J =/ {(x~x )T Q(x~x.) + uTRu} dt (102)
5 - =D =3 T2 TS
where
x = L_1¢T 9'1 {1 0... 0] x
0
1
1
l—ﬁ
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and

Mt + Kx =B u

As can be seen, the control solution will consist of a gain matrix multiplying
the states x, and x. Thus the actuator command will be a linear combination
of feedbacks from x and feed forwards from the command generator R.»

5. ON ORBIT TESTING FOR LARGE SPACE STRUCTURES

One of the difficulties encountered when controlling large space structures
is that the structural dynamics are not known well enough., If a finite element model
of the structure is used to develop the control system, then the typical errors
in the mode frequencies and mode shapes that result will lead to a control system
that at best does not perform as well as possible and at worst could be unstable.
The dilemma is that large space structures cannot be bullt and tested on the
ground -- one must wait until the structure is designed and built in orbit before
reasonable testing may begin. The problems of this "on-orbit' dynamic testing is
discussed here in terms of a phase locked loop adaptive spectrum analyzer that
could provide mode frequencies and mode shapes for control design during the

initial orbital operations of a large space structure.

The determination of the structural parameters of a large space structure
is almost impossible using ground testing. The influences of gravity, aerodynamic
forces and the difficulty in establishing the thermal gradient that will be
encountered in orbit all contribute to uncertainties (even when these effects
are analytically extracted from the test data). Added to these problems
is the impossibility of even assembling the actual structure on the ground so
that it maintains its intended shape, Thus it becomes important to consider

testing the structure when it is in orbit.

The use of modern control theory to develop control systems for large
structures requires that a detailed model of the structure exist. Due to the
difficulty with testing the structure on the ground, the control design must be
deferred until the system is in orbit and the structural model becomes available.
Use of a digital control system is then ideal, because a rigid body low band-~
width controller may be used initially (during dynamic testing). After the control
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algorithm is developed using the test data, the original low bandwidth controller
may be easily stripped out of memory and replaced with the control system designed
using the structural data. Thus, the question becomes one of developing a

structural model.

Since the structural frequencies are discrete, a Fourier transform of the
output of a sensor mounted on the structure will show discrete lines at the modal
frequencies. The use of a spectrum analyzer is thus a possible way of developing
a structural model. The problem with this approach is that a decision process
must be appended to the output of the spectrum analyzer to allow the discrete
mode frequencies to be selected. This decision process must be automated since
one would expect to do the dynamic testing periodically to update structural

mode data as the structure's properties change.

A natural device for automatically selecting the mode frequencies is a
Phase Locked Loop (PLL). This device suffers from some problems when the
frequencies of two modes are close together because it will alternately pick
out one or the other frequency. In addition, the loops are sensitive to certain
noise processes., The characteristics of a PLL are described and a method is
introduced that will allow the loop to be better tuned to the characteristics of
structural dynamics. The theory for identification of structural parameters that
are built into the new phase locked loop, and some results from a simple computer

simulation of the loop are also shown below.

The technique we are describing here uses an optimal filter in the loop
to tie the loop operation to the known characteritcs of the structural dynamics.
Reference 1 18 the closest application of such an approach in the literature.
There, a Weiner filter is developed to give an optimum filter for a single

sinusoid, whereas here a Kalman filter with a frequency identifier i1s used.

Figure 30 shows a phase lock loop as it is unormally configured. The
vperation of the loop relies on the fact that the result of multiplying two
sinusoids is sinusoids at the sum and difference frequency of the two sine waves,
Thus if the input sinusoid 1is sin (wit + ¢) and the output of the voltage control-
led oscillator (VCO) is sin (wot + 6) the input to the low pass filter is given by

E(t) = sin (wot+¢) cos (wot+9) =

3 sin((wo-wo)t+¢-e) + 1 sin((w°+w0)t+¢+6) (103)
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and the output of the low pass filter will be the difference frequency component

of Eq. (103). The VCO will change frequency following the low frequency term

until sin {(wi-mo)c+¢—e}- 0 at which point the loop is locked where wy - wy and

¢ = 8, The assumption that the input signal is a single sinusoid is crucial to

the oparation of the phase locked loop. If a second sinusoid with a frequeucy close
to the primary sinusold exists in the input then the VCO will not stay locked

on the primary frequency and will alternate between the two frequencies in a random

way.

Figure 31 shows the modification to the basic phase lock loop that was
first shown in Ref. 9. The fundamental feature of this loop is that the optimal
filter will have a variable bandwidth with multiple notches. The variable
bandwidth is a consequence of the convergence of the loop frequency, ;o. to the
frequency contained in the signal W, The multiple notches in the estimator comes
from the apriori assumption of multiple frequencies in the signal. These
two properties overcome the major objeckions to the use of a PLL for structural

frequency determination.

The problem of identification of the coefficients of a linear differential
equation muy be formulated as a nonlinear filtering problem since the unknown con-
stants may be assumed to satisfy a differential equation where the constant's

derivative are zero (Refs. 18 and 19).

For the phase lock loop used to identify the structural mode parameters,
the assumption is made tlhiat the underlying structural systems is modeled by

a finite element model of the form

Mt + Kx = f (104)

A series of transformations are used on Eq. (104) to obtain the modal form of Eq.
(104) as follows

® Transform from x to z using the Cholesky factor of the mass
matrix M. Thus if L is lower triangular and LLT = M, then
defining z = LT x and substituting in Eq. (104) gives

1 -1

g=-17kT 240t g (105)

e Transform Eq. (105) to diagonal form using the orthogonal trans~

formation g = of Z to give
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g=- o? g+ WTL'JS (106)

where 92 is a diagonal matrix which has the square of the mode
frequencies along 1ts diagonal,

In Eq. (106), each mode sat!sfies an independent differential equation of the form

2 ’
di =0y 9 + bilfl + ...+ bipfp (107)

are the terms in the matrix ¢'L 1.

3

Let us consider a single mode with p = 1 (i.e.,, only a single force is

where the bi

applied to the system). Since we are postulating a dynamic test mode, we can
use the actuators on the spacecraft to excite the structure one at a time. The
14" Since the solution to Eq. (107)

is of the form of the sum of sinusoids multiplied by the modal initial condition

unknowns in Eq. (107) then are wi and b

plus the forcing term, the bil is a scale factor on the amplitude of the steady
state oscillation induced by the force fl. By adjusting the amplitude of fl,
the coefficient b11 may be made unity. Thus, the only unknown parameter is wi.

I1f we write the equation (107) in state variable form, where we further

assume wi is also a solution of a differential equation we get
. r < [ -
9 0 1 0 9y
d 1) 2 1)
dt 94 It 0 0 9
| wf > o 0 w?
e . - pw e p-
0 [b 0 1
wl
+ 1| £, +)o; 0 (108)
Y2
0 0 Ty |
-

where in Eq. (108) the white nolse terms w, and w, represent the uncertainty
in the problem. Wy is the vibration noise that is exciting the structure and v,
is used to change the rate of convergence of the estimator (0l and o, are the

standard deviations of these noises and is assumed known).
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In Eq. (108), since wi is a state (the 3rd component of the state vector),
the equation is nonlinear. To linearize Eq. (108) and estimate the coefficient
wi, an approximate nonlinear filter described in Ref. 19 is used. This filter,
closely related to the extended Kalmen filter used in inertial navigators uses
terms up to second order in the Taylor series linearization of Eq. (108). The
filter uses as a measurement the standard phase lock loop measurement (as in Eq.
(103)) thus

yf(t) = cos Wt yj(t) (109)
where
wy is the estimate of the mode frequency
yj(t) is the measurement at the physical degree of freedom
on the actual structure labeled xj and is given by
t) = I .

yy(£) 2 059 94(0)

Since f

1 vas adjusted to give unity mode motion, ¢ji will be the actual
amplitude at the frequenfy wy contained in the measurement yj(t). This means
that once the frequency wy is at the modal frequency Wys the output of the phase
loop will be ¢ji’ the mode influence matrix. Thus if a full set of m modes are
desired, altogether m measurements with m loops at each measurement point are
required (a total of m2 phase lock loops connected through a single filter) as

shown in Fig. 32.

The resulting nonlinear filc-er is given by

(a, ] [ o 1 o] [a]
a ay
d . ~ %2 .
dt 4| = wg o 0 9y
~2 ~2
w 0 0 0 w
i i
L L I
0
A - ~ A “".‘
+ P,, + K{coswit yj(t) coswit¢jiqi} (118)
0
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where P23 is the 2,3 element of the estimation error covariance matrix P and

K 1s the "optimal gain'" given by

-~

Coswit
K=P [ —5 0 0] (111)
(o} .
n
~2
0 1 0 [0 -y 07
P - -fui 0 olp+rp 1 o 0
0 0 o Lo o 0|
0 0 0 F S8 Yt o 0
2
[e)
n
+ 0 oi 0 | -P 0 0 ol r
0 o og_] L o 0 0 (112)

where di is the variance of the measurement noise on the sensor that iz measuring

the physical motion yj(t).

A single mode system (m = 1 in Eq. (106)) was simulated to determine the
operation of the optimal loop filter. The result of estimating the loop frequency
1s shown in Fig. 33. One of the unique characteristics of this system is the time
varying dynamics of the loop filter. As a function of time, the loop filter tends

to start out with a high bandwidth which gradually gets smaller as the loop fre-
2

quency estimate gets better. In the absence of a noise on the coefficient wy

(i.e., when o, = 0) the loop filter bandwidth goes to zero in steady state.

Thus the paraieter 0, can be used to adjust the steady state filter bandwidth.
In practical application each filter will have a variable bandwidth and
will have multiple notches (at the frequency of the modes not being estimated).
Furthermore, the actual loop frequency, once estimated, will not be changed
unless there is some reason to believe the estimates are incorrect, We are
currently building a large simulation code that will estimate multiple modes to

test the method on a relatively large problem.
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6. STRUCTURAL DAMPING IN FINITE ELEMENT MODELING

The finite element model 1s an approximation to the underlying partial
differential equation of the structure it models. As such the full order
finite element model is the only vehicle available for verifying the stability and
performance of the control system design. Since the low order design model
usually has sowe dam;:‘ng assumed, there actually is a measure of stability imposed
on the full order design. This stability is a consequence of the way the damping
is introduced, and as such it is important that the control designer understand this

modeling.

In order to preserve the mode transformation developed where the damping is
assumed zero, the damping matrix that is used to model the damping on the structural
degrees of freedom is assumed to be (Ref. 20)

m

C=M I a oot (17?)
i=1

where
C is the damping matrix (see Eq. (3) in Section III-1)
M 1is the mass matrix
K 1is the stiffness matrix
a; are coefficients which are determined by the amount of damping
desired on the various modes

m is the number of modes in the reiduced order model

Using the notation of SectionII-3 the diagonalizaticn of the matrix c

uses the same transformation that diagonalized K and M. Thus if

g = o'L'x

where
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then

ol e Ty -
m T, - -1 -1,. =T
5 aioL]'M(M 0 ... @)L -
1-1 \ il
i terms
n T,-1,, -T T,-1, ~T
) a,(¢°L "KL ®) .0 (O°L KL "9) =
i
i=1
m i
) a, (92) =
i=1
[ 2 4 2
m
Ulwl + azmz + .0 HOW 0 0
4 2m
0 ulwz +02w2 + ... +amw
. 0 0

0...(!

2 2 L2
w a0 F oLt e 5(114)

Thus, the transformation @TLT didgonalizes M aud K and therefore also C. To

determine Ggs Qs see s Oy the levels of damping in each mode is determined

(i.e., the terms 51 i=1, ... , m)

Then the equations

are solved for o,, ... , 0 .
1 m

(2 4 2o,
wl 1 LI wl 1
LN ] d’z =
2 4 2m
w W ta w [+
m m m m
s+ o Nuwt J
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i=1,

2w“§qu

2, o006 9 m (115)

This set of equations may be written as

(116)



and hence

r 4 2w1€1 |
: -y! :
am zwmgm .

where V is the vandemonde matrix of Eq. (116).

Notice that there is now an implicit damping for all of the higher frequency
modzs, m + 1 to n. These damping coefficients grow with frequency. Since
the same transformation applies to the full nth order system, the damping of the
higher frequency modes is also given by Zy. (115) where i = mtl, ..., n.
Obviously as the frequencies w get larger, 61 <+ « yhich means that these
higher frequencies are no longer going to be oscillatory. Thus, 1if this model
is used to verify stability of the control design, an unrealistic damping is
actually being used on the modes which are expected to be problems.
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IV. SIMPLIFTED DESIGN EXAMPLES

The two mass system of Fig. 26 will be used here to describe the linear
discrete time optimal control techniques that were used to develop the control for
the OCDA in Section I. This example has most of the features that were needed
for the understanding of the larger problem, but it is sufficiently simple
that all of the matrices etc., may be written explicitly.

The problem is to control the two miss system using the force fl only.

Thus, the "finite element'" model is

1

100 0 b4 1780 -1780 Xy f1
+ (117)

0 343.8 %, -1780 6194ﬂ6 xz-l 0

STEP 1: COMMAND INPUT

Let us assume that the desired response of Eq. (117) is such that the position

of the dominant generalized coordinates follows the profile shown below

xD(t)

1 o ot g

-t/
xD(t) = l-e

h--T

>, T = .333 sec

1 sec
where xD(t) denotes the desired position of both X, and Xpe Clearly, with
only one force alplied to mass 1, the positions of masses one and two cannot both

be increased from their initial values by 1 unit since, in steady state, if

X, = 1 and lfl% = 11780 -1780
lo | | -1780 4194.4
1780 1780

from Eq. (117) gives Xy = 7194.% and fl = 1780 (1 - AI§ZTZTO. The procedure we
described in Section III solves for Xy and X, using a weighted least squares
approach so that Xy and X, are both moved approximately the desired one unit.
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The motion xD(t) is imparted to the dominant mode, that is, from Eq. (117)

4, = - 5q, + .06 £ (118)
and since
x= L-TE - L—TOT q =
r
0.1 0 0.6 0.8 2.06 0.08
q = 9
0 0.054{ 0.8 =0.6 0432 -~.0324

which gives
X = 0.06q1 and X, = .0324 q

If ql(t) maxD(t), then Eq. (118) gives

-t/T -t/T
£,(t) = -4 e Dy saa-e DBy of.06
"D
-t/T -t/t
- s5-+dye D= (s1e D as.06 (119)
. TD

now the amplitude a of the command X, can be determined by solving for a such
that X and X, are as close to 1 (in steady state) as possible. Thus we

want to solve

[0.06  .0324] ?—36— =[1 1] (120)

which can only be solved in the least squares sense (this is two equations in one

unknown) to give (following Section III-4)

50 k e
2% . 10.06 0.0324] {1
-06 ['1]/.06)2 + (.0324)2

.06 + ,0324
= 0046 = 19,872

Sooa= ,238 (121)
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Therefore, the desired motion is

-t/TD
XD(t) = ,238 (l-e )

which may be modeled as the differential equations

kp = - Vtp xp + -‘-f—g—a—
= -3xp+e (122a)
s =0 (122b)
with
8(o) = .714
xD(o)w 0

STEP 2: CONTROL AND COMMAND MODEL IN STATE VARIABLE FORM

The combined slew and reduced order model in state variable form can be

written in terms of an augmented state variable p defined as

(q; ] 0 1 0 0N [ 0
c'11 -5 0 0 O .06
p = so that § = p+ f1 (123)
x 0 0 -3 1 0
(o]
0 o0 0
gé . L 0 o L OA
where
[ q,(0)] [6 x,(0) + 14.81 x,(0)]
p(0) = | 4,0 | = 6 %,(0) + 14.81 %,(0)
xo(O) 0
L S(O) - L -714 J

The initial condition on p is obtained from the fact that ¢ = oTLT X,
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STEP 3: PERFORMANCE INDEX

The optimal control is required to minimize the difference between the actual
response xl(t). xz(t) and the desired respouse X (t) and X, (¢). Thus, let
D

us assume that we want to minimize D

« 2 2
J= 0 Uxg(0) = x (€3] 48 [0 = x, (D] + £ 20} e (126)
o D D

The reason this performance measure is over an infinite time interval 1is that
a constant gain system is desired. The only parameters in J are q and r since
any multiplier on the first term can be factored out of J (q and r are used to
adjust the relative match of Xy and Xy with X, and X, and to adjust the maximum
force applied). Since X3 and x, as well as xlD and x, are modeled by the order
reduction as functions of 4y él and Xpy» the pgrformance measure Eq. (124) may

be written in terms of p as follows

The vector rxl ] can be written in terms of p using Eq. (118) as
)
X
1D
X
2
. “DJ
o r -
] [0 0 0 o [ q;
Xy ) .0324 0 O 0 q,
X, 0 0 .06 0 X5
D !
X, 0 0 .03240/( :8 |
e DJ - o — J
But the integrand in Eq. (124) is
T
- - -
rxl Fl 0 1 0 rxl n
X 0 gq 0 =-q x
2 2 +rff
x1 -1 0 1 0 Xy
D D
X 0 -q 0 gq X
2 2
A D-J - o D.J
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Hence, in terms of the reduced state vector p, J becomes

)

Cy
[}
0 -8
Lo
[

T

.06

.0324

+ rf

.06 .0324 0 O
0 0 0 o
0 .06 .0324
0 0 0 o
0 o0 7
0 9
V] 0 0 9,
0 .06 0 %y
0 .03240 S
[~
(. 06) 244, 0324) q
- 06) 2_¢. 0324) q
-
2
2 dt

rl o -1 0

0 q 0 -q
-1 0 1 o0

J

0

o

[ 0 -q 0 gq

2
+ rfl dt
-(.06)2-(.0324)%, o0~
0
.09)%+(.0324)% 0
0 0-
(125)

This performance measure, when applied to the reduced order system described

in Eq. (118) will cause the control system to be structured as shown in the

block diagram on the following page, where Kl’ KZ’ K3, Kb are the gains that

are derived to make f, = K p via the optimal control derivation.
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4 SYSTEM
9 | TRANSFORM
{ K, }—=— T0MODAL
911 CORD.
STEP 4: OPTIMAL CONTROL
The steady state optimal control comes from the Riccatti equation
. r P - r T r' -'
p=o0= {11712 P13 Py 0 1 0 0O =5 0 0
=5 0 N 1 0 P
60 o0 -3 0 o -3 o0
p., P P, P 0o 0 0 o0 0 1 0
14 24 T34 “4as4
! JL JL ]
Y
b*—-—v—}
r(.06)‘2+(.032a)2q 0 -y O
0 0 0 0
+ -y 0 y O
0 0 0 0
L J
0 (.06
- P Y P (12‘5)
0 0
Lo 0 0
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K;

or | n
(-10p, ,+v-6p, ,°)
P127Y"FPy2 ' ' y
2 symmetric
(=3P22%P1 1P 2Pp) (2p17=Bp),") : -
2
(=5Pp373P137Y=8P13P23) (Py3=3P53-8py)Py3) | (~6P45+v=Bp,,°) .
2
(=5P24*P 38R 9P30)  Puy*Py3BPaPy, | (=3P ¥P3yBPy3P,,) (2p4,4P, ) ]

where y = (.06)2 + (-0348)2q

2
and g = LQQ_

This matrix has been partitioned into four 2 x 2 blocks so that the point
can be madt that the optimal control feedback gains are independent of the feed
forward gains. This is obvious in Eq. (127) because the 2 x 2 block in the upper
left depends only on Pi1° P12» and Pogs i.e., this ktlock may be determined
independent of the other blocks. Since the feedback gains are given by
K =- 5 1pT
to ke upper laft most 2 x 2 block of P_, the gain also only depends on the
elsnents Pyas Ppg» and p,,. Solving Eq. (127) gives the upper 2 x 2 block and
the feedback gains as:

2 2
- 22 (1 - /{;(.OGZ/Sr) [.06 + .03482q] )

P
127 7,7
—_—
G T =5 //;+ ( 062/5r)2 [.062 + .03482%q]
Py2 .06 » Pyp e : : q

the control gains are

2 2 2
[.06% + .0348 q]) = 5/.06(1-4)

2(-K ) [
10(&1) /.06

R, = 5/.06 (1 - //; + (.062/51)
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Since the mode we have retained is the differential equation

ql -»“Sq1 ™ .06f1
and since fl = K1 9 + Kzﬁj. the closed loop dynamics are given by
or

4, + /10(a-1) q, + 58 q; = 0

Hence the new undamped natural frequency and damping of this mode becomes

w = v 5A
and
te V2 /21
2 A
Since

2

A = //'1 + (.06%/5r) [.06° + .0348%q) ,

the mcde is damped to .707 whea q is large relative to r2, i.e., whenever the
control saturation is not important. On the other hand, as r2 gets large

(less and less control authority is permitted relative to q, the mode 1is less
dampled and in the limit no control at all is exercised. Note that as A - o,
the closed loop undauped natural frequency (w) increases as the damping gets
closer to .707 which is exactly the problem with the order reduction as it was
per formed because when A = 5, the mode retained (ql) crosses in frequency with

the discarded mode (q2) whose frequency was 25 rad/sec.

To make these points clear, a root locus plot is shown in Fig. 34 that

shows the closed loop pole locations of the design as q and r are varied.

The feed forward gains which determine the optimum response to the command
such that %y and X, are as close to 1 in the least squares sense are given by

Ky = -.06/r Pyq and K, = ~-.06/r Py, From Eq. (127) P,4 and P,, are given by:
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il 4

P23 © T+ 8 Gp,, ¥ Pyg)

=Y (sz 2+3)

P24 " o, #5) (14t (3p,,%p; )

The reuslt of combining the command generator whose block diagram is given by

Ky = =

YB/ .06

3 14 + 8 (3P22 + Plz)

wls

o
b4
w

STEP OF AMPLITUDE o,

‘ xD
e COMMAN)

with the feed forward control gains which give a force equal to K

1s the following block diagram

onje

L e P
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Hence, the transfer function from s to fD is given by

ks
£ @) - 52.. e . K, 5+ (Kq/K, +3))
- 8 S+3 4 S + 3

The last point that must be made is that in implementing the feadback control
derived above, the measurements will be on X and Xg» hence since the feedback

force is given by

fl = K 91 - [Kl Kzl q (128)

4 q,

but since q = 6x1 + 14.83 X, the implementation of this rontrol seems to require
four measurements (xl, il, Xp» and ﬁ?). Actually, the measurements need only

be % and il as in Eq. (49).
Via a series of simple block diagram manipulations, the above closed loop

system becomes

ol 0.01(52+122) e
(s2 + 6)(s2 + 26)

'4»

18,7 (KpS + Ky) [
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which has a closed loop root locus that is always stable so that, for this

problem, no additional stabilization need be done and the problem may be

considered complete,

ACTUAL
OPERATING
CONDITIONS

-2.2]
-3.‘5i

STEP 5: DIGITAL CONTROL

The state variable model Eq.

x(t) = o(t-t ) 2_(((:0) +

if t = (x+l)At and to =

= ¢(At +
X1 = 0000 x

(123) is used to derive a discrete model.

t
S o(t-1) b fl(r) dr

t
o

kAt, then from Eq. (35) the discrete system becomes:

At
J o(x) dx b £, (kat)
Q
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where

o(At) = [ cosv5at 1/V5 sin/5at 0 0 1
-v/5 sin At cosvBAt 0 0
0 0 =30t 1-¢~ 348
3
_ 0 0 0 1
and
At
/ o(x)dxb = .012(1-cos V5at)
° .027( sin /54t)
0
0 J
If the sample time At is 1 sec., then
[ -.617 . 352 0 ) r.0197)
-1.76 ~.617 0 .021
icld‘l = ’_‘k +
0 0497 1,317
0 0 1
L. o

This model is used with the discretized performance index te design the

cptimal digital control.
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V. CONCLUSIONS AND RECOMMENDATIONS

This report represents one step on a relatively long road that will provide
the technology for designing control systems for large space structures. This
technology is of extreme importance for without it, the schemes, ideas and dreams
for a large number of space missions will never reach fruition. The work here
has demonstrated that control systems may be designed that provide structural and
attitude control when the control specifications are not severe. It has also been
shown that many of the technology items: structural modeling, modeling of damping,
determination of the structural dynamics in orbit, slew command and control
spillover, all have an effect on the conirol solution. One of the significant
contributions of this effort is the realization that a control system should
exploit the ability to "play" one disturbance off against another. This synoptic
design approach can pay very great dividends in the use of actuator fuel and
per formance. Also a synoptic design is best developed using linear optimal
control techniques because of the natural incorporation of disturbances, dynamics
of the structures, rigid body torques and command generator dynamics in the design
model. If there is one feature that we believe is important in this work it is
that the linear optimal control design philosophy has been used throughout the
work. The design incorporates the concepts of stability margin, phase margin and
in general the robustness properties that are usually considered 'classical

but using the terminology and theory of linear optimal control.

Many of the steps taken here are tentative. In particular the "on orbit
dynamics test" procedure must be developed so that multiple mode frequencies
may be estimated. The order reduction in the weak sense should be attempted on
a large problem to demonstrate its effectiveness. Finally, the whole question of
Kalman filter sensitivity vs. the gain margin achieved by the introduction of

an observer must be resolved.

In the course of this effort, three technical papers were presented.

These papers are Refs. 9, 21, and 22,

¢ VAt
A :'!-::;:L,L\(). &LN‘&’

peas, 0S_mizn
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APPENDIX A

INTRODUCTION OF GRAVITY-GRADIENT AND
ROTATION TERMS INTO STRUCTURAL MODELS

As indicated in Figure A-1l, the analyzed satellite is represented by a
number of lump masses. A typical mass my » has a moment-of-inertia matrix
x(i). Point 0 is the location of the cm of the

a~

[11] in the local body axes
satellite, assuming that it traveled in the nominal orbit. This orbit is
specified by the user. The user also specifies the initial position of the ?
axes and their constant angular velocity {Q}. These axes rotate at the nominal
angular velocity of the sateliite (e.g., the orbital rate for earth-pointing
satellites) so that motions of the satellite relative to the Z axes are small.

{ai} is the undeformed location of m, in the Z axes, and {vi} and {wi} are the

i
translational and rotational deformation, respectively, of m, as observed in

(1)

the Z axes. In the undeformed system, all of the jx axes are parallel to the

Z axes.

The equations of motion are
[m]{%t} + [k}{x} = {f} + {fg} - {g} , (A-1)

where [m] is the system mass matrix,

[m] = " ’ (A-2)

—

where [|3] is the 3 x 3 identity matrix. In Eq. (1), [k] is the system

stiffness matrix, {x} is the deformation vector,

*
The tilde under a symbol is used to designate a nonscalar quantity such as
a vector, a matrix, or a set of Euler angles. ‘
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{x) = ( : > , (A-3)

{f} contains the forces and torques on the system other than the gravity-gradient
and stiffness loads,

£

1=

0 - | -

N,
¢ pmlie oo 2 o

=3

\. End

(fg} contains the gravity-gradient forves aud torques,

{fg} = 4 . > ’ (A-5)

and {g} contains the mass times acceleration terms attributable to rotation.

(?1\

{g} = (v (A-6)
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The gravity forces in Eq. (A-5) are expressed in the Z axes and are

80 T
{F81] --m E; ({pil- 3({eo) (pi))(eol), (A-7)

where g, is the acceleration of gravity at point O, and (pi} is the location of

my in the Z axce; 1i.e.,
(pg} = (v} + {a) (A-8)
The gravity torques in Eq. (A-5) are expressed in the gi axes and are
8, ' '
{T813 =3 i; [F(ei))[li]{ei) (A-9)
where [I'( )] 18 the cross-product function defined in Appendix B, and

feg} = (L14] = [P Me D (A-10)

The components in Eq. (A-~6) that modify the force equations are expressed in the

% axes and are
(g,) = m, Q@)+ r@71%p ) (a-11)

while the components in Eq. (A ) that modify the torque equations are expressed
in the x(i)

axes and are
{(h;} = [Iil[r(n)](wi} + [P(mi)][Ii]{wi} {A-12)
where {wi} is the angular velocity of m in the 3(1) axes; i.e.,

lwg} =(9, 3 + ([i3]-[r(wi)1{n} . (A-13)

Reduction to Modal Form

The modal matrix is arranged as follows:
f
(61 = [¢° oF 071, (A-14)

where f[¢f] contains the flexible wrodes, [¢t] contains the rigid-body translation

modes, viz,



Kok,

L |

[45) -

L -3 ]

(A-15)

where 03 is the 3 x 3 zero matrix. [@r] containe the rigid-body rotation modes,

vig,

[67)=

With

' {x} = [¢]{€}

Ll

the equations of motion in modal form are

MI{E} + [Cl{E) + [KI{E} = {=)

[M] 1s the modal-mass matrix,

M) = (61 [m]{0] =

(A-16)

(A-17)

(A-18)

(A-19)



where the ui'e are the modal masses corresponding to the r flexible modes that
are used,

)T

ui - {Qi [m](Oi} H i=1, .c. , r, (A-20)

m is the total system mass,

m= } m, (1-21)
and [I) is the total moment of inertia of the undeformed vehicle about its cm

relative tc the Z axes

(1] = 2 (L] - m,[T(ap1?) .

(A-22)

[K] is the modal-stiffness matrix

K
T 2.

(K] = [¢] [k][¢]= . R {A-23)

K

r

L % ]
where
K, = w 2

1-HMY% 0 1=l ..., x (A-24)

h

with Wy equal to the :I.t flexible frequency. [C] is a modal damping matrix that

has been added to the formulation at this step:

c
[c1= |~ . (A-25)

%

{z} 1s the equivalent modal force which contains the coriolis and centrifugal

reverse-acceleration forces -{g} as well as the physical forces {f} + {fg} ; viz,
(=} = (017 (LEL + {£) - (g]) (A-26)

Motion of Rigid-Body Axes

The modal-displacement vector is partitioned as follows:




s

N

t &

©

(g} = ~ (A-27)

¥ -

where {€}, {p), and {y) are the flexible, rigid-body translation, and rigid-body
rotation coordinates. It can be shown that {p} locates the em of the satellite
and satisfies the relations

m{p} = XNi{pi} = Imy {vi} = [¢t]‘[m](x] (A-28)

As indicated in Figure A-2 , {p} locates the origin of a set of axes known as
the rigid-body (or mean) axes of the satellite, denoted as the x axes, {y}
orients these axes relative to the z axes., For a given deformea shape of the
satellite {x},{y} may be defined byﬂthe relation
T
[T1y} = [¢") [m){x) (A-29)

The total motion may be decomposed as follows:

(x} = [4F1EY + D)} + 651y (A-30)
where
[¢f](ﬁ} is the flexible motion relative to the rigid-body axes
[¢t]{p) is the translation of the rigid-body axes
[¢" 1y} is the rotation of the rigid-body axes

The components of Eq. (A-30) are
(v} = [4{51E + (p) = [Ta)](y) (a-31)
() = LofTHEY + () (A-32)

where [¢£t] is the partition of [¢ﬁ] corresponding to the translation of m,
and [¢£r] is the partition of (¢f] corresponding to the rotation of m . The
flexible contributions 1. Eq. (A-31) and Eq. (A-32) are called {ui} and (01};

inei.
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Fausatiaoh

ft,, =z

(my} =[¢; J(E} (A-33)
fri,<s

(0, =[¢," HE) (A-34)

{vi}. {wi}. {p}, {v}, {ui}. and {ei} are expres?ed in the ? axes. Figure A-2 shows
the components of the motion in vector form. 31 (which locates the undeformed

position of m, as seen by an observer fixed in the x axes) is the vector 31

rotated through the angle ?.

The last six equations of the set Eq. (A~18) are the overall equations of
motion for the system, i.e., the equations for {p} and {y}. The first three of

these equations are

m(B) = I(£,) + (F,) -20(r@1(3) - m(r(a)1%(p) (A-35)

where {Fg} is the gravity-gradient contribution to the total load; i.e.,

{Fr }=- Eg (p} - 3 ({e } D {e ) (A-36)
g2 =~ ™" R P €’ P €

The last three euqtions of Eq. (A-18) are

(1Y) = (T} + (T} = 3 (2n,[T(a) )T (@]5,)
+my [r@r@ 1%} + 1,11 @ 1, )

+ [F(wi)][Iil{mi}) (A~37)

where {TR} is the resultant torque of all of the external loads, other than

gravity loads, about the cm that the system would experience if it were rigid,
]

and {Tg} is the contribution to the equation attributable to gravity, i.e.,

T
"1 o (4T (A-38)
{Tg} (¢ ] {fg}

Total Gravity-Gradient Torque on Satellite

v
{Tg} is an approximation to the total gravity-gradient torque on the satellite;
however, it does not include certain effects attributable to vibration. The
total gravity torque can be obtained more accurately from the following equation.

This torque is expressed in the rigid-body, or X, coordinate system,

A-9



{Tg} = ([ 4] - [T(MD Z[P(ri)](ng}+E ([|]+(F(91)l){T81} (A-39)

where

{ri} = {pi} - {p} (A-40)

{91} = {y,} - (v} (A-41)

Gravity Constants

For reference, note that

KE RE2

8, = —3 = —3 & (A-42)
R R
o o

where KE is the earth's gravitational constant, RE is the earth's radius, and Bp

is the acceleration of gravity at the earth's surface. Equation (A-42) is useful

for calculating 8, and KE.

Particularization to Nominal Circular Orbit

For a circular orbit

g = w 2 R (A-43)

The components of {eo}, the unit vector along the local vertical in the Z axes,
are needed for use in several of the equations. In the A axes s-own in Figure

A-3, {e _}is called {e_ } where
o CH

0
feo} = cos(wo t + 8) (A~44)
sin(wo t + §8)

Then, {eo} in the Z axes is

le,} = [T(@)](n(8) e ) (4-45)
> A

A-10
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where [7(8)] is the coordinate thransformation defined in Appendix B for the
(<]
Euler angles 8 = (81. 82, 83) orienting the Z axes relative to the A axes,

o=Q¢t . (A-l‘6)

(]
{9} is given in the Z axes as

{e} = 2 {n}, (A-47)

-]
and [T(c)] is the transformation from the Z axes to the Z axes due to a

rotation o about an axis, along {Q}, fixed in space; viz,

1-2(1—n12) ingn, + 8ng inyng = 8N,
(T(@)] = ingn, = sn, l-ﬂ(l-nzz) inyng + sny (a-48)
inyng + sn, inyng = 8Ny l-ﬂ(l-n:,z)
where
s 28ino, ¢c 2cos o0, & E1-c (A-49)

A-12
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APPENDIX B
DEFINITIONS OF MATRIX FUNCTIONS

Cross=product matrix:

T
! For any vector x [xl X, x3] .

| 0 -—x3 x2
j ; r1= | xy 0 -x (B-1)
-x2 x1 0

Euler-angle coordinate transformation:

For any set of ordered rotations y = (yl, Yoo y3) about axes 1, 2, and 3,

1 0 0]
[Ay)] = 0 cosy, sinyl (B-2)
i .0 -sinyl cosy,
; cosy, 0 —sinyzﬂ
[B(v)] = 0 0 (B-3)
| siny2 0 cosy,
cosy, sim(3 0
[C(v)] = -siny,  cosy, 0 (B-4)
0 0 1

The total transformation is

[r(] = [C(MIIB(Y)1[A(Y)] (B-5)
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