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1. INTRODUCTION
Combined dissipative effects of viscosity, thermal conduction, and
mass diffusion play fundamental roles in the propagation of disturbanc2s
within mixtures of gases. In many practical applications the behavior

of weak disturbances is of primary concern. Whereas the acoustic, or

linear, limit leads' to great mathematical simplications, there are situ-
i ations in which nonlinear cumulative effects cannot be ignored. In this
: paper we wish to descril:~ the interaction of nonlinear and the alove-
mentioned dissipative mechanisms as they pertain to the evol ition of
weak plane waves in inert binary mixtures. This is done hy means of the
classical piston problem.

Some of the basics of acoustics for binary mixtures, cspecially

with regards to sound absorption, were set forth by Kohler (1949). The

i propagation of spherical acoustic disturbances in binary mixtures, with
thermal diffusion ignored, was studied by Rasmussen and Frair (1976).
For binary mixtures, the study of nonlinear behavior appears to be lim-
ited to steady-state shock waves. Dyakov (1954) studied weak shocks and

Sherman (1960) studied both weak and strong shocks. On the other hand,

for pure gases, when mass diffusion does not play a role, combined non- \

linear and dissipative effects on the evolution of finite disturbances .
have been the subject of investigation for some time. The classic early

work is that of Lighthill (1956), and a summary of other related work

T T T

dealing witn Burgers' equation is given by Benton and Platzmann (1972).

A more recent work is that of Halabisky and Sirovich (1973). Also, for

i . pure gases, Shidlovsky (1975, 1977) has investigated the evolution of >
shock waves and other regions of nonuniformity by means of boundarv-

layer singular-perturbation method:.
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General model equations have been proposed by Blythe (1969) ard
Ockendon and Spence (1969) for the evolution of waves in relaxing gases.
The thrust of their work was toward inviscid flows, but their models
could also deal with the viscous-type relaxation under consideration in
the present work.

In this investigation, we describe how weak, one-dimensional distur-
bances in binary inert mixtures evolve with time. In particular, we pro-
ceed from the basic linear theory and then illustrate how the smallest
nonlinear terms modify the evolutionary description. For the piston
problem, the wave front is shown to be governed by Burgers' c<quation.

The contributions of the binary-mixture diffusion mechanisms enter as an

additive term in an effective diffusivity that is a combination of the

Schmidt number and pressure and thermal diffusion coefficients. Besides
the mass average velocity perturbation, results are obtained for the spe-

cies mass-fraction perturbation, which is pertinent to binary mix‘ures.
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2. BASIC EQUATIONS
The equations of motion for mass, species, momentum, and energy for

an inert binary mixture are (with body forces neglected)

22 i -’=
pe T P divyV 0 (1)
p g% = - div I (2)
DV >
—_—= - d + di T
P —en grad p iv (3)
Dh Dp > > e
—_— = + . - 4
P = bt T ¢ E div q (4)

-’
where p, p, h, and V are the density, pressure, specific enthalpv, and
velocity of the mixture. The mass fractions of the two inert species of

the binary mixture are denoted by c,=c and c, = 1l - ¢. 'The rate of

“+> “> .
strain tensor, €, and viscous stress tensor, T, are given by

— 1 =»: >
€ = 5 grad V + (grad v)t (5)
“+> “+—> ‘-PH
T = 2Ue + A(div V) I (6)
where § and A are the first and second coefficients of viscosity. The
-+ . ")
heat-flux vector, q, and binary diffusion-flux vector, i, are determined
by means of kinetic theory (Hirschfelder et al., 1954) or principles ot
continuum mechanics (Landau and Lifshitz, 1959):

ad o _ >
q= k grad T + h2 h1 + Mlszl 1 (7)

->

i=- leZ [grad c + kp grad (ln p) + kT grad (1ln T)] (8)




Here k is the thermal conductivity, D12 is the binary diffusion coeffi-

cient, and M12 is given by

M, = ii (Rl - Rz) (9)

where T is the temperature, Rl and Rz are the specific gas constants for

species 1 and 2, and kp and k., are the pressure-diffusion and thermal-

diffusion cuefficients, given by

i (Rl - Rz)l(nl - R2)c + RZJC(l - c)
p - R|R,

(10)

kT = ac(l - ¢) (11)

The thermal diffusion factor a is usually positive when c,=¢c refers to

the heavier molecular species, but may be slightly negative for excep-

tional gas pairs. For Maxwellian interaction potentials, a vanishes.
The set of equations becomes complete with the additicn of thermal

and caloric equations of state. For a mixture of thermally perfect gases,

we have

_ DTI(RI - RZ)C + Rz] . h=(n - hz)c +h, (12)




3. LINEARIZED EQUATIONS
Consider a uniform ambient state denoted by the subscript naught.

We consider perturbations about this state and write

p=p(L+p) . p=p (1+0) ., T=m (147

(13)
<>
c=c +c' , V' =vV/a
o 3
o
where a, denotes the frozen speed of sound in the ambient state,
o
"y y-1. (R Reg+ R -
£ = YPo/Py v Y ~ /cC -C c +C !
o P P o P
1 2 2
o o o
and where C and C are the ambient-state constant-pressure specific

P P2
o . . . .
heats of specges 1l and"2. Further, we introduce a nondimensional time,

St +>
T, and position vector, r, as

RY

e

<?

™
(2]

-2 - >
T = af t/vo y L = &
o o

2]
o}

>
such that V = 9/9r (the barred space variables are dimensional). Charac-

teristic Prandtl and Schmidt numbers are defined as

P = v< /k S =V
g =RV po/ i 7 S Vo/Dlzo (16)
where
4
v (2u0 + A )70, = (3 Moot )/p0 '

(17)

c = [c - C c_ +C .

Po ( P1o l’;eo) © Py




and Ko is the bulk modulus of viscosity in the ambient medium.

W row consider flows that are irrotational (such as occur with
planar, cylindrical, or spherical symmetry) and introduce a velocity
potential such that 3' = V$. The linearized momentum equation can thus

be integrated once, and the governing lineer.zed system of equations

becomes
'
9;— +9% =0 |, Dsc' =k Vp'+ Ky v’ (18)
1 Py o
2 )
p' = Y[v ¢ - 5% oo =p' v 4N’ (19)
MokT Pr
!
o’ = X=Llp &, o |yt x v¥p! 4k Vi (20)
P Y r 91 S y T
c o o
where
y -1 EEL
z c 7T =1 —= )
MO Mlzo/ o ]0 Y X (?l)
() Po
R, - R
- 1 2
Nn = ]Rl o Rz)c +‘i; ked)
O
i d ? -p 9 _ g2
Ds ¢ ot v e Uy &R ot v 25

The above equations can be manipulated so that the following single

seventh-order equation for ¢ is obtained:

6 4(,.,2 -
+ D+ v -
y(] Nokpo) Y Py \Y l ¢ a¢11

2 2 o2, i
+V l81¢[T - B,V ¢|T ' irbc!V o ¢”|TT 0 (24)
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where

a = pr(l - "ok'ro) + y(l + sc) + wokpo + Ypr(kpo + kTo)(NO + MokTo)

+

"
=}]
n

- +
81 Pr Y (1 Nokn’

2

A ) (25)

e 2
82 = sc + Pr(l + Mok,ro) .

When kT = 0, the above linear equations reduce to those of Pasmussen
o

and Frair (1976) who studied spherical waves by means of these equations.

The solution of the linearized equations for a one-dimensional pis-
ton moving into an ambient medium requires three boundary conditions at
the piston surface: (1) the mass mean velocity, ¢x' is equal to the pis-
ton velocity, (2) the diffusion-flux ncrmal to the piston vonishes,
T.h= 0, and (3) cither the temperaturc or the normal heat flux, é o oy
is specified. The solution is obtained analogously to the spherical ex-
plosion problem of Rasmussen and Frair (1976). The solution can b
written as a part that describes a diffused wave front and two coupled
parts that describe heat and mass-ditfusion boundary layers adjacent to
tlie piston tace. The heat and mass-diffusion boundary layers spread ftrom
the piston face as the square root of time whereas the position of the
bulk wave front travels like the time itself. When we fix our attention
on the wave front for large times, therefore, we can ignore the boundary
layers since they are greatly outdistanced by the wave front. The asymp-
totic long-time wave behavior can be obteined by Laplace-transform tech-
niques (Rasmussen 1975). For the velocity and mass-fraction perturbation

we have for the impulsive motion of a piston, where ¢ (x 0, t =0)
%

U /<
p/‘fu'




U 2
viix,T) 1_P |erfe bix = 1) + e4b Xerfc bix + 1) (26)
E afo T VT
4] lyk + (y - 1)k ] 2 _ 2
¢! (x,T) v 2L B2 = To] _bx exp { - 9_i§7?_1l_ (27)
fo c 4T3
where
1
B, - B ) 2
1 2
= e 28
b = 2( — (28)
rec /

The above results show that the wave front is centered at x = T and

spreads out with time. The peak of the mass-fraction perturbation at

Y

x = T dies out like T ® and thus ultimately vanishes. If we define the
u

thickness of the wave front as § = (ZEL) /]Bv'/3§| < ve obtain for large
fo .

times

a_ 8
Vo b

Thus the wave front in the linear theory spreads out like the square-
root of time. It is known, however, that a constant piston speed should
generate a steady-state shock front. The continual spreading of the wave
front and the dying out of the mass-fraction perturbation are incorrect

behaviors that arise out of the omission of the convective nonlinearities.




4. NONLINEAR INTERACTION

In order to delineate the balance between the dissipative transport

terms and the nonlinear terms, let us first renormalize the variables ap-

pearing in (24). We introduce a characteristic length L and define non-

dimensional time and distance as

= ¥/L = er . (30)

where the parameter € = V)o/af L is to be regarded as small. We note that
V = ¢V. 1In the new variables, nth-order terms are proportional to £,

and we can rewrite (24) and display the lowest two orders as

~2 € s2[a 52, 2
IV ¢ - ¢%fl~~ =% s v BZV (o} Bl ff]~ + 0(6 ) (31)
TT rae¢ T

Thus as the viscous (transport) effects go to zero, the classical wave
operator prevails, and the first-order correction for small € arises be-
cause of the next higher-order derivatives. The terms of order g2 in
(31) correspond to the seventh- and six-order derivatives in (24).
Equation (31) does not account for the nonlinearities in the prob-
lem. We account for the lower-order nonlinearities by replacing the per-

turbation quantities in (13) by p' = Eﬁ, and so on for the other primed

variables, and utilizing the normalizations (30). The full nonlinear

equations then lead to the following equation for the perturbation po-

tential:

[\72¢» - ¢~~] =€ b—vz [82\72¢ - Blcbﬁ]“
Y C T
(32)
e o - vedPe + & (56)2] |+ ofe?
Tt



In Equation (32) the second-degree nonlinear terms appear to order €, as
shown, and the third and higher degree nonlinearities appear to order 52.
The nonlinear terms of order € in (32) are the same as occur in inviscid

potential theory. Thus, the first-order corrections to inviscid acoustics

are the sum of the first-order linear viscous correction and the first-
order nonlinear inviscid correction, which of course might have been an-
ticipated a priori. Our goal now is to examine Equation (32) with the

terms of order 82 ignored.

-1.0=




5. PISTON PROBLEM

The boundary condition for the one-dimensional impulsive motion of
a piston is v/ (x = 0,7) = (Up/afo)f(f), where Up is the characteristic
speed of the piston and f(T) is of order unity. The characteristic
length is taken to be L = GO/UP, and it follows from (30) that
T = Upafot/ﬁo, X = Upi/Qo, and € = Up/afo. The small parameter € is
thus the frozen Mach number of the piston, and we note that v = E¢i'

A series solution of Equation (32) by a straight-forward expansion
in powers of € will lead to secular behavior such that the first-order

correction becomes as large as the zeroth-order term when x = O(S_l).

We account for this behavior by introducing new variables defined as
E=x-7 ; X = gx . (33)
We further expand ¢ in a series of the form

o(x,T;€) = d,(E/X) + €6, (E,X) + . . . (34)

Expressions (33) and (34) applied to Equation (32) lead to the following
equation for ¢°(£,x), which has been integrated twice with respect to §

and the functions of integration set equal to zero:

Y 1
¢ + L q) ¢ =F——=———"l{)) . (35)
Ot 4 Pyors rc CEEE

We now note that Uo = ¢0 is the lowest order velocity contribution,

that is,

vl = EU_ + 0(52) . (36)

==



If we make the further definitions

- + e
nEltx- Tt

(37)
- By - By
V' E T Dr s !
Y rc
then Equation (35) can be expressed in the standard form for Burgers'
equation:
Uo + UoUo = v*Uo (38)
n £ 23

The nonlinear terms of order € in (32) lead to the convective nonlinear
term UoUo in (38), and the dissipative terms of order € in (32) lead to

£

the diffusion term Uo in (38). The origin of the diffusivity factor
23

V* can be seen by identifying the factors 81 and 62 in the original

linear Equation (24). To lowest order, the other perturbation variables

are found to be

EYU, + o(ez)

p =
p! =eu + o(ez) ;
(39)
= gy - DU + 0(62)
v _ _E - 8
c Sc[ykpo + (Y l)kTolU°g + o(s )

-12- .



5.1 Impulsive Compression

For impulsive motion of the piston into the fluid, the function
UO(E.H) must satisfy the boundary condition UO(E,O) = H(-£), where H(£)
is the Heaviside unit step function. The solution to (38) in this case

is derived in Chapter 4 of Whitham (1974) and is

erfc {5:—:—31}

U_(E*,n*) = — 4l (40)
o erfc L_-_n— + erf: —:5_ exp l E* - }_ n*
2 2
van* Yan*

where £* = £/V* and n* = n/v*. The binary-mixture contribution appears
in the parameter V* and hence amounts to a stretching of the coordinates.

The derivative Uo is given by

E* - 2 . R %(&*_é. *)
1 e-(E =N /an + % U erfc { — } e “
U (Ex,nr) = - T2 e = 1433
Or 4 ER — ¥ =E* 1 (s 1 4
E erfc {—-—— + erfc{ 7_} exp § = (E - 3N ,}
van* van*

The function UO(C*,n*) = Uo\x* - T*,e*x*) is plotted in Figura 1 as
a function of x* = x/v* for various times T* = T/V* and for
€* = (y + 1)e/2 = 0.1, where n* = g*x*. 1In the early stages, evolution
of the wave front is dominated by diffusion and hence flattens until a
balance is achieved by the steepening effects of nonlinear convection.
The {-derivative of the velocity, Uo{*' which is a measure of the slope
of the wave front for small €, is sn;wn in Figure 2. This figure indi-
cates how the maximum slope decreases and the wave front broadens as
time increases. The evolution is dramatic for T* < 14 shown in Figures 1

and 2, but for larger times changes occur more slowly. The maximum value

of —UO approiches 0.125 as 1* > =, but at ™ = 140 the maximum value of
*

o

i3




-Uo has decreased to only 0.141, for €* = 0.1. Ultimately, diffusion
E*

and nonlinear convection balance and a steady-state shape is attained

with -Uo having a symmetric shape about a maximum value of 1/8.

E*
The function Uo also describes the mass-fraction perturbation, el
Ex
as seen from expressions (39). For the heavier species [Yk + (y - 1)kT

o o
is negative, and hence c' is negative in the wave front. Thus, the mass

fraction of the heavy species decreases in the wave front, and the mass
fraction of the light species increases. The maximum value of these spe-
cies perturbations is skewed toward the piston side of the wave front. As
time increases, the distribution broadens and ultimately becomes symmetric,

achieving a steady-state form.

5.2 Thickness of Steady-Statz Wave Front

As T* +> ®, the wave front evolves into a steady-state form. The

thickness 8§ of the wave front can be defined as

1

= 42
§ oU (42)
O
9% lnax
For T* - ® and € + 0, we obtain
Up6 8(81 N 82)
=8V = e 1)P S
v Y rc
o
-1+ P N
- 31 ! r+5Yk° (k +1‘—1~kT)2 (43)
Y Py *p P, Y °

Note here that Pr and SC are defined in terms of the reduced viscosity

00 S (2u0 + Xo)/po. Formula (43) is identical to previous results

-14-




obtained for weak steady shocks, such as by Sherman (1960) when rewritten
in our notation, which is a partial check on the correctness of our pres-
ent analysis. Note that the parameter V* is related to the parameter b
in the linear theory, Equation (28), by the relation 2(Yy + 1)b2v* = 1.
Thus linear theory yields the correct combination of terms arising from
viscous, thermal, and mass-diffusion dissipation that contribute to the
breadth of the wave front, but raised to the wrong power.

The combination N k can be written as

2

m m
1 (1 _ n_\l) co(l - <) (44)
o 2 1

=
=
"l

where m, and m, are the molecular masses of the species. Since this com-
bination is always positive, it can be seen from (43) that pressure and
thermal diffusion always tend to broaden the wave front, the more so the
greater the disparity in masses of the species. As pointed out by Sherman
(1960), k and kT are usually of opposite signs and tend to counteract

o o
one another.

5.3 Oscillating Piston

For the oscillating piston problem, the boundary condition is

v'(0,7) = € sin G, where € = Up/af as before, and ® is the nondimensional
o
frequency defined in terms of the physical frequency, w, by @ = T)o(u/af Up'
o
The initial condition on the Burgers' function is thus Uo(i,n = 0) =

- sin wf. By means of Fourier series expansions, we find the solution of

(38) to be (Benton and Platzmann, 1972)

(<]
- y B L~
4wv*:£:nhnexp{—n'w v*n}SLn(nwﬁ)
u ({;r”) = el —e (4:")
O o 2.2 } -
1 + 2 Anoxp{-n W V*n{cos (nwfh)

n=1




where

A_@v4) = (-1 (?u%\ﬁ)/%(ia'}l%?) : (46)

and In is the modified Bessel function of the first kind of order n. The
appearance of the factor V* delineates the hinary-mixture, or mass diffu-

sion, effects.

2

When @“Vv*n >> 1, the term n = 1 dominates the series, and thus in

the limit of ultimate decay expression (45) becomes

U_(E,m) v diven (Gv*) exp (-2V*n) sin GE (47)

Aside from the exponential damping, the amplitude of the disturbance in
the far field is a function of the frequency of oscillation. This is a
nonlinear effect and is akin somewhat to the dependency of the amplitude
on frequency in the nonlinear oscillations of spring-mass systems. The
amplitude function 4&v*Al(&v*) is plotted as a function of WV* in Figure 3.
The function is a maximum of unity w~hen Gv* + «, and decreases as Wv* be-

comes smaller. When Wv* >> 1, expression (47) approaches the form

Uo(E.n) N - exp(—&zv*n)sin wE (48)

This is the solution that is obtained from the linear theory, described
by Equation (27), in the limit €wWv* << 1. Thus, the linear theory ac-
cording to Equation (27) is valid in the final stage of decay when

WV* >> 1 and € << (GV*)—I. Except for thi: special limit, nonlinear ef-
fects always make a contribution, even in the final stages of decay.

Even though small, the nonlinear effects are cumulative. At high

~16-




frequencies the steepening of the compression part of the wave tends to
cancel the flattening of the expansion part, whereas for low frequencies
the compressions and expansions are less closely spaced and hence lead to
a nonvanishing cumulative effect in the far field.

The evolution of the wave disturbances just before final decay can
be examined by keeping the term n = 1 in the denominator as well as the

numerator of (45) and igiioring all terms for n 2 2. Then we have, for

sz*n 21,
4Gv*Il 5
- ——E———) exp (-0°v*n) sin W
U 2? (49)
1 - (——L) exp (—sz*n) cos WE
I

The wave forms produced by expression (49) are shown in Figure 4. The
curves are shown for ﬁzv*n = 1 and @V* = ©, 0.5, 0.25. The linear sire
wave is represented by wv* = ®. The values Wv* = 0.5 and 0.25 represent
the effects of the nonlinearities, which yield wave forms that are
flatter in the middle and steeper on the ends. As N *> ®, for Wv* fixed,
all the curves evolve toward the sine-wave shape.

The other perturbation variables are also given by expressions (39),
the pressure, dci.oity, and temperature being proportional to the velocity.
The mass-fraction perturbation, ¢’, is proportional to the £-derivative
of U, For the behavior approaching ultimate decay, sz*n 2 1, the de-
rivative of (49) yields a valid description:

Ly *
2wV Il
I

U (£,m - 2 . (50)
O d 21,

) exp (-@2v*n)l2mv* cos W + U sin OF
o

(6]




The behavior of expression (50), and thus of c’, is shown in Figure 5 for
@%v*n = 1 and Gv* = =, 0.5, and 0.25. The limiting value WV* = = yields

a damped cosine wave that corresponds to the associated linear theory.

'

The perturbation c’ is thus 90 degrees out of phase with Uo. when WV* is

finite, the magnitude of U°gt' and thus c’, is larger in the compression
part of the wave than it is in the expansion part. This is a nonlinear
effect. If ¢’ is identified with the heavier species, such that

{Ykp + (y - 1) kT } is negative, then we find that c’ is negative in the
comp:ession part 02 the wave and positive with a smaller magnitude in the

expansion part of the wave. It also can be seen that more time is spent

in the expansion part of the wave than in the compression part. As n - o,

for wv* fixed, all the curves tend toward the cosine-wave shape.




6. CONCLUDING REMARKS

The interaction of nonlinear and dissipative mechanisms for weak dis-
turbances in inert binary mixtures has been investigated. As for pure
gases, the basic description of one-aimensional problems is by means of
Burgers' equation. The effects of the binary mixture arc delineated by
the crfective ditfusion coefficient V* which contains the cffects of
Schmidt number and pressure and thermal diffusion coefficients associated
with binary mixtures as well as the Prandtl number and ratio of specific
heats associated also with pure gases. The binary-mixture mechanisms
tend to broaden the wave fronts and to modify the amplitude-frequency re-
lation and damping rate of oscillatory disturbances. The mas: -fraction
perturbation is skewed toward the piston side of cvolving sho k fronts,
but becomes symmetrical as the steady-state is approached.  For osnciila-
tory motions, the magnitude of the pans=fraction perturbation is larqger
in the compression part of the wave and of naller mac.itude and oppesite
sign in the expansion part of the wave.

The nonzero mass-fraction perturbations suggest that pressure and
ther. 1 diffusion may have signit.cant effe-ts in chemically reacting
mixtures where nonequilibrium effects play essential roles. Research
towards these ends may yield significant results for the behavior of det-
onation waves and combustion noise.

Perturbation methods applied to his «r-order torms of t.oo nonlinear
Equation (32) may yicld more general moo o ciquatic vs o han 3uracrs' equa-
tion. Also spherical and cylindrical disturbance n ht be studicd

fruitfully by this approach. These are arcas for future research.
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