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ABSTRACT

The evolution of weak disturbances in inert binary mixtures is deter-

mined for the one-dimensional pis'	 problem. Phe interaction of the dis-

si — tive and nonlinear mechanisms is described by Burgers' equation. The

binary-mixture diffusion mechanisms enter as an additive term in an effec-

tive diffusivity. Results for the impulsive motion of a piston moving into

an ambient medium and the sinusoidally oscillating piston are used to illus-

trate the results and elucidate the incorrect behavior pertaining to the

associated linear theory.
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1. INTRODUCTION

Combined dissipative effects of viscosity, thermal conduction, and

mass diffusion play fundamental roles in the propagation of disturbances

within mixtures of gases. In many practical applications the behavior

of weak disturbances is of primary concern. Whereas the acoustic, or

linear, limit leads to great mathematical simplications, there are situ-

ations in which nonlinear cumulative effects cannot be ignored. In this

paper we wish to descral ,- the interaction of nonlinear and the aL•ove-

mentioned dissipative mechanisms as they pertain to the evol:t i on of

weak plane waves in inert binary mixtures. This is done 1+y means of the

classical piston problem.

Some of the basics of acoustics for binary mixtures, especially

with regards to sound absorption, were set forth by Kohler (1949). The

propagation of spherical acoustic disturbances in binary mixtures, with

thermal diffusion ignored, was studied by Rasmussen and Frair (1976).

For binary mixtures, the study of nonlinear behavior appears to be lim-

ited to steady-state shock waves. Dyakov (1954) studied weak shocks and

Sherman (1960) studied both weak and strong shocks. On the other hand,

for pure gases, when mass diffusion does not play a role, combined non- 	 j

linear and dissipative effects on the evolution of finite disturbances

have been the subject of investigation for some time. The classic early

work is that of Lighthill (1956), and a summary of other rel,tted work

dealing witn Burgers' equation is given by Benton and Platzmann (1972).

A more recent work is that of Halabiskv and Sirovich (1973). Also, for

pure gases, Shidlovsky (1975, 1977) has investigated the evolution of

shock waves and ether regions of nonuniformity by means of boundar •Y-

layer singular-perturbation methods.



General	 v	 proposed b Blythe 1969 andGen	 1 model equations have been pr po	 y	 y	 (	 )

Ockendon and Spence (1969) for the evolution of waves in relaxing cases.

The thrust of their work was toward inviscid flows, but their models

could also deal with the viscous-type relaxation under consideration in

the present work.

In this investigation, we describe how weak, one-dimensional distur-

bances in binary inert mixtures evolve with time. In particular, we pro-

ceed from the basic linear theory and then illustrate how the smallest

nonlinear terms modify the evolutionary description. For tt« piston

problem, the wave front is shown to be governed by Burgers' juation.

The contributions of the binary-mixture diffusion mechanisms enter as an

additive term in an effective diffusivity that is a combination of the

Schmidt number and pressure and thermal diffusion coefficients. Besides

the mass average velocity perturbation, results are obtained for the spe-

cies mass-fraction perturbation, which is pertinent to binary mixtures.

-2-



2. BASIC EQUATIONS

The equations of motion for mass, species, momentum, and energy for

an inert binary mixture are (with body forces neglected)

+p div V = 0	 (1)
Dt

P Dt = - div it	(2)

-► 

UDV = - grad p + div
4TP 	 (3)

P Dt	 Dt
Dh = D	 'I	 E - div q	 (4)

where p, p, h, and V are the density, pressure, specific enthalpy, and

velocity of the mixture. The mass fractions of the two inert species of

the binary mixture are denoted by c l = c and c 2 = 1 - c. The rate of

.--►	 . -+
strain tensor, E, and viscous stress tensor, T, are given by

	

E = 2 (grad V + (grad V) t ,	 (5)

HH	 -► f-►

	

T = 2uc + a(div V) I 	 (6)

where p and X are the first and second coefficients of viscosity. The

heat-flux vector, q, and binary diffusion-flux vector, i, are determined

by means of kinetic theory (Hirschfelder et al., 1954) or principles of

coritinuum mechanics (Landau and Li fshitz, 1959) :

q = - k grad T +(h 2 - hl + M
12 kT

j
 i	 (7)

i = - PD 
12

(grad c + k  grad (ln p) + k  grad (ln T)1	 (8)
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Here k is the thermal conductivity, D 12 is the binary diffusion coeffi-

cient, and M12 is given by

_ T	 1
M12	 kp ( R1 - R2/

where T is the temperature, R1 and R2 are the specific gas constants for

species 1 and 2, and k
P 

and k  are the pressure-diffusion and thermal-

diffusion coefficients, given by

k	
(R1 - R2) I

((
(R1 - R2 )c + R2 1c(1 - c)	

(10)
P	 \	

`

l	 R1 R2	

J

k  = ac (1 - c)	 (11)

The thermal diffusion factor a is usually positive when c l = c refers to

the heavier molecular species, but may be slightly negative for excep-

tional gas pairs. For Maxwellian interaction potentials, a vanishes.

The set of equations becomes complete with the addition of thermal

and caloric equations of state. For a mixture of thermally perfect gases,

(9)

we have

P = pT l ( Rl - R2 c + R21
h = (hl - h 2 )c + h2	(12)

i

-4-	 .



3. LINEARIZED EQUATIONS

Consider a uniform ambient state denoted by the subscript naught.

We consider perturbations about this state and write

	

P = p0 '1+P / )	 P	 Po(1 + P /
)
	 T =T0(1 +T/)

(13)

	

c= c0 + c	 v = V/af
0

where of denotes the frozen speed of sound in the ambient state,
0

	

2	 1	 (R1	 R2,co + R2

	

of = YPo/Po	
Y = ( C	 - C llc + C	 (14)

	

0	
\ plo	

P2o/ 0	 P2o

	and where C	 and C	 are the ambient-state constant-pressure specific
pl	 P2

heats of specifies 1 and°2. Further, we introduce a nondimensional time,

T, and position vector, r, as

i
2 / 	 (15)T	 o f t vo 	 r	 of r/vo
0	 0

such that 0 - V/ r (the barred :pac(-, variables are diinerisional) . Charac-

teristic Prandtl and Schmidt numbers are defined as

	

Pr - PO V0 p /k0 	 Sc	 Vv/D12	 (16)
0	 0

whe re

4vo	 (21,0 + l
o) /(,0 	 ( 3 ^o + ^^o)/^'o

(17)

C	 = (C	 - C	 `c
Po	 1 p10	

1) 20 ) ° + C i'20

-5-



and 3 is thr hulk modulus of viscosity in the ambicrnt medium.
0

W tow consider flows that are irrotational (such as occur with

planar, cylindrical, or spherical symmetry) and introduce it vnlo;ity

potential such that v^ = VS. The linearized momentum equation can thus

be integrated once, and the governing linearized system of equations

becomes

,
L + V2m = 0	 D c' = k V 

2 
p I + k V 2T^	 (18)

31	 s	 Po	 To

P^ = Y JV2d - 
aT I
	 , P 1 = i + T' + Noc'	 (19)

Mok'r Pr

	

DP I' = Y - 1 P r ^- + - S °-- [V',' + k V 2 p , + kT 

V2T'J	

(20)
Y	 c.	 1'0	 o	 J

where

N

M^^	 M 12 A. ^ 7'0 - Y— 1 k 0-	 (2.1)
0 1 o	 Y	 po

R 1 - R^

N:i	 (R1 -	
(22)R2/co + R2 

D - S a- - V 2	 U - P	 a - V 2	 (23)
s	 c Jt	 P	 r at

The above equations can be maniptilated so that the following single

seventh-orrier equation for m i!: obtained-

^r
Y(1 +Is0 P

)
 )V (';Î  + V' Vm-ai"

+ V 7 (i l
^
IT - 

6
2 V2 ©I 1 

+ 1) 
r^icld2^D - 

^1T I T1	 0	

(24)



where

a = Pr (1 - N o k T I + Y (1 + S C ) + YNo kp + YPr (k p t• k  ^ ( 
No 4 MC) kT )0	 o	 I o	 0	 0

81 = a + S cP r - Y(1 + Nok, )	 (25)

62 = Sc + Pr (1 + Mo

o
fk2

1` 

When kT = 0, the above linear equations redur:e to those of Pasmuss--n

and Frair (1976) who studied spherical eaves by means of these equations.

The solution of the linearized equations for a one-dimensional pis-

ton moving into an ambient medium requirr.s three boundary conditions at

the piston :;urface: (1) the mass mean velocity, fix , is equal to th--

ton velocit. 3 , (2) the diffusion-flux ncrm.i! to the pistcun

1	 n = 0, al ( 0 either the tempr	 .^r,,tur or th nrm,^	 ^.tl )jest flux, qanal 	 ,

in specified. The solution is obt,,iu—I analo,7ouAy to the nplhrric.:1 ex-

plo. ion problrrm of lta •;musr,Pn and I 'rair (1 1 0711).	 Th,r _:elution a,n h••

written as a part that describes a diffu-,o •d wxvo front and t-wo coupled

parts that describe heat and mass-diffu_,:ion boundary layers adjacent to

tl,e piston trace. The lh^at and mass-diffusion boundary l.iyer s spread from

the piston face as the square root of time whereas the position of the

bulk rave front travels like the time itself. Wh"n w•s fix our attention

we can iqnoro thce boundary

the wave front. Th . - ,,:;ymp-

by L.ipl.rcv-t r:tn.ifr,rm tcch-

n.tsr;-fraction i„•rturbttion

Whr-r.• r (x	 0, t i 0)	 .

on the wave front for larcle times, therefore,

layers since they are greatly outdistanceri by

toti(- lonq-tiro wave liE'h.1ViOr con 1W uht.:irn•d

niques Masmussen 1975) . For th,• velocity ,1r1,

w­ havF- for the impel , :ivH motion of a I,i iton,

U i /,tfo,



v'(x,T) n' 
2 P
	 erfc b(x - T) + e4b2xerfc b(x + T)

	 (26)

a 
fo

'L U
p [y kpoy 	 + (y - 1)kTo	 bx exp _ 

b2(x [ 
T)2

c^(x,T)	
afoSc

(27)

where
1

(

" l

l2

b = 22/(28)

 r c

The above results show that the wave front is centered at x = T and

spreads out with time. The peak of the mass-fraction perturbation at

x = T dies out like T_^ and thus ultimately vanishes. If we define the

thickness of the wave front as S - \a'j I /j9v'/9_j max , we obtain for large
fo

times

afod _
V	 b	

(29)

0

Thus the wave front in the linear theory spreads out like the square-

root of time. It is known, however, that a constant piston speed should

generate a steady-state shock front. The continual spreading of the wave

front and the dying out of the mass-fraction perturbation are incorrect

behaviors that arise out of the omission of the convective nonlinearities.
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4. NONLINEAR INTERACTION

In order to delineate the balance between the dissipative transport

terms and the nonlinear terms, let us first renormalize the variables ap-

pearing in (24). We introduce a characteristic length L and define non-

dimensional time and distanca as

i	 -►
T = o f t/L = ET	 , r - r/L = cr	 ,	 (30)

0

where the parameter E = v 0/a f L is to be regarded as small. We note that
0

0 = gip . In the new variables, nth-order terms are proportional to En,

and we can rewrite ( 24) and display the lowest two orders as

IO2^	 ^TT 1 	 P :	 ^ 2 ( R 2^ 20	 S1 4TTJ + 0(E 2 )	 (31)

TT	 r c	 T

Thus as the viscous (transport) effects go to zero, the classical wave

operator prevails, and the first-order correction for small E arises be-

cause of the next higher-order derivatives. The terms of order c 2 in

(31) correspond to the seventh- and six-order derivatives in (24).

Equation (31) does not account for the nonlinearities in the prob-

lem. We account for the lower-order nonlinearities by replacing the p

turbation quantities in (13) by p l = Ep, and so on for the other pri-ed

variables, and utilizing the normalizations (30). The full nonlinea-r

equations then lead to the following equation for the perturbation Fo-

tential:

f_	 2	 _

Iv2	 4TT^TT
	 E P r sc 12 2 2	

^J¢TTJT

 _

(32)

+ 1(-y 	 1) 4 iQ2 d + I (V` )2Ii j + 0 (E2)
TT

-9-



In Equation (32) the second-degree nonlinear terms appear to order 6, as

shown, and the third and higher degree nonlinearities appear to order E2.

The nonlinear terms of order E in (32) are the same as occur in inviscid

potential theory. Thus, the first-order corrections to inviscid acoustics

are the sum of the first-order linear viscous correction and the first-

order nonlinear inviscid correction, which of course might have been an-

ticipated a priori. Our goal now is to examine Equation (32) with the

terms of order E 2 ignored.

_10-



5. PISTON PROBLEM

The boundary condition for the one-dimensional impulsive motion of

a piston is v I (x = O,T) = (U
P 
/afo )f(T), where Up is the characteristic

speed of the piston and f(T) is of order unity. The characteristic

length is taken to be L = V' /U , and it follows from (30) that
o p

T = Upa f t/vo , x = Upx/V and E = Up/a f . The small parameter E is
0	 0

thus the frozen Mach number of the piston, and we note that v' = EQ .
X

A series solution of Equation (32) by a straight-forward expansion

in powers of E will lead to secular behavior such that the first-order

correction becomes as large as the zeroth-order term when x = O(E-1)

We account for this behavior by introducing new variables defined as

C = x - T	 X = Ex	 (33)

We further expand ^ in a series of the form

p(x,T;E) = ^o (^,X) + E¢1 (I, X) + . . _	 (34)

Expressions (33) and (34) applied to Equation (32) lead to the following

equation for 0 (^,X), which has been integrated twice with respect to f;

and the functions of integration set equal to zero:

+ Y + 1 	 S1 - ^2

^0XF	 2	 Y0S^0	 2PrSc ^07^F	
(35)

We now note that Uo = QO is the lowest order velocity contribution,

that is,

v  = EU + O(E 2 )	 (36)
0

-11-



If we make the further definitions

T1 =-21 x=YEi
(37)

R. - B-
V*	

(Y + 1) p 5	 I
r c

then Equation (35) can be expressed in the standard form for Burgers'

equation:

U	 + U U	 = V*U	 (39)

oT1
	 o o 	 oU

The nonlinear terms of order c in (32) lead to the convective nonlinear

term U
0 0
U	 in (38), and the dissipative terms of order E in (32) lead to

^

the diffusion term U 	 in (38). The origin of the diffusivity factor
0U

V* can be seen by identifying the factors S  and S2 in the original

linear Equation (24). To lowest order, the other perturbation variables

are found to be

p  = cYU0 + 0 (E 2)

p^ = CU  + 0 (c 
2)	 1

(39)

T I = E(Y - 1)U0 
+ 0(E 2)

2
c^ _ - S Iyk	 + (y - 1)k T lUo +0(E3'

c 	 po	 o J

-12-



5.1 Impulsive Compression

For impulsive motion of the piston into the fluid, the function

U0 (^,n) must satisfy the boundary condition U o (F,0) = H(-C), where H(^)

is the Heaviside unit step function. The solution to (38) in this case

is derived in Chapter 4 of Whitham ( 1974) and is

n*
erfc	 >

11	 (40)U ( ^*,n * ) =	

f^
°	 erfc * 	 n* 1 + erfcl -,* 1 exp 1 2 ^S * 	2 n*

4 1	 tt 4n J l

where ^* = ^/v* and n* = n/v*. The binary-mixture contribution appears

in the parameter v* and hence amounts to a stretching of the coordinates.

The derivative U	 is given by
off*

1	 -(F* -n*)2/4n* + 1 U erfc	
c* e 2 	 2e

	

*	 2 0	 {* 1
TM

UOE* 	
erfc

f
 ^* _

1 ^ * 
+ erfc ( - * _1 eXp 2 1 F * - 2 n* ^ f4 n *	 l A-n* /

The function U° (F * , n * ) = Uo kx* - T *,E*x*) is plotted in Fig ,--re 1 as

a function of x* = x/v* for various times T* - T /v* and for

E* - (y + 1)E12 = 0.1, where n* - e*x*. In the early stages, evolution

of the wave front is dominated by diffusion and hence flattens until a

balance is achieved by the steepening effects of nonlinear convection.

The F-derivative of the velocity, Uo	which is a measure of the slope
F*

of the wave front for small E, is snown in Figure 2. This figure indi-

cates how the maximum -,lope decreases and the wave front broadens as

time increases. The evolution is dramatic for T* < 3.4 shown in Figures 1

and 2, but for .larger times changes occur more slowly. The maximum value

of -U	 appro.-aches 0.125 as T* -> -•', Ynit at I'* - 140 the maximum value of
°F*

-13-



-U	 has decreased to only 0.141, for E* = 0.1. Ultimately, diffusionOff*

and nonlinAar convection balance and a steady-state shape is attained

with -U	 having a symmetric shape about a maximum value of 1/8.
off*

The function U	 also describes the mass-fraction perturbation, c',off*

as seen from expressions (39). For the heavier species I 
p

Yk	 + (Y - 1)k l
0	 To l

is negative, and hence c' is negative in the wave front. Thus, the mass

fraction of the heavy species decreases in the wave front, and the mass

fraction of the light species increases. The maximum value of these spe-

cies perturbations is skewed toward the piston side of the wave front. As

time increases, the distribution broadens and ultimately becomes symmetric,

achieving a steady-state form.

5.2 Thickness of Steadv-Stat= Wave Front

As T* - -,-, the wave front evolves into a steady-state form. The

thickness d of the wave front can be defined as

d = Du 1	 (42)
0

ax max

For T* -► cc and E -► 0, we obtain

U d	 8 (Sl - S2)
P = 8v* _
v	 (Y + 1)PrSc

0

Y- ].+P	 YN	 2
- Y 8 1	

P	
r + S 

k0 
/kp + Y Y 1- kT /
	

(43)
r	 c p ` o	 o/

0

Note here that P and S are defined in terms of the reduced viscosity
r	 c

V = ( 2U +	 )/ p
0

. Formula (43) is identical to previous results
0	 0	 0 

-J4-



obtained for weak steady shocks, such as by Sherman (1960) when rewritten

in our notation, which is a partial check on the correctness of our pres-

ent analysis. Note that the parameter v* is related to the parameter b

in the linear theory, Equation (28), by the relation 2(y + 1)b 2v* = 1.

Thus linear theory yields the correct combination of terms arising from

viscous, thermal, and mass-diffusion dissipation that contribute to the

breadth of the wave front, but raised to the wrong power.

The combination N k	 can oe written as
o p

0

m /	 m.
N k	 = 1 I1 - 1) c

, ^^l - co )	 (44)
o 

po m2	 ml

where ml and m2 are the molecular masses of the species. Since this com-

bination is always positive, it can be seen from (43) that pressure and

thermal diffusion always tend to broaden the wave front, the more so they

greater the disparity in masses of the species. As pointed out by Sherman

(1960), k	 and k 	 are usually of opposite signs and tend to counteract

Po	 0

one another.

5.3 Oscillating Piston

For the oscillating piston problem, the boundary condition is

v I (M ) = E sin GjT, where c = U /a f as before, and (il is the nondimensional
p o

frequency defined in terms of the physical frequency, (il, by w = V o(j/a f U^.
0 1

The initial condition on the Burgers' function is thus U o (^"r)	 0) _

- sin w^. By means of Fourier series expansions, we find the solution of

(38) to be (Benton and Platzmann, 1972)

00

2*	 J	 2 * i	 t
4aw	 nA expl-n w v n f; in 	 ,)

n

1 + 2^Arl r'xp1-n 2r v 2 V * ^}^'os(n r̂ r)	 /

n=1

-15--



where

An(WV*) = (-1)nIn (2 v*) / Io12w */	 '	 (46)

and Z is the modified Bessel function of the first kind of order n. The
n

appearance of the factor V* delineates the binary-mixture, or mass diffu-

sion, effects.

When w2v*n >> 1, the term n = 1 dominates the series, and thus in

the limit of ultimate decay expression (45) becomes

U	 4aiv*A 
1 
(wV*)exp(-w2V*n)sin wC	 (47)

0 

Aside from the exponential damping, the amplitude of the disturbance in

the far field is a function of the frequency of oscillation. This is a

nonlinear effect and is akin =somewhat to the dependency of the amplitude

on frequency in the nonlinear oscillations of spring-mass systems. The

amplitude function 4wV*A 1 (wv*) is plotted as a function of (:V* in Figure 3.

The function is a maximum of unity when (,iv* 4 -, and decreases as wv* be-

comes smaller. When wV* >> 1, expression (47) approaches the form

U ( ,n) L -
o	

exp(-iil2v*n)sin	 (48)
'

This is the solution that is obtained from the linear theory, described

by Equation (27), in the limit Ccjv* << 1. Thus, the linear theory ac-

cording to Equation (27) is valid in the final stage of decay when

!)V* >> 1 and c << (CJV*) -1 . Except for this, special limit, nonlinear ef-

fects always make a contribution, even in the final stages of decay.

Even though small, the nonlinear effects are cumulative. At high

-16-



frequencies the steepening of the compression part of the wave tends to

cancel the flattening of the expansion part., whereas for low frequencies

the compressions and expansions are less closely spaced and hence lead to

a nonvanishing cumulative effect in the far field.

The evolution of the wave disturbances just before final decay can

be examined by keeping the term n = 1 in the denominator as well as the

numerator of (45) and ig:toring all terms for n > 2. Then we have, for

w2V*n > 1,

- (wV

*Il)exp( - iil2v *r)) sin c1y

U0 (^.n) v  	 (49)

1 - 1 Il ^ exp (-w 2V*rl) cos i^
0

The wave forms produced by expression (49) are shown in Figure 4. Thu

curves are shown for cj 2v*n = 1 and wv* = -, 0.5, 0.25. The linear sire

wave is repre:,ented by wv* = w . The values ^,v* = 0.5 and 0.25 repress-nt

the effects of the nonlinearities, which yield wave forms that are

flatter in the middle and steeper on the ends. As 0	 ro , for wv* fixed,

all the curves evolve toward the sine-wave shape.

The other perturbation variables are also given by expressions (39),

the pressure,	 and temperature being proportional to the velocity.

The mass-fraction perturbation, c I is proportional to the f,-derivative

of U.
	 y, wFor the behavior approaching ultimate deca2v*^ >o	 1, 	 the de-

rivative of (49) yields a valid description:

r 2wv*I 1
I - I 1 I erp (-c'32 v*rl) f 2wv* cos wF + U° sin ^,J

°F	 1 - I- J t exp (-(.J)	 g ) cos wf
0

-17-



The behavior of expression (50), and thus of c', is shown in Figure 5 for

w2V*n = 1 and wv* = -, 0.5, and 0.25. The limiting value wv* = - yields

a damped cosine wave that corresponds to the associated linear theory.

The perturbation c  is thus 90 degrees out of phase with U . When wv* is
0

finite, the magnitude of U0	and thus c', is larger in the compression

part of the wave than it is in the expansion part. This is a nonlinear

effect. If c l is identified with the heavier species, such that

fykp + (r - 1) kT } is negative, then we find that c' is negative in the
0	 0

compression part of the wave and positive with a smaller magnitude in the

expansion part of the wave. It also can be seen that more time is spent

in the expansion part of the wave than in the compression part. As n - ► -,

for wV* fixed, all the curves tend toward the cosine-wave shape.

-1B_



6 . colvcl.IM MO R1:MATaS

The interaction of nonlinear anel dissipative rr-chanisms for w, -k :U.^-

turbances in inert binary mixtures has b--E-n rove.;tigatcrd. A:; for pure

gases, the basic de:icription of on , !-ca,m-nr,io rnal problems: i n by means of

Burgers' equation. The effects of the binary inixt •.ure at d-lineated by

the effective. diffusion coefficient v* which contain!; the effects of

Schmidt number and pressure and thermal diffusion coefficients associated

with binary mixtures as well as the t'randtl nrunbr• r and ratio of specifi.,

heats associated also with pure gases. The binary-mixture mec:h,cni:;ms

tend to broaden the wave, fronts aril to modify th,, ampiit • rde-frequency re-

lation and damping rate of oscillatory di5turb.tnceti. ':'he tn":;::-fraction

perturbation is :.k(-wed toward the pi-;t-on side of evolving :hc, k t mnt::;,

brit hecom"s r;yinm, , tricaL a; the = t vady-:: • atr i:; Approache • l.	 For o[';e.i 11,e-

Cory mot. ions, t I w magnit,irl ,• of tho r•r:::;-fra, tieen 1 „ rturhtt ion in 1•,r,tur

in tire? c • ompressioic part of tht- wave and of maller mac • ,i.tud,-t and opposite

Sign in the expansionexpansion part of the wave.

The nonzero mass-fraction perturbations :.u ,7gt • st that pressure and

ther. 1 diffusion may have signit^cant uffe_ts in chernicaily reacting

mixtures where nonequil ;-brium effects play	 roles. Research

towards these ends may yield siynif icant re-,ults for the beh•,vior of det-
	 i

on,etion wavNs and combustion noise.

Perturbation rnethocls applied to hi , ••r -or• le•r terms of t.••• r,c ^li•c,rar

Equation (32) may yiel,l moee y, • ne-rrel men. , e;uatie is	 h.in :cur,,-rr;'

tion.	 ALu, spherical i:id cylindric:.il dirt ur F +r. r	 m	 ht b,•

fruitfully by thi:; .ippro at_• h.	 The:i.- ace ar-Its f,,r futurt • rr: ;e,ir^lt.
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