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PREFACE

In LACI F 'ha^e III, one of the largest sources of proportion estimation error

for a	 r interest in Land Satellite (Landsat) data was boundary pixels

and the associated method for handling them. These are the pixels partly

within the class of interest and partly not because of the coarseness of the

resolution of the Landsat sensor. This memorandum describes many of the

methods and approaches for dealing win the influence of boundary pixels on

proportion estimation. A general framework is presented for viewing the

problem, and the results of a small study are presented. The study of the

effect of boundary pixels in proportion estimation is very new; almost all

the methods presented are untried. They represent the most current thoughts

for attacking the problem.

The principal author and project coordinator, D. T. Register, originated the

statistical sampling approach that provides the general framework. A. L. Onn"a

conducted most of the analysis of the small study in North Dakota and Kansas.

Analysts B. B. Schroder, B. A. Tolbert, C. W. Hay,ies, and C. L. Dailey as-

sisted in the study by examining thousands of pixels to decide whether they

were boundary or not.
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1. INTRODUCTION

A detailed examination of the segment Procedure 1 proportion estimation tech-

nique that was used in Phase III of the Large Area Crop Inventory Experiment

(LACIE)(ref. 1) has shown that the largest single source for small-grain pro-

portion error is the analyst's misidentification of picture elements (pixels)

(ref. 2). Sometimes small grains were thought to be nonsmall grains (omission

error), and at other times nonsmall grains were identified as small grains

(commission error). The omission error rates were much higher than the com-

mission rates, this resulted in an underestimation bias. The three major

causes of analyst labeling errors were found to be (in order of importance)

boundary pixels, abnormal signatures, and inadequate acquisitions. Approxi-

mately 40 percent of all mislabeled pixels were associated with boundaries.

Reference 2 defined a pixel as boundary if it was spatially located so as

to be only partly within a small-grain field; 1 that is, if it lay on the

perimeter of a small-grain field. The intent of this memorandum is to

1. Report on the past importance of boundary pixels in Phase III and anti-

cipate tneir importance for the future.

2. Discuss some possible approaches for handling boundary pixels to reduce

the bias toward underestimation of the crop of interest.

3. Present the results of some experimentation into one of these approaches.

4. Make recommendations on what considerations should be used in planning

a boundary pixel research program.

l In the case of strip/fallow areas, the pixels were divided into two kinds —
those whose strips were wide enough to be discernible in the Landsat imagery

and those where strips were so narrow that no stripping was discernible. If
the strips were not discernible, the pixels were not considered as boundary

nor in error.
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2. IMPORTANCE OF BOUNDARY PIXELS

The singlemost important cause for the mislabeling of pixels in Phase III

of LACIE was the boundary pixel. Table 1 presents the results of a detailed

dot-by-dot examination of the labeling of type 2 dots. All the results are for

Phase III of LACIE. The scope of the study included all the intensive test

sites (ITSs) and a sample of blind sites drawn from each of five sele:ted

states. The results show that 66 percent more boundary pixels were 4beled

nonsmdll grains than were labeled small grains. The percentages of error shown

in table 1 do not average to the 40 percent mentioned in sec!ion 1. The

percentages in the table refer to errors for which no other cause than buurd-

ary could be given. The 40 percent included all errors associated with

boundaries. There were in some cases multiple causes.

TABLE 1.-- DISTRIBUTION OF BOUNDARY PIXELS AND

THEIR CONTRIBUTION TO LABELING ERROR

Date set
No. of

segments

No. of type 2
boundary

dots

No.	 boundary
dots

analysts	 labeled
small	 grains

No. boundary
dots

analysts labeled
nonsmall grains

Percentage of
all	 pixels
that are
boundary

Percentage of
omission

errors due to
boundaries

Percentage of
commission

erro-s due to
boundaries

Minter	 ITSs 13 112 39 73 12.4 21.4 8.6

Spring	 ITSs 7 65 30 35 12.4 12.9 8.8

Minnesota 6 56 20 36 16.0 40.6 44.c

Montana* 10 55 28 37 6.9 21.1 29.4

North Dakota' 18 120 43 77 11.7 28.9 22.1

0klahcma 12 80 27 53 10.3 22.1 14.3

Colorado* 6 29 11 18 7.3 25.0 100.0

*The se segments contained scow strip/tallow fields which were so narrow that they could not he discerned in the

imagery. Pixels in these fields were not considered as boundary or in error.

V
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The effect of boundary pixels can be expected to grow in importance in the

Agricultural and Resources Inventory Surveys Through Aerospace Remote Sensing

(AgRISTARS) Project as interest is directed to inventories of multiple crops

in areas with smaller fields. In particular, for corn and soybeans, there

will be three kinds of boundaries: corn/other, soybeans/other, and corn/soy-

beans, whereas in the past, only small grain/other boundaries were considered.

In addition, the sizes of the fields in the corn and soybean areas are gen-

erally smaller than those for wheat in the U.S. Great Plains. The following

}	 table illustrates how the number of boundary pixels could increase as more

crops are estimated in areas with smaller fields. The table lists five sites

within the corn and soybean region; for each segment, the percentage of in-

terior pixels is given. 2 For this table to demonstrate the effect V more

crops, interior pixels are those which are wholly within the same category

on each acquisition. Each crop was considered a separate category.

Segment State
Percentage of pixels
interior to fields

146 Kentucky 45.0

812 Missou-i 46.4

824 Illinois 44.0

883 Iowa 42.1

886 Idaho 52.2

These five segments were selected because of availability of data and are

only for illustration. They may not be completely representative of the

corn/soybean area.
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3. APPROPRIATE DEFINITIONS FOR BOUNDARY PIXELS

Commonly, the term boundary pixel refers to a pixel which liEs on the spatial
demarcation between two categories of interest on a single Landsat acquisi-

tion. Though this definition is appropriate for visualization, it is not

a working definition. A working definition must specify the method for

deciding whether or not a pixel is a boundary. This po i nt is important

because the designation of pixels as boundary can and w 11 vary considerably

depending upon the method utilized. Among the possible methods which can be

chosen are clustering algorithms, classification algorithms, analysts, and

aircraft photographs with ground truth. Because the aircraft photographs

are not routinely available for use in estimation of crop segment proportions,

they will not be further considered in this memorandum as a method of deter-

mining which pixels of a scene are boundary.

There are basically two issues in regard to which pixels are boundary. The

first issue can be summarized by the question: How much of a boundary does

a pixel need to be before it is labeled "boundary"? The second, maybe not

so obvious, issue is the following: In which Landsat acquisition is the

pixel a boundary? Because of the misregistration between Landsat passes

over a segment, a given pixel can migrate back and north between and on the

boundary of two fields. Thus, an adequate answer to whether or not a pixel

is boundary requires specification of a particular acquisition. Sometimes,

a set of acquisitions is specified.	 In the Label Identification from Statis-

tical Tabulation (LIST) approach (ref. 3), a set of four acquisitions is

specified. If a pixel migrates back and forth or is on the boundary of two

fields as determined by an analyst in these acquisitions, then the pixel is

designated a boundary. In Procedure 1, a similar approach is taken: The

analyst is asked to label for type 1 dots  only those pixels which remain

within the same field over the four (or fewer) acquisitions chosen for proc-

essing. The implication for type 1 dots is that all pixels not labeled are

boundary.

3 I procedure 1, the type 1 dots are first used for starting a clustering
algorithm and then for labeling the resulting clusters by the nearest-

neighbor rule. With type 2 dots, all are identified and used for

stratified areal estimation.
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Two proposals have been made for use by analysts in this determination. The

first proposal is that a pixel should be called a boundary pixel if an analyst

has difficulty ascertaining to which of the two contiguous categories on which

the pixel lies he should assign the pixel. The second proposal is that a pixel

should be called boundary if the analyst can determine that any part of the

pixel is on the spatial boundary of two categories. The second proposal is

more liberal than the first and will result in a larger number of boundary

pixels. One must keep in mind here, however, that the importance of the num-

ber of houndary pixels is secondary to that of consistency in determination.

Several analysts were asked which of the two proposed working definitions

would provide the most consistent responses for denoting pixels of a segment

as boundary. The overwhelming opinion was that the liberal definition would

provide more consistent responses.

The liberal definition is the one adopted for use in the study described in

section 4.3.2. As for machine algorithms, such as clustering and classi-

fication, they would objectively and consistently apply the rules for deter-

mining boundaries that they are programmed to follow. Other procedures may

require their own particular definitions, such as the LIST approach. In the

LIST approach, whether or not a pixel is boundary is determined by an analyst's

response to a given set of questions. In summary, the liberal definition

appears to be an appropriate definition for an analyst to use. However,

special procedures or algorithms will require their own definitions. All of

these can be expected to give differing results. In addition, the designa-

tion boundary for a pixel is only applicable to a particular acquisition or

set of acquisitions.

5



4. TECHNIQUES FOR REMOVING THE ESTIMATION

BIAS DUE TO BOUNDARY PIXELS

Four basic types of techniques  have been suggested for handlinq boundary

pixels: cluster-haled technique, maximum-likelihood-based technique,

statistical sanpiieg technique, and multicategory labeling.

•	 4.1 CLUSTER- BASED TECHNIgUES

The cluster-based t.erhniques diverge into two separate approaches. The dis-

tinctive difference hNtw(^en the twe is the mFans of determining which pixels

are boundary. the mean; may be either automatic (e.g., allowing a clustering

algorithm to decide which pixels are boundary) or manual (e.g., in the case

of an analyst). The first approach to be discussed is an unsupervised

computer processing algorithm to detect boundary and interior pixels. The

interior pixels are classified into unlabeled categories. Then, individual

boundary pixels and their adjacent p ixels are automatically examined to deter-

mine the categories in which they overlap. The boundary pixels are then

modeled as a percentage of each adjacent category by using the mean Spectral

values of those categories. The analyst labels samples of the interior

pixels in order to label the categories. Thus. boundary pixels would be

automatically dete nnined and allocated to the adjacent categories on the

basis of the spectral data, and the analyst would be relieved of having to

allocate boundaries to categories. The possible misgivings about this ap-

proach are as follows:

1. It has rut been ,hewn that an automatic ooundary detection allorithr.

could locjte boundaries with sufficient accuracy.	 In particular, how

many actual boundaries will he overlooked, how many interior pixels will

he mistakenly labeled boundary, and what detrimental effects on pro-

portion estimation will these have?

4 The first three techniquf% are suggested in the minutes of the Procedure 1
Review Conferer.:e held at Texas A&M University on July 13-14, 1978. The min..

utes are contained in a letter to R. P. Heydorn from T. C. Minter (dated
Januar y Ifs, 1979). Some of the alternatives are from a private communication
with R. K. Lenningtun resulting from his attendance at the Conference on
Maximum Likelihood Clustering held at Texas ARM University on Februar y 8-9,

1979.
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2. A batirc premise of this approach is that an unoiliervised clustering

al(lnrithnr can partition a Landsat scene into clusters, each of high

purity (same category). This is still to he demonstrated. Additionally,

there is no theoretical reason to believe that omission errors would

halance commission errors so that unbiased proportion estimates would

result.

3. A boundary pixel may be boundary on more than two categories. Properly

formulated, though, the modeling could easily be extended to three or

four categories.

In the second a,,)proach, whenever a houndary pixel is encountered, the analyst

would consult an unsupervised multitenrporal cluster map for determining which

field Lo

' 

in the hound,try pixel.	 The analyst would then label the bound-

ary pixel according to the category of the field. this would provide an

arbitrary, objective means for the allocation of boundary pixels to cate-

gories. The underlying premises are that the clusters from the chosen

clustering alaorithm would correspond to categories and that boundary pixels

would be assigned to thN most likely category by the algorithm as it assigns

pixels to categories on Lhe basis of spectral distance (some algorithms may

also incorporate spatial distance).

It is envisioned that this second approach would be suitable for segment

inventory procedures which use unsupervised clustering followed by either

sLra`.itrc^n areal e.timaLrwr or cluster labeling with analyst-labeled sa'nples.

The procedural flow would be (1) unsupervised clustering of the image data;

(2) aided by a clu ,,Ler map, in,lyst labeling of the machine-selected pixels;

and (3) another procin s—,ing, such as stratified areal estimation, to provide

the proportion estimates.

Possible misgivings arc ( I ) the lack of a : oretical reason to believe that

the c^u ltvr; will jllocdte the pixels in an unbiased manner, (2) the possible

dependence of the allocation on field size, (3) the proportion; of each crop

in the scene, (4) field shape, (5) the particular clustering algorithm used,

(h) the spectral separability of the categories of interest, and (7) the

7



extent to which boundary pixels form their own cluster. It is nut clear,

though, how important. these considerations are. This technique has not been

investigated. It could prove to he an easy, practical technique for allocat-

ing boundar y pixels to categories.

4.2 MAX 1 MUM-'. i KEL 1 HOOD-BASED_ TECHN iOUES

With these techniques, an analyst would he asked to label only interior pixels.

These pixels would I)- uti 1 izf--d as trjinir.g samples for a maximum like; ihood

classification of all the p ixels within the scene. Thus, the boundary pixels

would h,cve been allocated to the most likely category on the basis of prob-

abilities computed from the lahol pd pixels. This technique has the same

advantage as that of clustering; it offers an arbitrary, objective means

for the allocdtion of boundary pixels to categories.

From the tandpoint of an efficient use of labeled training samples, this

technique would be hest. suited to proportion estimation of the categories of

interest by the processinq machine. The procedural flow would be for the

analyst to (1) receivP imagery and spectral aids, (2) label interior pixels

sampl ,d by soma prescribed scl.ire, and (3) submit them for classification

which would provide the estimate. Three variations on how the estimate could

be produced are a; follows: One variation would be to count the number of

i,ixels classified into each category of interest. A second variation would

he to compute the prubahility for each category of interest for each pixel

and then avc!rage the probabilities over the scene. This would not provide a

classification rnap but may provide more accurate estimation. A third varia-

tion would be the use of d boundary detection algorithm to separate the

interior pixels from the boundar y ones. Then, pixel counting would be

used on the in_,:c-iur pixels and probability averaging on the boundaries.

As can he easily seen, the number of possibilities here are limited only by

imagination.

he po.sible misgiving-, are (1) a lack of a !heuretical reason for believing

that Lne pixels would be allocated in an unbiased manner, (2) the allocation's

possible dependence on the proportions of each crop in the scene. (3) the

8



dependence on the particular classification algorithm used, and (4) the spec-

tral separability of the categories of interest.

4.3 STATISTIC AL SAMPLING TECHNIQU E

With this technique, the analyst would no longer be required to place a single

category label on a boundary pixel. Instead, he would provide two labels —

one for each of the categories straddled by the boundary pixel. Each cate-

gory as labeled by the analyst would then contain both interior h;xels and

boundary pixels. This method of labeling is best suited for use with seg-

ment inventories obtained by stratified areal estimation. The usual formulas

have to be modified slightly to accommodate the boundary labels. The deriva-

tion for the two-category case follows.

4.3.1 EXAMPLE OF STRATIFIED AREAL ESTIMATION FORMULA MODIFICATION FOR
BOUNDARY PIXELS

The usual formula for the proportion estimate from stratified areal estima-

tion, for two categories is the following:

P = 
N 	 n 1 + N2_ n 2

W	 Base

_ n
1	Base n2

whe re

P 	 The estimated proportion for category W, one of the two categories.

N i	= The number of pixels in	 the segment	 classified	 into	 class	 i,

where	 i	 =	 1, 2.

Base The number of pixels within	 the entire segment 	 less	 any	 unidentifiable

areas such as clouds.

n 
	 = the number of labeled samples	 classified	 into	 the	 ith class, where

i	 =	 1,	 2.

The number of samples labeled W and	 classified	 in class	 i,	 wheren iW =

i	 =	 1,	 2.

The required modification is based on the observation that the n  pixels in

the it, class actually consist of some interior pixels n ip and some boundary

0	 .1



pixels n iB . Thus, n i = n i p + niR for i = 1, 2. The interior pixels n i p are

further divided into those that are labeled W(n i pW ) and those labeled 0

(the second category). These interior pixels 
nipW 

are wholly within the W

category. Hawf^ver, the boundary pixels for the ith class are considered only

nartly within the W category; that is, a fraction, Q  of the W category.

Thus, in the formula, n iW is replaced by n
i p
W + ^iniBW. Thus, the modified

formula becomes:

N 	 (n 1PW +  1 n 1BW )	N2	 (n2PW + 62n2BW)

PW '1 9--	 nl	 + Base	 n2

In this form, the 
6i 

is the average percentage of the boundary pixels classi-

fied into the ita class that should be allocated to the W category.

1.3.2 DESCRIPTION OF A PRELIMINARY STUDY OF THE TECHNIQUE

Among the inputs needed to apply this modified formula are the classification

percentages, the number of labeled test samples classified into each of the

two categories, and the iabels for the test samples as W, ^, or B. All of

these are readily available after the processing of a segment. In addition,

the two 6's are required. The 6's cannot be estimated for each segment on

a real-time basis, but they can he estimated in advance using blind site

data.	 In addition, it is possible to adjust the 3's for use on a per-segment

basis by making the 6's a function of segment characteristics. Two consider-

ations for adjusting the 6's for each segment are to (1) select variables
A

related to the ^V s and (2) quantify the variables fc , r nonblind sites. The	 i

Cg 's are thought to be functions of field size, shape, .ind separability for

the category of interest. Thus, they may vary from region to region. They

should, however, be fairly stable from year to year in the same area. This

allows the use of the blind sites to estimate the 6's for a given area.

Though it was not attempted in this study, the ratio of the number of

boundary pixels to the number of pixels labeled is a potential variable that

is correlated well with the R's. This variable is readily available after

segment dot labeling. The procedure for determininy the 6's for a particular

area is simply to use ground-truth labels in lieu of analyst-labeled pixels

and substitute the ground-truth percentage for the proportion estimate PW.

10



A machine processing (classification) is performed, and the results are input

to the formula. This provides an equation in two unknowns S1 and S2 
for Each

blind site processed. A constrained regression analysis is performed to

provide unbiased estimates for 
s  

and a 2 . One assumption in estimating sl

and 
^2 

in this manner is that they are constant for all the blind sites in

the regression analysis.

A small study of this technique was conducted. Section 4.3.3 describes

the data set and the results. The data are presented in the appendix.

Basically, 26 blind sites in North Dakota and 19 in Kansas were used to

estimate ^'s separately for each state. Because different definitions of

boundary pixels will result in different Q's, two different definitions were

considered, one suitable for Procedure 1 and the other suitable for LIST.

The results indicated that the variances of the proportion estimates of

small grains in the boundary pixels (CA's) are unduly large. in part, this

is due to the very difficult, i` not impossible, task of determining the

"true" proportion of small grains within a set of 209 dots. The difficulty

is that even with the use of ground truth, there is and must be some sub-

jectiveness in determining a label for some of the dots. In fact, there

really is no correct label for the dots which are partially small grains and

no way to measure directly the percentage of small grains in these partially

small-grair pixels. Thus, the true proportion cannot be directly measured

:•jithout error. Consequently, the small-grain proportion for the entire

segment was used. Due to sampling variance, the small-grain ground-truth per-

centages for the entire segment were sometimes physicall y irreconcilable

with the ground-truth percentages for the 209 grid dots. Specifically,

either the small-grain percentage given by only the interior dots from the

209 was more than the segment proportion, or the small-grain percentage given

by the number of interior dots plus all the boundary dots (treated as 100 per-

cent smell grain) in the ?09 was less than the segment proportion. Further

analysis to obtain more reliahle estimates has not yet been undertaken.
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4.3.3 DESCRIPTION OF THE DATA SET AND RESULTS

A group of analysts was asked to interpret the 209 pixel-grid intersections

for 45 Phase III blind sites, 26 in Kansas and 19 in North Dakota, to identify

interior and boundary pixels. The following labels were used:

Label Definition

A Anomalous pixel*

D
I	

Nonagricultural	 area

IP Interior pixel

R Misregistered pixel

X Clouds and cloud shadows

1 P.oundary	 (small	 grain and nonsmall 	 grain)

2 Boundary	 (nonsmall	 grain and nonsmall	 grain)

*Pixel is not representative of most of the other

pixels within the field; e.g., a mud puddle in a
wheat field.

The following blind sites	 in North Dakota were used	 in the study:

1602 (Mountrail) 1648 (Bowman)

1604 (Renville) 1652 (Stark)

1606 (Ward) 1661 (McIntosh)

1616 (Cavalier) 1663

a

(Richland)

1619 (Grand Forks) 1899 (Walsh)

1622 (Ramsey) 1902 (McKenzie)

'	 1625 (Dunn) 1903 (Mercer)

1635 (Sheridan) 1913 (Hettinger)

1637 (Stutsman) 1927 (Sargent)

1540 (Barnes)

9

I
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The following blind sites	 in Kansas were used:

1032 (Wichita) 1293 (Meade)

1033 (Clark) 1295 (Osborne)

1153 (Jewell) 1297 (Dickinson)

1155 (Phillips) 1885 (Rice)

1158 (Washington) 1340 (Sumner)

1166 (Lyon) 1343 (Riley)

1170 (harper) 1346 (Geary)

1-75 (Sedgwick) 1851 (Graham)

1180 (Cherokee) 1853 (Ness)

1183 (Labette) 1859 (Hamilton)

1279 (Cheyene) 1861 (Kearny)

1285 (Logan) 1864 (Stanton)

1290 (Ford) 1881 (Ellsworth)

Since individual pixels can change with multiple acquisitions from one cate-

gory to another from acquisition to acquisition because of misregistration

in the North Dakota blind sites, a reference date was specified; and the

analvsts used three selected additional acquisitions, which included ripe

and harvested dates when possible, to label the 209 dots. However, in the

Kansas blind sites, a reference date with the most distinct field boundaries

was selected in addition to the three other acquisitions used for labeling.

The corresponding 209-dot ground-truth labels were

terior small-grain dots from the nonsmall-grain do

from Procedure 1 was used to identify the category

placed. The following quantities were determined:

classified as small grains, total small-grain dots

grains, number of dots classified as small grains,

used to identify the in-

ts. The classification map

in which the dots were

total small-grain dots

classified as nonsmall

number of dots classified

13
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as nonsmall grains, total small-grain/nonsmall-grain boundary dots classified

as small grains, and total small-grain/nonsmall-grain boundary dots classified

as nonsmall grains.

To estimate the effect of boundary pixels on the small-grain proportion

(i.e., to determine the fraction of boundary pixels that should be considered

small grains), the parameters 
u1 

and (1 2 were computed from the following

equation.

N1	 n SGI	 nBl	 N2	 n SG2	 nB2
PGT	 Base [ nl_ + B 1 n ] 4. Base [ n	 + Q 2 n

1	 2	 2

where

P
GT - Ground-truth small-grain proportion.

N 1 = All pixels classified as small grains.

N 2 = All pixels classified as nonsmall grains.

Base = The number of pixels within the entire segment less any unidentifiable

areas such as clouds.

n SGI	 =
Total small-grain dots	 classified as small	 grains.

nSG2
= Total small- g rain dots	 classified as nonsmall	 grains.

n 1	= Number of dots	 classified as	 small	 grains.

n 2 = Number of dots classified as	 nonsmall grains.

11 61	 = Total small-grain/nonsmall-grain dots classified as	 small	 grains.

n B2 = Total small grain/nonsmall-grain dots classified as nonsmall grains.

a l = Fraction of the boundary pixels which are small grains, given that

the boundary pixels are classified as small grains.

B2 = Fraction of the boundary pixels which are small grains, given that

the boundary pixels are classified as nonsmall grains.

To solve for the parameters 
(il 

and (^ 2 , a linear regression on X 1 and X2 on

Y was fitted throuqh the oriyin with the following model:

Y - (''1X1 + (;2X2

r

14



where

_	 _
(,N,(nSGI)

l 	 _N2 1 nSG2
Y	 P

GT	 ase 	 n 	 B(ase)k 	 f 
n12

N,	 (n
X1	

Base) n,,/
1

and

X2 Qe/fn621
2

Two sets of data were analyzed: Procedure 1 data in which A, D, P, and R

labels were considered interior pixels and the 1 and 2 labels were considered

boundary pixels; and LIST data, in which D, P, and 2 labels were considered

interior pixels and the A, R, and 1 labels were considered boundary pixels.

Pixels labeled X were excluded from the analyses.

Table 2 presents the regression coefficients along with the corresponding

standard deviations separately for, each labeling method and state. Results

indicated that the fraction of small grains in the boundary pixels that are

classified as small grains is 72 percent for Procedure 1 and 49 percent for

LIST. For Procedure 1 in North Dakota, 72 percent of the boundary pixels

classified as small grains was small grains, and 1 q percent of the boundary

pixels classified as small drains was small grains. However, in Kansas,

72 percent of the boundary pixels classified as small grains was small

grains, and 3 percent of the boundary pixels classified as nonsmall grains

was small grains. Extremely large standard deviations of the regression

coefficients reflect the variability in the 209-dot sampling and the varia-

oility due to the number of segments within the state. For example, segment

1663 in North Dakota (Procedure 1 data) had a ground-truth wheat percentage

of 51.84. There wPr p 97 interior small-grain dots and five boundaries. The

random estimate for wheat from the interior pixels was (97/209) > 100 = 46.41

percent, and the random estimate for, wheat from interior and boundary pixels

was (102/209) X 100 = 48.80 percent. The ground-truth percentage (51.84 per-

cent) is greater- than the percentage of wheat from the random estimate (48.80

percent) with the interior and the boundary pixels, indicating that the boundary

15
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pixels would need to be considered as greater than 100 percent small grains.

This variability is due to random sampling.

TABLE 2.— RFGRESSION COEFFICIENTS WITH THE CORRESPONDING

STANDARD DEVIATIONS

R2
Standard Standard

coefficientcoefficient
State

Ijl
deviation u., deviation

of	 ^. 1 of	
i; 2 determination

Procedure 1

North Dakota 0.72656 0.54149 0.19814 0.34859 0.44986

I'ansas 0.72404 0.99781 0.03050 0.30608 0.09065

LIST

North Dakota 0.49496 0.19963 0.43250 0.16310 0.78673

Kansas 0.58680 0.4954:3 1	 0.54625 0.47139 0.35887

4.3.4 PROPOSALS FOR ADDITIONAL ANALYSIS OF THE EXISTING DATA

One possible way of reducing the variance of the estimated Ws would be to

incorporate prior knowledge into the estimation process. In this case,

when the ground-truth Proportion P GT is lower than the random sample esti-

mate for pure small grain y P L , then P 1 could be used in place of P GT for

estimation of the	 Likewise, when P GT is greater than the random sample

estimate for pure small grains plus all boundary small-grain P
U
, the P 

should be used in place of 
PGT 

in the regression. The resulting regression

on the truncated proportions will perhaps bias the estimates of the F's.

However, they will have smallf , r variances and will dampen the effect of

sampling anomalies.

Another interesting analysis that could be performed is to use the Procedure 1

type 2 dots to obtain a simple random sample proportion for small grains with

the analyst labels, which include designations of which pixels are boundary

to perform the regression estimation for the (i's. 7—se B's would estimate

16



the analyst's opinion of the amount of small grains in the boundary pixels

for each category of machine classification. Small-grain proportion esti-

mates could then be calculated using the estimated ri's and would perhaps

demonstrate a smaller variance on the proportion estimate than the Procedure 1

estimate although there should be no improvement in the bias.

Both of these would provide proportion estimates with equivalent bias and

perhaps lower variances than the Procedure 1 estimates. Superior approaches

to estimation of the Ws exist, but they entail the collection of new data

from additional follow-on studies. Recommendations are presented in sec-

tion 5.

4.3.5 DISCUSSION OF ASSUMPTIONS AMENABLE TO STATISTICAL TESTING

The statistical sampling technique for handling boundary pixels represents

an entire class of techniques correspondinq to different assumptions about

b i and G2 for two categories. The following table lists five assumptions

on the G,'s and explains how they correspond to methods sometimes proposed

for handlinq boundaries.

Assumption Correspondence

!4 1 	 =	 c 2	 =	
112 Each boundary pixel 	 is considered as

containing 50 percent of the category

of interest regardless of its	 classifi-

cation.

`} 1 	 =	 ĵ2 =	
(3,	 where	 F.	 is	 a	 constant Each boundary pixel	 is considered as

containing a	 fraction e of the category
of	 interest reg3rdless	 of	 its	 classifi-

cation.

^, 1 	f ..2. 
	 where	 f^ 1 	and	 1

'2	
are The boundary pixels	 classified	 into	 the

i0,, class are considered as	 containinq
constants

a fraction a i	 for the category of 	 in-

terest.	 The fraction will	 be different

depending	 on	 its	 classification but will

otherwise remain	 constant.

17
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Assumption Correspondence

niPW —

i	 +
The fraction f3.	 of the category of in-

nipw	 iN. terest in the boundary pixels which are

classified	 into the ith category is

considered to he the same as	 the ratio

of interior pixels for the category of

interest	 to all	 interior	 pixels	 classi-

fied	 into	 the	 i;-17 class.

Bi	
is subjectively determined and This	 is	 the present method;	 by this

varies from segment to segment
method, an analyst is	 forced to make a

determination	 (label) on each boundary
and from analysis	 to analysis

pixel.

One of the biggest advantages of the statistical sampling technique is that

atsumption, like these concerning the Ws can be tested.

As was discussed earlier, the definition of boundary pixels is critical

to any method that attempts to handle them. Thus, assumptions which may be

suitable for some definitions may not be suitable for others. A main point

to he made, thou(1h, is that the statistical sampling method offers a stand-

ard against which to measure all other methods for handling boundary pixels.

No matter what definition is chosen for boundary pixels by a candidate

method, the statistical sampling method can use that definition and provide

a minimum variance unbiased estimate of the average fraction of a boundary

pixel that contain; the category of interest (even conditioned on the classi-

fication, if one is given). hence, a best estimate for 
B  

is available and

can be used for hypothesis testing to facilitate the comparison of methods

for handling boundary pixels.

4.4 MULTICATEGORY LABELING

As was mentioned earlier in section 2, the analyst tends to be conservative

in Libelinq a categor y of interest, especially for the boundary pixels. Tn

the past, analysts were instructed to identify small-grain pixels and label

any other category as non,mall grains. The intent of this approach was to

label the small grains accurately. This produced high accuracies for those

18
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pixels identified as small drains. Whenever a pixel was labeled small grains

in Phase III, the probabilities of being correct were 91.1 percent (ref. 1).

The analyst did not label all the small grains as small grains. 	 In fact,

n Phase III, the analyst was able to identify only 78.6 percent of the

mall grains correctly. One of the major sources of this small-grain

omission error was the preponderance of boundary pixels, which are of course

partly small drains being identified as nonsmall grains.

Thus, if the reason for conservative labeling is that the analyst is only

concerned with one category of interest, then the obvious response is to

have the analyst. identify all categories within the segment. This approach

was adopted for North Dakota in August of the transition year and later

extended Lo ..11 the spring-grain states. Current plans are to use this

philosophy of identifying all categories in the corn and soybean experiments.

No results are as yet available on the effectiveness of this change to multi-

labeling. The cost has increased from the standpoint of interpretation time

and additional materials required for the analysis. At this time, the

approach appears to have a significant potential Value in reducing the pro-

portion estimation bias due to boundary pixels and labeling interior pixels.

Though not related to boundary pixels, an added feature is the study of other

libeling error sources. Whenever an omission error occurs, it will be known

as to what category the analyst was confusing with the category of interest.
i

This will greatly aid analyst training and feedback.

S. SUMMARY

Boundary pixels have been shown to be highly important as sources of pro-

portion estimation error with Landsat data. The particular definition chosen

for decidirnl which pixels are houndary has been found to be critically impor-

tant to any method cif handling the problem. Some of the many methods for

t	 handling boundary pixels are described in this paper. Two characteristics

'i

	

	 are connnon to e.11 the methods. First, there must be a procedure for deciding

which pixels to call boundary; and seronti, there must be an objective rule

for processing thrni. This processinu may be counting, performing a re?ression

^.
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,jnalysi!. on their tabulations, or assigning them to classes based on spectral

measurements. One of the proposed methods, the statistical sampling approach

to handling boundary pixels, was shown to be a standard by which any of the

other methods could be compared objectively and provided a general framework

for viewing the problem. This method also provided a way of producing un-

biased proportion estimates from lahelinq techniques that can be applied only

to interior pixels.

6. RECOMMENDATIONS

The following considerations are recommended for use in planning a boundary

pixel research program:

I. Conduct on additional analysis of the existing data.

h. Conduct a study to determine the actual stability of the ft's of the

statistical sampling method and establish how they might vary with such

factor ,, as the fraction of boundary pixels.

Tf^st and re valuate several machine algorithms on how well they can handle

boundary pixels using the statistical sampling method as a standard.

d. Investigate over larger geographical areas and with a greater number of

segments the feasibility of having analysts label only interior pixels

and simply denote boundary pixels as "boundary."

e. (valuate the dependence of the (i's on field size and shape.
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APPEND  X

DATA FROM BOUNDARY PIXEL STUDY ON KANSAS AND

NORTH DAKOTA BLIND SITES

The tabulation of results for the small boundary pixel study in Kansas and

fNorth Dakota are presented in tables A-1 through A-6. Tables A-2 and A-3

1	 contain the raw tabulations of Procedure 1 and LIST for Kansas and A-5
i	

and A-6 fnr North Dakota. The transformed values amenable for modeling

using the statistical samplinq approach are in table A-1 for Kansas and A-4

for North Dakota.



TABLE A-l.- BOUNDARY PIXEL STUDY OF KANSAS BLIND SITES

Procedure 1 LIST

Segment no.
XI

X2 Y X1 X2 Y

1032 1.7308 1.0318 4.2006 4.3270 4.1272 7.2295

1,033 0.0000 4.8520 1.6170 0.4902 1.9408 -1.7794

1153 0.4124 21.5556 7.6945 0.2062 5.8788 1.8157

1155 1	 0.0000 6.1815 2.9983 0.9037 4.7550 1.9527

1158 0.0000 0.0000 0.9189 0.6484 0.9598 1.7358

1166 0.4861 1.9120 11.9335 C'. 4861 1.9120 16.3316

1170 3.5329 10.6872 -0.9777 9.0846 2.2265 4.7522

1175 1.1024 '.3872 6.0505 2.7560 12.4659 11.3977

1180 1.6268 7.3236 -0.7518 3.2536 6.8928 9.8254

1183 1.1606 1.8664 -0.9446 6.3833 3.2662 6.3719

1	 1279 0.6506 1.7136 -3.5894 5.8554 4.2840 3.9796

1285 0.9338 10.5952 0.5601 1.4007 1.4448 3.3909

1290 0.0000 1.0380 -7.0656 9.0080 0.5190 3.8812

1293 0.6973 0.9126 -2.4968 0.6973 1.8252 -2.0405

1295 4.8650 9.1466 5.6433 8.2705 7.2210 10.5389

1297 0.7197 4.1931 -26.1042 0.7197 3.2613 -22.5891

1340 2.2328 6.8775 -1.5304 5. Q20 7.7945 13.6204

1343 3.6030 2.3785 -0.8845 4.2035 1.9028 -2.5377

1346 0.0000 1.4223 8.0594 0.6231 0.4741 7.2602

1851 2.0884 3.5992 4.1042 1.0442 1.3497 6.4981

1853 8.7244 31.1483 3.2513 8.2112 1.6490 5.9622

1859 0.9526 2.8926 0.2775 2.3815 1.9284 -2.1330

1861 0.4919 4.2471 0.1832 1.9676 2.3595 4.5303

1864 2.2076 4.1778 -0.6148 4.4152 7.8914 0.6644

1* 1 4.5990 9.0495 6.""00 2.5550 5.6820 C.2845

1885 5.5627 6.4120 14.4641 8.0912 6.8700 13.6435

r	 = 0.60633 a r	 0.22873b
XlX2 Xlx2

The correlation coefficient is significan t ly different from zero at
the 1-percent level.

bThe correlation coefficient is rot significantly different from zero.
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TABLE A-?.-- PROCEDURE 1 STUDY OF KANSAS BLIND SITES 

M

Segment
no.

P
BC

N
1

N
2

Base n
1

n
1	 2

n
SGl

n
SG2

n
B1

n
B2

1032 38.7 8635 1	 14038 22673 88 120(,) 69 9(1) 4 2

1033 6.9 779 21923 22702 7 199(3) 1 14 0 10

1153 23.5 235 22558 22793 5 202 3 31(2) 2 44

1155 12.1 1226 18153 19379 7 197(3) G 9 0 13

1159 20.1 3090 19603 22693 21 180(?) 17 17 0 0

1165 ?2.1 1103 21585 22681 10 199 5 12 1 4

1170 63.0 14208 8492 22700 124 84(1) 110 19 7 24

1175 43.9 4872 17788 22660 39 170 36 39 2 I	 16

1180 26.0 4e,08 17924 22732 26 183 17 30 2 1'

1183 15.1 4459 18137 22596 34 172(3) 18 12 2 4

1279 30.4 7245 15479 22174 49 159(1) 45 11 1 4

1285 18.1 4782 17978 22760 45 164 19 18 2 22

1290 41.5 9752 11681 21433 101 105(-)) 94 12 0 2

1293 12.5 1945 10182 12127 23 184(2) 13 13(2) 1 2

1295 42.5 7527 15225 "2752 58 139(2) 53 23(2) 10 19

1297 2.1 2285 2039? 22577 14 193(1) 12 42(1) 1 9

1340 56.8 6459 16229 22688 51 156(2) 47 70 4 15

1343 8.7 4448 16712 21160 35 166(8) 12 5 6 5

1346 11.5 P49 21858 22701 6 203(1) 4 2 0 3

1851 22.5 4622 18076 22698 39 177(2) 18 20 4 8

1853 28.7 7924 14780 22704 68 140(1) 36 15 17 67

1859 29.5 5523 17209 22 7 3? 51 157il) 32 29 2 6

1861 35.3 10274 12427 22701 92 116(1) 57 15 1 9

1864 35.8 6350 12520 13360 61 143(5) 50 19 4 9

1881 73.R 4629 18015 22644 40 168(1) 17 18 9 17

IM!, -,4.3 11 167 11334 ?2101 99 1 09(1 ) 67 13 1, 14

ar igures in par,-ntheses represent the nuiober of thrnsholded pixels.

	

01 . 0.72404	 si = 0.99781
1

	

82 - 0.03050	 = 0.30609
'd2

''y



9 1 = 0.52680

9 2 = 0.54625

s8 = 0.49548

1

s8 2 = 0.47139

TABLE A-3.- LIST BOUNDARY PIXEL STUDY OF KANSAS BLIND SITES 

Segment
no.

P
8C

N
1

N
2

Base n
1

n
2

n
SG1

n
SG2

n
Bl

n
82

1032 38.7 3635 14038 22673 88 120(1) 62 9 10 8

1033 8.9 119 21923 22702 7 199(3) 1 21 1 4

1153 23.5 235 22558 22793 5 202 3 43 I	 1 12

1155 12.7 1226 18153 19379 7 197(5) 4 15 1 10

1158 20.1 3090 19603 22693 21 180(2) 15 18 1 2

1166 22.1 1103 21585 22688 I	 10 199 4 8 1 4

1170 63.0 14208 8492 22700 124 84(1) 96 22 18 5

1175 43.9 4872 17788 22660 39 170 33 31 5 27

1180 26.0 4808 17924 22732 26 182 13 13 4 16

1183 15.1 4459 18137 22596 34 172(3) 7 10 11 7

1279 30.4 7245 15479 2271' 49 159(1) 36 7 9 10

1285 18.1 4782 17978 22760 45 164
I	

15 16 3 3

1290 41.5 9752 11681 21433 101 105(3) 72 10 20 1

1293 12.5 1945 10182 12127 23 184(2) II	 13 i2 1 4

1295 42.5 7527 15225 22752 68 139(2) 37 29 17 15

1297 2.1 2285 20392 22677 14 193(1) 11 36 1 7

1340 56.8 6459 16229 22698 51 156(2) 33 54 10 17

1343 8.7 4448 16712 21160 35 166(8) 10 11 7 4

1346 11.5 849 21858 22707 6 203(1) 3 5 1 1

1851 22.5 4622 18076 22698 39 177(2) 16 17 2 3

1853 28.7 7924 14780 22704 68 140(1) 28 is 16 10

1859 29.5 5523 17209 22732 51 151(1) 32 34 5 4

1861 35.3 10274 12427 22701 92 116(1) 52 11 4 5

1864 35.8 6350 12520 18860 61 143(5) 46 21 8 17

1881 23.8 4629 18015 22644 40 168(1) 21 27 5 12

1885 X4.1 11307 11134 222701 99 109(1) 65 17 16 15

a Figures in parentheses represent the number of thresholded pixels.
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TABLE A-3.- LIST BOUNDARY PIXEL STUM OF KANSAS M INP SITES'l

Segment
no.

p
PC

N
1

N
Z

Base n
1

n
2

n
SG1

n
SG2

n
Bl

n
82

1032 38.7 8635 14038 22673 88 120(1) 62 9 10 8

1033 8.9 779 21923 22702 7 199(3) 1 21 1 4

1153 23.5 235 12558 22793 5 202 3 43 1 12

1155 12.7 1225 18153 19379 7 191(5) 4 15 1 10

1159 20.1 3096 19603 22693 21 180(2) 15 18 1 2

1166 22.1 110? 21585 22688 10 199 4 8 1 4

1170 63.0 14208 8492 22700 124 84(1) 96 ?2 18 5

1175 43.9 4872 17788 22660 39 170 33 131 5 27

1180 26.0 4808 17924 22732 26 183 13 13 4 16

1133 15.1 4459 18137 22596 34 112(3) 7 10 11 7

1279 30.4 7245 15479 22724 49 159(1) 36 7 9 10

1285 18.1 4782 17978 22760 45 164 15 16 3 3

1290 41.5 9752 11681 21433 1 101 105(3) 72 10 20 1

1293 12.5 1945 10182 121?7 23 184(2) 13 12 1 4

1295 42.5 7527 15225 22752 I	 68 139(2) 37 29 17 15

1297 2.1 2285 20392 22677 14 193(1) 11 36 1 7

1340 56.8 6459 16229 226,88 51 156(2) 33	 154 10 17

1343 8.7 4448 16712 21160 35 166(8) 10 11 7 4

1346 11.5 849 21858 22707 6 203(1) 3 5 1 1

1851 22.5 4622 18076 22698 39 177(2) 16 17 2 3

1853 28.7 7924 14780 22704 68 140(1) 28 18 16 10

1859 29.5 5523 17209 22732 51 157(l N 32 34 5 4

1851 35.1 102'4 12427 22701 92 116(1) 52 11 4 5

1864 35.8 6350 12520 18860 61 143(5) 46 21 8 17

1881 23.P 4629 18015 22644 40 168(1) 21 27 5 12

1885 54,3 11367 11314 2?701 99 109(1) 65 17 '6 15

a Figures in parentheses repre,ent the number of thresholded pixels.

13 1	0.SF690	 58 = 0.49548

1

d 2	 0.54625	 s8^ = 0.47139
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TABLE A-4.---BOUNDARY PIXEL STUDY OF NORTH DAKOTA MIND SITFS

Segment no.

Procedure 1

Y X

LIST

X X,, X,, _ Y
1 L 1

1602 11.6679 11.7234 13.2698 19.7847 9.9198 10.9025

1604 3.7890 12.0621 3.2374 11.3670 27.1404 18.2598

1606 5.0643 1.6320 -0.4161 5.0643 8.1090 0.1466

1616 3.1044 5.3364 3.066& (? .1958 ll.il75 10.3936

1619 I	 1.8248 1.0210 0.7811 3.1934 3.0630 3.6269

1622 1 J 1,040 1 .0308 2.6032 13.5690 4.1232 7.4998

1625 0.0000 2.8566 -1.7298 0.0000 4.7610 -1.5924

1635 O.00nn 0.5266 -3.4571 0.0000 0.5266 -4.6316

1637 0.0000 0.4727 -3.5637 0.0000 0.4727 -2.6183

1640 1.10111 1.3014 -2.3832 4.9561 6.9408 4.9781

1648 '1..5242 5.0670 5.6236 3.1863 8.1072 6.6370

1652 3.2697 6.3817 -0.0360 7.1736 15.2179 7.1847

1661 0.9490 4.4838 2.0305 I	 0.4745 (	 0.0000 -2.4059

1663 0.9918 1.4196 4.5095 0.4959 1.4196 3.5858

1889 1.3968 0.0000 0.7601 12.1056 3.0402 8.3741

1902 0.0000 3.8112 2.9232 0.0000 0.4764 1.0176

1903 1.6761 5.6280 5.9761 0̂.9392 8.9110 12.5011

1913 0.	 604 2.7060 11.8000 2.8020 5.9532 14.2834

1927 0.0000 0.9390 -3.4258 0.5146 2.8170 -2.9112

r	 =	 0.7751 16
X1X2

r	 = 0.58203a
X1 X2 

a The cnrrp laLion coefficient is significantly different from zero It the
1-percent level.



TABLE A-S.— PROCEDURE 1 BOUNDARY PIXEL STUDY OF NORTH DAKOTA'

Segment
no.

p
IT

N 1 N
2

Base n
1

n
2

n
SGl

n
SG2

n
B1

n
B2

1602 38.24 6534 6092 12626 102 101 43 7 23 26

1604 52.42 5930 16784 22114 62 147 44 61 9 24

1606 32.94 3931 10637 14574 48 153(3) 33 31 9 16

1616 66.76 11403 11320 22728 97 112 87 42 6 12

1619 52.69 11948 10931 22779 114 94(l) 97 15 4 2

1622 5C.2A 12271 10400 22671 1;0 89 92 12 4 2

1G25 21.54 1725 ?0890 22615 14 194(1) 13 31 0 6

1635 16.03 ?697 680A 9505 70 136(3) 13 17 0 1

1637 35.77 3992 14552 18544 36 166(7) 31 44 0 1

1640 52.10 10872 11810 22682 97 120(2) 30 24 2 3

1648 20.29 5453 17282 22735 57 150(2) 18 14 6 10

1652 30.62 5090 17609 22699 48 158(3) 32 32 7 13

1661 40.82 6499 13330 19819 69 135(5) 45 35 2 9

1663 51.84 1750 14915 22674 69 139(1) 63 34 2 3

1899 59.33 15205 7469 22674 144 65 116 9 3 0

1902 8.64 315 22445 22760 1 207(1) 0 12 0 8

1903 17.35 2792 19923 22715 22 187 17 4 3 12

1913 29.89 2675 20051 22726 42 163(4) 24 21 2 5

1927 31.36 7?07 15378 22585 62 154(2) 53 16 0 2

a Figures in parentheses represent the number of thresholded pixels.

a 1	 0.72656	 sa = 0.54149
1

	

B 2 = 0.19814	 s6 = 0.34859

2

'l

;y

i



TABLE A-6.- LIST BOUNDARY PIXEL STUDY OF NORTH DAKOTA

Segment

no.
P

GT
N

1
N

2
Base n

1
n

2
n

SG1 n G2S 81n n62

1602 38.24 6534 6092 12626 102 107 45 10 139 22

1604 52.42 5930 16784 22714 62 147 31 42 27 54

1606 32.94 3937 10637 14574 48 153(8) 32 31 9 17(1)

1616 66.76 11408 11320 22728 97 112 78 36 17 25

1619 52.69 111846 10911 22779 114 94(1) 93 13(l) 7 6

1622 50.22 12771 10400 22671 1?0 89 80 13 19 8(l)

1625 21.54 1725 ?0890 22615 14 194(1) 11 36 0 101)

1635 16.03 2697 6808 9505 70 136(3) 12 30 0 1

1637 35.77 3992 14552 18544 36 166(7) 31 42 0 1

1640 52	 10 1087? 11810 22682 87 120(2) 69 21 9 16

1648 20.2Q 5453 17782 2273ti 57 150(2) 13 12 9 16

1652 30.62 5090 17609 22699 48 158(3) 26 23 16 31(2)

1661 40.82 6489 13330 19819 69 135(5) 47 42(3) 1 0

1663 51.84 7759 14915 22674 69 139(1) 62 37(1) 1 3

1899 59.33 15205 7469 22674 144 65 104 5 26 6

1902 8.64 315 22445 22760 1 207(1) n 16 0 1

1903 17.35 2792 19923 22715 22 187 7 16 19

1913 29.89 2675 20051 22726 42 163(4) 19
1

19 10 1;(1)

1921 11.36 7207 15.78 22585 62 145(2)	 1 52116 1 0

a Figures in parenthese s. represent the number of thresholded pixels.

	

6 1 = 0.49496	 so 1 = 0.19963

	

B 2 = 0.43250	 s8 2 = n.16310

-8
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