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CHAPTER I 

INTRODUCTION 

Snowmelt runoff is a primary source of water supply in 

many mountainous areas of the world, including much ot the 

western U.S. Water is stored all winter in the form of snow­

pack, then released by melting during the spri~g and summer 

months. Because most of these areas experience very little 

summer precipitation, almost all :he available water is de­

rived from melted snow. 

I 

In order to maximize the economic benefits of the water 

supply, forecasts ot runoff volume are required. These fore­

casts are used for a variety of purposes, including planning 

for agriculture, municipal water supply, power generation, 

pollution control, recreation, navigation, and flood control. 

Such a variety of uses re~uires a variety ot forecast lengths, 

from one day to seasonal. The accuracy of these forecasts 

has a significant effect on the economic benefits of managing 

the water resource. 

In recent years, a variety of forecast procedures have 

been developed and used to predict snowmelt runoff. ~~ere pre­

viously most of the operational models were empirical, such as 

the regression equation (SCS, 1970), a number of conceptual 

models have recently been developed (Martinec, 1975; Anderson, 

1976; Corps of Engineers, 1975). Some of these models have 

been developed to utilize new data sources, most notably the 

.. • 4 , 
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I 

I 
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measurements ot snow covered area made trom Landsat satellite 

imagery. 

The primary purpose ot this stud, is to test and compare 

the accuracy ot a representative sample ot the available snow­

celt models. Most ot the newer models have only been used on 

a few watersheds to date and direct comparisons ot aocuracy 

can only be made it all models are tested with a data base 

trom the same watershed and the same fears ot record. Testing 

allot the available models would be extremely expensive and 

time consuming, so only a representative sampling is used. 

2 

Some ot the techniques used in various models tor increas­

ing accuracy ot prediction are also to be tested. Spatial sepa­

ration ot the watershed into smaller, more homogeneous areas is 

thought to improve accuracy ot torecast. This seems reasonable 

because the watersheds on which the models are used are usually 

mOUf,tainous, encompassing a wide range ot slopes and elevations. 

So~e ot the models use snow covered area data for improving the 

estimate of snowpack storage; this is another ot the techniques 

~hich will be tested. 

Another objective ot this study 1s to determine whether ,tc­

~urate snowmelt runoff forecasts can be made us1ng only snow 

c0'l~red area data. If this is possible, data collection for the 

:r.:"..;:::elt models · .... ould be greatly simplified. !·iany of the cur­

r~ntly operational models are based on snow water equivalent 

~easurements of the snowpack. These ceasurements must be made 

in the field, either by automated data collection stations or 

i 

I 
I , 
I 
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by man. Because the measurement sites are otten remote, col­

lection ot this data is expensive. It the Landsat derived 

snow covered area data can be substituted tor the snow water 

e~uivalents, data collection will be less expensive and easier. 

Some data collection systems, notably the Landsat system 

ot deriving snow cover area, are subject to delays between data 

observation and data collection. The ettect ot these delays on 

model accuracy should be evaluated; some models may only pro­

vide acceptable accuracy when used with real-time data. 

.. .. ....,;.C. 



CHAPTER II 

LITERATURE REVIEW 

Many ditterent models have been developed and used tor 

predicting snowmelt runott (Leat, 1977; Baker and Carder, 

1977; Zuzel and Cox, 1978). These models V8:y considerably 

in complexity; the simplest models are based solely on sta­

tistical techniques, while the most complex methods attempt 

to model the individual processes involved in the melting ot 

a snowpack. Some models are designed to predict streamflow 

tor any given day or series ot days, (Leat, 1977; Martinec, 

197;; Tangborn, 1977) while other models give only seasonal 

predictions (Zuzel and Cox, 1978), Generally, snowmelt models 

may be categorized on the basis ot complexity and length ot 

forecast period. 

Empirical models are based on statistical correlations 

between predictor variables and the criterion variable, volume 

of snowmelt runoff. This type of model is most often used for 

seasonal predictions. Snow water equivalent m~asurements, pre­

vious runoff volumes, and precipitation totals are the most 

co~~on predictor variables (SCS, 1970; USACE, 1956). Theory 

is not very important in forMulating empirical models; the ob­

Jecti'le is to explain as much of the variation in the criterion 

v3lues as possible using whatever dat~ are available. It is 

q'li te common for these models to include two predictors express­

~1 in different units, such as snow water equivalent (in inches) 



and previous winter runott (in volumetric units). 

Water balance models are more conceptual than th. simple 

empirical models. The water balance is an accountinl or all 

the water enterinl and leavin, the basin. The volume of water 

stored in the snowpack is estimated trom preCipitation or water 

equivalent data; allowances are made tor losses due to evapora­

tion, ,roundwater stora,e, and transpiration; the remaininl volume 

is the seasonal snowmelt runott prediction (Zuzel and Cox, 1978). 

Loss rates may be estimated either empirically or conceptually, 

as may the snowpack stora,e. Most water balance models are some­

what empirical. 

Short-term runoff predictions usually require models of ,reat­

er complexity than the models used tor seasonal runoff. Not only 

must the total volume of water stored in the snowpack be estimat­

ed, but also the proportion of that volume that will melt and 

leave the watershed as streamflow in a given time period must 

be estimated. The amount of water generated by melting snow 

is a function of the energy available for this purpose. there­

fore, the most complex snowmelt models are generally based on an 

energy balance (Zuzel and Cox, 1978). 

E!'lergy balance procedures attempt to fr../del the physical pro­

c~sses involved in snowmelt runoff. The amount of available energy 

13 commonly estimated by the air t-.}mperature, although some models 

include such factors as 1ncoming solar radlat1on, cloud cover, 

~lbedo, and net long-wave radiation (Anderson, 1976). These 

models often require that the watershed be subdiv1Jed into small, 

-1 
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homogene~us areal so that the ava1lable energy tor each location 

can be estimated mor. accurately (Leat, 1977). S1nce snowmelt 

models are ,enerall, used 1n mountainous areas, slope and aspect 

can result in large d1tterence. 1n 1nc1dent energy trom one area 

to another. Evaporation, transpirat10n and groundwater losse. 

are also e.t1mated conceptuall, in some energy budget models 

(Leat, 1977). 

Mod.l Select10D 

To test the study obJect1ves, models having s1gn1f1cant dit­

ference. ~n 1mportant character1st1cs had to be selected. Cr1-

teria for model select10D include the frequency or current usage, 

1nput data requirements and whether or not these data are typi­

cally available, the degree vf model complexlt" and the length 

of forecast period. Add1t10nally, because snow covered area 

(SCA) 1s more read1ly ava1l~ble than in prev10us de~ades, models 

that e1ther included SCA or we:e capable of be1ng modif1ed t~ 

1nclude 1t were given more consideration. 

Three models were selected for compar1son, with several 

~ethods of evnluation tor each model. The model types studied 

~e:e the regression model, the Tangborn model, and the ~artinec 

r:01el. 

!h~ e"ress1oD Models 

The most common form of empirical model is the linear re­

gression. These ModelJ are widely used for snowmelt runof! pre-

dictions in the western U.S. (USACE, 1956; SCS, 1970). The, are 
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easily calibrated and can use many different hydrologic vari­

ables as predictor variables. These models are used for mak­

ing seasonal runoff forecasts, but due to the empirical nature' 

of the method, they may also be used to give predictions for 

shorter time periods. 

Linear regression models are based on the assumption that 

there is a linear relationship between the predictor variables 

and the criterion variable. This assumption implies that as 

the value of the predictor variable incr~ases, the value of 

the criterion variable changes at a constant rate. The equa­

tion that relates the value of the criterion to the value of 

the predictor is of the torm: 

Y = a + bX (2-1) 

in Which Y is the criterion variable, X is the predictor vari­

able,Lnd a and b are the regression coefficients (Hiller and 

Freund, 1977). 

Many hydrologic variables have approximately linear rela­

tionships with the volume ot snowmelt runoft. A few ot these 

variables are snow water equivalent, winter precipitation, and 

snow covered area. The linearity of the relationships is due 

to the fact that these variables are indicators of the volume 

of water stored in the snowpack. Because the relationships 

between these predictor variables and the volume of runoft 

are only approximately linear, many difterent lines may be 

drawn which appear to fit the data. Some ot the lines pass 
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through a number ot the data points, but due to deviations 

from linearity, a straight line that will pass through all 

of the data points can not be drawn. 

The method of selecting the best regression line tor a 

set of data pOints is based on minim1zing the sum ot squares 

of the errors. For each observed value ot the predictor, two 

values ot the criterion variable appear; the first is the cor­

responding observed value and the second is the value predict­

ed by the regression equation. The difference between these 

two values is termed the error of prediction. The regression 

line is defined as the line that results in the minimum value 

of the sum of the squares of the errors. The coefficients of 

the regression line can be derived using the equations: 

and 

b = rXY - (rXrY)!n 
rx2 - (rX)2/2 

a = (rY)/n - b(rX)/n 

(2-2) 

(2-3) 

8 

in which X and Yare the predictor and criterion variables, 

respectively, and n is the number of observations (Hays, 1965). 

By using these equations, the line of best fit can be determined. 

In natural systems the value of the criterion variable 1s 

often a function of more than one predictor. The relationships 

between the criterion variable and the predictors may be assumed 

to be linear, resulting in a prediction equation of the form: 

! • 
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9 

in which Y is the criterion variable, Xi is the ith predictor 

variable, and a and bi are the regression coefficients. Models 

of this type are called multiple linear regressions. The re­

gressi~n coefficients are unique and may be calculated from 

equations similar to Eqs. 2-2 and 2-3. In many cases, the in­

clusion of more than one predictor variable results in a more 

accurate model (Davis, 1973). 

The Tangborn Model 

The Tangborn equation is a water balance model (Tangborn 

and Rasmussen, 1976). The structure of the model was establish­

ed conceptually, but calibration is accomplished using regression 

methods. The model may be used for any length of forecast period 

from one day to the entire snowmelt season. The only data re­

quired are daily precipitation and runoff values, although daily 

temperature may be included for short forecast periods. 

The basic form of the model is: 

R* = a P + b - R s w w (2-5) 

in which R: is the predicted runoff volume, Pw is the total 

depth of precipitation observed during the preceding winter, 

Rw is the winter runoff, and a and b are regression coefficients. 

The structure of the model is based on the assumption that the 

volume of water stored on the watershed is equal to the amount 

of winter preCipitation minus the winter runoff. The regression 
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coefficients represent losses and moditications such as trans­

piration, groundwater storage, and evaporation. 

10 

An important feature of the Tangborn model is the test 

season modification. In using this method, a short test season 

prediction model with the structure ot Eq. 2-, is developed. 

At the end of the test season, the error of the test season 

prediction is evaluated and used to modify the pred1ction for 

the forecast season. The form of the forecast model becomes: 

(2-6) 

** * in which Rs is the revised runoff prediction; Rs is the or1g1nal 

prediction; Pw and Pt are the winter and test season precip1ta­

tion, respectively; ~ and Rt are the winter and test season run­

off volumes, respectively; a, b, and care coeff1cients; and e t 
is the error of the test season predict~.on. The reasoning be­

hind this modification is that the test season error is a result 

of the inaccuracy of estimating basin storage by subtracting 

winter runoff from winter precipitation. Because the forecast 

season prediction is based on the same estimate, the test season 

error should be related to the prediction season error. 

Figure 1 shows the relationship of the various seasons. In 

order to use the test season approach, data from the present and 

a number of previous years are compiled. For each year, precipi­

tation and runoff totals are computed for the winter and test 

seasons; runoff totals are also computed for the prediction 

season of each year, except for the current year (the value for 

... 

;J 
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October 1 
Start of Winter Season 

March 30 
Start of 2-day Test Season 
April 1 
Start of Prediction Season 

July 30 
End of Prediction Season 

FIGURE 1. Relationship of the Winter, Test, and Prediction Seasons 
for the Tangborn ~fodel 

11 
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the current year is not yet known). Note that the prediction 

date, April 1, is at the end of the test season; therefore, 

observed values or runoff and precipitation during the test 

season are available for the current year. Once all the data 

has been obtained, the observed test season runoff volumes are 

regressed onto the winter precipitation values, resulting in a 

calibrated equation ot the form: 

R* = a P + b - R (2-7) t w -v 

* in which Rt is the predicted, test season runoff. The test season 

error in each year is then computed by the e~~tion: 

R* R et = t - t (2-8) 

Next, a model for estimating the prediction season ru~orf is form­

ed by regressing the prediction season runoff on the sum or the 

winter and test season precipitation depths for each ot the pre-

vious years: 

(2-9) 

The errors are then calculated in a manner similar to that used 

for the test season: 

* es = R - R (2-10) s s 

in which es is the prediction season error. The coefficient ot 

the test season error, c in Eq. (2-6), can then be determined. 
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13 

The coefficient is computed using the test season and predic­

tion season errors from previous years, according to the equa­

tiona 

c = 
E(et*es ) 

t(et )2 
(2-11) 

* The original runoft season prediction, Rs ' which was calcu-

lated for the current year in Eq. (2-9), is adjusted by the pro­

duct ot c and the current year test season error; the final pre­

diction is: 

(2-12) 

** in which Rs is the final prediction. 

When using the Tangborn model for prediction periods ot a 

few days, accuracy may be increased by including temperature 1n 

the model (Tangborn, 1978). Tangborn suggested the following 

composite temperature variable, At: 

(2-13) 

in which if is the daily mean temperature, aT is the daily range of 

temperature, and a is a coefficient. The daily mean temperature 

is computed from the observed maximum and minimum tempe. ... atures 

for the day; the range of temperature is the difference between 

the maximum and minimum observed values. The reasoning behind 

this equation is that the average daily mean temperature 1s an 

4. 4 
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estimator ot the amount ot convective energy available tor 

melting snow, and that the ditterence between maximum and mini­

mum temperatures can be used to estimate the amount ot radiant 

energy available tor this purpose. Large differences between 

the daily maximum and minimum are indicative ot clear skies, 

while a small daily range ot temperature indicates cloud cover 

and, therefore, less radiant energy. The relative importance 

of the two components (radiative and convective) is controlled 

by the coefticient~. When the temperature term is included 

in the Tangborn model, the equation becomes: 

R*** = 
s 

(2-llf.) 

* in which es is the prediction season error estimated trom the 
*** temperature function, and Rs is the revised runoft prediction. 

The value of the prediction season error is estimated trom the 

temperature function At using the equation: 

(2-1;) 

in ',lhieh d and e are coetticients determined by regression. 

7angborn reports a minimum reduction in standard error of 

esti~ate of nine percent due to inclusion of this tempera­

ture term (Tangborn, 1978). 

':'he !1artinec Hodel 

The Hartinec model is conceptually derived and may be 

~l::Gi f')r pred ie tion periods or one day or longer (:4art inec ,1975). 
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The amount of energy available for anowmelt runoft is estimated 

by a daily temperature lndex. Data requirements lnclude dally 

temperature, precipitation, and snow covered area. The form of 

the model is: 

Q~ = c(dTSCA+P) A(l-K) + KQn-l (2-16) 

15' 

ln which Q~ is the predicted volume of runoff for day n, c is a 

dlmenslonless runoft coefflcient, (~ is a degree-day factor, T is 

the value of the daily temperature lndex on day n, A ls the total 

area of the watershed, SCA ls the percentage of the area that is 

covered by snow on day n, K ls a dlmensionless recession coeffi­

clent, and Qn-l is the volume of runoff observed on the previous 

day. The value of the daily temperature lndex is computed using 

hourly data If available; otherwise, the dally maximum and minimum 

temperatures are used. The dally index is a measure of the average 

number of degrees above freezing for the temperature on that day. 

The values are expressed in degree-days celsius. 

The first term of Eq. (2-16) represents the amount of water 

that is generated by precipitation and melting snow on day nand 

that is expected to leave the watershed on that day. The value of 

the degree-day factor, d, is expressed in inches of water per degree 

Celsium; therefore, when the temperature index is multiplied by this 

fact.or, an estimate of the depth of water generated by snow~elt is 

obtained. This deeth is multiplied by the total area of the water­

shed, A, and by the percentage of the total area that is covered by 

snow (SeA) to get an estimate of the volume of water produced by 

m~lting snow on day n. The precipitation, P, is assumed to be a 

constant depth over the entire watershed; therefore, the product 
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of P and A is an estimate of the volume of rainfall on day n. 

The sum of the volume of melted snow and the volume of precipi­

tation is referred to as the generated runoff. 

Not all of the generated runoff leaves the watershed on 

the day of generation. Some 1! 'ost to groundwater storage 

and evapotranspiration; this proportion is represented by c, 

the runoff coefficient. Furthermore, on large watersheds the 

outlet of the basin is quite a distance from the source of much 

ot the generated melt; therefore, much of the water is in transit 

to the outlet for several days. The proportion of water that 

does not reach the outlet on the day that it is generated is 

represented by K, the recession coefficient. Thus, only the 

proportion (l-K) of the runoff generated on day n actually reach­

es the outlet on day n. 

The second term in the equation, K·Qn_l' 1s called the re­

cession term. It represents the amount of water generated on pre­

vious days that is expected to appear as runoff on day n. Be­

cause K 1s nearly equal to 1 on large watersheds, this recession 

term 1s often considerably larger than the generated runoff term. 
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CHAPTER III 

DATA BASE DEVELOPMENT 

The selection ot models was subject to tour important 

constraints. First, the models selected should be representa­

tive of those in use and retlect variation in levels ot conceptu­

al development. Second, the models selected should be designed 

tor use over a range ot torecast periods, trom one day to the 

entire snowmelt season. Third, the input requirements ot the 

model should be similar to the input data that is usually availa­

ble tor forecasting. Fourth, a data base that includes all in­

put requirements tor all models must be available tor a single 

watershed. The three models described in the previous chapter 

satisfy these requirements. 

Data requirements vary significantly for the three models. Con­

ceptual models generally require a more extensive data base than 

simple empirical models. Also, short-term models require that 

the data be collected more freq~ently than long-term models. 

ifuile some of the data requirements of the models are the same, 

these data requirements can be most easily discussed by consider­

ing separately the required data base for each model. 

Input Data Reguirecents of the Models 

P.egression Models 

Regression models, which are used tor long-term forecasting, 

can include almost any hydrologic variable as a predictor; the 

~orth ot any variable depends on its correlation with the forecast 



ra .f. W ..... 

I 

1 

criterion variable, which is the amount ot runott observed 

durin, the torecast period. Frequently u.ed predictor vari­

ables lnclude snow water equivalent measurements, wInter pre­

cIpItation, and winter runoft. The snow water equivatent is 

measured at many sites in the mountains of the westera U.S., 

commonly on the first days ot February, March, April, and May. 

PrecIpItation and runoff are also measured at many locatIons, 

usually on a daily basis; these dally values are summed up to 

derive the seasonal toLals, which are used in the regressIon 

equations. In this st;1dy, snow covered area data were tested 

for use 1n regression equations; the percentages of the total 

watershed area covered by snow on April and May 1 were used as 

predictor variables. 

Tangborn Model 

~he Tangborn model can be used for both short-term and 

long-term prediction. The model requires daily values of pre­

cIpitation and runoff during the snowmelt season; also, the 

total precipItation and runoff observed during the preceding 

winter is needed. No other data are required, although a 

~odification to the short-term model has been proposed by 

!angborn (1978); this modIfied model requires daily ~aximum 

and minimum temperatures, in addition to the precipitation 

o.nd runoff data. 

~~artinec Model 

The Martinec model is used for predicting runoff for short 

time periods (up to 15 days in thIs study). Data required on a 

-~ .......... ~-- ----------- ~ - _. .~...-- -_ ... -. 
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da.11y basls are the hourly or maxlmWl and mlnimWl tempera tur., 

preclpltatlon, snow covered area, aDd runotf. The accuracy or 

the model may be tlDprove4 by subdlvldlnc the watershed lnto 

elevation zones. It separation by elevation is required, the 

dally snow covered area data must be separated into elevation 

zones; the zonal temperature and precipitation data can be extra­

polated trom base station readings. 

Selection ot a Test Watershed 

In order to allow dlre~t comparlson ot the results of test­

lng the varlous ~~dels, all or the models should be tested on 

the same watershed ~inl data from the same years. Data re­

quired for this testing program are daily ave rag. temperature, 

daily prec1pltatlon, daily snow covered area (div1ded into ele­

vation zones), dally runoft, and monthly snow water equlvalents. 

This data must be ava11able for a number of years to ensure a 

representative sample. Furthermore, the models must be tested 

for years other than those for wh1ch they are calibrated ln 

order to simUlate a true prediction sltuation. 

The Kings Rlver watershed, in the Sierra Nevada mountalns 

of Ca11fornia, was selected as the test site. The watershed 1s 

19rge with a total area of l~, square miles. The elevatlon 

r'1r.ges from less than lOiJO t·.::et to nearly 13,000 feet. The 

~(:r.~ ral or ientat lon of the basin is eas t-wes t, 3S shown 1n 

Fig. 2. All of the data requlred for calibratlng and testing 

the models are available for this watershed, except ~aily snow 

cO~/er43d area, which must be interpolated from a few observations 
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each year. 

Until 1973, observations of snow covered area were made 

by low altitude aerial mapping performed by the u.s. Army Corps 

of Engineers. This process is expensive, and snow covered area 

data were only collected for a few major snow basins prior to 
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the Landsat satellite program. For most basins, then, snow 

covered area records only go back to 1973, which is an insuf­

ficient length of record for this study. The Kings River basin 

is one for which snow covered area data are available from before 

the Landsat program. All other required data are available from 

a number of stations in the basin, with at least 2; years of 

record. The Corps of Engineers began mapping the snow covered 

area on the Kings River basin four times per year in 19;2, and 

continued to do so until 1973. Since that year, Landsat imagery 

has been used to derive snow covered area data as often as possi­

ble. The Landsat satellites provided imagery of the Kings River 

watershed every 18 days in the period 1973-1977. Unfortunately, 

cloud cover often obscured the basin; the actual measurement 

interval for snow covered area is as great as 36 days. 

Derivation of Daily Snow Covered Area Data 

The ideal data base for testing these models would include 

daily observations of snow covered area, divided into elevation 

zones, for at least 1; years. This data was not available for 

any watershed, so the missing data were generated from the ob­

servations that were available. Earlier investigators (Moravec, 

1977) have suggested that a good estimation of the snow cover 
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depletion curve could be derived trom tour or rive data points. 

The observed snow covered area is plotted versus date ot obser­

vation, and a smooth S-shaped curve is drawn through the data 

pOints. When this method was applied to the Kings River data 

collected tor 1973 through 1977, the smooth depletion curve re­

quired could not be drawn tor one ot the years without gross in­

accuracies. The graphs are shown in Figure 3. Note that in 1977 

the snow cover taIls ott in April, then increases later in the 

season by 25 percentage pOints. Clearly, an S-shaped depletion 

curve cannot be drawn tor this year. Judgments as to the suit­

ability ot the S-curve method for the Kings River basin are based 

only on the years 1973-1977, because the data provided for the 

other years (1952-1972) consists ot only four observations per 

year, which were made on May 1, May 15, June 1, and June 15 of 

each year; in most years this is the period of maximum ablation, 

but the data give little indication of the snow covered area or 

ablation rate early in the melt season. 

Estimates of the snow covered area on April 1 of each year 

were required for use as a predictor variable in the April regres­

sion models. Observations of snow covered area for dates prior 

to April 1 were available only from the Landsat data. Values 

of April 1 snow cover were derived from the S-curves in Fig.3 

for the years from 1973 to 1977. In order to estimate the April 

1 values for the r9maining years, a regression model was formed 

and calibrated using the data from 1973-1977. The data availa-

ble for making these estimates consisted of previous winter pre­

cipitation, daily temperature, and the April snow water equivalents. 

AM 5 .4 
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Investigation showed that the best regression model that could 

be formulated used the precipitation total from October 1 to 

April 1 for estimating April 1 snow covered area. Although 

only five years of data (1973-77) were available for calibrat­

ing these models, the correlation coefficients showed that a 

significant relationship existed. Due to the amount of error 

inherent in this method of estimating snow cover before May 1, 

it was decided that daily snow covered area values would not 

be derived for this time period. Daily values of snow covered 

area were derived only for the period May I-June 15, during 

which observed data were available every 15 days for the years 

prior to 1973. 

Daily snow covered area values were generated simply by 

straight line interpolation between the four observed values for 

each year. While this method certainly smooths out the day-to­

day variation in snow covered area, no data were available that 

could be used to calibrate a model that would reflect the daily 

variation more accurately. Straight line interpolation would 

probably be much less accurate in other time periods, but general­

ly the period from May 1 to June 15 is one in which the snow cover 

is melting quickly; the beginning and end of the depletion curves 

were not observed during this time period (see Fig. 3). This 

suggests that Hay 1 - June 15 is the time of maximum snowmelt­

derived runoff, a suggestion that is confirmed by the runoff hy­

drographs. Since runoff from snowmelt is maximum during this 

time period, it makes sense to test the models for short-term 
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runoff prediction on the data from this time period. Predic­

tion of runofr during August, for instance, should not be based 

on snow data, because there is verr little snow being melted 

during August. Just how late in the summer the runoff can be 

successfully predicted from snow data is a factor that must be 

determined. 

Once daily values of snow covered area were generated, the 

data had to be divided into elevation zones. Data from the ~at 

imagery of Kings River basin for 1973-1977 has been compiled for 

elevation zones at intervals of ,00 feet. Graphing the total snow 

covered area versus the percent in each zone for these years show­

ed that there was generally a high correlation between the values. 

These graphs are shown in Fig.~. Regression equations were de­

veloped for predicting the percentage of snow cover in each zone 

from the total snow covered area. These equations were then used 

with the daily snow covered area values previously generated to 

derive daily values for each elevation zone for the time period 

Hay 1 - June 15. Thus, an estimate of the required daily 

zonal snow covered area data was developed from the available 

data base. Almost certainly, the estimated data exhibits less 

daily variation than would the true values; but in the absence 

of measured data, these estimates must be used for testing the 

r~moff prediction models. 

Prediction of Input Data for Use During the Forecast Period 

lilian actually making a forecast of runoff for any given time 

period, the values of temperature, preCipitation, and snow covered 
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area are not available for the days during the forecast period; 

data are only available for the days prior to the forecast date. 

In an actual prediction situation, the Martinec model would re­

quire predictions of the temperature, precipitation, and snow 

cover for each day ot the forecast period. Many methods of pre­

dicting these values are available. An investigation was con­

ducted to determine the most accurate method of prediction for 

each variable and the best methods were incorporated into the 

Martinec model. The actual measured daily values are used in 

model calibration, and the estimates are needed only for test­

ing the model. 

Temperature Prediction 

Temperature can be predicted for a few days at a time using 

a model based on the normal temperature for each day and the de­

viation from normality observed on the preceding days. First, 

the normal average daily temperatures are calculated for each 

date by averaging the daily temperatures observed on that date 

during the previous 24 years. These 24-year normal daily temper­

atures define a smooth temperature curve, as shown in Fig. 5. 

~ .. lhen a prediction is made, the difference between the normal 

temperature and the actual temperature for each of the previ-

ous few days is calculated; the average of these differences is 

the deviation from normality expected for the next few days. 

Thus, if the temperature on the previous few days was lower 

than normal by an average of five degrees, the predicted 
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temperatures tor the next tew days would be tive degrees below 

the normal temperatures tor those days. The accuracy or this 

method or predicting temperature is dependent on the number or 

previous days used in computing the average deviation trom normal. 

For one day predictions, the correlation coetticient between pre­

dicted and observed values i~ 0.861 when only the previous day de­

viation is used, but it the devlation tor three ~revious days is 

used the correlation is only 0.690. For three day predictions, 

the corresponding correlations are 0.669 and 0.,66. The temper­

ature can be predicted most accurately by using the deviation 

trom normal tor the previous day alone, rather than the average 

deviation tor the previous tew days. 

The alternative method ot temperature prediction is to as­

sume that the actual temperature on each day will be equal to the 

normal temperature tor that date. Tests showed that tor predic­

tion periods ot more than e~t days the normal temperature pro­

vides a better estimate ot the observed value than does the 

method using the previous day's deviation, while tor shorter 

time periods the previous deviation method was more accurate. 

Comparison of the accuracy ot the two methods for various time 

periods is shown in Fig. 6. 

Pr~1iction of Precipitation 

Precipitation is much more difficult to predict than temper­

ature, due to the intermittent nature of the phenomenon. In an 

actual short-term prediction Situation, a good weather forecast 

ow _p.' .., 
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would probably be available; but tor this study, some method 

of predictinl precipitation from the previously collected data 

was required. Two possible methods area 1) use the 2~-1ear 

normal precipitation for any particular time period, or 2) 

assume that there will be no precipitation, because very little 

precipitation occurs durinl the months of May, June, and July. 

The correlation coefficient carulot be used for comparinl 

the accuracy of these two methods because all of the predictions 

made by the second method are zero; the correlation between a 

constant and any variable must be zero, because the constant 

does not vary. Therefore, the standard error of estimate is 

used for comparing th~se two methods of predicting precipita­

tion. Using the normal precipitat10n for the t1me per10d gave 

standard errors ranging from 0.207 for a one day forecast to 

0.212 for a ten day forecast. When the preCipitation was always 

predicted as zero, the standard error was 0.217 for all time 

periods. These standard errors of estimate must be compared 

with the standard deviation of the observed rainfall, which 

was 0.213. The conclusion is that neither method is very ac­

curate, but using the normal precipitation for the period is 

preferable to assuming zero precipitation. 

trediction of Snow Covered Area During Period of Forecast 

The other statistic for which daily predictions are neces­

sary is snow covered area. One method of predicting these values 

is to assume that the rate of decline in snow covered area is a 

fWlct10n of both the temperature and the present area of the sna.'pack. 

.. --
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Since the day-to-day chan Ie in predicted temperature il Iradu­

al tor short torecalt periods, the predicted rate ot melt should 

also vary Iradually. For prediction periods ot tive day. or 

less, the rate ot snow cover depletion was assumed to be con­

stant and equal to the rate observed on the last day betore 

the rorecast date. Care must be taken to insure that the pre­

dicted value ot snow covered area does not 10 below zero when 

usinl this method tor periods or more than; days. When the 

estimated value ot SCA is lesl than zero, the depletion rate 

is derived trom the average rate or melt observed during the 

specitied length or time tor the initial value or snow cover-

ed area. Thus, it the inltial value (on the predlctio~ date) 

1s 18 percent, and it analysis ot past records shows that when 

the snow covered area equals 18 percent, the average value ob­

served slx days later 1s l~ percent, then the snow cover deple­

tion dur1ng a six day prediction period can be assumed to be 

four percent. Assessing the accuracy of these methods of pre­

dicting snow covered area ls impossible because measured data 

are ru~ available; but these methods do accurately predict the 

interpolated dally values discussed above. 

Assembling the Data Ease 

The data required for testing on the Klngs River watershed 

were assemnLed from a varlety of sources. The California Depart-

~ent of Water Resources provided the snow water equivalent data, 



· a. 

33 

wh1ch cons1sted of observatlons made on the flrst or Apr1l every 

year at l~ snow courses 1n the Klnl River basin. Locat10na of 

these snow courses are shown ln Fig.2. The temperature and pre­

clp1tation records were collected by the Natlonal Weather Servlce 

at five sltes 1n the basin, although data from only one slte 

(Grant Grove) were used in thls studr. The temperature was 

reported as the maximum and mlnlmum values observed on each 

date. The dally temperature index was calculated uslng these 

two values. The snow covered ar(i& flgures for 19;2 to 1913 Wire 

reported by the U.S. Army Corps of Eng1neers; the snow cover was 

mapped br observers from low altitude alrcraft, four tlmes per 

year. Due to weather conditions, the flights could not always 

be made on the required dates (May 1, May 1;, June 1, and June 

1,) so the values were adjusted where necessary. The Landsat 

snow covered area stat1st1cs, divided into ;OO-reet elevat10n 

zones, were provided by flASA. 

The runoff data used as the criterion var1able 1n the test­

ing program was prov1ded br the Kings Rivor Water Association. 

Dur1ng ,he per10d under considerat10n (1953-1911), a number of 

signif1cant water storage and diversion structures were built 

i~ the Kings River basin. The Kings River Water Association 

has 1eveloped a method or estimating the unimpaired runoff from 

tte ~hole basin from data collected by the U.S. Geolog1cal Survey 

at a munber of streamrlow gages within the bas1n. trote that the 

data used 1n testins are these estimates of unimpaired dally 



rlmott, just al though the balin were still in itl natural 

state. All runott volume. were lupplied al an average stream­

flow rate tor e~ch day, exprel.ed in cubic reet per second; in 

order to allow these Itatiltics to be equated with the eltimatel 

or snowmelt and precipitation volumel generated in the Martinec 

model, the valuel were converted to volumes expressed in thousands 

or acre-teet. 



CHAPTER IV 

CALIBRATION OF SNOWMELT MODELS 

The models chosen for this study use predictor variables 

that have a cause-and-effect relationship to runoff volume. 

Before the models can be used, though, the various model para­

meters th£:. help to define these relationships must be calibrat­

ed fo~ the particular forecast date. Thus, model calibration 

must be performed before the models can be tested for accuracy. 

This chapter describes the process of model calibration and 

reports the goodness-of-fit statistics that result from calib­

ration. 

Split-Sample Analysis 

In order to evaluate the effectiveness of the various models, 

the available data must be split into two subsets. One subset 

of the data base is used to calibrate the models, while the re­

mainder of the data is reserved for testing. In this way, the 

models can be tested on data that are independent of the data 

used in calibration. With only 2~ years of data available for 

both calibration and test1~g, the accuracy of the models when 

used with the test data is likely to be dependent on the way 

in Nhich the sample is split. Splitting the sample in half 

gives 12 years for calibration and 12 years for testing; this 

seems to be the best division available for a 2~-year data set. 

It was expected that the accuracy of the test results would be 
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directly dependent on the criterion used in splitting the sample. 

Maximum accuracy was expected when the sample was split by ranking 

the observations in order of decreasing observed runoff during the 

time period for which predictions were to be made. For instance, 1f 

the models were to be tested for accuracy of 3-day predictions from 

May 1, the years would be ranked according to the amount of runoff 

observed during that 30-day period; then, the data from years with 

an even number in rank could be used for calibration, and the data 

from years with an odd number in rank could be reserved for testing. 

Since the calibration and test sets would have similar means, s~ 

deviations, and ranges, good predictions would be expected. Converse­

ly, the lowest levels of accuracy would be expected when the 12 years 

with lowest values were used for calibration and the 12 years with 

highest values were used for testing. In this case, all of the test 

data would lie outside the range of values for which the model had 

been calibrated; therefore, the accuracy of prediction was expected 

to be comparatively low. Due to the anticipated effects on accuracy 

of various methods of splitting the samples, each model was calibrat­

ed and tested with a variety of subsets of the data base, each of 

which included 12 of the data years. The subsets were arrived at by 

the following method. First, the observations were ranked on each of 

three different criteria, forming thr~e separate lists; then, each 

list was split into odd-versus-even and high-versus-low data sets. 

Criteria for the three lists were the total runoff volumes for the 

p~~iods !1ay I-May 31, April I-June 30, and April I-September 30. The 

ra~E.ing lists and the resulting data sets are shown in Table 1. Note 

that the result of using the high-versus-low split on the April 1-

June 30 list is the same as that obtained by using the same method 



"'·~~r ............... ..--.,..- ........ 

TABLE 1 

Ranking of The Data Years and The Resulting Data Sets 

May I-May 31 April I-June 30 April I-Sept. 30 

Year Runoff Runoff Runoff 
(thousands of acre-feet) Rank (thousands of acre-feet) Rank (thousands of acre-feet) P.ank 

1954 477.4 8 980.3 II 2162.1 11 
1955 330.2 14 782.1 15 1796.0 15 
1956 508.2 7 1305.5 6 3319.7 5 
1957 315.3 15 897.6 12 2059.6 12 
1958 755.3 2 1745.6 2 4245.3 3 
1959 192.0 21 498.0 21 1127.9 20 
1960 230.5 20 521.5 19 1125.7 21 
1961 lll1. 3 22 381. 7 22 871.8 22 
1962 418.9 10 1299.5 7 3071.8 7 
1963 460.3 9 1146.8 9 2989.9 8 
1964 263.1 17 579.2 17 1317.8 18 ; 1965 415.3 11 1097.3 10 2911.9 9 
1966 371.5 13 790.2 13 1737.9 16 I 1967 611.6 5 1685.0 3 5088.2 2 
1968 246.4 18 524.3 18 1909.3 13 
1969 1122.7 1 2552.2 1 6668.9 1 
1970 398.1 12 787.0 14 1844.8 14 
1171 272.8 16 721.5 16 1713.0 17 
1972 235.4 19 509.4 20 1168.3 19 
1973 750.2 3 1518.5 4 3448.4 4 
1974 020.7 4 1384.4 5 3200.7 6 

I 1975 523.9 6 1149.4 8 2627.7 10 
1976 159.9 23 282.3 23 720.5 23 
1971 83.3 24 260.4 24 589.5 24 

I w I ~ 
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'fABLE 1 cont. 

Calibration Data Sets 

til '2 '3 114 115 

1954 1955 1956 1955 1957 
1955 1957 1957 1959 1959 
1958 1959 1958 1960 1961 
1960 1960 1961 1961 1963 
1961 1961 19b5 1964 1964 
1962 1964 1968 1966 1966 
1968 1966 1970 1968 1967 
1970 1968 1971 1970 1970 
1971 1971 1972 1971 1973 
1974 1972 1973 1972 1974 
1975 1976 1975 1976 1975 
1977 1977 1977 1977 1977 

Test Data Sets 

111 12 .3 

1956 1954 1954 
1957 1956 1955 
1959 1958 1959 
1963 1962 1960 
1964 1963 1962 
1965 1965 1963 
1966 1967 1964 
1967 1969 1966 
1969 1970 1967 
1972 1973 1969 
1973 1974 1974 
197€> 1975 1976 

'4 '5 

1954 1954 
1956 1955 
1957 1956 
1958 1958 
1962 1960 
1963 1962 
1965 1965 
1967 1968 
1969 1969 
1973 1971 
1974 1972 
1975 1976 

Vol 
CD 
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with the April l-September 30 list; for this reason, there are only 

five distinct ways of dividing the 2~ data years. 

Calibration of the Regression Models 

A stepwise regression program was used to calibrate multivariate 

linear models. In selecting the first predictor variable, stepwise 

regression selects the predictor variable that explains the highest 

percentage of the variation of the criterion variable and develops 

a simple linear prediction model. The correlation between the pre­

dicted and observed values of the criterion variable is computed, 

along with the standard error of estimate. Then the predictor vari­

able that will result in the greatest increase in explained varia­

tion is selected to enter the model and a two-predictor model is 

formed. An F-test is used to measure the significance of increases 

in explained variance. The correlation coefficient and standard 

error for this two-predictor model are compu:ed. A third predict-

or variable is then selected to enter the model and another model 

is formed. This process continues until all the available pre­

dictors have been included, or until the introduction of the remain­

ing predictors will not result in any significant increase in ex­

plained variation. Inclusion of predictors is determined only by 

statistical relationships, with no conceptual judgment being exer­

cised once the original set of eligible predictors has been chosen. 

In this way, a set of models is produced, each accompanied 

by the correlation coefficient and standard error of estimate. 

The best of these models is then selected by the researcher on 

the basis of the goodness-of-fit statistics and the rationality 

of the model. Rationality is judged by examining the signs of 



the regression coefficients and the magnitudes of the standard­

ized partial regression coefficients. For instance, if the sign 

of the regression coefficient for the snow water equivalent is 

negative, a larger value of the snow water equivalent will re­

sult in a smaller predicted volume of runoff. Clearly, this is 

not reasonable. The irrationality of coefficients in some equa­

tions is caused by high levels of correlation between the pre­

dictor variables. Irrational models can sometimes be used ef­

fectively in cases where all the input data lie within the range 

of values for which the model was calibrated; generally, rational 

models should be selected for use. 

The data base for the regression models consisted of 2~ ob­

servations of each of the variables listed in Table 2. Regres­

sion models were developed both with and without snow covered 

area data so that comparisons could be made to assess the value 

of this data as a predictor of snowmelt runoff. Regression equa­

tions were considered to be a long-term prediction method, so pre­

dictions were made for periods of 15, 30, 45, 60, 90, 120, and 

150 days starting on both April 1 and May 1. 

The snowpack index referred to in Table 2 is calculated from 

snow water equivalent measurements made at 14 snow courses in the 

Kings River basin. The locations of these snow courses are shown 

in Fig. 2. The snowpack index is formed by dividing the snow 

water equivalent at each snow course by the mean value from pre­

vious years and then averaging the quotients. 

The winter precipitation used for this study is the total 



TABLE 2 

Predictor Variables for the Regression Models 

Variable Mean 

Snowpack Index (percent) 95.1 

October-~brch Precipitation Total (inches) 32.8 

October-April Precipitation Total (inches) 37.2 

April I Snow Covered Area (percent) 67.3 

May 1 Snow Covered Area (percent) 54.5 

Product of Snowpack Index and 2 
April I Snow Covered Area (percent ) 

6903.5 

Product of Snowpack Index and 2 
May I Snow Covered Area (percent ) 

5717.5 

" 

,. 

Standard Deviation 

56.5 

15.3 

17.1 

9.8 

14.7 

5420.1 

4489.0 

~ 

" 
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amount of precipitation measured from October 1 ot the preced­

ing year up to the forecast date. Thus, predictions made on 

April 1 used October-March precipitation, and predictions made 

on May 1 used the October-April precipitation total. Data from 

the Grant Grove station were used in this study because this 

station seems to be most representative of the ent1re water­

shdd (Tangborn, 1978). 

The snow covered area data 1s expressed as a percentage 

of total watershed area measured on May 1 and pred1cted for 

Apr1l 1, as described previously. The product of the snow 

covered area and the snowpack index was used as a predictor 

variable because it is a rational way of estimating the volume 

of water stored on the basin (Rango, et al., 197;). 

The data base was used to generate eight different regression 

models for each forecast date. Four of these models used only 

one of the predictor variables listed in Table 2 and the other 

four used two of the predictors. The two-predictor models used 

the combinations: snowpack index and winter precipitation, snow­

pack index and snow covered area, winter precipitation and snow 

covered area, and winter precipitation and the product of snow­

pack index and snow covered area. Due to the high intercorrela­

tions among the four predictor variables, the two-predictor models 

Here only slightly more accurate than the single predictor models. 

The goodness-of-fit statistics for the calibration of all of the 

regression models are shown in Table 3. 

... : 



Length of Forecast 
(Days) 

15 

30 

45 

60 

90 

120 

150 

TABLE 3 

Swwnary Statistics for Calibration of Regression Models 

Predictor Variable: Snowpack Index 

Forecast Date: April 1 

Data Set • 

1 2 3 4 

R .789 .670 .632 .722 
Se 26.9 24.1 28.2 22.5 
5y 41.8 30.9 34.8 31.0 

R .840 .623 .756 .653 
Se 55.1 44.5 52.1 42.9 
Sy 96.8 54.2 75.9 54.0 

R .899 .656 .883 .679 
Se 82.7 69.6 7l.5 67.8 
Sy 180.2 88.0 145.4 88.1 

R .933 .812 .947 .814 
Se 99.6 74.4 90.8 77.9 
Sy 263.6 121.4 269.4 127.7 

R .950 .890 .953 .897 
Se 145.2 96.0 146.2 86.3 
Sy 442.6 200.5 460.3 186.4 

R .947 .S91 .938 .898 
Sc 174.0 10S.1 198.4 97.9 
5y 516.9 227.4 544.7 212.1 

R .943 .S94 .933 .899 
Se 188.1 109.7 216.4 100.2 
5y 539.2 233.2 572.3 218.1 

R = Correlation Coefficient 
Se = Standard Error of Estiaate 
5y = Standard Deviation of Observed Values 

5 

.342 
33.8 
34.3 

.520 
58.3 
65.1 

.729 
98.1 

136.7 

• 90S 
107.7 
241.3 

.901 
204.8 
450.8 

.833 
346.5 
596.3 

.818 
383.9 
636.1 

c! 
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45 

bO 
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TABU: 3 

Su..ary Statistics for Calibration of Regression Models 

Predictor Variable: October-March Precipitation Total 

Forecast Date: April 1 

Data Set , 

1 2 3 4 

R .834 .547 .727 .552 
Se 24.2 27.2 25.0 27.1 
Sy 41.8 30.9 34.8 31.0 

R .851 .534 .834 .490 
Se 53.4 48.1 44.0 49.4 
Sy 9b.8 54.2 75.9 54.0 

R .912 .621 .915 .598 
Se 77.6 72.3 61.7 74.1 
Sy 180.2 88.0 145.4 88.1 

R .954 .800 .950 .824 
Se 82.8 76.4 88.5 75.9 
Sy 263.6 121.4 269.4 127.7 

R .954 .803 .947 .909 
Sc 139.5 125.4 155.6 81.5 
Sy 442.6 200.5 460.3 186.4 

R .951 .795 .950 .909 
Sc 167.3 144.6 178.7 92.7 
5y 516.9 227.4 544.7 212.1 

R .949 .799 .948 .912 
Se 178.8 147.0 190.3 91.1 
Sy 539.2 233.2 572.3 218.1 

-' 

5 

.517 
30.7 
34.3 

.648 
52.0 
65.1 

.749 
95.0 

136.7 

.943 
84.2 

241.3 

.945 
155.2 
450.8 

.928 
232.4 
596.3 

.924 
256.0 
636.1 .-.. 
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TABLE 3 

Su~ry Statistics for Calibration of Regression Models 

Predictor Vari~~le: April Snow Covered Area 

Forecast Date: April 1 

Data Set , 

1 2 3 4 

R .840 .564 .731 .567 
Se 23.8 26.8 24.9 26.8 
Sy 41.8 30.9 34.8 31.0 

R .852 .553 .841 .509 
Se 53.2 47.4 43.1 48.8 
5y 96.8 54.2 75.9 54.0 

R .914 .642 .918 .618 
5c 76.7 70.8 60.6 72.6 
5y 180.2 88.0 145.4 88.1 

R .958 .813 .948 .837 
Se 79.6 74.2 89.6 73.4 
Sy 263.6 121.4 269.4 127.7 

R .955 .797 .943 .912 
Sc 138.2 126.9 160.5 80.4 
5y 442.6 200.5 460.3 186.4 

R .952 .789 .947 .911 
Sc 165.6 146.5 182.9 91.7 
5y 516.9 227.4 554.7 212.1 

R .950 .793 .947 .913 
Sc 176.6 148.9 193.4 93.1 
Sy 539.2 233.2 572.3 218.1 

5 

.531 
30.4 
34.3 

.661 
51.2 
65.1 

.759 
93.3 

136.7 

.945 
82.9 

241.3 

.939 
162.9 
450.8 

.921 
243.4 
596.3 

.916 
267.4 
636.1 

L'c_~~~ _ .... 
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TABLE 3 

Su.aary Statistics for Calibration of Regression Models 
Predictor Variable: Product of Snovpack ladex and April Snow Covered Area 
Forecast Date: April 1 

Data Set , 
1 2 3 4 5 

R .820 .663 .656 .705 .347 So 25.1 24.3 27.5 23.0 33.7 Sy 41.8 30.9 34.8 31.0 34.3 
R .866 .619 .786 .634 .535 Se 50.7 44.7 49.3 43.8 57.7 Sy 96.8 54.2 75.9 54.0 65.1 
R .918 .657 .909 .671 .725 Se 75.1 69.6 63.7 68.5 98.7 Sy 180.2 88.0 145.4 88.1 136.7 
R .943 .820 .961 .826 .906 Se 92.1 73.0 78.1 75.6 107.1 Sy 263.6 121.4 269.4 127.7 241.3 
R .957 .893 .957 .919 .904 Se 131.5 94.8 139.8 77.0 450.8 Sy 442.6 200.5 460.3 186.4 450.8 
R .956 .895 .943 .922 .847 Se 159.6 106.6 189.7 86.3 332.5 Sy 516.9 227.4 544.7 212.1 596.3 
R .953 .898 .938 .923 .835 Se 172.0 107.8 207.5 87.9 367.5 Sy 539.2 233.2 572.3 218.1 636.1 

...... -~ 
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TABLE 3 

Su.aary Statistics for Calibration of Regression Models 

I'redictor Variables: Snowpack Index and October-Narda Precipitatioa Total 

Length of Forecast Data Set , 

lDays) 1 2 3 4 5 

15 R .835 .670 .731 .730 .630 
Se 25.4 24.1 26.2 23.4 29.4 
S, 41.8 30.9 34.8 31.0 34.4 

30 R .855 .623 .834 .633 .681 
Se 55.S 44.5 44.0 44.7 52.7 
Sy 96.8 54.2 75.9 54.0 65.1 

45 R .916 .669 .923 .681 .755 
Se 79.9 72.2 62.1 71.4 99.1 
Sy 180.2 88.0 145.4 88.1 136.7 

60 R .956 .841 .970 .853 .947 
Sc 85.2 72.6 72.2 73.7 85.8 
S, 263.6 121.4 269.4 127.7 241.3 

90 R .962 .896 .972 .941 .947 
Se 133.6 98.4 120.0 69.8 159.6 
S1 442.6 200.5 460.3 186.4 450.8 

120 R .959 .896 .966 .941 .931 
Sc Ibl.4 111.6 155.8 79.2 240.6 
S1 516.9 227.4 544.7 212.1 596.3 

150 R .956 .899 .963 .943 .929 
Se 174.6 113.0 170.7 80.1 261.2 
5y 539.2 233.2 572.3 218.1 636.1 

¥' 
~ 
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TABU 3 

SuaRary Statistics for Calibration of Regression Models 

Predictor Variables: Snovpac:k Indell aad Apri I Snow Covered Area 

forecast Date: April 1 

Length of Forecast Data Set • 

(Oays) 1 I 3 4 5 

IS R .841 .670 .735 .727 .6S4 
Se 25.0 24.1 26.0 23.S 28.6 
S)' 41.8 30.9 ~.8 31.0 34.3 

30 R .856 .626 .ft41 .659 .701 
Se 55.3 46.7 43.1 44.9 51.3 
Sy 96.8 54.2 75.9 54.0 65.1 

4S R ,918 .678 .926 .684 .763 
Se 79.0 11.5 60.9 11.1 97.7 
S)' 180.2 88.0 145.4 88.1 136.7 

60 R .960 .848 .971 .860 .949 
Se 82.1 11.1 11.8 12.1 14.2 
S)' 263.6 121.4 269.4 127.1 241.3 

90 R .963 .895 .971 .942 .943 
Se 131.8 98.8 121.3 69.5 165.S 
S)' 442.6 200.5 460.3 186.4 450.8 

120 R .961 .895 .966 .941 .922 
Sc 159.1 112.1 156.7 79.1 254.9 
S1 S10.9 227.4 544.7 212.1 596.3 

ISO R .957 .898 .963 .943 .919 
Sc 172.1 l11.S 110.8 80.0 277.6 
S1 539.2 233.2 572.3 218.1 636.1 

~ 
C» 



TABLE 3 

SWIIIIlary Statistics for Calibration of Regression Models 

Pre~ictor Variables: October-March Precipitation Total and 
April 5now Covered Area 

Forecast Date: April 1 

Length of Forecast 
Data Set , 

(Days) 1 2 3 4 5 

IS R .840 .624 .731 .623 .531 
Se 23.8 26.7 24.9 26.8 30.4 
5y 41.8 30.9 34.8 31.0 34.3 

30 R .852 .628 .841 .597 .661 
5e 53.2 46.6 43.1 47.9 51.2 
Sy 96.8 54.2 75.9 54.0 65.1 

45 R .914 .717 .918 .710 .759 
Se 76.7 67.8 60.6 68.6 93.3 
5y 180.2 88.0 145.4 88.1 136.7 

60 R .958 .834 .950 .861 .945 
Se 79.6 74.2 88.5 71.9 82.9 
Sy 263.6 121.4 269.4 127.7 241.3 

90 R .955 .805 .947 .912 .945 
Se 138.2 131.4 155.6 84.6 155.2 
Sy 442.6 200.5 460.3 186.4 450.8 

1Z0 R .952 .799 .950 .911 .928 
5~ 165.6 151.3 178.7 91. 7 232.4 
Sy 516.9 227.4 544.7 212.1 596.3 

1S0 R .9S0 .803 .948 .913 .924 
Sc 176.6 153.7 190.3 93.1 256.0 
Sy 539.2 233.2 572.3 218.1 636.1 .-

~ 
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TABLE 3 

$ullunary Statistics for Calibration of Regression Models 

Predictor Variables: October-March Precipitation Total and Product of 
Snowpack Index and April Snow Covered Area 

Forecast Date: April 1 

Length of Forecast 
Data Set , 

(Days) 1 2 3 4 5 

IS R .837 .665 .729 .718 .662 
Se 25.3 25.5 26.3 23.9 28.4 
Sy 41.8 30.9 34.8 31.0 34.3 

30 R .869 .619 .834 .647 .6ls5 
Sc 53.0 44.7 46.3 45.5 52.4 
Sy 96.8 54.2 75.9 54.0 65 . .& 

45 R .924 .665 .928 .671 .7~1 

Se 76.3 72.6 S9.8 68.S ge.7 
Sy 180.2 68.0 145.4 88.1 U6.7 

60 R .9S9 .839 .973 .852 .945 
Se 83.0 73.0 68.6 73.9 87.5 
Sy 263.6 121.4 269.4 127.7 241.3 

90 R .964 .895 .970 .945 .946 
Se 129.3 99.0 124.7 67.7 162.2 
Sy 442.6 200.5 460.3 186.4 450.8 

120 R 963 .896 .964 .946 .932 
Se .154.4 111.8 160.5 76.1 239.3 
Sy 516.9 227.4 544.7 212.1 596.3 

150 R .960 .899 .961 .948 .929 
Se 166.9 113.0 175.3 76.7 260.0 
$y 539.2 233.2 572.3 'U8.1 636.1 

~ 
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TABLE 3 

SWlwary Statistics for Calibration of Regression Models 

Predictor Variable: Snowpack Index 

Forecast Date: May 1 

Data Set It 

1 2 3 4 

R .905 .639 .930 .648 
Se 39.8 30.2 29.5 30.3 
Sy 89.1 37.5 76.5 37.9 

R .876 .824 .962 .779 
Se 95.2 46.8 58.6 57.9 
Sy 188.0 78.7 205.5 88.1 

R .885 .809 .962 .798 
Se 141.3 82.6 89.1 80.8 
Sy 289.3 134.1 312.7 127.9 

R .911 .816 .956 .830 
Se 160.6 107.4 122.1 93.0 
Sy 372.0 177.2 398.7 159.0 

R .917 .820 .943 .830 
Se 186.7 123.8 168.5 109.5 
Sy 445.4 .lO6.1 481.0 186.9 

I{ .914 .824 .938 .832 
Sc 199.3 126.1 184.1 112.5 
Sy 467.5 212.0 507.8 193.3 

5 

.803 
51.4 
82.1 

.942 
69.0 

196.0 

.946 
105.5 
310.7 

.898 
191.8 
414.9 

.825 
332.9 
561.0 

.810 
369.6 
600.7 
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TABLE 3 

SWlUuary Statistics for Calibration of Regression Equations 

Predictor Variable: October-April Precipitation Total 

forecast Date: May 1 

Data Set , 
1 2 3 4 

R .893 .644 .892 .653 
Se 42.0 30.1 36.2 30.1 
Sy 89.1 37.5 76.5 37.9 

R .937 .846 .932 .854 
Se 68.S 44.0 7S.1 4S.0 
Sy 18S.0 7S.7 205.5 88.1 

R .927 .796 .932 .878 
Se 114.0 85.1 118.6 64.2 
Sy 289.3 134.1 312.7 127.9 

R .947 .75S .950 .S67 
Sc 125.9 121.3 131.1 83.2 
Sy 372.0 177.2 398.7 159.0 

R .950 .747 .966 .853 
Se 146.6 143.S 130.4 102.5 
Sy 445.4 206.1 481.0 186.9 

R .949 .751 .970 .S54 
Se 154.8 146.8 130.1 105.4 
Sy 467.5 212.0 507.8 193.3 

5 

.623 
67.4 
82.1 

.904 
87.7 

196.0 

.884 
152.6 
310.7 

.944 
143.3 
414.9 

.968 
148.9 
561.0 

.9b9 
156.7 
600.7 
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TABLE 3 

SWlUuary Statistics for Calibration of l~egression Models 

Predictor Variable: May 1 Snow Covered Area 

forecast Date: May 1 

Data Set 1# 

1 2 3 4 

R .498 .187 .613 .091 
Se 81.1 3S.6 63.3 39.6 
Sy 89.1 37.5 76.5 37.9 

R .699 .205 .736 .380 
Se 141.0 80.7 145.8 85.5 
Sy lS8.0 7S.7 205.5 88.1 

R .761 .459 .762 .544 " .. 196.U ll4.g ~12.l ua., 
Sy 289.3 134.1 312.7 127.9 

R .753 .498 .752 .571 
Se 256.9 161.1 275.6 136.8 
Sy 372.0 177.2 39S.7 159.0 

R .750 .510 .741 .588 
Se 309.1 186.0 33S.7 15S.6 
Sy 445.4 206.1 481.0 186.9 

R .744 .507 .735 .5S5 
Sc 327.8 191. 7 361.0 164.4 
Sy 467.5 212.0 507.8 193.3 

5 

.364 
80.2 
82.1 

.719 
142.8 
196.0 

.775 
206.0 
310.7 

.822 
247.9 
414.9 

.831 
327.7 
561.0 

.825 
355.7 
600.7 
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TABLE 3 

SWluuary Statistics for Calibration of Regres!.ion Models 

Predictor Variable: Product of Snowpack Index and May 1 Snow Covered Area 

Forecast Date: May 1 

Data Set , 

1 2 3 4 5 

R .874 .367 .920 .380 .685 
Se 45.5 36.7 31.5 36.7 62.8 
Sy 89.1 37.5 76.5 37.9 82.1 

R .920 .707 .965 .755 .927 
Se 77 .1 58.4 56.7 60.6 77.2 
Sy 188.0 78.7 205.5 88.1 196.0 

R .946 .838 .962 .866 .946 
Se 98.8 76.7 90.1 67.2 105.5 
Sy 2ag.3 134.1 312.7 127.g 310.7 

R .967 .866 .950 .904 .935 
Se 98.9 92.9 130.5 71.4 154.1 
Sy 372.0 177.2 398.7 159.0 414.9 

R .972 .876 .931 .915 .895 
Se 110.2 104.2 184.3 79.3 262.6 
Sy 445.4 206.1 481.0 186.9 561.0 

R .969 .879 .925 .916 .884 
Se 120.7 106.2 202.1 81.5 294.3 
Sy 461.5 212.0 507.8 193.3 600.7 

' .. 
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TABLE 3 

SWlwary Statistics for Calibration of Regression Models 

Predictor Variables: Snowpack Index and October-April Precipitation Total 

Forecast Date: May 1 

Data Set , 

1 2 3 4 5 

R .914 .618 .931 .686 .811 
Se 40.1 30.5 29.5 30.5 53.2 
Sy 89.1 31.5 76.5 37.9 82.1 

R .937 .882 .973 .870 .962 
Se 72.5 40.9 52.5 48.1 59.2 
Sy 188.0 78.7 205.5 88.1 196.0 

R .928 .848 .973 .893 .958 
Se 119.4 78.5 79.7 63.6 98.8 
Sy 289.3 134.1 312.7 127.9 310.7 

R .949 .836 .976 .897 .961 
Se 129.9 101.5 95.2 77.7 126.8 
Sy 372.0 117 .2 398.7 159.0 414.9 

R .952 .835 .979 .888 .968 
Se 150.3 125.4 108.1 94.9 148.9 
Sy 445.4 206.1 481.0 186.9 561.0 

R .951 .839 .980 .890 .969 
Sc 159.6 127.4 111. 7 97.3 164.2 
Sy 467.5 212.0 507.8 193.3 600.7 
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Length of Forecast 
(Days) 

15 

30 

45 
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TABLE 3 

Summary Statistics for Calibration of Regression Models 

Predictor Variables: Snowpack InJex and May Snow Covered Area 
Forecast Date: May 1 

Data Set • 
1 2 3 4 5 

R .905 .744 .933 .708 .831 Se 39.8 27.7 30.5 29.6 50.5 Sy 89.1 37.5 76.5 37.9 82.1 
R .914 .824 .965 .797 .952 Se 84.5 49.3 59.7 S8.9 66.6 Sy 188.0 78.7 205.5 88.1 196.0 
R .944 .845 .968 .865 .968 Se 105.5 79.2 86.3 71.0 86.3 Sy 289.3 134.1 312.7 127.9 310.7 
R .960 .863 .961 .901 .949 Sc 115.2 98.8 121.3 76.1 144.3 Sy 372.0 177.2 398.7 159.0 414.9 
R .963 .871 .948 .908 .910 Se 132.9 112.1 170.0 86.6 257.8 Sy 445.4 206.1 481.0 186.9 561.0 
R .958 .873 .943 .909 .899 Se 147.5 114.3 187.0 89.3 291.2 Sy 467.5 2l2.0 507.0 193.3 600.7 
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Length of Forecast 
(Days) 
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45 

60 

90 
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TABLE 3 

Summary Statistics for Calibration of Regression Models 

Predictor Variables: October-April Precipitation Total. May Snow Covered Area 
forecas t Date: May 1 

Data Set , 
1 2 3 4 5 

R .895 .696 .897 .701 .636 
Se 43.9 29.7 37.4 29.9 70.1 
Sy 89.1 37.5 76.5 37.9 82.1 

R .951 .852 .957 .873 .909 
Se 64.5 45.5 66.2 47.5 90.3 
Sy 188.0 78.7 205.5 88.1 196.0 

R .959 .877 .965 .942 .905 
Se 90.8 71.2 91.1 47.3 146.3 
5y 289.3 134.1 312.7 127.9 310.7 

R .972 .862 .975 .944 .965 
5e 96.9 99.2 97.9 58.2 120.3 
5y 372.0 177.2 398.7 159.0 414.9 

R .973 .859 .986 .939 .985 
Se 112.9 116.7 90.0 70.9 105.5 
5y 445.4 206.1 . 481.0 186.9 561.0 

R .971 .861 .987 .939 .98S 
5e 123.0 119.2 89.7 73.3 115.0 
5y 467.5 212.0 507.8 193.3 600.7 

-
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TABLE 3 

Sumaary Statistics for Calibration of Regression Models 
Predictor Variables: October-April Precipitation Total and Product of 

Snowpack Index and May Snow Covered Area 
Forecast Date: May 1 

Length of Forecast Data Set , 
(Days) 1 2 3 4 5 

15 R .898 .655 .939 .667 .685 
5c 43.4 31.3 29.2 31.2 66.1 
Sy 89.1 37.5 76.5 37.9 82.1 

30 R .943 .863 .983 .876 .943 
Se 69.0 43.9 41.6 47.0 72.0 
Sy 188.0 78.7 205.5 88.1 196.0 

45 R .951 .891 .981 .938 .951 
Se 98.9 67.3 66.7 49.0 106.7 
Sy 289.3 134.1 312.7 127.9 310.7 

60 R .972 .894 .983 .954 .967 
Se 95.9 87.9 8:.1 53.0 117.0 
Sy 372.0 177.2 398.7 159.0 414.9 

90 R .977 .898 .984 .954 .970 
Se 106.2 100.2 96.2 61.7 150.0 
Sy 445.4 206.1 481.0 186.9 561.0 

120 R .975 .901 .984 .956 .970 
5e 116.0 101.5 100.9 63.0 162.0 
Sy 467.5 212.0 507.8 193.3 600.7 

~ 



The correlation coetticients in Table 3 range trom 0.091 

to 0.981. The values vary cODSiderably between the data sets, 

with the highest values resulting trom calibration with set. 

Hl, 3, and; and the lowest trom sets '2 and~. The correla­

tions tend to be higher tor tarecast periods tf 60 days or 

more than tor shorter periods; with the exception ot the Hay 

snow covered area model, all .regressions resulted in correla­

tions greater than 0.1 tor torecasts ot 60 days or longer. The 

correlations tor the tour sin&le predictor models (based on snow­

pack index, October-March precipitation, snow covered area, and 

the product ot snowpack index and snow covered area) are all near­

ly equal tor periods ot 60 daJl or more trom April 1, but tor May 

1 torecasts, the snow covered area models generally show much low­

er correlations than the other single predictor models. 

Calibration of ;be Tangborn Hodels 

The Tangborn models are calibrated using regression; however, 

they d1tter trom the regresslml approach in that the structure ot 

the model was established coneeptually. The pred1ctor variables 

are estab11shed through a coneeptual 1nterpretation of the process­

~S. For long-term predict1au (15 days or more), the variables 

'lsed are the total precipi tatton and total runoff measured during 

the winter preceding the predtction period. The equation has the 

form 

(4-1) 

where R* is the predicted rur.att, Pw is the total depth of winter 

• , 
j 
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prec1p1tat1on,Rw 1s the prev10usly observed winter runott volume, 

and a and b are the regression coetficients that require ca11bra­

tion. 

In addition to evaluat1ng optimum values of the regression 

coefficients, calibration ot this long-term model involves de­

termining the optimum starting date tor the winter season. The 

winter precipitation and runoff volumes are depondent on the 

d~,e selected to define the start ot Winter; October 1 is com­

monly used, but 1t is not necessarily the opt1mum start1ng date. 

In order to determine the optimum date, total values ot w1nter 

runott and precipitat10n were compiled tor each date trom Sep­

tember 1 to October 30. Prediction equations were formed, and 

the correlation coetticients and standard errors ot estimate 

were '4lculated. Comparison of these stat1st1cs showed that, 

tor the Kings River watershed, prediction accuracy was not sensi­

tive to the winter starting date, with almost no change in the 

goodness-of-fit statistics observed for the various start dates. 

Therefore, it seemed reasonable to use October 1 as the starting 

date for the winter period. 

In calibrating these equations, the accuracy of the results 

is also dependent on the length of the test s~ason. The optimum 

t~st season length was determined by using all 2~ years of data 

to make seasonal predictions; test seasons of one to five days 

w~re tried, and it was concluded from the results that a test 

season of one day gave the greatest accuracy of prediction. 



Now that the optimum winter start date and test season 

length had been determined, calibration ot the coefficients 

was performed. For the long-term models, coefficients were 

derived for prediction pe~iods ot lS, 30, ~S, 60, 90, 120, 

and 1;0 days starting from both April 1 and May 1. Short­

term models were calibrated for prediction periods ot 1, 2, 
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3, ;, and 10 days starting on ~fay 1, May IS, June 1, and June 

1;. Calibration was .ecomplished by regression on the 12 years 

of data selected for the purpose. Since the sample was split 

in a number of different ways, as explained previously, sepa­

rate regressions were performed for each set of calibration 

data. The resulting equations, along with the goodness-of-fit 

atatistics, appear in Table ~. 

The correlati(J.l coefficients in Table ~ ran". from o. ;21 

to 0.961. The correlations are generally higher for data sets 

#1, 3, and 5' than for sets 112 and It. ;·:ode1s for the long term 

prediction periods are mor~ accurate than those for forecasts 

for periods of ten days or less; for forecasts of 60 days or 

~ore, all the data SJts give correlations of at least O.7lt. 

The short term predictions seem to be more accurate for fore­

cast dates of Hay 1 and June 1; than for aay 1; and June 1; 

this cay be due to the fact that the peak flows occur ~ost 

often in late :·:ay or early June. 

Calibration of the Martinec Model 

The basic form of the Martinec ~odel 1s: 

Q* = c· (d.ToSeA+?)oA· Cl-F) + K·Q 1 n n- ('+-2) 



TA8Lli 4 

SuM.ary Statistics for Calibration of Tangborn Models 

Forecast Date: April 1 

Length of Forecast Data Set , 

(Days) 1 2 3 4 5 

IS R .761 .680 .629 .617 .738 
Sc 28.4 23.8 28.3 25.6 24.2 
5y 41.8 30.9 34.8 31.0 34.3 

30 R .110 .689 .742 .547 .709 
5c 71.5 41.2 53.4 47.4 48.1 
Sy 96.8 54.2 75.9 54.0 65.1 

45 R .806 .779 .825 .673 .665 
5e 111. 7 57.9 86.3 68.3 107.1 
5y 180.2 88.0 145.4 88.1 136.7 

60 R .920 .869 .912 .879 .895 
Sc 10~.4 63.1 116.2 63.9 112.7 
5y 263.6 121.4 269.4 127.7 241.3 

90 R .954 .811 .937 .931 .935 
5c 139.8 122.9 169.1 71.6 167.3 
S1 442.6 200.5 460.3 186.4 450.8 

120 R .952 .803 .934 .933 .955 
Sc 165.6 142.2 204.8 80.1 186.4 
5y 51b.9 227.4 544.7 212.1 596.3 

ISO R .Y4Y .806 .930 .91~ .956 
Se 178.2 144.7 221.1 81.7 196.3 
Sy 539.2 233.2 572.3 218.1 636.1 

(J\ 
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TABLE 4 

SWlUllary Statistics for Calibration of Tangborn Models 

Forecast Date: Ma. 1 

Length of Fore~ast Data Set II 

(Days) 1 2 3 4 5 

15 R .943 .911 .844 .902 .615 
Se 31.1 16.2 43.1 17.1 68.0 
Sy 89.1 37.5 76.5 37.9 82.1 

30 R .941 .922 .922 .949 .880 
Se 66.8 31.9 83.3 29.0 97.7 
Sy 18S.0 78.7 205.5 88.1 196.0 

45 R .939 .SOl .951 .909 .867 
So 104.7 84.1 101.4 55.8 162.2 
Sy 289.3 134.1 312.7 127.9 310.7 

60 R .957 .759 .951 .S92 .925 
Se 112.7 121.1 129.2 75.5 165.5 
Sy 372.0 177 .2 398.7 159.0 414.9 

90 R .961 .747 .957 .S77 .951 
Se 128.S 143.7 146.2 94.2 181.5 
Sy 445.4 206.1 481.0 186.9 561.0 

120 R .959 .751 .95S .878 .952 
Se 138.4 146.7 153.5 97.2 192.0 
Sy 467.5 212.0 507.8 193.3 600.7 

:..50 R .959 .760 .959 .888 .954 
So 140.S 142.9 153.0 92.2 194.1 
Sy 473.8 209.8 514.1 191.0 614.6 

0\ 
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TABLE 4 

SUllullary Statistics for Calibration of Short-Term Tangborn Models 

Forecast Date: May 1 

Data Set' 

1 2 3 4 5 

R .845 .911 .659 .740 .521 

Se 1.83 1.18 3.13 1.99 3.07 

Sy 3.26 2.71 3.97 2.82 3.43 

R .870 .910 .703 .779 .563 

Se 3.79 2.47 5.76 3.82 6.33 

Sy 7.32 5.69 7.72 5.81 7.ll 

R .895 .895 .769 .800 .569 

Se 5.68 4.06 7.58 5.51 9.93 

Sy 12.1 8.68 1.3 8.76 U.5 

R .908 .847 .860 .827 .591 

Se 10.9 8.38 10.8 8.78 16.8 

Sy 24.8 15.0 20.2 14.9 19.9 

R .933 .821 .808 .851 .664 

Se 23.7 17.7 29.1 25.9 38.0 

Sy 63.0 29.5 47.2 28.8 48.4 

R .943 .911 .844 .902 .615 

Se 31.1 16.2 43.1 17.1 68.0 

Sy 89.1 37.5 76.5 37.9 82.1 
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TA8LE 4 

SWluliary Statistics for Calibration of Short-Term Tangborn Models 

Forecast Date: May 15 

Length of Forecast Data Set 1# 

(Days) 1 2 3 4 5 

1 R .745 .752 .774 .826 .645 
Se 5.07 2.27 S.33 2.19 6.63 
Sy 7.24 3.29 8.02 3.70 8.27 

2 R .766 .741 .787 .803 .690 
Se 9.83 4.76 10.7 5.00 12.3 
Sy 14.6 6.76 16.5 7.99 16.2 

3 R .788 .777 .801 .809 .739 
Se 14.5 6.33 16.2 7.53 17.3 
5y 22.4 9.59 25.9 12.2 24.4 

5 R .823 .846 .841 .850 .803 
5e 23.2 9.20 25.8 11.2 25.3 
5y 39.0 16.4 45.4 20.2 40.5 

10 R .852 .914 .892 .877 .927 
Se 41.4 14.1 41.8 20.6 31.9 
Sy 75.5 33.1 88.4 40.8 81.1 

15 R .855 .904 .924 .873 .954 
Sc 62.1 22.0 52.2 30.7 40.6 
5y 114.1 49.3 130.4 60.1 12!i.9 
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TABLE 4 

SUliullary Statistics for Calibration of Short-Term Tangborn Models 

Forecast Date: June 1 

Data Set II 

1 2 3 4 5 

j{ .836 .608 .910 .571 .757 
5e 5.21 3.57 4.04 3.02 6.23 
Sy 9.06 4.29 9.31 3.51 9.10 

R .837 .574 .904 .548 .719 
Se 10.0 8.02 7.98 5.98 12.9 
5y 17.4 9.34 17.8 6.82 17.7 

R .848 .573 .902 .546 .715 
Se 14.1 12.8 11.9 8.68 19.2 
Sy 25.4 14.9 26.2 9.R8 26.1 

R .854 .638 .900 .608 .722 
Se 22.1 21.5 19.9 13.1 31.7 
Sy 40.6 26.6 43.5 15.7 43.7 

R .835 .787 .921 .752 .767 
Se 46.1 34.7 33.7 25.6 58.5 
Sy 79.9 53.7 82.5 37.0 86.9 

R .843 .808 .941 .785 .827 
Se 64.3 44.7 41.3 33.6 72.8 
Sy 113.9 72.4 116.0 51.8 123.4 
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TABLE 4 

Sununary Statistics for Calibration of Short-Term Tangborn Models 

forecast Date; JW1C 15 

lJata Set # 

1 2 3 4 5 

R .877 .813 .943 .708 .915 
Se 3.52 2.35 2.35 2.50 3.22 
Sy 6.98 3.81 6.71 3.37 7.59 

R .883 .787 .937 .680 .907 
Sc 6.77 4.77 4.87 5.09 6.94 
Sy 13.8 7.37 13.3 6.62 15.8 

R .900 .785 .936 .685 .897 
5e 9.27 7.02 7.28 7.29 11.1 
Sy 20.2 10.8 19.7 9.53 24.0 

R .923 .794 .924 .716 .879 
Se 13.5 11.4 13.5 10.9 20.7 
5y 33.6 17.8 33.5 14.9 41.3 

R .933 .795 .915 .765 .879 
Sc 25.3 21.6 28.3 18.4 43.4 
Sy 66.7 34.0 66.7 27.3 86.7 

R .930 .782 .923 .778 .877 
Sc 35.3 31.5 38.1 24.2 67.3 
Sy 91. 7 48.1 94.6 36.7 133.5 
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in which Q~ is the predicted volume of runoff for day n, c 

is a dimensionless runoff coetficient, d is a degree-day 

factor, T is the temperature index on day n, SCA is the 

percentage ot total area covered by snow on day n, P is the 

precipitation on day n, A is the total area of the watershed, 

K is a dimensionless recession coefticient, and Q is the n-l 
observed volume of runoff tor the previous day. The basis 

for this model was explained previously. 

Calibration of the Martinec model requires the optimiza­

tion of the model parameters. The optimum values of the para­

meters are expected to vary from one watershed to another, so 

model calibration is required anytime the model is to be used 

on a new watershed. The parameters to be optimized are the 

runoff and recession coefficients and the degree-day factor 

(c, K, and d, respectively, in eq. 4-2). 

Because the Kings River watershed is large and encloses 
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a wide range of ele"'c:t.tions, meteorol.,gical conditions are n~t 

likely to be uniform over the whole area. Therefore, dividing 

the watershed into elevation zones should improve the accuracy 

of prediction Effective temperatures and precipitation were 

calculated separately for each zone; also, separate snow cover­

ed area data were compiled. The zon3l temperature values were 

1etermined by finding the difference between the temperature 

station elevation and the mean elevation of each zone, then 

~ultiplying by a temperature lapse rate and adding the product 
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to the station temperature. In this wayan estimate of the 

average daily temperature in each zone was obtained. It the 

zonal temperature value was below zero, any precipitation in 

that zone was assumed to have fallen as snow; in this case, 

the precipitation was not added to the generated runoff total. 

The modified form ot the Martinec equation 1s given by: 

(It-)) 

in which m is the number at elevation zones. This equatIon re­

flects the varying meteorological conditions over the watershed. 

Both the original form (Eq.4-2) and the modified from (Eq.4-3) 

of the Martinec model ware calibrated. Values of K were estimated 

by three different methods. The modified form of the model was test­

ed both with the degree-day factor being the same for each zone and 

with the factor being allowed to vary from one zone to the next. In 

both cases, the runoff coefficient was the same for all zones. 

Three different optimization techniques (analytical, nu­

.nerical, and subjective) were used in calibrating the Hartinec 

model. The objective of each of these methods is to explain 

trJ.e maximum possible variation in the criterion variable. 

The subjective optimization technique is generally used 

to optimize one parameter at a time. Using the investigator's 

knowledge of the model and the system, the value of each para­

meter is adjusted by trial and error until there is no signifi­

cant i~provement in the error function. 
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The other two optimization techniques require that all 

parameters be optimized simultaneously. The criterion by which 

accuracy or prediction is measured is the sum or squares or the 

errors. This sum or squares, called the criterion runction, is 

an indicator of the goodness-o~-fit between the observed and 

predicted values. Model accuracy is best when the sum of squares 

is lowest. Thus, the model can be calibrated by adjusting the 

parameter values to give the minimum sum of squares of the errors. 

Two methods of doing this are: (1) Determine the parameters ana­

lytically, using the partial derivatives or the criterion function; 

or (2) determine the values numerically using the pattern search 

method. 

Subjective Optimization of the Recession Coefficient 

In theory, the recession coefficient K has a different value 

for each day; these values can be calculated from the equation 

(l1artinec, 1975): 

(4-4) 

As ffientioned above, an initial investigation indicated that the 

recession term is far more important than the generated runoff 

term. Therefore, accuracy of the model is very sensitive to the 

7~lues of K. In a predictive situation, the values of Qn+l and 

Qn are not available, so K must be estimated. This can be done 

in a number of ways. 

The first method, which was suggested by Uartinec (1975), 

estimates K using the equation: 



----------

in which a and b are ~~pirical coefficients. Values of K that 

are considered true values are derived with Eq. ~-~ and regres­

sed on daily values of Qn-l using the logarithmic form of the 

linear regression equation: 

log ~ = log a + b log Qn-l (~-6) 
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The optimum values of a and b for each of the 2~ years of record 

are shown in Table 5. 
When making forecasts, the optimum values of a and b given 

in Table 5 can not be used. Two methods for estimating a and b 

are feasible. First, the average values for the 2~ years of 

record were recommended by Martinec (1975). For the Kings River 

watershed the mean values of a and b are 1.02~84 and -0.00351, 

respectively. Use of the average values implies that the an-

nual variation in a and b is random. Second, if the annual varia­

tion is not random but results from variation in other factors, 

then better estimates can be obtained by relating the optimum 

values of a and b (Table 5) to the factor or factors responsible 

for the variation. An analysis showed that a and b were related 

to the October-April precipitation. R£gression analysis provided 

lin~ar prediction equations of the form: 

,. 
a = e1 (October-April precipitation) + e2 (4-7) 

and 
,. 
b = e

3 
(October-April precipitation) + e4 (4-8) 



TABU: 5 

Values of The OptilllUll Recession Tera Para.eters for The Martinec Model 
b 

Recession Te~ - a Qo-l 

Year a b 

1954 0.9294 -0.00140 1955 0.9766 -0.00005 1956 0.9281 -0.00229 1957 0.9313 -0.00650 1958 0.9797 0.00097 1959 0.9875 -0.00475 1960 0.9523 .. 0.00148 1961 1.0228 -0.00394 1962 1.0154 -0.01327 1963 0.9620 -0.00005 1964 1.0160 -0.00875 1965 0.9422 -0.00788 1966 1.0000 -0.00013 1967 1.0000 -0.00019 1968 1.0000 -0.00013 1969 1.0000 -0.00013 1970 1.0000 -0.00013 1971 1.9775 -0.00184 1972 1.0476 -0.01238 1973 1.0000 -0.00013 1974 0.9951 -0.00091 1975 1.0000 -0.00027 197b 0.9500 -0.00291 1917 0.9826 -0.01563 
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in which a and ~ are the predicted values ot a and b, and el' 

e2, e3, and e~ are regression coefficients. For the 2~ years 

ot. record these equations provided correlation coefficients 

or -o.~~ and 0.,0; for Eqs. ~-7 and ~-8, respectively. For 

making forecasts, separate equations were derived tor each ot 

the tive l2-year data ~ets. The use ot constant values ot a 

73 

and b tor anyone year does not imply that K is constant because 

K depends on Qn-l. 

The second method ot estimating K is to assume that there 

is good serial correlation in the runott values and use the run­

oft values trom the two previous days. In this case, the pre­

dicted value ot K is set equal to the most recent observed 

value available, which is calculated by the equation: 

* -~ K = K 2 - Q n n- n-2 
(4--9) 

The accuracy when applying Eq. 4-9 is better than that obtained 

when the ::.verage values at a and b are applied with Eq. 4-,. 
~oweve~, the accuracy when applying Eq. 4-9 is similar to that 

obtained when equations such as Eq~. 4-7 and 4-8 are used with 

E1. 4-5; in this case, the accuracy varies from year to year. 

:~e Relative Importance at the Recession Term 

Eq. 4-9 was used to derive estim~tes of K for the years 

from 1954 to 1958, inclusive. Predictions of runoff were made 

for ~ach day at the period from May 1 to June 15 for each ot 

tr.e flve years using the model: 

, 
• 
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7a. 

~ 
Q• - KQ (~-10) n - n-1 

A ditterent value ot K was used tor each day. Eq. ~-10 is the 

recession term ot the 14artinec model, Eq. It-2. The importanc. 

ot the recession term on this watershed is such that more than 

81 ~ercent ot the total variance was explained with this term 

only. The relative importance ot the recession term when com­

pared to the generated runott term indicates that the model is 

probably not sensitive to the values ot the c and d coetticients 

ot Eqs. (~-2) and (~-3). 

Subjective Optimi t 3tion o. the Runott and Degree-day Coetticients 

As noted above, the Martinec model is not sensitive to the 

values ot c and d in Eq. ~-3. It is known that insensitive co­

efficients quite often fail to approach the population values 

and are sometimes irrational (Dawdy and O'Donnell, 1965). Also, 

it is ditficult to relate irrational coefticients to other charac­

teristics ot the system. 

14artinec (1975) has evaluated some field estimated values ot 

d, the degree-day factor. This parameter represen~s the ~mount 

of snow that melts for each degree-day. Since the rate of snow­

~~lt depends on the available energy, the wind speed, and the 

'/~por pressure deficit (among other factors), the temperature 

alone cannot be expected to completely determine the amount ot 

s:nowmelt. Hartinec sugge!:ted a value in the range ot 0.35-0.60 

centimeters per degree (Ce1sius)-day. This corr'sponds to a 

range of 0.138-0.236 inches per degree-day. Hartinec also 

--'---. ,+ 
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suggested that the value var1es systemat1cally throughout the 

snowmelt sealon and allo var1es from one elevat10n zone to the 

next. These values derive from tbe experimental approach to 

calibration of the mJdel. 

7'i 

The runoft coeffic1ent, c, CaD be expected to vary consider­

ably from watershed to watershed. This parameter 1s an indicator 

of the proport10n ot the water inc1dent on the basin that leaves 

the basin as streamflow. Because groundwater storage and evapo­

transpiration losles vary considerably between watersheds, the 

value of c can be expected to var7 as well. 

Once values of K and d have been selected, c can be determin­

ed subjectively by making forecastJ with an initial estimated value 

of c, examining the errors of the predictions, and then adjusting 

the value of c in such a way as t~ lessen the errors. Using values 

of K derived from (Eq.1t-9) and the values of d sugges ted by Hartinec, 

subjective optimization gave al~ o~~itlum c value of about 0.15. 

Ar;alytical Calibration of the H,rt1nec Model 

Analytical calibration is performed by laking the partial 

derivatives of the criterion function,which is the sum of the 

~quares of the errors, with respect to each of the coefficients 

to be opticlzed. These partial derivatives are then set equal 

to zero, because the derivatives !~ual zero at the minimum value 

of the criterion fur,ction. The partl~l derivatives form a set 
,. 

of simultaneous equations that CaD be solved for the optimum v 

values of the ~oefflcients. Lne a1vantage of analytical cali­

braticn is th~c it leads to a Wli~ solution and 1s reproJuceable; 

.. 



-........ ' .. ~--~-------_. --.--........ --------............ ~-----..----~---"'----$--..... 

two different researchers calibratlng the same equation wl~ 

the same data will arrive at the t~me optimum values. The 

disadvantages are that the partlal derivatives do not always 

form an independent set of s'.:nultaneous equations and that 

the evaluation of the equations and the substitutions involv­

ed in solving them are cumbersome. 
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When optimizing the coefficients, it ls desirable to opti­

mize all of the coefficients simultaneously. Analytlcal ca11b­

rat10n of the Martinec model was attempted using the estimates of 

K glven by Eq. 4-;. The equat10n i8: 

(It-ll) 

\Vhen the partial derivatives are calculated, no independent 

equation involving b results. Th~rerore, this form of the 

model ~ith K estimated by Eq. 4-5 cannot be optimized analy­

tically. Another method of estimating K must be chosen. 

Assuming that K is estimated by Eq. (4-9}, the criterion 

function for the Martinec equation can be written: 

m • 2 m 2 
F = ! (Qn-Qn) = E (dTSCA+P) Ac (l-K) + KQ 1 - Q 1 

n=l n=l n- 11 

in ~hich m is the number of days for Which predictions 

~re ffiade. The partial derivative with respect to c 1s: 

(It-12) 

riF In rc = 2 r ((r1TSCA+p) eA (l-K) .. KQn_l - QnJ( (d'!SCA+P)(l-K)Al 
n=l 

(4-13) 



which equ~ls zero at the minimum value or Eq. ~-ll: 

o = ~[(dTSCA+P)2(1-K)2CA2 + A(l-K)(dTSCA+P) KQn_l 
n=l 

- A(dTSCA+P) (l-K) Qn] 

Assuming that the degree-day ractor does not vary from zone to 

zone, Eq. (4-13) can be rearranged to: 

m m 
o = CAd2 t [T SCA (1-K)2 1 + 2cAd ! [TPSCA(1-K)2] 

n=l n=l 

m m 
+ cA t [p2(1_K)2 1 + d I [TSCAK(l-K)Qn_l] 

n=l n=l 

m m m 
+ t [K(l-K)PQn_l] - d t [TSCA(1-K)Qn1- t [P(l-K)Qn] 

n=l n=l n=l 
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(4-15) 

The partial derivative or Eq. (4-11) with respect to d is 

given by: 
m 

~~ = 2 t [cA(l-K)\dTSCA+P) + KQn_l - Q ] (cA(l-K)TSCA) 
~l n 

(4-16 ) 

·,.Jhich, ilhen set eq,ual to zero, becomes: 

o = cAd ~ [T2SCA2 (1_K)2] +cA ~ [TSCAP(1-K)2] 
n=l n=l 

m m 
+ L [TSCAK(1-K)Qn_1J - L [TSCA(l-K)Q 1 

n=l n=l n 
(4-17 ) 
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Eqs. (4-15) and (4-17) are simultaneous and independent; they 

can be solved for the optimum values of c and d once the sum­

mations are calculated. The resulting values are different for 

each yea~. In testing the Martinec model, the average values 

78 

of c and d were used because the yearly values were not highly 

correlated with any of the data available on May 1. The accuracy 

of the model when tested with the averages of the analytically 

derived values of c and d was not greater than the accuracy 

achieved with values derived using numerical optimization. 

An alternative way of analytically calibrating the Martinec 

model assumes that K is constant for each year, rather than a 

function of the previous day runoff. With this assumption, opti­

mum values of K, c, and d can be derived from the three simultane­

ous and independent equations obtained from the partial derivatives. 

Th~ use of a constant K for each year simplifies the prediction 

model significantly, but also results in a decrease in accuracy 

when compared w:. th the methods in which K is a function of the 

runoff from the previous day. 

::1J!l".erical Calibration of the Martin~c Model 

The numerical calibratior. method is an iterative process that 

r'?q'lires a computer. The prclgram used in this study is ref,~rred 

to as pattern search. This pr0gram starts with initial estimates 

f)f 'he coefficients to be optimized (supplied by the programmer) 

~nd calculates the predictions and errors for each case usi~g 

:h8se initial estimates. The sum of squares of the errors 1s 

.~. 
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then calculated. Next, ,nch coefficient is sequentially decrement­

ed by a given amount, ususlly about ; to 10 percent of the initial 

estimates. The sum of squares of the errors is calculated for 

each new set of parameters and compared with that produced by the 

original set. The best new set of parameters (i.e., the set with 

the lowest sum of squares) becomes the set of base values, and 

these values are then incremented. The process continues until 

variation of the parameters does not result in a significnatly 

lower sum of squares than does the base set. At this point, the 

parameters have converged on the optimum values, that is, the set 

of values that minimizes the sum of squares of the errors. If 

the initial parameter estimate~ are properly selected, numerical 

optimization should provide final parameter estimates that are 

similar to those that would be obtained if an analytical solu-

tion were possible. 

In using the pattern se~rch method, K was assumed to be a 

function of Q 1. The optimum values of c and d were to be deter-n-

mined, so the following model was used in the pattern search pro-

gram: 

(4-1.3) 

The 1egree-day factor K is different for each zone, and six eleva-

tion zones were used. There was no snow cover in the lowest ele-

'lat~on zone during the forecast period, so this zone did not need 

a degree-1ay factor; therefore, only five values of degree-day 

factor ~ere required. The pattern search model was used to deter­

mine the optimum set of values for the parameters a, b, c, d, d2 , 
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d
3

, d~, and d,. The resulting values of d were negative for 

some zones, which is irrational. All values of the degree-day 

factor must be greater than zero. Therefore, the pattern search 

program was modified in order to constrain all the values of d 

to be greater than zero. The resulting values of d were nearly 

zero for some zones and did not vary systematically with eleva-

tion. 

The model was also optimized with the degree-day factor be­

ing constant from zone to zone. The equation for this model is: 

(4-19) 

With this equation there were only four parameters to be optimized 

because there is only one value of d. 

The accuracies of these three versions of the modified Martinec 

model were compared on the basis of the sum of squares of the errors 

for each year. The model in which the degree-day factor varied from 

zone to zone and was not constrained to be greater than zero was 

most accurate, but the d values were irrational. Constraining the 

values of d to be greater than zero increased the sum of squares 

of the errors by two to four percent for most years when compared 

with the unconstrained model. ~fuen the value of the degree-day 

factor was assumed to be constant from ~ne zone to the next, the 

S1lffi of squares increased by less than two percent when co~pared 

with the constrained form of the spatially distributed model. 

These results show that the values of c and d are not very 

important to the accuracy of prediction; that is, the model is 

not sensitive to these parameters. In order to determine just 

... ..:. 



r··'V -

t 
I 

, 
t 

a,s. 0;:, ".4 404 - __ ~""""""'-.-rr_~~""'''~ ""'"·----.,....... ........ ·~-~""'III'~a _.-.-4_"""' ..... ""'+.~ .-=~~. , .... ~ -~ ... + .• ""'.""" .• Q!'!" ...... ,...,x _: _*"",,",4". __ , ...... ,. 

how important the values or c and d are, the program was used 

with only the recession term of the Martinec model: 

Q* = aQ (b+l) 
n n-l 

(1+-20) 
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A comparison of the results or this investigation with the results 

or using the full model is shown in Table 6. It is obvious that 

this model which is based only on the recession term, requires 

far less data to operate than does the original Martinec form; 

the only data required for the recession model is daily runoff, 

while the original version also required daily temperature, pre­

cipitation, and snow covered area. Whether the improved accuracy 

obtained with the original model justifies the added expense c~ 

collecting all this data is a question that will depend on both 

the watershed and project chjectives. It should be emphasized 

that this result will not necessarily be valid for all water­

sheds; for watersheds that are characterized by low serial cor­

relation, one would expect the first term to be more important. 

----~--- -.----------
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Year 

1954 

1955 

195b 

1957 

1958 

TABLE 6 

Comparison of The Accuracy of the Entire Martinec Model Vs. 

Accuracy of the Recession Term, 1954-1958 Calibration 

Recession Term Model Martinec Model 

Correlation I Sum of Squares of Correlation Sum of Squares of 
Coefficient the Errors Coefficient the Errors 

.950 1.1376 x 10 8 
.969 8.1712 x 10 7 

.908 2.3632 x 108 
.942 1.6749 x 10 8 

.906 2.7011 x 10 8 
.944 1.5675 x 108 

.834 8 
.871 8 5.7226 x 10 4.6871 x 10 

.927 8 8 2.4326 x 10 .947 1.8302 x 10 

~ ____ ~ _______ ~~_. _ __ _ _____ _ __ ............ ~.:;..:~IL._. ________ .' ... .....:...._ " .... _ .. 
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CHAPTER V 

TESTING THE SNOWMELT MODELS 

Each model was tested for accuracy of prediction using 

each of the five l2-year test data sets. Data sets #1, 3, 

and ; were used to evaluate the accuracy of the model when 

used with data from within the range of calibration data; 

data sets #2 and ~ were used to test the model with data 

from outside the calibration range. The accuracy of pre­

diction for each model and each data set was measured by the 

correlation between predicted and observed runoff volumes and 

by the standard error of estimate. 

Significance of the Correlation Coefficient 

In evaluating the results of the testing program, it was 

necessary to compare the correlations and standard errors of 

the various models. These goodness-of-fit statistics are shown 

for the regression models in Table 7, for the Tangborn models 

in Table 8, and for the Martinec models in Table 9. Conclu­

sions as to which models are most accurate are based on these 

c0mparisons. E~cause the models were tested on only 12 years 

of data, the resulting correlations and standard errors are 

only approximations of the values that would result from a 

83 

more extensive testing program. Therefore, the fact that one 

noiel resulted in a higher c~rrelation coefficient than another 

moiel does not necessarily mean that the first model is superior; 

. ....., 
I 

1 
1 



aaCbS * 4 .... , 5.4c"4 PO Act : WiG i 4 : 
""" ."~. ~ "' r L% ~ -q,. _._; ; .... U .. ,,",i< PC _ .... " PW 'eM,,_, • '" • _. .. ....... 

I ~ 
I ~~7 l 
I 
I 

~ 

Length of Forecast 
(Days) 

15 

30 

45 

60 

90 

120 

150 

Swwaary Statistics for Testing of Regression Models 
Predictor Variable: Snowpack Index 

Forecast Date: April 1 

Data Set • 
1 2 3 4 

R .709 .646 .807 .674 
Se 31.3 32.9 27.3 33.1 
Sy 42.3 41.2 44.1 42.8 

R .852 .751 .894 .751 
5e 49.3 62.9 47.0 63.7 
Sy 89.9 91.0 99.8 92.0 

R .927 .858 .931 .858 
Se 70.3 92.1 75.2 93.1 
5y 179.0 171.0 196.1 173.0 

R .972 .921 .963 .924 
Se 83.9 106.8 93.9 109.3 
5y 340.6 261.8 332.4 272.1 

R .954 .886 .941 .881 
5e 198.0 220.8 220.9 219.6 
5y 626.8 453.9 662.0 422.2 

R .921 .809 .907 .802 
Se 335.5 372.3 362.0 370.8 
5y 822.6 b04.3 821.0 592.5 

R .916 .792 .900 .786 
Se 370.6 417.1 401.5 415.6 
Sy 880.1 651.9 878.9 640.4 

_--£"-"'-"-

5 

.911 
20.7 
47.9 

.948 
36.5 

109.3 

.974 
48.9 

206.1 

.976 
81.1 

356.7 

.972 
154.8 
631.6 

.967 
211.8 
791.8 

.964 
235.6 
842.0 

." , 
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f TABLE 7 

Swwnary Statistics for Testing of Regression Models 
Predictor Variable: October-March Precipitation Total 
Forecast Date: April 1 

Length of Forecast Data Set , 
(Days) 1 2 3 4 

IS R .743 .72e .762 .744 
Se 29.7 29.9 30.0 30.0 Sy 42.3 41.2 44.1 42.8 

so R .860 .759 .820 .775 Se 48.2 62.1 59.9 61.0 
Sy 89.9 91.0 99.8 92.0 

45 R .901 .810 .858 .822 Se f1.4 105.8 105.8 103.3 
Sy 179.0 171.0 196.1 173.0 

60 R .967 .930 .962 .936 Se 91.6 101.2 94.8 100.7 5y 340.6 261.8 332.4 272.4 

90 R .968 .941 .973 .943 
5e 165.3 160.9 149.4 154.7 
Sy 626.8 453.9 622.0 442.2 

lZO R .957 .921 .962 .92: 
5e 250.5 247.5 236.5 242.3 
Sy 822.b 604.3 821.0 592.5 

150 R .954 .912 .958 .913 
Se 276.8 280.2 263.3 274.7 
Sy 880.1 b51.9 878.9 640.4 

5 

.860 
25.6 
47.9 

.888 
52.7 

109.3 

.928 
80.3 

206.1 

.966 
96.6 

356.7 

.981 
129.6 
631.6 

• 982 
154.9 
791.8 

.980 
174.0 
842.0 
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TABLE 7 

Summary Statistics for Testing of Regression Models 
Predictor Variables: April 1 Snow Covered Area 
Forecast Date: April 1 

1 

Length of Forecast Data Set , j (Days) 1 2 3 4 5 ! 
J 

~ 
j 

15 R .744 .716 .764 .740 .855 Se 29.6 30.1 29.9 30.2 26.0 5y 42.3 41.2 44.1 42.8 47.9 
30 R .864 .758 .820 .775 .884 Se 47.5 62.2 59.9 61.0 53.6 Sy 89.9 91.0 99.8 92.0 109.3 
45 R .904 .809 .859 .822 .925 Se 80.2 105.4 105.2 103.4 82.0 5y 179.0 171.0 196.1 173.0 206.1 
60 R .966 .930 .964 .936 .966 5e 91.8 101.0 92.7 100.3 96.2 Sy 340.6 261.8 332.4 272.1 356.7 
90 R .965 .940 .972 .942 .982 5e 172.3 163.1 153.1 155.7 126.1 Sy 626.8 453.9 622.0 442.2 631.6 

1.20 R .953 .919 .959 .920 .984 Se 260.6 250.3 242.5 243.9 146.9 Sy 822.6 604.3 821.0 592.5 791.8 
ISO R .9S0 .911 .956 .912 .983 Se 286 9 282.2 269.3 ~75.6 164.2 Sy 880.1 651.9 878.9 640.4 842.0 
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TABLE 7 

Summary Statistics for Testing of Regression Models 

Predictor Variable: Product of Snowpack Index and April 1 
Snow Covered Area 

forecast Date: April 1 

Length of Forecast 
Data Set , 

(03)'5) 1 2 3 4 5 

IS R .723 .676 .776 .695 .878 
Se 30.7 31.8 29.2 32.2 24.1 
Sy 42.3 41.2 44.1 42.8 47.9 

30 R .854 .753 .850 .753 .900 
Se 49.1 62.8 55.1 63.4 49.9 
Sy 89.9 91.0 99.8 92.0 109.3 

45 R .932 .854 .899 .854 .948 
Se 67.9 93.2 90.3 94.4 68.5 
Sy 179.0 171.0 196.1 173.0 206.1 

60 R .968 .947 .958 .943 .971 
Se 89.1 88.2 99.6 94.6 89.1 
Sy 34~'.6 261.8 332.4 272.1 356.7 

90 R .945 .923 .940 .924 .971 
Se 214.9 182.9 223.0 177.5 159.5 
Sy 62b.8 453.9 622.0 4-;;:.2 631.6 

120 R .915 .d62 .911 .861 .971 
Se 347.7 320.8 355.0 316.0 199.3 
Sy 822.6 604.3 821.0 592.5 791.8 

150 R .910 .848 .906 .847 .969 
Se 382.5 3bl.9 390.9 357.3 218.8 
Sy 880.1 651.9 878.9 640.4 842.0 

OD 
'I 

, 



TABLE 7 

Suaaary Statistics for Testing of Regression Models 

Predictor V~riables: Sn~pack Index and October-March Preci~itation Total 
Forecast Date: April J. 

Length of forecast Data Set , 

(Days) 1 2 3 4 5 

15 R .743 .646 .746 .674 .613 
Se 31.3 34.7 32.5 34.9 41.8 
5y 42.3 41.2 44.1 42.8 47.9 

SO R .860 .751 .820 .751 .888 
Se 50.8 66.4 63.2 67.1 55.5 
5y 89.9 91.0 99.8 92.0 109.3 

45 R .901 .860 .885 .858 .928 
Se 85.8 96.5 101.0 98.2 84.6 
Sy 179.0 171.0 196.1 173.0 206.1 

60 R .967 .946 .968 .950 .966 
Sc 96.6 93.8 92.3 94.0 101.8 
'iy 340.6 261.8 332.4 272.1 356.7 

90 R .970 .909 .%1 .931 .981 
Se 168.2 209.0 189.7 178.2 136.6 
Sy 626.8 453.9 622.0 442.2 631.6 

120 R .9S0 .837 .943 .879 .982 
Sf.: 284.3 36S.1 301. 7 3U.8 163.3 
Sy 822.6 604.3 821.0 592.5 791.8 

ISO R .946 .823 .939 .867 .980 
Sc 314.1 409.6 ';33.2 352.8 183.4 
Sy 880.1 651.9 878.9 640.4 842.0 

CD 
CD 
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TABLE 7 

Su.aary Statistics for Testing of Regression Models 

Predictor Variables: SRowpack Index and April 1 Snow Covend Area 
Forecast Date: April 1 

Length of Forc~ast Data 5£t , 

(Days) 1 2 3 4 5 

15 R .744 .646 .748 .674 .593 
Se 31.2 34.7 32.4 34.9 42.6 
Sy 42.3 41.2 44.1 42.8 47.9 

30 R .864 .761 .820 .751 .767 
Se SO.O (,5.2 63.2 67.1 77.6 
Sy 39.9 91.0 99.8 9:?0 109.3 

45 R .904 .858 .885 .858 .925 
Se 84.5 97.2 100.9 98.2 86.4 
S1 179.0 171.0 196.1 173.0 206.1 

60 R .966 .947 .969 .951 .966 
S- 1Hi •• 12.6 10.1 13.1 101.4 
Sy 340.6 261.8 332.4 272.1 356.7 

90 R .968 .907 .960 .932 .982 
Se 17l.0 211.0 192.3 177.7 133.0 S, 626.8 453.9 622.0 442.2 631.6 

120 R .948 .834 .941 .880 .984 
Se 289.7 368.1 306.3 311.3 154.8 S, 822.6 604.3 821.0 592.5 791.8 

150 R .945 .820 .938 .868 .983 
Se 319.5 412.8 337 8 351.9 173.1 
Sy 880.1 651.9 878.9 640.4 :i42.0 
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TABLE 7 

S~ary Statistics for Testing of Regression Models 
Predictor Variables: October-March Precipitatior. Total and 

April Snw Covered Area 
Forecast Date: April 1 

Data Set , 
1 2 3 4 S 

R .744 .660 .764 .684 .855 
Se 31.2 34.2 31.S 34.S 27.4 
Sy 42.3 41.2 44.1 42.8 47.9 

R .864 .717 .820 .729 .884 
Se 50.0 70.1 63.2 69.6 56.5 
Sy 89.9 91.0 99.8 92.0 109.3 

R .904 .772 .859 .781 .925 
Se 84.5 120.2 110.9 119.3 86.4 
Sy 179.0 171.0 196.1 173.0 206.1 

It .966 .924 .962 .930 •• 966 
Sc 96.8 llO.8 99.9 110.5 101. .. 
Sy 340.6 261.8 332.4 2'12.1 356.7 

R .!)65 .942 .973 .942 .981 
Sc 181.6 168.3 157.5 Itl".1 136.6 
S)' 626.8 453.9 662.0 422.2 631.6 

R .953 .922 .962 .920 .982 
S«: 274.7 258.8 249.3 257.1 163.3 
Sy 822.6 604.3 821.0 592.5 791.8 

R .950 .913 .958 .912 .910 
Se 302.4 294.6 277 .6 290.5 183.4 
Sy 81$0.1 b51.9 878.9 640.4 842.0 ~ 

0 

1 , 
'1 

1 
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TABLE 7 

() SWlullary Statistics for Testing of Regression Models 

I 
Predictor Variables: October-March Precipitation Total and Product of 

N Snowpack Index and April Snow Covered Area 

Forecast Date: April 1 l 
~ 

Length of Forecast Data Set , 

1 (Uays) 1 2 3 4 5 

15 R .743 .669 .754 .678 .311 1 
Se 31.3 33.8 32.0 34.7 50.3 

, 

Sy 42.3 41.2 44.1 42.8 47.9 

30 R .854 .753 .825 .753 .888 
Se 51.8 66.2 62.4 66.9 55.5 I j 

Sy 89.9 91.0 99.8 92.0 109.3 1 
1 
1 

45 R .932 .852 .882 .854 ."28 I 1 Se 71.5 98.9 102.1 99.5 84.6 I 

Sy 179.0 171.0 196.1 173.0 206.1 I 
l 

60 R .967 .952 .964 .952 .966 I 
1 
j 

Se 96.6 88.9 98.2 92.2 101.8 
1 Sy 340.6 :61.8 332.4 272.1 356.7 
1 

90 R .962 .928 .956 .940 .981 I 
1 
1 

Se 188.1 187.0 201.3 166.5 136.6 
1 Sy 626.8 453.9 662.0 422.2 631.6 

120 R .939 .868 .940 .889 .982 
Se 311.7 332.0 309.4 299.9 1b3.3 
Sy 822.6 604.3 821.0 592.5 791.8 

150 R .936 .854 .937 .877 .980 
Se 343.7 374.5 339.1 340.6 183.4 
Sy 880.1 651.9 878.9 640.4 842.0 ~ ... 
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TABLE 7 

Summary Statistics for Testing of Regression Models 
Predictor Variable: October-April Precipitation Total 

! l Forecast Date: May 1 

Length of Forecast 
Data Set , (Days) 1 2 3 4 5 

15 R .785 .627 .751 .639 .923 j Se 62.6 74.3 71.3 74.1 40.5 1 Sy 96.4 91.0 102.8 91.8 100.0 ! 
I 
1 

30 R .940 .858 .946 .871 .967 l 
1 

Se 93.4 106.5 85.1 106.1 69.6 'i Sy 260.6 197.9 249.6 205.9 258.5 i 
1 

.984 1 
45 R .946 .870 .957 .861 

l Se 142.0 158.7 124.1 162.0 75.5 
1 Sy 417.3 307.1 407.4 303.3 409.0 

i .. 
60 R .970 .943 .982 .930 .987 

J 
Se 140.2 137.4 107.3 148.0 89.9 Sy 551.9 394.6 545.5 383.2 534.5 

90 R .981 .966 .987 .954 .986 Se 151.5 148.6 125.5 169.3 119.6 Sy 749.3 548.0 749.0 536.3 696.1 
120 R .982 .965 .986 .953 .9&5 Se 158.8 163.3 140.5 184.7 136.1 Sy 807.0 596.2 807.9 584.7 746.9 

~ 

" .. 
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TABLE 7 

Sumaary Statistics for Testing of Regression Models 
Predictor Variable: Product of May 1 Snow Covered Area 

and April Snowpack Index 
Forecast Date: May 1 

Length of Forecast Data Set , 
((}ays) 1 2 3 4 

15 R .876 .778 .839 .783 Se 48.7 59.9 58.8 59.9 Sy 96.4 91.0 102.8 91.8 
30 R .974 .913 .945 .919 Se 61.4 84.5 85.7 84.9 Sy 260.6 197.9 249.6 205.9 
45 R .976 .928 .960 .925 Se 95.4 119.7 120.2 120.7 5y 417.3 307.1 407.4 303.3 
60 R .965 .917 .960 .913 Se 151.3 165.2 160.4 163.9 Sy 551.9 394.6 545.S 383.2 
90 R .945 .862 .94S .858 Se 256.5 291.1 257.3 288.5 Sy 749.3 548.0 749.0 536.3 

120 R .942 .849 .941 .846 Se 284.9 330.6 286.4 327.4 Sy 807.0 596.2 807.9 584.7 

5 

.965 
27.6 

100.0 

.966 
70.6 

258.5 

.972 
101.5 
409.0 

.973 
129.3 
534.5 

.969 
179.8 
696.1 

.967 
199.8 
746.9 

-~~ ... :-: ..... ---" r-·~ 

~ 

"" 

J~~~ 

j 

j 
l 

j 

1 
I 
1 

i , 
~ 

1 
j 
1 

1 
1 
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Length of Forecast 
(Days) 

15 

30 

45 

60 

90 

120 

TABLE 7 

SWlunary Statistics for Testing of Regression Models 

Predictor Variables: Snowpack Index and October-April 
Precipitation Total 

Forecast Date: May 1 

Data Set , 

1 2 3 4 

R .927 .794 .877 .801 
61.2 54.5 60.8 

Se 39.9 
Sy 96.4 91.0 102.8 91.8 
R .940 .908 .948 .915 Se 98.4 91.6 88.2 91.7 Sy 260.6 197.9 249.6 205.9 
R .946 .921 .955 .907 . ~ 149.7 132.6 133.3 141.5 Sy 417.5 307.1 407.4 303.3 
R .970 .907 .960 .927 Se 147.8 184.0 168.9 158.5 551.9 394.6 545.5 383.2 
R .981 .844 .961 .894 Se 159.2 324.8 229.9 266.2 Sy 749.3 548.0 749.0 536.3 
R .982 .832 .962 .885 Sc 167.4 365.5 244.9 101.1 Sy 807.0 596.2 807.9 584.7 

5 

.971 
26.5 

1000.0 

.965 
75.3 

258.5 

.970 
109.5 
408.0 

.987 
93.4 

514.5 

.986 
126.1 
696.1 

.985 
141.4 
746.9 

~ 
0\ 

.!;-" 

i 

I 
1 
1 
j 
1 , 
1 
~ 

1 
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TABLE 7 

Summary Statistics for Testing of Regression Models 

Predictor Variables: Snowpack Index and May Snow Covered 
Area 

Forecast Date: May 1 

Length of Forecast Data Set' (Days) 1 2 3 4 5 

15 R .927 .885 .917 .882 .978 
Se 39.9 46.8 45.3 47.9 23.0 
Sy 96.4 91.0 102.8 91.8 100.0 

30 R .969 .872 .933 .&93 .947 
Se 71.2 107.1 99.2 102.4 91.7 
Sy 260.6 197.9 249.6 205.9 258.5 

45 R .974 .900 .947 .898 .956 
Se 103.9 147.7 145.1 147.5 133.3 
Sy 417.3 307.1 407.4 303.3 409.0 

60 R .979 .872 .935 .865 .959 
Se 123.9 213.6 214.'; 212.5 167.7 
Sy 551.9 394.6 545.5 383.2 534.5 

90 R .962 .803 .907 .798 .946 
Se 226.7 361.5 349.5 357.4 248.8 
Sy 749.3 548.0 749.0 536.3 696.1 

120 R .958 .787 .899 .783 .943 
Sc 255.1 406.9 390.6 402.1 275.9 
Sy 807.0 596.2 807.9 584.7 746.9 

~ 
~ 
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TABLE 7 

Summary Statistics for Testing of Regression Models 

Predictor Variables: October-April Precipitation Total and 
May Snow-covered Area 

Forecast Date: May 1 

Data Set' 
1 2 3 4 

R .785 .659 .730 .662 
Se 66.0 75.7 77.7 76.1 Sy 96.4 91.0 102.8 91.8 

R .931 .859 .919 .872 
Sc 104.9 111.8 108.8 111.6 Sy 260.6 197.9 249.6 205.9 

R .938 .872 .934 .863 
Se 160.2 166.3 160.6 169.5 
Sy 417.3 307.1 407.4 303.3 

R .975 .951 .974 .938 
Se 134.9 134.5 137.0 146.4 
Sy 551.9 394.6 545.5 38~.2 

R .989 .980 .985 .966 
Se 123.0 119.7 145.0 152.7 
Sy 749.3 548.0 749.0 536.3 

R .990 .980 .984 .966 
Se 126.4 131.9 158.7 166.7 
Sy 807.0 596.2 807.9 584.7 

5 

.923 
42.7 

100.0 

.967 
73.3 

258.5 

.982 
86.1 

409.0 

.987 
96.2 

534.5 

.984 
135.1 
696.1 

.983 
150.6 
746.9 

~ 
CD 

=11 

~~~-. 
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TABl.E 7 

Summary Statistics for Testing of Regression Models 

Predictor Variables: October-April Precipitation Total and Product 
of Snowpack Index and May Snow Covered Area 

Forecast Date: May 1 

Length of Forecast Data Set , 
(Days) 1 2 3 4 5 

15 R .785 .497 .810 .489 .965 
Se 66.0 87.2 66.6 88.6 29.1 
Sy 96.4 91.0 102.8 91.8 100.0 

3U R .940 .905 .950 .919 .976 
5e 98.4 93.1 86.1 89.9 61.8 
Sy 260.6 197.9 249.6 205.9 258.5 

45 R .978 .936 .964 .921 .981 
Se 95.2 119.1 120.4 125.1 87.2 
5y 411.3 307.1 401.4 303.3 409.0 

bO R .978 .945 .976 .945 .992 I Se 127.8 143.1 131.5 138.1 76.4 
Sy 551.9 394.6 545.S 383.2 534.5 

j 90 R .966 .902 .976 .910 .990 
Se 214.7 261.8 180.9 245.3 l09.S 
Sy 149.3 548.0 149.0 536.3 696.1 

120 R .965 .891 .975 .901 .985 
Sc 235.5 298.8 197.3 280.2 143.4 
5y 807.0 596.2 807.9 584.7 746.9 

~ 
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TABLE 8 l 

! SumMary Statistics for Testing of Tangborn Models 

Forecast Date: April 1 

-1 , , 

Length of Forecast Data Set , 

(Days) 1 2 3 4 5 

15 R .747 .511 .753 .583 .410 
Se 29.5 37.1 30.5 36.4 45.8 
Sy 42.3 41.2 44.1 42.8 47.9 

30 R .856 .441 .781 .558 .541 
Se 48.7 85.6 65.5 80.1 96.4 
Sy 89.9 91.0 99.8 92.0 109.3 

4S R .841 .436 .828 .546 .746 
Se 101.4 161.4 115.4 152.0 143.9 
Sy 179.0 171.0 196.1 173.0 206.1 

ou It .tt1;4 .11ta .tt'" .714 .901 
Se 14b.2 185.0 121.1 177.3 162.1 
Sy 340.6 261.8 332.4 272.1 356.7 

90 R .937 .895 .951 .891 .940 
Se 229.4 212.6 201.0 210.9 225.2 
Sy 626.8 453.9 662.0 442.2 631.6 

120 R .942 .899 .955 .901 .929 
Sc 290.2 277.2 254.6 269.0 307.7 
Sy 882.6 604.3 821.0 592.5 791.8 

150 R .941 .894 .95f, .899 .926 
Se 331.4 306.7 271.3 293.9 332.9 
Sy 880.1 651.9 878.9 640.4 842.0 

... 
8 

J;-
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TABLE 8 

~ry Statistics for Testing of Tangborn MOdels 

Forecast Date: May I 

Length of Forecast Data Set , 

(Days) 1 2 3 4 5 

15 R .740 .494 .689 .525 .828 
Se 68.0 82.9 78.2 82.0 58.9 
Sy 96.4 91.0 102.8 91.8 100.0 

30 R .899 .770 .903 .778 .943 
Se 119.8 132.5 112.6 135.5 90.0 
Sy 260.6 197.9 249.6 205.9 2S8.5 

i 
45 R .915 .838 .908 .818 .979 I 

I 

Se 177.1 175.6 179.0 182.8 86.6 
Sy 417.3 307.1 407.4 303.3 409.0 

bO R .936 .910 .955 .iS9O .980 
So 203.4 171.6 169.2 113.2 110.6 
Sy 551.9 394.6 S45.5 383.~ 534.5 

90 R .948 .934 .976 .923 .980 
Se 249.8 205.8 169.4 215.9 147.1 
Sy 749.4 548.0 749.0 536.3 69(-.1 

120 R .949 .931 .978 .925 .978 
Se 26(,.2 228.5 17".1 233.3 163.3 
Sy 807.0 596.2 807.9 584.7 746.9 

ISO R .950 .930 .978 .925 .978 
Se 269.4 236.0 181.5 239.7 167.0 
Sy 819.5 612.0 822.8 600.6 756.8 

... 
0 ... 

~. -.J-J 
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TA8L~ 8 

S~ry Statistics for jesting of Shon-Tera Taagborn Models 

FOt'eca5t Date: May 1 

Lencth of Forecast Date Set , 

(Days) 1 2 3 4 5 

1 R .665 .619 .760 .644 .813 
Se l.8Y 4.20 3.38 3.90 3.14 
Sy 4.9C» 5.1 4.96 4.86 5.15 

2 R .694 .634 .761 .664 .834 
Se ;.43 8.08 7.02 7.53 5.86 
Sy 9.85 9.97 10.31 9.61 10.13 

1 R .718 .630 .739 .667 .858 
Se 10.43 11.56 11.11 10.69 8.00 
Sy 14.29 14.18 15.74 13.69 14.83 

5 R .758 .517 .614 .632 .830 
Sc: 15.45 19.11 20.12 17.66 15.12 
Sy 22.57 22.60 27.21 21.74 25.82 

10 R .786 .515 .106 .539 .756 
Se 35.08 49.87 49.25 47.95 44.42 
Sy 54.06 55.46 66.21 54.28 64.61 

IS R .740 .494 .619 .525 .828 
50 68.0 82.94 78.18 81.99 51.88 
Sy 96.38 90.97 102.14 91.83 100. OS 

2 

.. 
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TABLE 8 

Su.aary Statistics for Testin. of Short-Ter. Tan.bora Model~ 

Forecast Date: Nay 15 

Lena th 0 f Fu recas t Data Set I 

(Days) 1 2 3 4 5 

1 R .(;94 .405 .397 .506 .782 
50 6.79 8.21 7.96 8.34 5.28 
Sy 9.00 8.56 8.27 9.22 8.09 

2 R .734 .438 .514 .547 .801 
50 12.83 15.41 14.74 15.67 10.30 
51 18.01 16.34 16.38 17.85 16.68 

3 R .769 .466 .627 .575 .825 
50 18.81 22.60 20.58 22.98 15.75 
5y 28.03 24.35 25.11 26.71 26.61 

5 R • 80S .5l5 .734 .551 .150 
50 29.64 36.18 30.58 36.;9 26.26 
51 47.61 40.53 42.92 41.82 47.56 

10 R .929 .763 .892 .790 .901 
50 40.27 55.57 41.81 55.36 45.10 
51 103.7 81.92 81.36 86.09 102.86 

15 R .951 .8ll .920 .830 .926 
Se 54.53 79.67 66.09 79.41 64.01 
5, 168.14 129.68 160.79 135.90 161.37 

b 
"-' 

" j 
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TABLE 8 

Swwl~ry Statistics for Testing Short-Term Tangborn Models 

l 
i 

Length of Forecast 
(Days) 

1 

2 

3 

s 

10 

15 

Forecast Date: June 1 

1 

R .893 
Se 6.55 
Sy 13.86 

R .872 
Se 14.28 
Sy 27.85 

R .864 
Se 21.19 
Sy 41.50 

R .165 
Se 35.26 
Sy 66.99 

R .898 
Se 54.92 
Sy 118.84 

R .929 
Se 61.47 
5y 158.74 

2 

.640 
8.96 

11.12 

.601 
18.71 
22.31 

.601 
27.69 
33.04 

.599 
44.25 
52.67 

.617 
75.71 
91. 72 

.703 
89.08 

119.41 

j 

1 

Data Set , 

3 4 5 

.766 .753 .931 
9.39 7.56 5.37 

13.93 10.96 14.06 

.735 .727 .924 
20.01 15.75 11.28 
28.14 21.87 21.20 

.727 .711 .920 
30.07 23.52 17.12 
41.79 32.25 41. 79 

.729 .705 .928 
47.79 37.17 25.90 
66.51 50.90 66.42 

.775 .657 .950 
78.91 68.62 37.89 

119.04 86.79 115.79 

.828 .7"4 .957 
94.09 81.83 46.92 

160.12 109.89 154.42 

.... 
?-

~~~": 



TABLE 8 

SWlullary Statistics for Testing of Short-Term Tangborn Models 

Forecast Date: June IS 

Length of Forecast Data Set , 
(Days) 1 2 3 4 5 --
I R .957 .877 .821 .832 .950 Se 2.81 3.86 5.74 3.98 2.91 Sy 9.22 7.66 9.58 6.84 8.91 
2 R .938 .863 .822 .831 .946 Se 6.91 8.30 11.72 8.27 6.04 Sy 19.00 15.65 19.64 14.17 17.79 
3 R .915 .836 .838 .809 .947 Se 11.90 13.07 16.54 12.65 8.62 Sy 28.08 22.69 28.89 20.52 25.62 ; 

i 5 R .881 .799 .883 .773 .946 I Se 23.57 23.85 23.88 22.89 14.43 t Sy 47.54 37.83 48.55 34.44 42.37 
J 
! 10 R .893 .830 .932 .805 .962 

I Se 48.62 47.24 39.96 47.17 25.90 Sy 103.01 80.74 105.28 75.76 90.44 
i 15 R .883 .828 .918 .793 .971 I Se 76.38 72.08 65.80 74.13 32.17 Sy 155.37 122.48 158.42 116.03 129.10 

l • 
~ 

b 
'" 

I 

j 

L 



TABLE 9 

Su~nary Statistics for Testing of Martinec Models 

Forecast Date: May 1 

Length of Forecast Data Set , 

(Days) 1 2 3 

1 R .971 .965 .977 
Se 1.15 1.28 1.01 
Sy 4.96 5.10 4.96 

2 R .960 .943 .953 
Se 2.64 4.16 3.00 
Sy 9.85 9.97 10.3 

3 R .940 .902 .922 
Se 4.66 5.85 5.82 
Sy 14.29 14. ;a 15.7 

5 R .862 .733 .834 
Se 11.0 14.7 14.4 
Sy 22.6 22.6 27.2 

10 R .866 .652 .806 
Se 25.9 40.2 37.6 
Sy 54.1 55.5 66.3 

15 R .921 .721 .860 
Se 36.0 60.4 50.3 
Sy 96.4 91.0 102.8 

4 

.961 
1.28 
4.86 

.939 
3.17 
9.61 

.895 
5.84 
13.7 

.717 
14.5 
21. 7 

.642 
39.8 
54.3 

.709 
62.0 
91.8 

5 

.990 

.682 
5.15 

.980 
1.92 
10.1 

.958 
4.08 
14.' 

.841 
13.4 
25.8 

.792 
37.8 
64.7 

.867 
47.8 

100.0 

---~ ~. -.----,-;- -.r~ 

~ o 
0\ 
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TABLE 9 

Swrul~ry Statistics for Testing of Martinec Models 

Forecast Date: ~~y 15 

Length of Forecast Data Set , 

(Days) 1 2 3 4 5 

1 R .913 .878 .891 .967 .878 
Se 3.52 3.92 3.59 2.26 3.70 
Sy 9.0 8.56 8.27 9.22 8.09 

2 R .778 .790 .725 .940 .698 
Se 10.8 9.60 10.8 5.85 11.4 
Sy 18.0 16.3 16.4 17.9 16.7 

3 R .627 .731 .584 .907 .542 
Se 20.9 15.9 19.6 10.8 21.4 
Sy 28.0 24.3 25.2 26.8 26.6 

5 R .320 .657 .377 .828 .312 
Se 43.2 29.3 38.1 22.5 43.3 
Sy 47.6 40.5 42.9 41.8 47.6 

10 R .792 .599 .640 .754 .686 
Se 60.6 62.8 71.1 54.2 71.7 
Sy 103.7 81.9 96.6 86.1 102.9 S 

i 
IS R .763 .729 .657 .793 .690 t 

Se 104.1 85.0 116.0 79.3 111.8 • .~ 

Sy 168.1 129.7 160.8 135.9 161.4 ~ 
j 
~ 
I 

s 
~ 
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TABLE 9 

Swwuary Statistics for Testing of Martinec Models 

Forecast Date: June 1 

Length of Forecast 
Data Set , 

lDays) 1 2 3 4 5 

1 R .992 .949 .988 .964 .990 
Se 1.63 3.34 2.09 2.80 1.88 
Sy 13.9 11.1 13.9 11.0 14.1 

2 R .986 .940 .980 .948 .982 
Se 4.37 7.30 5.42 6.64 5.15 
Sy 27.8 22.3 28.1 21.9 28.2 

3 R .982 .933 .976 .942 .971 
Se 7.45 11.4 8.67 10.4 9.49 
Sy 41.5 33.0 41.8 32.2 41.8 

5 R .973 .916 .984 .936 .964 
50 l4.8 20.3 11.5 17.2 16.9 
Sy 67.0 52.7 66.6 50.9 66.4 

10 R .962 .645 .991 .802 .972 
Se 31.2 67.1 15.3 49.7 26.1 
Sy 118.8 91. 7 119.0 86.8 115.8 

15 R .920 .727 .982 .797 .925 
Se 59.5 78.5 29.0 63.6 56.2 
Sy 158.7 119.4 160.1 109.9 154.4 

.... 
& 

0 .• 
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TA8LE 9 
j 

j 
1 

SWlU1lary Statistics for Testing of Martinec Models 

Forecast Date: June 15 

Length of Forecast Data Set " 
(Days) 1 2 3 4 5 

1 R .952 .920 .919 .917 .974 Se 2.70 2.87 3.61 2.62 1.92 Sy 9.22 7166 9.S8 6.84 8.91 
2 R 9.13 .868 .844 .869 .957 Se 7.43 7.45 10.1 6.71 4.92 Sy 19.0 15.6 19.6 14.2 17.8 
3 R .869 .803 .769 .821 .941 Se 13.3 12.9 17.7 11.2 8.33 Sy 28.1 22.7 28.9 20.5 25.6 
5 R .793 .699 .627 .745 .898 Se 27.7 25.9 36.2 22.0 17.8 Sy 47.5 37.8 48.5 34.4 42.4 

10 R .S16 .777 .948 .843 .892 Se 57.0 4S.7 32.2 39.1 39.1 Sy 103.0 SO.7 105.3 75.8 90.4 
15 R .759 .848 .951 .842 .869 Se 96.9 62.2 46.7 60.0 61.1 Sy 155.4 122.5 158.4 116.0 129.1 

~ 
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it may be that if both models were tested with many more years 

of data, the second model would yield a correlation equal to 

or higher than that of the first model. For this reason, some 

measure of the significance of the differences in correlation 

is required. 

A test is needed to determine the truth of the hypothesis 

that the two correlations being compared are significantly dif­

ferent. Fisher (19~2) has constructed a test of this hypothesis 

that can be used with samples of moderate size drawn from bivar­

iate normally distributed populations. The test is based on a 

function known as the Fisher R to Z transformation: 

Z = 1. log l+B 
2 e l-R (5-1) 

in which R is the sample correlation coefficient. The Z values 

of this function that correspond to various values of the correla­

tion coefficient have been calculated and are presented in Table 

10. Determination of the significance of the difference between 

two correlation coefficients is judged using the test statistic: 

(5-2 ) 

in which 21 and Z2 are the values of the variable gi 'en by Eq. 

(5-1) and corresponding to the two correlation coefficients, 

r:l and N2 are the numbers of observations on which each correla­

tion coefficient is based,and z is the value of a random variable 

having a standard normal distribution. The test statistic is 

1 

.... -.- ----.-~~-~---~---~~--~---.~--... 



TABLE 10 

Values of the Fisher R-to-Z Transfol'llation 

Z = % loge II + R) 
(1 - R) 

R 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.01 

O.S .549 .563 .576 .590 .604 .618 .633 .648 .662 
0.6 .693 .709 .725 .741 .758 .775 .793 .811 .829 
0.7 .867 .887 .908 .929 .950 .973 .996 1.020 1.045 
0.8 1.099 1.127 1.157 1.188 1.221 1.256 1.293 1.333 1.376 
0.9 1.472 1.528 1.589 1.658 1.738 1.832 1.946 2.092 2.298 

l _______ ~ ___ ~ ~ ______ .. __ ...i..~~ __ • _ ... ', ____ ~ 
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compared with a critical value obtained from tables for the 

normal distributi~n function to determine the significance 

of the difference in correlation. 
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In order to conclude that the accuracy of two models is 

significantly difterent, a level or significance must be chosen. 

This level ot significance will determine the magnitude of dit­

ferences in correlation that will be considered significant. 

The level of significance s}.ould Le chosen by examining the 

consequences ot accepting an incorrect hypothesis and weighing 

these consequences against the results of rejecting a correct 

hypothesis. Such a choice can be made only by those with the 

knowledge necessary to evaluate the consequences; choice of the 

proper level of significance is be10nd the scope of this investi­

gation. Significance of the results of the testing program must 

therefore be judged by the reader. Once a level of significance 

has been selected, the statistical tools presented here n:ay be 

used to compare the accura~ies of the models. 

Table 11 shows the values of the test statistic correspond­

ing to various levels of significance. In order to determine 

Nhether one model is significantly more accurate than another 

at the chosen level of significance, the test statistic is COM­

puted according to Eq. (5-2); if the resulting value is greater 

~han the value given in Table 11, the difference in model ac­

~uracy is deemed :ignificant. For example, the accuracy or the 

3hort-term Tangborn model can be compared with the accuracy of 

~he Martinec model for making 3-da, predictions with a forecast 
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TABLE 11 

Values of the Test Statistic Corresponding to Various Levels of Significance 

Z = 

Level of Significance 

Q = 

0.01 

0.05 

0.10 

0.20 

Zt - Z2 
1 1 ~ 

[C .3 ) + en -3 )J 
1 2 

Min~ Value of Z for 

Significant Difference 

2.575 

1.960 

1.645 

1.280 
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date of May 15 using data set 13. The correlation coefficient 

for the Tangborn model is 0.627; the correlation coefficient 

for the Martinec model is 0.855. The corresponding Z-values, 

from Table 10, are ZO.855=1.27; and ZO.627=0.736~; the test 

statistic calculated from Eq. (5-2) is: 

z = (;-3) 

Comparing the test value with the values in Table 11 shows that 

the difference in correlation is not significant even at the 20 

percent level. It must be noted that a difference in correla­

tion of 0.228, such as was tested here, is not always insignifi­

cant; significance is a function of the values of the correla­

tions, not just the difference between them. If the first cor­

relation was 0.980, and the difference between the correlations 

was 0.228, the second correlation would be 0.752. The Z-values 

would be ZO.980=2.298 and ZO.7;2=O.978; the test statistic would 

equal 2.8, and the difference in correlation would be judged to 

be significant at the one percent level. 

Significance of the Standard Error 

A hydrologic basis for comparison of the mo1els would sim­

plify interpretation of the test results. If the prediction given 

by model A is nearly the same as that given by model B in each of 

a series of test ye~rs, these two models may be considered hy­

lrologically similar. It is possible to determine which pairs 
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ot models are hydrologically sim1lar by e~ning the predict­

ed values tor each test year tor each model, but this would be 

very time consuming due to the volume or data. Instead, the 

standard error ot estimate was tested tor use as an indicator 

ot hydrologic similarity. 

llS 

In order to determine whether similar standard errors were 

indicative ot similarity ot predictions, the predictions given 

by & representatlve sample ot the models were compare~. Table 

12 shows a sample c~mparlson; predlctlons that were made wlth 

the Tangborn model lor a 90-day torecast pel-iod starting on 

Aprl1 I are compared wlth predlctlons that were made wlth regres­

sion equatlons tor the same data set. The comparison demonstrates 

that even though the standard errors ot estimate ot two models are 

slmllar, the predlctions tor lndlvidual years are not necessarlly 

similar. Due to the high correlatIons aeong the predictor vari­

ables tor the various regression models, the predictIons given 

by some ot these models were simllar. However, there was lIttle 

sImilarity between predictions made wlth the Tangborn model and 

those made with any ot the regression models. The Tangborn pre­

dictIons for short forecast periods were generally not similar 

to the Uartinec results, even when the standard errors were near­

ly equal. The conclusion 1s that the standard errors of e~timate 

~~n not be used to judge hydrologic similarity or individual 

predictions among the models. 

TestIng the Correlations 

The ~orrelation coerficients were compared several ways. 
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TABLE 12 

~x~11e of Co.parison of Predictions of Models With Si_llar Standard Errors 

Tangborn (Se = 212.6) Regression With Snowpack Regression Wit. October-
Index (Se = 220.8) March Precipitati_ (Se • 160.9) 

Observed Predicted Error (~) Predicted Error (\) Predicted Enor (\) 

975.4 969.0 -0.7 1247.3 +27.9 1018.1 +4." 
12~9. 7 1512.0 +21.9 1075.3 -16.6 1340.9 +4.0 

1131. 7 1315.2 -24.0 1652.0 -".6 1341.8 -22.5 

1288.' 12.!l.' -5.0 16.51.' +26.6 1270.7 -1." 
11.54.9 821.9 -27.6 670.6 -40.9 752.0 -33.7 

10'5.8 1049.6 -3.3 1105.7 +1.8 94".1 -13.1 

1644.9 1580.3 -3.9 1338 ... -18.6 1 .... 5.5 -12.1 

lU7.7 2378.8 -5.9 2"".0 +6.2 2317.2 -1.1 
782.7 833.0 +6.4 660.5 -15.6 778.7 -O.S 

1506.6 US8.9 -9.8 1793.6 +19.0 1391.8 -7.6 

U75.4 966.3 -29.7 1297.9 -5.6 1106.5 -19.6 

1142 • .5 121S.2 +6.4 1287.8 +12.7 892.3 -21.9 

... 
~ 

--, .. 
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In order to Judie the sienitlcance ot ditterences in correlation, 

the level ot sicnit1cance was arb1trar11y set at 20 percent. 

Table 13 is arraneed 1n such a way that, eiven a level ot silnit1-

cance and one correlat10n coettiaient, the nea~.lt s1,n1t1cAntlr 

ditterent correlation value can be read trom the table. 

Correla,ions tor the various data sets were compared with 

each other, it wa. expected that the accuracy ot the ~odels would 

.. , signiticantly better when used wit:. data sets 11, 3, and ~, 

rather than with sets 12 and~. The correlations tor the various 

leneths ot torecast were also compared tor each model type, al 

were the tieures tor the ditterent rorecalt dates. These com­

parisons should indicate the conditions under which each type 

ot model is m~st accurate. Once the optiMum conditions ar~ de­

termined tor each type ot model, the models may be compared tn 

deter~ine which type is most accurate tor each torecast period. 

l.ftect ot pata Sets on Model Agcuracy 

Data sets 11, 3, and ~ were tormed by ranking the data 

lears in order ot decreasing runott tor various time periods, 

then splitting the 24-year sample by taking the even-ranked 

lears for calibration and the odd-ranked years for testing. 

~'ta sets 12 and 4 were formed by us1ng the low runoft years 

for calibration and tha high runoff years tor tasting. Thus, 

~hen the models were tested with sets Nl, 3, and 5, the test 

1ata wal within the range ot ~ata for which the model had been 

calibrated. With data sets 62 and 4, ~owever, the models were 

~~sted with data trom outside the rar.ge or calibration. In 
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TABLE 13 

Values of SigJlifi~aJltly Uiffercnt Correlation Coefficients for Various Levels of Significance 

Rl R2 la = 0.01) R2 (a = 0.05) R2 ( a = 0.10) ~ (ca • 0.20) 

.995 .945 .969 .977 .984 

.990 .892 .938 .954 .967 

.985 .843 .908 .932 .951 

.980 .795 .880 .909 .935 

.975 .750 .852 .888 .919 

.970 .706 .824 .866 .903 

.9b5 .664 .798 .845 .888 

.960 .624 .771 .825 .872 

.955 .586 .746 .805 .858 

I .950 .550 .720 .784 .842 
.940 .4S1 .672 .746 .813 
.930 .417 .625 .708 .784 i .920 .358 .582 .672 .756 
.910 .305 .540 .637 .728 
.900 .252 .499 .603 .701 
.890 .206 .461 .570 .674 
.880 .160 .424 .538 .649 
.870 .119 .388 .506 .623 
.860 .OSO .354 .476 .598 
.850 .040 .320 .447 .574 
.840 .007 .288 .419 .550 
.S30 -.02b .258 .391 .526 
.820 -.057 .229 .364 .504 

f. .810 .087 .200 .330 .480 
.800 - .115 .174 .313 .459 

I' 

! 
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many cases the differences in the resulting correlation coef­

ficients are not significant; but the pattern of the signifi-

cant differences indicates that the regression models generally 

were more accurate with sets #1, 3, and 5 than with sets #2 and 

4 for forecasts of 90 days or more. The Tangborn model was more 

accurate with data sets #1, 3, and 5 for all lengths of forecast, 

especially during June. The Martinec model was more accurate with 

sets #1, 3, and 5 for all prediction periods during June. 

In general, the models were found to be significantly more 

accurate when tested with data from within the range ot data used 

in calibration. Thus, if the data used for calibration is repre­

sentative of the watershed hydrology that the basin will experi­

ence in future years, then the goodness-of-fit statistics are pro­

bably representative ot the forecast accuracy. TIle conclusion is 

that accuracy of the models is determined by the degree to which 

the calibration data represents the data base as a whole. If a 

model is calibrated with only five years of data that is repre­

sentative of the entire range of data,the resulting equation may 

be more accurate than a model calibrated with 20 years of non­

representative data. 

Variation of Accuracy with Forecast Length 

A comparison of the correlation coefficients for various 

lengths of forecast was performed for each model and data set. 

Results of the regression equations were significantly more ac­

curate for 

and 30 day 

forecast 

periods; 

lengths of 60, 90, and 120 days than for 15 

the same was true of the long-term Tangborn 

i , . 
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results. When the Tangborn model was used for short-term pre­

dictions, the ac~uracy for the 1, day period was significantly 

greater than for periods ot 1, 2, or 3 days. The Martinec 

model was significantly more accurate for land 2 day predic­

tions than for longer periods. 

Variation of Accuracy With Forecast Dates 

The regression models based on the snowpack index were 

significantly more accurate for a forecast date of April 1 

than for May 1 forecasts. The other regressions generally 

performed equally well for" both dates. The short-term models, 

both Tangborn and Martinec, were less accurate for forecasts 

made on May 1; than for forecasts made on the other dates. 

This is due to the fact that the peak flows occur in late 

Hay in most years; the forecasts are less accurate at this 

time because there is greater random variation in the criterion 

variable. Results of the long-term Tangborn testing did not 

vary significantly with forecast date. 

Differences in Accuracy of the Models 

Comparison of the correlations showed that the regression 

based on snow covered area was usually the least accurate long­

term prediction model. It must be remembered that for 19 of 

the 24 data years, the true values of snow covered area for 

April 1 were not available, so estimates were generated by a 

regression equation that was calibrated with only five years 

of data. This may be the reason for the poor performance of 
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the regression models based on snow covered area. 

The regression models that did not include snow covered area 

generally gave more accurate results than the Tangborn model, es­

pecially for forecast periods of ~; and 60 days. The Martinec 

model was significantly better than the Tangborn for prediction 

periods of 1, 2, and 3 days except in late June, when the differ­

ences in correlation were not significant. 

Analysis of Objectives 

The testing program was designed to provide answers to the 

four specific investigations described in Chapter I. :kl&e of 

these investigatlons \-Iere limited by the type of data available. 

The results of the investigations are discussed in this section. 

The Value of Spatial Separation of a Watershed 

In conceptual models, the coefficients and variables that 

define components of the methods are used to reflect variation 

in snowmelt and runoff. For example, the first term of the 

Martinec model represents the runoff generation processes (pre­

cipitation and snowmelt) and also the loss processes (evapotrans­

piration and groundwater storage). Coefficients are included in 

this term in order to approximate the rates of these processes. 

On a large watershed with a wide range of elevation, such as 

the Kings River baSin, the physical conditions that control 

the rates of these processes show significant variation both 

spatially and temporally. Therefore, it is reasonable to ex­

pect that dividing the watershed into smaller, more homogeneous 

areas and determining separate parameter values for each sub­

area should improve the accuracy of the predictions. Some of 
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the factors that control the rate of the snQwmelt process 

are air temperature, wind velocity, and vapor pressure de­

ficit. Each of these climatic variables is a function of 

elevation; therefore, a rational way of subdividing the water­

shed into smaller, more homogeneous areas is by using eleva­

tion zones. 

In order to test the hypothesis that accuracy of predic­

tion can be increased by dividing the watershed into smaller 

areas, the Martinec model was calibrated and tested twice. 

The first analysis considered the entire watershed as one 

area, with the temperature index,T, the degree-day factor,d, and 

the runoff coefficient, c, assumed constant over the water­

shed. The pattc~n search method of optimization was used to 

calibrate the parameter values, and the resulting model, which 

had the form of Eq. (4-11), was tested using each of the five 

test data sets. In the second analysis, the area of the water­

shed was divided into six elevation zones. By May 1 there was 

no snow cover below an elevation of 3000 feet in any of the 

years of record. Therefore, the first zone consisted of all 

points at an elevation below 3000 feet. The rest of the water­

shed ranges in elevation from 3000 to nearly 13,000 feet and 

'lias divided into five zones using an elevation interval of 

2000 feet. Different values of temperature were developed 

for each zone by using a constant lapse rate and the differ­

ence between the temperature station elevation and the median 

elevation of the zone. Both the degree-day factors and the 
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runoff coefficients were allowed to vary from zone to zone 

and were calibrated using the pattern search method with 

model: 

Q: = (1-aQn-lb)1~1 c1(d1T1SCA1+P1)A1 + aQn_l(b+l) 

(5-40) 
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The analyses of Chapter ~ showed that irrational parameter 

values resulted from the model of Eq. (~-lO). When both the 

runoff coefficient and the degree-day factor were zonal de­

pendent, the resulting values were highly irrational. The 

runoff coefficient represents the proportion of generated melt 

that leaves the watershed as streamflow. Due to the longer 

travel distance of water generated in the upper elevation zones, 

it was expected that the higher elevation zones should have low­

er runoff coefficients. The zonal runoff coefficients derived 

by the pattern search did not vary systematically with elevation, 

contrary to expectations. Due to this irrationality, the model 

was re-formulated with a constant runoff coefficient but vary­

ing degree-day factors. The resulting model has the form of 

Eq. (~-25). Pattern search was used to calibrate the model, 

but the resulting parameter v~lues were still irrational. Some 

of the degree-day factors were negative, which is not physical­

ly possible. Again, the values did not vary systematically with 

elevation, which indicates that the values are irrational. This 

irrationality is the result of the insensitivity of the model to 

these parameters. 
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Because the more complex forms of the model could not be 

successfully calibrated, the degree-day factor and runoff co­

efficient were assumed to be constant from one elevation zone 

12lf. 

to the next. The resulting model is given by Eq. (If.-26). In 

this model, the temperature and effective precipitation vary 

from zone to zone, but the degree-day factor and runoff co­

efficient are U.e same f, .' all zones. This model was calibrat­

ed and then tested using each of the five l2-year test data sets. 

Comparing the calibration results of this model with the results 

of calibrating the other zoned models, Eqs. (4-2;) and (;-4), 

indicates that very little statistical accuracy is lost by as­

suming that the runoff coefficient and degree-day factor are 

constant over the entire watershed. The differences in the 

sum of the squares of the errors for the calibration data aver­

aged less than two percent between the lumped and spatially dis­

tributed models, 

The lumped parameter and spatially distributed models were 

compared using the; test data sets; statistics for the lumped 

parameter model are given in Table 14, and the statistics for 

the distributed form of the Martinec model appear in Table 9. 

The test statistic of Eq. (;-2) is used to compare the correla­

tion coefficients. For the spatially distributed model, the 

rational coefficients derived from the pattern search calibra­

tion of Eq. (4-2;) were used. A 20 percent level of signifi­

cance was used for decision-making. For most cases there were 

no significant differences. However, for forecast periods of 

1, 2, and 3 days that start on May I;, the lumped model results 



TABLE 14 

t' 
Correlation Coefficients for Testing of Lumped Parameter Martinec Model 

Forecast Date Length of Forecast Data Set • 

(Days) 1 2 3 4 5 

May 1 1 .968 .962 .979 .957 .986 
2 .953 .940 .957 .936 .973 
3 .929 .908 .935 .901 .948 
5 .842 .772 .872 .754 .140 

10 .789 .645 .854 .625 .747 
15 .821 .689 .885 .683 .752 

May 15 1 .994 .988 .987 .990 .977 
2 .984 .970 .974 .974 .953 
3 .968 .941 .956 .948 .935 
5 .918 .870 .905 .878 .901 

10 .888 .713 .818 .735 .908 
IS .891 .749 .848 .765 .922 

June 1 1 .983 .975 .988 .966 .994 
2 .970 .961 .980 .944 .989 
3 .964 .955 .979 .932 .986 
5 .967 .969 .988 .938 .992 

10 .979 .969 .986 .945 .987 
15 .988 .960 .985 .954 .980 

June 15 1 .955 .916 .968 .885 .972 
2 .926 .857 .943 .810 .956 
3 .903 .804 .920 .742 .949 
5 .873 .711 .884 .632 .938 

10 .914 .772 .921 .716 .955 
15 .924 .792 .925 .749 .961 

... 
N 

'" 
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were significantly better than the distributed model results. 

The lumped model was also superior for l;-day predictions from 

June 1 and June 1; with data sets 1, 3, and 5. The conclusion 
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is that spatial separation of the model input does not improve 

the accuracy on this watershed, at least not with the Martinec 

model as applied in this study; if the models were modified to 

include a routing term, spatial separation might prove to be more 

helpful. 

The Value of Real-Time Data 

Another objective was to evaluate the effect on accuracy of 

delays in daily data collection. The Martinec model was used to 

evaluate the effect of delays in the availability of data. This 

was accomplished by assuming that data from previous days were 

not available; lag times of 1, 3, and 5 days were tested. The 

delayed data were the daily snow covered area, temperature, pre­

cipitation, and runoff. 

In order to forecast runoff, the Hartinec model requires pre­

dictions of the precipitation, temperature, and snow covered area 

for the forecast period. The precipitation predictions are based 

on observations from previous years, not on observations from the 

previous few days, so a time lag in collection of precipitation 

1ata ~i11 not affect the accuracy of the model. For prediction 

~~riods of greater than five days, the temperature predictions 

are also derived from past years; but for predictions of less 

than five days, the temperature prediction is based on the value 

observed on the previous day. If there is a time lag in collec­

tion of the temperature data, the accuracy of the predictions 

. . 
l 
! 
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may be lessened. Snow covered area is also predicted trom 

the values observed on the previous days, and a time lag in 

collection ot this data may also attect accuracy. 

The Martinec model was tested with delays in data collec­

tion at one, three, and tive days. All tive test data sets 

were used; the resulting goodness-at-tit statistics are shown 

in Table 1;. In order to determine the ettect on accuracy at 

delays in data collection, the values in Table 1; are compared 

with each other and with the statistics presented in Table 9 

for the Martine~ model with real-time data. 

Comparison at the correlation coefficients in Tables 1; 
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and 9 indicate that at a significance level ot 10 percent there 

is no effect on accuracy for predictions ot 3, ;, 10, or 1; days. 

For torecast periods of one or two days, the accuracy achieved 

by using real-time data is significantly higher than the accuracy 

achieved when there is a three day or five day lag between data 

measurement and availability. When the time lag is one day, 

the results are significantly more accurate than with a five 

day time lag for forecast periods or one or two days. 

Accuracy of the Snow Covered Area Model 

One of the objectives of this study was to determine whether 

snow covered area data can be used alone to accurately predict 

sno'ilmel t runoff. No other data is to be inc luded in the model, 

so an empirical equation must be developed. Linear regression 

models relating snow covered area to seasonal runoff were calib­

rated for both April 1 and May 1, as described in Chapter 4. 
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Forecast Date 

Nay 1 

May 15 

June 1 

June IS 

TABLE IS 

~orrelation Coefficients for Testing of Martinec Model with T~ Lags of 
One, Three, and Five Days - Data Set Ii 

Length of Forecast T~ Lag (Days) 

(Ilays) I 3 5 

1 .938 .838 .932 
2 .933 .858 .857 
3 .922 .878 .878 
5 .856 .872 .894 

10 .Bbl .860 .880 
15 .920 • 90S .814 

1 .905 .952 .143 
2 .777 .918 .834 
3 .640 .907 .821 
5 .878 .883 .824 

10 .781 .796 .785 
IS .755 .769 .763 

1 .975 .940 .896 
2 .9b3 .927 .895 
3 .954 .938 .904 
5 .970 .955 .919 

10 .960 .964 .927 
15 .925 .940 .912 

1 .871 .787 .909 
2 .821 .718 .887 
3 .788 .857 .869 
5 .831 .852 .835 

10 .824 .855 .814 
15 .780 .815 .756 
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Forecast Date 

May 1 

Nay 15 

June 1 

June IS 

TABLE 15 

Corrc"ation Coefficients for Testing of Martinec Model with Tt.e La,s 
of t::!-:.,. nuee. and Five Days - Data Set '2 

Length of Forecast Tiae La, (Days) 
(Days) 1 3 5 

1 .925 .748 .663 
2 .908 .762 .701 
3 .880 .784 .754 
5 .740 .761 .798 

10 .662 .686 .713 
15 .724 .726 .722 

1 .871 .797 .373 
2 .821 .768 .291 
3 .787 .388 .277 
5 .367 .360 .291 

10 .601 .604 .571 
15 .731 .732 .710 

1 .933 .727 .641 
2 .920 .651 .5S4 
3 .914 .528 .519 
5 .586 .510 .502 

10 .634 .586 .581 
15 .723 .703 .701 

1 .844 .738 .786 
2 .815 .690 .739 
3 .790 .657 .711 
5 .663 .658 .693 

10 .755 .750 .781 
15 .842 .841 .845 

.... 
N 
~ 
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Forecast Date 

May 1 

May 15 

June 1 

June IS 

TABLE IS 

Correlation Coefficients for Testing of Martinec Model with Tt.e La,s of 
One. Three. and Five Days - Data Set '3 

Tille La& (Days) 
Length of Forecast 

(Oays) 1 3 5 

1 .928 .725 .661 

2 .911 .745 .694 

3 .895 .781 .748 

5 .841 .838 .140 

10 .821 .8S5 .868 

IS .861 .861 .864 

1 .8~9 ,?83 .820 

2 .605 .J99 .791 

:; .413 .812 .747 

S .704 .706 .662 

10 .607 .611 .587 

15 .626 .630 .603 

1 .915 .793 .898 

2 .668 .7lS .814 

3 .8l2 .868 .881 

5 .936 .885 .891 

10 .981 .955 .956 

15 .98l .981 .982 

1 .860 .793 .932 

2 .774 .712 .911 

3 .702 .863 .900 

5 .907 .878 .891 

10 .936 .915 .926 

15 .954 .943 .939 

\ 
1 
i 

~ 

"" 0 
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Forecast Date 

Nay I 

Nay 15 

June 1 

June IS 

TABLE 15 

C~rrelation Coefficients for Testing of Martinec NOdel with Tt.e La,s of ~lC. Three. and Five Days - Data Set 14 

Length of Forecast Tt.e La, (Days) 
(Days) 

1 .'5 5 
1 .918 .730 .632 2 .901 .751 .612 3 

.869 .777 .741 5 .718 .746 .n8 10 
.648 .672 .694 15 
.711 .715 .711 

1 .951 .882 .642 2 .924 .877 .601 3 .892 .760 .561 5 .688 .671 .500 10 .747 .763 .703 15 .790 .799 .783 
1 .9=8 .817 .752 2 

.904 .784 .702 1 • 85M .709 .682 5 
.795 .7C'O .672 10 .789 .740 .723 15 .795 .71S .780 

1 .771 .742 .835 2 .731 .729 .805 3 .707 .690 .781 S .701 .699 .753 10 
.813 .805 .832 IS 
.86~ .811 .827 

... 
"'" ... 
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Forecast Date 

May 1 

May 15 

JWle 1 
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Correlation Coefficients for Testing of Martinec Model with Time Lags of 
One, Three, and Five Days - Data Set '5 

Length of Forecast Time Lag (&dys) 
(Days) 1 ~ 5 

1 .969 .S13 .677 
2 .964 .S30 .712 
3 .957 .S76 .791 
5 .S73 .921 .906 

10 .S31 • 90S .934 
15 .S91 .934 .949 

1 .S37 .790 .S40 
2 .641 .622 .S35 
3 .471 .S65 .S20 
5 .714 .S08 .7S4 

10 .666 .760 .746 
15 .672 .741 .718 

1 .922 .862 .95S 
2 .S74 .782 .956 
3 .829 .933 .954 
5 .955 .940 .95S 

10 .965 .953 .960 
15 .925 .919 .921 

1 .899 .770 .921 
2 .S73 .692 • 90S 
3 .S61 .821 .S95 
5 .839 .830 .S72 

10 .S44 .846 .873 
15 .S44 .857 .S61 

"' ... ,,_ ...... '.' ... 
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Of all the long-term prediction models tested, the least 

accurate was that based on snow covered area alone. For a 

forecast date of April 1, the snow covered area model was 

nearly as accurate as the other regression models; but for 

May 1 forecasts, the snow covered area model was significantly 

less accurate than the others. This is true for all data sets 
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and all forecast lengths tested, from 1; to 1;0 days. The reason 

for this lack of accuracy is simply that the May 1 snow covered 

area statistics do not correlate as highly with the runoff volumes 

as do the predictor variables in the other regression equations. 

Length of Record for Calibration 

The fourth specific objective of this study was to determine 

the length of record required for model calibration. The models 

used in this study could all be calibrated with as little as one 

year of record, but generally the accuracy of a model can be ex­

pected to increase as the number of years used for calibration 

increases. At some number of calibration years, perhaps eight 

or ten, the increase in accuracy resulting from adding an addi­

tional year is no longer significant. It must be noted, however, 

that the characteristics of the calibration data years are at 

least as important as the length of record. 

The correlation coefficients resulting from calibration of 

the regression models and the Tangborn models with each data set 

appear in Tables 3 and 4. Comparison of the values for the 

various data sets shows that the higher correlations are usually 

the result of using data sets #1, 3 and 5 for calibration, rather 

ob"""" 



than sets #2 and.... This implies that the choice of years used 

for calibration may be more important than the number of years 

used. 

Each of the models was also calibrated using all 2'" data 

years; generally, the results of this calibration were not sig­

nificantly better (at the 20 percent level) than the results 

of calibrating with sets #1, 3, and ,. Therefore, 12 years 

seems to be an adequate length of record for calibrating the 

models as long as the 12 years are representative of the entire 

range of data. Any set ot data years that constitutes a repre­

sentative sample of the population ot all possible data years 

should be sufficient for calibration; the number of years re­

quired is dependent on the characteristics of the population. 

13'" 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

The tollowing conclusions result trom the comparisons 

discussed above: 

1. Accuracy ot the Tangborn model and the regression 

models is greater it the test data talls within 

the range of calibration data than it the test data 

lies outside the range ot calibration data. 

2. The regression models are signiticantly more accu­

rate for forecasts of 60 days or more than for short­

er prediction periods. 

3. The Tangborn model is more accurate for forecasts of 

90 days or more than for shorter prediction periods. 

~. The Martinec model is more accurate for forecasts of 

one or two days than for periods of 3,5,10, or 15 days. 

5. Accuracy of the long-term models seems to be inde­

pendent of forecast date; exceptions are the snow­

pack index regression model and the snow covered area 

regression model, both of which are more accurate for 

April 1 forecasts than for May 1 forecasts. 

6. The short-term models are least accurate for forecast 

periods in late May and early June; this coincides with 

the period of peak flow for most years. 

7. The Martinec model is the best of those tested for one 

and two day forecasts. 
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8. With the exception of the snow covered area model, 

the regression models are all roughly equal in accu­

racy; these regressions are the most accurate of all 

models tested for forecasts of 60 days or more. 

136 

9. Spatial separation of the watershed by elevation zones 

does not improve the accuracy of the Martinec model on 

the Kings River Basin. 

10. Delays in data collection of more than one day may sig­

nificantly lessen the accuracy of the Martinec model; 

real-time data is desirable. 

11. The regression model using only snow covered area as 

input data is not as accurate as the other regression 

models for May 1 forecasts. 

12. The sufficiency of a calibration data base is a func­

tion not only of the number of years of record but also 

of the accuracy with which the calibration years re­

present the total population of data years. Twelve 

years appears to be a sufficient length of record for 

each of the models considered here, as long as the 

twelve years are representative of the population. 

Recommendations 

All of the conclusions listed above were drawn from the re-

suIts of testing the models on just one watershed. The Kings 

River basin is very large, and many of the conclusions may not 

be true for smaller watersheds. Therefore, testing of the 
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models on at least one small watershed is recommended. 

The Kings River basin was chosen for this study mainly 

because snow covered area data had been collected for maD7 

years. This data may have been collected for many other 

watersheds in the western U.S. as well, but there doesn't 

appear to be anyone agency that can supply pre-Landsat snow 

covered area data for a variety of watersheds. Apparently, 

most of the snow cover data from before 1973 was not published. 

It would be much easier to perform studies such as this one if 

some control agency were established that would compile and 

supply all the hydrologic data that has been collected over 

the years. If all of these statistics were assembl~d in one 

spot, the task of organizing a data base for a study such as 

this one would be greatly facilitated. 

As discussed in Chapter 5, there seems to be no accepted 

method for judging the hydrologic similarity of two models. A 

basis of comparison would be very useful for interpreting the 

results of studies such as this one. If two models give com­

parable errors in each of a series of test years, only one of 

the models must be studied because both models represent the 

same relationships of cause and effect between the input values 

and the predictions. Discriminant analysis may prove to be the 

best ~ay of comparing the test results of various models. It 

would be useful to perform such an analysis of the results of 

this study. 

.. 
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