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CHAPTER I

INTRODUCTION

Snowmelt runoff is a primary source of water supply in
many mountainous areas of the world, including much of the
western U.S. Water is stored all winter in the form of snow-
pack, then released by melting during the sprirg and summer
months. Because most of these areas experience very little
summer precipitation, almost all ‘he avalilable water is de-
rived from melted snow.

In order to maximize the economic benefits of the water
supply, forecasts of runoff volume are required. These fore-
casts are used for a varlety of purposes, including planning
for agriculture, municipal water supply, power generation,
pollution control, recreation, navigation, and flood control.
Such a variety of uses requires a variety of forecast lengths,
from one day to seasonal. The accuracy of these forecasts

has a significant effect on the economic benefits of managing
the water resource.

In recent years, a variety of forecast procedures have
been developed and used to predict snowmelt runoff. Where pre-
viously most of the operational models were empirical, such as
the regression equation (SCS, 1970), a number of conceptual
mcdels have recently been developed (Martinec, 1975; Anderson,
1976; Corps of Engineers, 1975). Some of these models have

been developed to utilize new data sources, most notably the
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measurements of snow covered area made from Landsat satellite
imagery.

The primary purpose of this study is to test and compare
the accuracy of a representative sample of the available snow-
melt models. Most of the newer models have only been used on
a few watersheds to date and direct comparisons of accuracy
can only be made if all models are tested with a data base
from the same watershed and the same years of record. Testing
all of the available models would be extremely expensive and
time consuming, so only a representative sampling 1is used.

Some of the techniques used in various models for increas-
ing accuracy of prediction are also to be tested. Spatial sepa-
ration of the watershed into smaller, more homogeneous areas is
thought to improve accuracy of forecast. This seems reasonable
because the watersheds on which the models are used are usually
mounitainous, encompassing a wide range of slopes and elevations.
Some of the models use snow covered area data for improving the
estimate of snowpack storage; this is another of the techniques
Which will be tested.

Another objective of this study is to determine whether ac-
curate snowmelt runoff forecasts can be made using only snow
cuvered area data. If this is possible, data collection for the
cnowmelt models would be greatly simplified. Many of the cur-
rently operational models are based on snow water equivalent
measurements of the snowpack. These ceasurements must be made

in the field, either by automated data collection stations or

R
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by man. Because the measurement sites are often remote, col-
lection of this data 1s expensive. If the Landsat derived
snov covered area data can be substituted for the snow water
equivalents, data collection will be less expensive and easier.
Some data collection systems, notably the Landsat system
of deriving snow cover area, are subject to delays between data
observation and data collection. The effect of these delays on
model accuracy should be evaluated; some models may only pro-

vide acceptable accuracy when used with real-time data.
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CHAPTER I1

LITERATURE REVIEW

Many different models have been developed and used for
predicting sncwmelt runoff (Leaf, 1977; Baker and Carder,
1977; Zuzel and Cox, 1978). These models vary considerably
in complexity; the simplest models are based solely on sta-
tistical techniques, while the most complex methods attempt
to model the individual processes involved in the melting of
a snowpack. Some models are designed to predict streamflow
for any given day or series of days, (Leaf, 1977; Martinec,
1975; Tangborn, 1977) while other models give only seasonal
predictions (Zuzel and Cox, 1978). Generally, snowmelt models
may be categorized on the basis of complexity and length of
forecast period.

Empirical models are based on statistical correlations
between predictor variables and the criterion variable, volume
of snowmelt runofr. This type of model is most often used for
seasonal predictions. Snow water equivalent measurements, pre-
vious runoff volumes, and precipitation totals are the most
comzmon predictor variables (SCS, 1970; USACE, 1956). Theory
is not very important in formulating empirical models; the ob-
Jective 1s to explain as much of the variation in the criterion
vilues as possible using whatever datu are available. It is
quite common for these models to include two predictors express-

cd in different units, such as snow water equivalent (in inches)
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and previous winter runoff (in volumetric units).

Water balance models are more conceptual than the simple
empirical models. The water balance is an accounting of all
the water entering and leaving the basin. The volume of water
stored in the snowpack is estimated from precipitation or water
equivalent data; allowances are made for losses due to evapora-
tion, groundwater storage, and transpiration; the remaining volume
is the seasonal snowmelt runoff prediction (Zuzel and Cox, 1978).
Loss rates may be estimated either empirically or conceptually,
as may the snowpack storage. Most water balance models are some-
what empirical.

Short-term runoff predictions usually require models of great-
er complexity than the models used for seasonal runoff. Not only
must the total volume of water stored in the snowpack be estimat-
ed, but also the proportion of that volume that will melt and
leave the watershed as streamflow in a given time period must
te estimated. The amount of water generated by melting snow
is a function of the energy available for this purpose. There-
fore, the most complex snowmelt models are generally based on an
energy balance (Zuzel and Cox, 1978).

Energy balance procedures attempt to m.del the physical pro-
cesses involved in snowmelt runoff. The amount of available energy
i3 commonly estimated by the air *:mperature, although some models
include such factors as incoming solar radiation, cloud cover,
albedo, and net long-wave radiation (Anderson, 1976). These

zodels often require that the watershed be subdivided into small,




homogenevus areas so that the available energy for each location
can be estimated more accurately (Leaf, 1977). Since snowmelt
models are generally used in mountainous areas, slope and aspect
can result in large differences in incident energy from one area
to another. Evaporation, transpiration and groundwater losses
are also estimated conceptually in some energy budget models
(Leaf, 1977).

Model Selection
To test the study objectives, models having significant dif-

ferences n important characteristics had to be selected. Cri-
teria for model selection include the frequency of current usage,
input data requirements and whether or not these data are typi-
cally available, the degree Of model complexity, and the length
of forecast period. Additionally, becesuse snow covered area
(SCA) 1s more readily available than in previous decades, models
that either included SCA or were capable of being modified to
include it were given more consideration.

Three models were selected for comparison, with several
wethods of evaluation for each model. The model types studied
were the regression model, the Tangborn model, and the fartinec

model.

The Pegre op 4
The most common form of empirical model is the linear re-
gression. These models are widely used for snowmelt runoff pre-

dictions in the western U.S. (USACE, 1956; SCS, 1970). They are
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f easily calibrated and can use many different hydrologic vari-
ables as predictor variables. These models are used for mak-
ing seasonal runoff forecasts, but due to the empirical nature
of the method, they may also be used to give predictions for
shorter time periods.

Linear regression models are based on the assumption that

DAt AR ke A

there is a linear relationship between the predictor variables
and the criterion variable. This assumption implies that as
: the value of the predictor variable increases, the value of
| the criterion variable changes at a constant rate. The equa-
tion that relates the value of the criterion to the value of

the predictor is of the form:

Y=2a+ X (2-1)
}
in which Y is the criterion variable, X is the predictor vari-
t able, ind a and b are the regression coefficients (Miller and

Freund, 1977).

Many hydrologic variables have approximately linear rela-
tionships with the volume of snowmelt runoff. A few of these
variables are snow water equivalent, winter precipitation, and

snow covered area. The linearity of the relationships is due

N i

T

to the fact that these variables are indicators of the volume

of water stored in the snowpack. Because the relationships

between these predictor variables and the volume of runoff

are only approximately linear, many different lines may be

drawn which appear to fit the data. Some of the lines pass




through a number of the data points, but due to deviations

from linearity, a straight line that will pass through all

of the data points can not be drawn.
§ The method of selecting the best regression line for a
set of data points is based on minimizing the sum of squares
of the errors. For each observed value of the predictor, two
values of the criterion variable appear; the first is the cor-

responding observed value and the second is the value predict-

ed by the regression equation. The difference between these

. e e hn gt A F e e

X two values is termed the error of prediction. The regression

line is defined as the line that results in the minimum value

of the sum of the squares of the errors. The coefficients of

the regression line can be derived using the equations:

LX< - (IX)</2

and

(£Y)/n - b(ZX)/n (2-3)

[
]

in which X and Y are the predictor and criterion variables,

B aan i A o S e e - £ 00 A

respectively, and n is the number of observations (Hays, 1965).
By using these equations, the line of best fit can be determined.
: In natural systems the value of the criterion variable is
often a function of more than one predictor. The relationships

3 between the criterion variable and the predictors may be assumed

] to be linear, resulting in a prediction equation of the form:
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in which Y is the criterion variable, xi is the 1th predictor
variable, and a and b, are the regression coefficlents. Models
of this type are called multiple linear regressions. The re-
gressicn coefficients are unique and may be calculated from
equations similar to Eqs. 2-2 and 2-3. In many cases, the in-
clusion of more than one predictor variable results in a more

accurate model (Davis, 1973).

The Tangborn Mode

The Tangborn equation is a water balance model (Tangborn
and Rasmussen, 1976). The structure of the model was establish-
ed conceptually, but calibration is accomplished using regression
methods. The model may be used for any length of forecast period
from one day to the entire snowmelt season. The only data re-
quired are daily precipitation and runoff values, although daily
temperature may be included for short forecast periods.

The basic form of the model is:

* -
Rs =aP,+Db- Rw (2-5)

in which R; is the predicted runoff volume, P, is the total
depth of precipitation observed during the preceding winter,

Rw is the winter runoff, and a and b are regression coefficients.
The structure of the model is based on the assumption that the

volume of water stored on the watershed is equal to the amount

of winter precipitation minus the winter runoff. The regression
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coefficients represent losses and modifications such as trans-
piration, groundwater storage, and evaporation.

An important feature of the Tangborn model 1s the test
season modification. In using this method, a short test season
prediction model with the structure of Eq. 2-5 is developed.

At the end of the test season, the error of the test season
prediction is evaluated and used to modify the prediction for
the forecast season. The form of the forecast model becomes:

*
Rs = RS - ce, = a(Pw+Pt) +b - (Rw+Rt) - ce, (2-6)

in which R:* is the revised runoff predictlon; R: is the original
prediction; Pw and Pt are the winter and test season precipita-
tion, respectively; Rw and Rt are the winter and test season run-
off volumes, respectively; a, b, and ¢ are coefficients; and e,
is the error of the test season prediction. The reasoning be-
hind this modification is that the test season error is a result
of the inaccuracy of estimating basin storage by subtracting
winter runoff from winter precipitation. Because the forecast
season prediction is based on the same estimate, the test season
error should be related to the prediction season error.

Figure 1 shows the relationship of the various seasons. 1In
order tc use the test season approach, data from the present and
a number of previous years are compiled. For each year, precipi-
tation and runoff totals are computed for the winter and test

seasonsj runoff totals are also computed for the prediction

season of each year, except for the current year (the value for
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October 1
Start of Winter Season

March 30

Start of 2-day Test Season
April 1

Start of Prediction Season

Date

July 30
End of Prediction Season

FIGURE 1. Relationship of the Winter, Test, and Prediction Seasons
for the Tangborn Model

R T
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the current year is not yet known). Note that the prediction
date, April 1, is at the end of the test season; therefore,
observed values of runoff and precipitation during the test
season are available for the current year. Once all the data
has been obtained, the observed test season runoff volumes are
regressed onto the winter precipitation values, resulting in a

in which R: is the predicted test season runoff. The test season

error in each year is then computed by the eguation:
(2-8)

Next, a model for estimating the prediction season runoff is form-
ed by regressing the prediction season runoff on the sum of the
winter and test season precipitation depths for each of the pre-

vious years:
%
Ry = a(P#P.) +b - (R *R,) (2-9)

The errors are then calculated in a manner similar to that used

for the test season:
eg =R - R (2-10)

in which es is the prediction season error. The coefficient of

- the test season error, ¢ in Eq. (2-6), can then be determined.
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The coefficient i1s computed using the test season and predic-
tion season errors from previous years, according to the equa-
tions

L
¢c = -ff&iggl- (2-11)
z(et)

The original runoff season prediction, R;, which was calcu-
lated for the current year in Eq. (2-9), is adjusted by the pro-
duct of ¢ and the current year test season error; the final pre-

diction is:

*
Ry =Ry - cey = a(Pw+Pt) +b - (Rw+Rt) - cey (2-12)

in which R:* is the final prediction.

When using the Tangborn model for prediction periods of a
few days, accuracy may be increased by including temperature in
the model (Tangborn, 1978). Tangborn suggested the following

composite temperature variable, At:
A, = oT + (1-a)aT (2-13)

in which T is the daily mean temperature, AT is the daily range of
temperature, and o is a coefficient. The daily mean temperature
15 computed from the observed maximum and minimum tempe.~atures
for the day; the range of temperature is the difference between
the maximum and minimum observed values. The reasoning behind

this equation is that the average daily mean temperature is an
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estimator of the amount of convective energy available for
melting snow, and that the difference between maximum and mini-
mum temperatures can be used to estimate the amount of radiant
energy available for this purpose. Large differences between
the daily maximum and minimum are indicative of clear skies,
while a small daily range of temperature indicates cloud cover
and, therefore, less radiant energy. The relative importance
of the two components (radiative and convective) is controlled
by the coefficient a. When the temperature term is included

in the Tangborn model, the equation becomes:

Aok o *

Rs = a(P +P,) + b - (R +R,) - ce, - eq (2-14)
in which e: is the prediction season error estimated from the
temperature function, and R:** is the revised runoff prediction.
The value of the prediction season error is estimated from the
temperature function At using the equation:

in which d and e are coefficients determined by regression.
Tangborn reports a minimum reduction in standard error of
estimate of nine percent due to inclusion of this tempera-

ture term (Tangborn, 1978).

=ne Martinec liodel

The lMartinec model is conceptually derived and may be

uced for prediction periods of one day or longer (Martinec,1975).
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The amount of energy available for anowmelt runoff is estimated
by a daily temperature index. Data requirements include daily
temperature, precipitation, and snow covered area. The form of

the model is:

Qp = c(daTSCA+P) A(1-K) + KQ,_; (2-16)

in which Q; is the predicted volume of runoff for day n, ¢ is a
dimensionless runoff coefficient, ¢ is a degree-day factor, T is
the value of the daily temperature index on day n, A is the total
area of the watershed, SCA is the percentage of the area that is
covered by snow on day n, K is a dimensionless recession coeffi-
cient, and Qn-l is the volume of runoff observed on the previous
day. The value of the dally temperature index is computed using
hourly data if available; otherwise, the daily maximum and minimum
temperatures are used. The daily index is a measure of the average
number of degrees above freezing for the temperature on that day.
The values are expressed in degree-days celsius.

The first term of Eq. (2-16) represents the amount of water
that is generated by precipitation and melting snow on day n and
that is expected to leave the watershed on that day. The value of
the degree-day factor, d, is expressed in inches of water per degree
Celsium; therefore, when the temperature index is multiplied by this
factor, an estimate of the depth of water generated by snowmelt is
obttained. This denth is multiplied by the total area of the water-
shed, A, and by the percentage of the total area that is covered by
snow (SCA) to get an estimate of the volume of water produced by

melting snow on day n. The precipitation, P, is assumed to be a

constant depth over the entire watershed; therefore, the product
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of P and A is an estimate of the volume of rainfall on day n.
The sum of the volume of melted snow and the volume of precipl-
tation is referred to as the generated runoff.

Not all of the generated runoff leaves the watershed on
the day of generation. Some 12 Yost to groundwater storage
and evapotranspiration; this proportion is represented by c,
the runoff coefficient. Furthermore, on large watersheds tne
outlet of the basin is quite a distance from the source of much
of the generated melt; therefore, much of the water is in transit
to the outlet for several days. The proportion of water that
does not reach the outlet on the day that it is generated is
represented by K, the recession coefficient. Thus, only the
proportion (1-K) of the runoff generated on day n actually reach-
es the outlet on day n.

The second term in the equation, K'Qn-l’ is called the re-
cession term. It represents the amount of water generated on pre-
vious days that is expected to appear as runoff on day n. Be-

cause K 1s nearly equal to 1 on large watersheds, this recession

term is often considerably larger than the generated runoff term.
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CHAPTER III

DATA BASE DEVELOPMENT

The selection of models was subject to four important
constraints. First, the models selected should be representa-
tive of those in use and reflect variation in levels of conceptu-
al development. Second, the models selected should be designed
for use over a range of forecast periods, from cne day to the
entire snowmelt season. Third, the input requirements of the
model should be similar to the input data that is usually availa-
ble for forecasting. Fourth, a data base that includes all in-
put requirements for all models must be avallable for a single
watershed. The three models described in the previous chapter
satisfy these requirements.

Data requirements vary significantly for the three models. Cm-
ceptual models generally require a more extensive data base than
simple empirical models. Also, short-term models require that
the data be collected more frequently than long-term models.
vWhile some of the data requirements of the models are the same,
these data requirements can be most easily discussed by consider-

ing separately the required data base for each model.

Input Data Requirements of the Models

Pegression Mode
Regression models, which are used for long-term forecasting,

can include almost any hydrologic variable as a predictor; the

worth of any variable depends on its correlation with the forecast




criterion variable, which is the amount of runoff observed
during the forecast period. Frequently used predictor vari-
ables include snow water equivalent measurements, winter pre-
cipitation, and winter runoff. The snow water equivalent is
measured at many sites in the mountains of the westeru U.S8.,
commonly on the first days of February, March, April, and May.
Precipitation and runoff are also measured at many locations,
usually on a daily basis; these daily values are summed up to
derive the seasonal to!als, which are used in the regression
equaticns. 1In this stidy, snow covered area data were tested
for use in regression equations; the percentages of the total
watershed area covered by snow on April and May 1 were used as

predictor variables.

Tangborn Model

The Tangborn model can be used for both short-term and
long-term prediction. The model requires daily values of pre-
cipitation and runoff during the snowmelt season; also, the
total precipitation and runoff observed during the preceding
winter is needed. No other data are required, although a
rodification to the short-term model has been proposed by
Tangborn (1978); this modified model requires daily maximum
and minimum temperatures, in addition to the precipitation

and runoff data.

ZYartinec Model

The Martinec model is used for predicting runoff for short

time periods (up to 15 days in this study). Data required on a

18
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daily basis are the hourly or maximum and minimum temperature,
precipitation, snow covered area, and runoff. The accuracy of
the model may be improved by subdividing the watershed into
elevation zones. If separation by elevation 1is required, the
daily snow covered area data must be separated into elevaticn
zones; the zonal temperature and precipitation data can be extra-

polated from base station readings.

Selection of a Test Watershed

In order to allow direct comparison of the results of test-
ing the various n.dels, all of the models should be tested on
the same watershed using data from the same years. Data re-
quired for this testing program are daily average temperature,
daily precipitation, daily snow covered area (divided into ele-
vation zones), daily runoff, and monthly snow water equivalents.
This data must be available for a number of years to ensure a
representative sample. Furthermore, the models must be tested
for years other than those for which they are calibrated in
order to simulate a true prediction situation.

The Kings River watershed, in the Sierra Nevada mountains
¢f California, was selected as the test site. The watershed is
large with a total area of 1545 square miles. The elevation
ringes from less than 1000 “ret to nearly 13,000 feet. The
gereral orientation of the basin is east-west, as shown in
Fig. 2. All of the data required for calibrating and testing

the models are available for this watershed, except daily snow

covered area, which must be interpolated from a few observations
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each year.

Until 1973, observations of snow covered area were made
by low altitude aerial mapping performed by the U.S. Army Corps
of Engineers. This process 1s expensive, and snow covered area
data were only collected for a few major snow basins prior to
the Landsat satellite program. For most basins, then, snow
covered area records only go back to 1973, which is an insuf-
ficient length of record for this study. The Kings River basin
is one for which snow covered area data are available from before
the Landsat program. All other required data are available from
a number of stations in the basin, with at least 25 years of
record. The Corps of Engineers began mapping the snow covered
area on the Kings River basin four times per year in 1952, and
continued to do so until 1973. Since that year, Landsat imagery
has been used to derive snow covered area data as often as possi-
ble. The Landsat satellites provided imagery of the Kings River
watershed every 18 days in the period 1973-1977. Unfortunately,
cloud cover often obscured the basin; the actual measurement

interval for snow covered area is as great as 36 days.

Derivation of Daily Snow Covered Area Data
The ideal data base for testing these models would include

daily observations of snow covered area, divided into elevation
zones, for at least 195 years. This data was not available for
any watershed, so the missing data were generated from the ob-
servations that were available. Earlier investigators (Moravec,

1977) have suggested that a good estimation of the snow cover
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depletion curve could be derived from four or five data points.
The observed snow covered area 1s plotted versus date of obser-
vation, and a smooth S-shaped curve is drawn through the data
points. When this method was applied to the Kings River data
collected for 1973 through 1977, the smooth depletion curve re-
quired could not be drawn for one of the years without gross in-
accuracies. The graphs are shown in Figure 3. Note that in 1977
the snow cover falls off in April, then increases later in the
season by 25 percentage points. Clearly, an S-shaped depletion
curve cannot be drawn for this year. Judgments as to the suit-
ability of the S-curve method for the Kings River basin are based
only on the years 1973-1977, because the data provided for the
other years (1952-1972) consists of only four observations per
year, which were made on May 1, May 15, June 1, and June 15 of
each year; in most years this is the period of maximum ablation,
but the data give little indication of the snow covered area or
ablation rate early in the melt season.

Estimates of the snow covered area on April 1 of each year
were required for use as a predictor variable in the April regres-
sion models. Observations of snow covered area for dates prior
to April 1 were available only from the Landsat data. Values
of April 1 snow cover were derived from the S-curves in Fig.3
for the years from 1973 to 1977. 1In order to estimate the April
1 values for the remailning years, a regression model was formed
and calibrated using the data from 1973-1977. The data availa-
ble for making these estimates consisted of previous winter pre-

cipitation, dally temperature, and the April snow water equivalents.
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Investigation showed that the best regression model that could
be formulated used the precipitation total from October 1 to ;
April 1 for estimating April 1 snow covered area. Although 5
only five years of data (1973-77) were avallable for calibrat- :
ing these models, the correlation coefficients showed that a
significant relationship existed. Due to the amount of error
inherent in this method of estimating snow cover before May 1,
it was decided that daily snow covered area values would not
be derived for this time period. Daily values of snow covered
area were derived only for the period May l-June 15, during
which observed data were available every 15 days for the years
prior to 1973.
Daily snow covered area values were generated simply by
straight line interpolation between the four observed values for
each year. While this method certainly smooths out the day-to-
day variation in snow covered area, no data were available that
could be used to calibrate a model that would reflect the daily
variation more accurately. Straight line interpolation would
probably be much less accurate in other time periods, but general- f
ly the period from May 1 to June 15 is one in which the snow cover
is melting quickly; the beginning and end of the depletion curves
were not observed during this time period (see Fig. 3). This
suggests that lMay 1 - June 15 is the time of maximum snowmelt-
derived runoff, a suggestion that is confirmed by the runoff hy-
drographs. Since runoff from snowmelt is maximum during this

time period, it makes sense to test the models for short-term
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runoff prediction on the data from this time period. Predic-
tion of runoff during August, for instance, should not be based
on snow data, because there is very little snow being melted
during August. Just how late in the summer the runoff can be
successfully predicted from snow data is a factor that must be
determined.

Once daily values of snow covered area were generated, the
data had to be divided into elevation zones. Data from the Landsat
imagery of Kings River basin for 1973-1977 has been compiled for
elevation zones at intervals of 500 feet. Graphing the total snow
covered area versus the percent in each zone for these years show-
ed that there was generally a high correlation between the values.
These graphs are shown in Fig. 4. Regression equations were de-
veloped for predicting the percentage of snow cover in each zone
from the total snow covered area. These equatlions were then used
with the daily snow covered area values previously generated to
derive daily values for each elevation zone for the time period
May 1 - June 15. Thus, an estimate of the required daily
zonal snow covered area data was developed from the available
data base. Almost certainly, the estimated data exhibits less
daily variation than would the true values; but in the absence
of measured data, these estimates must be used for testing the

rinoff prediction models.

Prediction of Input Data for Use During the Forecast Period

“When actually making a forecast of runoff for any given time

period, the values of temperature, precipitation, and snow covered
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area are not available for the days during the forecast periods
data are only available for the days prior to the forecast date.
In an actual prediction situation, the Martinec model would re-
quire predictions of the temperature, precipitation, and snow
cover for each day of the forecast period. Many methods of pre-
dicting these values are available. An investigation was con-
ducted to determine the most accurate method of prediction for
each variable and the best methods were incorporated into the
Martinec model. The actual measured daily values are used in
model calibration, and the estimates are needed only for test-

ing the model.

Iemperature Prediétion
Temperature can be predicted for a few days at a time using

a model based on the normal temperature for each day and the de-
viation from normality observed on the preceding days. First,
the normal average daily temperatures are calculated for each
date by averaging the daily temperatures observed on that date
during the previous 24 years. These 24-year normal daily temper-
atures define a smooth temperature curve, as shown in Fig. 5.
“hen a prediction is made, the difference between the normal
temperature and the actual temperature for each of the previ-
ous few days is calculated; the average of these differences is
the deviation from normality expected for the next few days.
Thus, if the temperature on the previous few days was lower

than normal by an average of five degrees, the predicted
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temperatures for the next few days would be five degrees below
the normal temperatures for those days. The accuracy of this
method of predicting temperature is dependent on the number of
previous days used in computing the average deviation from normal.
For one day predictions, the correlation coefficient between pre-
dicted and observed values is 0.861 when only the previous day de-
viation is used, but if the devlation for three previous days is
used the correlation is only 0.690. For three day predictions,
the corresponding correlations are 0.669 and 0.566. The temper-
ature can be predicted most accurately by using the deviation
from normal for the previous day alone, rather than the average
deviation for the previous few days.

The alternative method of temperature prediction is to as-
sume that the actual temperature on each day will be equal to the
normal temperature for that date. Tests showed that for predic-
tion periods of more than eight days the normal temperature pro-
vides a better estimate of the observed value than does the
method using the previous day's deviation, while for shorter
time periods the previous deviation method was more accurate.
Comparison of the accuracy of the two methods for various time

periods is shown in Fig. 6.

Prediction of Precipitation
Precipitation is much more difficult to predict than temper-
ature, due to the intermittent nature of the phenomenon. In an

actual short-term prediction situation, a good weather forecast
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would probably be available; but for this study, some method
of predicting precipitation from the previously collected data
was required. Two possible methods are: 1) use the 2i-year
normal precipitation for any particular time period, or 2) .
assume that there will be no precipitation, because very little
precipitation occurs during the months of May, June, and July.
The correlation coefficient camot be used for comparing
the accuracy of these two methods because all of the predictions
made by the second method are zero; the correlation between a
constant and any variable must be zero, because the constant
does not vary. Therefore, the standard error of estimate is
used for comparing th2se two methods of predicting precipita-
tion. Using the normal precipitation for the time period gave
standard errors ranging from 0.207 for a one day forecast to
0.212 for a ten day forecast. When the precipitation was always
predicted as zero, the standard error was 0.217 for all time
periods. These standard errors of estimate must be compared
with the standard deviation of the observed rainfall, which
was 0.213. The conclusion is that neither method is very ac-
curate, but using the normal precipitation for the period is

preferable to assuming zero precipitation.

Prediction of Snow Covered Area During Period of Forecast

The other statistic for which daily predictions are neces-
sary is snow covered area. One method of predicting these values
is to assume that the rate of decline in snow covered area is a

function of both the temperature and the present area of the snowpack.
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Since the day-to-day change in predicted temperature is gradu-
al for short forecast periods, the predicted rate of melt should
also vary gradually. For prediction periods of five days or
less, the rate of snow cover depletion was assumed to be con-
stant and equal to the rate observed on the last day before
the forecast date. Care must be taken to insure that the pre-
dicted value of snow covered area does not go below zero when
using this method for periods of more than 5 days. When the
estimated value of SCA is less than zero, the depletion rate

is derived from the average rate of melt observed during the
specified length of time for the initial value of snow cover-
ed area. Thus, if the initial value (on the prediction date)
is 18 percent, and if analysis of past records shows that when
the snow covered area equals 18 percent, the average value ob-
served six days later is 14 percent, then the snow cover deple-
tion during a six day prediction period can be assumed to be
four percent. Assessing the accuracy of these methods of pre-
dicting snow covered area i1s impossible because measured data
are ro*% available; but these methods do accurately predict the

interpolated daily values discussed above.

Assembling the Data Bage
The data required for testing on the Kings River watershed

were assembled from a variety of sources. The California Depart-

zent of Water Resources provided the snow water equivalent data,
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vhich consisted of observations made on the first of April every
year at li snow courses in the King River basin. Locationa of
these snow courses are shown in Fig.2. The temperature and pre-
cipitation records were collected by the National Weather Service
at five sites in the basin, although data from only one site
(Grant Grove) were used in this study. The temperature was
reported as the maximum and minimum values observed on each
date. The daily temperature index was calculated using these
two values. The snow covered arcs figures for 1952 to 1973 were
reported by the U.S. Army Corps of Engineers; the snow cover was
mapped by observers from low altitude aircraft, four times per
year. Due to weather conditions, the flights could not always
be made on the required dates (May 1, May 15, June 1, and June
15) so the values were adjusted where necessary. The Landsat
snow covered area statistics, divided into 500-feet elevation
zones, were provided by NASA.

The runoff data used as the criterion variable in the test-
ing program was provided by the Kings River Water Assoclation.
During the period under consideration (1953-1977), a number of
significant water storage and diversion structures were built
ir the Kings River basin. The Kings River Water Assoclation
has developed a method of estimating the unimpaired runoff from
tr.e whole basin from data collected by the U.S. Geological Survey
at a number of streamflow gages within the basin. l!ote that the

data used in testing are these estimates of unimpaired daily



b

runoff, Jjust as though the basin were still in its natural

state. All runoff volumes were supplied as an average stream-
flow rate for each day, expressed in cubic feet per second; in
order to allow these statistics to be equated with the estimates
of snowmelt and precipitation volumes generated in the Martinec
nodel, the values were converted to volumes expressed in thousands

of acre-feet.




CHAPTER IV

CALIBRATION OF SNOWMELT MODELS i

The models chosen for this study use predictor variables
that have a cause-and-effect relationship to runoff volume.

Before the models can be used, though, the various model para-

e e e

meters thei, help to define these relationships must be calibrat-
ed for the pariicular forecast date. Thus, model calibration
must be performed before the models can be tested for accuracy. 5
This chapter describes the process of model calibration and
reports the goodness-of-fit statistics that result from calib-

ration.

Split-Sample Analysis

In order to evaluate the effectiveness of the various models,
the available data must be split into two subsets. One subset
of the data base is used to calibrate the models, while the re-
mainder of the data is reserved for testing. In this way, the
models can be tested on data that are independent of the data
used in calibration. With only 24 years of data available for
both calibration and testirg, the accuracy of the models when
used with the test data 1s likely to be dependent on the way
in which the sample 1is split. Splitting the sample in half
gives 12 years for calibration and 12 years for testing; this
seems to be the best division available for a 24k-year data set.

It was expected that the accuracy of the test results would be
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directly dependent on the criterion used in splitting the sample.

Maximum accuracy was expected when the sample was split by ranking

the observations in order of decreasing observed runoff durihg the}

time period for which predictions were to be made. For instance, if

the models were to be tested for accuracy of 3-day predictions from

May 1, the years would be ranked according to the amount of runoff

observed during that 30-day period; then, the data from years with

an even number in rank could be used for calibration, and the data

from years with an odd number in rank could be reserved for testing.

Since the calibration and test sets would have similar means, standard
deviations, and ranges, good predictions would be expected. Converse-

ly, the lowest levels of accuracy would be expected when the 12 years ‘
with lowest values were used for calibration and the 12 years with
highest values were used for testing. In this case, all of the test
data would lie outside the range of values for which the model had
been calibrated; therefore, the accuracy of prediction was expected
to be comparatively low. Due to the anticipated effects on accuracy
of various methods of splitting the samples, each model was calibrat-
ed and tested with a variety of subsets of the data base, each of i
which included 12 of the data years. The subsets were arrived at by

the following method. First, the observations were ranked on each of

three different criteria, forming threce separate lists; then, each

list was split into odd-versus-even and high-versus-low data sets.

Criteria for the three lists were the total runoff volumes for the

periods ifay 1-May 31, April 1-June 30, and April l-September 30. The
ransing lists and the resulting data sets are shown in Table 1. Note

that the result of using the high-versus-low split on the April 1-

June 30 list is the same as that obtained by using the same method




TABLE 1

Runking of The Data Years and The Resulting Data Sets

May 1-May 31 April 1-June 30 April 1-Sept. 30
Year Runoff . Runoff Runof f
(thousands of acre-feet) Rank (thousands of acre-feet) Rank (thousands of acre-feet) Pank
1954 477.4 8 980.3 11 . 2162.1 11
1955 330.2 14 782.1 15 1796.0 15
1956 508.2 7 1305.5 6 3319.7 3
1957 315.3 15 897.6 12 2059.6 12
1958 755.3 2 1745.6 2 4245.3 3 i
1959 192.0 21 498.0 21 1127.9 20 i
1960 230.5 20 521.5 19 1125.7 21 i
1961 lol.3 22 381.7 22 871.8 22
1962 418.9 10 1299.5 . 7 3071.8 7
1963 460.3 9 1146.8 9 2989.9 8
1964 263.1 17 579.2 17 1317.8 18
1965 415.3 11 1097.3 10 2911.9 9 ’
1966 371.5 13 790.2 13 1737.9 16
1967 6ll.6 S 1685.0 3 5088.2 2
1968 246.4 18 524.3 18 1909.3 13
1969 1122.7 1 2552.2 1 ) 6668.9  §
1970 398.1 12 787.0 14 1844.8 14
1771 272.8 16 721.5 16 1713.0 17
1972 235.4 19 509.4 20 : 1168.3 19
1973 750.2 3 1518.5 4 3448.4 4
1974 620.7 4 1384.4 S 3200.7 6 i
1975 523.9 6 . 1149.4 8 2627.7 10
1976 159.9 23 282.3 23 720.5 23
1977 83.3 24 260.4 24 589.5 24 l
)
i
o A
q
9
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Calibration Data Sets

TABLE 1 cont.

Test Data Sets

#l #2 #3 #4 #5 #1 #2 #3 #4 #5
1954 1955 1956 1955 1957 1956 1954 1954 1954 1954
1955 1957 1957 1959 1959 1957 1956 1955 1956 1955
1958 1959 1958 1960 1961 1959 1958 1959 1957 1956
1960 1960 1961 1961 1963 1963 1962 1960 1958 1958
1961 1961 1965 1964 1964 1964 1963 1962 1962 1960
1962 1964 1968 1966 1966 1965 1965 1963 1963 1962
1968 1966 1970 1968 1967 1966 1967 1964 1965 1965
1970 1968 1971 1970 1970 1967 1969 1966 1967 1968
1971 1971 1972 1971 1973 1969 1970 1967 1969 1969
1974 1972 1973 1972 1974 1972 1973 1969 1973 1971
1975 1976 1975 1976 1975 1973 1974 1974 1974 1972
1977 1977 1977 1977 1977 1976 1975 1976 1975 1976
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with the April l-September 30 list; for this reason, there are only
five distinct ways of dividing the 24 data years.

Calibration of the Regression Models

A stepwise regression program was used to calibrate multivariate

linear models. In selecting the first predictor variable, stepwise
regression selects the predictor variable that explains the highest
percentage of the variation of the criterion variable and develops
a simple linear prediction model. The correlation between the pre-
dicted and observed values of the criterion variable is computed,
along with the standard error of estimate. Then the predictor vari-
able that will result in the greatest increase in explained varia-
tion is selected to enter the model and a two-predictor model is
formed. An F-test is used to measure the significance of increases
in explained variance. The correlation coefficient and standard
error for this two-predictor model are computed. A third predict-
or variable is then selected to enter the model and another model
is formed. This process continues until all the available pre-
dictors have been included, or until the introduction of the remain-
ing predictors will not result in any significant increase in ex-
plained variation. Inclusion of predictors is determined only by
statistical relationships, with no conceptual judgment being exer-
cised once the original set of eligible predictors has teen chosen.
In this way, a set of models is produced, each accompanied
by the correlation coefficient and standard error of estimate.
The best of these models is then selected by the researcher on

the basis of the goodness-of-fit statistics and the rationality

of the model. Rationality is judged by examining the signs of
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the regression coefficients and the magnitudes of the standard-
ized partial regression coefficients. For instance, if the sign
of the regression coefficient for the snow water equivalent is
negative, a larger value of the snow water equivalent will re-
sult in a smaller predicted volume of runoff. Clearly, this is
not reasonable. The irrationality of coefficients in some equa-
tions is caused by high levels of correlation between the pre-
dictor variables. Irrational models can sometimes be used ef-
fectively in cases where all the input data lie within the range
of values for which the model was calibrated; generally, rational
models should be selected for use.

The data base for the regression models consisted of 24 ob-
servations of each of the varliables listed in Table 2. Regres-
sion models were developed both with and without snow covered
area data so that comparisons could be made to assess the value
of this data as a predictor of snowmelt runoff. Regression equa-
tions were considered to be a long-term prediction method, so pre-
dictions were made for periods of 15, 30, 45, 60, 90, 120, and
150 days starting on both April 1 and May 1.

The snowpack index referred to in Table 2 is calculated from
snow water equivalent measurements made at 1% snow courses in the
Kings River basin. The locations of these snow courses are shown
in Fig. 2. The snowpack index is formed by dividing the snow
water equivalent at each snow course by the mean value from pre-
vious years and then averaging the quotients,

The winter precipitation used for this study is the total
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Predictor Variables for the Regression Models

Variable

Snowpack Index (percent)

October-March Precipitation Total (inches)
October-April Precipitation Total (inches)
April 1 Snow Covered Area (percent)

May 1 Snow Covered Area (percent)

Product of Snowpack Index and
April 1 Snow Covered Area (percent )

Product of Snowpack Index and 2
May 1 Snow Covered Area (percent”)

TABLE 2

Mean

95.1
32.8
37.2
67.3
54.5

6903.5

5717.5

Standard Deviation

56.5
15.3
17.1

9.8
14.7

5420.1

4489.0
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amount of precipitation measured from October 1 of the preced-
ing year up to the forecast date. Thus, predictions made on
April 1 used October-March precipitation, and predictions made
on May 1 used the October-April precipitation total. Data from
the Grant Grove station were used in this study because this
station seems to be most representative of the entire water-
shed (Tangborn, 1978). |

The snow covered area data 1s expressed as a percentage
of total watershed area measured on May 1 and predicted for
April 1, as described previously. The product of the snow
covered area and the snowpack index was used as a predictor
variable because it i1s a rational way of estimating the volume
of water stored on the basin (Rango, et al., 1975).
The data base was used to generate eight different regression
models for each forecast date. Four of these models used only
one of the predictor variables listed in Table 2 and the other
four used two of the predictors. The two-predictor models used
the combinations: snowpack index and winter precipitation, snow-
pack index and snow covered area, winter precipitation and snow
covered area, and winter precipitation and the product of snow-
pack index and snow covered area. Due to the high intercorrela-
tions among the four predictor variables, the two-predictor models
Were only slightly more accurate than the single predictor models.
The goodness-of-fit statistics for the calibration of all of the

regression models are shown in Table 3.




TABLE 3

Swumary Statistics for Calibration of Regression Models
Predictor Variable: Snowpack Index
Forecast Date: April 1

Length of Forecast Data Set #

(Days) 1 2 3 4 S
15 R .789 .670 .632 .722 .342
Se 26.9 24.1 28.2 22.5 33.8

Sy 41.8 30.9 34.8 31.0 34.3

30 R .840 .623 .756 .653 .520
Se 55.1 44.5 52.1 42.9 58.3

Sy 96.8 54.2 75.9 54.0 65.1
45 R .899 .656 .883 .679 .729
Se 82.7 69.6 71.5 67.8 98.1
Sy 180.2 88.0 145.4 88.1 136.7
60 R .933 .812 .947 .814 .905
Se 99.6 74.4 90.8 77.9 107.7
Sy 263.6 121.4 269.4 127.7 241.3

90 R .950 .890 .953 .897 .901
Se 145.2 96.0 146.2 86.3 204.8
Sy 442.6 200.5 460.3 186.4 450.8
120 R . 947 .891 .938 .898 .833
Se 174.0 108.1 198.4 97.9 346.5
Sy 516.9 227.4 544.7 212.1 596.3
150 R .943 .894 .933 .899 .818
Se 188.1 109.7 216.4 100.2 383.9

Sy 539.2 233.2 5$72.3 218.1 636.1

€4

R = Correlation Cocfficient
Se = Standard Error of Estimate
Sy =

Standard Deviation of Observed Values



TABLE 3

Summary Statistics for Calibration of Regression Models
Predictor Variable: October-March Precipitation Total
Forecast Date: April 1

Length of Forecast Data Set #

(Days) 1 2 3 4 5
15 R .834 .547 .727 .552 .517
Se 24.2 27.2 25.0 27.1 30.7
Sy 41.8 30.9 34.8 31.0 34.3
30 R .851 .534 .834 .490 .648
Se 53.4 48.1 44.0 49.4 52.0
Sy 96.8 54.2 75.9 54.0 65.1
45 R .912 .621 .915 .598 .749
Se 77.6 72.3 61.7 74.1 95.0
Sy  180.2 88.0 145.4 88.1 136.7
60 R .954 . 800 .950 .824 .943
Se 82.8 76.4 88.5 75.9 84.2
Sy 263.6 121.4 269.4 127.7 241.3
90 R .954 .803 .947 .909 .945
Se 139.5 125.4 155.6 81.5 155.2
Sy 442.6 200.5 460.3 186.4 450.8
120 R .951 .795 .950 .909 .928
Sc 167.3 144.6 178.7 92.7 232.4
Sy 516.9 227.4 544.7 212.1 596.3
150 R .949 .799 .948 .912 .924
Se 178.8 147.0 190.3 9.1 256.0
Sy $39.2 233.2 §72.3 218.1 636.1

wh



Summary Statistics for Calibration of Regression Models

Predictor Varizble: April Snow Covered Area

TABLE 3

Forecast Date: April 1
Length of Forecast Data Set #

(Days) 1 2 3 4 S
15 R .840 .564 .731 .567 .531
Se 23.8 26.8 24.9 26.8 30.4
Sy 41.8 30.9 34.8 31.0 34.3

30 R .852 .553 .841 .509 .661
Se 53.2 47.4 43.1 48.8 51.2

Sy 96.8 54.2 75.9 54.0 65.1
45 R .914 .642 .918 .618 .759
Se 76.7 70.8 60.6 72.6 93.3
Sy 180.2 88.0 145.4 88.1 136.7
60 R .958 .813 .948 .837 .945
Se 79.6 74.2 89.6 73.4 82.9
Sy 263.6 121.4 269.4 127.7 241.3
90 R .955 797 .943 .912 .939
Se 138.2 126.9 160.5 80.4 162.9
Sy 442.6 200.5 460.3 186.4 450.8

120 R .952 .789 . 947 .911 .921
Se 165.6 146.5 182.9 91.7 243.4
Sy 516.9 227.4 554.7 212.1 596.3
150 R .950 .793 .947 .913 .916
Se 176.6 148.9 193.4 93.1 267.4
Sy 539.2 233.2 $72.3 218.1 636.1

(4]
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TABLE 3

Summary Statistics for Calibration of Regression Models

Predictor Variable: Product of Snowpack Index and April Snow Covered Area

Forecast Date: April 1

Length of Forecast Data Set #

(Days) 1 2 3 4 5
15 R .820 .663 .656 . 708 .347
Se 25.1 24.3 27.5 23.0 33.7
Sy 41.8 30.9 34.8 31.0 34.3
30 R .866 .619 -786 .634 .535
Se 50.7 44.7 49.3 43.8 57.7

Sy 96.8 54,2 75.9 54.0 65.1
45 R .918 .657 .909 .671 .728
Se 75.1 69.6 63.7 68.5 98.7
Sy 180.2 88.0 145.4 88.1 136.7
o0 R .943 .820 -961 .826 - 906
Se 92.1 73.0 78.1 75.6 107.1
Sy 263.6 121.4 269.4 127.7 241.3
90 R .957 .893 .957 .919 .904
Se 131.5 94.8 139.8 77.0 450.8
Sy 442.6 200.5 460.3 186.4 450.8
120 R .956 . 895 .943 .922 .847
Se 159.6 106.6 189.7 86.3 332.5
Sy 516.9 227.4 544.7 212. 596.3
150 R .953 .898 .938 .923 .835
Se 172.0 107.8 207.5 87.9 367.5
Sy $39.2 233.2 $72.3 218. 636.1

i e el 2 . b+



Summary Statistics for Calibration of Regression Models

Predictor Variables: Snowpack Index and October-March Precipitation Total

TABLE 3

Length of Forecast Data Set #

(Days) 1 2 3 4 S
15 R .835 .670 .731 .730 .630
Se 25.4 24.1 26.2 23.4 29.4

Sy 41.8 30.9 34.8 31.0 34.4

30 R .855 .623 .834 .633 .681
Se §5.5 44.5 44.0 4.7 52.7

Sy 96.8 54.2 75.9 54.0 65.1
45 R .916 . 669 .923 .681 .755
Se 79.9 72.2 62.1 71.4 99.1
Sy 180.2 88.0 145.4 88.1 136.7
60 R .956 .841 .970 .853 .947
Se 85.2 72.6 72.2 73.7 85.8
Sy 263.6 121.4 269.4 127.7 241.3
90 R . 962 .896 .972 .941 .947
Se 133.6 98.4 120.0 69.8 159.6
Sy 442.6 200.5 460.3 186.4 450.8

120 R .959 .896 . 966 .941 .931
Se 10l1.4 111.6 185.8 79.2 240.6
Sy 516.9 227.4 544.7 212.1 596.3
150 R .956 .899 . 963 <943 .929
Se 174.6 113.0 170.7 80.1 261.2
Sy $39.2 233.2 $72.3 218.1 636.1

Al




Summary Statistics for Calibration of Regression Models
Snowpack Index and April Snow Covered Area

" Predictor Variables:

TABLE 3

Forecast Date: April l
Length of Forecast Data Set #

{Bays) 1 s 3 4 5
15 R .841 .670 .735 .727 .654
Se 25.0 24.1 26.0 23.5 28.6

Sy 41.8 30.9 34.8 31.0 34.3

30 R » 856 - 626 - 6‘1 - 659 » 7ol
se 55.3 46.7 43.1 44.9 51.3

Sy 96.8 54.2 75.9 54.0 65.1
45 R .918 .678 .926 .684 .763
Se 79.0 71.5 60.9 71.1 97.7
Sy 180.2 88.0 145.4 88.1 136.7
60 R .960 .848 .971 .860 949
Se 82.1 71.1 71.8 72.1 84.2
Sy 263.6 121.4 269.4 122.7 241.3
w R .963 .895 .971 .942 .943
Se 131.8 98.8 121.3 69.5 165.5
Sy 44l.6 200.5 460.3 186.4 450.8
120 R .961 .895 . 966 .941 .922
Se 159.1 112.1 156.7 79.1 254.9
Sy $1o0.9 227.4 544.7 212.1 596.3
150 R <957 .898 .963 943 919
sSe 172.1 113.5 170.8 80.0 277.6
Sy 539.2 233.2 572.3 218.1 636.1
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Suwmmary Statistics for Calibration of Regression Models
Predictor Variables:

TABLE 3

October-March Precipitation Total and
April Snow Covered Area

Forecast Date: April 1
Length of Forecast Data Set #

(Days) 1 2 3 4 S
15 R .840 .624 .731 .623 .531
Se 23.8 26.7 24.9 26.8 30.4
Sy 41.8 30.9 34.8 31.0 34.3

30 R .852 .628 .841 .597 .661
Se 53.2 46.6 43.1 47.9 51.2

Sy 96.8 54.2 75.9 54.0 65.1
45 R .914 .717 .918 .710 .759
Se 76.7 67.8 60.6 68.6 93.3
Sy 180.2 88.0 145.4 88.1 136.7
60 R .958 .834 .950 .861 .945
Se 79.6 74.2 88.5 71.9 82.9
Sy 263.6 121.4 269.4 127.7 241.3
90 R .955 .805 . 947 .912 .945
Se 138.2 131.4 155.6 84.6 155.2
Sy 442.6 200.5 469.3 186.4 450.8
120 R .952 .799 .950 .911 .928
Se 165.6 151.3 178.7 91.7 232.4
Sy S16.9 227.4 544.7 212.1 596.3
150 R .950 .803 .948 .913 .924
Se¢ 176.6 153.7 190.3 93.1 256.0
Sy 539.2 233.2 572.3 218.1 636.1
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Summary Statistics for Calibration of Regression Models

Predictor Variables:

TABLE 3

October-March Precipitation Total and Product of

Snowpack Index and April Snow Covered Area

Forecast Date: April 1
Length of Forecast Data Set #

(Days) 1 2 3 4 S
15 R .837 . 665 .729 .718 .662
Se 25.3 25.5 26.3 23.9 28.4
Sy 41.8 30.9 34.8 31.0 34.3

30 R .869 .619 .834 .647 .685
Se 53.0 44.7 46.3 45.5 52.4

Sy 96.8 54.2 75.9 54.0 65..

45 R «924 . 665 .928 .671 o752
Se 76.3 72.6 59.8 68.5 99.7
Sy 180.2 88. 145.4 88.1 136.7
60 R .959 .839 .973 .852 .945
Se 83.0 73.0 68.6 73.9 87.5
Sy 263.6 121.4 269.4 127.7 241.3
90 R . 964 .895 .970 .945 . 946
Se 129.3 99.0 124.7 67.7 162.2
Sy 442.6 200.5 460.3 186.4 450.8
120 R 963 .896 . 964 .946 .932
Se 154.4 111.8 160.5 76.1 239.3
Sy 516.9 227.4 544.7 212.1 596.3
150 R .960 .899 .961 .948 .929
Se 166.9 113.0 175.3 76.7 260.0

Sy 539.2 233.2 572.3 218.1 636.1
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TABLE 3

Summary Statistics for Calibration of Regression Models
Predictor Variable: Snowpack Index
Forecast Date:
Length of Forecast Data Set #
(Days) 1 2 3 4 5
15 R . 905 .639 .930 .648 .803
Se 39.8 30.2 29.5 30.3 51.4
Sy 89.1 37.5 76.5 37.9 82.1
30 R .876 .824 . 962 .779 .942
Se 95.2 46.8 58.6 57.9 69.0
Sy 188.0 78.7 205.5 88.1 196.0
45 R .885 .809 .962 .798 .946
Se 141.3 82.6 89.1 80.8 105.5
Sy 289.3 134.1 312.7 127.9 310.7
60 R .911 .816 .956 .830 .898
Se 160.6 107.4 1221 93.0 191.8
Sy 372.0 177.2 398.7 159.0 414.9
90 R .917 .820 .943 .830 .825
Se 186.7 123.8 168.5 109.5 332.9
Sy 445.4 206.1 481.0 186.9 561.0
120 R .914 .824 .938 .832 .810
Se 199.3 126.1 184.1 112.5 369.6
Sy 467.5 212.0 507.8 193.3 600.7

144
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TABLE 3

Summary Statistics for Calibration of Regression Equations
Predictor Variable: October-April Precipitation Total

Forecast Date: May 1

Length of Forecast Data Set #
(Days) 1 2 3 4 S
15 R .893 . 644 .892 .653 .623
Se 42.0 30.1 36.2 30.1 67.4
Sy 89.1 37.5 76.5 37.9 82.1
30 R .937 .846 .932 .854 .904
Se 68.8 44.0 78.1 48.0 87.7
Sy 188.0 78.7 205.5 88.1 196.0
45 R .927 . 796 .932 .878 .884
Se 114.0 85.1 118.6 64.2 152.6
Sy 289.3 134.1 312.7 127.9 310.7
60 R .947 .758 .950 .867 .944
Se 125.9 121.3 131.1 83.2 143.3
Sy 372.0 177.2 398.7 159.0 414.9
90 R .950 .747 . 966 .853 . 968
Se 146.6 143.8 130.4 102.5 148.9
Sy 445.4 206.1 481.0 186.9 561.0
12v R . 949 .751 .970 .854 . 969
Se 154.8 146.8 130.1 105.4 156.7
Sy 467.5 212.0 507.8 193.3 600.7
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TABLE 3

Summary Statistics for Calibration of Regression Models
Predictor Variable: May 1 Snow Covered Area

Forccast Date: May 1

Length of Forecast Data Set #
(Days) 1 2 3 ) 5

15 R .498 .187 .613 .091 .364
Se 81.1 38.6 63.3 39.6 80.2

Sy 89.1 37.5 76.5 37.9 82.1

30 R .699 .205 .736 .380 .719
Se 141.0 80.7 145.8 85.5 142.8

Sy 188.0 78.7 205.5 88.1 196.0

45 R .761 .459 . 762 .544 775
Se 196,9 124.9 212.3 112.5 206.0

Sy 289.3 134.1 312.7 127.9 310.7

60 R .753 .498 .752 .571 .822
Se 256.9 16l1.1 275.6 136.8 247.9

Sy 372.0 177.2 398.7 159.0 414.9

90 R .750 .510 .741 .588 .831
Se 309.1 186.0 338.7 158.6 327.7

Sy 445.4 206.1 481.0 186.9 561.0

120 R .744 .507 .735 .585 .825
Se 327.8 191.7 361.0 164.4 355.7

Sy 467.5 212.0 507.8 193.3 600.7

134



Predictor Variable:
Forecast Date: May 1

TABLE 3

Summary Statistics for Calibration of Regression Models
Product of Snowpack Index and May 1 Snow Covered Area

Length of Forecast Data Set #
(Days) 1 2 3 4 S5

15 R .874 .367 .920 .380 .685
Se 45.5 36.7 31.5 56.7 62.8

Sy 89.1 37.5 76.5 37.9 82.1

30 R .920 .707 . 965 .755 .927
Se 77.1 58.4 56.7 60.6 77.2

Sy 188.0 78.7 205.5 88.1 196.0

45 R .946 .838 .962 .866 .946
Se 98.8 76.7 90.1 67.2 105.5

Sy 289.3 134.1 312.7 127.9 310.7

60 R .967 . 866 .950 .904 .935
Se 98.9 92.9 130.5 71.4 154.1

Sy 372.0 177.2 398.7 159.0 414.9

90 R .972 .876 .931 .915 . 895
Se 110.2 104.2 184.3 79.3 262.6

Sy 445.4 206.1 481.0 186.9 561.0

120 R . 969 .879 .925 .916 .884
Se 120.7 106.2 202.7 81.5 294.3

Sy 467.5 212.0 507.8 193.3 600.7




Swumary Statistics for Calibration of Regression Models

TABLE 3

Predictor Variables:

Snowpack Index and October-April Precipitation Total

Forecast Date: May 1
Length of Forecast Data Set #
(Days) 1 2 3 4 5
15 R .914 .678 .937 .686 .811
Se 40.1 30.5 29.5 30.5 53.2
Sy 89.1 37.5 76.5 37.9 82.1
30 R .937 .882 .973 .870 .962
Se 72.5 40.9 52.5 48.1 59.2
Sy 188.0 78.7 205.5 88.1 196.0
45 R .928 .848 .973 .893 .958
Se 119.4 78.5 79.7 63.6 98.8
Sy 289.3 134.1 312.7 127.9 310.7
60 R .949 .836 .976 .897 .961
Se 129.9 107.5 95.2 77.7 126.8
Sy 372.0 177.2 398.7 159.0 414.9
90 R .952 .835 .979 .888 .968
Se 150.3 125.4 108.1 94.9 148.9
Sy 445.4 206.1 481.0 186.9 561.0
120 R .951 .839 .980 .890 . 969
Se 159.6 127.4 111.7 97.3 164.2
Sy 467.5 212.0 507.8 193.3 600.7
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Summary Statistics for Calibration of Regression Models

TABLE 3

Predictor Variables:

Forecast Date:

May 1

Snowpack Index and May Snow Covered Area

Length of Forecast Data Set #
(Days) 1 2 3 4 3

15 R .905 .744 .933 .708 .831
Se 39.8 27.7 30.5 29.6 50.5

Sy 89.1 37.5 76.5 37.9 82.1

30 R .914 .824 .965 .797 .952
Se 84.5 49.3 59.7 58.9 66.6

Sy 188.0 78.7 205.5 88.1 196.0

45 R .944 .845 . 968 .865 . 968
Se 105.5 79.2 86.3 71.0 86.3

Sy 289.3 134.1 312.7 127.9 310.7

60 R .960 .863 .961 .901 .949
Se 115.2 98.8 121.3 76.1 144.3

Sy 372.0 177.2 398.7 159.0 414.9

90 R .963 .871 .948 .908 .910
Se 132.9 112.1 170.0 86.6 257.8

Sy 445.4 206.1 481.0 186.9 $61.0

120 R .958 .873 .943 .909 .899
Se 147.5 114.3 187.0 89.3 291.2

Sy 467.5 212.0 507.0 193.3 600.7
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TABLE 3

Summary Statistics for Calibration of Regression Models
Predictor Variables: October-April Precipitation Total, May Snow Covered Area
Forecast Date: May 1

Length of Forecast Data Set #
(Days) 1 2 3 4 5

15 R .895 .696 .897 .701 .636
Se 43.9 29.7 37.4 29.9 70.1

Sy 89.1 37.5 76.5 37.9 82.1

30 R .951 .852 .957 .873 .909
Se 64.5 45.5 66.2 47.5 90.3

Sy 188.0 78.7 205.5 88.1 196.0

45 R .959 .877 .965 .942 . 905
Se 90.8 71.2 91.1 47.3 146.3

Sy 289.3 134.1 312.7 127.9 310.7

60 R .972 .862 .975 . 944 .965
Se 96.9 99.2 97.9 58.2 120.3

Sy 372.0 177.2 398.7 159.0 414.9

90 R .973 .859 .986 .939 .985
Se 112.9 116.7 90.0 70.9 105.5

Sy 445.4 206.1 - 481.0 186.9 561.0

120 R .971 .861 . 987 .939 . 985
Se 123.0 119.2 89.7 73.3 115.0

Sy 467.5 212.0 507.8 193.3 600.7

LS
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TABLE 3

Summary Statistics for Calibration of Regression Models

Predictor Variables: October-April Precipitation Total and Product of
Snowpack Index and May Snow Covered Area

Forecast Date: May 1

Length of Forecast Data Set #
(Days) 1 2 3 4 5

15 R .898 .655 .939 .667 .685
Se 43.4 31.3 29.2 31.2 66.1

Sy 89.1 37.5 76.5 37.9 82.1

30 R .943 .863 .983 .876 .943
Se 69.0 43.9 41.6 47.0 72.0

Sy 188.0 78.7 205.5 88.1 196.0

45 R .951 .891 .981 .938 .951
Se 98.9 67.3 66.7 49.0 106.7

Sy 289.3 134.1 312.7 127.9 310.7

60 R .972 .894 .983 .954 .967
Se 95.9 87.9 sz, 53.0 117.0

Sy 372.0 177.2 398.7 159.0 414.9

90 R .977 .898 .984 .954 .970
Se 106.2 100.2 96.2 61.7 150.0

Sy 445.4 206.1 481.0 186.9 561.0

120 R .975 .901 .984 .956 .970
Se 116.0 101.5 100.9 63.0 162.0

Sy 467.5 212.0 507.8 193.3 600.7

=
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The correlation coefficients in Table 3 range from 0.091
to 0.987. The values vary comsiderably between the data sets,
with the highest values resulting from calibration with sets
#1, 3, and 5 and the lowest from sets #2 and 4. The correla-

tions tend to be higher for forecast periods ¢€ 60 days or

more than for shorter periods; with the exception of the lMay

snow covered area model, all regressions resulted in correla-
tions greater than 0.7 for forecasts of 60 days or longer. The
correlations for the four single predictor models (based on snow-
pack index, Octcber-March preeipitation, snow covered area, and
the product of snowpack index and snow covered area) are all near-
ly equal for periods of 60 days or more from April 1, but for May
1l forecasts, the snow covered area models generally show much low-

er correlations than the othepe single predictor models.

calibration of she Tangborn lodels

The Tangborn models are calibrated using regression; however,
they differ from the regressian approach in that the structure of
the model was established conceptually. The predictor variables
are established through a comceptual interpretation of the process-
¢s. For long-term predictims (15 days or more), the variables
used are the total precipitatfon and total runoff measured during
the winter preceding the predfction period. The equation has the

form

R¥ = aP  +¥ - R, (4-1)

where R* is the predicted rumnff, Pw is the total depth of winter

_
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precipitation,nw is the previously observed winter runoff volume,
and a and b are the regression coefficients that require calibra-
tion.

In addition to evaluating optimum values of the regression
coefficlents, calibration of this long-term model involves de-
termining the optimum starting date for the winter season. The
winter precipitation and runoff volumes are depcndent on the
daie selected to define the start of winter; October 1 is com-
monly used, but it is not necessarily the optimum starting date.
In order to determine the optimum date, total values of winter
runoff and precipitation were compiled for each date from Sep-
tember 1 to October 30. Prediction equations were formed, and
the correlation coefficients and standard errors of estimate
were ‘alculated. Comparison of these statistics showed that,
for the Kings River watershed, prediction accuracy was not sensi-
tive to the winter starting date, with almost no change in the
goodness-of-fit statistics observed for the various start dates.
Therefore, it seemed reasonable to use October 1 as the starting
date for the winter period.

In calibrating these equations, the accuracy of the results
is also dependent on the length of the test szason. The optimum
test season length was determined by using all 24 years of data
to make seasonal predictions; test seasons of one to five days

were trled, and it was concluded from the results that a test

season of one day gave the greatest accuracy of prediction.
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Now that the optimum winter start date and test season
length had been determined, calibration of the coefficients
wvas performed. For the long-term models, coefficients were
derived for prediction periods of 15, 30, 45, 60, 90, 120,
and 150 days starting from both April 1 and May 1. Short-
term models were calibrated for prediction periods of 1, 2,

3, 5, and 10 days starting on May 1, May 15, June 1, and June
15. Calibration was accomplished by regression on the 12 years
of data selected for the purpose. Since the sample was split
in a number of different ways, as explained previously, sepa-
rate regressions were performed for each set of calibration
data. The resulting equations, along with the goodness-of-fit
statistics, appear in Table k4,

The correlatica coefficients in Table 4 range from 0.521
to 0.961. The correlations are generally higher for data sets
#1, 3, and 5 than for sets #2 and 4. lodels for the long term
prediction periods are more accurate than those for forecasts
for periods of ten days or less; for forecasts of 60 days or
more, all the data ssts give correlations of at least 0.74.
Zhe short term predictions seem to be more accurate for fore-
cast dates of May 1 and June 15 than for llay 15 and June 1l;
this may te due to the fact that the peak flows occur most

cften in late liay or early June.

Calibrat of the Ma ec Mode

The basic form of the Martinec lModel is:

Q*, = ¢+ (d-T+SCA+P)+A- (1-K) + K-Q,.1 (4-2)




Forecast Date:

TABLE 4

Summary Statistics for Calibration of Tangborn Models

Length of Forecast Data Set #

(Days) 1 2 3 4 S
15 R .76l .680 .629 .617 .738
Se 28.4 23.8 28.3 25.6 24.2

Sy 41.8 30.9 34.8 31.0 34.3

30 R 710 . 689 .742 .547 .709
Se 71.5 4.2 53.4 47.4 48.1

Sy 96.8 54.2 75.9 54.0 65.1

45 R .806 .779 .825 .673 .665
Se 111.7 57.9 86.3 68.3 107.1

Sy 180.2 88.0 145.4 88.1 136.7
60 R .920 .869 .912 .879 .895
Se 108.4 63.1 116.2 63.9 112.7
Sy 263.6 121.4 269.4 127.7 241.3
90 R .954 .811 .937 .931 .938
Se 139.8 122.9 169.1 71.6 167.3
Sy 442.6 200.5 460.3 186.4 450.8
120 R .952 .803 .934 .933 .955
Sc 165.6 142.2 204.8 80.1 186.4
Sy 5l60.9 227.4 544.7 212.1 596.3
150 R 949 .806 .930 .934 .956
Se 178.2 144.7 221.1 81.7 196.3
Sy 539.2 233.2 572.3 218.1 636.1
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TABLE 4

Summary Statistics for Calibration of Tangborn Models

Forecast Date: Ma, 1

Length of Forecast Data Set #

(Days) 1 2 3 4 5
15 R .943 .911 .844 .902 .615
Se 31.1 16.2 43.1 17.1 68.0

Sy 89.1 37.5 76.5 37.9 82.1

30 R .941 .922 .922 .949 .880
Se 66.8 31.9 83.3 29.0 97.7

Sy 188.0 78.7 205.5 88.1 196.0

45 R .939 .801 .951 .909 .867
Se 104.7 84.1 101.4 55.8 162.2

Sy 289.3 134.1 312,7 127.9 310.7

60 R .957 .759 .951 .892 .925
Se 112.7 121.1 129.2 75.5 165.5
Sy 372.0 177.2 398.7 159.0 414.9

90 R .961 .747 .957 .877 .951
Se 128.8 143.7 146.2 94.2 181.5
Sy 445.4 206.1 481.0 186.9 561.0

120 R .959 .751 .958 .878 .952
Se 138.4 146.7 153.5 97.2 192.0

Sy 467.5 212.0 507.8 193.3 600.7
150 R .959 .760 .959 .888 . 954
Se 140.8 142.9 153.0 92.2 194.1
Sy 473.8 209.8 514.1 191.0 614.6
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Summary Statistics for Calibration of Sho

TABLE 4

rt-Term Tangborn Models

Forecast Date: May 1
Length of Forecast Data Set ¥

(bays) 1 2 3 4 5
1 R .845 .91l .659 .740 .521
Se 1.83 1.18 3.13 1.99 3.07
Sy 3.26 2.71 3.97 2.82 3.43
2 R .870 .910 .703 179 .563
Se 3.79 2.47 5.76 3.82 6.33
Sy 7.32 5.69 7.72 S.81 7.31
3 R .895 .895 .769 .800 .569
Se 5.68 4.06 7.58 5.51 9.93
Sy 12.1 8.68 1.3 8.76 11.5
5 R .908 .847 .860 .827 .591
Se 10.9 8.38 10.8 8.78 16.8
Sy 24.8 15.0 20.2 14.9 19.9
10 R .933 .821 .808 .851 .664
Se 23.7 17.7 29.1 25.9 38.0

Sy 63.0 29.5 47.2 28.8 48.4
15 R .943 .911 .844 .902 .615
Se 31.1 16.2 43.1 17.1 68.0
Sy 89.1 37.5 76.5 37.9 82.1
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TABLE 4

Summary Statistics for Calibration of Short-Term Tangborn Models

Forecast Date: May 15

Data Set # %
Length of Forecast ata Set
(Days) 1 2 3 4 [ i
?
1 R .745 .752 .774 .826 . 645 {
Se 5.07 2.27 5.33 2.19 6.63 {
Sy 7.24 3.29 8.02 3.70 8.27 1
2 R .766 .741 .787 .803 .690 L
Se 9.83 4.76 10.7 5.00 12.3 i -4
Sy 14.6 6.76 16.5 7.99 16.2 g ;
3 R .788 .777 .801 .809 .739 1 ]
Se 14.5 6.33 16.2 7.53 17.3 : |
Sy 22.4 9.59 25.9 12.2 24.4
5 R .823 .846 .841 .850 .803 i
Se 23.2 9.20 25.8 11.2 25.3 ;
Sy 39.0 16.4 45.4 20.2 40.5 i
10 R .852 .914 .892 .877 .927
Se 41.4 14.1 41.8 20.6 31.9
Sy 75.5 33.1 88.4 40.8 81.1
15 R .855 .904 .924 .873 .954
Se 62.1 22.0 52.2 30.7 40.6
Sy 114.1 49.3 130.4 60.1 129.9




TABLE 4

Summary Statistics for Calibration of Short-Term Tangborn Models

Forecast Date: June 1
Length of Forecast Data Set #

(Days) 1 2 3 4 5
1 R .836 .608 .910 .571 .757
Se 5.21 3.57 4.04 3.02 6.23

Sy 9.06 4.29 9.31 3.51 9.10
2 R .837 .574 . 904 .548 .719
Se 10.0 8.02 7.98 5.98 12.9
Sy 17.4 9.34 17.8 6.82 17.7
3 R .848 .573 .902 .546 .715
Se 14.1 12.8 11.9 8.68 19.2

Sy 25.4 14.9 26.2 9.88 26.1
5 R .854 .638 . 900 .608 .722
Se 22.1 21.5 19.9 13.1 31.7
Sy 40.6 26.6 43.5 15.7 43.7
10 R .835 .787 .921 .752 . 767
Se 46.1 34.7 33.7 25.6 58.5
Sy 79.9 53.7 82.5 37.0 86.9
15 R .843 .808 .941 .785 .827
Se 64.3 44.7 41.3 33.6 72.8
Sy 113.9 72.4 116.0 51.8 123.4
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TABLE 4

Summary Statistics for Calibration of Short-Term Tangborn Models

Forecast Date: Junc 1S
Length of Forecast vata Set #
(bays) 1 2 3 4 5
1 R .877 .813 .943 .708 .915
Se 3.52 2.33 2.35 2.50 3.22
Sy 6.98 3.81 6.71 3.37 7.59
2 R .883 .787 .937 .680 .907
Se 6.77 4.77 4.87 5.09 6.94
Sy 13.8 7.37 13.3 6.62 15.8
3 R . 900 .785 .936 . 685 .897
Se 9.27 7.02 7.28 7.29 11.1
Sy 20.2 10.8 19.7 9.53 24.0
5 R .923 .794 .924 .716 .879
Se 13.5 11.4 13.5 10.9 20.7
Sy 33.6 17.8 33.5 14.9 41.3
10 R .933 .795 .915 . 765 .879
Se 25.3 21.6 28.3 18.4 43.4
Sy 66.7 34.0 66.7 27.3 86.7
15 R .930 .782 .923 .778 .877
Se 35.3 31.5 38.1 24.2 67.3
Sy 91.7 48.1 94.6 36.7 133.5
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in which Q} is the predicted volume of runoff for day n, ¢

is a dimensionless runoff coefficient, d is a degree-day
factor, T is the temperature index on day n, SCA is the
percentage of total area covered by snow on day n, P is the
precipitation on day n, A is the total area of the watershed,
K is a dimensionless recession coefficient, and Q _, is the
observed volume of runoff for the previous day. The basis
for this model was explained previously.

Calibration of the Martinec model requires the optimiza-
tion of the model parameters. The optimum values of the para-
meters are expected to vary from one watershed to another, so
model calibration is required anytime the model is to be used
on a new watershed. The parameters to be optimized are the
runoff and recession coefficients and the degree-day factor
(¢, K, and d, respectively, in eq. 4-2).

Because the Kings River watershed is large and encloses
a wide range of elevations, meteorological conditions are nct
likely to be uniform over the whole area. Therefore, dividing
the watershed into elevation zones should improve the accuracy
of prediction . Effective temperatures and precipitation were
calculated separately for each zonej also, separate snow cover-
ed area data were compiled. The zonal temperature values were
ietermined by finding the difference between the temperature

station elevation and the mean elevation of each zone, then

nultiplying by a temperature lapse rate and adding the product
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to the station temperature. In this way an estimate of the

average dally temperature in each zone was obtained. If the

s -

zonal temperature value was below zero, any precipitation in
that zone was assumed to have fallen as snow; in this case,
the precipitation was not added to the generated runoff total.
The modified form of the Martinec equation is given by:

m

Q¥ = ¢(1-K) &

n 5 (44T, SCA+P,) Ay + KQ _, (+-3)

in which m is the number of elevation zones. This equation re-

flects the varying meteorological conditions over the watershed.

[P VA UR

Both the original form (Fq.4-2) and the modified from (Eq.4%-3)

of the Martinec model were calibrated. Values of K were estimated

by three different methods. The modified form of the model was test-
ed both with the degree-day factor being the same for each zone and

with the factor being allowed to vary from one zone to the next. In

both cases, the runoff coefficient was the same for all zones.

Three different optimization techniques (analytical, nu-
merical, and subjective) were used in calibrating the Martinec
model. The objective of each of these methods is to explain
thie maximum possible variation in the criterion variable.

The subjective optimization technique is generally used

to optimize one parameter at a time. Using the investigator's

«nowledge of the model and the system, the value of each para-

neter is adjusted by trial and error until there is no signifi-

cant improvement in the error function.
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The other two optimization techniques require that all
parameters be optimized simultaneously. The criterion by which
; accuracy of prediction is measured is the sum of squares of the
‘ errors. This sum of squares, called the criterion function, 1is

? an indicator of the goodness-of-fit between the observed and

predicted values. Model accuracy 1s best when the sum of squares

is lowest. Thus, the model can be calibrated by adjusting the
parameter values to give the minimum sum of squares of the errors.

Two methods of doing this are: (1) Determine the parameters ana-

lytically, using the partial derivatives of the criterion function; ?
or (2) determine the values numerically using the pattern search %

method.

Subjective Optimization of the Recession Coefficient

In theory, the recession coefficient K has a different value
for each day; these values can be calculated from the equation

(Martinec, 1979):

T T

K, = & (4-t)

As mentioned above, an initial investigation indicated that the
recession term is far more important than the generated runoff
term. Therefore, accuracy of the model is very sensitive to the
7alues of K. In a predictive situation, the values of Qn+l and
Qn are not available, so K must be estimated. This can be done
in a number of ways.

The first method, which was suggested by Martinec (1975),

estimates K using the equation:
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PN
X, =aQ®_, (4-5)

in which a and b are cupirical coefficlients. Values of K that
are considered true values are derived with Eq. 4-l4 and regres-
sed on daily values of Qn-l using the logarithmic form of the

linear regression equation:

log K, = log a + b log Q,_; (4+-6)

The optimum values of a and b for each of the 24 years of record
are shown in Table 5.
When making forecasts, the optimum values of a and b given

in Table 5 can not be used. Two methods for estimating a and b

b AR bt i s o e ——

are feasible. First, the average values for the 24 years of
record were recommended by Martinec (1975). For the Kings River

watershed the mean values of a and b are 1.02484 and -0.00351,

1 respectively. Use of the average values implies that the an-

§ nual variation in a and b is random. Second, if the annual varia-
l tion is not random but results from variation in other factors,
then better estimates can be obtained by relating the optimum
values of a and b (Table 5) to the factor or factors responsible
for the variation. An analysis showed that a and b were related
to the Cctober-April precipitation. Regression analysis provided

linear prediction equations of the form:

[ 2
1

e, (October-April precipitation) + e, (%-7)

and

>
i

ey (October-April precipitation) + e, (4-8)




Values of The Optimum Recession Term Parameters for

Year

1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1970
1977

TABLE 5

b
Recession Term - a Qn-l

a

0.9294
0.9766
0.9281
0.9313
0.9797
0.9875
0.9523
1.0228
1.0154
0.9620
1.0160
0.9422
1.0000
1.0000
1.0000
1.0000
1.0000
1.9775
1.0476
1.0000
0.9951
1.0000
0.9500
0.9826

The Martinec Model

b
-0.00140
-0,00005
~0,00229
-0.00650

0.00097
-0.00475
-0.00148
-0.00394
-0.01327
-0.00005
-0.00875
-0.00788
-0.00013
-0.00019
-0.00013 :
-0.00013 :
-0.00013
-0.00184
-0.01238
-0.00013
-0.00091
-0.00027
-0.00291 :
-0.01563 !
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in which a and § are the predicted values of a and b, and e,,
ey e3, and e, are regression coefficients. For the 24 years

of record these equations provided correlation coefficients

of -0.544+ and 0.505 for Eqs. 4-7 and 4-8, respectively. For
making forecasts, separate equations were derived for each of
the five 1l2-year data sets. The use of constant values of a

and b for any one year does not imply that K 1s constant because

K depends on Q, _, -

The second method of estimating K 1s to assume that there
is good serial correlation in the runoff values and use the run-
off values from the two previous days. In this case, the pre-
dicted value of K 1s set equal to the most recent observed

value available, which is calculated by the equation:
* Q-1
K =K = (%-9)

The accuracy when applying Eq. 4-9 is better than that obtained
when the z2verage values of a and b are applied with Eq. 4-5.
Zowever, the accuracy when applying Eq. 4-9 is similar to that
obtained when equations such as Eqs. 4-7 and 4-8 are used with

Eq. 4-5; in this case, the accuracy varies from year to year.

he Relative Importance of the Recession Term

Eq. 4-9 was used to derive estimates of K for the years
from 195% to 1958, inclusive. Predictions of runoff were made

for each day of the period from May 1 to June 15 for each of

the five years using the model:

Bl il

..
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Q, = KQ _; (+-10)

A different value of K was used for each day. Eq. 4-10 is the
recession term of the Martinec model, Eq. 4-2. The importance
of the recession term on this watershed is such that more than
81 percent of the total variance was explained with this term
only. The relative importance of the recession term when com-
pared to the generated runoff term indicates that the model is
probably not sensitive to the values of the ¢ and 4 coefficients
of Eqs. (4-2) and (4-3).

As noted above, the Martinec model is not sensitive to the

values of ¢ and 4 in Eq. 4-3. It is known that insensitive co-
efficlents quite often fall to approach the population values
and are sometimes irrational (Dawdy and O'Donnell, 1965). Also,
it 1s difficult to relate irrational coefficients to other charac-
teristics of the system.

Martinec (1975) has evaluated some field estimated values of
d, the degree-day factor. This parameter represents the umount
of snow that melts for each degree-day. Since the rate of snow-
melt depends on the available energy, the wind speed, and the
vapor pressure deficit (among other factors), the temperature
alcone cannot be expected to completely determine the amount of
smowmelt. Martinec suggested a value in the range of 0.35-0.60

centimeters per degree (Celsius)-day. This corr sponds to a

range of 0.138-0.236 inches per degree-day. Martinec also
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suggested that the value varies systematically throughout the
snowmelt season and also varies from one elevation zone to the
next. These values derive from the experimental approach to
calibration of the model.

The runoff coefficient, c, can be expected to vary consider-
ably from watershed to watershed. This parameter 1s an indicator
of the proportion of the water incident on the basin that leaves
the basin as streamflow. Because groundwater storage and evapo-
transpiration losses vary considerably between watersheds, the
value of ¢ can be expected to vary as well.

Once values of K and d have been selected, ¢ can be determin-
ed subjectively by making forecasts with an initial estimated value
of ¢, examining the errors of the predictions, and then adjusting
the value of ¢ in such a way as tc lessen the errors. Using values
of K derived from (Eq.4-9) and the values of d suggested by Martinec,

subjective optimization gave an optimum ¢ value of about 0.15.

analytical Calibration of the Martinec Model

Analytical calibration is performed by taking the partial
derivatives of the criterion function,which is the sum of the
squares of the errors, with respect to each of the ccefficients
to bte optimized. These partial derivatives are then set equal
%o zero, because the derivatives ejual zero at the minimum value
of the criterion functicn. The partial derivatives form a set
of simultaneous equations that cam be solved for the optimum N

values of the coefficients. 7he alvantage of analytical cali-

braticn is that {t leads to a unigue solution and is reproduceable;
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two different researchers calibrating the same equation with
the same data will arrive at the fame optimum values. The
disadvantages are that the partial derivatives do not always
form an independent set of simultaneous equations and that
the evaluation of the equations and the substitutions involv-
ed in solving them are cumbersome.

When optimizing the coefficients, it 1s desirable to opti-
mize all of the coefficients simultaneously. Analytical calib-
ration of the Martinec model was attempted using the estimates of
K given by Eq. 4-5. The equation 1is:

*

Q) = c(aTSCA+P) A (1-aq_;P) + (aq ™) @-11)

n
When the partial derivatives are calculated, no independent
equation involving b results. Therefore, this form of the
model with K estimated by Eq. 4-9 cannot te optimized analy-
tically. Another method of estimating K must be chosen.
Assuming that K is estimated by Eq. (4-9}, the criterion
function for the Martinec equation can be written:
m
T 2

[(4TSCA+P) Ac (1-K) + KQ__; - Q
n=1

)

_ B . 2
F = nil(Qn-Qn) = a

(4-12)
in which m {5 the number of days for which predictions

are made, 7The partial derivative with respect to ¢ is:

F _
'rc-Z

n

[ (ATSCA+P) cA (1-K) + KQn .1 - Qn][(dTSCA+P)(l-K)A]
(4=13)

TRYR:|
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which equals zero at the minimum value of Eq. W-11:
- 2 2,2
0 = I [(dTSCA+P)“(1-K)“cA® + A(1-K)(dTSCA+P) KQn_l
n=1
- A(dTSCA+P)(1-K) Q_] (4=14)
Assuming that the degree-day factor does not vary from zone to
zone, Eq. (4-13) can be rearranged to:
a2 D 2 n 2
O = cAd” I [T SCA (1-K)©] + 2cAd £ [TPSCA(1-K)“]
n=1 n=1
m 5 5 m
+ cA I [P9(1-K)) + d & [TSCAK(1-K)Q _;]
n=1 n=1
m m m
+ z [K(l-K)PQn_l] -dz [TSCA(l-K)Qn]- Z[P(l-K)Qn]
n=1 n=1 n=1
(4-15)
The partial derivative of Eq. (4-11) with respect to d is
given hy:
m
28 =2 I (cA(1-K){ATSCA+P) + KQ_ _; - Q] (cA(1-K)TSCA)
n=1 B n
(4=16)
which, when set ejual to zero, becomes:
B 2am,2 2 z 2
0 = cAd I [T“SCA“(1-K)“] +cA T [TSCAP(1-K)“]
n=1 n=1
m m
+ I [TSCAK(1-K)Q,_q) = I [TSCA(1-K)Q,] (4-17)

n=1

n=1
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Eqs. (4-19) and (4-17) are simultaneous and independent; they

can be solved for the optimum values of ¢ and 4 once the sum-
mations are calculated. The resulting values are different for
each year. In testing the Martinec model, the average values

of ¢ and 4 were used because the yearly values were not highly
correlated with any ¢f the data available on May 1. The accuracy
of the model when tested with the averages of the analytically
derived values of ¢ and d was not greater than the accuracy
achieved with values derived using numerical optimization.

An alternative way of analytically calibrating the Martinec
model assumes that K is constant for each year, rather than a
function of the previous day runoff. With this assumption, opti-
mum values of K, ¢, and 4 can be derived from the three simultane-
ous and independent equations obiained from the partial derivatives.
The use of a constant K for each year simplifies the prediction
model significantly, but also results in a decrease in accuracy
when compared with the methods in which K is a function of the

runoff from the previous day.

tumerical Calibration of the Martinec Model

The numerical calibratior method is an iterative process that
requires a computer. The program used in this study is refarred
to as pattern search. This program starts with initial estimates
of "he coefficients to be optimized (supplied by the programmer)
ani  calculates the predictions and errors for each case using

these initial estimates. The sum of squares of the errors is

Py
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then calculated. Next, ‘ach coefficient 1s sequentially decrement-
ed by a given amount, ususlly about 5 to 10 percent of the initial
estimates. The sum of squares of the errors is calculated for
each new set of parameters and compared with that produced by the
original set. The best new set of parameters (i.e., the set with
the lowest sum of squares) becomes the set of base values, and
these values are then incremented. The process continues until
variation of the parameters does not result in a significnatly
lower sum of squares than does the base set. At this point, the
parameters have converged on the optimum values, that is, the set
of values that minimizes the sum of squares of the errors. If
the initial parameter estimates are properly selected, numerical
optimization should provide final parameter estimates that are
similar to those that would be obtained if an analytical solu-
tion were possible.

In using the pattern search method, K was assumed to be a
function of Qn-l‘ The optimum values of ¢ and d were to be deter-
mined, so the following model was used in the pattern search pro-

gram:

* _ by T (b+1) .
Q, = c(l-aQ,_; )iil[(diTiSCAi+Pi)Ai]+aQn_l (%-13)

The degree-day factor K is different for each zone, and six eleva-
tion zones were used. There was no snow cover in the lowest ele-
vation zone during the forecast period, so this zone did not need
a2 degree-day factor; therefore, only five values of degree-day

factor were required. The pattern search model was used to deter-

mine the optimun set of values for the parameters a, b, ¢, d, d2,

e
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d3, d#’ and d5' The resulting values of & were negative for
some zones, which is irrational. All values of the degree-day
factor must be greater than zero. Therefore, the pattern search
program was modified in order to constrain all the values of d
to be greater than zero. The resulting values of d were nearly
zero for some zones and did not vary systematically with eleva-
tion.

The model was also optimized with the degree-day factor be-

ing constant from zone to zone. The equation for this model 1is:
* _ by, m (b+1) _
Q, = c(l-aQ, 4 )151[(dTiSCAi+Pi)Ai] +aQ_; (%-19)

With this equation there were only four parameters to be optimized
because there is only one value of 4.

The accuracies of these three versions of the modified Martinec
model were compared on the basis of the sum of squares of the errors
for each year. The model in which the degree-day factor varied from
zone to zone and was not constrained to be greater than zero was
most accurate, but the d values were irrational. Constraining the
values of d to be greater than zero increased the sum of squares
of the errors by two to four percent for most years when compared
with the unconstrained model. When the value of the degree-day
factor was assumed to be constant from one zone to the next, the
sum of squares increased by less than two percent when compared
with the constrained form of the spatially distributed model.

These results show that the values of ¢ and 4 are not very
important to the accuracy of prediction; that is, the model is

not sensitive to these parameters. 1In order to determine just
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how important the values of ¢ and 4 are, the program was used

with only the recession term of the Martinec model:
Q) = aq_, P*V) (4+-20)

A comparison of the results of this investigation with the results
of using the full model is shown in Table 6. It is obvious that
this model which is based only on the recession term, requires
far less data to operate than does the original Martinec form;
the only data required for the recession model is daily runoff,
while the original version also required daily temperature, pre-
cipitation, and snow covered area. Whether the improved accuracy
obtained with the original model justifies the added expense cT
collecting all this data 1s a question that will depend on both
the watershed and project chjectives. It should be emphasized
that this result will not necessarily be valid for all water-
sheds; for watersheds that are characterized by low serial cor-

relation, one would expect the first term to be more important.

T T . -



TABLE 6

Comparison of The Accuracy of the Entire Martinec Model Vs.

Accuracy of the Recession Term, 1954-1958 Calibration

Recession Term Model

Martinec Model

Correlation | Sum of Squares of Correlation | Sum of Squares of

Year Coefficient the Errors Coefficient the Errors

8 7
1954 .950 1.1376 x 10 . 969 8.1712 x 10
1955 .908 2.3632 x 108 .942 1.6749 x 108 :
1956 .906 2.7011 x 108 .944 1.5675 x 108
1957 .834 5.7226 x 10° .871 4.6871 x 10° !
1958 .927 2.4326 x 10% ,947 1.8302 x 10°
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CHAPTER V

TESTING THE SNOWMELT MODELS

Each model was tested for accuracy of prediction using
each of the five 12-year test data sets. Data sets #1, 3,
and 5 were used to evaluate the accuracy of the model when
used with data from within the range of calibration dataj;
data sets #2 and 4 were used to test the model with data
from outside the calibration range. The accuracy of pre-
diction for each model and each data set was measured by the
correlation between predicted and observed runoff volumes and

by the standard error of estimate.

Significance of the Correlation Coefficient
In evaluating the results of the testing program, it was

necessary to compare the correlations and standard errors of
the various models. These goodness-of-fit statistics are shown
for the regression models in Table 7, for the Tangborn models
in Table 8, and for the Martinec models in Table 9. Cocnclu-
slons as to which models are most accurate are based on these
comparisons. Eccause the models were tested on only 12 years
of data, the resulting correlations and standard errors are
only approximations of the values that would result from a

more extensive testing program. Therefore, the fact that one
model resulted in a higher correlation coefficient than another

model does not necessarily mean that the first model is superior;
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TABLE 7

Summary Statistics for Testing of Regression Models

Predictor Variable:

Snowpack Index

Forecast Date: April 1
Length of Forecast Data Set #

(Days) 1 2 3 4 S
15 R .709 .646 .807 .674 .911
Se 31.3 32.9 27.3 33.1 20.7

Sy 42.3 41.2 44.1 42.8 47.9

30 R .852 .751 .894 .751 .948
Se 49.3 62.9 47.0 63.7 36.5

Sy 89.9 91.0 99.8 92.0 109.3

45 R .927 .858 .931 .858 .974
Se 70.3 92.1 75.2 93.1 48.9

Sy 179.0 171.0 196.1 173.0 206.1

60 R .972 .921 .963 .924 .976
Se 83.9 106.8 93.9 109.3 81.1

Sy 340.6 261.8 332.4 272.1 356.7

90 R .954 .886 .941 .881 .972
Se 138.0 220.8 220.9 219.6 154.8

Sy 626.8 453.9 662.0 422.2 631.6

120 R .921 .809 .907 .802 .967
Se 335.5 372.3 362.0 370.8 211.8

Sy 822.6 604.3 821.0 592.5 791.8

150 R .916 .792 .900 .786 .964
Se 370.6 417.1 401.5 415.6 235.6

Sy 880.1 651.9 878.9 640.4 842.0
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TABLE 7

Summary Statistics for Testing of Regression Models
Predictor Variable: October-March Precipitation Total
Forecast Date: April 1

Length of Forecast Data Set #
{(Days) 1 2 3 4 S
% 15 R .743 .720 .762 .744 .860 i
| Se 29.7 29.9 30.0 30.0 25.6 i
| Sy 42.3 41.2 44.1 42.8 47.9 3
| 30 R .860 .759 .820 .775 .888
| Se 48.2 62.1 59.9 61.0 52.7
| Sy 89.9 91.0 99.8 92.0 109.3 ‘
s
4s R .901 .810 .858 .822 .928
Se £1.4 105.8 105.8 103.3 80.3
Sy 179.0 171.0 196.1 173.0 206.1 i
}
60 R .967 .930 .962 .936 .966 ;
Se 91.6 101.2 94.8 100.7 96.6 ;
| Sy  340.6 261.8 332.4 272.4 356.7 ;
| 90 R .968 .941 .973 .943 .981 {
| Se  165.3 160.9 149.4 154.7 129.6
| Sy  626.8 453.9 622.0 442.2 631.6
120 R .957 .921 .962 .92: .982
~ Se  250.5 247.5 236.5 242.3 154.9 ~
L Sy  822.6 604.3 821.0 592.5 791.8
150 R .954 .912 .958 .913 .980
E Se  276.8 280.2 263.3 274.7 174.0
| Sy  880.1 651.9 878.9 640.4 842.0
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Summary Statistics
Predictor Variables:

TABLE 7

for Testing of Regression Models
April 1 Snow Covered Area

Forecast Date: April 1
Length of Forecast Data Set #

(Days) 1 2 3 4 [3
15 R .744 .716 .764 .740 .855
Se 29.6 30.1 29.9 30.2 26.0
Sy 42.3 41,2 44.1 42.8 47.9

30 R .864 .758 .820 .775 .884
Se 47.5 62.2 59.9 61.0 53.6
Sy 89.9 91.0 99.8 92.0 109.3

45 R .904 .809 .859 .822 .925
Se 80.2 105.4 105.2 103.4 82.0

Sy 179.0 171.0 196.1 173.0 206.1
60 R . 966 .930 .964 .936 - 966
Se 91.8 101.0 92.7 100.3 96.2
Sy 340.6 261.8 332.4 272.1 356.7
9 R . 965 .940 .972 .942 .982
Se 172.3 163.1 153.1 155.7 126.1
Sy 626.8 453.9 622.0 442.2 631.6

.984
146.9
791.8
.983
164.2
842.0
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TABLE 7

Sunmary Statistics for Testing of Regression Models

Predictor Variable:

Snow Covered Area

Product of Snowpack Index and April 1

Forecast Date: April 1
#
Length of Forecast Data Set

(Days) 1 2 3 4 S
15 R .723 .676 .776 .695 .878
Se 30.7 31.8 29.2 32.2 24.1

Sy 42.3 41.2 44.1 42.8 47.9

30 R .854 .753 .850 .753 .900
Se 49.1 62.8 55.1 63.4 49.9

Sy 89.9 91.0 99.8 92.0 109.3

45 R .932 .854 .899 .854 .948
Se 67.9 93.2 90.3 94.4 68.5

Sy 179.0 171.0 196.1 173. 206.1

60 R .968 .947 .9538 .943 .971
Se 89.1 88.2 99.6 94.6 89.1
Sy 340.6 261.8 332.4 272.1 356.7

90 R .945 .923 .940 .924 .971
Se 214.9 182.9 223.0 177.5 159.5
Sy 626.8 453.9 622.0 44,2 631.6

120 R .915 .362 911 - 861 .971
Se 347.7 320.8 355.0 316.0 199.3
Sy 822.6 604.3 821.0 $92.5 791.8
150 R .910 .848 .906 .847 .969
Se 382.5 361.9 390.9 357.3 218.8
Sy 880.1 651.9 878.9 640.4 842.0
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Predictor Variables:
forecast Date:

TABLE 7

Susmary Statistics for Testing of Regression Models
Snowpack Index and October-March Precipitation Total

Length of Forecast Data Set #

(Days) 1 2 3 4 3
15 R .743 . 646 . 746 .674 .613
Se 31.3 34.7 32.5 34.9 41.8

Sy 42.3 41.2 44.1 42.8 47.9

30 R .860 .751 .820 .751 .888
Se 50.8 66.4 63.2 67.1 §5.5

Sy 89.9 91.0 99.8 92.0 109.3

45 R .901 .860 . 885 .858 .928
Se 85.8 96.5 101.0 98.2 84.6

Sy 179.0 171.0 196.1 173.0 206.1
(1)) R .967 .946 .968 .950 . 966
Se 96.6 93.8 92.3 94.0 101.8

Sy 340.6 261.8 332.4 272.1 356.7

90 R .970 .909 .96l .931 .981
Se 168.2 209.0 189.7 178.2 136.6
Sy 626.8 453.9 622.0 442.2 631.6

120 R .950 .837 .943 .879 .982
Se: 284.3 305.1 301.7 311.8 163.3
Sy 822.6 604.3 821.0 5§92.5 791.8
150 R .946 .823 .939 .867 .980
Sc 314.1 409.6 333.2 352.8 183.4
Sy 880.1 651.9 878.9 640.4 842.0
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TABLE

7

Summary Statistics for Testing of Regression Models

Predictor Variables:

Snowpack Index and April 1 Snow Coversd Area

Forecast Date: April 1
Length of Forccast Data Set 7

(Days) 1 2 3 4 S
15 R .744 .646 .748 .674 .593
Se 31.2 34.7 32.4 34.9 42.6
Sy 42.3 41.2 44.1 42.8 47.9

30 R .R64 .761 .820 .751 .767
Se 50.0 65.2 63.2 67.1 77.6
Sy 89.9 91.0 99.8 92.0 109.3

45 R .904 .858 .885 .858 .925
Se 84.5 97.2 100.9 98.2 86.4

Sy 179.0 171.0 196.1 173.0 206.1
60 R . 966 .947 . 969 .95i .966
So 6.8 92.6 90.9 93.1 101.4
Sy 340.6 261.8 332.4 272.1 356.7
90 R .968 . 907 .960 .932 .982
Se 173.0 211.0 192.3 177.7 133.0
Sy 626.8 453.9 622.0 442.2 631.6
120 R .948 .834 941 .880 .984
Se 289.7 368.1 306.3 311.3 154.8
Sy 822.6 604.3 821.0 592.5 791.8
250 R .945 .820 .938 .868 .983
Se 319.5 412.8 337 8 351.9 173.1
Sy 880.1 651.9 878.9 640.4 542.0
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TABLE 7

Swaiary Statistics for Testing of Regression Models

Predictor Variables:

October-March Precipitation Total and
April Snow Covered Area

Forccast Date: April 1

Leagth of Forccast Data Set #
{Days) 1 2 3 4 5
15 R .744 . 660 .764 .684 .8S5
Se 31.2 34.2 31.5 4.5 27.4
Sy 42.3 41.2 44.1 42.8 47.9
30 R .864 .717 .820 .729 .884
Se 50.0 70.1 63.2 69.6 56.5
Sy 89.9 91.0 99.8 92.0 109.3
45 R . 904 772 .859 .781 .925
Se 84.5 120.2 110.9 119.3 86.4
Sy 179.0 171.0 196.1 173.0 206.1
00 3 . 966 .924 . 962 .930 .. 966
Se 96.8 110.8 99.9 110.5 101.4
Sy 340.6 261.8 332.4 272.1 356.7
90 R . 965 . 942 .973 . 942 .981
Se 181.6 168.3 157.5 164.1 136.6
Sy 626.8 453.9 662.0 422.2 631.6
120 R .953 .922 . 962 .920 .982
' Sc 274.7 258.8 249.3 257.1 163.3
Sy 822.6 6U4.3 821.0 592.5 791.8
i 15C R .950 .913 .958 .912 .980
, Se 302.4 294.6 277.6 290.5 183.4
’ Sy 880.1 051.9 878.9 640.4 842.0
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TABLE 7

Summary Statistics for Testing of Regression Models

Predictor Variables: October-March Precipitation Total and Product of
Snowpack Index and April Snow Covered Area

Forecast Date: April 1

Length of Forecast Data Set #
(Days) 1 2 3 4 5
15 R .743 .669 .754 .678 .311
Se 31.3 33.8 32.0 34.7 50.3 ;
Sy 42.3 41.2 44.1 42.8 47.9 |
E
30 R .854 .753 .825 .753 .888 }
Se 51.8 66.2 62.4 66.9 $5.5 5
Sy 89.9 91.0 99.8 92.0 109.3 |
i
45 R .932 .852 .882 .854 .028 i
Se 71.5 98.9 102.1 99.5 84.6 |
Sy 179.0 171.0 196.1 173.0 206.1 '
60 R .967 .952 .964 .952 .966 f
Se 96.6 88.9 98.2 92,2 101.8
Sy 340.6 261.8 332.4 272.1 356.7 1
90 R .962 .928 .956 .940 .981 {
Se 188.1 187.0 201.3 166.5 136.6
Sy 626.8 453.9 662.0 422.2 631.6 ]
120 R .939 .868 .940 .889 .982 : §
Se 311.7 332.0 309.4 299.9 163.3 3
Sy 822.6 604.3 821.0 592.5 791.8 ?
150 R .936 .854 .937 .877 .980
Se 343.7 374.5 339.1 340.6 183.4
Sy 880.1 651.9 878.9 640.4 842.0 2
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TABLE 7

Summary Statistics for Testing of Regression Models

Predictor Variable: Snowpack Index

Forecast Date: May 1

Length of Forecast Data Set #
(Days) 1 2 3 4 5

15 R .927 .861 .907 .864 .971
Se 37.9 48.6 45.5 48.5 25.2

Sy 96.4 91.0 102.8 91.8 100.0

30 R .977 .874 .925 .885 .946
Se 58.6 101.0 99.5 100.4 87.7

Sy 260.6 197.9 249.6 205.9 258.5

45 R .976 .886 .931 .883 .952
Se 95.8 149.3 156.3 149.6 131.3

Sy 417.3 307.1 407.4 303.3 409.0

60 R .944 .846 .909 .836 .955
Se 190.7 220.7 238.1 220.4 165.9

Sy 551.9 394.6 545.5 383.2 534.5

90 R .909 .768 .875 .758 .951
Se 327.5 368.3 379.7 367.1 225.6

Sy 749.3 548.0 749.0 536.3 696.1

120 R .904 .752 .869 . 742 .948
Se 362.1 412.3 419.5 410.9 250.2

Sy 807.0 596.2 807.9 584.7 746.9
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TABLE 7

Summary Statistics for Testing of Regression Models
Predictor Variable: October-April Precipitation Total
Forecast Date: May 1

Length of Forecast Data Set #

(Days) 1 2 3 4 5
15 R .785 .627 .751 .639 .923
Se 62.6 74.3 71.3 74.1 40.5
Sy 96.4 91.0 102.8 91.8 100.0
30 R .940 .858 .946 .871 .967
Se 93.4 106.5 85.1 106.1 69.6
Sy 260.6 197.9 249.6 205.9 258.5
45 R .946 .870 .957 .861 .984
Se 142.0 158.7 124.1 162.0 75.5
Sy 417.3 307.1 407.4 303.3 409.0

60 R .970 .943 .982 .930 .987 L]

Se 140.2 137.4 107.3 148.0 89.9 b

Sy 551.9 394.6 545.5 383.2 534.5 4
90 R .981 .966 .987 .954 .986
Se 151.5 148.6 125.5 169.3 119.6

Sy 749.3 548.0 749.0 536.3 696.1 ,
120 R .982 .965 .986 .953 .985 o
Se 158.8 163.3 140.5 184.7 136.1 . *

Sy 807.0 $96.2 807.9 584.7 746.9
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TABLE 7

Summary Statistics for Testing of Regression Models

Predictor Variable:

May 1 Snow Covered Area

Forecast Date: May 1
Length of Forecast Data Set #
(Days) 1 2 3 4 5

15 R .531 .076 .476 .216 .706
Se 85.6 95.1 94.9 94.0 74.3

Sy 96.4 91.0 102.8 91.8 100.0

30 R .785 .496 .730 .602 .785
Se 169.2 180.2 179.0 172.4 167.8

Sy 260.6 197.9 249.6 205.9 258.5

45 R .819 .518 .770 .619 .813
Se 251.0 275.4 272.5 249.8 249.6

Sy 417.3 307.1 407.4 303.3 409.0

60 R .878 .604 .832 .714 .825
Se 277.2 329.7 317.6 281.2 316.9

Sy 551.9 394.6 545.5 383.2 534.5

90 R .896 .653 .852 .756 .812
Se 349.1 435.6 411.8 367.9 426.0

Sy 749.3 548.0 749.0 536.3 696.1

120 R .897 .654 .851 . 757 .811
Se 374.6 473.2 445.4 400.9 458.2

Sy 807.0 596.2 807.9 584.7 746.9
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TABLE 7

Summary Statistics for Testing of Regression Models

Predictor Variable: Product of May 1 Snow Covered Area

and April Snowpack Index
Forecast Date: May 1

Length of Forecast Data Set # _
(Days) 1 2 3 4 3 :

|

15 R .876 .778 .839 .783 . 965 2
Se 48.7 59.9 58.8 59.9 27.6 i

Sy 96.4 91.0 102.8 91.8 100.0 |

30 R .974 .913 .945 .919 .966 .
Se 61.4 84.5 85.7 84.9 70.6 P

Sy 260.6 197.9 249.6 205.9 258.5 |

as R .976 .928 .960 .925 .972 %
Se 95.4 119.7 120.2 120.7 101.5 ;

sy 417.3 307.1 407.4 303.3 409.0 %_

60 R .965 .917 .960 .913 .973 ;
Se 151.3 165.2 160.4 163.9 129.3 ;

Sy 551.9 394.6 545.5 383.2 534.5 1

90 R .945 .862 .945 .858 .969 |
Se 256.5 291.1 257.3 288.5 179.8 i

Sy 749.3 548.0 749.0 536.3 696.1 |
120 R .942 .849 .941 .846 .967
Se 284.9 330.6 286.4 327.4 199.8 ;
Sy 807.0 596.2 T 807.9 584.7 746.9 :

O

W {




TABLE 7 {

Summary Statistics for Testing of Regression Models

Predictor Variables: Snowpack Index and October-April
Precipitation Total

} Forecast Date: May 1

|
|
Data Set # 3
Length of Forecast §
(Days) 1 2 3 4 S 3
i
15 R .927 .794 .877 .801 -971 '.}
Se 39.9 61.2 54.5 60.8 26.5
Sy 96.4 91.0 102.8 91.8 1000.0 ;
30 R .940 .908 .948 .915 .965 %
Se 98.4 91.6 88.2 91.7 75.3 j
Sy 260.6 197.9 249.6 205.9 258.5 ]
45 R .946 .921 .955 .907 .970 i
* e 149.7 132.6 133.3 141.5 109.5 ;
sy 417.5 307.1 407.4 303.3 409.0 o
60 R .970 .907 .960 .927 .987
Se 147.8 184.0 168.9 158.5 93.4 ;
551.9 394.6 545.5 383.2 534.5 i
90 R .981 .844 .961 .894 .986 B
Se 159.2 324.8 229.9 266.2 126.1
Sy 749.3 548.0 749.0 536.3 696.1
:.
120 R .982 .832 .962 .885 .985 i
Se 167.4 365.5 244.9 301.3 143.4 j
Sy 807.0 596.2 807.9 584.7 746.9 3
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TABLE 7

Summary Statistics for Testing of Regression Models !
Predictor Variables: Snowpack Index and May Smow Covered

Area

Forecast Date: May 1 :
|
Length of Forecast Data Set # %
(Days) 1 2 3 4 L
|
15 R .927 .885 .917 .882 .978 ?
Se 39.9 46.8 45.3 47.9 23.0 ;
Sy 96.4 91.0 102.8 91.8 100.0 |
; 3
30 R .969 .872 .933 .893 .947 :
Se 71.2 107.1 99.2 102.4 91.7 i ;
Sy 260.6 197.9 249.6 205.9 258.5 P
as R .974 .900 .947 .898 .956 o
Se 103.9 147.7 145.1 147.5 133.3 ; |
Sy 417.3 307.1 407.4 303.3 409.0 .
60 R .979 .872 .935 .865 .959 P
Se 123.9 213.6 214.5 212.5 167.7 P
Sy 551.9 394.6 545.5 383.2 534.5 i :
] |
90 R .962 .803 .907 .798 .946 i

Se 226.7 361.5 349.5 357.4 248.8

Sy  749.3 $48.0 749.0 536.3 696.1 ?
120 R .958 .787 .899 .783 .943 j
Se 255.1 406.9 390.6 402.1 275.9 ;
Sy 807.0 596.2 807.9 584.7 746.9 V]
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TABLE 7

Suwamary Statistics for Testing of Regression Models

Predictor Variables: October-April Precipitation Total and
May Snow-covered Area

Forecast Date: May 1

Length of Forecast Data Set #
(Days) 1 2 3 4 5
15 R .78S .659 .730 .662 .923
Se 66.0 75.7 77.7 76.1 42,7
Sy 96.4 91.0 102.8 91.8 100.0
30 R .931 .859 .919 .872 .967 i
Se 104.9 111.8 108.8 111.6 73.3
Sy 260.6 197.9 249.6 205.9 258.5
45 R .938 .872 .934 .863 .982
Se 160.2 166.3 160.6 169.5 86.1
Sy 417.3 307.1 407.4 303.3 409.0
60 R .975 .951 .974 .938 .987
Se 134.9 134.5 137.0 146.4 96.2
Sy 551.9 394.6 545.S 383.2 534.5
90 R .989 .980 .985 .966 .984
Se 123.0 119.7 145.0 152.7 135.1
Sy 749.3 548.0 749.0 536.3 696.1
120 R . 990 .980 .984 . 966 .983
Se 126.4 131.9 158.7 166.7 150.6 :
Sy 807.0 596.2 807.9 584.7 746.9 j
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TABLE 7

Summary Statistics for Testing of Regression Models

Predictor Variables: October-April Precipitation Total and Product
of Snowpack Index and May Snow Covered Area

Forecast Date: May 1

Length of Forecast Data Set #
(Days) 1 2 3 4 s

15 R . 785 497 .810 .489 . 965
Se 66.0 87.2 66.6 88.6 29.1

Sy 96.4 81.0 102.8 91.8 100.0

30 R .940 . 908 .950 .919 .976
Se 98.4 g3.1 86.1 89.9 61.8

Sy 260.6 197.9 249.6 205.9 258.5

45 R .978 .936 .964 »927 .981
Se 95.2 119.1 120.4 125.7 87.2

Sy 417.3 307.1 407.4 303.3 409.0

60 R .978 . 945 .976 .945 .992
Se 127.8 143.1 131.5 138.1 76.4

Sy $51.9 394.6 545.5 383.2 534.5

90 R . 966 .902 .976 .910 .990
Se 214.7 261.8 180.9 245.3 109.5

Sy 749.3 548.0 749.0 536.3 696.1

120 R . 965 .891 .975 .901 .985
Se 235.5 298.8 197.3 280.2 143.4

Sy 807.0 596.2 807.9 584.7 746.9
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TABLE 8

Summary Statistics for Testing of Tangborn Models

Forecast Date: April 1

Length of Forecast Data Set #
(Days) 1 2 3 4 S
15 R .747 .511 .753 .583 .410 |
Se 29.5 37.1 30.5 36.4 45.8 3
Sy 42.3 41.2 44.1 42.8 47.9 |
30 R .856 .441 .781 .558 .541 5
Se 48.7 85.6 65.5 80.1 96.4 :
Sy 89.9 91.0 99.8 92.0 109.3 ;
|
45 R .841 .436 .828 .546 .746 4‘
Se 101.4 161.4 115.4 152.0 143.9 1
Sy 179.0 171.0 196.1 173.0 206.1
ou M bl . 739 938 .784 .901 |
Se 146.2 185.0 121.1 177.3 162.1 i
Sy 340.6 261.8 332.4 272.1 356.7 {
% R 937 895 951 891 .940 |
Se 229.4 212.6 201.0 210.9 225.2 ;
sy 626.8 453.9 662.0 442.2 631.6 1
120 R .942 .899 .955 .901 .929 |
Se 290.2 277.2 254.6 269.0 307.7 g
Sy 882.6 604.3 821.0 §92.5 791.8 1
150 R .941 .894 .956 .899 .926 ‘
Se 331.4 306.7 271.3 293.9 332.9
Sy 880.1 651.9 878.9 640.4 842.0
-




TABLE 8

Summary Statistics for Testing of Tangborn Models

Forecast Date:

May 1

Length of Forecast Data Set #

(Days) 1 2 3 4 L3
15 R .740 .494 .689 .525 .828
Se 68.0 82.9 78.2 82.0 58.9

Sy 96.4 91.0 102.8 91.8 100.0
30 R .899 .770 . 903 .778 .943
Se 119.8 132.5 112.6 135.5 90.0

Sy 260.6 197.9 249.6 205.9 258.5
45 R 918 .838 -908 .818 .979
Se 177.1 175.6 179.0 182.8 86.6
Sy 417.3 307.1 407.4 303.3 409.0
60 R .936 .910 .955 -890 .980
Seo 203.4 171.6 169.2 183.2 110.6
Sy $51.9 394.6 545.5 383.2 534.5
90 R .948 .934 .976 .923 . 980
Se 249.8 205.8 169.4 215.9 147.1

Sy 749.4 548.0 749.0 536.3 69¢.1
120 R . 949 .931 .978 .925 .978
Sc 266.2 228.8 173.1 233.3 163.3
Sy 807.0 596.2 807.9 584.7 746.9
150 R .950 .930 .978 .925 .978
Se 269.4 236.0 181.5 239.7 167.0
Sy 819.5 612.0 822.8 600.6 756.8
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TABLS 8

Summary Statistics for iesting of Short-Term Tangborn Models

Fovecast Date: May 1

Length of Forecast Date Set # i
(Days) 1 2 3 4 [3 j
1 R .665 .619 .760 .644 .813 ?
Se 3.89 4.20 3.38 3.90 3.14 i
Sy 4.96 5.1 4.96 4.86 5.15 |
2 R .694 .634 .761 .664 .834 o
Se 7.43 8.08 7.02 7.53 5.86 P
Sy 9.85 9.97 10.31 9.61 10.13 L
3 R .718 .630 .739 .667 .858 |
Se 10.43 11.56 11.11 10.69 8.00 |
Sy 14.29 14.18 15.74 13.69 14.83 §
3 R .758 .587 .684 .632 .830 ;
Se 15.45 19.18 20.82 17.66 15.12 ;
Sy 22.57 22.60 27.21 21.74 25.82 ‘
10 R .786 .515 .706 .539 .756 i
Se 35.08 49.87 49.2% 47.95 44.42
Sy 54.06 55.46 66.28 $4.28 64.68
15 R .740 .494 .689 .525 .828
Se 68.0 82.94 78.18 81.99 $8.88
Sy 96.38 90.97 102.84 91.83 100.05
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TABLE 8

Summary Statistics for Testing of Short-Term Tangborn Models

e et e eI . ¢ 15t

Forccast Date: May 1S

|
|
Length of Forecast Data Set # 3
(Days) 1 2 3 4 [ j
i
1 R .694 .405 .397 .506 .782
Se 6.79 8.21 7.9 8.34 5.28 |
Sy 9.00 8.56 8.27 9.22 8.09
| 1
| 2 R .734 .438 .514 .547 .868 |
Se 12.83 15.41 14.74 15.67 10.30 ;
Sy 18.01 16.34 16.38 17.85 16.68 :
l
3 R .769 .466 .627 .575 .825 |
Se 18.81 22.60 20.58 22.98 15.75 i
Sy 28.03 24.35 25.18 26.78 26.61 ‘.
3 R .80S .528 734 .581 .850
Se 29.64 36.18 30.58 36.39 26.26
Sy 47.61) 40.53 42.92 41.82 47.56
10 R .929 .763 .892 .790 .908 _
Se 40.27 55.57 41.81 $5.36 45.10 '
Sy 103.7 81.92 88.36 86.09 102.86
15 R .951 .811 .920 .830 .926
‘ Se  54.53 79.67 66.09 79.41 64.08
| Sy 168.14 129.68 160.79 135.90 161.37
|

tot
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TABLE 8

Sunmary Statistics for Testing Short-Term Tangborn Models

Forecast Date: June 1 ' ;

Length of Forecast Data Set #
(Days) 1 2 3 4 5 1
1 R .893 .640 .766 .753 .931 :
Se 6.55 8.96 9.39 7.56 5.37 ‘

Sy 13.86 11.12 13.93 10.96 14.06

2 R .872 .601 .735 .727 .924

Se 14.28 18.71 20.01 15.75 11.28

Sy 27.85 22.31 28.14 21.87 28.20

3 R .864 .601 .727 .718 .920
Se 21.89 27.69 30.07 23.52 17.12 |
Sy 41.50 33.04 41.79 32.25 41.79 ?
s R .865 .599 .729 .70S .928 g
Se 35.26 44.25 47.79 37.87 25.90 .

Sy 66.99 52.67 66.58 50.90 66.42
10 R .898 .617 .775 .657 .950 %
Se 54.92 75.71 78.91 68.62 37.89 i
Sy 118.84 91.72 119.04 86.79 115.79 |
|
15 R .929 .703 .828 704 .957 |
Se 61.47 89.08 94.09 81.83 46.92 |

Sy 158.74 119.41 160.12 109.89 154.42

3
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TABLE 8

Sumnary Statistics for Testing of Short-Term Tangborn Models

Forecast Date: June 1§

Length of Forecast Data Set #
(Days) 1 2 3 4 [
1 R .957 .877 .821 .832 .950
Se 2.81 3.86 5.74 3.98 2.91
Sy 9.22 7.66 9.58 6.84 8.91
2 R .938 . 863 .822 .831 .946
Se 6.91 8.30 11.72 8.27 6.04 ;
Sy 19.00 15.65 19.64 14.17 17.79 x.
3 R .915 .836 .838 .809 .947 |
se 11.90 13.07 16.54 12.65 8.62
Sy 28.08 22.69 28.89 20.52 25.62 ;
5 R .881 .799 .883 .773 .946
Se 23.57 23.85 23.88 22.89 14.43
Sy 47.54 37.83 48.55 34.44 42,37
10 R .893 .830 .932 .805 .962
Se 48.62 47.24 39.96 47.17 25.90
Sy 103.01 80.74 105.28 75.76 90.44
15 R .883 .828 .918 .793 .971
Se 76.38 72.08 65.80 74.13 32.17
Sy 155.37 122.48 158.42 116.03 129.10




TABLE 9

Summary Statistics for Testing of Martinec Models

Forecast Date: May 1

Length of Forecast Data Set #
(Days) 1 2 3 4 S
1 R .971 .965 .977 .961 .990
Se 1.15 1.28 1.01 1.28 .68¢8
Sy 4.96 5.10 4.96 4.86 5.15
2 R .960 .943 .953 .939 .980 ‘
Se 2.64 4.16 3.00 3.17 1.92 i
Sy 9.85 9.97 10.3 9.61 10.1 |
]
3 R .940 .902 .922 .895 .958
Se 4.66 5.85 5.82 5.84 4.08
Sy 14.29 14.2 15.7 13.7 14,8
5 R .862 .733 .834 717 .841 ;
Se 11.0 14.7 14.4 14.5 13.4 ’
Sy 22.6 22.6 27.2 21.7 25.8 :
10 R .866 .652 .806 .642 .792
Se 25.9 40.2 37.6 39.8 37.8
Sy 54.1 55.5 66.3 54.3 64.7
15 R .921 .721 .860 .709 .867
Se 36.0 60.4 50.3 62.0 47.8 |
Sy 96.4 91.0 102.8 91.8 100.0 ;

901
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Summary Statistics for Testing of Martinec Models

TABLE 9

¢ e ———

Forecast Date: May 15
Length of Forecast Data Set #
(Days) 1 2 3 4 [
1 R .913 .878 .891 .967 .878
Se 3.52 3.92 3.59 2.26 3.70
Sy 9.0 8.56 8.27 9.22 8.09
2 R .778 .790 .725 .940 .698 '
Se 10.8 9.60 10.8 5.85 11.4 f.
Sy 18.0 16.3 16.4 17.9 16.7 |
3
3 R .627 .731 .584 .907 .542 ;
Se 20.9 15.9 19.6 10.8 21.4
Sy 28.0 24.3 25.2 26.8 26.6 !
5 R .320 .657 .377 .828 .312
Se 43.2 29.3 38.1 22.5 43.3
Sy 47.6 40.5 42.9 41.8 47.6 1
10 R .792 .599 .640 .754 .686 !
Se 60.6 62.8 71.1 54.2 71.7
Sy 103.7 81.9 96.6 86.1 102.9
15 R .763 .729 .657 .793 .690
Se 104.1 85.0 116.0 79.3 111.8
Sy 168.1 129.7 160.8 135.9 161.4
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TABLE

9

Summary Statistics for Testing of Martinec Models

Forecast Date: June 1
Length of Forecast Data Set #
(Days) 1 2 3 4 3
1 R .992 .949 .988 .964 .990
Se 1.63 3.34 2.09 2.80 1.88
Sy 13.9 11.1 13.9 11.0 14.1
2 R .986 .940 .980 .948 .982
Se 4.37 7.30 5.42 6.64 5.15
Sy 27.8 22.3 28.1 21.9 28.2
3 R .982 .933 .976 .942 .971
Se 7.45 11.4 8.67 10.4 9.49
Sy 41.5 33.0 41.8 32.2 41.8
S R .973 .916 .984 .936 . 964
Se 14.8 20.3 11.5 17.2 16.9
Sy 67.0 52.7 66.6 $0.9 66.4
10 R .962 .645 .991 .802 .972
Se 31.2 67.1 15.3 49.7 26.1
Sy 118.8 91.7 119.0 86.8 115.8
15 R .920 .727 .982 .797 .925
Se 59.5 78.5 29.0 63.6 56.2
Sy 158.7 119.4 160.1 109.9 154.4
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TABLE 9

Summary Statistics for Testing of Martinec Models

Forecast Date: June 15

Length of Forecast Data Set #
(Days) 1 2 3 4 5
1 R .952 .920 .919 .917 .974
Se 2.70 2.87 3.61 2.62 1.92
Sy 9.22 7166 9.58 6.84 8.91
2 R 9.13 .868 .844 .869 .957
Se 7.43 7.45 10.1 6.71 4.92
Sy 19.0 15.6 19.6 14.2 17.8
3 R .869 .803 .769 .821 .941
Se 13.3 12.9 17.7 11,2 8.33
Sy 28.1 22,7 28.9 20.5 25.6
5 R .793 .699 .627 .745 .898
Se 27.7 25.9 36,2 22.0 17.8
Sy 47.5 37.8 48,5 34.4 42.4
10 R .816 .777 .948 .843 .892
Se 57.0 48.7 32,2 39.1 39.1
Sy 103.0 80.7 105.3 75.8 90.4
15 R .759 .848 .951 .842 .869
Se 96.9 62,2 46.7 60.0 6l1.1 :
Sy 155.4 122.5 158.4 116.0 129.1
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it may be that if both models were tested with many more years
of data, the second model would yileld a correlation equal to
or higher than that of the first model. For this reason, some
measure of the significance of the differences in correlation
is required.

A test is needed to determine the truth of the hypothesis
that the two correlations being compared are significantly dif-
ferent. Fisher (1942) has constructed a test of this hypothesis
that can be used with samples of moderate size drawn from bivar-
iate normally distributed populations. The test is based on a

function known as the Fisher R to 2 transformation:

=1 1+R -
Z=%log, iR (5-1)
in which R is the sample correlation coefficient. The Z values
of this function that correspond to various values of the correla-
tion coefficient have been calculated and are presented in Table
10. Determination of the significance of the difference between
two correlation coefficients is Jjudged using the test statistic:
2 - %

z = 2 (5-2)
1/2

() + ()
( N -3'7N,-3 ]

in which Z1 and 22 are the values of the variable gi ren by Eq.
(5-1) and corresponding to the two correlation coefficients,

4y and N, are the numbers of observations on which each correla-
tion coefficient is based,and z is the value of a random variable

having a standard normal distribution. The test statistic is

) S
e e it
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TABLE 10
Values of the Fisher R-to-2 Transformation

= ( +R)

Z =% loge (T- R
R 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.5 .549 .563 .576 .590 .604 .618 .633 .648 .662 .678
.“8
1.071
1.422
2.646

11T
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compared with a critical value obtained from tables for the
normal distributicn function to determine the significance
of the difference in correlation.

In order to conclude that the accuracy of two models is
significantly different, a level of significance must be chosen.
This level of significance will determine the magnitude of dif-
ferences in correlation that will be considered significant.

The level of significance should Le chosen by examining the
consequences of accepting an incorrect hypothesis and weighing
these consequences against the results of rejecting a correct
hypothesis. Such a choice can be made only by those with the
knowledge necessary to evaluate the consequences; choice of the
proper level of significance is beyond the scope of this investi-
gation. Significance of the results of the testing program must
therefore be Jjudged by the reader. Once a level of significance
has been selected, the statistical tools presented here may be
used to compare the accuracies of the models.

Table 11 shows the values of the test statistic correspond-
ing to various levels of significance. In order to determine
whether one model is significantly more accurate than another
at the chosen level of significance, the test statistic is com-
puted according to Eq. (5-2); if the resulting value is greater
than the value given in Table 11, the difference in model ac-
curacy is deemed cignificant. For example, the accuracy of the

short-term Tangborn model can be compared with the accuracy of

the Martinec model for making 3-day predictions with a forecast




ey

TABLE 11

Values of the Test Statistic Corresponding to Various Levels of Significance

- %
o - G %
nl-S 2-3
Level of Significance Minimum Value of Z for
a= Significant Difference
0.01 2.575
0.05 1.960
0.10 1.645
0.20 1.280

134¢
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date of May 15 using data set #3. The correlation coefficient
for the Tangborn model is 0.627; the correlation coefficient
for the Martinec model is 0.855. The corresponding Z-values,
from Table 10, are 20.855=l.275 and ZO.6Z7=O.736M; the test
statistic calculated from Eq. (5-2) is:

2, -2 - L4
fm%i ’ %’Uy TR
1° 2"

Comparing the test value with the values in Table 11 shows that

= 1.1425 (5-3)

the difference in correlation is not significant even at the 20
percent level. It must be noted that a difference in correla-
tion of 0.228, such as was tested here, is not always insignifi-
cant; significance is a function of the values of the correla-
tions, not just the difference between them. If the first cor-
relation was 0.980, and the difference between the correlations
was 0,228, the second correlation would be 0.752. The Z-values
would be 20.980=2’298 and Zo.752=0.978; the test statistic would
equal 2.8, and the difference in correlation would be judged to

be significant at the one percent level.

S fica and )

A hydrologic basis for comparison of the models would sim-
plify interpretation of the test results. If the prediction given
by model A is nearly thie same as that given by model B in each of
a series of test yexrs, these two models may be considered hy-

irnlogically similar. It is possible to determine whica pairs
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of models are hydrologically similar by examining the predict-
ed values for each test year for each model, but this would be
very time consuming due to the volume of data. Instead, the
standard error of estimate was tested for use as an indicator
of hydrologic similarity.

In order to determine whether similar standard errors were
indicative of similarity of predictions, the predictions given
by & representative sample of the models were compared. Table
12 shows a sample comparison; predictions that were made with
the Tangborn model ior a 90-day forecast peiiod starting on
April 1 are compared with predictions that were made with regres-
sion equations for the same data set. The comparison demonstrates
that even though the standard errors of estimate of two models are
similar, the predictions for individual years are not necessarily
similar. Due to the high correlations among the predictor vari-
ables for the varlous regression models, the predictions given
by some of these models were similar. However, tnere was little
similarity between predictions made with the Tangborn model and
those made with any of the regression models. The Tangborn pre-
dictions for short forecast periods were generally not similar
to the Martinec results, even when the standard errors were near-
ly equal. The conclusion is that the standard errors of estimate
~an not be used to judge hydrologic similarity of individual

predictions among the models.

Test the

The ~orrelation coefficients were compared several ways.
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TABLE 12

Example of Comparison of Predictions of Models With Similar Standard Errors

Tangborn (Se = 212.6) Ref::::itge'itgzgfgypaCk ::52:’iiﬁﬁi:iiﬁtf§:°722'. 160.9)

Observed Predicted Error (%) Predicted Error (%) Predicted Error (%)

975.4 969.0 -0.7 1247.3 +27.9 1018.1 +4.4

1289.7 1572.0 +21.9 1075.3 -16.6 1340.9 +4.0

1751.7 1315.2 -24.0 1652.0 -4.6 1341.8 -22.5

1288.8 1223.8 -5.0 1631.8 +26.6 1270.7 -1.4

1134.9 821.9 -27.6 670.6 -40.9 752.0 -33.7

1085.8 1049.6 -3.3 1105.7 1.8 944.1 -13.1 |
1644.9 1580.3 -3.9 1338.4 -18.6 1445.5 -12.1 !
2627.7 2379.8 -5.9 2684.0 6.2 2317.2 -8.3 i

782.7 833.6 6.4 660.5 -15.6 778.7 -0.5 §
1506. 6 1358.9 -9.8 1793.6 +19.0 1391.8 -7.6 ;
1375.4 966.3 -29.7 1297.9 -5.6 1106.5 -19.6 |
1142.3 1215.2 +6.4 1287.8 *12.7 892.3 -21.9 ;

£19 8
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In order to judge the significance of differences in correlation,
the level of significance was arbitrarily set at 20 percent.
Table 13 is arranged in such a way that, given a level of signifi-
cance and one correlation coefficient, the nearest significantly
different correlation value can be read from the table.
Correlacions for the various data sets were compared with
each other; it was expected that the accuracy of the models would
t3 significantly better when used wit., data sets #1, 3, and 5,
rather than with sets #2 and 4. The correlations for the various
lengths of forecast were also compared for each model type, as
wvere the figures for the different forecast dates. These com-
parisons should indicate the conditions under which each type
of model is must accurate. Once the optimum conditions ara de-
termined for each type of model, the models may be compared to

deterzine which type is most accurate for each forecast period.

Effect of Data Sets on Model Accuracy

Data sets #1, 3, and 5 were formed by ranking the data
vears in order of decreasing runoff for various time periods,
then splitting the 24-year sample by taking the even-ranked
7ears for calibration and the odd-ranked years for testing.
Cata sets #2 and 4 were formed by using the low runcff years
for calibration and tha high runoff years for testing. Thus,
when the models were tested with sets #1, 3, and 5, the test
data was within the range of lata for which the model had bteen
calibrated. With data sets #2 and 4, hrowever, the models were

vested with data from outside the rarge of caiibration. In



(a = 0.01)

TABLE 13

Values of Significantly Different Correlation Coefficients for Various Levels of Significance

(a = 0.05)

=

.969
.938
.908
.880
.852
.824
.798
771
.746
.720
.672
.625
.582
.540
.499
.461
.424
.388
. 354
.320
.288
+258
.229
.200
174

Ry( @ = 0.10)

g1t
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many cases the differences in the resulting correlation coef-
ficients are not significant; but the pattern of the signifi-

cant differences indicates that the regression models generally
were more accurate with sets #1, 3, and 9 than with sets #2 and

4 for forecasts of 90 days or more. The Tangborn model was more
accurate with data sets #1, 3, and 95 for all lengths of forecast,
especially during June. The Martinec model was more accurate with
sets #1, 3, and 5 for all prediction periods during June.

In general, the models were found to be significantly more
accurate when tested with data from within the range of data used
in calibration. Thus, if the data used for calibration is repre-
sentative of the watershed hydrology that the basin will experi-
ence in future years, then the goodness-of-fit statistics are pro-
bably representative of the forecast accuracy. The conclusion is
that accuracy of the models is determined by the degree to which
the calibration data represents the data base as a whole. If a
model 1s calibrated with only five years of data that is repre-
sentative of the entire range of data,the resulting equation may
be more accurate than a model calibrated with 20 years of non-

representative data.

Variation of Accuracy with Forecast Length

A comparison of the correlation coefficients for various
lengths of forecast was performed for each model and data set.
Results of the regression equations were significantly more ac-
curate for forecast lengths of 60, 90, and 120 days than for 19

and 30 day periods; the same was true of the long-term Tangborn
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results. When the Tangborn model was used for short-term pre-
dictions, the accuracy for the 15 day period was significantly
greater than for periods of 1, 2, or 3 days. The Martinec
model was significantly more accurate for 1 and 2 day predic-

tions than for longer periods.

Variation of Accuracy With Forecast Dates
The regression models based on the snowpack index were

significantly more accurate for a forecast date of April 1l

than for May 1 forecasts. The other regressions generally
performed equally well for both dates. The short-term models,
both Tangborn and Martinec, were less accurate for forecasts
made on May 15 than for forecasts made on the other dates.

This is due to the fact that the peak flows occur in late

May in most years; the forecasts are less accurate at this

time because there is greater random variation in the criterion
variable. Results of the long-term Tangborn testing did not
vary significantly with forecast date.

Differences in Accuracy of the Models

Comparison of the correlations showed that the regression
based on snow covered area was usually the least accurate long-
term prediction model. It must be remembered that for 19 of
the 24 data years, the true values of snow covered area for
April 1 were not available, so estimates were generated by a
regression equation that was calibrated with only five years

of data., This may be the reason for the poor performance of

Y
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the regression models based on snow covered area.

The regression models that did not include snow covered area
generally gave more accurate results than the Tangborn model, es-
pecially for forecast periods of 45 and 60 days. The Martinec
model was significantly better than the Tangborn for prediction
periods of 1, 2, and 3 days except in late June, when the differ-

ences in correlation were not significant.

Analysis of Objectives

The testing program was designed to provide answers to the
four specific investigations described in Chapter I. Scme of
these investigations were limited by the type of data available.

The results of the investigations are discussed in this section.

The Value of Spatial Separation of a Watershed

In conceptual models, the coefficients and variables that
define components of the methods are used to reflect variation
in snowmelt and runoff. For example, the first term of the
Martinec model represents the runoff generation processes (pre-
cipitation and snowmelt) and also the loss processes (evapotrans-
piration and groundwater storage). Coefficients are included in
this term in order to approximate the rates of these processes.
Cn a large watershed with a wide range of elevation, such as
tne Kings River basin, the physical conditions that control
the rates of these processes show significant variation both
spatially and temporally. Therefore, it is reasonable to ex-
pect that dividing the watershed into smaller, more homogeneous
areas and determining separate parameter values for each sub-

area should improve the accuracy of the predictions. Some of
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the factors that control the rate of the snowmelt process

are air temperature, wind velocity, and vapor pressure de-
ficit. Each of these climatic variables 1s a function of
elevation; therefore, a rational way nof subdividing the water-
shed into smaller, more homogeneous areas 1s by using eleva-
tion zones.

In order to test the hypothesls that accuracy of predic-
tion can be increased by dividing the watershed into smaller
areas, the Martinec model was calibrated and tested twice.

The first analysis considered the entire watershed as one

area, with the temperature index,T, the degree-day factor,d, and
the runoff coefficlent, c, assumed constant over the water-
shed. The pattcen search method of optimization was used to
calibrate the parameter values, and the resulting model, which
had the form of Eg. (4-11), was tested using each of the five
test data sets. In the second analysis, the area of the water-
shed was divided into six elevation zones. By May 1 there was
no snow cover below an elevation of 3000 feet in any of the
years of record. Therefore, the first zone consisted of all
points at an elevation below 3000 feet. The rest of the water-
shed ranges in elevation from 3000 to nearly 13,000 feet and
was divided into five zones using an elevation interval of
2000 feet. Different values of temperature were developed

for each zone by using a constant lapse rate and the differ-
ence between the temperature station elevation and the median

elevation of the zone. Both the degree-day factors and the




123

runoff coefficients were allowed to vary from zone to zone
and were calibrated using the pattern search method with
model:

6 (b+1)

* b

(5-4)

The analyses of Chapter 4 showed that irrational parameter
values resulted from the model of Eq. (4%-10). When both the
runoff coefficient and the degree-day factor were zonal de-
pendent, the resulting values were highly irrational. The
runoff coefficient represents the proportion of generated melt
that leaves the watershed as streamflow. Due to the longer
travel distance of water generated in the upper elevation zones,
it was expected that the higher elevation zones should have low-
er runoff coefficients. The zonal runoff coefficients derived
by the pattern search did not vary systematically with elevation,
contrary to expectations. Due to this irrationality, the model
was re-formulated with a constant runoff coefficient but vary-
ing degree-day factors. The resulting model has the form of
Eq. (4-25). Pattern search was used to calibrate the model,
but the resulting parameter values were still irrational. Some
of the degree-day factors were negative, which is not physical-
ly possible. Again, the values did not vary systematically with
elevation, which indicates that the values are irrational. This
irrationality is the result of the insensitivity of the model to

these parameters.
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Because the more complex forms of the model could not be
successfully calibrated, the degree-day factor and runoff co-
efficient were assumed to be constant from one elevation zone
to the next. The resulting model is given by Eq. (4-26). 1In
this model, the temperature and effective precipitation vary
from zone to zone, but the degree-day factor and runoff co-
efficient are thre same f. : all zones. This model was calibrat-
ed and then tested using each of the five 1l2-year test data sets.
Comparing the calibration results of this model with the results
of calibrating the other zoned models, Eqs. (4-25) and (5-4),
indicates that very little statistical accuracy is lost by as-
suming that the runoff coefficient and degree-day factor are
constant over the entire watershed. The differences in the
sum of the squares of the errors for the calibration data aver-
aged less than two percent between the lumped and spatially dis-
tributed models.

The lumped parameter and spatially distributed models were
compared using the 5 test data sets; statistics for the lumped
parameter model are given in Table 14, and the statistics for
the distributed form of the Martinec model appear in Table 9.
The test statistic of Eq. (5-2) is used to compare the correla-
tion coefficients. For the spatially distributed model, the
rational coefficients derived from the pattern search calibra-
tion of Eq. (4-25) were used. A 20 percent level of signifi-
cance was used for decision-making. For most cases there were
no significant differences. However, for forecast periods of

1, 2, and 3 days that start on May 15, the lumped model results

y},

-




TABLE 14

Correlation Coefficients for Testing of Lumped Parameter Martinec Model

Forecast Date Length of Forecast Data Set ¥
1 2 3 4 S
May 1 1 .968 .962 .979 .957 .986
2 .953 .940 .957 .936 .973
3 .929 .908 .935 .901 .948
5 .842 .772 .872 .754 .840
10 .789 . 645 .854 .625 .747
15 .821 .689 .88S5 .683 .752
May 15 1 .994 .988 . 987 .990 .977
2 .984 .970 .974 .974 .953
3 .968 .941 .956 .948 .935
5 .918 .870 . 905 .878 .901
10 .888 .713 .818 .735 .908
15 .891 .749 .848 .765 .922
June 1 1 .983 .975 .988 . 966 . 994
2 .970 .961 .980 .944 .989
3 .964 .955 .979 .932 .986
5 . 967 . 969 .988 .938 .992
10 .979 .969 .986 .945 .987
15 .988 . 960 . 985 .954 .980
June 15 1 .955 .916 . 968 .885 .972
2 .926 .857 .943 .810 .956
3 .903 .804 .920 .742 .949
S .873 .711 .884 .632 .938
10 .914 772 .921 .716 . 955
15 .924 .792 .925 .749 .961

oy o e

set
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were significantly better than the distributed model results.

The lumped model was also superior for 15-day predictions from
June 1 and June 15 with data sets 1, 3, and 5. The conclusion

is that spatial separation of the model input does not improve
the accuracy on this watershed, at least not with the Martinec
model as applied in this study; if the models were modified to
include a routing term, spatial separation might prove to be more

helpful.

The Value of Real-Time Data !

Another objective was to evaluate the effect on accuracy of ;
delays in daily data collection. The Martinec model was used to ‘
evaluate the effect of delays in the availability of data. This !
was accomplished by assuming that data from previous days were
not available; lag times of 1, 3, and 5 days were tested. The
delayed data were the daily snow covered area, temperature, pre-
cipitation, and runoff.

In order to forecast runoff, the Martinec model requires pre-
dictions of the precipitation, temperature, and snow covered area
for the forecast period. The precipitation predictions are based
on observations from previous years, not on observations from the
previous few days, so a time lag in collection of precipitation
1ata will not affect the accuracy of the model. For prediction
periods of greater than five days, the temperature predictions
are also derived from past years; but for predictions of less
than five days, the temperature prediction is based on the value

observed on the previous day. If there is a time lag in collec-

tion of the temperature data, the accuracy of the predictions
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may be lessened. Snow covered area is also predicted from
the values observed on the previous days, and a time lag in

collection of this data may also affect accuracy.

The Martinec model was tested with delays in data collec-
tion of one, three, and five days. All five test data sets
were usedj the resulting goodness-of-fit statistics are shown
in Table 15. In order to determine the effect on accuracy of
delays in data collection, the values in Table 15 are compared
with each other and with the statistics presented in Table 9
for the Martine: model with real-time data.

Comparison of the correlation coefficients in Tables 15
and 9 indicate that at a significance level of 10 percent there
is no effect on accuracy for predictions of 3, 5, 10, or 15 days.
For forecast periods of one or two days, the accuracy achieved
by using real-time data is significantly higher than the accuracy
achieved when there is a three day or five day lag between data
measurement and avallability. When the time lag is one day,
the results are significantly more accurate than with a five

day time lag for forecast periods of one or two days.

Acen of the Snow Covered Area Mo

One of the objectives of this study was to determine whether
snow covered area data can be used alone to accurately predict
snowmelt runoff. DNo other data is to be included in the model,
50 an empirical equation must be developed. Linear regression
models relating snow covered area to seasonal runoff were calib-

rated for both April 1 and May 1, as described in Chapter k4.




TABLE 15

Corrclation Cocfficients for Testing of Martinec Model with Time Lags of
Onc, Three, and Five Days - Data Set #1

Time Lag (Days)

Forecast bDate Length of Forecast
(bays) 1 3 5
May 1 1 .938 .838 .932
2 .933 .858 .857
3 .922 .878 .878
S .856 .872 .894
10 .861 .860 .880
15 .920 .905 .884
May 15 1 . 905 .952 .843
2 777 .918 .834
3 .640 .907 .821
S .878 .883 .824
10 .781 .796 .785
15 .755 .769 .763
June 1 1 975 .940 . 896
2 .963 .927 .895
3 .954 .938 .904
5 .970 .955 .919
10 .960 . 964 .927
15 .925 .940 .912
June 15 1 .871 .787 .909
2 .821 .718 .887
3 .788 .857 .869
S .831 .852 .835
10 .824 .855 .814
15 .780 .815 . 756

get
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TABLE 1S

Corrc’ation Cocfficients for Testing of Martinec Model with Time Lags
of Cr2, Three, and Five Days - Data Set #2

Time Lag (Days)

Forecast Date Length of Forecast
(Days) 1 3 S
May 1 1 .925 .748 .663
2 .908 762 .701
3 .880 .784 .754
S .740 .761 .798
10 .662 .686 .713 ‘
15 .724 .726 .722 ;
May 15 1 .871 .797 .373
2 .821 .768 .291
3 .787 .388 277
S .367 .360 .291
10 .601 .604 .571
15 «731 .732 .710
June 1 1 .933 . 727 641 _
2 .920 .6S1 .554 |
3 914 .528 .519 '
S .586 .510 .502
10 .634 .586 .581
15 <723 .703 .701
June 15 1 .844 .738 .786
2 .815 .690 .739
3 .790 .657 .711
S .663 .658 .693
10 <755 .750 .781
15 .842 .841 . 845

621




TABLE 1S

Corrclation Cocfficients for Testing of Martinec Model with Time Lags of !
onc, Three, and Five Days - Data Set #3 !

Time Lag (Days)

Forecast Date Length of Forecas:
(Days) 1 3 S
May 1 1 .928 .725 .661
2 .911 . 745 .694
3 .895 .781 .748
S .841 .838 .840
10 .821 .855 .868
15 .861 .861 .864
May 1S 1 .829 ,783 .820 |
2 . 605 .599 .791 |
3 .413 .812 .747
S .704 .706 .662
10 . 607 .611 .587
15 .626 .630 .603
June 1 1 .915 .793 .898
2 .368 715 .884
3 .832 .868 .881
S .936 .885 .897
10 .981 .955 .956
15 .983 .981 .982
June 15 1 .860 .793 .932
2 .774 .712 911
3 . 702 .863 .900
S .907 .878 .891
10 .936 915 .926
15 .954 943 .939




T WEEEEEE T B e TR T

A - - e m———

TABLE 15

Correlation Cocfficients for Testing of Martinec Model with Time Lags of
e, Three, and Five Days - pata Set 24

Time Lag (Days)

Forecast Date Length of Forecast
(Days) 1 3 L3
May | 1 .918 .730 .632
2 .901 .751 .682
3 .869 777 .741
S .718 . 746 .778
10 .648 .672 .694
15 711 .718 .711
May 1§ 1 .951 .582 .642
2 + 924 .877 .60}
3 .892 .760 .561
5 .688 .671 .500
10 . 747 .763 .703
15 .790 .799 .783
June } 1 .928 .817 .752
2 . 904 . 784 .702
3 .894 .709 .682
3 «795 . 700 .672
10 .789 .740 .723
15 .795 .788 .780
June 1§ 1 771 . 742 .83S
2 .731 .729 .80S
3 . 707 .690 .781
S .701 .699 .753
10 .813 .80S .832
15 -869 .381 .827

[
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TABLE 15

Corrclation Cocfficients for Testing of Martinec Model with Time Lags of
Onc, Three, and Five Days - Data Set #5

Forecast Date Length of Forecast Time Lag (Days)
(Days) 1 3 - 5
May 1 1 .969 .813 .677
2 .964 .830 712
3 .957 .876 .791
5 .873 .921 .906
| 10 .831 .908 .934
E 15 .891 .934 .949
I
May 15 1 .837 .790 .840
2 .641 .622 .835
3 .471 .865 .820
5 .714 .808 .784
10 .666 .760 .746
15 .672 .741 .718
: June 1 1 .922 .862 .958
2 .874 .782 956 :
3 .829 .933 .954 ‘
‘ 5 .955 .940 .958 i
, 10 .965 .953 .960 E
15 .925 .919 .921
! June 15 1 .899 .770 .921 :
j 2 .873 .692 .905
i 3 .861 .821 .895 :
: 5 .839 .830 .872
10 .844 .846 .873 ,
| 15 .844 .857 .861
i
|
t
! -
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L
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Of all the long-term prediction models tested, the least
accurate was that based on snow covered area alone. For a
forecast date of April 1, the snow covered area model was
nearly as accurate as the other regression models; but for
May 1 forecasts, the snow covered area model was significantly
less accurate than the others. This is true for all data sets
and all forecast lengths tested, from 15 to 150 days. The reason
for this lack of accuracy is simply that the May 1 snow covered
area statistics do not correlate as highly with the runoff volumes

as do the predictor variables in the other regression equations.

Length of Record for Calibration

The fourth specific objective of this study was to determine
the length of record required for model calibration. The models
used in this study could all be calibrated with as little as one
year of record, but generally the accuracy of a model can be ex-
pected to increase as the number of years used for calibration
increases. At some number of calibration years, perhaps eight
or ten, the increase in accuracy resulting from adding an addi-
tional year 1is no longer significant. It must be noted, however,
that the characteristics of the calibration data years are at
least as important as the length of record.

The correlation coefficients resulting from calibration of
the regression models and the Tangborn models with each data set
appear in Tables 3 and 4. Comparison of the values for the
various data sets shows that the higher correlations are usually

the result of using data sets #1, 3 and 5 for calibration, rather
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than sets #2 and 4. This implies that the choice of years used
for calibration may be more important than the number of years
used.

Each of the models was also calibrated using all 24 data
years; generally, the results of this calibration were not sig-
nificantly better (at the 20 percent level) than the results
of calibrating with sets #1, 3, and 5. Therefore, 12 years
seems to be an adequate length of record for calibrating the
models as long as the 12 years are representative of the entire
range of data. Any set of data years that constitutes a repre-
sentative sample of the population of all possible data years
should be sufficient for calibration; the number of years re-

quired is dependent on the characteristics of the population.

13%
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

The following conclusions result from the comparisons

discussed above:

1.

Accuracy of the Tangborn model and the regression
models is greater if the test data falls within

the range of calibration data than if the test data
lies outside the range of calibration data.

The regression models are significantly more accu-
rate for forecasts of 60 days or more than for short-
er prediction periods.

The Tangborn model is more accurate for forecasts of
90 days or more than for shorter prediction periods.
The Martinec model is more accurate for forecasts of
one or two days than for periods of 3,5,10, or 15 days.
Accuracy of the long-term models seems to be inde-
pendent of forecast date; exceptions are the snow-
pack index regression model and the snow covered area
regression model, both of which are more accurate for
April 1 forecasts than for May 1 forecasts.

The short-term models are least accurate for forecast
periods in late May and early June; this coincides with
the period of peak flow for most years.

The Martinec model is the best of those tested for one

and two day forecasts.

S v . a e e
o
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With the exception of the snow covered area model,

the regression models are all roughly equal in accu-
racy; these regressions are the most accurate of all
models tested for forecasts of 60 days or more.

Spatial separation of the watershed by elevation zones
does not improve the accuracy of the Martinec model on
the Kings River Basin.

Delays in data collection of more than one day may sig-
nificantly lessen the accuracy of the Martinec model;
real-time data is desirable.

The regression model using only snow covered area as
input data is not as accurate as the other regression
models for May 1 forecasts.

The sufficiency of a calibration data base is a func-
tion not only of the number of years of record but also
of the accuracy with which the calibration years re-
present the total population of data years. Twelve
years appears to be a sufficient length of record for
each of the models considered here, as long as the

twelve years are representative of the population.

Recommendations
of the conclusions listed above were drawn from the re-

testing the models on just one watershed. The Kings

River basin 1is very large, and many of the conclusions may not

be true for smaller watersheds. Therefore, testing of the

A mcan
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models on at least one small watershed is recommended.

The Kings River basin was chosen for this study mainly
because snow covered area data had been collected for many
years. This data may have been collected for many other
watersheds in the western U.S. as well, but there doesn't
appear to b2 any one agency that can supply pre-Landsat snow
covered area data for a variety of watersheds. Apparently,
most of the snow cover data from before 1973 was not published.
It would be much easier to perform studies such as this one 1if
some control agency were established that would compile and
supply all the hydrologic data that has been collected over
the years. If all of these statistics were assembied in one
spot, the task of organizing a data base for a study such as
this one would be greatly facilitated.

As discussed in Chapter 5, there seems to be no accepted
method for judging the hydrologic similarity of two models. A
basis of comparison would be very useful for interpreting the
results of studies such as this one. If two models give com-
parable errors in each of a series of test years, only one of
the models must be studied because both models represent the
same relationships of cause and effect between the input values
and the predictions. Discriminant analysis may prove to be the
best way of comparing the test results of various models. It
would be useful to perform such an analysis of the results of

this study.
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